
T. Theeramunkong et al. (Eds.): PAKDD 2009, LNAI 5476, pp. 389–400, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Exploiting the Block Structure of Link Graph for
Efficient Similarity Computation

Pei Li1,2, Yuanzhe Cai1,2, Hongyan Liu3, Jun He1,2, and Xiaoyong Du1,2

1 Key Labs of Data Engineering and Knowledge Engineering, Ministry of Education, China
2 School of Information, Renmin University of China, Beijing, China

{lp,yzcai,hejun,duyong}@ruc.edu.cn
3 Department of Management Science and Engineering, Tsinghua University, Beijing, China

hyliu@tsinghua.edu.cn

Abstract. In many real-world domains, link graph is one of the most effective
ways to model the relationships between objects. Measuring the similarity of
objects in a link graph is studied by many researchers, but an effective and effi-
cient method is still expected. Based on our observation of link graphs from real
domains, we find the block structure naturally exists. We propose an algorithm
called BlockSimRank, which partitions the link graph into blocks, and obtains
similarity of each node-pair in the graph efficiently. Our method is based on
random walk on two-layer model, with time complexity as low as O(n4/3) and
less memory need. Experiments show that the accuracy of BlockSimRank is
acceptable when the time cost is the lowest.

Keywords: Block, link graph, SimRank, object ranking.

1 Introduction

Many applications require executing “find-similar-object” query in their transactions,
which implies the computation of similarity between objects. As an example, thinking
about clustering a collection of documents, we should compute the similarity scores
of each pair documents first. In collaborative filtering, similar items are clustered
based on their similarities [6].

In many real-world domains, linkage among objects can be the most useful infor-
mation for similarity measuring. One obvious example is the WWW. Due to the lim-
ited effect of understanding web pages automatically, link analysis is still a popular
approach to exploit the web structure. If we treated these object-to-object links as
edges, the real-world domain can be best described as a heterogeneous graph. In this
paper, we focus our research target on the similarity computation of link graph, which
is the abstract model of many real-world domains.

There have been many similarity computing methods [2, 3, 4, 5], which will be in-
troduced in related work. Thereinto, Jeh and Widom [2] propose a notable method
called SimRank for assessing the similarity that says “two objects are similar if they
are related to similar objects”. SimRank provides a wonderful definition for similarity

390 P. Li et al.

on a link graph, but unfortunately, it computes the similarity between every pair of
objects, which results in high complexity in both time and space.

The study of real-world datasets indicates that block structure naturally exists
among objects. Taking the web graph for example, web pages of host A are more
likely to cite pages belonging to the same host A. Viewing a host as a block, the web
graph can be regarded as a block structure, and the similar phenomenon can be found
in other domains. As another example, based on the statistics of words frequencies
occurring in articles, the density of linkages between collections of articles and words
is shown in Figure 1(a) (adapted from Figure 2 in [7]).

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

02
1

2
1000000

4
104

104
1004

10
2

1
2

10000000

00002
1

2
1000

04
104

104
104

10

0002
1

2
10000

00000002
1

2
1

04
1004

104
104

1

0000002
1

2
10a

b

c
d

e
f

g

h
i

a b c d e f g h i

(a) (b) (c)

Fig. 1. (a) Density of linkages between articles and words. (b) The graph of a heterogeneous
dataset. (c) The corresponding transition matrix.

Taking advantage of the block structure, we propose an algorithm called Block-
SimRank to effectively measure similarity by following 4 steps: (1) partition the link
graph into blocks properly; (2) compute the similarity of each block-pair; (3) for each
block, use SimRank to obtain local similarity scores; (4) estimate the “inter-block”
nodes similarity using block-pair similarity and local similarity.

Comparing with SimRank, our method can significantly speed up the identification
of similar objects. SimRank computes the similarity of each node-pair. However,
BlockSimRank only computes the similarity between blocks and the similarity be-
tween nodes in the same block. The similarity between nodes in different blocks is
estimated reasonably. For example, in a link graph shown in Figure 1(b), we can gain
its transition matrix shown in Figure 1(c). Because most edges are intra-block links,
only the dense area of transition matrix (diagonal area in Figure 1(c)) is worth consid-
ering. For a graph having n nodes, supposing this graph has m blocks and let d denote
the average number of neighbors, the time complexity of SimRank and BlockSimRank
are O(kn2d2) and O(kd2(m2+n2/m)) respectively, where k is the number of iterations.
When setting m properly, the least time cost of BlockSimRank is O(n4/3).

