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Abstract. In many real-world domains, link graph is one of the most effective 
ways to model the relationships between objects. Measuring the similarity of 
objects in a link graph is studied by many researchers, but an effective and effi-
cient method is still expected. Based on our observation of link graphs from real 
domains, we find the block structure naturally exists. We propose an algorithm 
called BlockSimRank, which partitions the link graph into blocks, and obtains 
similarity of each node-pair in the graph efficiently. Our method is based on 
random walk on two-layer model, with time complexity as low as O(n4/3) and 
less memory need. Experiments show that the accuracy of BlockSimRank is  
acceptable when the time cost is the lowest. 
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1   Introduction 

Many applications require executing “find-similar-object” query in their transactions, 
which implies the computation of similarity between objects. As an example, thinking 
about clustering a collection of documents, we should compute the similarity scores 
of each pair documents first. In collaborative filtering, similar items are clustered 
based on their similarities [6].  

In many real-world domains, linkage among objects can be the most useful infor-
mation for similarity measuring. One obvious example is the WWW. Due to the lim-
ited effect of understanding web pages automatically, link analysis is still a popular 
approach to exploit the web structure. If we treated these object-to-object links as 
edges, the real-world domain can be best described as a heterogeneous graph. In this 
paper, we focus our research target on the similarity computation of link graph, which 
is the abstract model of many real-world domains. 

There have been many similarity computing methods [2, 3, 4, 5], which will be in-
troduced in related work. Thereinto, Jeh and Widom [2] propose a notable method 
called SimRank for assessing the similarity that says “two objects are similar if they 
are related to similar objects”. SimRank provides a wonderful definition for similarity 
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on a link graph, but unfortunately, it computes the similarity between every pair of 
objects, which results in high complexity in both time and space. 

The study of real-world datasets indicates that block structure naturally exists 
among objects. Taking the web graph for example, web pages of host A are more 
likely to cite pages belonging to the same host A. Viewing a host as a block, the web 
graph can be regarded as a block structure, and the similar phenomenon can be found 
in other domains.  As another example, based on the statistics of words frequencies 
occurring in articles, the density of linkages between collections of articles and words 
is shown in Figure 1(a) (adapted from Figure 2 in [7]).  
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Fig. 1. (a) Density of linkages between articles and words. (b) The graph of a heterogeneous 
dataset. (c) The corresponding transition matrix. 

Taking advantage of the block structure, we propose an algorithm called Block-
SimRank to effectively measure similarity by following 4 steps: (1) partition the link 
graph into blocks properly; (2) compute the similarity of each block-pair; (3) for each 
block, use SimRank to obtain local similarity scores; (4) estimate the “inter-block” 
nodes similarity using block-pair similarity and local similarity.  

Comparing with SimRank, our method can significantly speed up the identification 
of similar objects. SimRank computes the similarity of each node-pair. However, 
BlockSimRank only computes the similarity between blocks and the similarity be-
tween nodes in the same block. The similarity between nodes in different blocks is 
estimated reasonably. For example, in a link graph shown in Figure 1(b), we can gain 
its transition matrix shown in Figure 1(c). Because most edges are intra-block links, 
only the dense area of transition matrix (diagonal area in Figure 1(c)) is worth consid-
ering. For a graph having n nodes, supposing this graph has m blocks and let d denote 
the average number of neighbors, the time complexity of SimRank and BlockSimRank 
are O(kn2d2) and O(kd2(m2+n2/m)) respectively, where k is the number of iterations. 
When setting m properly, the least time cost of BlockSimRank is O(n4/3).  

Experiments on real datasets are conducted to test the accuracy and efficiency of 
BlockSimRank. By partitioning the link graph, our method can remarkably speed up 
the similarity computation and win great advantage in efficiency with the accuracy 
retained, compared with other methods such as SimRank and SimFusion[4]. 

The rest of the paper is organized as follows. Section 2 surveys related work. In 
Section 3, we exploit the block structure of link graph in real domains. Afterwards, 
Section 4 describes the BlockSimRank method and explains its theoretical model. The 
results of experiments are shown in Section 5 and this study is concluded in Section 6.  
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2   Related Work 

Similarity measuring has been extensively studied in different disciplines for a long 
time, with multiple methods proposed [2, 3, 4, 5, 9]. Traditional approaches that cal-
culate the similarity of documents using Vector Space Model (VSM) (included in [3]) 
and its variations can be viewed as a general algorithm, which map documents and 
queries into a vector space. They differ in how the vectors are constructed and how 
weights are assigned [4]. These methods are useful to compute the similarity between 
sets of objects (e.g., a collection of documents), whereas they are not good at using 
the external information about objects (e.g., the references among documents).  

