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To the blessed memory of my teacher S.I. Syrovatskii



 



Preface

This monograph is based on the lectures I gave to the staff of the Theoretical Astro-
physics Department at the National Astronomical Observatory (Mitaka, Japan) in
1998. Later I incorporated them as part of a 1-year course in magnetohydrodynam-
ics at the Department of Physics and Astrophysics Problems of the Moscow Insti-
tute of Physics and Technology and at the Astronomy Department of the Moscow
State University. The monograph deals with one of the analytical approaches in
modern astrophysics that goes back to the equation first formulated by H. Grad
and V.D. Shafranov for static magnetic configurations. In a rather simple language,
this approach can describe axisymmetric stationary flows that occur in a variety of
astrophysical objects.

A lot of people were fascinated by the elegance of the Grad–Shafranov method
and thought it could be used as the basic instrument for building realistic models
of astrophysical systems. The Grad–Shafranov method has indeed become a tool
for describing the fundamental physics of many such systems; however, it turned
out that other methods are often needed for constructing more detailed models.
The present course should be regarded in this context. Its aim is to invite further
investigation rather than sum up the results.

A few words should be said about the prerequisites for this lecture course. These
include familiarity with the main notions used in General Relativity (a covariant
derivative, tensor algebra). However, as we will see, the use of the 3 + 1-splitting
formalism admits the formulation of all laws in the language of three-dimensional
vectors with a clear physical meaning and substantially simplifies the representation
of even the most complex flows in the neighborhood of rotating black holes. As
an introduction to the 3 + 1-splitting formalism, I strongly recommend the book
“Black Holes. The Membrane Paradigm” edited by K. Thorne, D. MacDonald, and
R. Price. This monograph can, in a sense, be regarded as the continuation of the
first four chapters of this remarkable book (however, as I will show, the membrane
approach does not always provide the correct interpretation of the processes in the
vicinity of the black hole horizon).

I would like to precede the book with my personal reminiscences. I was the last
undergraduate student of Sergey I. Syrovatskii. He was my scientific advisor at the
Department of Physics and Astrophysics Problems for 3 years. He died of a second
heart attack in the autumn of 1979, which was the year when I graduated from the
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institute and started to study at the I.E. Tamm Theory Department of the P.N. Lebe-
dev Physical Institute. So, I had no time to actually work with him. Nevertheless,
bright memories of Sergey I. Syrovatskii are still in my heart. Moreover, after a
number of years I realize that the influence my teacher had on me has become even
stronger. Certainly, I think it is my duty to dedicate this book to the memory of
Sergey I. Syrovatskii.

An article published in Physics Uspekhi says that the words “a life given to sci-
ence” are not stereotypical when we speak about Sergey Syrovatskii. He belonged
to the generation of the year 1925 and went to the front as many other 16-year-olds
did (most of them gave their lives for the country). He was at the front throughout
the war and was seriously wounded several times. Sergey I. Syrovatskii’s heroic
youth formed the major traits of his character that later helped him become one of
the leading theoretical astrophysicists. Having suffered a most serious heart attack,
he was torn away from his research for a few months but recovered his strength and
continued to work as hard as before the illness. It is not accidental his portrait is
next to the portraits of I.E. Tamm and A.D. Sakharov in the conference hall of the
theory department.

Sergey I. Syrovatskii’s scientific interests were broad and encompassed a vari-
ety of problems. He obtained the most important results in magnetohydrodynamics
(classification of discontinuities and shock waves, the problem of their evolution,
the stability analysis of tangential discontinuities), radio astronomy (the theory of
synchrotron radiation that accounts for inhomogeneous distribution of electrons,
their diffusion, and electron energy losses), cosmic ray astrophysics (the problems
of the preferential acceleration of heavy nuclei and the universality of the spectrum),
and solar physics. In 1964, he and V.L. Ginzburg wrote the fundamental monograph
“The Origin of Cosmic Rays” that is still often cited, though great progress has been
made in this area in the past 40 years.

I would like to stress the trait that, I think, truly characterizes Sergey Syrovatskii
as a scientist. He liked exact solutions and spared no effort to study the two-
dimensional flows in magnetohydrodynamics (complex variable methods can be
used to efficiently obtain solutions in two dimensions, as opposed to three dimen-
sions). His first significant work, which was on the evolutionarity of magneto-
hydrodynamic discontinuities, demonstrated the remarkable lucidity of his mind
and the fundamentality of his scientific approach. Actually, all one needed was to
accurately enumerate the number of equations and the unknowns (or, in the lan-
guage of physics, the number of disturbances and waves that could transfer these
disturbances) to obtain the result that was immediately included in the Landau–
Lifshits course. When discussing scientific articles or student works in class, Sergey
I. Syrovatskii would often stress the exactness (or, conversely, inexactness) of the
formulation of physical problems and their boundary conditions. As we will see, it
is the analysis of exact solutions that is the main theme of this book.

Sergey I. Syrovatskii believed that even the exact solutions of approximate equa-
tions are extremely important for forming our intuition that helps us qualitatively
understand the basic properties of various physical processes. This shows, in par-
ticular, that he belonged to the I.E. Tamm school that maintained that any obser-
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vational interpretation should be based on fundamental physics. Incidentally, as to
this problem, he disagreed with Ya.B. Zeldovich who believed that, on the contrary,
attention should principally be given to the analysis of approximate solutions of
exact equations.

I stress that, in spite of a relatively small number of citations of Sergey I.
Syrovatskii’s journal articles, especially in recent years, he has been and remains a
major authority in scientific circles. I think that, besides his high scientific potential,
such traits of his character as the adherence to principles and kindness were crucial
here. Besides, he had no envy of other scientists’ advances in science. The issues of
priority were of no interest to him at all. But he always stood up for the principles of
scientific decency and respect for the work by others—principles he always strictly
followed. Undoubtedly, the credit for forming the atmosphere of high scientific and
moral standards, without which the truly golden age of Soviet astrophysics would
be impossible, is given to S.I. Syrovatskii and S.B. Pikelner.

Apart from scientific research, Syrovatskii gave much of his time and effort to
teaching. He established a scientific school united by the common aim—the devel-
opment of a consistent theory of current sheets as applied to the flare processes on
the Sun. S.V. Bulanov, V.A. Dogiel, A.G. Frank, B.V. Somov, and Yu. D. Zhugzhda
are only a few of his disciples whose names speak for themselves. Certainly, his
ability to unite and lead completely different people, see the positive potential in a
heated argument, and settle the differences is just what was needed to establish a
unique community of scientists able to challenge difficult scientific problems.

I remember how kind and polite he was with his students and disciples. Since I
started to work at the department, I found myself in a peculiar atmosphere of creative
work, its distinctive feature was friendly relations with the people around and com-
plete equality before science. Needless to say that now working at the Department
of Physics and Astrophysics Problems and giving the course of magnetohydrody-
namics that was once read by S.I. Syrovatskii, I try to follow my teacher in many
ways.

That is why, in recent years, when giving a lecture to a new audience, I often
begin with the words: “I was Sergey Syrovatskii’s last student . . .” And it is pleasant
to see that the words inspire the audience, they act as a tuning fork helping me and
the audience tune to the right state of mind.

Moscow, July 2009 Vasily S. Beskin
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Introduction

Axisymmetric stationary flows considered within ideal magnetohydrodynamics
(MHD) have been discussed in the context of many astrophysical sources. This
class of flows includes accretion onto ordinary stars and black holes (Bondi and
Hoyle, 1944; Bondi, 1952; Zel’dovich and Novikov, 1971; Shapiro and Teukolsky,
1983; Lipunov, 1992), axially symmetric stellar wind (Parker, 1958; Tassoul, 1978;
Mihalas, 1978, Lammers and Cassinelli 1999; Bisnovatyi-Kogan 2001), jets from
young stellar objects (Lada, 1985; Reipurth and Bally, 2001), and winds from the
magnetospheres of radio pulsars (Michel, 1991; Beskin et al., 1993; Mestel, 1999).
MHD models were actively developed in connection with the theory of magneto-
spheres of supermassive black holes which are assumed to be a “central engine” in
active galactic nuclei and quasars (Blandford, 1976; Lovelace, 1976; Phinney, 1983;
Begelman et al., 1984; Thorne et al., 1986).

The attractiveness of this model is due to its relative simplicity. The point is
that in view of axisymmetry and the stationarity (and also a “frozen-in” condition)
there are, in the general case, five “integrals of motion” that hold on axisymmetric
magnetic surfaces. It is, first of all, the energy flux (the Bernoulli integral) and the
z-component of the angular momentum and the electric potential, entropy, and the
particle-to-magnetic flux ratio. This remarkable fact makes it possible to separate
the problem of poloidal field structure (poloidal flow structure in hydrodynamics)
from the problem of particle acceleration and electric current structure. The solution
of the latter problem in the given poloidal field is expressed in terms of rather simple
algebraic relations. It is important that this approach is generalized to flows in the
vicinity of rotating black holes, because the Kerr metric is axisymmetric and sta-
tionary as well. As a result, it became possible to study quantitatively an extremely
broad class of flows from the magnetized stellar (solar) wind (Weber and Davis,
1967; Mestel, 1968; Sakurai, 1990) and jet ejection from young stars (Blandford
and Payne, 1982; Heyvaerts and Norman, 1989) to processes taking place in the
magnetospheres of radio pulsars (Michel, 1969; Ardavan, 1976; Okamoto, 1978;
Kennel et al., 1983) and supermassive black holes in active galactic nuclei (Camen-
zind, 1986; Takahashi et al., 1990; Chakrabarti, 1990). In particular, the possibility
of energy extraction from a rotating black hole was demonstrated by Blandford and
Znajek (1977) and Macdonald and Thorne (1982). In other words, some progress
was made in this direction.

V.S. Beskin, MHD Flows in Compact Astrophysical Objects, Astronomy and
Astrophysics Library, DOI 10.1007/978-3-642-01290-7 1,
C© Springer-Verlag Berlin Heidelberg 2010

1



2 Introduction

On the other hand, the problem of finding the poloidal field structure (hydrody-
namic flow structure) encounters greater difficulties. First of all, it is the complex
structure of the equation describing stationary axisymmetric flows. In the general
case, it reduces to a nonlinear mixed-type equation that changes from a hyperbolic
to an elliptic type on critical surfaces and, besides, contains integrals of motion in
the form of free functions. Generally speaking, the analogous equations that date
back to the classical Tricomi equation were discussed in the context of the problem
of transonic hydrodynamic flows from the beginning of the 20th century (Guderley,
1957; von Mises, 1958). In particular, extremely fruitful for two-dimensional flows
is a hodograph transformation technique (resulting in Chaplygin’s linear equation)
that substantially advanced the understanding of the studied processes (Frankl’,
1945; Landau and Lifshits, 1987). In astrophysical literature, the axisymmetric sta-
tionary equilibrium equations were commonly called the Grad–Shafranov equation.
A similar-type equation was formulated by them in connection with the problem
of controlled thermonuclear fusion at the end of the 1950s (Shafranov, 1958; Grad,
1960). This equation, however, referred only to equilibrium static configurations
and, generally speaking, its substantial transformation was needed when general-
izing it to the case of transonic flows. The full version of this equation containing
five integrals of motion was formulated by L.S. Soloviev in the fifth volume of the
famous series of collections “Problems of Plasma Theory” and was well known to
physicists. However, as is often the case, the Grad–Shafranov equation was little
known in astrophysical literature so that it was repeatedly rediscovered anew. As
to astrophysics, the Grad–Shafranov-type equations (in a force-free approximation
and in the absence of gravity) was widely discussed in the 1970s in connection with
the theory of the pulsar magnetospheres (Mestel, 1973; Scharlemann and Wagoner,
1973; Michel, 1973a; Okamoto, 1974; Mestel and Wang, 1979). The full nonrela-
tivistic version was independently found in Okamoto (1975) and Heinemann and
Olbert (1978). The relativistic generalization in flat space was found by Ardavan
(1979) and then studied in tens and, may be, hundreds of papers dealing with var-
ious astrophysical objects (see e.g., Mestel, 1973; Lovelace et al., 1987; Bogov-
alov, 1990; Pelletier and Pudritz, 1992; Shu et al., 1994). Later in Lovelace et al.
(1986) the case of the Schwarzschild metric was considered. Finally, the equilib-
rium equation was written in the most general Kerr metric as well (Nitta et al.,
1991; Beskin and Pariev, 1993). Nevertheless, in spite of a great number of papers
devoted to this subject, there was not much progress made in this direction.

The difficulty, as we will see, is that the very statement of the direct problem
within the Grad–Shafranov approach turns out to be a nontrivial one. For example,
in the hydrodynamic limit when there are three integrals of motion only, the prob-
lem requires four boundary conditions for the transonic flow. This implies that on
some surface two thermodynamic functions and two velocity components are, for
example, to be specified. However, to determine the Bernoulli integral, if we do not
know which equilibrium equation cannot be naturally solved, we are to give all three
velocity components, which is impossible because the third velocity component
is to be found from the solution. This inconsistency is just one of the main diffi-
culties of the Grad–Shafranov equation method. Moreover, it was quite clear that
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this approach cannot be generalized to the case of nonideal, nonaxisymmetric, and
nonstationary flows and, therefore, it is impossible to take into account many pro-
cesses of crucial importance for concrete astrophysical sources. These may include
interaction between matter and self-radiation with accretion (Shvartsman, 1970;
Bisnovatyi-Kogan and Blinnikov, 1980; Thorne et al., 1981; Nobili et al., 1991) and
the formation of stellar (solar) wind (Tassoul, 1978; Mihalas, 1978), with account
taken of viscous forces (Shakura, 1973; Shakura and Sunyaev, 1973; Novikov and
Thorne, 1973) and radiation transport effects with disk accretion (Abramowicz et al.,
1988; Narayan and Yi, 1995b) as well as the kinetic effects (Gurevich et al., 1993).