Experiments on real datasets are conducted to test the accuracy and efficiency of
BlockSimRank. By partitioning the link graph, our method can remarkably speed up
the similarity computation and win great advantage in efficiency with the accuracy
retained, compared with other methods such as SimRank and SimFusion[4].

The rest of the paper is organized as follows. Section 2 surveys related work. In
Section 3, we exploit the block structure of link graph in real domains. Afterwards,
Section 4 describes the BlockSimRank method and explains its theoretical model. The
results of experiments are shown in Section 5 and this study is concluded in Section 6.

 Exploiting the Block Structure of Link Graph for Efficient Similarity Computation 391

2 Related Work

Similarity measuring has been extensively studied in different disciplines for a long
time, with multiple methods proposed [2, 3, 4, 5, 9]. Traditional approaches that cal-
culate the similarity of documents using Vector Space Model (VSM) (included in [3])
and its variations can be viewed as a general algorithm, which map documents and
queries into a vector space. They differ in how the vectors are constructed and how
weights are assigned [4]. These methods are useful to compute the similarity between
sets of objects (e.g., a collection of documents), whereas they are not good at using
the external information about objects (e.g., the references among documents).

In some situations, linkages among objects can be the only or the most explicit in-
formation available. Many datasets are heterogeneous [1], in which there may be
multiple object and link types, and are best described as networks or graphs. Naively
applying traditional approaches may bring on invalid conclusions.

Some researchers use multiple relationships to compute the similarity between
objects based on different theoretical foundations. In the WWW, [5] explains an ap-
proach using hyperlinks among pages to calculate the similarity of web objects. To
realize the global ranking of objects in a static graph, Jeh and Widom [2] proposed a
strategy called SimRank, in which the similarity between two objects is updated itera-
tively by the average similarity between objects linked with them. For example, in
Figure 1(b), the similarity between a and d (defined as S(a, d)) is decided by the simi-
larity S(c, f), S(c, e), S(b, f) and S(b, e). The intuitive underlying model of SimRank is
“random surfer-pairs”, a concept derived from PageRank algorithm [8]. Unfortu-
nately, SimRank takes O(N2) time and O(N2) space, making it impractical for large
datasets. The authors of [2] also discuss a pruning technology to approximate
SimRank, but it is a challenge to select the right node pairs in initial stage.

Yin et al. [7] proposed a hierarchical structure called SimTree to represent similari-
ties between objects in a compact way. SimTree only computes and stores the simi-
larities of sibling nodes and the ratio of each node compared with its parent, thus, it
obtains great efficiency compared with SimRank. Besides, Xi et al. [4] use a Unified
Relationship Matrix (URM) to represent a collection of heterogeneous objects and
their interrelationships. By iteratively computing over the URM, they present a simi-
larity-calculating algorithm called SimFusion. SimFusion can effectively integrate
relationships from multiple sources to measure the similarity, and takes O(kn2d) time,
where d is a constant with respect to n.

In this issue, Sun et al. [9] proposed a correlation degree computation approach for
relevance search and anomaly detection, which combines random walk and graph
partitioning together to improve scalability. Although the principle of [9] is similar to
our work, it is only suitable for bipartite graph, while our method is applicable to
arbitrary graph, even if this graph is not a connected graph.

Our method, BlockSimRank, is originated from the observation of block structure
concealed in the link graph. A similar work has been done by [11], which exploit the
block structure of the web for computing PageRank. The underlying model of Block-
SimRank based on random walk [10], a concept that simulates walkers randomly surf
the graph along edges; and k-way graph partitioning, a method introduced by [12],
which is a high-quality and computationally inexpensive refinement algorithm. Our
method can be mainly applied in link-based object ranking.

392 P. Li et al.

3 Block Structure of Link Graph in Real Datasets

The taxonomy or hierarchical categories are ubiquitous among data objects in many
domains. Usually, two objects of the same type are more similar than objects in dif-
ferent categories, and it makes similar objects gathered into the same block.

More precisely, for two blocks A and B, let N(A) denote the number of links of
block A (all “intra-block” and “inter-block” links are included), and N(A, B) denote
the number of links between A and B. Obviously, N(A, B) = N(B, A), and N(A, A)
represents the number of intra-block links of A. We take

)(

),(
),(

AN

BAN
BAR = (1)

to measure the ratio between N(A, B) and N(A). It is easy to know 1),(0 ≤≤ BAR and

if R(A, B) = 1, all links starting from objects in block A point to objects in block B.
For Example, in Figure 1(b), the value of R(A, B) is 1/5.

