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Abstract. Since mining frequent patterns from transactional databases
involves an exponential mining space and generates a huge number of
patterns, efficient discovery of user-interest-based frequent pattern set
becomes the first priority for a mining algorithm. In many real-world
scenarios it is often sufficient to mine a small interesting representative
subset of frequent patterns. Temporal periodicity of pattern appearance
can be regarded as an important criterion for measuring the interest-
ingness of frequent patterns in several applications. A frequent pattern
can be said periodic-frequent if it appears at a regular interval given by
the user in the database. In this paper, we introduce a novel concept of
mining periodic-frequent patterns from transactional databases. We use
an efficient tree-based data structure, called Periodic-frequent pattern
tree (PF-tree in short), that captures the database contents in a highly
compact manner and enables a pattern growth mining technique to gen-
erate the complete set of periodic-frequent patterns in a database for
user-given periodicity and support thresholds. The performance study
shows that mining periodic-frequent patterns with PF-tree is time and
memory efficient and highly scalable as well.

Keywords: Data mining, knowledge discovery, frequent pattern, inter-
esting pattern, periodic-frequent pattern.

1 Introduction

Mining frequent patterns [1], [2], [4], [6] from transactional databases has been
actively and widely studied in data mining and knowledge discovery techniques
such as association rule, sequential pattern, classification, and clustering. Since
the rationale behind mining the support metric-based frequent patterns is to
find the set of patterns that appear frequently in a database, a huge number of
patterns are normally generated and most of which might be found insignificant
depending on application or user requirement. Moreover, the computation cost
in finding such number of patterns may not be trivial. As a result, several tech-
niques to mine constraint-based and/or user interest-based frequent patterns [9],
[10], [5] have been proposed recently to reduce the desired result set by effectively
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Table 1. A transactional database

Id Transaction Id Transaction Id Transaction Id Transaction Id Transaction

1 a c d e 3 a c e 5 a c e f 7 b c d e 9 a b c d
2 a d e f 4 c d e 6 b f 8 b c d e 10 a b e f

and efficiently applying early pruning techniques. Uses of several interesting pa-
rameters such as closed [3], K -most [5], demand-driven [10], maximum length
[9] are found useful in literature in discovering frequent patterns of special inter-
est. The other important criterion for identifying the interestingness of frequent
patterns might be the shape of occurrence, i.e., whether they occur periodically,
irregularly, or mostly in specific time interval in the database.

In a retail market, among all frequently sold products, the user may be in-
terested only on the regularly sold products compared to the rest. Besides, for
improved web site design or web administration an administrator may be in-
terested on the click sequences of heavily hit web pages. Also, in genetic data
analysis the set of all genes that not only appear frequently but also co-occur at
regular interval in DNA sequence may carry more significant information to sci-
entists. As for stock market, the set of high stocks indices that rise periodically
may be of special interest to companies and individuals. In the above examples,
we observe that the occurrence periodicity plays an important role in discovering
some interesting frequent patterns in a wide variety of application areas. We de-
fine such a frequent pattern that appears maintaining a similar period/interval
in a database as a periodic-frequent pattern.

Let us consider the transactional database of Table 1 with ten transactions.
The support of the patterns “e”, “ae”, “cd”, “ce”, “b”, and “de” in the database
are respectively 8, 5, 5, 6, 5, and 5. Even though these patterns may be frequent
in the database, some of them may not be periodic-frequent because of non-
similar occurrence periods. For example, “b” and “ae” appear more frequently
at a certain part of the database (i.e., “b” at the end and “ae” at the begin-
ning of database) than the rest part. In contrast, patterns “e”, “cd”, “ce”, “de”
appear at almost regular intervals. Therefore, the latter patterns can be more
important frequent patterns in terms of the appearance intervals. On the other
hand, although the respective appearance intervals of patterns “ac”, “cde”, “f”
etc. are almost similar, they may not be the patterns of interest due to their rel-
atively low frequency. The traditional frequent pattern mining techniques fail to
discover such periodic-frequent patterns because they are only concerned about
the occurrence frequency and disregard the pattern occurrence behavior.

