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Abstract. While spectral clustering has recently shown great promise,
computational cost makes it infeasible for use with large data sets. To
address this computational challenge, this paper considers the problem
of approximate spectral clustering, which enables both the feasibility (of
approximately clustering in very large and unloadable data sets) and ac-
celeration (of clustering in loadable data sets), while maintaining accept-
able accuracy. We examine and propose several schemes for approximate
spectral grouping, and make an empirical comparison of those schemes
in combination with several sampling strategies. Experimental results on
several synthetic and real-world data sets show that approximate spec-
tral clustering can achieve both the goals of feasibility and acceleration.

Keywords: Spectral clustering, scalability, matrix approximation,
sampling.

1 Introduction

As an exploratory data analysis tool, clustering aims to group objects of a similar
kind into their respective categories (see [1] for a comprehensive survey). Given
a data set O comprising n objects {o1, o2, · · · , on}, (crisp) clustering partitions
the data into c groups G1, G2, · · · , Gc, so that Gi ∩ Gj = ø if i �= j and G1 ∪
G2 ∪ · · · ∪ Gc = O. In particular, pairwise grouping methods, such as spectral
clustering [2], present an appealing alternative to traditional central grouping
techniques (such as K-means), because 1) they are applicable to situations in
which the objects are not naturally representable in terms of feature vectors;
and 2) they avoid the assumption that all examples in a cluster must be close
to a prototype. This means they are amenable to irregular-shaped clusters.

Spectral clustering algorithms usually rely on the eigendecomposition of a
n × n similarity matrix (where n is the number of examples), which generally
takes O(n3) time and O(n2) space complexity. In addition, to obtain such a sim-
ilarity matrix it is necessary to compare all possible pairs of examples, which
is computationally expensive for a large data set. These limitations make spec-
tral clustering methods impractical (or computationally infeasible) when han-
dling large data sets. Additional strategies are thus required to adapt to growing
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data sizes while maintaining both cluster quality and speed. A spectral group-
ing approach based on the Nyström approximation was proposed in [3], which
first solves a small-scale eigendecomposition problem on randomly chosen sam-
ple data, then computes approximated eigenvectors via extrapolation. Another
incremental spectral clustering algorithm was proposed to handle “dynamic”
evolving data in [4] by introducing the incidence vector/matrix. In [5], the spec-
tral clustering algorithm is parallelized across distributed machines. However,
these two methods either sacrifice accuracy or require distributed computing
infrastructure. In contrast, this paper considers approximate spectral clustering
(ASC) for “static” data without the use of distributed computation.

The motivations of approximate spectral clustering can be described as fol-
lows. When the data set is large and unloadable on the available computing
platform, ASC provides an approximate solution to clustering (i.e., making clus-
tering feasible), whereas it is impossible to use a literal clustering approach in
batch mode on such data. If the data set is small, medium, or merely large but
still loadable, then ASC may offer an approximation comparable to the literal so-
lution but at a significantly reduced computational cost. In summary, the benefits
of an approximate clustering scheme are “feasibility” for very large data sets and
“acceleration” for manageably-sized data sets. To this end, this paper proposes
two new methods for approximate spectral clustering, as well as the examination
of an existing method described in [3]. One of them is based on matrix approx-
imation, and the other uses a “sampling plus extension” approach. Our major
contributions are as follows: 1) we present two different schemes for approximate
spectral clustering; 2) we provide a comprehensive quantitative comparison of
several approximate spectral clustering algorithms, together with a comparison
of several sampling schemes; and 3) we provide extensive experimental results on
synthetic and real data sets, and several meaningful conclusions are highlighted.

The rest of this paper is organized as follows. Section 2 gives a brief review of
spectral clustering. Section 3 details several approximate algorithms. Section 4
introduces four kinds of sampling schemes. The results are presented in Section 5,
prior to discussion and conclusion in Section 6.

