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Abstract. Link discovery is a process of identifying association(s) among dif-
ferent entities included in a complex network structure. These association(s) may
represent any interaction among entities, for example between people or even
bank accounts. The need for link discovery arises in many applications including
law enforcement, counter-terrorism, social network analysis, intrusion detection,
and fraud detection. Given the sensitive nature of information that can be re-
vealed from link discovery, privacy is a major concern from the perspective of
both individuals and organizations. For example, in the context of financial fraud
detection, linking transactions may reveal sensitive information about other indi-
viduals not involved in any fraud. It is known that link discovery can be done in
a privacy-preserving manner by securely finding the transitive closure of a graph.
We propose two very efficient techniques to find the transitive closure securely.
The two protocols have varying levels of security and performance. We analyze
the performance and usability of the proposed approach in terms of both analyti-
cal and experimental results.

Keywords: Privacy, Link Discovery, Efficiency.

1 Introduction

Link discovery is a process of identifying association(s) among different entities in-
cluded in a complex network structure [1,2]. These association(s) may represent any
interaction among entities, for example, between people or even bank accounts. The
need for link discovery arises in many applications including law enforcement, counter-
terrorism, social network analysis, intrusion detection, and fraud detection.

Link discovery in these application domains often involves analysis of huge volumes
of data distributed across different sources with different rules and regulations on data
sharing. For instance, law enforcement investigations often involve finding links be-
tween individuals or discovering association of individuals with specific organizations
or groups [2]. To discover such links, information needs to be sifted through various
sources such as law enforcement databases, financial transactions, and phone records,
etc. The information stored in such data repositories is often confidential. Given the
sensitive nature of information that can be revealed from link discovery, privacy is a
major concern for both individuals and organizations [3].
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In the past years, there has been increasing interest in developing techniques for link
discovery and analysis in network or graph structured data [1,4,5,6]. However, none
of these works have considered privacy issues in a distributed context while discover-
ing links among entities. Recent work by Duan et al. [7] first presents a generalized
HITS algorithm to rank the linked entities on weighted graph, they solve an orthogonal
problem to what we present in this paper. There has also been increasing interest in
privacy-preserving data mining [8,9,10], some of which work is of interest.

Recently, He et al.[2] have proposed an approach for privacy-preserving link dis-
covery in a complex and distributed network structure. Specifically, the entities in the
network structure are viewed as nodes in a graph with an edge between two nodes
representing the association between the corresponding entities. Different portions of
the graph (subgraphs) correspond to data repositories owned by different parties. For
example, in the context of financial transactions, the graph nodes represent customer
accounts and the links represent the transaction among accounts, which may belong to
the same bank or different banks. Thus, the entire graph represents the global view in-
cluding all information repositories. The problem of privacy-preserving link discovery
can then be reduced to finding the transitive closure of a distributed graph in a secure
manner. He et al.[2] further show that this can be done via a split matrix multiplication
protocol, which itself can be implemented using the completely secure scalar product
protocol of Goethals et al.[11]. However, due to the required large number of costly
encryption / decryption operations, the approach is computationally quite prohibitive.

In this paper, we propose two different methods to improve the computational effi-
ciency of secure link discovery. The first method is based on commutative encryption.
This approach leaks a little more information (each party gets to know the final transi-
tive closure matrix involving their own vertices as well a range on when these connec-
tions are formed). However, it is significantly more efficient and practical. In the second
method, the secure transitive closure is computed over a much smaller graph composed
of representative nodes heuristically selected. Instead of including all of its nodes for
a complete secure transitive closure computation, each party chooses a fraction of its
overall nodes as its representatives set to form its representative matrix, and the secure
transitive closure computed over it. The global transitive closure is then approximated
based on the representative transitive closure. Our experiments show the effectiveness
of our proposed approach.

