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Abstract. Motivated by the local reconstruction approach to discov-
ering low dimensional structure in high dimensional data, we propose a
novel clustering algorithm that effectively utilizes local reconstruction in-
formation. We obtain the local reconstruction weights by minimizing the
reconstruction error between each data point and the reconstruction from
its neighbors. An entropy regularization term is incorporated into the re-
construction objective function so that the smoothness of the reconstruc-
tion weights can be explicitly controlled. The reconstruction weights are
then used to obtain the clustering result by employing spectral clustering
techniques. Experimental results on a number of datasets demonstrate
that our algorithm performs well relative to other approaches, which val-
idate the effectiveness of our approach for clustering.
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1 Introduction

Data clustering, also known as cluster analysis, is one of the most fundamental
problems and an active and important research area in data mining and machine
learning. Generally speaking, the goal of clustering is to discover meaningful and
natural groupings in data automatically. Usually it involves partitioning a finite
set of data objects into several disjoint clusters so that intra-cluster similarity
and inter-cluster separability are maximized. Since no labeled data (supervised
information) are available to guide the partitioning process, data clustering falls
under the category of unsupervised learning.

Various clustering techniques have been proposed over the years. Among these
techniques, one of the most interesting approaches is spectral clustering [11],
which has received considerable attention in recent years. Spectral clustering
algorithms aim to recover the clustering structure in data by exploiting the top
eigenvectors of a specially constructed matrix. Spectral clustering algorithms are
often easy to implement using linear algebra software packages and can be very
efficient if the specially constructed matrix is sparse. Motivated from a graph
partitioning perspective, various spectral clustering algorithms have been pro-
posed based on different graph cut objectives such as ratio cut [4] and normalized
cut [11]. Spectral clustering techniques are also used in clustering methods which
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are based on the local learning idea [13,16]. A lot of applications exist for spec-
tral clustering techniques, such as image segmentation [11,17], circuit layout [4],
speech separation [1] and so on.

In this paper, we derive a new clustering algorithm that also utilizes the top
eigenvectors of a specially constructed matrix, hence inheriting the advantages
of spectral clustering. However, our algorithm is motivated by the local recon-
struction approach to dealing with high dimensional data that lie on or near a
low dimensional manifold [9]. The local reconstruction approach tries to capture
geometric properties of the underlying data manifold by locally reconstructing
each data point from its neighbors. The local reconstruction perspective has al-
ready proved very useful in dimensionality reduction [8,9] and semi-supervised
learning [15].

Based on the local reconstruction perspective, we propose a novel clustering
algorithm that effectively utilizes local reconstruction information. Our proposed
approach consists of two parts. In the first part, the local reconstruction weights
are obtained by minimizing the reconstruction error between each data point
and the reconstruction from its neighbors. Important geometric characteristics
of local neighborhoods can be preserved by the local reconstruction weights [9].
In the second part of our approach, the reconstruction weights are then used to
produce the final clustering result.

In our clustering approach, the reconstruction of each data point is performed
in the reproducing kernel Hilbert space. Thus, nonlinear relations between each
data point and its neighbors can be captured. Besides, an entropy regulariza-
tion term is incorporated into the reconstruction objective function so that the
smoothness of the reconstruction weights can be explicitly controlled. In the
second part of our algorithm, the special structures of the scaled cluster label
matrix and the reconstruction weight matrix make the optimization problem
much easier to analyze, and spectral clustering techniques can be employed to
solve the clustering problem efficiently. Experimental results on a number of real-
world datasets demonstrate that our algorithm performs well relative to other
spectral clustering approaches, which validate the effectiveness of our approach
in obtaining good clusterings.

The remainder of the paper is organized as follows. We introduce the formu-
lation of the proposed clustering model in Section 2. In Section 3, we derive the
detailed clustering algorithm. Experimental results are presented in Section 4.
Section 5 concludes the paper and discusses future works.