Motivated by the above discussion and examples, in this paper, we address a
new problem of discovering periodic-frequent patterns in a transactional
database. We define a new periodicity measure for a pattern by the maximum
interval at which the same pattern occurs in a database. Therefore, periodic-
frequent patterns, defined such way, satisfy the downward closure property [1],
i.e., if a frequent pattern is found periodic then all of its non-empty subsets will
be periodic. In other words, if a frequent pattern is not periodic then none of
its supersets can be periodic. In order to mine periodic-frequent patterns, we
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capture the database contents in a highly compact tree structure, called a PF-
tree (Periodic-frequent Pattern tree). To ensure that the tree structure is com-
pact and informative, only periodic-frequent length-1 items will have nodes in
the tree and to obtain higher prefix sharing, more frequently occurring items are
located at the upper part of the tree. We also propose an efficient pattern growth-
based mining approach to mine the complete set of periodic-frequent patterns
from our PF-tree. The comprehensive performance study on both synthetic and
real datasets demonstrates that discovering periodic-frequent patterns from the
PF-tree is highly memory and time efficient.

The rest of the paper is organized as follows. In Section 2, we summarize
the existing algorithms to mine interesting frequent patterns. Section 3 formally
introduces the problem of periodic-frequent pattern mining. The structure and
mining of PF-tree are given in Section 4. We report our experimental results in
Section 5. Finally, Section 6 concludes the paper.

2 Related Work

Since its introduction by Agrawal et al. in 1993 [1], a large number of techniques
[2], [4], [6] have been proposed in mining support constraint-based frequent pat-
terns. Han et al. [2] proposed the frequent pattern tree (FP-tree) and the FP-
growth algorithm to mine frequent patterns with a memory and time efficient
manner. The performance gain achieved by the FP-growth is mainly based on
the highly compact nature of the FP-tree, where it stores only the frequent items
in a support-descending order. To reduce the size of resultant pattern set and
to improve the mining efficiency closed [3] frequent pattern mining has been
focused. However, none of the above frequent pattern mining techniques can
successfully provide interesting frequent patterns, since their outputs are only
based on the support threshold.

Mining interesting frequent patterns of different forms [9], [10], [5], [7] in
transactional databases and time-series data has been well-addressed over the
last decade. Minh et al. [5] proposed a top-K frequent pattern mining technique
that allows the user to control the number of patterns to be discovered without
any support threshold. In [9] the authors put efforts to discover the maximum
length frequent patterns, rather than finding the complete set of frequent pat-
terns. They have shown the suitability of their method in several real world
scenario where long patterns play significant role. Wang et al. [10] mined fre-
quent patterns from relational database. Using the user’s query, they find the
frequently occurring pattern structures defined by attributes values of items.
However, the above models still fail to discover the interesting periodic occur-
rence characteristics of frequent patterns.

Temporal relationships among pattern occurrences were studied in [7] which
focused on discovering the frequently occurring substring patterns in a dimension
of multivariate time-series data. Periodic pattern mining has also been studied
as a wing of sequential pattern mining [8] in recent years. Although periodic
pattern mining is closely related to our work, it cannot be directly applied for
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finding the periodic-frequent patterns from a transactional database because of
two primary reasons. First, it considers either time-series or sequential data;
second, it does not consider the support threshold which is the only constraint
to be satisfied by all frequent patterns. Our proposed periodic-frequent pattern
mining technique, on the other hand, introduces a new interesting measure of
periodicity and provides the set of patterns that satisfy both of the periodicity
and support thresholds in a transactional database.

3 Problem Definition

In this section, we describe the conceptual framework of the periodic-frequent
pattern mining and introduce the basic notations and definitions in this regard.

Let I = {i1, i2, ..., in} be a set of literals, called items that have ever been
used as a unit information of an application domain. A set X = {ij, ..., ik} ⊆ I,
where j ≤ k and j, k ∈ [1, n], is called a pattern (or an itemset). A transaction
t = (tid, Y ) is a tuple where tid represents a transaction-id (or timestamp) and
Y is a pattern. A transactional database TDB over I is a set of transactions
T = {t1, ..., tm}, m = |TDB|, where |TDB| is the size of TDB in total number
of transactions. If X ⊆ Y , it is said that t contains X or X occurs in t and
such transaction-id is denoted as tXj , j ∈ [1, m]. Therefore, T X = {tXj , ..., tXk },
j, k ∈ [1, m] and j ≤ k is the set of all transaction-ids where X occurs in TDB.