2 Preliminaries and Problem Definition

In this paper, we consider a distributed environment with k parties P1, . . . , Pk. The
overall distributed network data is modelled as a simple directed graph G(V,E), where
V is a set of nodes with |V | = n, and E ⊆ V × V is a set of directed edges. Each
party Pi owns part of graph G, denoted by G(Vi, Ei), where ∪iVi = V , |Vi| = mi with
∑k

i=1 mi = n, Vi ∩ Vj = ∅(i �= j), and ∪iEi ⊆ E. Note that some edges in E may
cross the boundaries of Gi and Gj(i �= j) with one node in Gi and another node in Gj .
These edges are called inter-edges.

Given two nodes u, v in V we define the predicate DIRPATH(U,V) as evaluating to 1
if there exists a directed path between u and v, and otherwise evaluating to 0. Given any
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two distinct nodes u, v ∈ V , we are interested in being able to check whether there is a
path from u to v in the global graph G no matter the subgraph in which the two nodes u
and v reside. That is, we are interested in evaluating predicate DIRPATH(u, v) for every
pair of nodes u, v ∈ V in a privacy-preserving manner. In other words, we require that
the process of evaluating predicate DIRPATH should not reveal any additional informa-
tion to any party after the computation. Evaluating DIRPATH in this setting leads to the
following definition of the PRIVACY-PRESERVING LINK DISCOVERY.

Problem 1. Consider directed graph G(V,E) split among k parties P1, . . . , Pk as de-
scribed above. For every pair of nodes u, v ∈ V evaluate the value of predicate
DIRPATH (u, v) in G in a privacy-preserving manner.

We also require the following definitions:

Definition 1. Given party Pi that keeps graph Gi(Vi, Ei) we define the set of inter-
nodes V

(i)
I to be the union set of nodes that either start or end inter-edges.

In addition, we denote VI as the set union of all V
(i)

I (i = 1, 2, . . . , k).

Definition 2. Given a node u ∈ Vi, its inter-degree DI(u) is defined as the total number

of edges which are either (u, v) ∈ E or (v, u) ∈ E, and v ∈ V
(j)

I (i �= j).

Definition 3. Given a node u ∈ Vi, its local-degree DL(u) is defined as the total num-
ber of edges which are either (u, v) ∈ Ei or (v, u) ∈ Ei.

Definition 4. Given a node u ∈ Vi, its combined-degree DC(u) is defined as the sum
of DI(u) and DL(u).

In addition, given a graph G = (V,E), its final full transitive closure is denoted by
TC. In our second proposed approach, we derive an approximate transitive closure of
G, denoted by TC ′. To assess the effectiveness of our proposed heuristic approach, we
also define two measures as follows.

Definition 5. The total accuracy is defined as the total number of matched elements
between TC and TC ′ divided by n2 (that is, total number of matches

n2 ), where n is the
size of the adjacency matrix.

Definition 6. The edge accuracy is defined as the total number of matched non-zero
elements between TC and TC ′ divided by the total number of non-zero elements (that
is, total number of matched non−zeros

total number of non−zeros ).

Note that, in the above definitions, matched elements mean that, given a specified row
and column, the corresponding entries in the matrices of TC and TC ′ have the same
value. The reason that we would like to include both total accuracy and edge accuracy
as performance metrics is that, in the case of sparse graphs, total accuracy can be very
high while having low edge accuracy. In general, a high edge accuracy is an indicator
of good performance. In the following, whenever accuracy is mentioned, it means edge
accuracy unless otherwise stated.
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3 Overview of Secure Transitive Closure

In this section, we briefly provide an overview of secure transitive closure introduced in
[2]. For more details, we refer the readers to [2]. The transitive closure [12] of a graph
G = [V,E] is a graph G∗ = [V,E∗] with edge (i, j) ∈ E∗ if and only if there is a
path from vertex i to vertex j in the graph G. A simple matrix multiplication method
can be used to compute the transitive closure of a graph. If A represents the adjacency
matrix of graph G, then An represents the transitive closure G∗, where n is the number
of vertices in G.

