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Abstract. We propose an interestingness measure for groups of classifi-
cation rules which are mutually related based on the Minimum Descrip-
tion Length Principle. Unlike conventional methods, our interestingness
measure is based on a theoretical background, has no parameter, is ap-
plicable to a group of any number of rules, and can exploit an initial
hypothesis. We have integrated the interestingness measure with practi-
cal heuristic search and built a rule-group discovery method CLARDEM
(Classification Rule Discovery method based on an Extended-Mdlp).
Extensive experiments using both real and artificial data confirm that
CLARDEM can discover the correct concept from a small noisy data set
and an approximate initial concept with high “discovery accuracy”.

1 Introduction

The most serious problem in rule discovery would be the interestingness problem:
typically many rules are discovered but most of them are uninteresting [4,13]. So-
lutions for this problem can be classified into the objective approach [11,12,13],
which uses only data as input, and the subjective approach [3,4], which uses also
user-supplied information in addition to data. In both approaches, an interest-
ingness measure [3,11,12,13], which is a function for estimating the degree of the
interestingness of a rule, is actively studied.

Despite the numerous studies on interestingness measures, few of them have a
theoretical background, are parameter-free, can discover a group of rules which
are mutually related, and can exploit an initial hypothesis. We attribute the
reasons to the subjective nature of interestingness and the high time complexity.
[3,4,11,12] are exceptions for some of them but none satisfy these four conditions.
Moreover, as far as we know, no study has ever made a systematic investigation
on the discovered rules under noisy data and incorrect user-supplied information.

The Minimum Description Length Principle (MDLP) is a principle that the
best hypothesis that can be inferred from data is the one that has the shortest
“(code length of the hypothesis) + (code length of the data using the hypoth-
esis)” [5,8,9,15]. The MDLP is based on a solid theoretical framework, has a
clear interpretation, is robust to noise, and requires no parameter specification.
In association rule discovery, the MDLP has been applied to the problem of dis-
covering frequent itemsets [11]. However, the discovered patterns are still large
in number and are unrelated. Moreover, the method belongs to the objective
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approach thus a theoretical framework which can be integrated for exploiting
user-supplied information is unknown.

We restrict our attention to the classification rule [4], which has a class label
in its conclusion and has been well-studied due to its importance. It is not obvi-
ous how to apply the MDLP for classification to the classification-rule discovery
problem since a classifier can be applied to any example unlike a typical group
of rules. Moreover, the standard MDLP cannot exploit an initial hypothesis and
the MDLP extended for this purpose [14] has problems such as a redundancy in
its encoding method. In summary, the MDLP has problems to be used in devel-
oping a method with a theoretical background for discovering a group of rules
which are mutually related by exploiting user-supplied information. To resolve
these problems we formalize the discovery problem of interesting classification
rules as an estimation problem of a partial decision list, extend the MDLP for
classification so that it can exploit an initial hypothesis, invent an encoding
method, and use the negative encoding length as our interestingness measure.

2 Preliminaries

2.1 MDL for Classification

A data set D consists of n examples d1, d2, . . . , dn. Each example di is described
with m attributes a1, a2, . . . , am as an attribute value vector (vi1, vi2, . . . , vim)
and belongs to one of M classes, of which labels are represented by c1, c2, . . . , cM .
A classifier is a function which outputs a class label given an attribute value
vector. We call the process of learning a classifier from D classification.

As a principle for preferring a classifier in classification, the MDLP states that
the best classifier TMDL is given as follows [5,8,9,15].

TMDL ≡ arg min
T

(− log P (T ) − log P (D|T )) (1)

where P (T ) and P (D|T ) represent the probability that T occurs and the condi-
tional probability that D occurs given T , respectively. Consider the problem of
encoding T as a binary string. According to the coding theory [10], the length of
the code string for T using an optimally efficient code is − log P (T ). Similarly,
− logP (D|T ) may be regarded as the length of the code string for D encoded
using T . In the MDLP for classification, these code lengths are calculated in a
problem where the receiver has D except for the class labels. The sender first
sends T then the class labels of examples in D using T .