Definition 1. (a period of pattern X) Let tXj+1 and tXj , j ∈ [1, (m − 1)] be
two consecutive transaction-ids where X appears. The number of transactions
or the time difference between tXj+1 and tXj can be defined as a period of X,
say pX (i.e., pX = tXj+1 − tXj , j ∈ [1, (m − 1)]). For the simplicity of period
computation, the first and the last transactions (say, tf and tl) in TDB are
respectively identified as “null” (i.e., tf = 0) and tm (i.e., tl = tm). For instant,
in the TDB of Table 1 the set of transactions where pattern “de” appears is
T de = {1, 2, 4, 7, 8}. Therefore, the periods for this pattern are 1(= 1 − tf ),
1(= 2 − 1), 2(= 4 − 2), 3(= 7 − 4), 1(= 8 − 7), and 2(= tl − 8), where tf = 0
and tl = 10.

The occurrence intervals, defined as above, can give the exact information of
appearance behavior of a pattern. The largest occurrence period of a pattern,
therefore, can provide the upper limit of its periodic occurrence characteristic.
Hence, the measure of the characteristic of a pattern of being periodic in a TDB
(we call it as the periodicity of that pattern) can be defined as follows.

Definition 2. (periodicity of pattern X) Let for a T X, PX be the set of all
periods of X i.e., PX = {pX

1 , ..., pX
r }, where r is the total number of periods in

PX . Then, the periodicity of X can be denoted as Per(X) = Max(pX
1 , ..., pX

r ).
For example, in the TDB of Table 1, Per(de) = 3 i.e., Max(1, 1, 2, 3, 1, 2).

Definition 3. (support of pattern X) The number of transactions in a TDB
that contain X is called the support of X in TDB and denoted as Sup(X).
Therefore, Sup(X) = |T X |, where |T X | is the size of T X. For example, the
support of pattern “de” in the TDB of Table 1 is Sup(de) = 5, since |T de| = 5.
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A pattern is called a periodic-frequent pattern if it satisfies both of the following
two criteria: (i) its periodicity is no greater than a user-given maximum period-
icity threshold say max per, λ and (ii) its support is no less than a user-given
minimum support threshold, say min sup, α, with λ, α in percentage of |TDB|.
Therefore, the Periodic-frequent pattern mining problem, given λ, α, and a TDB,
is to discover the complete set of periodic-frequent patterns in TDB having pe-
riodicity no more than λ and support no less than α. Let PFTDB refer to the
set of all periodic-frequent patterns in a TDB for given λ and α.

4 PF-Tree: Design, Construction and Mining

In this section, we describe the construction and mining of Periodic-Frequent
Pattern tree (PF-tree). Since periodic-frequent patterns follow the downward
closure property, periodic-frequent length-1 items will play an important role
in mining periodic-frequent patterns. Therefore, it is necessary to perform one
database scan to identify the set of length-1 periodic-frequent items. The objec-
tive of this scan is to collect the support count (i.e., frequency) and the period-
icity of each item in the database. Consequently, for further processing we can
ignore all items that do not satisfy the periodicity and support thresholds. Let
PF be the set of all items that are found periodic-frequent at this stage.

4.1 Structure of the PF-Tree

The structure of the PF-tree includes a prefix-tree and a periodic-frequent item
list, called the PF-list, consisting of each distinct item with relative support,
periodicity and a pointer pointing to the first node in the PF-tree carrying the
item. To facilitate high degree of compactness, items in a PF-tree are arranged
in support-descending item order. It has been proved in [6] that such tree can
provide a highly compact tree structure (as FP-tree in [2] and CP-tree in [6]) and
an efficient mining phase using FP-growth mining technique. Before discussing
the tree construction process, we provide the PF-list construction technique and
the node structures of a PF-tree.

Construction of the PF-list. Each entry in a PF-list consists of three fields -
item name (i), total support (f), and the periodicity of i (p). The tids of the last
occurring transactions of all items in the PF-list are explicitly recorded for each
item in a temporary array, called idl. Let tcur and pcur respectively denote the
tid of current transaction and the most recent period for an item i. The PF-list
is, therefore, maintained according to the process given in Fig. 1.