To address the privacy concerns, the approach proposed in [2] enables secure compu-
tation of the transitive closure of a distributed graph without requiring parties to reveal
any details about their subgraphs. Specifically, the protocol for secure transitive closure
computation is run by all k parties that own a portion of the distributed graph. Let A(i)

denote the adjacency matrix corresponding to the subgraph Gi = (Vi, Ei) owned by
party Pi. A(i) is a n × n matrix, where the matrix entry A(i)[p, q] = 1 if the edge
(p, q) ∈ Ei. All other entries in the matrix A(i) are set to zero. Therefore, the overall
adjacency matrix A of the distributed graph is given by: A =

∑k
i=1 A(i).

The transitive closure An of the distributed graph is computed iteratively through
matrix multiplication, with the output of the last iteration used in this iteration . For
instance in the rth iteration, (r ≤ n), the matrix A2r is computed as follows:

A2r = ArAr =
k∑

i=1

O(i)
k∑

j=1

O(j) (1)

The Split Matrix Multiplication. Equation 1 used for computation of the transitive
closure involves pair wise multiplication of the output split matrices of each party. It is
obvious that each party Pi can locally compute O(i)O(i). Therefore, the secure compu-
tation of A2r comes down to securely computing O(i)O(j)(∀i �= j). Since the matrix
multiplication essentially is the scalar product operations, O(i)O(j) can be computed
by invoking the secure scalar product protocol proposed in [11].

It is important to note that actual adjacency matrix of the distributed graph in each
iteration is never known completely to any party. Rather, as the output of each iteration,
each party Pi gets a matrix O(i) consisting of random shares of the global adjacency
matrix. Thus, for any given row p and column q (1 ≤ p, q ≤ n), and iteration r,
∑k

i=1 O(i)(p, q) = Ar(p, q). In the end, the values of the final matrix An are split
randomly and returned to each party as matrices O(1), O(2), . . . , O(k).

However,the above approach in [2] is computationally prohibitive. With log2n itera-
tions, the total number of encryptions and decryptions required performed is (k2 − k) ·
n2 · log2n, while the total number of exponentiations and multiplications performed is
(k2 − k) · n3 · log2n. Overall the encryption/decryption time dominates. Although the
split matrix multiplication approach requires O(n2) encryption/decryptions, the com-
putational time for large distributed graphs will be significantly high due to the high
computational cost of encryption/decryption.
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Algorithm 1. Efficient Secure Transitive Closure
Require: k parties, P1, . . . , Pk, Party Pi has mi vertices
Require: Let n =

�k
i=1 mi, represent the total number of vertices

Require: Let the matrix A(i)(n × n) represent the local adjacency matrix of party Pi (i.e., the
matrix entry A(i)[p, q] = 1 if the edge (p, q) ∈ Ei, otherwise 0.)

1: for j ← 1 . . . �log2 n� do
2: for p ← 1 . . . n do
3: for q ← 1 . . . n do
4: {Assume Pi owns vertex p}
5: At Pi: Initiate boolean scalar product protocol described in Algorithm 2 to get output

value x
6: if x = 0 then
7: At Pi: A(i)[p, q] ← 0
8: else
9: At Pi: A(i)[p, q] ← 1

10: end if
11: end for
12: end for
13: end for

4 A Commutative Encryption Based Approach

In this section, we provide an alternative approach that uses a much more efficient
protocol for the scalar product requiring relatively fewer encryption/decryption oper-
ations. The protocol is depicted in Algorithm 1. This approach also uses split matrix
multiplication for secure computation of the transitive closure matrix. However, it em-
ploys commutative encryption for computation of the scalar product and works only if
boolean values are used. In other words, the split matrices generated in each iteration
of the split matrix multiplication needs to be converted into boolean values. This will
result in leakage of additional information to the different parties. In particular, each
party will know the portion of the final transitive closure matrix involving the party’s
own vertices. Additionally, each party will know in which iteration a zero value in its
local output matrix changes to a non-zero value. As a result, the party will know the
range on the number of links to which its local vertices are connected to external ver-
tices. For example, if the matrix entry O(i)[p, q] changes its value from zero to non-zero
in the 3rd iteration, then the shortest path between vertex p and q consists of at least 4
and at most 8 links. One way to reduce this leakage is to use a hybrid approach, where
the approach proposed in [2] is used for the first few iterations before switching to the
new approach.