2 Spectral Clustering

Spectral methods for clustering, e.g., normalized cut [6] and max-min cut [7], are
based on the eigenvectors and eigenvalues of a symmetric positive semidefinite
(SPSD) matrix of size n × n derived from a given data set. Let the symmetric
W ∈ Rn×n denote the weighted adjacency matrix for a graph G = (V , E) with
nodes V representing the n objects in O to be analyzed and edges E whose
weights capture pairwise affinities between objects. Let D be a diagonal matrix
with entries Dii = di, where di =

∑
j Wij denotes the degree of the ith node,

then the graph Laplacian matrix is defined as L = D − W [8].
Let C1 and C2 be a bipartition of V , i.e., C1∩C2 = ø and C1∪C2 = V , and the

volume of a set as the sum of the degrees within the set, i.e., vol(Cj) =
∑

i∈Cj
di.
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The normalized cut between sets C1 and C2 is defined as [6]

ncut(C1, C2) =
2 · cut(C1, C2)

vol(C1) ‖ vol(C2)
(1)

where ‖ denotes the harmonic mean and cut(C1, C2) =
∑

i∈C1,j∈C2
Wij . To

minimize (1), Shi and Malik [6] showed that an approximate solution may be
obtained by thresholding the eigenvector corresponding to the second smallest
eigenvalue of the normalized Laplacian matrix L, i.e.,

L = D−1/2LD−1/2 = I − D−1/2WD−1/2 (2)

The matrix L is positive semidefinite, even when W is indefinite.
Extensions to multiple groups are possible, e.g., using multiple eigenvectors

[9]. In this work we adopt this approach by computing the leading eigenvectors
V from (D−1/2WD−1/2)V = V Λλ. These eigenvectors induce an embedding
of the objects in a low-dimensional subspace, in which the K-means clustering
algorithm is then used to discover final partitions by grouping columns of V .

3 Approximate Spectral Clustering Algorithms

To address the complexity of spectral decomposition for large n, we now outline
several approximate approaches to the problem. Spectral clustering generally
deals with an n × n SPSD matrix, say M , which can be decomposed as M =
UΣUT with Σ the eigenvalues of M and U the associated eigenvectors. Suppose
m � n columns of M are sampled without replacement. Let A be the n × m
matrix of these sampled columns, and S be the m × m matrix consisting of the
intersection of these m columns with the corresponding m rows. Without loss of
generality, we can rearrange the columns and rows of M such that

M =
(

S B
BT C

)

with A =
(

S
BT

)

(3)

where B ∈ Rm×(n−m) contains the elements from the samples to the rest of
the objects, and C ∈ R(n−m)×(n−m) contains the elements between all of the
remaining objects. In the case of m � n, C is usually large.

3.1 nSPEC

The Nyström approximation has recently been studied in the machine learning
community, e.g., for fast approximate Gaussian process classification [10] and
low-rank approximation to the kernel matrix [11]. A spectral grouping method
based on the Nyström approximation was proposed for image segmentation in
[3]. We refer to this as nSPEC (Nyström-based Spectral Clustering).

The Nyström approximation uses S and A to approximate M as

M ≈ M̃ = AS+AT (4)
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where ‘+’ is the pseudoinverse. The Nyström approximation models C by
BS+BT , and the resulting approximate eigenvalues and eigenvectors of M are

Σ̃ = (
n

m
)ΣS and Ũ =

√
m

n
AUSΣ+

S (5)

where S = USΣSU+
S [10].

The eigenvectors generated from the Nyström approximation are not exactly
orthogonal because they are extrapolated from the eigenvectors of S, losing
orthogonality in this process. If S is positive definite, Fowlkes et al. [3] used
a one-shot method to solve for the orthogonalized approximate eigenvectors.
Define Q = S + S−1/2BBT S−1/2 and diagonalize it as Q = UQΛQUT

Q , then M̃

can be diagonalized as M̃ = ÛΛQÛT with

Û = AS−1/2UQΛ
−1/2
Q (6)

3.2 cSPEC

An alternative column-sampling technique has been analyzed in the theoretical
computer science community [12], which can also be used to approximate spectral
decomposition of a large matrix using a subset of columns. The column-sampling
method was initially introduced to approximate SVD (Singular Value Decompo-
sition) for any rectangular matrix [12,13]. However, it has not yet explicitly been
used in spectral clustering. Here we use it to approximate the spectral decompo-
sition of M , and call the resulting method cSPEC (Column-sampling Spectral
Clustering).

