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Abstract. Decision Tree is a widely used data classification technique.
This paper proposes a decision tree based classification method on uncer-
tain data. Data uncertainty is common in emerging applications, such as
sensor networks, moving object databases, medical and biological bases.
Data uncertainty can be caused by various factors including measure-
ments precision limitation, outdated sources, sensor errors, network la-
tency and transmission problems. In this paper, we enhance the
traditional decision tree algorithms and extend measures, including en-
tropy and information gain, considering the uncertain data interval and
probability distribution function. Our algorithm can handle both certain
and uncertain datasets. The experiments demonstrate the utility and ro-
bustness of the proposed algorithm as well as its satisfactory prediction
accuracy.

1 Introduction

Decision trees is a simple yet widely used method for classification and predictive
modeling. A decision tree partitions data into smaller segments called terminal
nodes. Each terminal node is assigned a class label. The non-terminal nodes,
which include the root and other internal nodes, contain attribute test conditions
to separate records that have different characteristics. The partitioning process
terminates when the subsets cannot be partitioned any further using predefined
criteria. Decision trees are used in many domains. For example, in database
marketing, decision trees can be used to segment groups of customers and develop
customer profiles to help marketers produce targeted promotions that achieve
higher response rates.

This paper studies decision tree based classification methods for uncertain
data. In many applications, data contains inherent uncertainty. A number of
factors contribute to the uncertainty, such as the random nature of the physical
data generation and collection process, measurement and decision errors, unreli-
able data transmission and data staling. For example, there are massive amounts
of uncertain data in sensor networks, such as temperature, humidity, and pres-
sure. Uncertainty can also arise in categorical data. For instance, a tumor is
typically classified as benign or malignant in cancer diagnosis and treatment.
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In practice, it is often very difficult to accurately classify a tumor due to the
experiment precision limitation. The lab results inevitably give false positives or
false negatives some of the time. Therefore, doctors may often decide tumors to
be benign or malignant with certain probability or confidence. [24]

Since data uncertainty is ubiquitous, it is important to develop classification
models for uncertain data. In this paper, We focus on the decision tree based
classification approach. We choose the decision tree because of its numerous
positive features. Decision tree is simple to understand and interpret. It requires
little data preparation, while some other techniques often require data normal-
ization, dummy variables need to be created and blank values to be removed.
Decision tree can handle both numerical and categorical data, while many other
techniques are usually specialized in analyzing datasets that have only one type
of variable. Decision tree uses a white box model. If a given situation is observ-
able in a model the explanation for the condition is easily explained by Boolean
logic. Besides, it is possible to validate a decision tree model using statistical
tests. Decision tree is also robust and scalable. It performs well with large data
in a short period of time.

In this paper, we propose a new decision tree for classifying and predicting
both certain and uncertain data (DTU). The main contributions of this paper
are:

1. We integrate the uncertainty data model into the design of the decision
tree.

2. We develop the DTU based on the widely used C4.5 classification tree so
that it can handle both numerical and categorical data with uncertainty.

3. We prove through experiments that DTU has satisfactory performance even
when the training data is highly uncertain.

This paper is organized as follows. In the next section, we will discuss related
work. Section 3 describes the uncertaint data model. Section 4 shows the mea-
sures for identifying the best split for uncertain data. Section 5 illustrates the
DTU algorithms in detail. The experimental results are shown in Section 6 and
Section 7 concludes the paper.

2 Related Work

Classification is a well-studied area in data mining. Many classification algo-
rithms have been proposed in the literature, such as decision tree classifiers [17],
Bayesian classifiers [14], support vector machines (SVM) [20], artificial neural
networks [3] and ensemble methods [9]. In spite of the numerous classification
algorithms, building classification based on uncertain data has remained a great
challenge. There are early work performed on developing decision trees when
data contains missing or noisy values [11,15,18]. Various strategies have been
developed to predict or fill missing attribute values. However, the problem stud-
ied in this paper is different from before - instead of assuming part of the data
has missing or noisy values, we allow the whole dataset to be uncertain, and
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the uncertainty is not shown as missing or erroneous values but represented as
uncertain intervals and probability distribution functions. There are also some
previous work performed on classifying uncertain data in various applications
[4,10,12]. All of the above methods try to solve specific classification tasks in-
stead of developing a general algorithm for classifying uncertain data. And Qin
et al. [24] propose a rule-based classification algorithm for uncertain data.