In Fig. 2 we show how the PF-list is populated for the TDB of Table 1. With
the scan of the first transaction {a c d e} (i.e., tcur = 1), the items ‘a’, ‘c’, ‘d’,
and ‘e’ in the list are initialized as shown in Fig. 2(a) (lines 1 and 2 in Fig. 1).
The next transaction {a d e f} with tcur = 2 initializes PF-list entries for item ‘f ’
and updates values {f ; p} and idl (lines 3 - 6 in Fig. 1) respectively to {2; 1} and
{2} for items ‘a’, ‘d’, and ‘e’ (Fig. 2(b)). As shown in Fig. 2(c), the periodicity (p)
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1. If tcur is i’s first occurrence 
2. f = 1, idl = tcur, p = tcur;  
3. Else  f = f +1; 
4. pcur = tcur – idl, idl = tcur; 
5. If (pcur > p)  
6.  p = pcur ; 
7. At the end of TDB, calculate pcur for each 
item by considering tcur = the tid of the last 
transaction in TDB, and update the respective 
p value according to step 5 and 6;

Fig. 1. PF-list maintenance algorithm

(a) After 
scanning 
tid = 1

PF-list

a:1;1
i: f; p

e:1;1
d:1;1
c:1;1

(d) After 
scanning 
tid = 10

(c) After 
scanning 
tid = 3

(b) After 
scanning 
tid = 2

1
idl

1
1
1

PF-list

a:2;1
i: f; p

e:2;1
d:2;1
c:1;1

2
idl

2
2
1

f:1;2 2

PF-list

a:6;4
i: f; p

e:8;2
d:6;3
c:7;2

10
idl

10
9
9

f:4;4 10

b:5;6 10

PF-list

a:3;1
i: f; p

e:3;1
d:2;1
c:2;2

3
idl

3
2
3

f:1;2 2

Fig. 2. PF-list population after the first
scan of the TDB in Table 1

of ‘c’ changes from 1 to 2, since after scanning tid = 3 the value of pcur for it is
found greater than its previous periodicity (lines 5 and 6 in Fig. 1). The PF-list
after scanning all ten transactions is given in Fig. 2(d). To reflect the correct
periodicity for each item in the list, the whole PF-list is refreshed as mentioned
in line 7 of Fig. 1 which results the final PF-list of Fig. 2(d). Therefore, once the
PF-list is built, we generate the PF by removing items that do not satisfy the
user-given periodicity and support thresholds from it.

PF-tree Node Structures. An important feature of a PF-tree is that, it
explicitly maintains the occurrence information for each transaction in the tree
structure by keeping an occurrence transaction-id list, called tid-list, only at the
last node of every transaction. Hence, there are two types of nodes maintained
in a PF-tree; ordinary node and tail-node. The former is the type of nodes
similar to that used in FP-tree, whereas the latter is the node that represents
the last item of any sorted transaction. Therefore, the structure of a tail-node is
N [t1, t2, ..., tn], where N is the node’s item name and ti, i ∈ [1, n], (n be the total
number of transactions from the root up to the node) is a transaction-id where
item N is the last item. Like the FP-tree [2], each node in a PF-tree maintains
parent, children, and node traversal pointers. However, irrespective of the node
type, no node in a PF-tree maintains support count value in it.

4.2 Construction of the PF-Tree

With the second database scan, the PF-tree is constructed in such a way that,
it only contains nodes for items in PF . We use an example to illustrate the
construction of a PF-tree.

Consider the transactional database of Table 1. In Fig. 3, we show the PF-
tree construction steps for λ = 4 and α = 5. At first, the support-descending
PF-list (Fig. 3(a)) for all periodic-frequent items is constructed from the PF-list
of Fig. 2(d). Next, using the FP-tree [2] construction technique, only the items
in this list take part in PF-tree construction. For the simplicity of figures, we
do not show the node traversal pointers in trees, however, they are maintained
in a fashion like FP-tree does. The tree construction starts with inserting the
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{ }
e