2 Clustering Model

2.1 Notations

First we introduce some notations. Boldface lowercase letters, such as x and y,
denote column vectors. Boldface uppercase letters, such as M and W, denote
matrices. MT denotes the transpose of M. W ≥ 0 means that every entry in W
is nonnegative. 1m ∈ R

m is a vector of 1’s. Δm =
{
w ∈ Rm |wT1m = 1, w ≥ 0

}
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is the probability simplex. For any w ∈ Δm, the elements of w are nonneg-
ative and sum to one. Im ∈ R

m×m is the identity matrix of order m. For
x = [x1, . . . , xm]T ∈ R

m, ‖x‖1 =
∑m

i=1 |xi| denotes the �1 norm. The set of
nonnegative real numbers is denoted as R+. For a square matrix A ∈ R

m×m,
Trace(A) is the trace of A, i.e., the sum of the diagonal elements of A.

2.2 Data and Label Representation

Let X ⊆ R
d denote the input space from which n data points, x1, · · · ,xn, where

xi = [xi1, . . . , xid]T , are sampled. Given a set of data points {xi}n
i=1 ⊆ X ⊆ R

d,
the goal of data clustering is to find a set of disjoint and exhaustive clusters
{πl}c

l=1 from the data where πl is the l-th cluster. c is the number of clusters.
|πl| is the number of points in the l-th cluster.

Given a positive semi-definite kernel function K(·, ·), the data points from the
original input space X are mapped to a possibly infinite dimensional reproduc-
ing kernel Hilbert space F [10]. The mapping is denoted as φ : X �→ F . The
reconstruction of each data point xi is then performed in F so that nonlinear
relations between xi and its neighbors can be captured. We denote the inner
product in F as 〈·, ·〉F , so

〈φ(xi), φ(xj)〉F = K(xi,xj) and ‖φ(xi)‖2
F = 〈φ(xi), φ(xi)〉F (1)

A clustering solution is represented by a Scaled Cluster Label Matrix Y =
[y1, . . . ,yn]T = [yil] ∈ R

n×c where yi = [yi1, yi2, . . . , yic]T ∈ R
c. Specifically,

yil =
{ 1

|πl| if xi ∈ πl,

0 if xi /∈ πl.
(2)

Y is the unknown variable in our clustering model. Once Y is known, the resul-
tant clustering can be obtained easily. So each data point xi is associated with a
cluster label yi ∈ R

c. The scaling in Y is used for producing balanced clusters.
In the following, neighborhood Ni denotes a set of nearest neighbors of point

xi, not including xi. The number of neighbors of xi is ni = |Ni|. Usually, ni 
 n.

2.3 Clustering Model

The proposed clustering model consists of two parts, which produce the local
reconstruction weights (represented by W) and final clustering (Y) respectively.

In the first part, we try to locally reconstruct each data point φ(xi) from
its neighbors. The local reconstruction for data point φ(xi) is

∑
xj∈Ni

wijφ(xj)
where wij ≥ 0 and

∑
xj∈Ni

wij = 1. All the reconstruction weights form a weight
matrix W = [wij ] ∈ R

n×n where wij = 0 if xj /∈ Ni. Besides, we assume that
wi ∈ R

ni is composed of wij where xj ∈ Ni, so wi ∈ Δni . The reconstruction

error for φ(xi) is denoted by Lx

(
φ(xi),

∑
xj∈Ni

wijφ(xj)
)
, the value of which

is to be minimized. Important geometric characteristics of local neighborhoods
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can be preserved by the local reconstruction weights wij , which in turn can be
used to obtain the final clustering result. Here, a natural choice for the error

measure Lx is Lx

(
φ(xi),

∑
xj∈Ni

wijφ(xj)
)

=
∥
∥
∥φ(xi) −

∑
xj∈Ni

wijφ(xj)
∥
∥
∥

2

F
.

In the second part, the reconstruction weights are used to obtain the clus-
tering result. The objective is to minimize the cluster label reconstruction error
E(Y) =

∑n
i=1 Ly

(
yi,

∑
xj∈Ni

wijyj

)
, which measures how well the cluster label

of each data point can be reconstructed from its’ neighbors’ cluster labels, us-
ing the same reconstruction weights obtained in the first part of our clustering
model. Here, we use sum of absolute error as the discrepancy measure, namely,
Ly

(
yi,

∑
xj∈Ni

wijyj

)
=

∥
∥
∥yi −

∑
xj∈Ni

wijyj

∥
∥
∥

1
.

The two parts of our clustering model are formalized as follows.