Recently, more research has been conducted in uncertain data mining. Most of
them focus on clustering uncertain data [8,13,16]. The key idea is that when com-
puting the distance between two uncertain objects, the probability distributions
of objects are used to compute the expected distance. Xia et al. [22] introduce a
new conceptual clustering algorithm for uncertain categorical data. Aggarwal [2]
proposes density based transforms for uncertain data mining. There is also some
research on identifying frequent itemsets and association mining [7,23] from un-
certain datasets. The support of itemsets and confidence of association rules are
integrated with the existential probability of transactions and items. Burdicks
[5] discuss OLAP computation on uncertain data. None of them address the is-
sue of developing a general classification and prediction algorithm for uncertain
data.

3 Data Uncertainty

In this section, we will discuss the uncertainty model for both numerical and
categorical attributes. Here we focus on the attributes uncertainty and assume
the class type is certain.

When the value of a numerical attribute is uncertain, the attribute is called
an uncertain numerical attribute (UNA), denoted by Aun

i . Further, we use Aun
ij

to denote the jth instance of Aun
i . The concept of UNA has been introduced

in [6]. The value of Aun
i is represented as a range or interval and the probabil-

ity distribution function (PDF) over this range. Note that Aun
i is treated as a

continuous random variable. The PDF f(x) can be related to an attribute if all
instances have the same distribution, or related to each instance if each instance
has a different distribution.

An uncertain interval instance of Aun
i , denoted by Aun

ij .U , is an interval
[Aun

ij .l, Aun
ij .r] where Aun

ij .l, Aun
ij .r ∈ R, Aun

ij .r ≥ Aun
ij .l. The uncertain PDF of

Aun
ij , denoted by Aun

ij .f(x), is a probability distribution function of Aun
ij , such

that
∫ Aun

ij .r

Aun
ij .l

Aun
ij .f(x)dx = 1 and

∫ Aun
ij .r

Aun
ij .l

Aun
ij .f(x)dx = 0 if x �∈ Aun

ij .U .
A dataset can also have categorical attributes that are allowed to take on

uncertain values. We call such attributes uncertain categorical attributes(UCA),
denoted by Auc

i . Further, we use Auc
ij to denote the attribute value of the jth

instance of Auc
i . The notion of UCA was proposed in [19].

Auc
ij takes values from the categorical domain Dom with cardinality |Dom| =

n. For a certain dataset, the value of an attribute A is a single value dk in Dom,
Pr(A = dk) = 1. In the case of an uncertain dataset, we record the information
by a probability distribution over Dom instead of a single value. Given a cate-
gorical domain Dom = {d1, . . . , dn}, an uncertain categorical attribute (UCA)
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Auc is characterized by probability distribution over Dom. It can be represented
by the probability vector P = {p1, . . . , pn} such that P (Auc

ij = vk) = pjk and
∑n

k=1 pjk = 1(1 ≤ k ≤ n).

4 Attribute Test Condition: Identifying the Best Split

The key issue of a decision tree induction algorithm is to decide the way records
be split. Each step of the tree-grow process needs to select an attribute test con-
dition to divide the records into smaller subsets. Widely used splitting measures
such as information entropy and the Gini index are not applicable to uncer-
tain data. In this section, we will define splitting measures for both uncertain
numerical data and uncertain categorical data.

4.1 Uncertain Numerical Attributes

As described earlier, the value of an uncertain numerical attribute is an interval
with associated PDF. Table 1 shows an example of UNA. The data in this table
are used to predict whether borrowers will default on loan payments. Among
all the attributes, the Annual Income is an UNA, whose precise value is not
available. We only know the range of the Annual Income of each person and the
PDF f(x) over that range. The probability distribution function of the UNA
attribute Annual Income is assumed to be uniform distribution.

