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Abstract. A large portion of data collected by many organisations to-
day is about people, and often contains personal identifying information,
such as names and addresses. Privacy and confidentiality are of great
concern when such data is being shared between organisations or made
publicly available. Research in (privacy-preserving) data mining and data
linkage is suffering from a lack of publicly available real-world data sets
that contain personal information, and therefore experimental evalua-
tions can be difficult to conduct. In order to overcome this problem, we
have developed a data generator that allows flexible creation of synthetic
data containing personal information with realistic characteristics, such
as frequency distributions, attribute dependencies, and error probabili-
ties. Our generator significantly improves earlier approaches, and allows
the generation of data for individuals, families and households.

Keywords: Artificial data, data matching, data linkage, privacy, data
mining pre-processing.

1 Introduction

Today, massive amounts of data are collected by many organisations in both the
private and public sectors. A large proportion of this data is about people, and
often personal identifying details are stored together with application specific
information, for example employment or medical details. When such data is
analysed within an organisation, then normally, depending upon the desired
outcomes, only parts of the personal information is used for an analysis (like age,
gender, or postcode). In these cases, privacy and confidentiality are generally
not of great concern, as the results of the analysis are only used within an
organisation, and no detailed private or confidential information is released.

However, when data is being shared between organisations, privacy and con-
fidentiality become of paramount importance, because personal information is
commonly required to match records from different databases [1]. The aim of
such linkages is to match all records that refer to the same entity. Because real-
world data is commonly dirty [2] (contains errors and variations) and often no
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unique entity identifiers are available, sophisticated approximate matching algo-
rithms are required that use the available personal identifiers [3,4].

The process of data linkage or matching has in the past decade been recognised
as an important and challenging problem, and a variety of novel linkage algo-
rithms have been developed [3,4]. They mainly address the technical challenges
of matching accuracy and scalability to very large databases. Another challenge
for data linkage research is the lack of publicly available real-world test data sets
that allow evaluation of new algorithms. This lack is due to privacy concerns,
because it is illegal in most countries to publish data that contains, for example,
personal details of customers or patients. As a result, data linkage researchers
have to use publicly available data sets, or use their own (confidential) data,
which prevents others from repeating experimental studies [5].

An alternative is to use synthetically generated data. This approach has sev-
eral advantages. First, a user can control the size (number of records) and qual-
ity (error characteristics) of the generated data sets. Second, such data can be
published, and thus allows other researchers to repeat experiments and better
evaluate algorithms. Third, the generator itself can be published, allowing oth-
ers to generate data that is specifically tailored to their use, for example to
their country or application domain. Fourth, because it is known which of the
generated records are matches, it is possible to calculate matching rates [3].

Besides data linkage research, any application area where data containing per-
sonal information is required for research purposes can benefit from synthetically
generated data, because such data removes privacy and confidentiality concerns.
Examples include research into privacy-preserving data sharing [1], publishing
and mining, or statistical micro-data confidentiality.

The challenges when generating synthetic data are that it is not easy to cre-
ate data with characteristics that are similar to real-world data. The frequency
and error distributions of values have to follow real-world distributions, and de-
pendencies between attributes have to be modelled. This paper describes a data
generator with such characteristics. It is a significant improvement over earlier
generators [2,5,6], which created data in less realistic ways.

2 Synthetic Data Generation

As illustrated in Fig. 1, the data generator works in two steps. First, a user
specified number of original records is created based on real values and their
frequencies and dependencies, or using specific attribute generation rules [5,7].
Second, randomly selected original records are modified into duplicate records.
Alternatively, family and household records can be generated. As can be seen in
Fig. 4, each record is given a unique identifier (‘rec id’) that will facilitate the
calculation of matching rates [3].