The column-sampling technique approximates the eigendecomposition of M
by using the SVD of A directly. Suppose A = UAΣAV T

A , then the approximate
eigenvectors and eigenvalues of M are given by the left singular vectors of A and
the corresponding scaled singular values, i.e.,

Σ̃ =
√

n

m
ΣA and Ũ = UA = AVAΣ+

A (7)

Accordingly the approximation of M can be written as [14]

M ≈ M̃ = A

(√
m

n
(AT A)1/2

)+

AT (8)

which has a very similar form to (4). When n is very large, the SVD on A directly
is still quite demanding. Fortunately, we have

AT A = VAΣT
AUT

AUAΣAV T
A = VAΣ2

AV T
A (9)

It is thus easy to obtain UA and ΣA by computing the SVD on AT A ∈ Rm×m.
Relatively, AT A can be easily computed even for large n.
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3.3 eSPEC

Another way to attack the scalability problem is “extensibility” (e.g., [15,16]). An
extended scheme applies a clustering algorithm to a representative sample set,
and then extends the sample result to obtain (approximate) clusters for the re-
maining data. Also, the extended clustering schemes can be effectively applied in
cases in which data are collected sequentially. Here we propose a “sampling, clus-
tering plus extension” solution, called eSPEC (Extensible Spectral Clustering),
for approximate spectral clustering.

After the sample data S is obtained, we first use a literal spectral clustering al-
gorithm to group them. Next we address the problem of out-of-sample extension,
i.e., to assign each of the remaining n−m objects to one of the c previously de-
termined groups. We regard the whole m×n matrix (i.e., AT ) as a semantically-
meaningful vectorial representation (i.e., each object has m attributes, each of
which corresponds to a similarity relation between the object and one of the m
sample objects, leading to a virtual data set {xi}n

i=1). For learning the cluster-
preserving embedding space from S, we adopt computationally-efficient locality
preserving projection (LPP) [17], which is very similar to the mapping procedure
used in spectral clustering algorithms.

Let GS denote a graph with m nodes corresponding to the m labeled samples
{xS

j }m
j=1. An edge occurs between nodes i and j if xS

i and xS
j are “close” according

to k-nearest neighbors (k ∈ N ). Let WS be a symmetric m × m matrix, whose
element W ij

S is the weight of the edge joining nodes i and j, and is 0 if there is
no such edge (WS is thus sparse). To obtain the embedding space, we solve the
generalized eigenvector problem

SLSST f = λSDSST f (10)

where LS and DS are the corresponding Laplacian matrix and diagonal degree
matrix of GS . Let the column vectors f1, · · · , fl be the solutions of the eigenvec-
tors in (10), ordered according to their eigenvalues, λ1 < · · · < λl (l ≤ m). Thus,
the embedding of xi in the l-dimensional spectral space is represented as

yi = FT xi with F = [f1, f2, · · · , fl] (11)

Out-of-sample extension can then be treated as a prediction problem in this
embedding space. For each xe

j(j = m + 1, m + 2, · · · , n) in B to be extended, we
use F to project xe

j to ye
j in the learned embedding space. Together with the

embedding {yS
j }m

j=1 of the m labeled samples oS
j , we use the k-nearest neighbor

classifier to assign the object oe
j to the class label with the maximum votes from

its k nearest neighbors measured in the spectral domain.

4 Sampling Schemes

How to effectively sample a small set of representative samples is critical to
encoding the structure of the whole data set. In this work, we focus on the
following four sampling schemes in our empirical comparison:
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– Random sampling (RS) uses a uniform distribution {pi = 1/n}n
i=1 to choose

columns of M . This is a simple and commonly used method, e.g., [3,15,14].
– Selective sampling (SS) [18] was shown to be superior to progressive sampling

in [16]. This method first selects h distinguished objects using a max-min
farthest point strategy. Then each object in O is grouped to its nearest dis-
tinguished object. Finally a small number of samples are randomly selected
from each of the h groups to form the sample set.

– K-means sampling (KS) suggested in [11] simply chooses the sample points
as the K-means cluster centers. This method is inapplicable where the ob-
jects cannot be represented by feature vectors. In addition, the computation
cost depends greatly on the data size n and the feature dimension.

– Probabilistic sampling (PS) [13] uses the probability distribution {pi}n
i=1 to

choose columns of M with pi = |M (i)|2/‖M‖2
F , where |M (i)| is the length of

the ith column of M , and ‖M‖F is the Frobenius norm of M . This method
needs the whole matrix to compute pi, making it impractical for large n.