In some situations, linkages among objects can be the only or the most explicit in-
formation available. Many datasets are heterogeneous [1], in which there may be 
multiple object and link types, and are best described as networks or graphs. Naively 
applying traditional approaches may bring on invalid conclusions.  

Some researchers use multiple relationships to compute the similarity between  
objects based on different theoretical foundations. In the WWW, [5] explains an ap-
proach using hyperlinks among pages to calculate the similarity of web objects. To 
realize the global ranking of objects in a static graph, Jeh and Widom [2] proposed a 
strategy called SimRank, in which the similarity between two objects is updated itera-
tively by the average similarity between objects linked with them. For example, in 
Figure 1(b), the similarity between a and d (defined as S(a, d)) is decided by the simi-
larity S(c, f), S(c, e), S(b, f) and S(b, e). The intuitive underlying model of SimRank is 
“random surfer-pairs”, a concept derived from PageRank algorithm [8]. Unfortu-
nately, SimRank takes O(N2) time and O(N2) space, making it impractical for large 
datasets. The authors of [2] also discuss a pruning technology to approximate  
SimRank, but it is a challenge to select the right node pairs in initial stage.  

Yin et al. [7] proposed a hierarchical structure called SimTree to represent similari-
ties between objects in a compact way. SimTree only computes and stores the simi-
larities of sibling nodes and the ratio of each node compared with its parent, thus, it 
obtains great efficiency compared with SimRank. Besides, Xi et al. [4] use a Unified 
Relationship Matrix (URM) to represent a collection of heterogeneous objects and 
their interrelationships. By iteratively computing over the URM, they present a simi-
larity-calculating algorithm called SimFusion. SimFusion can effectively integrate 
relationships from multiple sources to measure the similarity, and takes O(kn2d) time, 
where d is a constant with respect to n.  

In this issue, Sun et al. [9] proposed a correlation degree computation approach for 
relevance search and anomaly detection, which combines random walk and graph 
partitioning together to improve scalability. Although the principle of [9] is similar to 
our work, it is only suitable for bipartite graph, while our method is applicable to 
arbitrary graph, even if this graph is not a connected graph.  

Our method, BlockSimRank, is originated from the observation of block structure 
concealed in the link graph. A similar work has been done by [11], which exploit the 
block structure of the web for computing PageRank. The underlying model of Block-
SimRank based on random walk [10], a concept that simulates walkers randomly surf 
the graph along edges; and k-way graph partitioning, a method introduced by [12], 
which is a high-quality and computationally inexpensive refinement algorithm. Our 
method can be mainly applied in link-based object ranking. 
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3   Block Structure of Link Graph in Real Datasets 

The taxonomy or hierarchical categories are ubiquitous among data objects in many 
domains. Usually, two objects of the same type are more similar than objects in dif-
ferent categories, and it makes similar objects gathered into the same block. 

More precisely, for two blocks A and B, let N(A) denote the number of links of 
block A (all “intra-block” and “inter-block” links are included), and N(A, B) denote 
the number of links between A and B. Obviously, N(A, B) = N(B, A), and N(A, A) 
represents the number of intra-block links of A. We take 

)(

),(
),(

AN

BAN
BAR =  (1) 

to measure the ratio between N(A, B) and N(A). It is easy to know 1),(0 ≤≤ BAR  and 

if R(A, B) = 1, all links starting from objects in block A point to objects in block B. 
For Example, in Figure 1(b), the value of R(A, B) is 1/5.  

 
Block Structure of the Citation Graph. Considering a corpus of scientific papers, 
each paper can be regarded as an identically distributed node, and the references or 
cited-by relationships correspond to edges between nodes. Our dataset is crawled 
from ACM Computing Classification System (CCS) [13], which is a subject classifi-
cation system for Computer Science. Taking Section F in ACM CCS for an example, 
there are 6 main categories in it, and each category includes some subtopics.  