2.1 Original Record Generation

For original records, the values in name and address attributes are created ran-
domly using frequency tables. Such tables can, for example, be extracted from
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Fig. 1. Overview of the data generation process

telephone directories. For date, telephone and social security number attributes,
a user can specify generation rules that determine the range of dates (such as
start and end birth dates), or the number of digits (for example for telephone
numbers). In the following, we describe the two major novel features of our data
generator [7]: family and household data, and attribute dependencies.

Generating Family and Household Data. The records for a family are
generated by first selecting an original record at random. According to its age
and gender values, it is assigned one of the roles husband, wife, son or daughter.
The next step is to randomly select how many other records are to be generated
for this family. These records are then created by keeping the surname of the
first family record, but modifying given name, gender and age values. Address
attribute values are generally kept the same for all members of a family. De-
pending upon the age of son and daughter records, however, a new address will
be created with a certain probability, assuming the child has left home.

Household records are generated similarly, with the main difference being that
all records in a household have different names but the same address, and that
all age values are above 18 (one of many parameters that a user can set [7]).

Attribute Dependencies. A dependency occurs if the values in an attribute
depend upon the values in one or more other attributes. For example, given
names depend on the gender and the cultural background of a person, while
suburb/town names depend on the state/territory they are located in. These
dependencies are based on frequency tables, such as the one shown in Fig. 2.

When generating the original records, the key attributes (the attributes that
others depend on) are generated first, and according to a selected key attribute
value, a value from the dependent attribute is randomly chosen according to the
corresponding frequency distribution. For example, using the values from Fig. 2,
if the state ‘QLD’ has been selected, the suburb name ‘Allansford’ would be
chosen with likelihood 6.25%, ‘Allendale’ with likelihood 68.75%, and ‘Allestree’
with likelihood 25%. To introduce randomness into the data, with a certain
likelihood, as set by the user, a dependency is not followed, but rather a value
is randomly chosen from the overall frequency table of the dependent attribute.
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ACT : Acton;5, Ainslie;10, Amaroo;7, Belconnen;12

NSW : Albanvale;3, Albert Park;6, Alberton;4, Albion Park;9

QLD : Allansford;1, Allendale;11, Allestree;4

Fig. 2. Sample from a combined dependency–frequency look-up table with Australian
state names on the left, and suburb names and their frequencies on the right

2.2 Error Modelling and Duplicate Record Modification

As illustrated in Fig. 3, data can be entered through a variety of channels, each
having its own error characteristics. For example, handwritten forms that are
processed using optical character recognition (OCR) software will likely include
substitutions between similar looking characters. On the other hand, phonetic er-
rors, like the variations ‘Dickson’ and ‘Dixon’, are introduced when information
is dictated using speech recognition, or typed manually. Typing itself introduces
certain errors more likely than others. Depending upon keyboard layout, mistyp-
ing neighbouring keyboard keys, such as ‘a’ and ‘s’, can occur. Often, depending
upon the data entry channel, a combination of error types is introduced.

Our data generator can model typographic, phonetic and OCR errors. For
each error type, a user can set how likely they are introduced when the duplicate
records are generated. Setting the likelihood of typographic and phonetic errors
to 0, for example, will result in duplicate records that only contain OCR errors.

Typographic Errors. These errors include insertion, deletion, and substitu-
tion of a character; and transposition of two adjacent characters. They are imple-
mented as functions that apply the corresponding modification to a given input
string with a certain likelihood (as set by the user), and return the modified
string. Following studies of error distributions [8], the position of a modification
is randomly chosen such that it more likely occurs in the middle or towards the
end of a string, because real errors are less likely at the beginning of names.

Optical Character Recognition Errors. OCR modifications are based on
rules that consider shape similarity among characters, such as ‘5’ and ‘S’ or
‘w’ and ‘vv’. Around fifty such rules are used, representing the most likely OCR
variations that might occur. When duplicate records are generated, one or more
possible OCR modifications will be randomly selected and applied to an input
string, and the modified string will be inserted into the duplicate record. Like
phonetic errors, OCR errors can be a single character modification or a combi-
nation of modifications (like a substitute and delete, or a delete and insert).