Each uncertain numerical value has a maximal value and a minimal value,
which we call critical points. For each UNA, we can order all critical points of an
uncertain numerical attribute in an ascending sort with duplicate elimination.
Then the UNA can be partitioned. One partition may overlap with the UNA of
many instances. When an instance with UNA overlaps with a partition [a, b),

Table 1. Uncertain Numerical Data

ID Home Marital Annual Defaulted
Owner Status Income Borrower

1 Yes Single 110-120 No
2 No Married 100-120 No
3 No Single 60-85 No
4 Yes Married 110-145 No
5 No Divorced 110-120 Yes
6 No Married 50-80 No
7 Yes Divorced 170-250 No
8 No Single 85-100 Yes
9 No Married 80-100 No
10 No Single 120-145 Yes
11 No Divorced 105-125 Yes
12 No Divorced 80-95 No
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the probability its UNA actually falls in that partition is
∫ b

a
f(x)dx. Based on

the probability of each individual instance falling in a partition [a, b), we can
compute the probabilistic number of instances falling in that partition, which
we call probabilistic cardinality.

The probabilistic cardinality of the dataset over a partition Pa = [a, b) is
the sum of the probabilities of each instance whose corresponding UNA falls in
[a, b). That is, PC(Pa) =

∑n
j=1 P (Aun

ij ∈ [a, b)) =
∑n

j=1

∫ b

a
Aun

ij .f(x)dx. The
probabilistic cardinality for class Cj of the dataset over a partition Pa=[a, b) is
the sum of the probability of each instance Tj in Cj whose corresponding UNA
falls in [a, b). That is, PC(Pa,C) =

∑n
j=1 P (Aun

ij ∈ [a, b) ∧ CTj
= Cj), where

CTj
= Cj) denotes the class label of instance Tj .

Refer to the dataset in Table 1, the probabilistic cardinality for the partition
[110, 120) on the Annual Income is the sum of the probabilities of instances that
have Annual Income falling in [110, 120). Suppose the annual income for each in-
stance is uniformly distributed over its uncertain interval; instances 1, 2, 4, 5 and
11 have overlap with [110,120), and the probability for instance 1 with annual in-
come in [110, 120) is P (I1 ∈ [110, 120)) = (120−110)/(120−110) = 1. Similarly,
P (I2 ∈ [110, 120)) = 0.5, P (I4 ∈ [110, 120)) = 0.29, P (I5 ∈ [110, 120)) = 1, and
P (I11 ∈ [110, 120)) = 0.5; therefore, the probabilistic cardinality for this dataset
over partition [110, 120) is 3.29. The probabilistic cardinality for class Default-
Borrower = NO over the partition [110, 120) on the Annual Income is the sum of
the probabilities of instances who are not DefaultBorrowers with Annual Income
falling in [110, 120). Among instances 1, 2, 4, 5 and 11 who have overlap with
[110,120), only instances 1, 2 and 4 are in class NO; therefore, the probabilistic
cardinality for DefaultBorrower = NO over partition [110, 120) is 1.79. Similarly,
the probabilistic cardinality for DefaultBorrower = Yes over partition [110, 120)
is 1.5.

With the two previous definitions, we can now define the probabilistic entropy
for uncertain data as follows:

Definition 1. The Probabilistic Entropy for a dataset D is ProbInfo(D) =
−

∑m
i=1

PC(D,i)
PC(D) × log2(

PC(D,i)
PC(D) ).

Suppose attribute A is selected as the split attributecan, and it partitions the
dataset D into k subsets, {D1,D2, . . . , Dk}. Then the probabilistic entropy, or
expected information based on the partitioning is given by ProbInfoA(D) =
∑k

j=1
PC(Dj)
PC(D) × ProbInfo(Dj). The term PC(Dj) acts as the weight of the jth

partition. The smaller the entropy value, the greater the purity of the subset
partitions. The encoding information that would be gained by branching on A
is ProbGain(A) = ProbInfo(D) − ProbInfoA(D).

Probabilistic Entropy also tends to favor attributes that have a large number
of distinct values. The information gained by a test is maximal when there is
one case in each subset Dj . To overcome this problem, the splitting criterion
should be modified to take into account the number of outcomes produced by
the attribute test condition. This criterion is defined as ProbGain ratio(A) =

ProbGain(A)
ProbSplitInfoA(D) . Here, ProbSplitInfoA(D) = −

∑k
j=1

PC(Dj)
PC(D) × log2(

PC(Dj)
PC(D) )
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and k is the total number of splits. If an attribute produces a large number of
splits, its split information will also be large, which in turn reduces its gain ratio.