At the same time, in some cases, the ideal hydrodynamics approximation is quite
adequate. Thus, for example, the radiation associated with the adiabatic heating
of accreting matter appears smaller than the Eddington luminosity (Shapiro and
Teukolsky, 1983); therefore, the matter entropy is considered to be constant. The
ideal medium is provided by high plasma conductivity. These examples give one
hope that the ideal (magnetic) hydrodynamics approximation can describe rather
exactly the real astrophysical flows. Therefore, the ideal flows have been actively
examined in the past 30 years. Of great importance here was Blandford and Payne’s
remarkable paper (Blandford and Payne, 1982), which considers a rather broad class
of self-similar solutions to the Grad–Shafranov equation. As a result, the analysis of
these self-similar solutions, which were obtained by reducing the Grad–Shafranov
equation to an ordinary differential equation, resulted in one of the most popular
lines of investigation (see e.g., Low and Tsinganos, 1986; Li et al., 1992; Sauty and
Tsinganos, 1994; Sauty et al., 1999).

However, the difficulties associated with the application of the Grad–Shafranov
equation method proved too serious. Because of the intrinsic inconsistency of this
approach, which was mentioned above, it was impossible, in the general case, to
solve direct problems, i.e., specify the flow structure in some region, given the
physical parameters on its boundary. All this refers to self-similar solutions that
require self-similarity of the boundary conditions. As a result, in the past 30 years no
generally accepted model for particular astrophysical objects has been constructed,
though the investigations in this area have been very intensive. Therefore, it is not
surprising that the crushing majority of researchers who are, first of all, interested
in astrophysical applications placed primary emphasis upon a quite different class
of equations, viz., upon time-dependent problems the solution of which is possi-
ble by numerical methods only (Pneuman and Kopp, 1971; Hawley et al., 1984;
Uchida and Shibata, 1984; Pudritz and Norman, 1986; Petrich et al., 1989; Ruffert
and Arnett, 1994; Cao and Spruit, 1994; Ustyugova et al., 1995; Bogovalov and
Tsinganos, 1999; Romanova et al., 2002).

Nevertheless, as will be shown, there is an approach that makes it possible to
solve direct problems analytically even by the Grad–Shafranov method. This book
is just devoted to a comprehensive introduction to the analytical methods of anal-
ysis of the Grad–Shafranov equation. It is necessary to make a reservation that the
analytical methods discussed below allow us to obtain the solution in exceptional
cases only. Therefore, our main goal is to clarify some key properties peculiar
to MHD flows in the vicinity of the real cosmic sources rather than constructing
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self-consistent models of concrete compact objects. Simultaneously, using simple
examples, we clarify the possibilities and set the limits of application of the Grad–
Shafranov equation method. Thus, in a strict sense, the present book concerns purely
physical aspects of the theory rather than astrophysical ones. However, all applica-
tions will be astrophysical ones. Moreover, the key physical results obtained by the
Grad–Shafranov approach should be independent of computational methods.



Chapter 1
Hydrodynamical Limit—Classical Problems of
Accretion and Ejection

Abstract There are several reasons why it is useful to start from the pure hydro-
dynamical case. First of all, the hydrodynamical version of the Grad–Shafranov
equation is not as popular as the full MHD one. On the other hand, it has all the
features of the full MHD version in the simplest form. In particular, within the
hydrodynamical approach one can introduce the 3 + 1-splitting language—the most
convenient one for the description of the ideal flows in the vicinity of a rotating
black hole. Starting from the well-known set of equations describing the nonrel-
ativistic ideal flow, we will go step by step to more complicated cases up to the
most general one corresponding to the axisymmetric stationary flows in the Kerr
metric. Finally, several examples will be considered which demonstrate how the
approach under study can be used to obtain the quantitative information of the real
transonic flows in the vicinity of rotating black holes. The necessity of taking into
account the effects of General Relativity is not so obvious for most compact sources.
For instance, one cannot exclude that the black hole plays only a passive role in
the jet formation process, and the effects of General Relativity in this case may be
unimportant for flow description in the region of jet formation. At the same time,
gravitational effects make, apparently, an appreciable contribution to the determi-
nation of physical conditions in compact objects. First, this is indicated by the hard
spectra and the e+e− annihilation line observed in galactic X-ray sources, which
are believed to be solar mass black holes. Such characteristics are never observed in
the X-ray sources which are firmly established to show accretion not onto a black
hole but onto a neutron star. Another indication comes from superluminal motion in
quasars which may be due to the relativistic plasma flow ejected along with a weakly
relativistic jet. All these testify in favor of the existence of an additional mechanism
for particle creation and acceleration for which the effects of General Relativity
may be of principal importance. So, it is undoubtedly interesting to consider the
flow structure in the most general conditions, i.e., in the presence of a rotating black
hole.

V.S. Beskin, MHD Flows in Compact Astrophysical Objects, Astronomy and
Astrophysics Library, DOI 10.1007/978-3-642-01290-7 2,
C© Springer-Verlag Berlin Heidelberg 2010
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6 1 Hydrodynamical Limit—Classical Problems of Accretion and Ejection

1.1 Astrophysical Introduction—Accretion onto Compact
Objects

1.1.1 Accretion Disks

Hydrodynamical accretion and ejection have been the focus of attention of astro-
physics of compact objects since their advent. These phenomena are associated
with the problem of the activity of galactic nuclei and quasars (Zel’dovich and
Novikov, 1971), the mechanism of jet formation and its stability (Begelman et al.,
1984), as well as the nature of galactic X-ray sources (Shakura and Sunyaev, 1973;
Novikov and Thorne, 1973; Mirabel et al., 1992). The foundation of the consistent
theory of these flows was laid even in the 1940s–1950s when the problem of the
transonic accretion of an ideal gas onto a gravitational center (Bondi and Hoyle,
1944; Bondi, 1952) and the spherically symmetric transonic outflow from the star
surface (Stanyukovich, 1955; Parker, 1958) were thoroughly studied.

The hydrodynamical accretion theory was rapidly developed after the discovery
of galactic X-ray sources in the early 1970s (Giacconi et al., 1971) connected with
accreting neutron stars and solar mass black holes, as well as quasars and other
active galaxies in the center of which supermassive black holes are supposed to be
located. Then it became clear that the nature of the activity of all these objects is
connected with gravitational energy released by accretion. Thus, for accretion onto
a neutron star the luminosity L is to be fully determined by the accretion rate Ṁ :

L = G M Ṁ

R
. (1.1)

The most important argument for the validity of the theory was the absence of X-ray
sources with luminosity exceeding the Eddington limit:

LEdd ≈ 1038 erg/s
M

M�
. (1.2)

During accretion onto a black hole a major part of radiation, generally speaking, can
be absorbed by a black hole. Nevertheless, to roughly estimate the energy released
by an accretion disk one usually uses the formula

L ∼ ηṀc2, (1.3)

where the efficiency η ≈ 0.06–0.4. Note that even for adiabatic flows of zero vis-
cosity the exact solutions were obtained only for a number of special cases, for
example, the spherically symmetric accretion. In this case, the flow structure is, in
fact, specified—the motion is along the radius and the availability of the integrals
of motion allows one to fully specify the flow characteristics. The above discus-
sion deals with the problem of gas ejection from stars (mostly, of the early spectral
types) which have no exact two-dimensional solutions either, though this problem
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was numerically studied in detail (Bjorkman and Cassinelli, 1993; Owocki et al.,
1994). Recall that in the middle of the last century there were two viewpoints on the
solar wind structure. They corresponded to two different asymptotic solutions of the
hydrodynamical equations relating to supersonic (“wind”) and subsonic (“breeze”)
outflow regimes. It was E. Parker who elucidated the separability of the transonic
regime and showed that the gravitational field can act as a “nozzle” permitting the
flow to pass the sonic surface. Clearly, the direct evidence for the supersonic nature
of the solar wind was found only after the direct measurements made on artificial
satellites.

Thus, the simplest adiabatic (including spherically symmetric) accretion and
ejection models allowed one to substantially clarify most of the properties of the
real astrophysical objects. Nevertheless, using these models, it was not, of course,
always possible to achieve even a qualitative agreement with the observational data.
In particular, it soon became obvious that, with adiabatic gas accretion onto a black
hole, its radiation proves too low. And this result was already in contradiction with
the luminosity of black hole candidates. Fortunately, the answer to this question was
quickly found—a strong energy release can occur in accretion disks. These accretion
disks naturally occur in binary systems in which the specific angular momentum of
an accreting matter is rather large.

It is clear, however, that a gas flow in accretion disks cannot be described by the
ideal hydrodynamical equations. Indeed, the accretion disk is a gas that approaches
a compact object (a neutron star, a black hole) in a spiral due to viscous friction,
its gravitational energy being released as heat and radiation. The disk is thin if the
gas radiates a greater part of its energy and, hence, remains cold. The thin disk
approximation holds good for external parts of the disk. The estimates show that
this regime is realized for r � rg, where

rg = 2G M

c2
(1.4)

is a gravitational radius. Another extreme case is a thick disk in which the radiated
energy is fully absorbed by an accreting matter. However, this case can occur at
sufficiently large accretion rates only. The thick disk approximation can be valid
only in the vicinity of a black hole (r < 20 rg), where the main energy release
occurs.

For active galactic nuclei (AGN), the X-ray spectrum associated with the central
regions of an accretion disk (r < 10 rg) can, generally, be represented as a sum of
two components: a hard power-law component (up to 100 keV) and a soft compo-
nent in the continuum and emission lines (largely, in the reflected iron line 6.4 keV).
Therefore, it is more probable that both a hot (T > 108 K) gas and a relatively cold
(T ∼ 106 K) gas participate in the accretion onto the central object (Mushotzky
et al., 1993). The hot and cold phases are most likely to interact with each other
intensively. However, it does not seem possible to examine this interaction until the
source geometry—the relative position of the hot and cold phases—is specified.
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In the disk + corona model, the cold phase is a disk and the hot phase is an
optically thin corona above this disk. In this model, the corona heating can be
associated, for example, with the reconnection of the small-scale magnetic field
removed from the disk region due to the turbulent diffusion. The assumption on the
presence of the corona more consistently accounts for the properties of the disk’
spectra (Bisnovatyi-Kogan and Blinnikov, 1977; Liang, 1977; Haardt and Marashi,
1991, 1993). Indeed, disk soft photons in this case undergo inverse Compton scat-
tering on the hot corona matter, which results in the observed hard power-law spec-
trum. Part of the high-energy photons returns to the disk and heats it, which is
observed as emission lines. The modeling shows that the energy distribution over
the spectrum can be better explained if the corona is assumed to be inhomogeneous.
Therefore, the energy is released in portions rather than uniformly in time as is the
case in stellar coronas (Haardt et al., 1994). The corona, as we will see, can play an
appreciable role in the formation of jets.

An alternative model accounts for some peculiarities of the spectrum under the
assumption that the system is cold clouds submerged in hot medium (Guilbert and
Rees, 1988; Celotti et al., 1992; Kuncic et al., 1997). In this case, in the vicinity
of the central object the disk, as such, is absent. The main difference as compared
to the previous model is that the iron line is not necessarily emitted in the vicinity
of the central object. This model yields good results for the sources in our Galaxy,
which are connected with the accretion disks. It can also account for some features
of the galactic nuclei spectra.

The theory of the hydrodynamical disk accretion onto compact objects (neutron
stars, black holes) has been developed since the end of the 1960s (Lynden-Bell,
1969; Shakura, 1973; Shakura and Sunyaev, 1973; Novikov and Thorne, 1973).
However, most details are still to be cleared up. Therefore, one had to use simplified
solutions such as the standard model (α-disk) (Shakura and Sunyaev, 1973) and also
their various modifications (Abramowicz et al., 1988; Narayan and Yi, 1994).

Besides, one should remember that in the case of accretion onto a black hole the
effects of General Relativity result in two new significant properties:

1. First, at small distances from a black hole, stable circular orbits are absent. For
a Schwarzschild (nonrotating) black hole the radius r0 of the marginally stable
orbit is (Shapiro and Teukolsky, 1983)

r0 = 3 rg. (1.5)

This implies that an accreting matter, which penetrated the region r < r0 rather
quickly, more exactly, in the dynamic time

τd ∼
[
vr (r0)

c

]−1/3 rg

c
, (1.6)

approaches the horizon of a black hole. It is important that this motion occurs in
the absence of viscosity as well. For the accretion onto a neutron star with a weak
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magnetic field, slow spiral motion occurs up to the surface itself. Note that, in
most cases, the discussion was limited only by the use of Paczyński–Wiita model
gravitational potential (Paczyński and Wiita, 1980)

ϕpw = − G M

r − rg
, (1.7)

which, though it allows one, in some cases, to model the real situation (for
example, to determine the location of the marginally stable orbit), does not fully
correspond to the Schwarzschild metric.

2. Second, accretion onto a black hole must be of a transonic character. Indeed,
as shown below, on the horizon of a black hole the flow must be supersonic.
On the other hand, as we will see from the estimate (1.14), within the standard
approach, the smallness condition of the radial velocity vr < cs remains valid up
to the marginally stable orbit, at least, for not too large accretion rates. Therefore,
the sonic surface on which, by definition, the poloidal velocity of matter becomes
equal to the velocity of sound is located somewhere between the horizon and the
marginally stable orbit. Thus, the problem of the structure of the accretion flow
onto a black hole requires the consistent analysis of the transonic flow regime.

Problem 1.1 Show that for the Paczyński–Wiita potential (1.7)

• the radius of the marginally stable orbit, as in the Schwarzschild metric, is
given by relation (1.5),

• the orbital velocity v = vϕ on the marginally stable orbit differs from the
relativistic value vrel = c/2:

v =
√

3

2
√

2
c (1.8)

(accordingly, the specific angular momentum L = rvϕ is different too).

We can mention here one more extremely interesting question also associated
with the use of the simplified equations. It concerns the problem of causality that
arises in the case of the standard determination of viscous terms in the hydrodynam-
ical equations (Narayan, 1992; Narayan et al., 1994). Using this standard approach,
we had to give additional boundary conditions on the black hole horizon (Narayan
et al., 1997; Chen et al., 1997), which cannot be causally connected with an accret-
ing plasma.