Phonetic Errors. These errors are usually more complex than typographic or
OCR errors, as they often include changes of character groups and depend upon
the position within a string. The idea behind our approach in modelling phonetic
errors is to employ the rules that are used in phonetic encoding methods [9], such
as Phonix and Double-Metaphone. In encoding methods, such rules are used to
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Fig. 3. Model of data sources and possible errors introduced during data entry

group similar sounding names together, while we employ them to modify a name
in order to generate a similar sounding variation of it. Currently, around 350
phonetic rules are used, each made of the following seven components.

1. Position. The position within the input string where the original string
pattern can occur. The four possible values are: ALL (can occur anywhere),
START (must occur at the beginning), MIDDLE (must occur in the middle,
but not at the beginning or end), and END (must occur at the end).

2. Original pattern. This is the string (made of one or more characters) that
will be replaced with the substitute string pattern if the rule is applied.

3. Substitute pattern. This is the string (made of zero or more characters)
that will replace the original string pattern if the rule is applied.

4. Precondition. A condition that must occur before the original string pat-
tern in order for this rule to become applicable. A precondition can be that
the character immediately before the original pattern is a vowel (‘V’), a
consonant (‘C’), or a more complex expression [7].
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5. Postcondition. Similarly, a condition that must occur after the original
string pattern in order for this rule to become applicable.

6. Pattern existence condition. This condition requires that a certain given
string pattern does (‘y’ flag) or does not (‘n’ flag) occur in the input string.

7. Start existence condition. Similarly, this condition requires that the
input string starts with a certain string pattern (‘y’ flag) or not (‘n’ flag).

The last four components of a rule (its conditions) can be set to ‘None’ if they
are not required. In the following we give two illustrative examples.

– ALL, h, @, None, None, None, None (mustapha → mustapa)
In this rule there are no conditions, so any occurrence of the character ‘h’ is
being removed (replaced with an empty string – denoted with a ‘@’).

– END, le, ile, C, None, None, None (bramble → brambile)
The precondition in this rule is ‘C’, which means the character before the
original pattern must be a consonant. The character before the pattern ‘le’
in this example is a ‘b’, so the modification ‘le’ into ‘ile’ is applied.

3 Experimental Evaluation

Our data generator is implemented as part of the Febrl (Freely Extensible
Biomedical Record Linkage) open source data linkage system [10],1 and is writ-
ten in the Python programming language. Due to the availability of its source
code, it can be modified and extended according to a user’s needs. A large num-
ber of parameters can be set by the user, including the number of original and
duplicate records to be generated, the frequency and dependency look-up tables
to be used, the distributions used for household and family records, and the
various error characteristics to be applied when duplicates are created [7].

We used a variety of data sets to create our look-up tables, including a data set
containing 99,571 names and their culture of origin (37 different cultures) [11], a
data set with Australian postcode, suburb and state values as available from the
Australia Post Web site,2 and the various look-up tables supplied with the Febrl
data linkage system [10]. Error and modification probabilities were set according
to real world studies on typographic and other errors [8,12,13,14].

Some example data that was created using our generator is shown in Fig. 4.
As can be seen, the record identifiers (‘rec id’) designate if a record is an original
or a duplicate, and the duplicate records are numbered and refer back to their
original record, in order to allow the calculation of matching rates [3].