It is straightforward to show TMDL coincides with the maximum a posteriori
hypothesis. The MDLP can be interpreted as assigning priors to theories based
on a compact coding: P (T ) is defined by the encoding method for − logP (T ).

2.2 Preliminaries for Encoding

Firstly we consider a problem of sending a binary string of length x which consists
of y binary 1s and (x − y) binary 0s. A common method first sends the number
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y of binary 1s with code length log(x + 1) then specifies the positions of binary
1s [8,15]. The required code length is denoted with Θ (x, y).

Θ (x, y) ≡ log(x + 1) + log
(

x
y

)

For example, “1110010” is sent with a code length Θ (7, 4) = 8.13 bits. Note
that we do not have to generate the binary message for our purpose.

If we know that y > 0, the number y of binary 1s can be sent with code length
log x. The required code length in this case is denoted with Θ0 (x, y).

Θ0 (x, y) ≡ log x + log
(

x
y

)

Likewise, we consider a problem of sending a string of length x described
with M symbols where the ith symbol occurs xi times. The sender first sends
the numbers x1, x2, . . . , xM−1 then specifies the positions except that of the last
symbol. We denote the required code length with H(x, (x1, x2, . . . , xM ), M).

H(x, (x1, x2, . . . , xM ), M) ≡
M−1∑
i=1

log

⎛
⎝x + 1 −

i−1∑
j=1

xj

⎞
⎠ + log

(
x!

x1!x2! . . . xM !

)

(2)

For example, “AACBBAB” is sent in H(7, (3, 3, 1), 3) = 12.45 bits.
Lastly we consider a problem of sending a positive integer x under the assump-

tion that x = y is most likely and the occurrence probability P (i) of x = i is
given by P (y)(1/2)|y−i|. This setting may be interpreted as the length for send-
ing i is longer than that for sending y by |y− i| bits. Since P (1)+P (2)+ · · · = 1,
the length − log

[
P (y)(1/2)|y−x|], which is required to send x and is denoted

with Λ(x, y), is given as follows.

Λ(x, y) ≡ log
[
3 −

(
1
2

)y]
+ |y − x| (3)

2.3 Classification-Rule Discovery Problem

We call an assignment a = v of a value v to an attribute a an atom. A literal is
defined as either a single atom or a conjunction of multiple atoms. An example
(vi1, vi2, . . . , vim) is said to satisfy a literal δ if every atom in δ is included in
{a1 = vi1, a2 = vi2, . . . , am = vim}. We define a distribution rule r as r ≡
ρ(r) → (P1, P2, . . . , PM ), where its premise ρ(r) is a literal and its conclusion is
a probabilistic distribution P1, P2, . . . , PM over the classes 1, 2, . . . , M .

A partial decision list T , which may be interpreted as a decision list without
the default class label, consists of μ distribution rules r1, r2, . . . , rμ i.e. T ≡
r1, r2, . . . , rμ. For a partial decision list r1, r2, . . . , rμ, a rule rj is said to cover
an example e iff. (if and only if) e does not satisfy ρ(ri) (i = 1, 2, . . . , j − 1)
but satisfies ρ(rj). We believe that a partial decision list is adequate as the
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representation of a hypothesis as it represents a group of rules which are mutually
related in a separate-and-conquer manner. The set of examples each of which is
satisfied by a distribution rule in a partial decision list T is denoted with D(T ).

A null partial decision list B consists of ν distribution rules b1, b2, . . . , bν

without conclusions i.e. B ≡ b1, b2, . . . , bν . We believe that a null partial decision
list is adequate as the representation of an initial hypothesis since it is easier to
be obtained from domain experts or textbooks. A partial decision list (or a null
partial decision list) which satisfies μ = 0 (or ν = 0) is denoted with ∅ and is
called a null hypothesis.