One should note that the accretion disk theory has not become less interesting
with time as the increasing sensitivity of the receivers provides new information
about the accreting systems. Therefore, the number of publications devoted to this
problem has increased as well (Igumenshchev et al., 2000; Artemova et al., 2001; de
Villiers and Hawley, 2002; Krolik and Hawley, 2002). In particular, the accretion
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was studied by the Kerr metric (Riffert and Herold, 1995; Peitz and Appl, 1997,
1998; Gammie and Popham, 1998a,b; Beloborodov, 1998), which allowed one to
include the effects of the black hole rotation. Much attention was given to the hydro-
dynamical equations with nonzero viscosity in which, however, there are no diffi-
culties associated with causality (Kley and Papaloizou, 1997; Gammie and Popham,
1998a,b). Thus, it was possible to settle most of the questions connected with the
problem of boundary conditions.

1.1.2 Standard Model

Let us recall two simplifying assumptions that form the basis of the standard model
(see, e.g., Shapiro and Teukolsky, 1983):

1. The viscous stress tensor trϕ , which results in a loss of the angular momentum of
plasma and, hence, its accretion, can be represented in the model form

trϕ = αSS P, (1.9)

where P is the gas pressure and the phenomenological dimensionless parameter
αSS < 1 is considered to be a constant.

2. The assumption on the total reradiation in situ of the energy released by the
viscous friction:

F+ = F−. (1.10)

The value F+ corresponds to the viscous plasma heating of a unit area of a disk

F+ ≈ Htrϕr
dΩ

dr
, (1.11)

and the thermal radiation of a unit area F− proportional to the fourth power of
temperature is generally estimated as

F− ≈ 2

3

aT 4c

κρH
. (1.12)

Here H is the accretion disk half-thickness, the angular velocity Ω = vϕ/r , κ is a
coefficient of opacity, and a is a radiation constant.

As is well known, the above assumptions turn out to be adequate for finding, in
the case of the thin disk, all disk parameters by the simple analytical relations. In
particular,

• the plasma rotates, practically, with the Keplerian velocity vϕ ≈ vK = (G M/r )1/2,
• the disk half-thickness H is determined by the vertical balance of the gravita-

tional force and the pressure gradient
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H

r
≈ cs

vK
, (1.13)

• the radial velocity at distances larger than the radius of the sonic surface is small
as compared to the toroidal one

vr

vK
≈ αSS

c2
s

v2
K

, (1.14)

• the sonic surface is located in the vicinity of the marginally stable orbit.

The values fully characterizing the accretion are natural physical parameters: the
mass M of a compact object, the accretion rate Ṁ , and the parameter αSS. Because
of the extreme simplicity of the standard model, it was regarded as a basic one over
many years (Shapiro and Teukolsky, 1983; Lipunov, 1992).

However, the very nature of the key parameter—the value αSS—still remains
unclear. In any event, it cannot be connected with the ordinary molecular viscosity,
because, in this case, αSS would not be larger than 10−6 (Shapiro and Teukolsky,
1983). On the other hand, as follows from the observations, αSS is to be much larger.
It would be logical to connect it with (magnetic) turbulence (Balbus and Hawley,
1998). But only in recent years the first papers in which the parameter αSS could
be determined “from the first principles” have appeared (Brandenburg et al., 1995;
Hawley et al., 1995; Stone et al., 1996; Arlt and Rüdiger, 2001).

Besides, in the past years, the problem of the so-called slow accretion arose—
most of the nuclei of the galaxies were found to radiate much less than predicted
by the standard model (up to 10−7 Ṁc2). It is exactly the case that is realized in our
Galaxy (Narayan et al., 1998; Mahadevan, 1998) and in giant elliptic galaxies that
are active but have low luminosity (Reynolds et al., 1996a; di Matteo and Fabian,
1997; Mahadevan, 1997). Relatively inefficient (in the sense of the observed radia-
tion) is the supercritical accretion when the accretion rates are much larger than the
Eddington limit and the equilibrium between the accreting matter pressure and the
radiation pressure coming out from the inner layers is reached.

The low emissivity, in these cases, can be explained as follows. Black holes differ
from other astrophysical objects in that they have no surface and absorb not only an
accreting matter but also radiation. Therefore, if the gas is “forced” either not to
radiate its gravitational or magnetic energy or to direct the radiated flux straight to
a black hole, all energy is absorbed together with the matter. A distant observer will
see that the gravitational energy is reprocessed into a receding radiation with low
efficiency. The first case is realized if the accretion rates are very small. The second
case can be realized in optically thick disks when the extracted heat energy fails to
radiate and, finally, is captured by a black hole together with the matter.

An important observational test here would be to compare the radiation efficiency
of weak sources associated with black holes with other accretors, for example, neu-
tron stars. If it turned out that accreting black holes radiate much less efficiently, it
would be a strong argument that the energy absorption by a black hole does occur.
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However, there is no clarity in this question yet, because there are publications that
both confirm (Garcia et al., 2001) and refute (Abramowicz et al., 2002) this asser-
tion. This uncertainty is associated with the difficulties of taking into consideration
the group of the weakest sources.

To explain the nature of weakly radiating objects one had to consider the radial
energy transport. This was first done in Paczyński and Bisnovatyi-Kogan (1981).
They showed that when averaging the two-dimensional (i.e., axisymmetric station-
ary) hydrodynamical equations in the direction perpendicular to the thin disk plane,
they can be reduced to the system of ordinary differential equations in which all
values depend on the radial coordinate r only. In the simplest nonrelativistic version,
the corresponding system of equations looks like (Artemova et al., 2001)

• the continuity equation

Ṁ = 4πr Hρv, (1.15)

• the r -component of the Euler equation

v
dv

dr
= − 1

ρ

dP

dr
+ (

Ω2 − Ω2
K

)
r, (1.16)

• the ϕ-component of the Navier–Stokes equation which is integrated with respect
to r

Ṁ

4π
(Ln − L0) + r2 Htrϕ = 0, (1.17)

• the θ -component of the Euler equation equivalent to (1.13)

H = cs

ΩK
, (1.18)

• the energy equation

F+ − F− = − Ṁ

2πr

[
dE

dr
+ P

d

dr

(
1

ρ

)]
. (1.19)

Here

E = 3

2
RT + aT 4

ρ
(1.20)

is the full energy per one particle (R is a gas constant), Ln = Ωr2 is the specific
angular momentum, and L0 is an integration constant. The density ρ, the pressure
P , the velocity v = vr , and the energy E correspond to their values in the equatorial
plane. In the 1990s, the analysis of Eqs. (1.15), (1.16), (1.17), (1.18), and (1.19) and
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their generalizations, which allow one to consider the effects of General Relativity,
was one of the principal trends in the theory of the disk accretion onto compact
objects (Riffert and Herold, 1995; Peitz and Appl, 1997; Gammie and Popham,
1998a,b; Beloborodov, 1998).

1.1.3 ADAF, ADIOS, etc.

As another solution of the problem of the low inefficiency by accretion, there were
proposed flows with energy advection (the so-called ADAF—advection dominated
accretion flows) (Ichimaru, 1977; Narayan and Yi, 1994). This flow must have the
form of a thick quasispherical flow in which the radial velocity is close to the
toroidal one: vr ∼ vϕ . This regime can take place for sufficiently slow (Ṁ � ṀEdd)
accretion of an optically thin gas.

This model is based on the well-known property according to which the heating
in a viscous flow results in an increase in the temperature of heavy particles (ions),
whereas electrons, with which the radiation mechanism is associated, can remain
cold (Braginsky, 1965). If we assume that ions and electrons exchange energy rather
slowly, the viscous heating is not accompanied by the effective loss of energy. There-
fore, the energy is transported together with an accreting matter and thus absorbed
by a black hole. This model was thoroughly developed (Narayan and Yi, 1995a,b;
Abramowicz et al., 1995; Igumenshchev et al., 1998; Medvedev and Narayan, 2000)
and allowed one to explain most observational facts, for example, the luminosity
and spectrum of the central source in our Galaxy (Narayan et al., 1998; Mahadevan,
1998). It was also discussed in connection with the active elliptic galaxies with low
luminosity (Reynolds et al., 1996a; di Matteo and Fabian, 1997; Mahadevan, 1997),
the galaxy NGC4258 (Lasota et al., 1996), and some other sources in our Galaxy.
Sometimes, however, there were difficulties associated with the compatibility of this
model with the observations. In particular, the predicted flow from the sources was
not observed in the radiofrequency band (Herrnstein et al., 1998; di Matteo et al.,
1999) (see also Celotti and Rees, 1999).

Besides, there are obvious gaps in the physical ground of the ADAF model as
well.

1. It is assumed that the heating of ions is more effective than that of electrons
and the energy exchange between two components is ineffective. Therefore, the
disk matter must exist in the form of a two-temperature plasma so that in the
vicinity of the inner edge of an accretion disk the temperatures of ions and elec-
trons appreciably differ from one another (Ti ∼ 1012 K, Te ∼ 109 K) (Quataert,
1998; Gruzinov, 1998; Begelman and Chiueh, 1988; Blackman, 1999). However,
these assumptions are not obvious. For example, the possibility of the electron
heating due to the magnetic reconnection is not taken into account, though this
process, undoubtedly, occurs (it is directly observed in solar flares) and is very
efficient (Bisnovatyi-Kogan and Lovelace, 1997).
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2. It is supposed that the total energy of an accreting gas is positive; hence, the
disk as a whole is not gravitationally bounded. Therefore, in this system after the
energy redistribution and after part of a gas is falling on a black hole, the outflow-
ing jets, which are not taken into account within ADAF, can occur (Blandford
and Begelman, 1999).

3. The solution under study is self-similar. Therefore, within its framework, the
natural boundary conditions at infinity and in the vicinity of the gravitational
center cannot be satisfied.

4. There are indications that this accretion regime is not stable to thermal perturba-
tions, the matter concentration in clusters, etc.

There has recently been proposed a modified advection-dominated flow model
that, in principle, solved the positive energy problem—the so-called ADIOS (adv-
ection-dominated inflow–outflow solutions) (Blandford and Begelman, 1999).
Besides the total negative energy inflow, a more or less isotropic outflowing wind
was introduced. Within this model, only a small part of the matter coming from
large distances thus falls onto a black hole. In this way, the low radiation efficiency
is explained and the problem of radiation excess in the radiofrequency band is
solved (Beckert, 2000; Becker et al., 2001).

However, this model encounters some difficulties as well.

1. For matter ejection, it is necessary for its energy (the Bernoulli integral E) to be
positive. However, with disk accretion, the binding energy of a gas rotating in
the Keplerian orbits is necessarily negative. A comprehensive analysis showed
that, for the sufficiently low viscosity parameter αSS < 0.1, this outflow regime
appears impossible (Abramowicz et al., 2000). This is evident both from the reg-
ularity conditions on the critical surfaces, which uniquely show that the accreting
matter energy must be negative, and from the direct numerical computations (see,
e.g., Narayan et al., 1997; Chen et al., 1997; Abramowicz et al., 1988; Gammie
and Popham, 1998a,b; Ogilvie, 1999).

2. The positive value of the binding energy is the necessary but not sufficient cause
of the outflow (as is known, the Bernoulli integral in the spherically symmetric
Bondi accretion is positive).

Thus, one can conclude that even in the simplest hydrodynamical approximation
the theory of accretion onto compact objects is still very far from completion. In
particular, within the purely hydrodynamical approach, one still failed to construct
a sufficiently reliable model of the central engine in the active galactic nuclei, which
would lead to the efficient matter outflow and, hence, give rise to jet ejections that
carry away a considerable part of the extracted energy. The outflow could be con-
nected with the strongly heated corona but, in this case, the X-ray luminosity of the
active nuclei must have been much higher than is evident from the observations.
Besides, in spite of various modifications, the advection-dominated flow models
still fail to consistently account for the inefficiently radiating sources. However,
undoubtedly, for the accretion to be fully described it is absolutely necessary to take
into account the advection (Bisnovatyi-Kogan and Lovelace, 2001).
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On the other hand, one cannot but emphasize that the detailed computations
showed the sufficient stability of the standard model. In particular, for a broad class
of accretion flows and in a wide range of distances from the gravitational center, the
rotational velocity of an accreting matter slightly differs from the Keplerian velocity
and the sonic surface is in the vicinity of the marginally stable orbit. A difference is
observed only in the vicinity of the black hole horizon when the relativistic effects
become substantial.

1.2 Main Properties of Transonic Hydrodynamical Flows

1.2.1 Basic Equations

Let us now proceed to the comprehensive description of the axisymmetric stationary
hydrodynamical flows. Let us begin from the beginning. We write the ideal station-
ary (∂/∂t = 0) hydrodynamical equations in flat space (Landau and Lifshits, 1987):

• the continuity equation

∇ · (nv) = 0, (1.21)

• the Euler equation

(v · ∇)v = −∇ P

ρ
− ∇ϕg, (1.22)

• the ideal condition

v · ∇s = 0, (1.23)

• the equation of state

P = P(n, s). (1.24)

The latter relation can be rewritten as

dP = ρdw − nT ds. (1.25)

For the polytropic equation of state

P = k(s)nΓ , (1.26)

which we, for simplicity, use in the following, we have for Γ = const 
= 1
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c2
s = 1

mp

(
∂P

∂n

)
s

= 1

mp
Γ k(s)nΓ−1, (1.27)

w = c2
s

Γ − 1
, (1.28)

T = mp

Γ
c2

s . (1.29)

Here n (1/cm3) is the concentration, mp (g) is the mass of particles (ρ = mpn—the
mass density), s is the entropy per one particle (dimensionless), w (cm2/s2) is the
specific enthalpy, T (erg) is the temperature in energy units, and, finally, cs (cm/s)
is the velocity of sound.

A number of important comments are already necessary here.

