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Abstract. Many applications of social networks require relationship anonymity
due to the sensitive, stigmatizing, or confidential nature of relationship. Recent
work showed that the simple technique of anonymizing graphs by replacing the
identifying information of the nodes with random ids does not guarantee privacy
since the identification of the nodes can be seriously jeopardized by applying
subgraph queries. In this paper, we investigate how well an edge based graph ran-
domization approach can protect sensitive links. We show via theoretical studies
and empirical evaluations that various similarity measures can be exploited by
attackers to significantly improve their confidence and accuracy of predicted sen-
sitive links between nodes with high similarity values.

1 Introduction

Social networks are of significant importance in various application domains such as
marketing, psychology, epidemiology and homeland security. Many applications of so-
cial networks such as anonymous Web browsing require relationship anonymity due
to the sensitive, stigmatizing, or confidential nature of relationship. For example, most
people prefer to conceal the truth regarding their illegal or unethical behaviors which
are customarily disapproved of by society.

One natural approach is to publishing a node-anonymized version of the network that
permits useful analysis without disclosing the identity of the individuals represented by
the nodes. The recent work [1, 4] pointed out that this simple technique of anonymizing
graphs by replacing the identifying information of the nodes with random ids does not
guarantee privacy since the identification of the vertices can be seriously jeopardized by
applying subgraph queries. Another approach is to randomizing edges to protect sensi-
tive links [3, 4, 6, 8, 11]. For example, we can remove some true edges and/or add some
false edges. After the randomization, the randomized graph is expected to be different
from the original one. As a result, the true sensitive or confidential relationship will not
be much disclosed even if the identification of the vertices is achieved by attackers.

We will explore how well the edge randomization can protect those sensitive links.
In [8], Ying and Wu preliminarily investigated the relationship between the amount of
randomization and the attacker’s ability to infer the presence of a link and presented
a randomization strategy that can preserve the spectral properties (and utility) of the
graph. However, the effect on privacy due to randomization was quantified by consid-
ering only the magnitude information of randomization. It has been well known that
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graph topological features have close relations with the existence of links and various
proximity measures have been exploited to predict the existence of a future link [5]. In
this paper, we will investigate formally how attackers may exploit proximity measure
values (derived from the released randomized graph) to breach link privacy. Privacy of
a sensitive link is jeopardized if attackers’ confidence of prediction is higher than some
tolerated threshold or is significantly greater than the a-priori belief (without the exploit
of the released randomized data). Hence it is of great importance for data owners to be
aware of potential attacks and quantify the magnitude of perturbation to better protect
sensitive links.

2 Related Work

Social network analysis has increasing interest in the database, data mining, and theory
communities. The current state of the art is that there has been little work dedicated to
privacy preserving social network analysis with the exception of some very recent work
[1–4, 6, 8–11].

In [1], Backstrom and et al. described a family of attacks such that an adversary
can learn whether edges exist or not between specific targeted pairs of nodes from
node-anonymized social networks. Similarly in [4], Hay and et al. further observed
that the structure of the graph itself (e.g., the degree of the nodes or the degree of the
node’s neighbors) determines the extent to which an individual in the network can be
distinguished.

In [6], Liu and Terzi investigated how to modify a graph via a set of edge addition (or
deletion) operations in order to construct a new k-degree anonymous graph, in which
every node has the same degree with at least k − 1 other nodes. In [11], Zhou and
Pei anonymized the graph by generalizing node labels and inserting edges until each
neighborhood is indistinguishable to at least k − 1 others. In [2, 10], authors applied a
structural anonymization approach called edge generalization that consists of collaps-
ing clusters together with their component nodes’ structure, rather than add or delete
edges from the social network dataset. Although the above proposed approaches would
preserve privacy, however, it is not clear how useful the anonymized graph is since
many topological features may be lost.

The problems of how to generate a synthetic graph preserving various topological
features of a real social network and how attackers may exploit the topological features
of the released graph to breach link privacy were recently studied in [9]. However, the
attacking model in [9] was based on the probability of existence of a link across all
possible graphs in the graph space. In this paper, the attacking model is to exploit the
relationship between existence of a link and the similarity measure values of node pairs
in one released randomized graph.