4.1 Commutative Encryption Based Scalar Product

With boolean vectors, it is possible to get a more efficient scalar product. To see this,
note that if we encode the vectors as sets (with position numbers as elements), the
scalar product is the same as the size of the intersection set. For example, assume
we have vector X = (1, 0, 0, 1, 1) and Y = (0, 1, 0, 1, 0). Then the scalar product
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X · Y =
∑5

i=1 xi ∗ yi. Now, the corresponding set encodings are XS = (1, 4, 5)
and Y S = (2, 4). Once can see that the size of the intersection set |XS

⋂
Y S| = 1 is

exactly the same as the scalar product. This idea is used to compute the scalar product.
The basic idea is to use commutative encryption to encrypt all of the items in each

party’s set. Commutative encryption is an important tool used in many cryptographic
protocols. An encryption algorithm is commutative if the order of encryption does not
matter. Thus, for any two encryption keys E1 and E2, and any message m, E1(E2(m))
= E2(E1(m)). The same property applies to decryption as well – thus to decrypt a
message encrypted by two keys, it is sufficient to decrypt it one key at a time. The basic
idea is for each source to encrypt its data set with its keys and pass the encrypted data
set to the next source. This source again encrypts the received data using its encryption
keys and passes the encrypted data to the next source until all sources have encrypted
the data. Since we are using commutative encryption, the encrypted values of the set
items across different data sets will be equal if and only if their original values are
equal. Thus, all the intersection of the encrypted values gives the logical AND of the
vectors, and counting the size of the intersection set gives the total number of 1s (i.e.,
the scalar product). The encryption prevents any party from knowing the actual value
of any local item. This scalar product method only works for boolean vectors, but it
will still work in this context, since after each iteration the non-zero values in the local
adjacency matrix are set to one by the party owning the corresponding data point.

In our case, for the scalar product, the first vector is owned completely by one party
while the second vector is split between all of the parties. One can simply compute all
of the local scalar products to add up the sum to get the global scalar product. However,
this creates a serious security problem. To see this, assume that a party Pi owning mi

vertices, gets local scalar products from another party Pj owning mj vertices. Remem-
ber that each scalar product gives one linear equation in unknowns. Since party Pi owns
mi vertices, it gets mi linear equations in mj unknowns. If mi > mj , this will com-
pletely breach the security of party Pj . Thus, if there is even one party that has more
vertices than any of the other parties, it can completely breach the security of the other
parties. Since this situation is quite likely, local scalar products cannot be used.

Instead to ensure security, we must carry out the entire scalar product in one go. To
do this securely, we must ensure that all of the vectors are encrypted and permuted by
all of the parties, thus ensuring that no linkage between vectors can be done. Now, after
intersection a party can only learn the total scalar product (not any of its components).
Algorithm 2 gives the complete details. This still gives it some linear equations – in
fact, it gives in mi linear equations in n − mi unknowns. As long as mi is not more
than half of the total number of vertices, security is not breached. In most situations this
will be true and this protocol can be used. In cases where this is not true, there is no
alternative to the first completely secure protocol.

4.2 Complexity Analysis

We now analytically show that this method is more efficient than the approach in [2].
Assume that c denotes the total number of 1s in the global adjacency matrix in a partic-
ular iteration. Further assume that these are split into ci 1s for each row and c′i 1s for
each column. Thus, c =

∑n
i=1 ci. Similarly, c =

∑n
i=1 c′i.
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Algorithm 2. Commutative Encryption based Boolean Scalar Product
Require: k parties, P1, . . . , Pk