Block Structure of the Citation Graph. Considering a corpus of scientific papers,
each paper can be regarded as an identically distributed node, and the references or
cited-by relationships correspond to edges between nodes. Our dataset is crawled
from ACM Computing Classification System (CCS) [13], which is a subject classifi-
cation system for Computer Science. Taking Section F in ACM CCS for an example,
there are 6 main categories in it, and each category includes some subtopics.

Treating each category as a block, We use R(A, B) defined in equation (1) to repre-
sent the flow of links from A to B, and color the plot in the grid with black or grey
according to the value of R(A, B). The width of a plot corresponds to the number of
papers in that category. The block structure of citation graph is shown in Figure 2.

F.0 F.1 F.2 F.3 F.4 F.5
F.0

F.1

F.2

F.3

F.4

F.5

0.4) ≥R(A,B 4.0),(1.0 <≤ BAR

310×

0.5) ≥R(A,B

5.0),(1.0 <≤ BAR

310×

Fig. 2. Block structure of the citation
graph of Section F in ACM CCS

Fig. 3. (a) Block structure of ruc.edu.cn at host level.
(b) Block structure of iir.ruc.edu.cn at directory level.

Block Structure of the Web Graph. The WWW is naturally modeled as a huge
graph, with nodes representing pages and edges representing hyperlinks. We do a
crawl of the ruc.edu.cn in July 2008 to generate a link graph for analysis. This graph
contains roughly 45,000 nodes, and more than 0.5 million links with ineffectual

 Exploiting the Block Structure of Link Graph for Efficient Similarity Computation 393

Table 1. Terms for a hierarchical view of URL on the web

Terms Example
domain ruc.edu.cn
host iir.ruc.edu.cn
directory iir.ruc.edu.cn/people/
page iir.ruc.edu.cn/people/students.html

hyperlinks (links citing other pages out of the graph) removed. To investigate the
structure of the web, we use the terms given in Table 1.

A similar work has been done by Kamvar et al. [11] by using dot-plots to visualize
the link matrix at page level. Our work is done at host level (Figure 3 (a)) and direc-
tory level (Figure 3 (b)) based on the measurement of links flow among blocks. A
view of nested block structure is shown in Figure 3, by filling plots with different
color according to R(A,B). The aggregation of black plots on the diagonal line indi-
cates that most links are “intra-block” links.

4 The BlockSimRank Method

4.1 Preliminaries

Transition Matrix. Given a undirected graph G(V, E), supposing there is a random
surfer standing on node a, he has identical probability to visit each node direct-
connected to a on next step, and possibility of zero to other nodes. Note that edge
weights may be imported to represent varying importance of links, but it’s not the key
point of our work. We only focus on undirected graphs and it’s easy to extend our
method to directed graphs.

A transition matrix or stochastic matrix is introduced to describe the transition
probability of a Markov Chain [14]. We define transition matrix T as a square matrix
each of whose rows consists of nonnegative values, with each row summing to 1. In
an undirected graph, T is symmetric. For example, the transition matrix shown in
Figure 1 (c) corresponds to the graph in Figure 1 (b). Based on the block feature we
discussed in Section 3, we use

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

CCCBCA

BCBBBA

ACABAA

PPP

PPP

PPP

T

to generalize it, where PIJ is the probability matrix between all nodes in block I and all
nodes in J. Note that only the dense valued areas (e.g. PAA, PBB and PCC) have signifi-
cant effect on similarity computation. This feature is utilized by our method.

Graph Partitioning. The graph partitioning problem is to divide the vertices of a
graph into n roughly equal parts, with the number of edges connecting nodes in dif-
ferent parts minimized. In our method, blocks are detected by graph partitioning.
Many algorithms [12, 15, 16] have been developed to find reasonably partitions. We
use the multilevel k-way partitioning method proposed by Karypis et al. [12], whose

394 P. Li et al.

strategy is performing a k-way partitioning on the smaller graph, and then refine it to
construct a k-way partitioning of the original graph. This algorithm partitions a graph
G = (V, E) in O(|E|) time and is implemented in METIS package [18].