We would point out that our problem of attacking methods on a randomized graph
is different from the classic link prediction problem investigated in [5]. The classic link
prediction focuses on network evolution models and is to predict the existence of a
future link between two nodes given a snapshot of a current social network. The change
due to randomization is different with that due to network evolutions. Nevertheless,
various graph proximity measures used in the classic link prediction could be used by
attackers.
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3 Link Privacy Analysis

A network G(n,m) is a set of n nodes connected by a set of m links. The network con-
sidered here is binary, symmetric, connected, and without self-loops. Let A = (aij)n×n

be its adjacency matrix, aij = 1 if node i and j are connected and aij = 0 otherwise. ˜G
is the randomized graph obtained by randomly adding k false edges followed by delet-
ing k true edges. This strategy keeps the total number of edges in the original graph
unchanged. We denote ˜A = (ãij)n×n be the adjacency matrix of ˜G.

When it comes to link privacy, it is usually aij = 1 that people want to hide, not
aij = 0 and attackers are capable of calculating posterior probabilities. Formally, we
use P (aij = 1) to denote the users’ prior belief about the event of aij = 1 and use
P (aij = 1| ˜G) to denote its posterior belief about aij = 1. The released graph ˜G is
regarded as jeopardizing the privacy if P (aij = 1| ˜G) > P (aij = 1).

In [8], we preliminarily investigated the relationship between the amount of random-
ization and the attacker’s ability to infer the presence of a link. The results are shown as
follows. When the attacker knows only parameter m and n, the prior belief is

P (aij = 1) =
2m

n(n − 1)
. (1)

With the released graph and perturbation parameter k, the posterior belief is

P (aij = 1|ãij = 1) =
m − k

m
, P (aij = 1|ãij = 0) =

k
(

n
2

)

− m
(2)

Equation 2 is based on the Addition/Deletion without replacement1.
In this paper, we further investigate whether topological features of the released net-

work can be exploited by attackers to breach the link privacy. More specifically, we
focus on to what extent a given sensitive relationship can be breached by attackers who
exploit proximity measure values of node pairs. Proximity measures have been shown
to be effective in the classic link prediction problem (i.e., predicting the future existence
of links among nodes given a snapshot of a current graph). However, link prediction in
our context is to predict the likelihood of existence of original links from the random-
ized graph. This is challenging since the proximity measure values calculated from the
randomized graph can be varied from those of the original graph. In section 3.1, we em-
pirically show the close relationship between various similarity measures of node pairs
and probability of link existence between them. In section 3.2, we conduct theoretical
studies and quantify how much the posterior belief can be enhanced by exploiting those
similarity measures.

3.1 Existence of a Link vs. Similarity Measure

Let mij be a similarity measure on node pair (i, j) in graph G (a larger value of mij

indicates that nodes i and j are more similar). We apply four similarity measures in

1 Refer to [8] for the Addition/Deletion with replacement. For large graphs, the difference
between the above is small.
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Fig. 1. Similarity measure vs. the prob. of true edges in the original graph (ρ(Sx)) for polbooks

this paper. The first one is the number of common neighbors: CNij =
∑n

k=1 aikakj .
The second one is the Adamic/Adar measure , which is the weighted number of com-
mon neighbors. The weights are assigned based on the information theory: Adij =
∑n

k=1
1

log dk
aikakj , where dk is the degree of node k. The third one is the Katz mea-

sure, which is a weighted sum of the number of paths in the graph that connect two
nodes, with shorter paths being given the larger weight: Kij =

∑∞
k=1 βkP

(k)
ij , where

P
(k)
ij denotes the number of paths from i to j with length equal to k while β is a damp-

ing factor. In this paper, we take β = 0.1. The fourth one is the commute time CTij ,
which is the expected steps of random walks from i to j and back to i. The commute
time is a distance measure: more similar nodes have smaller CT values.