1. Compute the local reconstruction weights. For each xi where 1 ≤ i ≤ n,
solve the following problem:

min
wi∈R

ni
Ei(wi) =

∥∥
∥
∥
∥
∥
φ(xi) −

∑

xj∈Ni

wijφ(xj)

∥∥
∥
∥
∥
∥

2

F

− γ Ĥ(wi)

subject to wi ∈ Δni (3)

2. Compute the label matrix Y by solving the following problem:

min
Y∈Rn×c

E(Y) =
n∑

i=1

∥
∥
∥
∥∥
∥
yi −

∑

xj∈Ni

wijyj

∥
∥
∥
∥∥
∥

1

subject to Y is defined in (2) (4)

In Eq.(3), −Ĥ(wi) is the entropy regularization term which explicitly con-
trols the smoothness of the weight components in wi. γ ≥ 0 is a pre-specified
parameter. A larger value of γ means that more uniform weights are preferable.
Ĥ(·) is the generalized entropy which will be defined and discussed in Section
2.4. A key property of Ĥ(·) is that the more uniform the weights in wi are, the
larger the value of Ĥ(wi) becomes.

2.4 Generalized Entropy

We introduce the concept of generalized entropy as a measure of the degree of
uncertainty within a discrete probability distribution (over a set of m elements)
that can be represented by a vector w = [w1, . . . , wm]T ∈ Δm. A definition of
generalized entropy recently proposed in [7] is provided in the following:

Definition 1. Generalized entropy is defined as a mapping

Ĥ : Δm �→ R+

that satisfies the following two criteria (symmetry and concavity):
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1. For any wa ∈ Δm, and any wb ∈ Δm whose elements are a permutation of
the elements of wa, Ĥ(wa) = Ĥ(wb).

2. Ĥ(·) is a concave function.

This definition reflects an important property of generalized entropy Ĥ(·): more
uniform elements of w indicate larger values of Ĥ(w). For example, if v1 =
[0.1 0.3 0.6]T ∈ Δ3 and v2 = [0.3 0.3 0.4]T ∈ Δ3, then Ĥ(v1) ≤ Ĥ(v2). Many
entropies proposed in the literature are special cases of Definition 1 [7]. Some
examples are given as follows:

1. Ĥ(w) =
∑m

i=1 −wi log(wi), which is the Shannon entropy.
2. Ĥ(w) = 1 − wT w, which will be referred to as �2-entropy.

3 Algorithm

In this section, we derive a clustering algorithm based on the clustering model
presented in the previous section. Our algorithm consists of two parts. The first
part computes the local reconstruction weight matrix W by solving the opti-
mization problem (3). The second part computes the final clustering by solving
problem (4).

3.1 The Computation of W

The kernel matrix over {xi}n
i=1 is denoted as K ∈ R

n×n so that K(xi,xj) is
the element in the i-th row and j-th column of K. The kernel matrix over Ni is
denoted as Ki ∈ R

ni×ni , which is a submatrix of K corresponding to the data
points in Ni. If Nj(xi) denotes the j-th neighbor of xi, then the vector ki =
[K(xi, N1(xi)), K(xi, N2(xi)), . . . , K(xi, Nni(xi))]T ∈ R

ni is used to denote the
kernel function values between data point xi and its neighbors.

After some algebraic operations using Eq.(1), problem (3) can be simplified
to an equivalent problem as follows.

min
wi∈R

ni
wT

i Kiwi − 2kT
i wi − γ Ĥ(wi)

subject to wi ∈ Δni (5)

Even with generalized entropy defined in Section 2.4, this sub-problem for com-
puting wi is still a small-scale (since ni 
 n) convex programming problem, since
Ĥ(·) is a concave function and all the constraints with respect to wi are linear.
There’re very effective and efficient algorithms that can solve convex programs
reliably [2]. For the algorithm derived in this section, we’ll use Ĥ(w) = 1−wTw
which is the �2-entropy. Problem (3) is then equivalent to the following quadratic
programming problem.

min
wi∈R

ni
wT

i (Ki + γIni)wi − 2kT
i wi

subject to wi ∈ Δni (6)
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3.2 The Computation of Y

In this subsection, we want to obtain the final clustering by optimizing problem
(4). This objective function appears difficult to optimize because of the constraint
(2) and the �1 norm ‖·‖1 in problem (4). However, two key properties of A in (7)
ensure that the problem can be optimized using spectral clustering techniques.
The two key properties of W are

W ≥ 0 and W1n = 1n (7)

For simplifying problem (4), we define H = [h̃1, . . . , h̃c] = [hil] ∈ R
n×c as

follows

hil =

{√
1

|πl| if xi ∈ πl,

0 if xi /∈ πl.
(8)

An important property of H is that HTH = Ic.
Also, we define A = W + WT and M = Deg(A) − A where Deg(A) is the

degree matrix of A, i.e., the diagonal matrix whose diagonal elements are the
sums of rows of A.