4.2 Assessing Similarity between Nodes

Basic SimRank. As algorithm SimRank [2] is closely related to our work, we describe
it here. Given an undirected graph G = (V, E), we denote the k-th iterative similarity
between nodes Va and Vb by]1,0[),(∈bak VVS . If a=b then 1),(=bak VVS . Otherwise,

given transition matrix T and initial similarity matrix Sim0, we get

∑ ∑
= =

−⋅⋅⋅=
)(

1

)(

1
1),(),(

TO

i

TO

j
jikbjaibak VVSTTcVVS (2)

where c is a decay constant (usually set to be 0.8) describing the attenuation of link
influences. O(T) is the order of transition matrix T. At the same time, Tai is the ele-
ment of T on the a-th row and i-th column, and analogously for Tbj. A slight notice
here is the initialization of),(bak VVS when k=0. Since we can’t foreknow the similar-

ity between two objects before iteration, it is reasonable to simply define
1),(0 =ba VVS for a=b, and 0),(0 =ba VVS for ba ≠ .

We give the major steps of SimRank algorithm as follows.

Algorithm 1. (Basic SimRank)
Input: transition matrix T, initial similarity matrix Sim0, tolerance factor t.
Output: convergent similarity matrix Simk.

1←k
while (tVVSVVS bakbak >− − |)),(),(max(| 1)

1+← kk
 Simk-1 ← Simk
 for each element Sk(Va, Vb) in Simk

 ∑ ∑
= =

−⋅⋅⋅=
)(

1

)(

1
1),(),(

TO

i

TO

j
jikbjaibak VVSTTcVVS

 end for
end while
return Simk

Local Similarity and Global Similarity. Local similarity is the similarity between
objects in the same block without considering objects in other blocks. Let LSim(B)
denote the local similarity of block B. LSim(B) is the iteration convergence of all
node-pairs’ similarities in block B, which means given transition matrix PBB (defined
in Section 4.1) and initial similarity matrix LSim0(B) (a identity matrix), we can get
LSim(B) recursively by Equation (2). As an example, for block A in Figure 4(a), rela-
tionships between A and its nodes can be better visualized in another view shown in
Figure 4 (b), which indicates LSim(A) is a 3-by-3 matrix.

 Exploiting the Block Structure of Link Graph for Efficient Similarity Computation 395

Definition 1. (Block Similarity) Treating each block as an object, we can compute the
similarity between blocks as we do between objects by Equation (2). The transition
probability between block A and B is R(A, B) (defined by Equation (1)), so we can get
transition matrix T. Figure 4 (c) shows an transition matrix between blocks. Let
BSim(A, B) denote the similarity between block A and B.

Definition 2. (Inter-Block Nodes Similarity) Inter-block nodes similarity is the simi-
larity between nodes in different blocks. Supposing node Va and Vb are in block A and
B respectively, we define the similarity between Va and Vb on the k-th iteration by

),(),(),(),(BVSBABSimAVSVVS bkakbak ⋅⋅= (3)

where),(XVS xk represents the similarity between object x and the center of block X.

Usually the center of block X is virtual and hard to ascertain, so we take the average
similarity between x and every object in block X to estimate it. That is

),(
||

1
),(

||

1
ix

X

i
kxk VVS

X
XVS ∑

=
= (4)

where |X| is the number of objects in block X. We will explain equation (3) in section
4.4 later. Further study indicates that it’s not necessary to compute inter-block nodes
similarity on every iteration.

Theorem 1. If block similarity and local similarity are convergent, inter-block nodes
similarity will be convergent too.

Proof. If local similarity Sk(Vx, Vi) is convergent, Sk(Vx, X) will be convergent too
according to Equation (4). Since block similarity BSim(A, B) is convergent, we can
get the Theorem 1 soon from Equation (3).

Definition 3. (Global Similarity) Given an undirected graph G = (V, E), as stated
above, for a node-pair Va and Vb, if they belong to the same block, their similarity
S(Va, Vb) is the local similarity decided by Equation (2), otherwise, it is the inter-
block nodes similarity decided by Equation (3). We call the similarity of any node-
pair calculated this way global similarity, and use GSim to denote it.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

5
3

5
1

5
1

3
1

3
1

3
1

5
1

5
1

5
3

Fig. 4. (a) A view of block structure. (b) Another view of block structure. (c) Transition matrix
between blocks.