Let ρ(Ω) denote the proportion of true edges in the set of node pairs Ω:

ρ(Ω) =
1

|Ω|
∑

(i,j)∈Ω

aij ,

where |Ω| denotes the number of elements in set Ω. Let Sx = {(i, j) : mij = x} denote
the set of all node pairs with the similarity measure mij = x. Hence ρ(Sx) denotes
the proportion of true edges in the Sx, which can be considered as the probability of
existence of a link between node pair (i, j) in Sx. Next, we empirically show how ρ(Sx)
varies with x in real social networks.

Figure 1 shows how the proportions of true edges in Sx are varied with similarity
measure values x in terms of four measures (Common neighbors, Katz, Adamic/Adar,
and Commute time) in the US political books network (polbooks). The polbooks net-
work2 contains 105 nodes and 441 edges, and nodes represent books about US pol-
itics sold by the online bookseller Amazon.com while edges represent frequent co-
purchasing of books by the same buyers on Amazon. We can observe that ρ(Sx) in-
creases with x. In other words, the probability that aij = 1 is highly correlated with
similarity measure mij : the larger mij is, the more likely aij is equal to 1.

We then perturbed the polbooks network by adding 200 false edges and deleting 200
true edges. From the perturbed graph ˜G, we define ˜Sx = {(i, j) : m̃ij = x} as the set
of node pairs with similarity measure m̃ij = x. Figure 2 shows how the proportions of
true edges in ˜Sx (i.e., the probability of existence of a link) are varied with similarity
measure values x in terms of four measures in the randomized polbooks network. We

2 (http://www-personal.umich.edu/∼mejn/netdata/)

http://www-personal.umich.edu/~mejn/netdata/
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Fig. 2. Similarity measure vs. the prob. of true edges in the randomized graph (ρ(�Sx)) for pol-
books

can observe that the same pattern still holds even if the randomized graph itself is quite
different from the original one (200 false edges out of 441 edges). In the next section, we
will show how attackers exploit m̃ij in the perturbed graph ˜G to improve their posterior
belief on existence of a true link between nodes (i, j) in the original graph.

3.2 Link Prediction by Exploiting Similarity Measure

In this section, we quantify how much the posterior belief can be enhanced by exploiting
similarity measure between two node (i, j) in the randomized graph. We present our
quantification in a series of results and leave detailed proofs in Appendix.

Recall the randomization strategy is to randomly add k false edges followed by delet-
ing k true edges. In other words, every true link is to be deleted independently with
probability p1 and every non-existing link is to be added independently with probabil-
ity p2. We can easily derive p1 = k/m and p2 = k/[

(

n
2

)

− m].
Let m̃ij denote the similarity measure of node i and j in ˜G. We define ˜Sx = {(i, j) :

m̃ij = x} as the set of node pairs with m̃ij = x in the perturbed graph. Then we have
P (aij = 1|m̃ij = x) = ρ(˜Sx), and P (aij = 0|m̃ij = x) = 1 − ρ(˜Sx). Recall that
ρ(˜Sx) denotes the proportion of true edges in the set ˜Sx derived from the perturbed
graph. Also notice that P (ãij = 1|aij = 1) = 1 − p1 and P (ãij = 1|aij = 0) = p2.
With the Bayes’ theorem, the posterior belief is then given by

P (aij = 1|ãij = 1, m̃ij = x) =
(1 − p1)ρ(˜Sx)

(1 − p1)ρ(˜Sx) + p2[1 − ρ(˜Sx)]
, (3)

P (aij = 1|ãij = 0, m̃ij = x) =
p1ρ(˜Sx)

p1ρ(˜Sx) + (1 − p2)[1 − ρ(˜Sx)]
. (4)

Equation 3 (Equation 4) shows the enhanced posterior belief that an observed (miss-
ing) edge (i, j) in the G̃ is a true edge in G. The following property shows that the event
of an observed link ãij = 1 usually has more indications to be a true link than that of
ãij = 0.

Property 1. Let r denote the sparse ratio of the graph, r = m/
(

n
2

)

. If k ≤ (1 − r)m,
given a fixed x, we have the following inequality stands:

P (aij = 1|ãij = 1, m̃ij = x) ≥ P (aij = 1|ãij = 0, m̃ij = x). (5)
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Many real-world social networks are very sparse (r ≈ 0). Hence k ≤ (1 − r)m
is usually satisfied. We thus focus on the risk of the released links, P (aij = 1|ãij =
1, m̃ij = x).