• The Euler equation (1.22) together with relations (1.21), (1.23), and (1.25) can
be rewritten as the conservation of the energy flux:

∇ ·
[

nv
(
v2

2
+ w + ϕg

)]
= 0. (1.30)

Using now the continuity equation (1.21), we get

v · ∇En = 0, (1.31)

where

En = v2

2
+ w + ϕg. (1.32)

It is the well-known nonrelativistic Bernoulli integral that, as we see, is to be
constant on the streamlines.

• The energy equation (1.30) together with the Euler equation (1.22) can be rewrit-
ten as the four-dimensional energy–momentum conservation law

∇αT αβ = 0, (1.33)

where for ϕg = 0

T αβ =

⎛
⎜⎜⎝
ρv2

2
+ ε ρv

(
v2

2
+ w

)

ρvi Pδik + ρvivk

⎞
⎟⎟⎠ . (1.34)

Here ε is the internal energy density. In the following, the Greek indices α, β, γ
stand for the four-dimensional values, whereas the Latin indices i , j , k stand for
three-dimensional ones.
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• The hydrodynamical equations are the system of five nonlinear equations per five
unknowns: two thermodynamic functions and three velocity components v.

Problem 1.2 Using the thermodynamic identity (1.25) and explicit expres-
sions (1.26), (1.27), (1.28), and (1.29), show that for Γ = const 
= 1 the
function k(s) must have the fully definite form

k(s) = k0e(Γ−1)s . (1.35)

Problem 1.3 How can cs 
= 0 for s = 0 be explained?

Problem 1.4 Check relations (1.30), (1.31), (1.32), and (1.34).

1.2.2 Spherically Symmetric Flow

As the simplest but very important example, we consider the spherically symmet-
ric flow. Since, as we saw, the ideal hydrodynamical equations can be written as
conservation laws, we have for the purely radial flow v = vr

• the continuity equation

Φ = 4πr2n(r )v(r ) = const, (1.36)

• the ideal condition

s = const, (1.37)

• the energy equation

En = v2(r )

2
+ w(r ) + ϕg(r ) = const. (1.38)

As a result, given three parameters Φ, s, and En, we can determine all physical
characteristics of the flow. Indeed, having rewritten the Bernoulli integral (1.38) as

En = Φ2

32π2n2r4
+ w(n, s) + ϕg(r ), (1.39)

we see that this equation contains only one unknown value—the concentration n.
Hence, this algebraic equation in implicit form specifies the concentration n as a
function of three invariants and the radius r :
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n = n(En, s, Φ; r ). (1.40)

Along with the entropy s, this relation allows us to define all other thermodynamic
functions and according to relation (1.36) the flow velocity v as well.

One should stress that Eq. (1.39) has a singularity on the sonic surface. To show
this we determine the derivative dn/dr . Differentiating Eq. (1.39) with respect to r ,
we have for the gravitational potential ϕg = −G M/r

dn

dr

[(
∂w

∂n

)
s

− Φ2

16π2n3r4

]
− Φ2

8π2n2r5
+ G M

r2
= 0. (1.41)

As a result, using the thermodynamic relation (1.25), we obtain for the logarithmic
derivative η1

η1 = r

n

dn

dr
=

2v2 − G M

r
c2

s − v2
=

2 − G M

rv2

−1 + c2
s

v2

= N

D
. (1.42)

We see that the derivative (1.42) has a singularity when the matter velocity is equal
to the velocity of sound: v=cs =c∗ (D = 0). This implies that for smooth transition
through the sonic surface r = r∗, the additional condition is to be satisfied:

N (r∗) = 2 − G M

r∗c2∗
= 0. (1.43)

In other words, the transonic flows are two-parameter ones. As shown in Fig. 1.1,
the sonic surface is the X -point on the (distance r )–(velocity v) plane.

Fig. 1.1 Spherically
symmetric accretion structure
for the given values n∞ and
c∞ and the different values
Φ. The transonic flow (bold
curves) corresponds to the
critical accretion rate
Φ = Φcr (1.56). The fine
curves below the X -point
correspond to the subsonic
accretion with Φ < Φcr

*

*
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Problem 1.5 For the case of the spherically symmetric transonic accretion
(the so-called Bondi accretion), when an accreting matter has a zero velocity
for r → ∞, the Bernoulli integral En can be expressed in terms of the velocity
of sound at infinity:

En = w∞ = c2
∞

Γ − 1
.

Using now relations (1.36), (1.37), (1.38), and (1.43), find the well-known
expressions for the velocity of sound c∗ and the concentrations n∗ on the sonic
radius r∗ (Bondi, 1952):

c2
∗ =

(
2

5 − 3Γ

)
c2
∞, (1.44)

n∗ =
(

2

5 − 3Γ

)1/(Γ−1)

n∞, (1.45)

r∗ =
(

5 − 3Γ

4

)
G M

c2∞
. (1.46)

Problem 1.6 Show that

η1(r∗) = −4 ± √
10 − 6Γ

Γ + 1
, (1.47)

where plus stands for the accretion and minus for the ejection.

Problem 1.7 Show that for the spherically symmetric accretion with Γ < 5/3

• for r � r∗ (the subsonic regime) the flow can be considered to be incom-
pressible:

n(r ) ≈ const, (1.48)

v(r ) ∝ r−2. (1.49)

• for r � r∗ (the supersonic flow) the particle motion is close to free fall:
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n(r ) ∝ r−3/2, (1.50)

v(r ) ≈
(

2G M

r

)1/2

. (1.51)

Problem 1.8 Show that for the spherically symmetric transonic outflow [the
Parker outflow (Parker, 1958)]

• the physical parameters on the sonic surface r = r∗, where

r∗ = G M

2c2∗
, (1.52)

are connected with the corresponding values on the star surface r = R as

c2
∗ =

(
2

5 − 3Γ

)
c2

R +
(
Γ − 1

5 − 3Γ

)(
v2

R − 2G M

R

)
, (1.53)

n∗ = nR

(
c2
∗

c2
R

)1/(Γ−1)

. (1.54)

• the radial velocity on the star surface is to be

vR = c∗

(
c2
∗

c2
R

)1/(Γ−1) (r∗
R

)2
. (1.55)

Being an extremely simplified model, the radial one-dimensional flow, neverthe-
less, allows one to formulate several important properties, while most of them, as
we will see, remain valid for the Grad-Shafranov (GS) equation as well.

• The flow can pass the sonic surface smoothly in the gravitational field only.
Indeed, the numerator N in (1.42) can be zero only if the gravitational term
G M/rv2 is available.

• The solutions (1.44), (1.45), (1.46), and (1.53) have a singularity for Γ = 5/3.
This implies that for Γ = 5/3 an increase/decrease in the velocity of sound due
to the adiabatic heating/cooling exactly coincides with the change in the velocity
of matter. As a result, in the nonrelativistic case for Γ ≥ 5/3, the transonic flow
cannot be realized.

• The transonic flow is a two-parameter one. This implies that for the full defini-
tion of the transonic flow one can specify two boundary conditions, for example,
the density ρ∞ = mpn∞ and the sound velocity c∞ at infinity. Then all other
parameters can be expressed in terms of these values. For example, we have for
the full accretion rate Φtot = Φcr, where
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Φcr = 4πr2
∗c∗n∗ = π

(
2

5 − 3Γ

)(5−3Γ )/2(Γ−1) (G M)2

c3∞
n∞. (1.56)

On the other hand, for the given values of n∞ and c∞, there is the infinite number
of subsonic flows with Φ < Φcr (see Fig. 1.1).

• For the given flow structure, the number of integrals of motion is enough to deter-
mine all flow parameters from the algebraic relations.

The latter property is, in fact, the key property of the approach studied. Indeed,
algebraic relations (1.36), (1.37), and (1.38) together with the equation of state make
it possible to determine all physical parameters of the flow (the velocity v(r ), the
temperature T (r ), etc.) in terms of the invariants En and s, as well as the stream
function Φ. This property remains valid for arbitrary two-dimensional flows. On
the other hand, it is clear that, in the general case, the structure of the flow itself
(i.e., the function Φ(r, θ )) is not known beforehand. To determine it one has to use
all five hydrodynamical equations.

1.2.3 Potential Plane Flow

As the simplest example of a flow whose structure is not known beforehand, we
consider a potential plane flow without gravitation. Then the velocity v located in
the xy-plane can be determined from the condition

v = ∇φ(x, y), (1.57)

where φ(x, y) is a scalar potential. Besides, we assume, for simplicity, that the inte-
grals En and s are constant in the whole space:

En = const, s = const. (1.58)

Then the continuity equation ∇ · (nv) = 0 can be rewritten as

∇2φ + ∇n · ∇φ

n
= 0. (1.59)

Finally, using the Euler equation for determining ∇n · ∇φ

v · ∇
(
v2

2

)
+ c2

s
∇n · ∇φ

n
= 0,

we find
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φxx + φyy + (φy)2φxx − 2φxφyφxy + (φx )2φyy

(∇φ)2 D
= 0. (1.60)

Here again

D = −1 + c2
s

v2
, (1.61)

and the subscripts indicate the partial derivatives with respect to the corresponding
coordinates.

The second-order partial differential equation (1.60) is well known and can be
found in many textbooks (see, e.g., Landau and Lifshits, 1987). It has properties
most of which, as we see below, remain valid for the GS equation as well.

• For determining c2
s , Eq. (1.60) must be supplemented with Bernoulli’s equation

(1.38). For the polytropic equation of state, the velocity of sound cs can be explic-
itly expressed in terms of En and φ:

c2
s = (Γ − 1)En − Γ − 1

2
(∇φ)2. (1.62)

• Together with Bernoulli’s equation, Eq. (1.60) contains only the potential φ(x, y)
and the invariant En (it does not contain the entropy s, but s is necessary in order
to specify the concentration n).

• For n = const (c2
s → ∞) the equation becomes linear.

• It is nonlinear in the general case, however, always linear in the higher deriva-
tives.

• Equation (1.60) is of an elliptic type for the subsonic flow D > 0.
• Equation (1.60) is of an hyperbolic type for the supersonic flow D < 0.
• When the flow structure is known (i.e., for known φ(x, y), En, and s), all the

physical parameters are determined from the algebraic relations.
• Equation (1.60) does not comprise the coordinates x and y explicitly.

The latter property is known to allow one to perform the so-called hodograph
transformation, i.e., the change of the variables from the physical plane (x, y) to
the velocity plane (vx , vy), where vx = v cos θ , vy = v sin θ . The other potential
φv(v, θ ) is thus introduced so that r = ∇vφv . As a result, Eq. (1.60) can be rewritten
as

∂2φv

∂θ2
+ v2

1 − v2

c2
s

∂2φv

∂v2
+ v

∂φv

∂v
= 0. (1.63)

This linear equation was first obtained in 1902 by S.A. Chaplygin and bears his
name.
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The hodograph transformation method was the main direction when analyzing
the potential plane flows over the 20th century (Frankl’, 1945; von Mises, 1958).
Here we formulate two important results obtained in this area, which are necessary
in the following:

1. It is impossible, in the general case, to solve the direct problem for the transonic
flow (i.e., determine the flow structure by the known form of the boundary, for
example, giving the form of a nozzle or a wing).

2. On the other hand, it is possible to solve the inverse problem.

This fact is based on the fundamental theorem:

Theorem 1.1 The transonic flow is analytical at the critical point (the only point
where the sonic surface is orthogonal to the streamline, see Fig. 1.2) (Frankl’, 1945;
Landau and Lifshits, 1987).

Let us comment on these two assertions. The most obvious example that clarifies
the unavailability of the regular (i.e., noniterative) procedure for solving Eq. (1.60)
for the transonic flow is as follows. As is known, the number of boundary conditions
b for an arbitrary (not necessarily purely hydrodynamical) transonic flow can be
specified as (Beskin, 1997; Bogovalov, 1997a)

b = 2 + i − s ′. (1.64)

Fig. 1.2 “Analytical nozzle”
structure in the vicinity of the
singular point x = y =0—the
only point at which the sonic
surface v = cs (1.67) (dashed
line) is orthogonal to the
streamline (bold). The
characteristic surfaces (fine
lines), which intersect the
sonic surface not at the
singular point, have a cusp on
it. The separatrix
characteristics (incoming 1,
1′ and outgoing 2, 2′) are
tangent to the sonic surface at
the singular point. The flow
disturbance from the
supersonic point A located
within the separatrix
characteristic affects the
subsonic region

separatrix
characteristics

sonic
surface

separatrix
characteristics
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Here i is the number of invariants and s ′ is the number of critical surfaces. In hydro-
dynamics, the only singularity is the sonic surface. Therefore, for the transonic flow
s ′ = 1. Further, for the two-dimensional flow we have two invariants, En and s, so
that i = 2. Therefore, for the transonic flow structure to be specified it is necessary to
give three boundary conditions on some surface. These can be two thermodynamic
functions and also the tangential velocity component prescribing the potential φ on
this surface. The second (and the last one for the two-dimensional flow) velocity
component is to be determined from the solution. But for the solution of Eq. (1.60)
one must know the Bernoulli integral En = v2/2 + w, i.e., both the velocity com-
ponents on this surface. Consequently, in the general case, even the equation itself
describing the flow structure cannot be formulated. For the subsonic and supersonic
flows (s ′ = 0, so that b = 4) this difficulty is absent.