Treating each category as a block, We use R(A, B) defined in equation (1) to repre-
sent the flow of links from A to B, and color the plot in the grid with black or grey 
according to the value of R(A, B). The width of a plot corresponds to the number of 
papers in that category. The block structure of citation graph is shown in Figure 2.  
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Fig. 2. Block structure of the citation 
graph of Section F in ACM CCS 

Fig. 3. (a) Block structure of ruc.edu.cn at host level. 
(b) Block structure of iir.ruc.edu.cn at directory level. 

Block Structure of the Web Graph. The WWW is naturally modeled as a huge 
graph, with nodes representing pages and edges representing hyperlinks. We do a 
crawl of the ruc.edu.cn in July 2008 to generate a link graph for analysis. This graph 
contains roughly 45,000 nodes, and more than 0.5 million links with ineffectual  
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Table 1. Terms for a hierarchical view of URL on the web 

Terms Example 
domain ruc.edu.cn 
host iir.ruc.edu.cn 
directory iir.ruc.edu.cn/people/ 
page iir.ruc.edu.cn/people/students.html 

 
hyperlinks (links citing other pages out of the graph) removed. To investigate the 
structure of the web, we use the terms given in Table 1. 

A similar work has been done by Kamvar et al. [11] by using dot-plots to visualize 
the link matrix at page level. Our work is done at host level (Figure 3 (a)) and direc-
tory level (Figure 3 (b)) based on the measurement of links flow among blocks. A 
view of nested block structure is shown in Figure 3, by filling plots with different 
color according to R(A,B). The aggregation of black plots on the diagonal line indi-
cates that most links are “intra-block” links. 

4   The BlockSimRank Method 

4.1   Preliminaries 

Transition Matrix. Given a undirected graph G(V, E), supposing there is a random 
surfer standing on node a, he has identical probability to visit each node direct-
connected to a on next step, and possibility of zero to other nodes. Note that edge 
weights may be imported to represent varying importance of links, but it’s not the key 
point of our work. We only focus on undirected graphs and it’s easy to extend our 
method to directed graphs.  

A transition matrix or stochastic matrix is introduced to describe the transition 
probability of a Markov Chain [14]. We define transition matrix T as a square matrix 
each of whose rows consists of nonnegative values, with each row summing to 1. In 
an undirected graph, T is symmetric. For example, the transition matrix shown in 
Figure 1 (c) corresponds to the graph in Figure 1 (b). Based on the block feature we 
discussed in Section 3, we use 
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to generalize it, where PIJ is the probability matrix between all nodes in block I and all 
nodes in J. Note that only the dense valued areas (e.g. PAA, PBB and PCC) have signifi-
cant effect on similarity computation. This feature is utilized by our method.  

 
Graph Partitioning. The graph partitioning problem is to divide the vertices of a 
graph into n roughly equal parts, with the number of edges connecting nodes in dif-
ferent parts minimized. In our method, blocks are detected by graph partitioning. 
Many algorithms [12, 15, 16] have been developed to find reasonably partitions. We 
use the multilevel k-way partitioning method proposed by Karypis et al. [12], whose 
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strategy is performing a k-way partitioning on the smaller graph, and then refine it to 
construct a k-way partitioning of the original graph. This algorithm partitions a graph 
G = (V, E) in O(|E|) time and is implemented in METIS package [18]. 

4.2   Assessing Similarity between Nodes 

Basic SimRank. As algorithm SimRank [2] is closely related to our work, we describe 
it here. Given an undirected graph G = (V, E), we denote the k-th iterative similarity 
between nodes Va and Vb by ]1,0[),( ∈bak VVS . If a=b then 1),( =bak VVS . Otherwise, 

given transition matrix T and initial similarity matrix Sim0, we get 
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where c is a decay constant (usually set to be 0.8) describing the attenuation of link 
influences. O(T) is the order of transition matrix T. At the same time, Tai is the ele-
ment of T on the a-th row and i-th column, and analogously for Tbj. A slight notice 
here is the initialization of ),( bak VVS when k=0. Since we can’t foreknow the similar-

ity between two objects before iteration, it is reasonable to simply define 
1),(0 =ba VVS  for a=b, and 0),(0 =ba VVS  for ba ≠ . 

We give the major steps of SimRank algorithm as follows. 