Then the optimization problem in (4) can be proved to be equivalent to the
following problem [13]:

min
H∈Rn×c

Trace
(
HTMH

)
s.t. H is defined in (8) (9)

A sketched proof can be found in the Appendix.

Relaxation. As is done in a typical spectral clustering algorithm, H defined
in (8) is relaxed to be any matrix in

{
H ∈ R

n×c |HTH = Ic

}
. The relaxed op-

timization problem is in the following:

min
H∈Rn×c

Trace
(
HTMH

)
s.t. HTH = Ic (10)

According to the Ky Fan Theorem [18], the globally optimal solution set of
problem (10) is as follows:

{
H�Q |Q ∈ R

c×c,QTQ = Ic

}
(11)

where H� ∈ R
n×c is formed by the eigenvectors corresponding to the c smallest

eigenvalues of M.

Discretization. In this step, the solution H� to the relaxed problem (10) needs
to be discretized to produce a clustering result. We use the discretization method
proposed in [17], which tries to rotate H� so that it’s close to a cluster indicator
matrix. The details of this method can be found in [17].
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Algorithm: RLRC(K, c, k, γ)

Input: Kernel matrix K ∈ R
n×n, number of output clusters c, number of nearest

neighbors k and parameter γ.

Output: Clustering solution {πl}c
l=1.

Procedure:

1. For each xi, compute the k nearest neighbors (Ni) based on kernel matrix K.

2. for each 1 ≤ i ≤ n

Compute the reconstruction weight vector wi by solving the quadratic
programming problem (6).

end for

3. Construct the sparse matrix W by combining the wi’s together.

4. Construct the sparse matrix M = Deg(W + WT ) − W −WT .

5. Construct the matrix H� by computing the eigenvectors corresponding to the
c smallest eigenvalues of M.

6. Discretize H� to get the clustering solution {πl}c
l=1.

7. return {πl}c
l=1;

Fig. 1. RLRC algorithm

3.3 Main Algorithm

In practice, the number of neighbors ni for each data point xi is often fixed to
a small value k 
 n, i.e., ni = k for all 1 ≤ i ≤ n. Thus, each neighborhood Ni

is defined as the set of k-nearest neighbors of xi, not including xi, using some
distance metric. The distance between xi and xj is measured by

D (φ(xi), φ(xj)) = ‖φ(xi) − φ(xj)‖F =
√

K(xi,xi) + K(xj ,xj) − 2K(xi,xj)

Therefore, given a kernel matrix, the neighborhood of each data point can be
computed easily. Here, k is provided by domain experts.

The main algorithm is summarized in Fig.1. We name the algorithm Regu-
larized Local Reconstruction for Clustering (RLRC).

3.4 Computational Complexity

The main computational load comes from step 1, 2 and 5. Given a kernel ma-
trix, the k-nearest neighbors of each data point can be computed with complex-
ity O(n). So the overall complexity for step 1 is O(n2). For step 2, since each
quadratic programming problem requires time O(k3), the overall time complex-
ity for step 2 is O(nk3). For step 5 which eigen-decomposes a n × n matrix
with O(nk) nonzero elements to obtain the top c eigenvectors, the time com-
plexity is O(n2c) without special optimizations. Therefore, the time complexity
of RLRC algorithm in Fig.1 is O(nk3 + n2c). Note that the complexity of step
5 can be reduced to subquadratic in n by adopting more efficient methods for
sparse eigen-decomposition problem [5].
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Table 1. Summary of datasets

Name Source n d c

cranmed CRANFIELD/MEDLINE 2431 41681 2

k1a WebACE 2340 21839 20

k1b WebACE 2340 21839 6

re0 Reuters-21578 1504 2886 13

re1 Reuters-21578 1657 3758 25

tr11 TREC 414 6429 9

tr12 TREC 313 5804 8

tr23 TREC 204 5832 6

tr31 TREC 927 10128 7

tr41 TREC 878 7454 10

tr45 TREC 690 8261 10

wap WebACE 1560 8460 20

4 Experimental Results

In this section, we conduct experiments on a number of real-world datasets to
evaluate the effectiveness of our clustering algorithm by comparing its perfor-
mance with other related methods.