On the other hand, the transonic flow structure can be found by expanding the
solution in the vicinity of the singular point (at which we put x = y = 0). Indeed, in
addition to the invariants En and s (the latter is needed to specify the concentration
n), we can give the x-component of the velocity vx (x, 0) along the x-axis. In the
first approximation, it is enough to know only the first two terms of the expansion

vx (x, 0) = c∗ + kx + · · · . (1.65)

Here c2
∗ = 2En(Γ − 1)/(Γ + 1) (this relation follows from Bernoulli’s equation

(1.62) for v = cs = c∗) so that this value is also determined directly from the
boundary conditions. Thus, as can be verified by direct substitution, the first terms
in the expansion of the potential φ(x, y) look like (Landau and Lifshits, 1987)

φ(x, y) = c∗x + kx2

2
+ k2(Γ + 1)

2c∗
xy2 + k3(Γ + 1)2

24c2∗
y4 + · · · . (1.66)

Given all coefficients in expansion (1.65), we can reconstruct the potential φ with
any accuracy. Incidentally, it is easy to verify that in the vicinity of the singular point,
the y-component of the velocity can be neglected. Therefore, the sonic surface can
be specified from the condition vx = c∗. Using now the explicit expression (1.66),
we find that the sonic surface has the standard parabolic form:

x∗(y) = −k(Γ + 1)

2c∗
y2. (1.67)

Problem 1.9 Show that

n(0, y) ≈ n∗

[
1 − k2(Γ + 1)

2c2∗
y2 + · · ·

]
, (1.68)

(nvx )(0, y) ≈ n∗c∗

[
1 − k4(Γ + 1)3

8c4∗
y4 + · · ·

]
, (1.69)
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so that the typical scale of the variation of the values in a perpendicular direc-
tion δy ≈ c∗/k turns out to be the same as in a longitudinal direction.

Problem 1.10 Show that, besides the symmetry axis, the geometric locus at
which the velocity vector is parallel to the x-axis is also a parabola:

x0(y) = −k(Γ + 1)

6c∗
y2. (1.70)

Consequently, the sonic surface is in the confluence region (|x∗| > |x0|).

As to the properties of the singular points, one cannot but mention the structure
of the characteristic surfaces that occur in the hyperbolic (i.e., supersonic) domain
of Eq. (1.60). As is well known, for the second-order partial differential equation
written in the canonical form Aφxx + 2Bφxy + Cφyy + · · · = 0, the differential
equation for the characteristic surfaces looks like (Korn and Korn, 1968)

dx

dy
= B ± √

B2 − AC
C . (1.71)

Using the explicit form of the coefficients A–C, we obtain the equation for specify-
ing the characteristic surfaces:

dx

dy
= −φxφy ± (

φ2
x + φ2

y

)√−D(D + 1)

φ2
x + D

(
φ2

x + φ2
y

) . (1.72)

Since, in the general case, on the sonic surface the partial derivative φy is not
zero, according to (1.72), the derivative d(x−x∗)/dy is also different from zero here.
This implies that in this region the sonic surface is not orthogonal to the streamlines.
Accordingly, only one characteristic having a cusp here passes through each of such
points on the sonic surface (unlike any point in the hyperbolic domain) (Landau and
Lifshits, 1987). In Fig. 1.2, it is associated with the curves 3 and 3′. This structure
is due to the degeneration of the Mach cone on the sonic surface into the plane and
to the existence of the characteristics only in the hyperbolic domain of Eq. (1.60).
However, at the singular points at which the partial derivative φy = 0 (i.e., in the
vicinity of the point x = y = 0), a comprehensive analysis is necessary to specify
the behavior of the characteristic surfaces. It can again be done by expanding the
solution in terms of powers of small displacements x and y. Introducing the new
variable
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R = x − x∗
D1

, (1.73)

where D1 = − ∂D/∂x |x=y=0 (so that D1 > 0 here), we can rewrite Eq. (1.72) as

dR

dy
= ay ±

√
R, (1.74)

where

a = −
∂2 D/∂y2

∣∣
x=y=0

D2
1

−
φyy

∣∣
x=y=0

φx |x=y=0 D1
. (1.75)

The exact solution of Eq. (1.74) can be found by substitution:

R(y) = w2(y) y2. (1.76)

Substituting expression (1.76) in Eq. (1.74), we obtain in the implicit form

w(y) = w1 + C [w2 − w(y)]w2/w1 y(w2−w1)/w1 . (1.77)

Here C is an integration constant and the values w1 and w2 correspond to two sepa-
rated solutions R1,2(y) = w2

1,2 y2, in which the coefficients w1,2 are independent of
the y-coordinate. They can be obtained by the direct substitution of the definition
(1.76) in Eq. (1.74). As a result, we have

2w2 ± w − a = 0, (1.78)

and, hence,

w2
1,2 = 1 + 4a±√

1 + 8a

8
. (1.79)

One should specially stress here that, for the potential plane flow, the condition
a > 0 always turns out to be satisfied. This condition corresponding to the standard
singular point shows that the streamlines pass the sonic surface in the confluence
region (|x∗| > |x0|). In this case, two characteristics (two incoming 1, 1′ and two
outgoing 2, 2′ branches) corresponding to two roots (1.79) pass through the singular
point. Indeed, for w(y) ≈ w1 Eq. (1.77) yields

w(y) ≈ w1 + C(w2 − w1)w2/w1 ym, (1.80)

where the exponent is

m = −1 + 8a + √
1 + 8a

4a
. (1.81)
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Therefore, for a > 0, when m < 0, the second term in (1.80) diverges for y → 0.
Hence, for w ≈ w1 only the characteristics corresponding to the constant C = 0
pass through the origin.

It is easy to find for the case considered here

D1|x=y=0 = (Γ + 1)
k

c∗
, (1.82)

∂2 D

∂y2

∣∣∣∣
x=y=0

= −(Γ + 1)2 k2

c2∗
, (1.83)

φyy

∣∣
x=y=0 = 0, (1.84)

so that

a = 1. (1.85)

Hence,

w2
1 = 1

4
, (1.86)

w2
2 = 1. (1.87)

Thus, the two characteristics tangent to the sonic surface at the singular point actu-
ally pass through the singular point. Their incoming and outgoing branches also
have a parabolic form (Landau and Lifshits, 1987)

x (1,1′) = −k(Γ + 1)

4c∗
y2, (1.88)

x (2,2′) = k(Γ + 1)

2c∗
y2, (1.89)

while the incoming branches are associated with R(y) = w2
1 y2 and the outgoing

ones with the solution R(y) = w2
2 y2. For a < 0 (which can take place in the

presence of the gravitational field only), the situation appears much more complex.
This nonstandard singular point is considered in detail in Sect. 1.3.3.3.

Problem 1.11 Find expressions (1.84), (1.85), (1.86), (1.87), (1.88), and
(1.89).

In conclusion, we emphasize one more extremely important circumstance. As
seen from Fig. 1.2, the perturbation from the A-point, which is located in the super-
sonic region, reaches along the characteristic sonic surface and can, hence, affect
the flow structure in the whole subsonic region. This implies that it is the separatrix
characteristic rather than the sonic surface that divides two causally unconnected
regions.
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To summarize, we emphasize once again that, in the general case, there is no
direct procedure for solving Eq. (1.60). Note that this property is common to the
similar class of equations. In particular, it is valid for the GS equation. Moreover,
within the potential plane flow

• it is impossible to consider the case E 
= const, s 
= const;
• it is impossible to consider the nonpotential flows with ∇ × v 
= 0;
• it is impossible to include the gravitation (which, in the general case, is not two-

dimensional).

1.3 Nonrelativistic Axisymmetric Stationary Flows

1.3.1 Basic Equations

We will show now how this approach can be applied to the axisymmetric stationary
flows. This implies that we, as before, assume that all values depend on two variables
r and θ only. But now all three velocity components can differ from zero. Therefore,
the axisymmetric stationary flows are much richer than the two-dimensional ones.

In the axisymmetric stationary case, we can introduce the stream function Φ(r, θ )
connected with the poloidal velocity vp as

nvp = ∇Φ × eϕ
2πr sin θ

. (1.90)

This definition results in the following properties (see Fig. 1.3):

Fig. 1.3 The surfaces of the
constant flow Φ(r, θ ) =
const. The velocity vectors v
are always on these surfaces;
therefore, the total particle
flux is conserved inside each
tube

Sd

r

r const
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• The continuity equation is satisfied automatically: ∇ · (nv) = 0.
• It is easy to verify that dΦ = nv · dS, where dS is an area element. As seen,

Φ(r, θ ) is a particle flux through the circle r, θ, 0 < ϕ < 2π . In particular, the
total flux through the surface of the sphere of radius r is

Φtot = Φ(r, π ). (1.91)

• As v ·∇Φ = 0, the velocity vectors v are located on the surfaces Φ(r, θ ) = const.

We now formulate the conservation laws which must be valid for the axisymmet-
ric stationary flows. As before, the component β = t and the projection onto the
direction vp of the energy–momentum conservation law ∇αT αβ = 0 yield

En = En(Φ) = v2

2
+ w + ϕg, (1.92)

s = s(Φ). (1.93)

However, as we see, it seems much simpler to describe the case in which the inte-
grals themselves are different on different streamlines, because this property is for-
mulated by the explicit dependence of the integrals of motion of the function Φ.

There is new information from the β = ϕ-component of the energy–momentum
conservation law (or, what is the same, from the ϕ-component of the Euler equation)

∇ϕ

(
v2

2

)
− [v × (∇ × v)]ϕ + ∇ϕ P

ρ
+ ∇ϕϕg = 0. (1.94)

Indeed, for the axisymmetric flow considered, all the gradients ∇ϕ are zero. The
term [v × (∇ × v)]ϕ , as is readily checked, can be rewritten as

v · ∇(vϕr sin θ ) = 0. (1.95)

Consequently, in the axisymmetric case, the z-component of the angular momentum

Ln(Φ) = vϕr sin θ (1.96)

is the third integral of motion.

Problem 1.12 Show that the total energy Wtot and angular momentum Ktot

losses can be defined as

Wtot = mp

∫
En(Φ)dΦ, Ktot = mp

∫
Ln(Φ)dΦ. (1.97)
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1.3.2 Mathematical Intermezzo—the Covariant Approach

Since, in the following, we are to generalize our approach to the case of strong
gravitational fields, it seems advisable already now to rewrite all relations in covari-
ant form. Recall that in flat space the metric tensor gik (dl2 = gikdxi dxk) in the
spherical coordinates x1 = r , x2 = θ , x3 = ϕ has the form

grr = 1, gθθ = r2, gϕϕ = r2 sin2 θ, (1.98)

and all the other components are zero. Using expression (1.34)

T k
i = Pδk

i + ρvkvi , (1.99)

we obtain for the ϕ-component of the energy–momentum conservation law

∇k T k
ϕ = ∇k

(
δk
ϕ P

) + ∇k
(
ρvkvϕ

)
= ∂P

∂ϕ
+ ∂

∂xk

(
ρvkvϕ

) + Γ k
ik ρv

ivϕ − Γ k
ϕi ρv

ivk = 0. (1.100)

Here Γ i
jk are Christoffel symbols.

It is easy to verify that the last term in (1.100) is zero: Γ k
ϕi ρv

ivk = Γk,ϕi ρv
ivk = 0.

Analogously, the first term is also zero because of the axisymmetry of the problem
(all the values are independent of the angle ϕ). Using the continuity equation

∇k(ρvk) = 1√
g

∂

∂xk

(√
g ρvk

) = ∂

∂xk

(
ρvk

) + Γ i
ik ρv

k = 0, (1.101)

where g = det gik = grr gθθgϕϕ , we see that the condition (1.100) can again be
rewritten as the conservation law: ∇k T k

ϕ = ρv · ∇vϕ = 0. Consequently, the third
invariant has the form

Ln(Φ) = vϕ. (1.102)

Problem 1.13 Check relations (1.100), (1.101), and (1.102).

Problem 1.14 How can the contradiction between (1.96) and (1.102) be
explained?

To understand the difference between expressions (1.96) and (1.102), we must
return to the basic relations of the covariant approach. We have so far dealt with
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the physical components of the vectors only. Below in the relativistic relations these
components are indicated by caps over the corresponding indices so that vϕ̂ = vϕ̂ is
the physical component of the toroidal velocity and its dimension is cm/s. However,
in covariant relations (1.100), (1.101), and (1.102) we, in fact, deal with the other
objects—contravariant components vi and the covariant components vk . Using now
the vector length definition v2 = gikv

ivk = gikvivk , we obtain for the diagonal
metric (1.98)

(vϕ̂)2 = gϕϕ(vϕ)2 = gϕϕ(vϕ)2, (1.103)

and the same for the other components. Therefore, the contravariant vϕ and covari-
ant vϕ velocity components are expressed in terms of the physical component vϕ̂
according to the relations

vϕ = 1√
gϕϕ

vϕ̂, vϕ = √
gϕϕvϕ̂. (1.104)

In particular, this implies that the dimension of the covariant and contravariant com-
ponents can differ from that of the physical quantity itself. Comparing relations
(1.96) and (1.102), their difference becomes obvious: the physical component of the
toroidal velocity is available in (1.96), whereas in (1.102) its covariant component
is available.