396 P. Li et al.

The BlockSimRank Algorithm. The block structure suggests a fast algorithm. We
propose BlockSimRank for more effective and efficient similarity computation, and its
major steps are summarized as follows:

1. Split the graph into n roughly equal blocks using METIS [18];
2. For the k-th iteration, regarding each block as an object, compute the Block Simi-

larity Matrix using basic SimRank algorithm;
3. Compute the Local Similarity Matrix of each block by basic SimRank algorithm;
4. If block similarity and local similarity are not convergent, let k = k+1 and then

jump to step 2; else continue;
5. Estimate the Inter-Block Nodes Similarity using Equation (3);
6. Obtain global similarity matrix GSim.

4.3 Complexity Analysis

For simplicity, we assume the link graph G = (V, E) has n objects and can be split into
m roughly identical blocks.

Time Complexity. The time consumed by step 1 of BlockSimRank Algorithm usually
can be ignored, because it takes O(|E|) time and the real graphs are often sparse. The
time cost of BlockSimRank is mainly composed of block similarity computation (step
2) and local similarity computation (step 3). Noting that the time cost of SimRank is
O(kd2n2), we write the equation for time complexity of BlockSimRank as follows:

Time(m) = kd2m2 + mkd2(n/m)2 = kd2(m2+n2/m) (5)

k is the number of iteration and d2 is the average direct-connected neighbor pairs of a
block-pair or node-pair (usually a constant with respect to n2). Calculating the deriva-
tive of Time(m) and setting dTime(m)/dm=0, we get m0 = (2n)2/3/2, and when m=m0,
the time complexity is O(n4/3), that is the lowest.

Space Complexity. Since it is not necessary to put the entire global similarity matrix
in RAM, BlockSimRank takes O(m2+n2/m) space to store the block similarity matrix
and local similarity matrices. When m=m0, the space complexity is the smallest too.

Our experiment in Section 5 shows that the accuracy is still comparable to the ac-
curacy of SimRank when m=m0, so it is our suggestion to set m=m0 when using
BlockSimRank method. Besides, the computations of local similarity matrices are
independent, which indicates the possibility of parallelization.

4.4 Theoretical Model

The block structure implies that a random surfer is more likely to meet another surfer
from the same block. The meeting of two surfers from different blocks also needs to
consider, but the probability is little and we can estimate it. We develop an intuitive
model based on two kinds of random surfers: the surfer traveling among blocks (we
call it BSurfer) and the surfer traveling among local nodes (we call it NSurfer).

Random Walk on Two Layers Model. In Figure 5 (a), all nodes belong to the same
block. The similarity S(a, b) is determined by similarities of all its direct-connected

 Exploiting the Block Structure of Link Graph for Efficient Similarity Computation 397

Fig. 5. (a) The graph for NSurfer. (b) The meeting of two NSurfers in different blocks

neighbor pairs and the probability from (a, b) to these node-pairs. That is to say, Sk(a,
b) = 0.25(Sk-1(c, e)+S k-1(c, d)+S k-1(e, e)+S k-1(d, e)).

If nodes a and b are in different blocks as shown in Figure 5 (b), NSurfer at node a
and Nsurfer at node b can’t meet without the help of BSurfer. Regarding BSurfer as a
transmitter or bridge, the similarity S(a, b) is determined by BSim(A, B) and the prob-
ability from (a, b) to block-pair (A, B). We use Equation (4) to approximate the prob-
ability from object x to its block X. Thus we have the following theorem.

Theorem 2. Global similarity of any node-pair in Graph G can be computed based on
the Random Walk on two layers model.

Proof. Given a node-pair (a, b), its similarity is determined by similarities of all its in-
neighbor node-pairs (or block-pair) and the probability from (a, b) to these node-pairs
(or block-pair).

5 Experimental Evaluation

We described above an approach for efficient similarity computation on link graph. In
this section, the accuracy and efficiency of our approach will be tested, compared
with the following similarity measuring methods: (1) SimRank [2], an approach that
iteratively computes the similarity of each node-pair; (2) SimFusion [4], an approach
that reinforces and propagates the similarity between objects.

All experiments are performed on a PC with a 1.86G Intel Core 2 processor, 2 GB
memory, and Windows XP Professional. All algorithms are implemented using Java.

Datasets. A good evaluation of similarity measuring methods is difficult, because the
similarity between two objects is hard to ascertain without performing extensively
user studies. ACM CCS [13] is a credible subject classification system for Computer
Science. It can provide an identification of similar papers by organizing these papers
in the same category. Our dataset is crawled from Section F in ACM CCS. With the

Table 2. (a) Node number of each category. (b) Edge number between two categories.