4.1 Summary of Datasets

In this subsection, we will introduce the datasets used in our experiments. We
use 12 document datasets1 from the CLUTO toolkit [19]. Table 1 summarizes
the basic information of the datasets.

Dataset cranmed is composed of the CRANFIELD and MEDLINE abstracts2.
The three datasets k1a, k1b and wap are from the WebACE project where each
document corresponds to a web page listed in the subject hierarchy of Yahoo!.
Datasets re0 and re1 are derived from Reuters-21578 text collection [6]. The
six datasets tr11, tr12, tr23, tr31, tr41, and tr45 are from the TREC collec-
tion [14]. The processed datasets are also available from http://shi-zhong.
com/software/docdata.zip. These datasets provide a good representation of
different data distributions and characteristics, and so are good candidates for
evaluating different clustering algorithms.

4.2 Clustering Evaluation Criteria

In all the experiments, the “true” number of classes c is provided to all the consid-
ered clustering algorithms. Given class labels, we evaluate the clustering results
using two external validity measures, Normalized Mutual Information (NMI )
[12] and Clustering Accuracy (Acc) [13,16]. NMI is an information-theoretic
1 http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
2 Available from ftp://ftp.cs.cornell.edu/pub/smart

http://shi-zhong.com/software/docdata.zip
http://shi-zhong.com/software/docdata.zip
http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
ftp://ftp.cs.cornell.edu/pub/smart
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measure that’s previously defined in [12] to compare different clusterings. Acc
[13,16] is calculated based on the one-to-one correspondence between the clusters
and the classes. We denote a permutation function as σ(·) : {i}c

i=1 �→ {j}c
j=1

which maps each cluster index i to a class index σ(i). Acc is calculated as follows:

Acc =
max

(∑c
i=1 ni,σ(i)

)

n
(12)

where ni,σ(i) is the number of points which are in both the i-th cluster and
σ(i)-th class. Note that larger values of NMI and Acc suggest better clustering
solutions.

4.3 Experimental Settings

We normalize each document vector (Bag-of-Words) to unit norm and then the
cosine kernel [16] is adopted as the kernel function in all the experiments. We
compare the performance of the following clustering algorithms:

– Spectral clustering with normalized cut (NCut) [11]. The symmetric
weighted k-nearest neighbor graph is used as the affinity graph. The edge
weight between two connected data points in the graph is calculated using
the kernel function (cosine similarity).

– Local Learning based Clustering Algorithm3 (LLCA) proposed in [16].
There’s a regularization parameter λ in LLCA. As is done in [16], we choose
this parameter from: λ ∈ {0.1, 1, 1.5}. We report the best performance among
the results produced when different values of λ are used, which gives LLCA
an unfair advantage over others.

– Clustering via local regression (CLOR) proposed in [13]. This algorithm is
also based on the local learning idea as LLCA.

– Our proposed algorithm RLRC. We fix the regularization parameter γ = 1
to avoid the difficult parameter selection procedure.

All the above algorithms cluster the data by utilizing local neighborhood infor-
mation (k-nearest neighbors) of the data points. Besides, all of them use spectral
clustering techniques to optimize the objective functions. We use the same dis-
cretization method4 for all of them. Note that in all the experiments, the number
of classes c is provided to all the clustering algorithms.

4.4 Performance Results

In this subsection, we will provide an empirical study of the considered algo-
rithms. Clustering performance results on the datasets in terms of both NMI
and Acc values will be compared and discussed .

In particular, we aim to address the following two important questions:
3 The code is available at www.kyb.tuebingen.mpg.de/bs/people/mingrui/LLCA.zip
4 The code is available at http://www.cis.upenn.edu/~jshi/software/

www.kyb.tuebingen.mpg.de/bs/people/mingrui/LLCA.zip
http://www.cis.upenn.edu/~jshi/software/
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(1) How effective is the proposed algorithm RLRC compared with the other
three considered algorithms?