Require: Party P1 has input vector X = {x1, . . . , xn}
Require: Party P1, . . . , Pn each have input vectors Yi = {y1, . . . , ymi}, where mi represents

the number of vertices owned by each party, such that
�k

i=1 mi = n
Require: Assume that Y = [Y1 . . . Yk ]
Require: P1 gets output o such that o = X · Y
Require: A global position encoding scheme
1: Each party Pi generates a private and public key pair (ski, pki) for a commutative encryption

system.
2: P1 converts its vector X to the position set XS
3: Each party Pi converts its local vector Yi to the position set Y Si based on the global encod-

ing scheme
4: for i = 1 . . . n do
5: P1 encrypts the position set XS with its key Epk1 to get the encrypted vector EXS
6: end for
7: for j = 1 . . . k do
8: Each Party Pj encrypts its local position set Y Sj with its key Epkj to get the encrypted

position set EY Sj

9: end for
10: Each party passes its encrypted position set to the next party for encryption with its key until

all sets are encrypted by all parties
11: At Pk: EY S ← φ
12: for j = k . . . 2 do
13: Party Pj merges its completely encrypted set with the global encrypted set EY S, i.e.

EY S ← EY S ∪ EY Sj

14: Party Pj arbitrarily permutes EY S and sends it to party Pj−1

15: end for
16: At P1: Receive EY S from P2 and merge EY S1 into it (i.e., EY S ← EY S ∪ EY S1)
17: P1 intersects the completely encrypted set EXS with the complete encrypted set EY S to

get the output o

In each iteration, for each point in the global adjacency matrix, one efficient commu-
tative encryption based scalar product is carried out. Thus, for row p and column q, the
scalar product requires cp ∗ k + c′q ∗ k encryptions. Thus, the total cost of each itera-
tion can be given by summing the total number of iterations required for each row and
column. However, this assumes that we reencrypt for every row and column for each
scalar product, which is quite unnecessary. In reality, it is sufficient to encrypt each row
and each column only once. The same encryptions can be used for successive scalar
products without revealing any extra information. Thus, total cost, TC is

TC =
n∑

p=1

cp ∗ k +
n∑

q=1

c′q ∗ k = k

n∑

p=1

cp + k

n∑

q=1

c′q = kc + kc = 2kc

In general, c can range between n and n2. Therefore, in the best case, TC = 2kn,
while in the worst case, TC = 2kn2. It is important to note that for large distributed
graphs typically the values of c are asymptotically closer to the best case value rather
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than the worst case. For instance in the distributed graph linking financial transactions
across different bank accounts, it is unlikely that a single transaction can be linked
to all transactions or even a fraction of these. We can safely assume that the number
of transactions that can be linked to a single transaction will always be bounded by a
constant, i.e., c = O(n).

5 A Heuristic Approach Based on Representative Selection

In this section, we present a heuristic approach to improve the efficiency of secure
computation for those situations where the commutative encryption based approach
cannot be used. The basic idea is to have each party choose a fraction of its overall nodes
as its representatives set to form the representative matrix. Then, the secure transitive
closure is done only over the representative matrix. The global transitive closure is now
inferred using the representative transitive closure. With a small representative matrix,
this clearly leads to significantly smaller computation costs. However, this pays a price
in accuracy. While the links between the representative are accurately discovered, for
the remaining nodes, the links may or may not be discovered. While there will be no
false positive (a link found where none exists), there can be significant false negatives,
based on how few representatives are chosen. Algorithm 3 gives the details.

We need to further discuss two issues – how are the representatives chosen, and how
is the global transitive closure inferred from the representative transitive closure. We
first discuss the second issue: Specifically, given any pair of nodes (u, v), where u ∈ Vi

and v ∈ Vj(i �= j), evaluate DIRPATH(u, v). The following 3 cases may occur:

– both u and v are representatives: in this case, we can directly get the answer from
the transitive closure TR.

– one of u and v is a representative: without loss of generality, we assume that u is a
representative. If we can find a node v′ which is a representative of the party who
owns v and we also know there is a path from u to v′ and a path from v′ to v based
on step 3 and step 1, respectively, then we say a path exists from u to v. Otherwise,
no path exists between them.

– neither u nor v is a representative: If we can find a node u′ (resp. v′) which is a
representative of the party who owns u(resp. v) and we also know there is a path
from u to u′ and a path from v′ to v based on step 1, as well as a path exists from
u′ to v′ based on step 3, then we say a path exists from u to v. Otherwise, no path
exists between them.