1.3.3 Two-Dimensional Flow Structure

1.3.3.1 Basic Equations

To obtain an equation for the stream function Φ(r, θ ), one must return to the poloidal
component of the Euler equation. It turns out that along with the definition of the
invariants En(Φ), Ln(Φ), and s(Φ), this vector equation can be written as a product
of the scalar factor [GS] and the vector ∇Φ:

[Euler]p = [GS] ∇Φ. (1.105)

In view of this, in most papers concerned with magnetohydrodynamical flows the
GS equation [GS] = 0 was obtained as a projection of the poloidal equation onto
the direction parallel to ∇Φ. For the purely hydrodynamical flows the corresponding
projection has the form

1

(∇Φ)2
∇Φ ·

[
(v∇)v + ∇ P

ρ
+ ∇ϕg

]
= 0. (1.106)

Using definitions (1.90), (1.92), and (1.96), we find
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− � 2∇k

(
1

� 2
∇kΦ

)
+ 1

n
∇kn · ∇kΦ − 4π2Ln

dLn

dΦ

+4π2� 2n2 dEn

dΦ
− 4π2� 2n2 T

mp

ds

dΦ
= 0. (1.107)

Here and to the end of the book

� = √
gϕϕ, (1.108)

so that for flat metric � = r sin θ .
As in the case of the plane parallel flow, in order for the system to be closed, i.e.,

for the product (∇n · ∇Φ) to be determined Eq. (1.107) is to be supplemented with
Bernoulli’s equation (1.92) which can now be rewritten as (cf. (1.39))

En = (∇Φ)2

8π2� 2n2
+ 1

2

L2
n

� 2
+ w(n, s) + ϕg. (1.109)

We see that Bernoulli’s equation (1.109), along with n, again comprises only the
invariants En, Ln, and s and also the stream function Φ. Consequently, it, as before,
specifies the concentration n in implicit form by the stream function Φ and the
integrals of motion:

n = n(∇Φ; En, Ln, s; r, θ ). (1.110)

On the other hand, the implicit algebraic equation (1.109) can be written in the
explicit differential form

∇kn = n
Nk

D
, (1.111)

where now

D = −1 + c2
s

v2
p

, (1.112)

and

Nk = −∇ iΦ · ∇i∇kΦ

(∇Φ)2
+ 1

2

∇k�
2

� 2
− 4π2� 2n2 ∇kϕg

(∇Φ)2

+4π2� 2n2 dEn

dΦ

∇kΦ

(∇Φ)2
− 4π2n2Ln

dLn

dΦ

∇kΦ

(∇Φ)2

+2π2n2L2
n

� 2

∇k�
2

(∇Φ)2
− 4π2� 2n2

[
T

mp
+ 1

ρ

(
∂P

∂s

)
n

]
ds

dΦ

∇kΦ

(∇Φ)2
.

(1.113)
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Problem 1.15 Show that

∇ iΦ · ∇i∇kΦ = 1

2
∇k(∇Φ)2. (1.114)

Problem 1.16 Show that in the spherically symmetric case the value Nr cor-
responds to N (1.43) and Nθ = 0.

As a result, the stream equation can be written as (Beskin and Pariev, 1993)

− � 2∇k

(
1

� 2
∇kΦ

)
− ∇ iΦ · ∇kΦ · ∇i∇kΦ

D(∇Φ)2
+ ∇� 2 · ∇Φ

2D� 2

−4π2� 2n2 ∇ϕg · ∇Φ

D(∇Φ)2
− 4π2n2 D + 1

D
Ln

dLn

dΦ

+2π2n2 ∇� 2 · ∇Φ

D� 2(∇Φ)2
L2

n + 4π2� 2n2 D + 1

D

dEn

dΦ

−4π2� 2n2

[
D + 1

D

T

mp
+ 1

D ρ

(
∂P

∂s

)
n

]
ds

dΦ
= 0, (1.115)

or, in compact form, as (cf. Heyvaerts, 1996)

− � 2∇k

(
1

� 2n
∇kΦ

)
− 4π2nLn

dLn

dΦ
+ 4π2� 2n

dEn

dΦ
− 4π2� 2n

T

mp

ds

dΦ
= 0.

(1.116)

At first sight, the stream equation (1.115) is much more complex than Eq. (1.60)
for the plane parallel flow. Nevertheless, they have much in common. As in Eq. (1.60),
the stream equation (1.115) begins with a linear elliptic term and a nonlinear term
of the same form. The third term, of course, is not available in (1.60)—it results
from writing Eq. (1.115) in arbitrary coordinates. However, all the other terms are
not to be regarded as a complication. They allow one to include into consideration
not only the gravitation but also a much wider class of flows in which the invariants
are different on different flow surfaces.

In other respects, the stream equation is quite analogous to Eq. (1.60).

• Equation (1.115) must be supplemented with Bernoulli’s equation (1.109).
• Along with Bernoulli’s equation, Eq. (1.115) contains only the stream function

Φ(r, θ ) and the invariants En(Φ), Ln(Φ), and s(Φ) (i.e., it has the form of the GS
equation).

• For n = const (c2
s → ∞), En = const, s = const, and Ln = 0 the equation

becomes linear.
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• In the general case, it is nonlinear; however, it remains linear in the higher deriva-
tives.

• Equation (1.115) is of an elliptic type for the subsonic flow D > 0.
• Equation (1.115) is of a hyperbolic type for the supersonic flow D < 0.
• For the given flow structure (i.e., for the given stream function Φ) and the invari-

ants En(Φ), Ln(Φ), and s(Φ), all physical parameters are determined from the
algebraic relations.

We should stress the following circumstance. The denominator D = −1 + c2
s /v

2
p

(1.112) contains the poloidal velocity vp rather than the total one. This implies that
the sonic surface corresponds to the position where the poloidal velocity rather
than the total one coincides with the velocity of sound. This property is a direct
consequence of our main assumption on the flow axisymmetry. As a result, all
perturbations (waves) must also be axisymmetric, i.e., they can propagate in the
poloidal direction only. Therefore, the flow singularity occurs at the position where
the poloidal velocity coincides with the perturbation velocity.

Problem 1.17 Introducing for the plane parallel flow the stream function
ψ(x, y) such as nv = ∇ψ × ez , show that the first terms of its expansion
in the vicinity of the singular point x = y = 0 corresponding to the solution
(1.66) are

ψ(x, y) = n∗c∗

[
y − k2(Γ + 1)

2c2∗
x2 y − k3(Γ + 1)2

6c3∗
xy3 − k4(Γ + 1)3

40c4∗
y5 + · · ·

]
.

(1.117)

Problem 1.18 Show that the first terms of the expansion for the potential
φ(�, z) (v = ∇φ) in the cylindrical coordinates � , z in the vicinity of the
singular point for an ordinary axisymmetric nozzle (i.e., in the absence of the
gravitation and for L = 0) have the form

φ(�, z) = c∗z + kz2

2
+ k2(Γ + 1)

4c∗
z� 2 + k3(Γ + 1)2

64c2∗
� 4 + · · · . (1.118)

1.3.3.2 Eigenfunctions

In the following, we repeatedly deal with the linear operator

L̂ = � 2∇k

(
1

� 2
∇k

)
= ∂2

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (1.119)
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As seen from Eq. (1.107), the function Φ, which satisfies the condition L̂Φ = 0,
describes an incompressible flow. Therefore, it is advisable to discuss at once the
properties of this operator in more detail. We first consider the angular operator

L̂θ = sin θ
∂

∂θ

(
1

sin θ

∂

∂θ

)
. (1.120)

It has the eigenfunctions

Q0 = 1 − cos θ, (1.121)

Q1 = sin2 θ, (1.122)

Q2 = sin2 θ cos θ, (1.123)

. . .

Qm = 2mm!(m − 1)!

(2m)!
sin2 θP ′

m(cos θ ), (1.124)

and the eigenvalues

qm = −m(m + 1). (1.125)

Here Pm(x) are the Legendre polynomials and the dash indicates their derivatives.
Thus, neglecting their dimension, the eigenfunctions of the full operator L̂ have the
form

1. m = 1

• Φ
(1)
1 = r2 sin2 θ—a homogeneous flow (Fig. 1.4a),

Fig. 1.4 Eigenfunctions of
the operator L̂ for m = 1 and
m = 2. (a) Homogeneous
flow. (b) Dipole flow. (c)
Flow in the vicinity of the
zero point. (d) Quadrupole
flow
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Fig. 1.5 Eigenfunctions of
the operator L̂ for m = 0. (a)
Spherically symmetric flow.
(b) Parabolic flow which can
occur only in the presence of
the volume sources or sinks
of matter, for example, on the
axis θ = π

• Φ
(2)
1 = sin2 θ/r—a dipole flow (Fig. 1.4b),

2. m = 2

• Φ
(1)
2 = r3 sin2 θ cos θ—a zero point (Fig. 1.4c),

• Φ
(2)
2 = sin2 θ cos θ/r2—a quadrupole flow (Fig. 1.4d),

3. . . .

At first sight, the problem is quite clear and no difficulties can be encountered
here. Nevertheless, this is not the case. Indeed, let us consider the eigenfunctions
corresponding to m = 0. The first eigenfunction is obvious: the function

Φ
(1)
0 = (1 − cos θ ) (1.126)

describes the spherically symmetric accretion or the ejection (see Fig. 1.5a). Inci-
dentally, only this harmonic determines the accretion or the ejection rate because
for all the other eigenfunctions with m > 0 we have Φm(r, π ) = 0. The uncertainty
results from the second eigenfunction

Φ
(2)
0 = r (1 − cos θ ), (1.127)

the streamlines for which, as shown in Fig. 1.5b, are parabolas

z = � 2 − � 2
0

2�0
. (1.128)

Here �0 is the coordinate of intersection of the equatorial plane by the streamline.
For this eigenfunction Φ0(r, π ) 
= const. This implies that this harmonic can be
realized only if in the volume there are sources or sinks of matter (i.e., not only in
the vicinity of the gravitational center or at infinity). In all other cases, the second
eigenfunction must be dropped.

1.3.3.3 Nonstandard Singular Point

To conclude this section, we return to the problem of the behavior of the characteris-
tics in the vicinity of the singular points for the axisymmetric stationary flows. Since
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Eq. (1.115) is still quasilinear (i.e., linear in the higher derivatives), the equation for
the characteristics can again be written in the standard form:

dr

dθ
= B ± √

B2 − AC
C . (1.129)

Using the explicit form of the coefficients A–C, we have

dr

dθ
= r2 (∂Φ/∂r ) (∂Φ/∂θ ) ± r

[
r2 (∂Φ/∂r )2 + (∂Φ/∂θ )2

]√−D(D + 1)

(∂Φ/∂θ )2 + D
[
r2 (∂Φ/∂r )2 + (∂Φ/∂θ )2

] .

(1.130)
Introducing now dimensionless variable

R = r∗ − r

r∗ D1
, (1.131)

where D1 = r∗ ∂D/∂r |r=r∗ , Eq. (1.130) can be rewritten as

dR

dϑ
= aϑ ±

√
R. (1.132)

Here now

a = −
∂2 D/∂θ2

∣∣
r=r∗,ϑ=0

D2
1

−
r∗ ∂2Φ/∂r∂θ

∣∣
r=r∗,ϑ=0

∂Φ/∂θ |r=r∗,ϑ=0 D1
, (1.133)

the angle ϑ = θ − θ∗, and the partial derivatives are taken at the singular point
r = r∗, θ = θ∗. We point out that the variable R remains positive in the hyperbolic
domain for the case of both the ejection (r > r∗, D1 < 0) and the accretion (r < r∗,
D1 > 0).

The exact solution of Eq. (1.132) can again be found by the substitution

R(ϑ) = w2(ϑ)ϑ2, (1.134)

where the implicit solution for the function w(ϑ) has the form

w(ϑ) = w1 + C [w2 − w(ϑ)]w2/w1 ϑ (w2−w1)/w1 . (1.135)

The values w1 and w2, which correspond to two directrix parabolas shown in
Fig. 1.2, are, as before, given by the relation

w2
1,2 = 1 + 4a±√

1 + 8a

8
. (1.136)

However, we should stress here two important distinctions from the above case
of the plane parallel flows. First, for the spherically symmetric flows all stream-
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lines intersect the sonic surface at a right angle. Thus, everywhere here a = 0, so
that all points on the sonic surface turn out to be singular ones and the solution to
Eq. (1.132) yields only the outgoing characteristics

R = ±1

4
ϑ2. (1.137)

Second, for the nonspherical flows on the sonic surface not only the standard sin-
gular point with a > 0 but also the completely new nonstandard singular point
with a < 0 must inevitably occur. Indeed, a indicates the slope of the streamlines
with respect to the sonic surface. The positive value a corresponds to the convergent
streamlines. This case shown in Fig. 1.2 was considered in the previous section.
However, for the axisymmetric case in which the flow is not bounded by the walls
and must fill all the space, at least one singular point in the vicinity of which the
streamlines diverge must inevitably occur on the sonic surface (for θ∗ 
= 0, π , this
“singular point” is associated with a circle).

The most important property of the nonstandard singular points is the bifurcation
of the characteristics (Bogovalov, 1994; Beskin and Kuznetsova, 1998). When sat-
isfying the condition −1/8 < a < 0 corresponding to the real roots of Eq. (1.136)
the exponent m (1.81) in the solution w(ϑ) ≈ w1 + C1ϑ

m appears positive. Hence,
the infinite number of characteristics passes through the singular point because now
w(ϑ)→w1 as ϑ→0 for all values of constant C1. On the other hand, for a < −1/8,
when the roots (1.136) become complex, the structure of the characteristic surfaces
abruptly changes, with the result that not a single characteristic passes through the
singular point.

The behavior of the characteristic surfaces for the nonstandard case is shown on
the left in Fig. 1.6. On the right, there are shown standard singular points with a > 0,
two characteristics corresponding to two branches of solutions (1.136) pass through
these points. Thus, we see that if the flow rather strongly differs from the spherically
symmetric one, the entire structure of the characteristic surfaces, including the loca-
tion of the separatrix characteristic (which, as was already mentioned, divides two
causally unconnected domains), abruptly changes. In particular, if, for a > −1/8,
the separatrix characteristic connects both the singular points, this is not the case for
a < −1/8.