Partial classification [1] has been mainly studied in the context of decision
making. As the objective of a data mining process is not usually restricted to
prediction, neither a utility function nor a cost function is adequate for evaluating
the goodness of our partial decision list T . In a domain where there is a ground
truth i.e. for our case a “correct” partial decision list Ttrue, we define, as an
evaluation index, the discovery accuracy E(M) of a rule-group discovery method
M as E(M) ≡ Υ (TM=Ttrue)

Υ , where Υ is the total number of different trials and
Υ (TM = Ttrue) is the number of trials in each of which the hypothesis TM
returned by M is equivalent to Ttrue.

[Classification-rule Discovery Problem] Given a data set D and a null
partial decision list B as an initial hypothesis, discover a partial decision list T .
The goodness of a discovery method M is evaluated with its discovery accuracy
E(M) if a correct partial decision list Ttrue is known.

3 Our Method CLARDEM

3.1 Incorporating Background Knowledge

The MDLP for classification (1) cannot handle an initial hypothesis B thus
cannot be applied to our discovery problem directly. We have extended the
original MDLP for classification so that T is inferred from D and B. The best
hypothesis TEMDL chosen by our extended MDLP is stated as follows.

TEMDL ≡ arg min
T

(− log P (T ) − log P (D|T ) − log P (B|T ))

A unique feature of our method is the term − logP (B|T ), which allows us to
consider B rigorously. We calculate the code length L(T ) in a problem setting
where the receiver has D except for the class labels. The sender first sends T ,
then the class labels of examples in D using T , and B using T .

L(T ) ≡ − logP (T ) − log P (D|T ) − log P (B|T ) (4)

Note that the smaller L(T ) is the more interesting T is thus the negative code
length −L(T ) can be considered as our interestingness measure.

We assume that B and D are independent because B is typically given by
the user and not inferred from D. In this case, TEMDL is shown to coincide
with the maximum a posteriori hypothesis i.e. TEMDL = arg minT (− logP (T )
− logP (D, B|T )) = argmaxT P (T |D, B).
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3.2 Encoding Method

Here we propose how to calculate (4). A hypothesis T is sent by first sending the
number μ of distribution rules in T then the premise ρ(ri) of each ri in T . The
conclusion of ri is sent as the class labels in D(T ) in the message of − logP (D|T ).
μ is sent with code length Λ(μ, 0) given by (3). ρ(ri) is sent by specifying the
attributes in the premise and their values. Let κ(aj) and |x| represent the number
of possible values of an attribute aj and the number of atoms in a literal x.

− log P (T ) = Λ(μ, 0) +
μ∑

i=1

⎡
⎣Θ0 (m, |ρ(ri)|) +

∑
aj in ρ(ri)

log κ(aj)

⎤
⎦

The initial hypothesis B is sent by first sending the number ν of distribution
rules without conclusions in B then each distribution rule bi without conclusions
using T . The former is sent with code length Λ(ν, μ). We say that a conjunction x
of atoms is more general than a conjunction y of atoms iff. each atom in x is found
in y and y has at least one atom which does not exist in x, and denote with x � y.
For instance, a1 = v1, a3 = v3 � a1 = v1, a2 = v2, a3 = v3, where a1, a2, a3 are
attributes and v1, v2, v3 are their values. For the latter, we consider four distinc-
tive cases: 1. ρ(bi) = ρ(ri), 2. ρ(bi) � ρ(ri), 3. ρ(ri) � ρ(bi), and 4. other cases.
The sender sends ν flags for indicating the corresponding case of (bi, ri) using (2).
For the cases 2. and 3., the attributes in ρ(ri) are used to specify those in ρ(bi).
Below s.t. represents “such that” and ν1(B, T ), ν2(B, T ), ν3(B, T ), ν4(B, T )
are the respective numbers of the four cases.