(a)

Category Number of nodes
F.1 2738
F.2 4431
F.4 2380

 F.1 F.2 F.4
F.1 9513 4084 2828
F.2 4084 18843 1046
F.4 2828 1046 8508

(b)

398 P. Li et al.

ineffectual papers removed, we get a citation graph using the reference and “cited-by”
information. This undirected graph has 9549 nodes and 44822 edges. The detailed
node number of each category and edge number between each pair of categories are
shown in Table 2.

The Selection of Partition Number m. When partitioning a graph into blocks at the
beginning of BlockSimRank algorithm, the number of partitions should be decided.
From Equation (5) we know m influences time complexity remarkably. In the mean-
time, too many partitions imply too many edges between different blocks, which
induce the decline of accuracy.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

50 100 150 200 250 300 350 400 450 500

Partition Number m

A
cc

ur
ac

y

(a)

0
1
2
3
4
5
6
7
8

50 100 150 200 250 300 350 400 450 500

Partition Number m

T
im

e(
se

c)

(b)

Fig. 6. (a) Accuracy of different partition numbers. (b) Time/iteration.

There is a trade-off between accuracy and efficiency. The accuracy and the time
consumed on each iteration of different partition numbers are shown in Figure 6 (a)
and (b) respectively. With the increase of partition numbers, the accuracy descends
slowly. As we discussed in Section 4.3, if the assumed conditions are satisfied, when
m = m0 = (2n)2/3/2, time cost is the lowest. In real situations, we set m0 = e(2n)2/3/2,
where e is an adjustment factor and in our ACM dataset, e ≈ 0.4, making m0 ≈150.

Experiments show that the accuracy of BlockSimRank is acceptable when time cost
is the lowest. So we suggest setting m = m0 when using BlockSimRank algorithm.

Accuracy. We use PAM [17], a k-medoids clustering approach, to cluster papers into
groups based on global similarity matrix. In the meantime, ACM CCS provides a
credible classification on these papers. Comparing these groups with CCS categories,
let C denotes the number of correct classified papers, and N denotes the total number
of papers. We define accuracy as the ratio between C and N.

In this experiment, we compare BlockSimRank with SimRank and SimFusion on
accuracy. We set m = m0 in BlockSimRank (now time cost is the lowest). As Table 3
shows, BlockSimRank wins slight advantage to other methods, which is because graph
partitioning can eliminate noise to some extent.

Table 3. Accuracy of different approaches

Approach Accuracy
BlockSimRank(m=m0) 0.6609
SimRank 0.6419
SimFusion 0.6073

Table 4. Performances of different approaches

Approach Time/Iteration Total
BlockSimRank 1.2 sec × 10
SimRank 13222.7 sec × 9
SimFusion 5763.2 sec × 15

 Exploiting the Block Structure of Link Graph for Efficient Similarity Computation 399

Performances. The motivation of BlockSimRank is exploiting the block structure to
improve the performance of SimRank. By partitioning a global matrix into several
local matrices, the performance is enhanced markedly. The time complexities on each
iteration of SimRank, BlockSimRank and SimFusion are O(d2n2), O(d2(m2+n2/m)) and
O(dn2) respectively, where d is related to n and explained above.

When we set m = m0, the time cost of BlockSimRank is O(n4/3), which wins notable
advantage to SimRank. We list the time consumed on each iteration and the total time
before convergence in Table 4. The tolerance factor of convergence is set to be 0.001,
which is the maximum difference (explained in next subsection) of similarity scores
between adjacent iterations. From Table 4 we can see the improvement of perform-
ances from SimRank to BlockSimRank is huge, which is from O(n2) to O(n4/3), where
n is the node number 9549.

Convergence Rate. We measure the convergence rate from two aspects: maximum
difference and accuracy. Sk(i, j) denoting a similarity score on the k-th iteration,
maximum difference Mk can be described as max(|Sk(i, j) - Sk-1(i, j)|). If Mk is less than
the tolerance factor of convergence (set to be 0.001), iterative process will finish.

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 D
if

fe
re

nc
e

BlockSimRank SimRank SimFusion

(a)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y

BlockSimRank SimRank SimFusion

(b)

Fig. 7. (a) Maximum differences of each iteration. (b) The accuracy of each iteration.