5 Experiments

In order to test these approximate algorithms, we carried out a number of ex-
periments on several artificially generated and real-world data sets. Unless oth-
erwise mentioned, in the following experiments the (Euclidean) distance matrix
was computed in the original attribute space, which was then transformed to the
affinity matrix by the Gaussian function, i.e., Wi,j = exp(−‖oi −oj‖2/2σ2). The
number of clusters c was chosen manually, since choosing c is a difficult model-
selection problem which lies outside of the scope of this work. All experiments
were implemented in a Matlab 7.2 environment on a PC with an Intel 2.4GHz
CPU and 2GB memory running Windows XP.

An accuracy metric AC has been widely used for clustering performance
evaluation [4,19]. Suppose that lci is the clustering label of object oi and lgi is
the ground truth label, AC is defined as maxmap

∑n
i=1 δ(lgi , map(lci ))/n, where

δ(l1, l2) is the delta function that equals 1 if and only if l1 = l2 and 0 oth-
erwise, and map is the mapping function that permutes clustering labels to
match equivalent ground-truth labels. The Kuhn-Munkres algorithm is usually
used to obtain the best mapping [20]. In addition to accuracy, we also measure
computational efficiency. For each experiment, we performed these approximate
algorithms multiple times, and reported results in terms of the average accuracy
(AAC) and the average computation time (ACT). Note that our programs have
not been optimized for run-time efficiency.

5.1 Results on Synthetic Data Sets

We begin with four synthetic data sets of different types and sizes (i.e., 3Gaus-
sian, 4Line, 2HalfMoon, and 3Circle), whose scatter plots are shown in Figure
1, in which each color represents a cluster. The ‘3Gaussian’ is a simple case in
which even central grouping techniques can perform well. The later three cases
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Fig. 1. Synthetic data with different sizes and structures

.01.03.05.07.10.15.20.30.40
0.7

0.8

0.9

1
3Gaussian + RS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

.01.03.05.07.10.15.20.30.40
0.94

0.96

0.98

1
3Gaussian + SS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

.01.03.05.07.10.15.20.30.40
0.7

0.8

0.9

1
3Gaussian + KS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

.01.03.05.07.10.15.20.30.40
0.7

0.8

0.9

1
3Gaussian + PS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

(a) c = 3, n = 900

.01.03.05.07.10.15.20.30.40
0.7

0.8

0.9

1
4Line + RS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

.01.03.05.07.10.15.20.30.40
0.8

0.85

0.9

0.95

1
4Line + SS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

.01.03.05.07.10.15.20.30.40

0.7

0.8

0.9

1
4Line + KS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

.01.03.05.07.10.15.20.30.40

0.7

0.8

0.9

1
4Line + PS

Sampling Rate
A

A
C

eSPEC
nSPEC
cSPEC

(b) c = 4, n = 1200

.01.03.05.07.10.15.20.30.40
0.8

0.85

0.9

0.95

1
2HalfMoon + RS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

.01.03.05.07.10.15.20.30.40
0.85

0.9

0.95

1
2HalfMoon + SS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

.01.03.05.07.10.15.20.30.40
0.85

0.9

0.95

1
2HalfMoon + KS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

.01.03.05.07.10.15.20.30.40
0.85

0.9

0.95

1
2HalfMoon + PS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

(c) c = 2, n = 1000

.01.03.05.07.10.15.20.30.40

0.2

0.4

0.6

0.8

1
3Circle + RS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

.01.03.05.07.10.15.20.30.40

0.2

0.4

0.6

0.8

1
3Circle + SS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

.01.03.05.07.10.15.20.30.40

0.2

0.4

0.6

0.8

1
3Circle + KS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

.01.03.05.07.10.15.20.30.40

0.2

0.4

0.6

0.8

1
3Circle + PS

Sampling Rate

A
A

C

eSPEC
nSPEC
cSPEC

(d) c = 3, n = 1200

Fig. 2. Average accuracy of approximate clustering algorithms

are generally hard for central grouping, but easy for spectral clustering. These
synthetic 2D data sets are relatively small so that we can perform both literal
clustering and approximate clustering to measure the approximation error. We
include these progressively harder data sets to test these approximate algorithms,
though these synthetic cases are not necessarily realistic in practice.