− logP (B|T )
= Λ(ν, μ) + H(ν, (ν1(B, T ), ν2(B, T ), ν3(B, T ), ν4(B, T )), 4)

+
∑

i s.t. ρ(bi)=ρ(ri)

0 +
∑

i s.t. ρ(bi)�ρ(ri)

Θ0 (|ρ(ri)|, |ρ(ri)| − |ρ(bi)|)

+
∑

i s.t. ρ(ri)�ρ(bi)

⎡
⎢⎢⎣Θ0 (m − |ρ(ri)|, |ρ(bi)| − |ρ(ri)|) +

∑
aj in ρ(bi)
but not in ρ(ri)

log κ(aj)

⎤
⎥⎥⎦

+
∑

i for othercases

⎡
⎣Θ0 (m, |ρ(bi)|) +

∑
aj in ρ(bi)

log κ(aj)

⎤
⎦

The class labels in D is sent using T : they are decomposed into those covered
by each ri and those in D \ D(T ). For the former, we use (2) with a small
modification to avoid inconveniences1. Let n(T, i), nj(T, i) be the number of
examples covered by the i-th rule in T and the number of examples of class
j covered by the i-th rule in T , respectively. Let jNTH(T,i,d) be the d-th most

1 For instance, H(8, (4, 2, 1, 1), 4) �= H(8, (1, 1, 2, 4), 4) and H(8, (3, 3, 1, 1), 4) <
H(8, (1, 1, 2, 4), 4).
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numerous class for its number njNTH(T,i,d)(T, i) of examples covered by the i-
th rule in T so njNTH(T,i,1)(T, i) ≥ njNTH(T,i,2)(T, i) ≥ · · · ≥ njNTH(T,i,M)(T, i).
We assume that the message which specifies the new order of the class labels
cjNTH(T,i,1) , cjNTH(T,i,2) , . . . , cjNTH(T,i,M) has a fixed size and omit counting its code
length for simplicity. For the latter, we assign the code length − log M , which
is the longest code length for an event with M possible states, to each class
label. This assignment represents the indifference of a partial decision list to its
uncovered examples. It helps us avoid obtaining a counterintuitive hypothesis
of which rules try to “get rid of” examples to have a D \ D(T ) which is nearly
homogeneous with the majority class. We omit the reason due to lack of space.

− log P (D|T ) =
μ∑

i=1

H(n(T, i), (njNTH(T,i,1)(T, i), . . . , njNTH(T,i,M)(T, i)), M)

+
∑

e/∈D(T )

log M

3.3 Desirable Properties

Studying (4) for two similar hypotheses T and T ′ reveals that (4) exhibits attrac-
tive properties. This fact is important because it differentiates (4) from many
empirical interestingness measures which are designed to exhibit attractive prop-
erties. Due to space constraint, we just show the following without proof.

Theorem 1. Let μ(T0) be the number of distribution rules in a hypothesis T0.
Let two distinct hypotheses T and T ′ satisfy

− log P (T ) − log P (B|T ) = − log P (T ′) − log P (B|T ′)
μ(T ) = μ(T ′).

If T is more accurate than T ′ and covers the same number of examples for each
rule, i.e.

∀i njNTH(T,i,1)(T, i) > njNTH(T ′,i,1)(T ′, i)
∀i∀d �= 1 njNTH(T,i,d)(T, i) ≤ njNTH(T ′,i,d)

(T ′, i)

∀i n(T, i) = n(T ′, i)

then T is judged better with our interestingness measure i.e. L(T ) < L(T ′).