By analyzing similarity matrices of the first ten iterations of each approach, we get
the maximum difference of each iteration shown in Figure 7 (a), and the accuracy of
each iteration shown in Figure 7(b). Comparing with other methods, BlockSimRank
holds advantage at the beginning of iterative process. Considering the first iteration in
Figure 7, the maximum difference of BlockSimRank is the smallest and the accuracy
is the highest. This advantage is attributed to graph partitioning, because it can detect
potential groups via partitioning a graph into blocks. The similarity between objects in
the same block is usually higher than the one in different blocks, which results in
more accurate clustering. Due to this advantage, BlockSimRank algorithm has higher
convergence rate than SimFusion, and is as fast as SimRank in most cases.

6 Conclusions

In this paper, we propose a high efficient similarity computation method by exploiting
the block structure of link graph. Many datasets involve relationships between objects
and can be best described as link graphs. Using the block structure implied in the link
graph, we propose an algorithm called BlockSimRank, which partitions a graph into

400 P. Li et al.

blocks, and iteratively computes the similarity between blocks and the similarity be-
tween objects in the same block until similarity matrices are convergent, and then
estimate the similarity between objects in different blocks properly. The time cost of
our method is O(n4/3), whereas SimRank takes O(n2) time. Experimental results show
BlockSimRank achieves high efficiency and acceptable accuracy in computing simi-
larity of a link graph.

Acknowledgments. This work was supported in part by the National Natural Science
Foundation of China under Grant No. 70871068, 70621061, 70890083, 60873017,
60573092 and 60496325.

References

1. Getoor, L., Diehl, C.P.: Link mining: A survey. In: SIGKDD 2005 Explorations, vol. 7(2),
pp. 3–12 (2005)

2. Jeh, G., Widom, J.: SimRank: A measure of structural-context similarity. In: SIGKDD
2002, pp. 538–543 (2002)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press/Addison-
Wesley (1999)

4. Xi, W., Fox, E.A., Fan, W., Zhang, B., Chen, Z., Yan, J., Zhuang, D.: SimFusion: measur-
ing similarity using unified relationship matrix. In: SIGIR 2005, pp. 130–137 (2005)

5. Dean, J., Henzinger, M.R.: Finding Related Pages in the World Wide Web. In: WWW
1999, pp. 1467–1479 (1999)

6. Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating “word
of mouth”. In: Proceedings of the Conference on Human Factors in Computing Systems,
Denver, Colorado (1995)

7. Yin, X., Han, J.: Yu. P.S.: Linkclus: Efficient clustering via heterogeneous semantic links.
In: VLDB 2006, pp. 427–438 (2006)

8. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing
order to the Web. Technical report, Stanford University Database Group (1998)

9. Sun, J., Qu, H., Chakrabarti, D., Faloutsos, C.: Relevance search and anomaly detection in
bipartite graphs. SIGKDD Explorations 7(2), 48–55 (2005)

10. Lovasz, L.: Random walks on graphs: a survey. Combinatorics, Paul Erdos is Eighty, vol.
2, Keszthely (Hungary), pp. 1–46 (1993)

11. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Exploiting the Block Struc-
ture of the Web for Computing PageRank. Technical Report, Stanford University, Stan-
ford, CA (2003)

12. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. Journal
of Parallel and Distributed Computing 48(1), 96–129 (1998),

 http://www.cs.umn.edu/~karypis
13. ACM Computing Classification System, http://portal.acm.org/ccs.cfm
14. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (1997)
15. Meila, M., Shi, J.: Learning Segmentation by Random Walks. Advances in Neural Infor-

mation Processing Systems (2001)
16. Fischer, I., Poland, J.: Amplifying the block matrix structure for spectral clustering. In:

Proceedings of the 14th Annual Machine Learning Conference of Belgium and the Nether-
lands, pp. 21–28 (2005)

17. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: an Introduction to Cluster Analy-
sis. John Wiley & Sons, Chichester (1990)

18. Karypis, G., Kumar, V.: METIS: Unstructured Graph Partitioning and Sparse Matrix Ordering
System. Technical Report, Department of Computer Science, University of Minnesota (1995)

	Exploiting the Block Structure of Link Graph for Efficient Similarity Computation
	Introduction
	Related Work
	Block Structure of Link Graph in Real Datasets
	The $BlockSimRank$ Method
	Preliminaries
	Assessing Similarity between Nodes
	Complexity Analysis
	Theoretical Model

	Experimental Evaluation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