a
c

(a) PF-list
d:1

{ }

e

a
c

d:1

a

d:2

(b) After inserting tid = 1 (c) After inserting tid = 2

{ }
e

a:3,5
c

d:1

a:10
d:2

d:4,7,8

c
a

d:9
(d) After inserting tid = 10

PF-list

e:8;2
i: f; p

d:6;3
a:6;4
c:7;2

Fig. 3. Construction of a PF-tree for the TDB in Table 1 with α = 5 and λ = 4

first transaction {a c d e} (i.e., tid = 1) according to PF-list order, as shown
in Fig. 3(b), since all the items in the transactions are periodic-frequent. The
tail-node “d : 1” carries the tid of the transaction. After removing the non-
periodic-frequent item ‘f ’, the second transaction is inserted into the tree in the
form and an order of {e a d} with node “d : 2” as the tail-node for it (Fig. 3(c)).
After inserting all the transactions in similar fashion we get the final PF-tree for
the database as shown in Fig. 3(d).

Based on the PF-list population technique discussed in Section 4.1 and the
above example, we have the following property and lemmas of a PF-tree. For
each transaction t in a TDB, PF (t) is the set of all periodic-frequent items in t,
i.e., PF (t) = item(t)

⋂
PF , and is called the periodic-frequent item projection

of t.

Property 1. A PF-tree maintains a complete set of periodic-frequent item pro-
jection for each transaction in a TDB only once.

Lemma 1. Given a transactional database TDB, a max per, and a min sup,
the complete set of all periodic-frequent item projections of all transactions in a
TDB can be derived from the PF-tree for both of the max per and min sup.

Proof: Based on Property 1, PF (t) of each transaction t is mapped to only one
path in the tree and any path from the root up to a tail-node maintains the
complete projection for exactly n transactions (where n is the total number of
entries in the tid-list of the tail-node).

Lemma 2. The size of a PF-tree (without the root node) on a transactional
database TDB for a max per, and a min sup is bounded by

∑
t∈TDB |PF (t)|.

Proof: According to the PF-tree construction process and Lemma 1, each trans-
action t contributes at best one path of the size |PF (t)| to a PF-tree. Therefore,
the total size contribution of all transactions can be

∑
t∈TDB |PF (t)| at best.

However, since there are usually a lot of common prefix patterns among the trans-
actions, the size of a PF-tree is normally much smaller than

∑
t∈TDB |PF (t)|.

One can assume that the structure of a PF-tree may not be memory efficient,
since it explicitly maintains tids of each transaction. But, we argue that the PF-
tree achieves the memory efficiency by keeping such transaction information only
at the tail-nodes and avoiding the support count field at each node. Moreover,
keeping the tid information in tree can also been found in literature for efficient
frequent pattern mining [3], [4].
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Therefore, the highly compact PF-tree structure maintains the complete in-
formation for all periodic-frequent patterns. Once the PF-tree is constructed,
we use an FP-growth-based pattern growth mining technique to discover the
complete set of periodic-frequent patterns from it.

4.3 Mining Periodic-Frequent Pattern

Even though both of the PF-tree and FP-tree arrange items in support-descending
order, we can not directly apply the FP-growth mining on a PF-tree. The rea-
son is that, PF-tree does not maintain the support count at each node, and it
handles the tid-lists at tail-nodes. Therefore, we devise a pattern growth-based
bottom-up mining technique that can handle the additional features of the PF-
tree. The basic operations in mining a PF-tree for periodic-frequent patterns are
(i) counting length-1 periodic-frequent items, (ii) constructing the prefix-tree for
each periodic-frequent itemset, and (iii) constructing the conditional tree from
each prefix-tree. The PF-list provides the length-1 periodic-frequent items. Before
discussing the prefix-tree construction process we explore the following important
property and lemma of a PF-tree.

Property 2. A tail-node in a PF-tree maintains the occurrence information
for all the nodes in the path (from that tail-node to the root) at least in the
transactions in its tid-list.

Lemma 3. Let Z = {a1, a2, ..., an} be a path in a PF-tree where node an is the
tail-node carring the tid-list of the path. If the tid-list is pushed-up to node an−1,
then an−1 maintains the occurrence information of the path Z ′={a1, a2, ..., an−1}
for the same set of transactions in the tid-list without any loss.

Proof: Based on Property 2, an maintains the occurrence information of the
path Z ′ at least in the transactions in its tid-list. Therefore, the same tid-list at
node an−1 exactly maintains the same transaction information for Z ′ without
any lose.