One issue here is that attackers cannot know the proportion of true edges in ˜Sx from
the perturbed graph. What they can know actually is the proportion of observed edges
in ˜Sx. Our next result shows the maximum likelihood estimate of ρ(˜Sx) can be derived
from the proportion of observed edges in ˜Sx.

Result 1. Given the perturbed graph and a fixed x, define ˜S1
x = ˜Sx ∩ ˜E = {(i, j) :

ãij = 1, m̃ij = x}. Assume p1+p2 �= 1, then the maximum likelihood estimator (MLE)
of ρ(˜Sx) is given by

ρ̂
(

˜Sx

)

=
|˜S1

x|/|˜Sx| − p2

1 − p1 − p2
, (6)

and the MLE is unbiased.

By replacing ρ(˜Sx) in Equation 3 with ρ̂(˜Sx) (shown in Equation 6), we have derived
our enhanced posterior belief P (aij = 1|ãij = 1, m̃ij = x). Attackers may simply
calculate the posterior belief of all node pairs in the perturbed graph and choose top-t
node pairs as predicted candidate links.

For those similarity measures with continuous ranges (e.g., commute time), the num-
ber of node pairs with similarity measure equal exactly to x is usually small. In prac-
tice, we can apply histogram approximation or use the kernel estimator to smooth the
estimation.

We would emphasize that our enhanced posterior belief P (aij = 1|ãij = 1, m̃ij =
x) more accurately reflect the existence of a true link than the posterior belief P (aij =
1|ãij = 1) without exploiting the similarity measure derived in previous work [8]. We
can see that P (aij = 1|ãij = 1) (shown in Equation 2) is the same for all observed
links. On the contrary, our enhanced posterior belief P (aij = 1|ãij = 1, m̃ij = x)
tends to be larger for those observed links with higher similarity values, and tends to be
smaller for links with lower similarity values. Hence, it can more accurately reflect the
existence of true links. We show our theoretical explanations in Results 2 and 3 and will
compare the precisions of top-t predicted links derived from these two posterior beliefs
in our empirical evaluations.

Result 2. P (aij = 1|ãij = 1, m̃ij = x) is an increasing function of ρ(˜Sx), and when
ρ(˜Sx) ≥ p2

p1+p2
, we have the following inequality stands:

P (aij = 1|ãij = 1, m̃ij = x) ≥ P (aij = 1|ãij = 1). (7)

Our next result shows more clearly the relationship between a-priori belief (Equation 1),
posterior belief without exploiting similarity measures (Equation 2), and our enhanced
posterior belief with exploiting similarity measures (Equations 3 4).

Result 3. Both the sum of a-priori belief over all node pairs and the sum of posterior
belief (without exploiting similarity measures) overall all node pairs are equal to the
number of edges:

∑

i<j P (aij = 1) =
∑

i<j P (aij = 1|ãij) = m.
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Fig. 3. Posterior belief for polbooks network

The sum of our enhanced posterior belief (with exploiting similarity measures) also
approaches to the number of edges:

∑

i<j P (aij = 1|ãij , m̃ij) → m as n → ∞.

Figure 3 shows the relationship between the two posterior beliefs and the common
neighbors for the polbooks data. We set k = 200. We can observe that the posterior
belief without exploiting the similarity measure, P (aij = 1|ãij = 1), is 0.55 for all
observed links. However, our enhanced posterior belief P (aij = 1|ãij = 1, m̃ij) are
greater than 0.55 for those links with more than 2 common neighbors as shown in
Figure 3(a). Figure 3(b) shows the distribution of the calculated posterior belief values.
We can observe that 33.5% of released links have their posterior beliefs enhanced with
similarity measures.