(2) How will the performance of RLRC change with different neighborhood sizes?

Generally, the optimal value of k is not easy to determine. In practice, we
choose k on the order of log(n) so that the k-nearest neighbor graph is asymp-
totically connected under some special conditions [3]. Therefore, for datasets
with size on the order of 1000, we can choose k to be a small multiple of 10.
The experimental results on the 12 datasets when neighborhood size k = 40 are
presented in Table 2. It can be observed that CLOR and the proposed algo-
rithm RLRC achieve the best NMI and Acc values. On 8 out of 12 datasets, our
algorithm RLRC achieves the best NMI and Acc values. On dataset k1a, our
algorithm achieves the best NMI value but CLOR achieves the best Acc value.
On dataset re0 and re1, our algorithm achieves the best Acc values but CLOR
achieves the best NMI values. On dataset tr41, CLOR outperforms RLRC with
respect to both NMI and Acc values. However, the NMI and Acc values achieved
by our algorithm RLRC are very close to those achieved by CLOR on dataset
tr41. The clustering results in Table 2 demonstrate the effectiveness and poten-
tial of our proposed clustering approach in discovering accurate clusterings.

We also conduct experiments on the considered datasets with different neigh-
borhood sizes k. Figure 2 shows how clustering performance results (NMI ) vary
with different values of k on dataset k1a and k1b. The horizontal axis denotes
the neighborhood size k and the vertical axis denotes the clustering performance
measured by NMI. With different values of k, our algorithm RLRC achieves
more stable results compared with other algorithms. Among the remaining three
algorithms, CLOR is more stable than the other two algorithms with respect to
different values of k.

Table 2. Experimental results of the considered algorithms on the datasets. Both NMI
and Acc results are listed in the table. For each dataset, the results with highest NMI
and Acc values are shown in boldface. Here, the neighborhood size k = 40 for all the
considered algorithms.

NMI Acc

NCut LLCA CLOR RLRC NCut LLCA CLOR RLRC

cranmed 0.8628 0.4163 0.8906 0.9413 0.9778 0.8198 0.9835 0.9930

k1a 0.5012 0.5412 0.5485 0.5640 0.3970 0.4132 0.4432 0.4282

k1b 0.6957 0.6792 0.6916 0.7814 0.7987 0.8162 0.7368 0.8688

re0 0.4005 0.4085 0.4264 0.3954 0.3265 0.3883 0.3291 0.4402

re1 0.4842 0.4854 0.4982 0.4957 0.3621 0.3784 0.3856 0.4683

tr11 0.6242 0.6201 0.6740 0.7234 0.5725 0.5652 0.6522 0.7271

tr12 0.5994 0.6221 0.6568 0.7373 0.6454 0.6613 0.7380 0.7796

tr23 0.3441 0.2982 0.3343 0.3574 0.4118 0.3775 0.4510 0.4608

tr31 0.4566 0.4990 0.4832 0.5341 0.5491 0.5620 0.5383 0.6095

tr41 0.6031 0.6220 0.6416 0.6203 0.5809 0.5763 0.6355 0.6253

tr45 0.5582 0.5848 0.6311 0.6641 0.5783 0.6681 0.6493 0.6739

wap 0.5249 0.5420 0.5406 0.5768 0.3904 0.4231 0.4199 0.4795
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Fig. 2. The clustering results (NMI ) by the considered algorithms on datasets k1a and
k1b with different neighborhood sizes (k). The legend is shown only in subfigure (a)
for clarity.

5 Conclusion

In this paper, we propose a new clustering algorithm, namely, Regularized Local
Reconstruction for Clustering (RLRC), which is motivated by the local recon-
struction approach to dealing with high dimensional data that lie on or near a
low dimensional manifold [9]. Our clustering method effectively utilizes local re-
construction information which captures important geometric characteristics of
local neighborhoods by locally reconstructing each data point from its neighbors.
Spectral clustering techniques can be employed to solve the clustering problem
efficiently. Experimental results on a number of datasets demonstrate the ef-
fectiveness of our proposed algorithm. Future work includes how to select the
neighborhood size and the regularization parameter automatically.
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Proof:
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l (Deg(A) − A) h̃l (15)

=
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