 
Algorithm 1. (Basic SimRank) 
Input: transition matrix T, initial similarity matrix Sim0, tolerance factor t. 
Output: convergent similarity matrix Simk. 

1←k  
while ( tVVSVVS bakbak >− − |)),(),(max(| 1 ) 

1+← kk  
 Simk-1 ← Simk 
 for each element Sk(Va, Vb) in Simk 
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 end for 
end while 
return Simk 

 
Local Similarity and Global Similarity. Local similarity is the similarity between 
objects in the same block without considering objects in other blocks. Let LSim(B) 
denote the local similarity of block B. LSim(B) is the iteration convergence of all 
node-pairs’ similarities in block B, which means given transition matrix PBB (defined 
in Section 4.1) and initial similarity matrix LSim0(B) (a identity matrix), we can get 
LSim(B) recursively by Equation (2). As an example, for block A in Figure 4(a), rela-
tionships between A and its nodes can be better visualized in another view shown in 
Figure 4 (b), which indicates LSim(A) is a 3-by-3 matrix. 
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Definition 1. (Block Similarity) Treating each block as an object, we can compute the 
similarity between blocks as we do between objects by Equation (2). The transition 
probability between block A and B is R(A, B) (defined by Equation (1)), so we can get 
transition matrix T. Figure 4 (c) shows an transition matrix between blocks. Let 
BSim(A, B) denote the similarity between block A and B. 

Definition 2. (Inter-Block Nodes Similarity) Inter-block nodes similarity is the simi-
larity between nodes in different blocks. Supposing node Va and Vb are in block A and 
B respectively, we define the similarity between Va and Vb on the k-th iteration by 

),(),(),(),( BVSBABSimAVSVVS bkakbak ⋅⋅=  (3) 

where ),( XVS xk  represents the similarity between object x and the center of block X. 

Usually the center of block X is virtual and hard to ascertain, so we take the average 
similarity between x and every object in block X to estimate it. That is 
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where |X| is the number of objects in block X. We will explain equation (3) in section 
4.4 later. Further study indicates that it’s not necessary to compute inter-block nodes 
similarity on every iteration.  

Theorem 1. If block similarity and local similarity are convergent, inter-block nodes 
similarity will be convergent too.  

Proof. If local similarity Sk(Vx, Vi) is convergent, Sk(Vx, X) will be convergent too 
according to Equation (4). Since block similarity BSim(A, B) is convergent, we can 
get the Theorem 1 soon from Equation (3). 

Definition 3. (Global Similarity) Given an undirected graph G = (V, E), as stated 
above, for a node-pair Va and Vb, if they belong to the same block, their similarity 
S(Va, Vb) is the local similarity decided by Equation (2),  otherwise, it is the inter-
block nodes similarity decided by Equation (3). We call the similarity of any node-
pair calculated this way global similarity, and use GSim to denote it. 
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Fig. 4. (a) A view of block structure. (b) Another view of block structure. (c) Transition matrix 
between blocks. 
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The BlockSimRank Algorithm. The block structure suggests a fast algorithm. We 
propose BlockSimRank for more effective and efficient similarity computation, and its 
major steps are summarized as follows:  

1. Split the graph into n roughly equal blocks using METIS [18]; 
2. For the k-th iteration, regarding each block as an object, compute the Block Simi-

larity Matrix using basic SimRank algorithm; 
3. Compute the Local Similarity Matrix of each block by basic SimRank algorithm; 
4. If block similarity and local similarity are not convergent, let k = k+1 and then 

jump to step 2; else continue; 
5. Estimate the Inter-Block Nodes Similarity using Equation (3); 
6. Obtain global similarity matrix GSim. 

4.3   Complexity Analysis 

For simplicity, we assume the link graph G = (V, E) has n objects and can be split into 
m roughly identical blocks. 

 
Time Complexity. The time consumed by step 1 of BlockSimRank Algorithm usually 
can be ignored, because it takes O(|E|) time and the real graphs are often sparse. The 
time cost of BlockSimRank is mainly composed of block similarity computation (step 
2) and local similarity computation (step 3). Noting that the time cost of SimRank is 
O(kd2n2), we write the equation for time complexity of BlockSimRank as follows: 

Time(m) = kd2m2 + mkd2(n/m)2 = kd2(m2+n2/m) (5) 

k is the number of iteration and d2 is the average direct-connected neighbor pairs of a 
block-pair or node-pair (usually a constant with respect to n2). Calculating the deriva-
tive of Time(m) and setting dTime(m)/dm=0, we get m0 = (2n)2/3/2, and when m=m0, 
the time complexity is O(n4/3), that is the lowest.  