3.4 Practical Heuristic Search

Since an exhaustive search for all possible partial decision lists is prohibitive due
to its time-inefficiency, CLARDEM applies three heuristic search methods then
outputs the partial decision list with the minimum code length. The first two
methods are hill climbing from B and ∅ where a step is an addition/deletion of
a rule/atom, where an added rule has a single atom in its premise.
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Separate-and-conquer is frequently used for learning a rule-based classifier
(e.g. [7]). Here we use a modified version which never returns a hypothesis with
a longer code length. It is a double-loop algorithm which searches rules with se-
quential covering in its outer loop. It searches conjunctions of atoms as premises
of the rule with greedy search which checks up to conjunctions of m atoms.
Below we show its pseudo-code, where rμ(T ′′) represents the μ-th rule of T ′′.

algorithm Separate-and-conquer
T = ∅, min = ∞, μ = 1, T ′ = T
do // outer loop

SacInnerLoop(μ, min, T , T ′, f), μ = μ + 1
while(f == TRUE) // outer loop
output T

procedure SacInnerLoop(μ, min, T, T ′, f)
f = FALSE, T ′′ = T ′, ρ(rμ(T ′′)) = TRUE
for π = 1, . . . , m // decide the π-th atom in the μ-th rule

min′ = ∞
foreach attribute ai

If ai does not exist in ρ(rμ(T ′′))
foreach value vij of ai

ρ(rμ(T ′′)) = ρ(rμ(T ′′)) ∧ (ai = vij)
If L(T ′′) < min′ // update the best hypothesis T ′ with μ rules

min′ = L(T ′′), T ′ = T ′′

If L(T ′′) < min // update the best hypothesis T
min = L(T ′′), T = T ′′, f = TRUE

Delete ∧(ai = vij) from ρ(rμ(T ′′))
T ′′ = T ′

In the hill climbing method from B, an addition of a rule, which has a single
atom in its premise, at each step takes O(mnκMAX), where κMAX represents
the maximum number of values that an attribute can take. A deletion of a rule
at each step takes O(nμMAX), where μMAX represents the maximum number of
rules in a hypothesis during the search. An addition of an atom at each step takes
O(mnκMAXμMAX). A deletion of an atom at each step takes O(nπMAXμMAX),
where πMAX represents the maximum number of atoms in a premise during
the search. We assume that the number of search steps is O(|μ − ν|), O(μ) =
O(ν) = O(μMAX), and O(πMAX) = O(1). Thus the time complexity is given by
O(mnκMAXμ2). The same result holds even if the starting point is ∅. For our
Separate-and-conquer, the time complexity is given by O(m2nκMAXμ2).

4 Experiments

4.1 Application to Benchmark Data Sets

We use for comparison MDL, which a method based on the MDLP. It employs
L′(T ) ≡ − log P (T ) − log P (D|T ) as its coding length for T and is equivalent



Negative Encoding Length as a Subjective Interestingness Measure 227

Table 1. Characteristics of data sets and their initial hypotheses, where rec., prec.,
κM, πM represent recall, precision, κMAX, and πMAX, respectively

data set initial hypothesis data set initial hypothesis
name n m κM M ν πM rec. prec. name n m κM M ν πM rec. prec.

golf 14 5 3 3 4 2 85.7 100.0 ttt 958 10 3 2 18 5 99.0 100.0
spon. 76 46 12 12 13 4 96.1 97.3 car 1728 7 4 4 87 5 99.5 96.9
p.-op. 90 9 5 3 2 2 26.7 83.3 kr-kp 3196 37 7 2 14 12 89.8 99.7

vote 435 17 3 2 5 2 98.4 97.4 mush. 8124 22 12 2 9 3 100.0 99.8
soyb. 683 36 19 19 36 8 97.2 98.0 nurse. 12960 9 5 5 352 7 95.6 99.5

Table 2. Performance on benchmark data sets, where the best method represents the
heuristic search method that returned the best result. HC1, HC2, S, and # nodes
represent hill climbing from a null hypothesis, hill climbing from the initial hypothesis,
the separate-and-conquer method, and the number of the searched nodes, respectively

Discovered hypothesis Search
name method μ πMAX recall precision best method # nodes time