Now, for the first question – how do we select the representatives to maximize accuracy
for a given level of efficiency.

Intuitively, the representatives should be chosen from the set of the inter-nodes in
each subgraph. This makes sense, since these are the only nodes involved in any edges
with intra-edges. These are our only sources of cross-graph information. As we have
explained above, combining our cross-graph path information with the local paths in
each subgraph will help us to discover the path between any pair of nodes residing in
different subgraphs. Assuming that the inter-nodes is a fraction of total nodes, choosing
inter-nodes as representatives would easily reduce the required secure computations.
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If we include all the inter-nodes as representatives, obviously we would get the exact
results of all path information.

In this paper, we employ a greedy heuristic to choose representatives from within the
inter-nodes. The idea is to choose representative nodes with high degrees. The intuition
is that a node with higher degree should be involved in more paths and thus contribute
more information.

One natural and seemingly better selection criteria is to have a greedy global se-
lection - we choose representatives with high degree in the overall global graph G.
However, given that each party can only see its own subgraph, this is not ideal, since it
would not address privacy concerns.

Instead, we take the approach of greedy local representatives selection. In a greedy
local selection, we choose the inter-nodes which have high degree in each party’s local
subgraph. Again, three different kinds of degree could be used - inter-degree, local-
degree, and combined-degree (as we have defined in Section 2). In each case, the
corresponding degree of each node is computed. Then, each party keeps a specified
percentage of its local nodes with highest degrees being its representatives, which are
used for forming representative matrix R. Algorithm 4 presents the details of this. As
we show in the experimental evaluation below, this works quite well.

5.1 Experimental Evaluation

In this section we experimentally evaluate the effectiveness of our proposed algorithms.
Synthetic random graphs are generated for the test datasets. In fact, random graphs are
widely used in the probabilistic method, where one tries to prove the existence of graphs
with certain properties. The existence of a property on a random graph implies, via the
famous Szemeredi regularity lemma, the existence of that property on almost all graphs
[13].

Since we need to have k sub-graphs making up a global graph, we use the igraph
package 1 to generate a specific type of global graph G (i.e, Erdős-Renyi random graph).
Then, we uniformly at random choose a certain number of nodes (i.e, a specified per-
centage of the total number of nodes n) to induce each subgraph Gi and the corre-
sponding inter-edges between these subgraphs. In the ER G(n, p) model, a graph is
constructed by connecting nodes randomly, where n is the total number of nodes, and p
is the probability that each edge is included in the graph, with the presence or absence
of any two distinct edges in the graph being independent. We partition the global graph
G into 4 equal-size subgraphs, each of which is assumed to be owned by a party. This
partition also results in a number of inter-edges connecting the subgraphs.

Figure 1 shows the accuracy results of the greedy local, greedy global, and random
approaches with the representative rate goes from 10% up to 100%. All the tests are
done on the Erdős-Renyi graphs with the number of nodes n = 1000 and probability p
= 0.1%. In the results, lid, lld, and lcd to stand for the local inter-degree, local local-
degree, and local combined-degree approach, respectively. In the global case, the global
inter-degree, global local-degree, global combined-degree is denoted by gid, gld, and
gcd, respectively. The representative rate is the fraction of representative nodes chosen

1 http://cneurocvs.rmki.kfki.hu/igraph/
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Algorithm 3. Secure Representatives Approach
Require: k parties P1, . . . , Pk

Require: Let the matrix A(i)(ni × ni) represent the local adjacency matrix of party Pi

Require: Let the matrix R(|VR| × |VR|) be the representative matrix (i.e., the matrix entry
R[p, q] = 1 if p ∈ V

(i)
R , q ∈ V

(j)
R , otherwise 0.)