4.2 Uncertain Categorical Data

An uncertain discrete attribute (UCA) Auc
i is characterized by probability distri-

bution over Dom. As mentioned earlier, it can be represented by the probability
vector {p1, . . . , pn} such that P (Auc

ij = dj) = pj(1 ≤ j ≤ n).

Table 2. Uncertain Categorical Data

ID Make Date Problem Location Class
1 Explorer 4/5/08 (Brake:0.5; Tire:0.5) CA 0
2 Camry 8/3/02 (Trans:0.2; Tire:0.8) IN 1
3 Civic 9/12/99 (Exhaust:0.4; Brake:0.6) TX 0
4 Pontiac 4/2/01 (Tire:1.0) IL 1
5 Caravan 1/23/04 (Trans:0.3; Brake:0.7) NY 1

Table 2 shows an example of UCA [19]. This dataset records vehicle problem
information. The problem can be caused by the brake, tire, transmission or
other parts. It is derived from the text field in the given tuple using a text
classifier/miner. As text miner result tend to be uncertain, the Problem field is
a UCA.

Similar to uncertain numerical data, the probabilistic cardinality of the
dataset over dj is the sum of the probabilities of each instance whose cor-
responding UCA equals to dj . That is, PC(dj) =

∑n
j=1 P (Auc

ij = dj). The
probabilistic cardinality for class C of the dataset over dj is the sum of the
probabilities of each instance in Cj whose corresponding UCA equals to dj .
That is, PC(dj , C) =

∑
j=1 P (Auc

ij = dj ∧ Cj = C).
Refer to the dataset in Table 2, the probabilistic cardinality over Problem =

Brake is the sum of the probabilities of each instance whose Problem attribute
is Brake, which is 1.8. The probabilistic cardinality for class 0 over “Problem
= Brake” is the overall probabilities of instances in class 0 whose Problem at-
tribute is Brake, which is 1.1. Based on the probabilistic cardinality for each
class C, we can then compute the probabilistic information entropy and prob-
abilistic information gain ratio if the data is split on the categorical attribute
“Problem”, following the same process as for uncertain numerical data. If it has
the highest probabilistic information gain, then “Problem” will be chosen as the
next splitting attribute.

5 Algorithms for DTU

5.1 Decision Tree Induction Algorithm

The algorithm is shown in Algorithm 1. The basic strategy is as follows:
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Algorithm 1. DTU Induction
input: the training dataset D; the set of candidate attributes att-list
output: An uncertain decision tree

begin
1: create a node N ;
2: if (D are all of the same class, C) then
3: return N as a leaf node labeled with the class C;
4: else if (attribute-list is empty) then
5: return N as a leaf node labeled with the highest weight class in D;
6: end if ;
7: select a test-attribute with the highest probabilistic information gain ratio to label

node N ;
8: if (test-attribute is numeric or uncertain numeric) then
9: binary split the data from the selected position y;

10: for (each instance Rj) do
11: if (test-attribute ≤ y) then
12: put it into Dl with weight Rj .w;
13: else if (test-attribute > y) then
14: put it into Dr with weight Rj .w;
15: else
16: put it into Dl with weight Rj .w ∗

� y

x1
f(x)dx;

17: put it into Dr with weight Rj .w ∗
� x2

y
f(x)dx;

18: end if ;
19: end for;
20: else
21: for (each value ai(i = 1, . . . , n) of the attribute) do
22: grow a branch Di for it;
23: end for;
24: for (each instance Rj) do
25: if (test-attribute is uncertain) then
26: put it into Di with Rj .ai.w ∗ Rj .w weight;
27: else
28: put it into a certain Di with weight Rj .w;
29: end if
30: end for;
31: end if ;
32: for each Di do
33: attach the node returned by DTU(Di, att-list);
34: end for;
end

1. The tree starts as a single node representing the training samples (step 1).
2. If the samples are all of the same class; then the node becomes a leaf and

is labeled with that class (steps 2 and 3).
3. Otherwise, the algorithm uses a probabilistic entropy-based measure, known

as the probabilistic information gain ratio, as the criteria for selecting the at-
tribute that will best separate the samples into an individual class (step 7). This
attribute becomes the “test” attribute at the node.
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4. If the test attribute is numerical or uncertain numerical, we split for the
data at the selected position y (steps 8 and 9).