CLARDEM 4 2 85.7 100.0 HC2 S 180 0.01s
golf MDL 0 - 0.0 - HC1 HC2 186 0.01s

e-Jmeasure 5 2 100.0 100.0 HC1 HC2 S 508 0.10s
CLARDEM 13 4 96.1 97.3 HC2 16626 1.38s

sponge MDL 5 3 100.0 69.7 HC2 37803 5.73s
e-Jmeasure 16 4 100.0 97.4 HC2 49008 5.01s

CLARDEM 3 2 97.8 73.9 HC2 705 0.03s
post-operative MDL 1 1 92.2 72.3 HC1 HC2 S 629 0.03s

e-Jmeasure 21 3 100.0 86.7 HC2 15680 0.71s
CLARDEM 5 2 98.4 97.4 HC2 1776 0.09s

vote MDL 2 1 88.7 98.7 HC1 HC2 S 2463 0.14s
e-Jmeasure 9 3 100.0 98.4 HC1 13774 0.79s

CLARDEM 37 8 100.0 96.5 HC2 33156 6.26s
soybean MDL 18 5 100.0 84.2 HC2 160838 36.71s

e-Jmeasure 37 9 100.0 96.2 HC2 75551 10.38s
CLARDEM 18 5 99.0 100.0 HC2 4046 0.57s

tic-tac-toe MDL 11 3 100.0 100.0 HC2 8200 1.00s
e-Jmeasure 19 5 100.0 100.0 HC2 8550 1.01s

CLARDEM 87 5 99.8 97.9 HC2 7766 4.83s
car MDL 25 4 100.0 96.5 HC2 61026 29.14s

e-Jmeasure 87 5 100.0 97.6 HC2 24487 11.92s
CLARDEM 15 12 100.0 99.7 HC2 61412 26.92s

kr-vs-kp MDL 10 12 100.0 99.7 HC2 86656 46.88s
e-Jmeasure 16 12 100.0 99.9 HC2 193132 31.90s

CLARDEM 9 3 100.0 99.8 HC2 20538 23.05s
mushroom MDL 9 3 100.0 99.8 HC2 18964 21.01s

e-Jmeasure 9 3 100.0 99.8 HC2 19083 4.42s
CLARDEM 354 7 100.0 99.5 HC2 70822 14m

nursery MDL 113 7 100.0 98.2 HC2 1200555 191m
e-Jmeasure 351 7 100.0 99.7 HC2 395409 73m
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Table 3. Discovered hypotheses from the vote data set

CLARDEM e-Jmeasure

physician = n physician = y, synfuels = n,

-> (245, 2)/247 immigration = y -> (0, 76)/76

missile = y, synfuels = y physician = n -> (245, 2)/247

-> (6, 1)/7 education = n, salvador = n -> (5, 1)/6

adoption = y, synfuels = y missile = ? -> (0, 3)/3

-> (6, 2)/8 education = ?, adoption = ? -> (2, 0)/2

physician = y, synfuels = n water = ? -> (0, 8)/8

-> (3, 135)/138 adoption = n -> (4, 70)/74

physician = y, missile = n satellite = n -> (11, 0)/11

-> (3, 25)/28 adoption = y -> (0, 8)/8

to our method for other points. We also use e-Jmeasure, which is an exten-
sion of the J-measure [12] to evaluate the goodness of T with the amount Γ (T )
of information compressed by T , where Γ (T ) ≡ ∑μ

i=1

∑M
j=1 nj(T, i)

(
− logP (cj)

+ log nj(T,i)
n(T,i)

)
. We exclude ad-hoc methods such as those based on frequent item-

sets because such a method requires parameters such as support and confidence
thresholds, and lacks of a theoretical background and a clear interpretation.

We first apply the three methods to ten benchmark data sets from [2] to
investigate their tendencies except discovery accuracies as there is no ground
truth. An initial hypothesis is generated by deleting the default class label of
the decision list obtained with C4.5rules [6]. We show the characteristics of the
data sets and the initial hypotheses in Table 1.