As a result, if the parameter a changes slowly, the whole domain located directly
over the nonstandard singular point for a = −1/8 suddenly begins to affect the
elliptic domain of the stream equation because, as seen from Fig. 1.6b, a per-
turbation from this domain along the characteristics now reaches the sonic sur-
face. Note also that if in the vicinity of the standard singular point the location
of the separatrix characteristic is exactly defined by the solution R(ϑ) = w2

1ϑ
2,

for the nonstandard singular point the form of the separatrix characteristic (the
constant C in relation (1.135), with a > −1/8) cannot be defined locally. To
define it we must integrate the full equation (1.130) up to the standard singular
point.
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Fig. 1.6 Flow structure (bold
lines) in the vicinity of
singular points. (a) The
behavior of the characteristic
surfaces when the parameter
a for the nonstandard
singular point (left) satisfies
the condition −1/8 < a < 0.
The heavier lines indicate the
separatrix characteristic and
the solutions corresponding
to w = w1 and w = w2. The
standard singular point a > 0
is shown on the right. The
point A does not affect the
subsonic region. (b) The
same for a < −1/8. The
perturbation from the point A
along the characteristic
reaches the sonic surface

a

b

One should also note that at the moment of the bifurcation of the characteris-
tics (i.e., with the abrupt change in the separatrix characteristic form) no changes
in the procedure of the solution construction in the vicinity of the singular point
occur. As in the case of the plane parallel flow, given the integrals of motion, it is
necessary to specify for the solution construction only one more function, for exam-
ple, the velocity along the streamline passing through the singular point (Beskin
and Kuznetsova, 1998). Otherwise, for both a > −1/8 and a < −1/8, the GS
equation requires the equal number of boundary conditions. And only for a much
stronger distortion of the flow when a → −∞ (i.e., D1 → 0), the flow structure
significantly changes. The point is that D1 on the sonic surface must be determined
by resolving the singularity of the type 0/0 in the expression for the concentration
gradient ∇kn = nNk/D (this procedure was, in fact, used when determining the
logarithmic derivative η1 = (r∗/n∗)dn/dr (1.47)). As a result, D1 is found as the
solution of the quadratic equation of the form D2

1 = F , which has no real roots
for F < 0 (see Beskin and Kuznetsova (1998) for more details). Recall that for the
spherically symmetric flow D2

1 = 10 − 6Γ .
The unavailability of the real roots for D1 implies that our initial assumption

on the possibility to expand the solution in integer powers of deviation from the
singular point is not valid. Otherwise, the solution at the singular point ceases to
be an analytical one. Following Landau and Lifshits (1987) this implies that weak
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discontinuities occur in the vicinity of the singular point so that the smooth transonic
flow seems impossible. Below we discuss the behavior of the separatrix character-
istics for various axisymmetric stationary flows.

Finally, note that since the second-order operator in the GS equation remains
absolutely identical for any axisymmetric stationary flows, including the below
considered flows in the vicinity of a black hole (only the explicit expression for
the denominator D changes), the above written relations (1.132) and (1.133) are
of a universal character. Moreover, they remain valid for the strongly magnetized
flows as well. For them, only the stream function Φ(r, θ ) is to be substituted by the
magnetic flux Ψ (r, θ ).

1.3.4 Bondi–Hoyle Accretion

As the first example we consider Bondi–Hoyle accretion (Bondi and Hoyle, 1944)—
one of the classical problems of modern astrophysics (Zel’dovich and Novikov,
1971; Shapiro and Teukolsky, 1983), i.e., the accretion onto a gravitational center
moving in homogeneous medium with velocity vgc. In order to construct a nonspher-
ical solution we can assume that the small perturbations of the spherically symmetric
flow cannot substantially change the accretion structure (Beskin and Pidoprygora,
1995). Therefore, it is possible to seek the solution of the stream equation as a small
perturbation of the spherically symmetric solution.

We should first recall the main qualitative results of the theory. It is convenient
to carry out computations in the frame of reference moving together with the grav-
itational center. Then the homogeneous plasma moves with velocity v∞ = vgc.
Comparing now the Bondi accretion rate 4πr2

∗n∗c∗ ∼ (G M)2n∞/c3
∞ (1.56) with

the flux Φ ∼ πR2
capn∞v∞ captured within the capture radius Rcap, we can estimate

Rcap as

Rcap ∼ ε
−1/2
1 r∗, (1.138)

where

ε1 = v∞
c∞

. (1.139)

Hence, for ε1 � 1 the capture radius Rcap is much larger than the sonic surface
radius r∗ so that for r � Rcap the flow can be assumed to be close to a spherically
symmetric one. Therefore, we can seek the solution of Eq. (1.115) in the form

Φ(r, θ ) = Φ0[1 − cos θ + ε1 f (r, θ )]. (1.140)

For the gravitational center at rest, i.e., for ε1 = 0, we return to the spherically
symmetric flow.

Since Eq. (1.115) contains all i = 3 invariants so that b = 2 + 3 − 1 = 4, it is
necessary to give four boundary conditions, for example, two velocity components
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at infinity and two thermodynamic functions. Turning the z-axis opposite to the
velocity of an incoming flow, we have for the homogeneous environment

1. vz = −v∞ = const;
2. vϕ = 0 (hence, Ln = 0);
3. s∞ = const;
4. E∞ = c2

∞/(Γ − 1) = const.

In the latter relation we dropped the terms ∼ε2
1, because, with the nonzero velocity

v∞, the Bernoulli integral En = w∞ + v2
∞/2 differs from that in the case of the

gravitational center at rest E (0)
n = w∞ by the value of order ε2

1:

En = E (0)
n

(
1 + Γ − 1

2
ε2

1

)
. (1.141)

As a result, Eq. (1.115) can be linearized:

− ε1 D
∂2 f

∂r2
− ε1

r2
(D + 1) sin θ

∂

∂θ

(
1

sin θ

∂ f

∂θ

)
+ ε1

(
2

r
− G M

v2r2

)
∂ f

∂r
= 0. (1.142)

This equation has the following properties:

• It is linear.
• The angular operator coincides with the operator L̂θ (1.120).
• Since all terms of the equation comprise the small parameter ε1, the functions D,

cs, n, etc., can be taken from the zero approximation.
• Since for the spherically symmetric flow the functions D, cs, n, etc., are indepen-

dent of θ , the solution of Eq. (1.142) can be expanded in terms of the eigenfunc-
tions of the operator L̂θ .

Therefore, the solution of Eq. (1.142) can be represented as

f (r, θ ) =
∞∑

m=0

gm(r )Qm(θ ), (1.143)

and the equations for the radial functions gm(r ) are written as

− r2 D
d2gm

dr2
+

(
2r − G M

v2

)
dgm

dr
+ m(m + 1)(D + 1)gm = 0. (1.144)

As for the boundary conditions, they can be given as follows:

1. The absence of a singularity on the sonic surface, where by definition (1.42)
D = −1 + c2

s /v
2 = 0, r2 Nr = 2r − G M/v2 = 0, which yields for m 
= 0

gm |r=r∗ = 0. (1.145)
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2. The flow homogeneity condition at infinity Φ = πn∞v∞r2 sin2 θ , which yields

g1 → 1

2

n∞c∞
n∗c∗

r2

r2∗
, g2, g3, · · · = 0. (1.146)

We now determine g0 that fixes the change in the accretion rate. We write the
exact values of the sonic surface radius r∗(θ ) and the thermodynamic functions
n∗(θ ) = n(r∗, θ ), w∗(θ ) = w(r∗, θ ), c∗(θ ) = cs(r∗, θ ) as

r∗(θ ) = r (0)
∗ [1 + ε1d(θ )],

c∗(θ ) = c(0)
∗ [1 + ε1b(θ )],

n∗(θ ) = n(0)
∗ [1 + ε1q(θ )],

w∗(θ ) = w(0)
∗ [1 + ε1 p(θ )],

where the indices “0” stand for the unperturbed values. The first two equations con-
necting the dimensionless functions b(θ ), p(θ ), and q(θ )

p − q = 0, (1.147)

2b − (Γ − 1)p = 0, (1.148)

follow from thermodynamic relations (1.27) and (1.28). Equations D(r∗) = 0 and
Nr (r∗) = 0, in which the expansion up to the values of order ε1 is to be done, are
now written as

b + 2d + p = 0, (1.149)

4b + 2d = r (0)
∗

sin θ

∂2 f

∂r∂θ

∣∣∣∣
r=r∗

. (1.150)

Finally, we can write the fifth relation that follows from Bernoulli’s equation
(1.109), in which the expansion up to the values of order ε1 is also to be done:

b + 2d + q = 1

sin θ

∂ f

∂θ

∣∣∣∣
r=r∗

. (1.151)

Here we used relation (1.141) according to which the Bernoulli integral up to the
terms ∼ε1 remains the same as in the case of the spherically symmetric accretion.
Substituting on the right-hand side of Eq. (1.151) the expression

1

sin θ

∂ f

∂θ

∣∣∣∣
r=r∗

= g0 + 2g1(r∗) cos θ, (1.152)

we obtain from the compatibility condition of five equations (1.147), (1.148),
(1.149), (1.150), and (1.151) that
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Fig. 1.7 Flow structure and
the form of the sonic surface
by accretion onto the moving
gravitational center for
Γ = 4/3, ε1 = 0.6 (Beskin
and Pidoprygora, 1995). The
numbers on the curves
indicate the ratio Φ/Φ0, and
the dashed curves indicate
the form of the streamlines
and the sonic surface, which
were obtained numerically
in Hunt (1979). Dotted curve
indicates one of the separatrix
characteristics

g0 = 0. (1.153)

Thus, in the first order of ε1 the accretion rate onto the moving gravitational center
does not change.

As a result, all the radial functions gm , except for g1, turn out to be zero so that
the complete solution can be represented as

Φ(r, θ ) = Φ0[1 − cos θ + ε1g1(r ) sin2 θ ]. (1.154)

The radial function g1(r ) is the solution of the ordinary differential equation (1.144)
for m = 1 with the boundary conditions (1.145) and (1.146).

At the present level of PC technology, this implies that we were able to con-
struct the analytical solution of the posed problem, which allows us to obtain the
exhaustive information on the flow structure. The sonic surface, for example, has
the nonspherical form now:

r∗(θ ) = r (0)
∗

[
1 + 2ε1

(
Γ + 1

D2
1

)
k1 cos θ

]
, (1.155)

where again D2
1 = 10 − 6Γ , and the numerical coefficient k1 = r∗g′

1(r∗) > 0 can
be obtained directly from the solution of the ordinary differential equation (1.144)
(see Beskin and Pidoprygora (1995) for more details and also Table 1.2). As shown
in Fig. 1.7, the analytical solution is in good agreement with the results of the numer-
ical computations (Hunt, 1979) though the parameter ε1 = 0.6 is rather large here.

In view of the above-obtained solution, one additional comment is necessary. As
is readily seen, beyond the capture radius our main assumption—the small perturba-
tion of the spherically symmetric flow—is not true. Nevertheless, the construction of
the solution remains valid. This remarkable property is associated with the already
mentioned fact that for the constant concentration n the stream equation becomes
linear. But as the analysis of the spherically symmetric Bondi accretion shows (see
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(1.48)), far from the sonic surface r � r∗ the density of an accreting matter remains
roughly constant. Accordingly, the density is constant for the homogeneous flow
as well. As a result, provided that Rcap � r∗, which is satisfied for ε1 � 1, in the
vicinity of and beyond the capture radius (where the perturbation ∼ε1g1(r ) becomes
much larger than the value of the zero approximation), Eq. (1.115) becomes linear.
As a result, the sum of the two solutions, the homogeneous and spherically symmet-
ric ones, is also a solution.

Finally, note that the “north pole” of the sonic surface (θ = 0, Φ = 0) cor-
responds to the nonstandard singular point and its opposite “south pole” (θ = π ,
Φ = 2Φ0) to the standard point. To prove it we are not to carry out complicated
computations to obtain the sign of a (1.133). The point is that the motion along the
characteristic surface is always associated with the motion together with the flow.
Therefore, in the case of accretion the standard singular point must be located at a
shorter distance from a compact object. As a result, as shown in Fig. 1.7, the sep-
aratrix characteristics coming out from the nonstandard singular point and moving
practically along the sonic surface are again tangent to it at the standard singular
point and only later start a spiral motion to the gravitational center. As to a, at the
nonstandard singular point it can be written as (Beskin and Kuznetsova, 1998)

a = −2b1 + b3(Γ + 1)

D2
1

, (1.156)

where

b1 = 2k1ε1, (1.157)

b3 = 4k1√
10 − 6Γ

(
4 − √

10 − 6Γ

Γ + 1
− 1

)
ε1, (1.158)

D2
1 = 4(2 − b1)2 − (Γ + 1)(6 − 6b1 + b2

1 + 2b3). (1.159)

Therefore, for the subsonic motion ε1 � 1 under study we have a > −1/8, so that
at the nonstandard singular point there is no bifurcation of the characteristics.

1.3.5 Outflow from a Slowly Rotating Star

Another interesting example of the nonrelativistic flow is a transonic ejection from
a slowly rotating star (Tassoul, 1978; Lammers and Cassinelli, 1999). We should
point out at once that this example is of an illustrative character only, because
the radiation pressure, which cannot be successively included in the consideration
within the approach studied, actually, plays a crucial role in stars. Nevertheless, the
analysis of this case helps us clarify most problems associated with the GS equation
method (Beskin and Pidoprygora, 1998).

It is logical to consider, as a zero approximation, the well-known Parker solution
for the spherically symmetric transonic outflow (1.52), (1.53), (1.54), and (1.55).
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This implies that all the parameters of the spherically symmetric flow (including the
sonic radius r∗, the velocity of sound on the sonic surface c∗, the radial velocity vR

on the star surface r = R) are assumed to be known beforehand. For the polytropic
equation of state (1.26), which is considered in the following, they are given by
relations (1.52), (1.53), and (1.54):

c2
∗ = 2

5 − 3Γ
c2

R + Γ − 1

5 − 3Γ

(
v2

R − 2G M

R

)
, (1.160)

r∗ = G M

2c2∗
, (1.161)

n∗ = nR

(
c2
∗

c2
R

)1/(Γ−1)

, (1.162)

where the values with the index “R” stand for the star surface. Further, it is clear
that the ejection rate Φ0 in the expression Φ = Φ0(1 − cos θ ) can be written as

Φ0 = 2πr2
∗c∗n∗. (1.163)

Finally, since the gas ejection velocity vR on the star surface r = R, under the
continuity condition, is defined as (1.55)

vR = c∗

(
c2
∗

c2
R

)1/(Γ−1) (r∗
R

)2
,

this relation together with (1.160) implicitly defines the velocity of sound c∗ as the
functions nR and c2

R :

c2
∗

2

(
c2
∗

c2
R

)2/(Γ−1) (
G M

2c2∗ R

)4

+ c2
R

Γ − 1
− G M

R
= 5 − 3Γ

2(Γ − 1)
c2
∗. (1.164)

At large distances from a star r � r∗, where a free plasma outflow occurs, we have

vr = (2En)1/2 = v∞, (1.165)

n(r ) = n∗
c∗
v∞

(r∗
r

)2
, (1.166)

where

En = v2
R

2
+ c2

R

Γ − 1
− G M

R
. (1.167)

As we see, all the flow parameters are completely defined by two thermodynamic
functions nR and c2

R given on the star surface.
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Problem 1.19 Show that in the considered approximation for the transonic
outflow regime to exist sufficiently hard conditions are to be satisfied (see,
e.g., Leer and Axford, 1972):

(Γ − 1)
G M

R
< c2

R <
G M

2R
. (1.168)

The right-hand side inequality corresponds to the existence condition of the
transonic flow. Otherwise, the flow, starting from the very star surface, would
be a supersonic one. The violation of the left-hand side inequality would imply
(for vR � cR) the absence of the outflow from the star surface (the Bernoulli
integral En < 0).