5. A branch is created for test-attribute ≤ y or test-attribute > y respectively.
If an instance’s test attribute value [x1, x2] is less than or equal to y (x2 ≤ y), it
is put into the left branch with the instance’s weight Rj .w. If an instance’s test
attribute value [x1, x2] is larger than y (x1 > y), it is put into the right branch
with the instance’s weight Rj .w. If an attribute’s value [x1, x2] covers the split
point y (x1 ≤ y < x2), it is put into the left branch with weight Rj .w∗

∫ y

x1
f(x)dx

and the right branch with weight Rj .w ∗
∫ x2

y
f(x)dx. Then the dataset is divided

into Dl and Dr (steps 10-19).
6. If the test attribute is categorical or uncertain categorical, we split the data

multiway (steps 21-30). A branch is created for each value of the test attribute,
and the samples are partitioned accordingly. For each value ai of the attribute,
an instance is put into Di with Rj .w weight when the attribute is certain. If the
attribute is uncertain, assume the probability of the attribute value ai be Rj .ai.p,
then the instance is put into the branch ai with the weight Rj .ai.p ∗ Rj .w.

7. The algorithm recursively applies the same process to generate a decision
tree for the samples.

8. The recursive partitioning process stops only when either of the following
conditions becomes true:

1) All samples for a given node belong to the same class (steps 2 and 3), or
2) There are no remaining attributes on which the samples may be further

partitioned (step 4). In this case, the highest weight class is employed (step 5).
This involves converting the given node into a leaf and labeling it with the class
having the highest weight among samples. Alternatively, the class distribution
of the node samples may be stored.

5.2 Prediction with DTU

Once a DTU is constructed, it can be used for predicting class types. The pre-
diction process starts from the root node, the test condition is applied at each
node in DTU, and the appropriate branch is followed based on the outcome of
the test. When the test instance R is certain, the process is quite straightforward
since the test result will lead to one single branch without ambiguity. When the
test is on an uncertain attribute, the prediction algorithm proceeds as follows:

1. If the test condition is on a UNA attribute A and the splitting point is a,
suppose R.A is an interval [x1, x2) with associated pdf R.A.f(x):

If a < x1, which means the minimal possible value of R.A is larger than a,
then P (R.A > a) = R.w; we know for sure R.A > a and R follows the right
branch;

If a >= x2, which means the maximal possible value of R.A is smaller than
a, then P (R.A < a) = R.w, and it is certain that R.A < a and R follows the
left branch;

If (x1 < a < x2), then the probability R.A < a is P (R.A < a) = R.w ∗∫ a

x1
f(x)dx and the probability R.A > a is P (R.A > a) = R.w ∗

∫ x2

a
f(x)dx. R
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should be in the left branch with probability R.w ∗
∫ a

x1
f(x)dx and in the right

branch with probability R.w ∗
∫ x2

a
f(x)dx.

2. If the test condition is on a UCA attribute A and a1, a2, ...ak are the
values for the categorical attribute A, then suppose R.A is an UCA, that is
R.A = {p1, p2, ..., pk}, with pi(i = 1, ..., k) as the probability of R.A = ai. Then
R should be in the ith branch with probability pi.

For the leaf node of DTU, each class Ci has a probability PL(Ci), which is the
probability for an instance to be in class Ci if it falls in this leaf node. PL(Ci) is
computed as the fraction of the probabilistic cardinality of instances in class Ci

in a leaf node over the total probabilistic cardinality of instances in that node.
Assume path L from the root to a leaf node contains t tests, and the data are
classified into one class ci in the end, suppose P (Ti) is the probability that an
instance follow the path at the ith test, then the probability for an instance to
be in class ci taking that particular path L is PL

ci
= PL(ci) ∗

∏t
i=1 P (Ti).