The results of the experiments and the names of the data sets are shown
in Table 2. We see that the number μ of the distribution rules in the output
hypothesis often increases in the order of MDL, CLARDEM, and e-Jmeasure.
Theses results make sense as MDL has a preference bias for ∅, CLARDEM for
the initial hypothesis, and e-Jmeasure for hypotheses which compress a large
amount of information. These reasons explain that recall and precision often
improve in this order, though their differences are often small.

In terms of search, we see that the method chosen as best most frequently
is the hill climbing from the initial hypothesis (HC2). We attribute the reason
to the excellence of C4.5rules [6]. As CLARDEM has a preference bias for the
initial hypothesis, HC2 is always chosen as the best method. For computation
time, CLARDEM is the fastest among the three methods for most of the cases.
This result may be explained by the fact that the discovered hypotheses are
often most similar to the initial hypotheses. As MDL has a preference bias for
an empty hypothesis, the similarity is often the least hence it was the slowest.
The number of the searched nodes gives a rough estimate of the computation
time for the same data sets (e.g. nursery) thus it will be used as an index.

Due to lack of space we just show examples of the discovered hypotheses from
the vote data set. MDL discovered a simple one with two rules, where class 1
and class 2 correspond to democrat and republican, respectively.
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discovery accuracy (CLARDEM)
discovery accuracy (MDL)

discovery accuracy (e-Jmeasure)

number of the searched nodes (CLARDEM)
number of the searched nodes (MDL)

number of the searched nodes (e-Jmeasure) correct partial decision list
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Fig. 1. Results of experiments for robustness with the mushroom data set and five
artificial data sets, where class = y and class = n represent (1,0) and (0, 1), respectively
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physician = n -> (245, 2)/247, synfuels = n -> (3, 136)/139
CLARDEM discovered the initial hypothesis and e-Jmeasure a complex one,
which are shown in Table 3. Their preference biases explain these results.

4.2 Robustness of the Three Methods

We report the robustness of the methods to noisy data sets and incorrect initial
hypotheses, where each result is an average performance on 100 data sets. For
Mushroom, Ttrue is assumed to be the hypothesis generated by C4.5rules minus
the default class label. Artificial data sets of n = 1000, M = κ = 2, m =
32 with 5, 10, . . . , 30 % of random noise in the class labels are generated
using hand-coded concepts. We have also generated small data sets with n =
950, 900, . . . , 500 without noise. Class labels of uncovered examples are set
randomly.

We consider problems of completing approximate initial hypotheses, which
fits the nature of the partial decision list. The results of the experiment with
correct concepts and the incorrect initial hypotheses are shown in Figure 1,
where we also show ± 1.5*(standard deviations) for discovery accuracies. We
see that CLARDEM is almost always the best method due to its capability of
exploiting the initial hypothesis even if it is approximate. MDL is often the sec-
ond method while e-Jmeasure is almost always the worst. We think e-Jmeasure
always shows discovery accuracy 0 % for artificial data sets because it tries to
compress the “random” parts not covered by Ttrue. Anyway CLARDEM is also
the best method for mushroom, which has no random part. CLARDEM shows
high discovery accuracies even if the initial hypothesis is complex and contains
strongly related rules. The numbers of the searched nodes show that CLARDEM
and MDL are often one order of magnitude faster than e-Jmeasure.

5 Conclusions

Compression and learning are known to be highly related with each other [5].
The MDLP [5,9] is considered to be among the most successful works along this
philosophy due to its performance and theoretical foundation. This paper has
presented the first attempt to apply the MDLP and hence the philosophy of data
compression to the discovery problem for a group of classification rules.

There are many evidences that the MDLP for classification is robust against
noise [8,15]. Our method inherits this nice property and in addition can borrow
strength from an initial hypothesis, which are shown through extensive experi-
ments. Our method is adequate for discovering groups of rules even from a small
amount of noisy data and an approximate initial hypothesis.
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