Using the features revealed by the above property and lemma, we proceed to
construct each prefix-tree starting from the bottom-most item, say i, of the PF-
list. Only the prefix sub-paths of nodes labeled i in the PF-tree are accumulated
as the prefix-tree for i, say PTi. Since i is the bottom-most item in the PF-list,
each node labeled i in the PF-tree must be a tail-node. While constructing the
PTi, based on Property 2 we map the tid-list of every node of i to all items

{ }
e

a:1
c:4,7,8 a:2

c
a:9

(b) Prefix-tree for ‘d’

{ }
e:2

c:1,4,7,8
c:9

(c) Conditional tree for ‘d’

PF-list

e:5;3
i: f; p

a:3;7
c:5;3

PF-list

e:5;3
i: f; p

c:5;3

{ }
e

a:1,3,5
c:4,7,8

a:2,10

c
a:9

(a) PF-tree after removing item ‘d’

PF-list

e:8;2
i: f; p

a:6;4
c:7;2

Fig. 4. Prefix-tree and conditional tree construction with PF-tree
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in the respective path explicitly in a temporary array (one for each item). It
facilitates the periodicity and support calculation for each item in the PF-list of
PTi. Moreover, to enable the construction of the prefix-tree for the next item in
the PF-list, based on Lemma 3 the tid-lists are pushed-up to respective parent
nodes in the original PF-tree and in PTi as well. All nodes of i in the PF-tree
and i’s entry in the PF-list are deleted thereafter. Figure 4(a) shows the status
of the PF-tree of Fig. 3(d) after removing the bottom-most items ‘d’. Besides,
the prefix-tree for ‘d’, PTd is shown in Fig. 4(b).

The conditional tree CTi for PTi is constructed by removing all non-periodic-
frequent nodes from the PTi. If the deleted node is a tail-node, its tid-list is
pushed-up to its parent node. Figure 4(c), for instance, shows the conditional
tree for ‘d’, CTd constructed from the PTd of Fig. 4(b). The contents of the
temporary array for the bottom item j in the PF-list of CTi represent the T ij

(i.e., the set of all tids where items i and j occur together). Therefore, it is
rather simple calculation to compute Per(ij) and Sup(ij) from T ij by generating
P ij . Then the pattern “ij” is generated as a periodic-frequent pattern with the
periodicity and support values of Per(ij) and Sup(ij), respectively. The same
process of creating prefix-tree and its corresponding conditional tree is repeated
for further extensions of “ij”. The whole process of mining for each item is
repeated if PF-list �= ∅.

The above bottom-up mining technique on support-descending PF-tree is ef-
ficient, because it shrinks the search space dramatically with the progress of
mining process. In the next section, we present the experimental results of find-
ing periodic-frequent patterns from the PF-tree.

5 Experimental Results

Since there is no existing approach to discover periodic-frequent patterns, we
only investigate PF-tree’s performance. All programs are written in Microsoft
Visual C++ 6.0 and run with Windows XP on a 2.66 GHz machine with
1GB memory. The runtime specifies the total execution time, i.e., CPU and
I/Os. The experiments are pursued on several synthetic (T10I4D100K ) and
real datasets (chess, mushroom, and kosarak) respectively developed at IBM
Almaden Quest research group (http://www.almaden.ibm.com/cs/quest) and
obtained from UCI Machine Learning Repository (University of California -
Irvine, CA). T10I4D100K is a large sparse dataset with 100,000 transactions
and 870 distinct items. The dense datasets chess and mushroom contain 3,196
and 8,124 transactions, and 75 and 119 distinct items respectively. In the first
experiment, we study the compactness of the PF-tree on different datasets.

5.1 Compactness of the PF-Tree

The memory consumptions of PF-tree on the variations of max per and min sup
values over several datasets are reported in Table 2. The first and second columns
of the table respectively show the dataset-dependent different max per and

http://www.almaden.ibm.com/cs/quest
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Table 2. Memory requirements for the PF-tree

Dataset (max per values) α(%)
Memory(MB)

λ1 λ2 λ3

mushroom 15 0.068 0.088 0.107
λ1 = 2.0%, λ2 = 4.0%, λ3 = 6.0% 35 0.049 0.050 0.052

chess 55 0.015 0.017 0.019
λ1 = 0.5%, λ2 = 0.6%, λ3 = 0.7% 85 0.014 0.016 0.016

T10I4D100K 1.5 0.288 5.090 7.349
λ1 = 0.2%, λ2 = 0.4%, λ3 = 0.6% 4.5 0.241 0.281 0.281

min sup values we used in the experiment. The size of the PF-tree is, there-
fore, shown in the last three columns for the respective thresholds.