3.3 Privacy Protection Measure

In the privacy preserving data mining, one natural question from data owner is how
many perturbations we need such that we can guarantee the protection for all sensitive
individual edges are above some tolerated threshold. When attackers utilize the simi-
larity measure, the absolute measure of protection for an individual link (i, j) can be
defined as

τa(i, j) = 1 − max
x

{

max
t=0,1

P (aij = 1|ãij = t, m̃ij = x)
}

(8)

where the second term denotes the maximal suspicion of existing aij = 1. Compared
with the protection under the attack without exploiting similarity measures, we define
the relative measure of protection as

τr(i, j) =
τa(i, j)

1 − maxt=0,1 P (aij = 1|ãij = t)
.
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The measures of protection (τa and τr) are defined in terms of one individual edge.
In the privacy preserving data mining, one natural question is how many perturbations
we need such that we can guarantee the protection for all individual edges are above the
threshold. Our next result shows the formula of the minimum number of perturbations
to achieve the protection of all individual links. It is of great importance to evaluate the
relationship between the required minimum number of perturbations and the utility loss
of the perturbed graph. Due to space limitations, we leave this as our future work.

Result 4. In the original graph, let Sx = {(i, j) : mij = x}, ρmax = maxx ρ(Sx),
and sparse ratio r = m/

(

n
2

)

. When the protection threshold ε < 1−ρmax
1−r , there exists

the minimum k such that τr(i, j) ≥ ε stands for all the node pair (i, j) is given by:

kmin =
[(1 − r)ερmax − r(1 − ρmax)]m

ε(ρmax − r)
. (9)

4 Empirical Evaluation

We used four network data sets (polbooks, Enron, email, polblogs) in our evaluation.
The Enron network was built from email corpus of a real organization over the course
covering a 3 years period. We used a pre-processed version of the dataset provided by
[7]. This dataset contains 252,759 emails from 151 Enron employees, mainly senior
managers. The email graph is the network of e-mail interchanges between members of
the Univeristy Rovira i Virgili (Tarragona)3. The polblogs compiles the data on the links
among US political blogs, containing over 1,000 vertices and 15,000 edges, which is
based on incoming and outgoing links and posts around the time of the 2004 presidential
election4.

For each graph G, we randomly add k false edges and delete k true edges. We set
k = 0.5m in this paper, which corresponds to a relatively large perturbation. We also
conducted evaluations with other k values and skip their results due to space limita-
tions. We applied four similarity measures (Common neighbors, Katz, Adamic/Adar,
Commute time) to predict top-t candidate links. We varied t values from 0.1m to 0.5m
for all four data sets.

For each t, we calculated the precision of prediction links with different similarity
measures. We also calculated the precision of prediction links using the posterior belief
without exploiting the similarity measure. Figure 4 plots our results on four data sets.
We can observe that for all four data sets we can achieve very high accuracy (greater
than 0.8) by using our enhanced posterior belief for a subset (top 0.1m) of released
links, which indicates severe privacy disclosures for those sensitive links. We can also
see that our enhanced posterior belief achieve higher precisions than the previous poste-
rior belief without exploiting similarity measures for most links (0.5m) with high sim-
ilarity measure values, indicating that the network topology does indeed contain latent
information from which to infer interactions. From Figure 4, we can also observe that
we achieve different precisions using different similarity measures: one measure which

3 http://deim.urv.cat/∼aarenas/data/welcome.htm
4 http://www-personal.umich.edu/∼mejn/netdata/

http://deim.urv.cat/~aarenas/data/welcome.htm
http://www-personal.umich.edu/~mejn/netdata/
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Fig. 4. Precision of top t predictions by the posterior belief w/o similarity measures for four data
sets

achieves the highest precision for one data set is not necessarily the one for another data
set. It is of great significance to explore what similarity measures can be exploited by
attackers to achieve the highest privacy disclosure for a given social network. We will
investigate this in our future work.

5 Conclusion and Future Work

In this paper, we have investigated how well the edge randomization approach via ad-
dition/deletion can protect privacy of sensitive links. We have conducted theoretical
analysis and empirical evaluations to show that node proximity measures can be ex-
ploited by attackers to enhance the posterior belief and prediction accuracy of the exis-
tence of sensitive links among nodes with high similarity values.