 
Space Complexity. Since it is not necessary to put the entire global similarity matrix 
in RAM, BlockSimRank takes O(m2+n2/m) space to store the block similarity matrix 
and local similarity matrices. When m=m0, the space complexity is the smallest too.  

Our experiment in Section 5 shows that the accuracy is still comparable to the ac-
curacy of SimRank when m=m0, so it is our suggestion to set m=m0 when using 
BlockSimRank method. Besides, the computations of local similarity matrices are 
independent, which indicates the possibility of parallelization.  

4.4   Theoretical Model 

The block structure implies that a random surfer is more likely to meet another surfer 
from the same block. The meeting of two surfers from different blocks also needs to 
consider, but the probability is little and we can estimate it. We develop an intuitive 
model based on two kinds of random surfers: the surfer traveling among blocks (we 
call it BSurfer) and the surfer traveling among local nodes (we call it NSurfer). 

 
Random Walk on Two Layers Model. In Figure 5 (a), all nodes belong to the same 
block. The similarity S(a, b) is determined by similarities of all its direct-connected  
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Fig. 5. (a) The graph for NSurfer. (b) The meeting of two NSurfers in different blocks 

 
neighbor pairs and the probability from (a, b) to these node-pairs. That is to say, Sk(a, 
b) = 0.25(Sk-1(c, e)+S k-1(c, d)+S k-1(e, e)+S k-1(d, e)). 

If nodes a and b are in different blocks as shown in Figure 5 (b), NSurfer at node a 
and Nsurfer at node b can’t meet without the help of BSurfer. Regarding BSurfer as a 
transmitter or bridge, the similarity S(a, b) is determined by BSim(A, B) and the prob-
ability from (a, b) to block-pair (A, B). We use Equation (4) to approximate the prob-
ability from object x to its block X. Thus we have the following theorem. 

Theorem 2. Global similarity of any node-pair in Graph G can be computed based on 
the Random Walk on two layers model. 

Proof. Given a node-pair (a, b), its similarity is determined by similarities of all its in-
neighbor node-pairs (or block-pair) and the probability from (a, b) to these node-pairs 
(or block-pair). 

5   Experimental Evaluation 

We described above an approach for efficient similarity computation on link graph. In 
this section, the accuracy and efficiency of our approach will be tested, compared 
with the following similarity measuring methods: (1) SimRank [2], an approach that 
iteratively computes the similarity of each node-pair; (2) SimFusion [4], an approach 
that reinforces and propagates the similarity between objects.  

All experiments are performed on a PC with a 1.86G Intel Core 2 processor, 2 GB 
memory, and Windows XP Professional. All algorithms are implemented using Java.  

 
Datasets. A good evaluation of similarity measuring methods is difficult, because the 
similarity between two objects is hard to ascertain without performing extensively 
user studies. ACM CCS [13] is a credible subject classification system for Computer 
Science. It can provide an identification of similar papers by organizing these papers 
in the same category. Our dataset is crawled from Section F in ACM CCS. With the  
 

Table 2. (a) Node number of each category. (b) Edge number between two categories. 

(a) 

Category Number of nodes 
F.1 2738 
F.2 4431 
F.4 2380 

 F.1 F.2 F.4 
F.1 9513 4084 2828 
F.2 4084 18843 1046 
F.4 2828 1046 8508 

(b) 
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ineffectual papers removed, we get a citation graph using the reference and “cited-by” 
information. This undirected graph has 9549 nodes and 44822 edges. The detailed 
node number of each category and edge number between each pair of categories are 
shown in Table 2. 
 
The Selection of Partition Number m. When partitioning a graph into blocks at the 
beginning of BlockSimRank algorithm, the number of partitions should be decided. 
From Equation (5) we know m influences time complexity remarkably. In the mean-
time, too many partitions imply too many edges between different blocks, which 
induce the decline of accuracy.  
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Fig. 6. (a) Accuracy of different partition numbers. (b) Time/iteration. 