The data in the table demonstrate that, keeping the min sup fixed the mem-
ory consumption of PF-tree increases with the increase of max per for almost
all of the datasets. In contrast, for fixed max per the tree size becomes smaller
with increasing values of min sup. The reason of such threshold-dependent tree
size variation is that, more and more patterns become periodic-frequent with the
increase of max per and the decrease of min sup values. Therefore, the PF-tree
size increases to represent the increasing pattern set. However, it is clear from
the Table 2 that, the structure of the PF-tree can easily be handled in a memory
efficient manner irrespective of the dataset type (dense or sparse) or size (large
or small) and threshold values. In the next experiment, we show the execution
time performance of PF-tree in mining periodic-frequent patterns.

5.2 Execution Time of the PF-Tree

The changes on the periodicity and the support thresholds show the similar
effect on execution time as of the size of PF-tree structure. Because of the space
limitations, we report the results, in Fig. 5, only on T10I4D100K and mushroom
datasets. The execution time shown in the graphs encompasses all phases of PF-
list and PF-tree constructions, and the corresponding mining operation.

We varied the values of both thresholds as we demonstrated in the previous
experiment. It can be noticed from the graphs in Fig. 5 that, for both sparse
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Fig. 5. Execution time on the PF-tree
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and dense datasets PF-tree takes similar amount of time for relatively higher
support threshold values for the variation of the periodicity thresholds. However,
as the support thresholds go down, the gaps become wider. From another point of
view, keeping the max per fixed, the execution time increases (mainly for higher
max pers) with lowering the min sup. The reason of such performance variation
is that, for a fixed min sup value the number and the lengths of periodic-frequent
patterns increase for higher values of max per. For a fixed max per value, on
the other hand, the same effect we get for lower min sup values. In general,
when mining for lower min sup and higher max per values, the PF-tree requires
more execution time. However, as per as the database size and reasonably high
max per and low min sup values are concerned, we see that mining periodic-
frequent patterns from the corresponding PF-tree is rather time efficient for
both sparse and dense datasets. The scalability study on PF-tree, discussed in
the next subsection, also reflects this scenario.

5.3 Scalability of the PF-Tree

We study the scalability of our PF-tree on execution time and required mem-
ory by varying the number of transactions in database. We use real kosarak
dataset for the scalability experiment, since it is a huge sparse dataset with a
large number of distinct items (41,270) and transactions (990,002). We divided
the dataset into five portions of 0.2 million transactions in each part. Then we
investigated the performance of PF-tree after accumulating each portion with
previous parts with performing periodic-frequent pattern mining each time. We
fix the max per to 50% and the min sup to 2% of |kosarak| for each experi-
ment. The experimental results are shown in Fig. 6. The time and memory in
y-axes of the left and right graphs in Fig. 6 respectively specify the total exe-
cution time and required memory with the increase of database size. It is clear
from the graphs that as the database size increases, overall tree construction and
mining time, and memory requirement increase. However, PF-tree shows stable
performance of about linear increase of runtime and memory consumption with
respect to the database size. Therefore, it can be observed from the scalability
test that PF-tree can mine the PFTDB over large datasets and distinct items
with considerable amount of runtime and memory.
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6 Conclusions

In this paper, we have introduced a new interesting measure, called temporal
periodicity of occurrence behavior, for frequently recurring patterns in transac-
tional databases. We have defined such patterns as the periodic-frequent patterns
under the user-given periodicity and support thresholds. This paper also shows
the significance of discovering such patterns in a wide range of real-world appli-
cation areas. We have provided the PF-tree, a highly compact tree structure to
capture the database content, and a pattern growth-based mining technique to
discover the complete set of periodic-frequent patterns on the user-given maxi-
mum periodicity and minimum support thresholds over a transactional database.
The experimental results demonstrate that our PF-tree can provide the time and
memory efficiency during mining the periodic-frequent pattern set. Moreover, it
is highly scalable in terms of runtime and memory consumption.
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