There are some other aspects of this work that merit further research. Among them,
we will continue the line of this research by investigating other edge randomization
approaches (e.g., edge switches). We will also investigate how the edge based random-
ization affects the graph’s utility. We are interested in comparing theoretically and em-
pirically the edge based randomization with the k-degree anonymization approaches
[6, 11] in terms of the privacy vs. utility tradeoff.



On Link Privacy in Randomizing Social Networks 37

References

1. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized social
networks, hidden patterns, and structural steganography. In: WWW 2007: Proceedings of
the 16th international conference on World Wide Web, pp. 181–190. ACM Press, New York
(2007)

2. Campan, A., Truta, T. M.: A clustering approach for data and structural anonymity in social
networks. In: PinKDD (2008)

3. Hay, M., Miklau, G., Jensen, D., Towsely, D., Weis, P.: Resisting structural re-identification
in anonymized social networks. In: VLDB (2008)

4. Hay, M., Miklau, G., Jensen, D., Weis, P., Srivastava, S.: Anonymizing social networks.
University of Massachusetts Technical Report, 07-19 (2007)

5. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: CIKM
2003: Proceedings of the twelfth international conference on Information and knowledge
management, pp. 556–559. ACM, New York (2003)

6. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of the ACM
SIGMOD Conference, Vancouver, Canada. ACM Press, New York (2008)

7. Shetty, J., Adibi, J.: The Enron email dataset database schema and brief statistical report.
Information Sciences Institute Technical Report, University of Southern California (2004)

8. Ying, X., Wu, X.: Randomizing social networks: a spectrum preserving approach. In: Proc.
of the 8th SIAM Conference on Data Mining (April 2008)

9. Ying, X., Wu, X.: Graph generation with prescribed feature constraints. In: Proc. of the 9th
SIAM Conference on Data Mining (2009)

10. Zheleva, E., Getoor, L.: Preserving the privacy of sensitive relationships in graph data. In:
Bonchi, F., Ferrari, E., Malin, B., Saygın, Y. (eds.) PInKDD 2007. LNCS, vol. 4890, pp.
153–171. Springer, Heidelberg (2008)

11. Zhou, B., Pei, J.: Preserving Privacy in Social Networks Against Neighborhood Attacks.
Data Engineering, 2008. In: ICDE 2008. IEEE 24th International Conference on, pp. 506–
515 (2008)

A Proofs

Proof of Property 1
It is easy to verify that inequality 5 stands if and only if (1−p1−p2)[1−ρ(˜Sx)] ≥ 0. We
need only guarantee that 1−p1 −p2 ≥ 0. Notice that p1 = k/m and p2 = k/[

(

n
2

)

−m],
then 1 − p1 − p2 ≥ 0 if and only if k ≤

[

1 − m/
(

n
2

)]

m = (1 − r)m. 	


Proof of Result 1
Let N = |˜Sx|, N1 = |˜S1

x| and ρ = ρ(˜Sx). Then, for a randomly selected node pair
(i, j), ãij is a Bernoulli random variable:

P (ãij = 1|m̃ij = x) = (1 − p1)ρ + p2(1 − ρ)
P (ãij = 0|m̃ij = x) = p1ρ + (1 − p2)(1 − ρ)

Then the likelihood function of ˜Sx is

L = [(1 − p1)ρ + p2(1 − ρ)]N1 [p1ρ + (1 − p2)(1 − ρ)]N−N1 .
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Take derivative to ln L with respect of ρ, we have

d ln L

dρ
=

N1(1 − p1 − p2)
(1 − p1)ρ + p2(1 − ρ)

− (N − N1)(1 − p1 − p2)
p1ρ + (1 − p2)(1 − ρ)

.

Set d ln L
dρ = 0, we have ρ̂ = N1/N−p2

1−p1−p2
, and the unbiasedness is then obvious. 	


Proof of Result 2
Notice that P (aij = 1|ãij = 1) = m−k

m = 1 − p1, and with Equation 3, it is easy to
verify this result. 	