When predicting the class type for an instance T with uncertain attributes,
it is possible that the process takes multiple paths. Suppose there are m paths
taken in total, then the probability for T in class ci is Pci

=
∑m

i=1 P i
ci

.
Finally, the instance will be predicted to be of class ci which has the largest

Pci
among all Pci

, i = 1, ..., n.

6 Experiments

In this section, we present the experimental results of the proposed decision tree
algorithm DTU. We studied the prediction accuracy over multiple datasets.

Based on the J4.8/C4.5 implemented on Weka [21], we implemented the DTU
as described in Section 5. The experiments are executed on a PC with an Intel
Pentium IV 3.4GHz CPU and 2.0 GB main memory. A collection containing 10
real-world benchmark datasets were assembled from the UCI Repository [1]. We
tried to cover the spectrum of properties such as size, attribute numbers and
types, number of classes and class distributions. Among these 10 datasets, 5 of
them, namely Iris, Sonar, Segment, Diabetes and Glass contain mainly numerical
attributes. The remaining 5 datasets, namely Audiology, Bridges, Promoters,
Mushroom and voting have mostly categorical attributes.

Due to a lack of real uncertain datasets, we introduce synthetic uncertainty
into the datasets. To make numerical attributes uncertain, we convert each nu-
merical value to an uncertain interval with uniform probability distribution func-
tion. The uncertain interval is randomly generated around the original value.
These are uncertainties from random effects without any bias. If the uncertain
interval is within 10% of the original data, we call the dataset with uncertainty
10% and denote it by U10. For example, when the original value is 20, then its
U10 may be [18.4, 20.4). We make categorical attributes uncertain by converting
them into probability vectors. For example, a categorical attribute Ai may have
k possible values vj , 1 ≤ j ≤ k. For an instance Ij , we convert its value Aij

into a probability vector P = (pj1, pj2, ..., pji, ..., pjk), while pjl is the probabil-
ity of Auc

ij to be equal to vl, that is, P (Auc
ij = vl) = pjl. For example, when we
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Fig. 1. DTU accuracy on uncertain numerical data sets
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Fig. 2. DTU accuracy on uncertain categorical data sets

introduce 10% uncertainty, this attribute will take the original value with 90%
probability, and 10% probability to take any of the other values. Suppose in the
original accurate dataset Aij = v1, then we will assign pj1 = 90%, and assign
pjl(2 ≤ l ≤ k) to ensure

∑k
i=2 pjl = 10%. Similarly, we denote this dataset with

10% uncertainty in categorical data by U10. We use U0 to denote accurate or
certain datasets.

As prediction accuracy is by far the most important measure of a classifier, we
studied the prediction accuracy of DTU classifier first. Figure 1 shows the result
for numerical datasets and Figure 2 shows the result for categorical datasets. In
both experiments, we use ten-fold cross validation. Data is split into 10 approxi-
mately equal partitions; each one is used in turn for testing while the remainder is
used for training, that is, 9/10 of data is used for training and 1/10 for test. The
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whole procedure is repeated 10 times, and the overall accuracy rate is counted
as the average of accuracy rates on each partition. When DTU is applied on
certain data, it works as a traditional C4.5 classifier.

For numerical data, the uncertainty varies between 0 to 30%. As shown in Fig-
ure 1, when the extent of uncertainty increases, the classifier accuracy declines
slowly. For most datasets, the performance decrement are within 5%, even when
data uncertainty reaches 30%. The worst performance decrement is for the glass
identification dataset, the classifier has over 95% accuracy on certain data, re-
duces to around 92% when the uncertainty is 10%, to 81% when the uncertainty
is 20%, and to 78% when the uncertainty reaches 30% .

The results for categorical datasets are similar, as shown in Figure 2. Overall
speaking, the accuracy of DTU classifier remains relatively stable. The overall
decrease in classifier accuracy is within 10% even when the uncertainty reaches
40%. Both experiments show DTU is quite robust against data uncertainty.

7 Conclusions

In this paper, we propose a new decision tree algorithm DTU for classifying
and predicting uncertain data. We extend the measures used in tradition deci-
sion tree, such as information entropy and information gain, for handling data
uncertainty. Our experiments demonstrate that DTU can process both uncer-
tain numerical data and uncertain categorical data. It can achieve satisfactory
classfication and prediction accuracy even when data is highly uncertain.
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