First we performed literal spectral clustering on these data sets, and ob-
tained fully correct clustering results at the computational cost of about 11s for
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Fig. 3. Average computation time of approximate clustering algorithms

‘3Gaussian’, 15s for ‘4Line’, 27s for ‘2HalfMoon’ and 27s for ‘3Circle’. Then,
we applied eSPEC, nSPEC and cSPEC. We tried multiple sampling rates (i.e.,
m/n)1. For each sampling rate, 50 trials were made, then we computed the av-
erage clustering accuracy and the average computation time consumed by the
clustering procedure. The results for the AACs and ACTs are respectively shown
in Figures 2 and 3, from which it can be seen that:

– The approximate algorithms can achieve a good approximation, sometimes
with the same accuracy as the literal solution when the sample size is suffi-
cient. Moreover, these estimates are obtained using only a small fraction of
the data and in much less time than the literal problem.

1 What we are really concerned with is the sample size m, not m/n, since the ideal m
generally depends just on the data structure (i.e., the number of clusters c and their
distributions) than the data size n. That is, the necessary sample size m is basically
fixed if the data structure is unchanged regardless of the real data size n.
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– For complex-shaped clusters (e.g., 2HalfMoon and 3Circle), more samples
are generally required to obtain stable results. When the number of samples
is sufficient, the accuracy curve remains flat as the sample size increases
further, but the computation time increases quickly.

– For simple data sets such as 3Gaussian and 4Line, the three algorithms
perform similarly. But for more complex data sets such as 2HalfMoon and
3Circle, nSPEC performs better than the other two.

– In terms of accuracy, nSPEC performs the best overall, then eSPEC, and
finally cSPEC. But in terms of computation time, nSPEC is the most ex-
pensive, and eSPEC is slightly cheaper than cSPEC.

– In terms of overall accuracy, SS performs best, then KS, and finally RS and
PS. The computation time of RS, PS and SS is similar, though PS and SS
are a little higher than RS. However, KS spends the most time, even in these
small 2D data sets.

These numerical experiments on synthetic data sets suggest that the strategy
of approximate spectral clustering can obtain comparable results to the literal
approach but in much less time. In addition, overall nSPEC performs best but
is most expensive in time. SS achieves the best tradeoff between accuracy and
computation efficiency. Considering that synthetic data sets with controllable
structures are designed only for simulation and are not realistic, real-world data
sets with unknown data distributions would speak louder. Therefore, we will
further evaluate these algorithms on several real data sets.

5.2 Results on Real Data Sets

We first considered two medium-sized data sets. 1) The multiple features (MF)
data set from the UCI consists of binary image features of handwritten numerals
(‘0’ ∼ ‘9’) extracted from a collection of Dutch utility maps. Each class has 200
patterns, thus there are n = 2000 patterns in total. These digits are represented
as a 649-dimensional vector in terms of 6 feature sets. We set the number of
clusters c = 10 corresponding to 10 different numerals. 2) The Yale-B face data
set2 contains single light source images of 10 individuals, each seen under 585
viewing conditions (9 poses × 65 illumination conditions) [21]. Hence, the total
number of images is n = 5850. Each original image was down-sampled to 30×40
pixels, leading to a 1200-dimensional vector representation. We set the number
of clusters c = 10 corresponding to 10 different subjects.

For each data set, we applied the algorithms 25 times for each of several
sampling rates with the selective sampling scheme. The AACs and ACTs are
summarized in Table 1, where ane means the average number of examples for
each cluster in the sample set. Table 1 shows that 1) the computation time of
nSPEC is most expensive, then cSPEC, and finally eSPEC, which is consistent
with the results on the synthetic data sets. 2) On the MF data set, nSPEC
obtained the best accuracy, then eSPEC, and finally cSPEC, which is basically
2 http://markus-breitenbach.com/machine learning data.php
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Table 1. Summary of the results on the MF and Yale-B data sets

Algorithms nSPEC cSPEC eSPEC

Data sets m/n ane AAC(%) ACT(s) AAC(%) ACT(s) AAC(%) ACT(s)