Proof of Result 3
∑

i<j P (aij = 1) = m is obvious. Notice that the number of edges does not change
along the perturbation, then we have

∑

i<j

P (aij = 1|ãij) =
∑

(i,j)∈ �E

P (aij = 1|ãij = 1) +
∑

(i,j) �∈ �E

P (aij = 1|ãij = 0)

= m · m−k
m +

[(

n
2

)

− m
]

· k/[
(

n
2

)

− m] = m. (10)

When attackers utilize the similarity measures with MLE, we first show

E[
∑

i<j P (aij = 1|ãij , m̃ij)] = m.

E

⎡

⎣

∑

i<j

P (aij = 1|ãij , m̃ij)

⎤

⎦ =
∑

x

⎧

⎨

⎩

∑

(i,j)∈�S1
x

E[P (aij = 1|ãij = 1, m̃ij = x)]

+
∑

(i,j)∈�Sx−�S1
x

E[P (aij = 1|ãij = 0, m̃ij = x)]

⎫

⎬

⎭

(11)

With the MLE in Equation 6, we have

∑

(i,j)∈�S1
x
E[P (aij = 1|ãij = 1, m̃ij = x)]

=
(1 − p1)ρ̂1(˜Sx)

(1 − p1)ρ̂1(˜Sx) + p2[1 − ρ̂1(˜Sx)]
|˜S1

x|

=(1 − p1)|˜Sx|E[ρ̂1(˜Sx)] (substitute Equation 6)

=(1 − p1)|˜Sx|ρ(˜Sx)
=(1 − p1)

∑

(i,j)∈�Sx
aij (by the definition of ρ(·)) (12)

Similarly, we have

∑

(i,j)∈�Sx−�S1
x
E[P (aij = 1|ãij = 0, m̃ij = x)] = p1

∑

(i,j)∈�Sx
aij (13)
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Combining Equation 11, 12 and 13 together, we have

E
[

∑

i<j P (aij = 1|ãij , m̃ij)
]

=
∑

x

∑

(i,j)∈�Sx
aij =

∑

i,j aij = m.

Then, due to the law of large number, we can conclude that

∑

i<j P (aij = 1|ãij , m̃ij) → m as n → ∞,

and we prove the result. 	


Proof of Result 4
When k ≤ (1 − r)m, with Result 1 and 2, we have that

maxx {maxt=0,1 P (aij = 1|ãij = t, m̃ij = x)} = P (aij = 1|ãij = 1, m̃ij = x0),

where x0 is the value such that ρ(˜Sx) is maximized: ρ(˜Sx0) = maxx ρ(˜Sx). Let ρ̃max =
ρ(˜Sx0). Meanwhile,we can also conclude

maxt=0,1 P (aij = 1|ãij = t) = P (aij = 1|ãij = 1).

Then we have

τr(i, j) =
p2[1 − ρ̃max]

p1[(1 − p1)ρ̃max + p2(1 − ρ̃max)]
. (14)

Substitute p1 = k
m = k

rN and p2 = k
N−m = k

(1−r)N into Equation 14, we can verify

that τr(i, j) is an increasing function of k, and the maximum value is 1−ρ̃max
1−r when

k = (1 − r)m.
When k ≥ (1 − r)m, we similarly have the following:

maxx {maxt=0,1 P (aij = 1|ãij = t, m̃ij = x)} = P (aij = 1|ãij = 0, m̃ij = x0),
maxt=0,1 P (aij = 1|ãij = t) = P (aij = 1|ãij = 0).

In this case, τr(i, j) is a decreasing function of k, and the maximum is also 1−ρ̃max
1−r

when k = (1 − r)m.
Therefore, kmin exists if and only if ε ≤ 1−ρ̃max

1−r , and kmin < (1 − r)m. Then,
τr(i, j) is given by Equation 14. Solving the inequality τr(i, j) ≥ ε, we have that

k ≥ [(1 − r)ερ̃max − r(1 − ρ̃max)]m
ε(ρ̃max − r)

.

However, ρ̃max = maxx ρ(˜Sx) varies from time to time due to the perturbation, and
data owner can substitute it with the true maximum value ρmax = maxx ρ(Sx), then
we get the result. 	
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