There is a trade-off between accuracy and efficiency. The accuracy and the time 
consumed on each iteration of different partition numbers are shown in Figure 6 (a) 
and (b) respectively. With the increase of partition numbers, the accuracy descends 
slowly. As we discussed in Section 4.3, if the assumed conditions are satisfied, when 
m = m0 = (2n)2/3/2, time cost is the lowest. In real situations, we set m0 = e(2n)2/3/2, 
where e is an adjustment factor and in our ACM dataset, e ≈ 0.4, making m0 ≈150.  

Experiments show that the accuracy of BlockSimRank is acceptable when time cost 
is the lowest. So we suggest setting m = m0 when using BlockSimRank algorithm. 

 
Accuracy. We use PAM [17], a k-medoids clustering approach, to cluster papers into 
groups based on global similarity matrix. In the meantime, ACM CCS provides a 
credible classification on these papers. Comparing these groups with CCS categories, 
let C denotes the number of correct classified papers, and N denotes the total number 
of papers. We define accuracy as the ratio between C and N. 

In this experiment, we compare BlockSimRank with SimRank and SimFusion on 
accuracy. We set m = m0 in BlockSimRank (now time cost is the lowest). As Table 3 
shows, BlockSimRank wins slight advantage to other methods, which is because graph 
partitioning can eliminate noise to some extent.  

Table 3. Accuracy of different approaches 

Approach Accuracy 
BlockSimRank(m=m0) 0.6609 
SimRank 0.6419 
SimFusion 0.6073  

Table 4. Performances of different approaches 

Approach Time/Iteration Total 
BlockSimRank 1.2 sec × 10 
SimRank 13222.7 sec × 9 
SimFusion 5763.2 sec × 15  
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Performances. The motivation of BlockSimRank is exploiting the block structure to 
improve the performance of SimRank. By partitioning a global matrix into several 
local matrices, the performance is enhanced markedly. The time complexities on each 
iteration of SimRank, BlockSimRank and SimFusion are O(d2n2), O(d2(m2+n2/m)) and  
O(dn2) respectively, where d is related to n and explained above.  

When we set m = m0, the time cost of BlockSimRank is O(n4/3), which wins notable 
advantage to SimRank. We list the time consumed on each iteration and the total time 
before convergence in Table 4. The tolerance factor of convergence is set to be 0.001, 
which is the maximum difference (explained in next subsection) of similarity scores 
between adjacent iterations. From Table 4 we can see the improvement of perform-
ances from SimRank to BlockSimRank is huge, which is from O(n2) to O(n4/3), where 
n is the node number 9549. 

 
Convergence Rate. We measure the convergence rate from two aspects: maximum 
difference and accuracy. Sk(i, j) denoting a similarity score on the k-th iteration, 
maximum difference Mk can be described as max(|Sk(i, j) - Sk-1(i, j)|). If Mk is less than 
the tolerance factor of convergence (set to be 0.001), iterative process will finish.  
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Fig. 7. (a) Maximum differences of each iteration. (b) The accuracy of each iteration. 

By analyzing similarity matrices of the first ten iterations of each approach, we get 
the maximum difference of each iteration shown in Figure 7 (a), and the accuracy of 
each iteration shown in Figure 7(b). Comparing with other methods, BlockSimRank 
holds advantage at the beginning of iterative process. Considering the first iteration in 
Figure 7, the maximum difference of BlockSimRank is the smallest and the accuracy 
is the highest. This advantage is attributed to graph partitioning, because it can detect 
potential groups via partitioning a graph into blocks. The similarity between objects in 
the same block is usually higher than the one in different blocks, which results in 
more accurate clustering. Due to this advantage, BlockSimRank algorithm has higher 
convergence rate than SimFusion, and is as fast as SimRank in most cases. 

6   Conclusions 

In this paper, we propose a high efficient similarity computation method by exploiting 
the block structure of link graph. Many datasets involve relationships between objects 
and can be best described as link graphs. Using the block structure implied in the link 
graph, we propose an algorithm called BlockSimRank, which partitions a graph into 
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blocks, and iteratively computes the similarity between blocks and the similarity be-
tween objects in the same block until similarity matrices are convergent, and then 
estimate the similarity between objects in different blocks properly. The time cost of 
our method is O(n4/3), whereas SimRank takes O(n2) time. Experimental results show 
BlockSimRank achieves high efficiency and acceptable accuracy in computing simi-
larity of a link graph. 
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