We have conducted a large number of experiments to validate our data gener-
ator, by comparing real data sets with synthetic data that was generated using
frequency tables based on the real data. A detailed analysis and discussion is
provided elsewhere [7]. A user can repeat our experiments by downloading the
Febrl system and run the generator program supplied with it (and possibly
change parameter settings according to her or his needs).
1 Available from: https://sourceforge.net/projects/febrl/
2 Available from: http://www.post.com.au/postcodes/
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rec id, age, given name, surname, street number, address 1, address 2, state, suburb, postcode

rec-1-org, 33, Madison, Solomon, 35, Tazewell Circuit, Trail View, VIC, Beechboro, 2761
rec-1-dup-0, 33, Madisoi, Solomon, 35, Tazewell Circ, Trail View, VIV, Beech Boro, 2761
rec-1-dup-1, , Madison, Solomon, 36, Tazewell Crct, Trail View, VIC, Bechboro, 2716

rec-2-org, 39, Desirae, Contreras, 44, Maltby Street, Phillip Lodge, NSW, Burrawang, 3172
rec-2-dup-0, 39, Desirae, Kontreras, 44, Maltby Street, Phillip Loge, NSW, Burrawank, 3172
rec-2-dup-1, 39, Desire, Contreras, 44, Maltby Street, Fillip Lodge, NSW, Buahrawang, 3172

rec-3-org, 81, Madisyn, Sergeant, 6, Howitt Street, Creekside Cottage, VIC, Nangiloc, 3494
rec-3-dup-0, 87, Madisvn, Sergeant, 6, Hovvitt Street, Creekside Cottage, VIC, Nanqiloc, 3494

Fig. 4. Examples of generated data. Records ‘1’ include typographical errors, records
‘2’ phonetic errors, and records ‘3’ OCR errors. The original values that were modified
are in bold-italics, and their corresponding modifications are underlined.

4 Related Work

A first data generator for personal information was developed in the 1990s [2].
It allowed the generation of data based on lists of names, cities, states and
postcodes, however without using any frequency distributions. A user could set
the size of the data sets to be generated, and the types and amount of errors to
be introduced. An improved generator was described more recently [6]. It allowed
attribute values to become missing, and it improved the variability of the created
values. It is however unclear if this generator is using frequency information, as
not many details have been described.

A first simple version [5] of our generator has been freely available as part
of the Febrl [10] data linkage system. It improved upon earlier generators by
including frequency tables of attribute values, more flexible setting of individual
error probabilities, as well as inclusion of look-up tables with name variations
(to be used for example for nick-names, known phonetic variations, and common
misspellings). This generator however does not include attribute dependencies,
does not allow creating family or household record groups, and it does not model
errors as accurately as the new version described in this paper.

The phonetic error model presented in Sect. 2.2 is based on rules that were
originally developed for phonetic encoding methods [9]. A common feature of
phonetic encodings is that they convert name strings into codes according to how
a name is being pronounced. Names that sound similar are converted into the
same code. This is obviously a language dependent process, and most phonetic
encoding methods have been developed for the English language.

Our work is also based on various studies that have analysed spelling and
data entry errors and their corrections [8,12,13,14]. These studies found that
most errors are single character errors, and that the distribution of error types
depends upon the mode of data entry. For example, OCR output contains almost
exclusively substitution errors, while this type of error accounts for less than 20%
of errors with keyboard based manual data entry [8]. Typically, up to 95% of
misspellings in keyboard entry only contain one error; with only around 8% of
first letters incorrect, compared to almost 12% of second and nearly 20% of third
letters.
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5 Conclusions

We have presented a data generator for personal information that allows the
generation of realistic synthetic data based on frequency tables and attribute
generation rules. There are various ways to improve our generator. First, allow-
ing the generation of not just personal information, but also application specific
attributes (like medical, employee, or customer details) will make our genera-
tor applicable to the wider data mining community. Second, extending family
records to include other roles (such as cousins, aunts, uncles, etc.) and allow
culture specific parameter settings will enable the generation of the complex
family connections that occur in real life. Third, enabling Unicode characters
will make our generator more international and will allow the generation of data
sets containing, for example, Thai, Chinese, or Arabic characters. Finally, adding
a graphical user interface will facilitate the setting of the many possible param-
eters. Another part for our future work will be to fully integrate our new data
generator into our Febrl data linkage system [10].
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