MF 0.03 6 80.10 5.39 73.34 5.09 72.75 1.83
c = 10 0.05 10 80.51 5.65 73.76 5.27 75.29 2.08

n = 2000 0.07 14 80.57 5.74 76.99 5.33 78.85 2.39

Yale-B 0.01 ≈ 6 80.21 13.89 82.03 12.89 72.25 4.05
c = 10 0.03 ≈ 18 81.97 15.20 84.39 13.09 78.07 6.13

n = 5850 0.05 ≈ 29 82.11 18.97 85.56 14.46 77.16 8.79

consistent with the results on the synthetic data sets (with similar data sizes).
However, it is interesting to see that on the Yale-B data, cSPEC performed
better than the other two algorithms. Note that cSPEC performs SVD on a
larger submatrix of M than does the Nyström method (An×m versus Sm×m).
This could be a reason why cSPEC performs better than nSPEC in such a
relatively large real-world problem.

We also applied these clustering algorithms to the problem of high-
resolution image segmentation (where it is generally infeasible to use literal
spectral clustering). Different features (such as intensity, color, texture, and
proximity) can be used to compute the similarities between image pixels, e.g.,
locally-windowed color and texture histograms were used in [3]. We just used
the intensity feature since our main concern is to demonstrate the feasibility
of these approximate algorithms in the context of image segmentation, but not
purely for image segmentation. Figure 4 shows segmentation results on three
481× 321 images3, in which pixels with the same color represent one group. We
set c = 3 (or 4) for these images according to the number of visually meaningful
components.

Running a literal spectral clustering algorithm on the whole image (which con-
tains n = 481×321 = 154, 401 pixels) would be simply impossible in the Matlab
environment. For these images, the number of sampled pixels was empirically
chosen to be 150 (less than 0.1% of the number of total pixels), considering that
there are far fewer coherent groups (i.e., c � n) in a scene than pixels. We can-
not measure the clustering error in this case because literal spectral clustering
cannot be performed and we lack any form of ground truth. So, the best we can
do for evaluation here is to resort to visual inspection of the segmentation re-
sults. In these three cases, all algorithms partitioned the images into meaningful
components when c = 4 regardless of slight differences. More interesting, when
c = 3, nSPEC gave results that were inconsistent with human perception of the
intensity values in the images (i.e., a tendency to over-segmentation), whereas
cSPEC and eSPEC performed similarly well. This seems to demonstrate again
that cSPEC could be superior to nSPEC on these larger image data sets.

3 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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(a) A “house” image

(b) A “stone” image

(c) A “horse” image

Fig. 4. Intensity-based image segmentation results. For each of (a), (b) and (c), the left-
most column is original color image (top) and corresponding intensity image (bottom);
and the right three columns are respectively the segmentation results using eSPEC,
nSPEC and cSPEC with c = 3 (top row) and c = 4 (bottom row).

6 Discussion and Conclusion

This paper has examined several approximate spectral clustering approaches.
Extensive experiments on synthetic and real-world data sets show that these
algorithms are not only feasible for very large data sets, but also provide ac-
celeration on large data sets with comparable accuracy compared to the literal



Approximate Spectral Clustering 145

solution. In particular, in terms of memory, the matrix (i.e., A, or S and B)
needed in these three approximate algorithms can be simply computed on de-
mand. This greatly reduces the memory requirements for very large-scale
problems.

Accuracy and efficiency are two important factors in data clustering. Com-
parative results on the synthetic data sets have shown that nSPEC performs
best in terms of accuracy, but this is not always the case in real-world data sets.
We cannot thus say that a specific algorithm is always superior to the others.
The computation time of nSPEC is consistently highest among all of the three
algorithms, which may be due to its additional strategy for computing approxi-
mated orthogonalized eigenvectors. Relatively, eSPEC is cheapest, which makes
out-of-sample extension more appealing when a large number of samples have
been accumulated. To summarize, just as discussed in [1], there is no clustering
algorithm that can be universally used to solve all problems. It is more likely
that the performance of each clustering method depends strongly on the real
characteristics of the data sets used. In this sense, it is not rational to claim a
“best” in the context of clustering algorithms, though comparison on a wider va-
riety of data is possible. However, among the four compared sampling schemes,
selective sampling provides the best choice in terms of accuracy, efficiency and
applicability for various types of data.
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