1: Each party Pi computes its local transitive closure T
(i)
L with input matrix A(i)

2: Each party Pi engages in heuristically choosing representatives (Algorithm 4) to have the
matrix R

3: Each party Pi participates secure transitive closure computation described in Section 3 with
input matrix R to get transitive closure TR

4: Given a pair of nodes (u, v), where u ∈ Vi and v ∈ Vj(i �= j):
5: if both u and v are representatives {i.e.(u ∈ V

(i)
R and v ∈ V

(j)
R )} then

6: DIRPATH(u, v) ← TR(u, v)
7: else if one of u and v is a representative {w.l.o.g assume that u is the representative i.e.,

u ∈ V
(i)

R and v /∈ V
(j)

R } then
8: if ∃v′ ∈ V

(j)
R and TR(u, v′) �= 0 and T

(i)
L (v′, v) �= 0 then

9: DIRPATH(u, v) ← 1
10: else
11: DIRPATH(u, v) ← 0
12: end if
13: else
14: {neither is a representative, i.e., u /∈ V

(i)
R and v /∈ V

(j)
R }

15: if ∃u′ ∈ V
(i)

R and ∃v′ ∈ V
(j)

R s.t. T
(i)
L (u, u′) �= 0 and T

(j)
L (v′, v) �= 0 and TR(u′, v′) �=

0 then
16: DIRPATH(u, v) ← 1
17: else
18: DIRPATH(u, v) ← 0
19: end if
20: end if
21: return DIRPATH(u, v)

either locally or globally from the inter-nodes. Each approach is run on the same graph,
and the results averaged over five runs (with different graphs).

Figure 1(a) shows that, in the greedy local case, both the combined-degree and the
inter-degree approaches achieve a better accuracy than the local-degree one, and the

(a) greedy local approach (b) greedy global approach (c) comparison

Fig. 1. Local vs. global vs. random approaches
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Algorithm 4. Choose Representatives using Heuristics (DegreeType, Percentage): a
greedy local approach
Require: k parties P1, . . . , Pk each holding subgraph Gi(Vi, Ei) as parts of global graph

G(V, E)
Require: DegreeType: chosen from inter-degree, local-degree, or combined-degree
Require: Percentage: representative rate as opposed to the total number of the inter-nodes (|VI|)

1: At Pi:
2: the representative set RSi ← V

(i)
I

3: for each node u ∈ V
(i)

I do
4: if DegreeType = inter-degree then
5: Count the inter-degree DI(u) of u
6: else if DegreeType = local-degree then
7: Count the local-degree DL(u) of u
8: else
9: Count the combined-degree DC(u) of u

10: end if
11: end for
12: Sort RSi in terms of the degree counts
13: Keep Percentage*|VI| of nodes with the highest degree in RSi

14: Each party participates the forming of the matrix R using RSi (Similar to the formation of
adjacency matrix A discussed in Section 2)

15: return R

combined-degree is slightly better than the inter-degree. The greedy global approach in
figure 1(b) looks similar to the greedy local one. In addition, in both greedy local and
greedy global cases, the combined-degree has the best performance. Figure 1(c) com-
pares the global and local combined-degree with random selection. Clearly, both global
and local approaches perform much better than the random one. More importantly, we
can see that the greedy local combined-degree approach almost performs the same as
the greedy global combined-degree. Hence, it demonstrates that our proposed greedy
local heuristics approach is promising.

While these results are preliminary, we have run more experiments varying other
parameters as well as the graph generation model. We do not report these due to space
limitations, but they are quite similar and show that the representatives approach gives
a compelling tradeoff of accuracy for efficiency.

6 Concluding Remarks

In this paper, we have proposed two different approaches to improve the efficiency for
privacy-preserving link discovery in a complex and distributed network structure. The
first approach trades off security for efficiency, while the second trades off accuracy for
efficiency. Both of our approaches can reduce the prohibitive computational complexity
of the currently existing solution for secure link discovery.

In our future work, we will consider other features of interest such as the degree
of closeness of the entities (i.e., number of common neighbors, number of distinct
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paths, length of the shortest path, etc) for link discovery and analysis. A more chal-
lenging problem is to figure out the maximum flow from one entity to another (the max
flow problem). This can be instrumental in computing the amount of resources trans-
ported through multiple intermediaries which would be great interest in financial fraud
detection.
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