As before, we seek the solution of the nonrelativistic GS equation (1.115) in the
form

Φ(r, θ ) = Φ0[1 − cos θ + ε2
2 f (r, θ )], (1.169)

where the small parameter now is

ε2
2 = Ω2 R3

G M
. (1.170)

Here Ω is the angular velocity of a star. In the problem studied, all i = 3 invariants
are to be determined. Hence, b = 2 + 3 − 1 = 4 so that four boundary conditions
must be given on the star surface r = rR(θ ), which now differs from a sphere

rR(θ ) = R[1 + ε2
2ρ(θ )]. (1.171)

In (1.171), the dimensionless parameter ρ(θ ) ∼ 1 was introduced.
We emphasize that, at first sight, there is an obvious contradiction here. Indeed,

in the example considered, we added one degree of freedom (the toroidal velocity
vϕ 
= 0), whereas the problem required two additional functions as compared to the
axisymmetric case. We will try to answer this question below.

It is important that for the small values of the parameter ε2 all three integrals of
motion can be determined by the real physical parameters on the star surface, i.e.,
by two thermodynamic functions (for example, T and n) and two velocity compo-
nents (for example, vr and vϕ). It is convenient to express them in terms of four
dimensionless functions τ (θ ), η(θ ), ω(θ ), and h(θ ):
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T (rR, θ ) = TR[1 + ε2
2τ (θ )], (1.172)

n(rR, θ ) = nR[1 + ε2
2η(θ )], (1.173)

vϕ(rR, θ ) = ε2

(
G M

R

)1/2

ω(θ ) sin θ, (1.174)

vr (rR, θ ) = vR[1 + ε2
2h(θ )]. (1.175)

Here the parameter ω(θ ) defined as

Ω(rR, θ ) = Ωω(θ ) (1.176)

describes the differential rotation of the star.
Using the thermodynamic relation

ds = 1

Γ − 1

dT

T
− dn

n
, (1.177)

we can obtain for the first invariant s(θ ) (the constant term is dropped)

δs(θ ) = ε2
2

[
1

Γ − 1
τ (θ ) − η(θ )

]
. (1.178)

Accordingly, two other invariants can also be defined by the boundary conditions:

δEn(θ ) = ε2
2v

2
Rh(θ ) + ε2

2
G M

2R
ω2(θ ) sin2 θ + ε2

2
Γ

Γ − 1

T

mp
τ (θ ) + δϕg, (1.179)

L2
n(θ ) = ε2

2 R2 G M

R
ω2(θ ) sin4 θ. (1.180)

When, for example, the main star mass is concentrated in its center, we can use the
expression for the gravitational potential perturbation on the star surface

δϕg(rR, θ ) = ε2
2

G M

R
ρ(θ ). (1.181)

It is very important that the possibility to perform a successive step, i.e., write
the GS equation itself, is associated with the simplicity of the zero approximation.
Indeed, since in the zero approximation Φ = Φ0(1−cos θ ), i.e., the stream function
depends only on the angle θ (and, besides, all the derivatives dEn/dΦ, dLn/dΦ, and
ds/dΦ, as well as Ln itself, are zero for a nonrotating star), we can use the relation

dΦ = Φ0 sin θdθ. (1.182)

It allows us to determine, with adequate accuracy, the derivatives dEn/dΦ, dLn/dΦ,
and ds/dΦ.
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As a result, the stream equation can again be linearized, while the equation for
the perturbation function ε2

2 f (r, θ ) is written as

− ε2
2Φ

2
0 D

∂2 f

∂r2
− ε2

2

r2
Φ2

0 (D + 1) sin θ
∂

∂θ

(
1

sin θ

∂ f

∂θ

)
+ ε2

2Φ
2
0 Nr

∂ f

∂r
=

−4π2n2r2 sin θ (D + 1)
dEn

dθ
+ 4π2n2(D + 1)

Ln

sin θ

dLn

dθ

−4π2n2 cos θ

sin2 θ
L2

n + 4π2n2r2 sin θ

[
(D + 1)

T

mp
+ Γ − 1

Γ
c2

s

]
ds

dθ
. (1.183)

Here again D = −1 + c2
s /v

2, Nr = 2/r − 4π2n2r2G M/Φ2
0 , and we used the

polytropic equation of state P = k(s)nΓ (1.26) and the explicit form of the function
k(s) (1.35) to determine the partial derivative (∂P/∂s)n .

The properties of Eq. (1.183) are analogous to those of Eq. (1.142).

• It is linear.
• The angular operator coincides with the operator L̂θ (1.120).
• Since all terms of the equation comprise the small parameter ε2

2, the functions D,
cs, n, etc., can be taken from the zero approximation.

• Since for the spherically symmetric flow the functions D, cs, n, etc. are indepen-
dent of θ , the solution of Eq. (1.183) can be expanded in terms of the eigenfunc-
tions of the operator L̂θ .

Hence, we can again seek the solution in the form

f (r, θ ) =
∞∑

m=0

gm(r )Qm(θ ). (1.184)

Introducing now the dimensionless variables

x = r

r∗
, u = n

n∗
, l = c2

s

c2∗
, (1.185)

we can write the ordinary differential equations describing the radial functions
gm(r ):

(1 − x4lu2)
d2gm

dx2
+ 2

(
1

x
− x2u2

)
dgm

dx
+ m(m + 1)x2lu2gm =

κm
R2

r2∗
x4lu4 − λm

R2

r2∗
u2 − σm x6lu4 + 1

Γ
νm x6l2u4 + Γ − 1

Γ
νm x2lu2, (1.186)

where κm , λm , σm , and νm are defined as the expansion coefficients:
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sin θ
dEn

dθ
= ε2

2c2
∗

∞∑
m=0

σm Qm(θ ), (1.187)

cos θ

sin2 θ
L2

n = ε2
2c2

∗r2
∗

∞∑
m=0

λm Qm(θ ), (1.188)

Ln

sin θ

dLn

dθ
= ε2

2c2
∗r2

∗
∞∑

m=0

κm Qm(θ ), (1.189)

sin θ
ds

dθ
= ε2

2

∞∑
m=0

νm Qm(θ ). (1.190)

Finally, the functions l(x) and u(x) corresponding to the spherically symmet-
ric flow for the polytropic equation of state (1.26) are connected by the relation
l = uΓ−1. The function u(x), because of (1.111), (1.112), and (1.113) can be found
from the ordinary differential equation

du

dx
= −2

u

x

1 − x3u2

1 − x4lu2
(1.191)

with the boundary conditions (cf. (1.47))

u(x)|x=1 = 1,
du

dx

∣∣∣∣
x=1

= −4 + √
10 − 6Γ

Γ + 1
. (1.192)

As for the boundary conditions for the system of equations (1.186), they are
quite analogous to the case of the Bondi–Hoyle accretion (Beskin and Pidoprygora,
1998).

1. The condition on the star surface. Since

dΦ = 2πr2nvr sin θdθ = 2πR2nRvR[1 + ε2
2(η + h + 2ρ)] sin θdθ, (1.193)

we have

gm(R/r∗) = (2m)!

2m(m + 1)!m!
(ηm + hm + 2ρm). (1.194)

Here ηm , hm , and ρm are the coefficients of the expansion in terms of the Leg-
endre polynomials, for example, η(θ ) = ∑

m ηmPm(cos θ ). If we specify on the
star surface the meridional velocity component vθ , using definitions (1.90) and
(1.143), we have

nvθ = − ∂Φ/∂r

2πR sin θ
= ε2

∗
Φ0

2πRr∗ sin θ

∞∑
m=0

g′
m

∣∣
r=R Qm(θ ). (1.195)
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As a result, vθ (R, θ ) defines, in fact, the derivative g′
m = dgm/dx on the star

surface

r∗
vθ (R, θ )

vR
= ε2

∗
R

sin θ

∞∑
m=0

g′
m

∣∣
r=R Qm(θ ), (1.196)

and, hence,

g′
m

∣∣
r=R = r∗

ε2∗ RvR
(vθ )m . (1.197)

Here (vθ )m are to be determined from the condition

∞∑
m=0

(vθ )m Qm(θ ) = vθ (R, θ ) sin θ. (1.198)

In particular, if the meridional convection is absent, so that vθ (R, θ ) = 0, we just
have

g′
m

∣∣
r=R

= 0. (1.199)

As we see, in both cases, to specify the boundary condition for the radial function
gm(R/r∗) we must specify on the star surface two more functions as compared
to the spherically symmetric flow.

2. The absence of the singularity on the sonic surface Nθ = 0. This condition yields

ε2
2gm(1) = (2m)!

2m(m + 1)!m!

[
(δEn)m

c2∗
− (δs)m − (L2

n/ sin2 θ )m

2c2∗r2∗

]
, (1.200)

where again (. . . )m stands for the expansion in terms of the Legendre polynomi-
als, which can be found from relations (1.178), (1.179), and (1.180).

As a result, Eqs. (1.186) together with the boundary conditions (1.194) or (1.197)
and (1.200) make it possible to solve the direct problem, i.e., determine the flow
structure from the physical boundary conditions on the star surface.

It is necessary to emphasize two important circumstances here.

• We were able to formulate the regularity condition on the sonic surface Nθ = 0
(and, thus solve the direct problem) again only due to the simple geometry of the
zero approximation. In particular, within the approximation considered, the sonic
surface location itself could be taken from the spherically symmetric solution. In
the general case, the location of the singular surface is not known so that the
condition Nθ = 0 cannot be expressed in terms of the known functions (δEn)m ,
(δs)m , etc., on the star surface.
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• The occurrence of the “additional” boundary condition becomes clear now. The
point is that, as was already noted, for m = 0 we must choose only one particular
solution, viz., g0 = const. The other particular solution is a nonphysical one.
Hence, for m = 0 we have the additional relation

g0(R) = g0(r∗). (1.201)

This condition defines h0, which, therefore, is no longer a free parameter. In
other words, we are not quite free in choosing the function h(θ ) that specifies the
radial velocity: its zero harmonic must be determined from the condition (1.201).
However, as was already mentioned, it is the zero harmonic g0 connected with
h0 that defines the ejection rate. Therefore, the ejection rate is a function of only
three parameters, viz., two zero harmonics of the thermodynamic functions η0

and τ0 and the toroidal velocity vϕ . For the spherically symmetric flow vϕ = 0,
and we return to two functions specifying the ejection rate. As to the higher
harmonics with m > 0, they are completely free and we must know four func-
tions on the star surface to specify them. Thus, the spherically symmetric flow
is degenerated and extreme care must be taken in extending its properties to the
two-dimensional flow.

To conclude this section, we consider a simple example of the outflow. We
assume

1. the total mass of a star is concentrated in its center so that ϕg = −G M/r ,
2. the absence of the differential rotation: ω(θ ) = 1,
3. the von Zeipel law is valid for the temperature on the star surface: T (R, θ ) ∝

g1/4
eff , where geff = −∇ϕeff and ϕeff = ϕg + L2

n/�
2.

4. the absence of the meridional convection on the star surface: vθ (rR, θ ) = 0
(this implies that we give the meridional velocity vθ (rR, θ ) rather than the radial
velocity vr (rR, θ ) here, so that the coefficients h0, h1, etc., must be found from
the solution).

Problem 1.20 Show that the perturbations of the star surface ρ(θ ) in (1.171)
and the temperature τ (θ ) in (1.172) have the form

ρ(θ ) = 1

2
sin2 θ, τ (θ ) = −1

2
sin2 θ. (1.202)

Problem 1.21 Show that in expansion (1.184) only the harmonics with m = 0
and m = 2 are available, while the expansion coefficients in (1.187), (1.188),
(1.189), and (1.190) are defined as
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σ2 = 2
r∗
R

− 5 − 3Γ

2(Γ − 1)
+ 1

2

v2
R

c2∗
− 3

v2
R

c2∗
h2, (1.203)

λ2 = 2
R

r∗
, κ2 = 4

R

r∗
, ν2 = − Γ

Γ − 1
, (1.204)

and σ0, . . . , ν0 = 0. Recall that h(θ ) = h0 + h1 cos θ + h2P2(cos θ ) + · · · .

Problem 1.22 Find the form of the sonic surface and, qualitatively, the behav-
ior of the separatrix characteristic.

As a result, having solved Eq. (1.186) for m = 2 and using the condition (1.201),
we find the following:

1. The ejection velocity can be represented as

Φtot = 2Φ0

[
1 + Ω2 R3

G M
(1 + h0)

]
. (1.205)

Here h0 can be found from relation (1.201) (see Table 1.1)

h0 = −1

6
+ 2

3

r∗
R

− R

r∗

1 − v2
R

c2∗

. (1.206)

As was expected, the rotation increases the ejection rate.
2. Far from the sonic surface r � r∗ the stream function has the form

lim
r→∞

Φ(r, θ )

Φ0
= (1 − cos θ ) + Ω2 R3

G M
(1 + h0)(1 − cos θ ) + Ω2 R3

G M
q2 sin2 θ cos θ,

(1.207)

Table 1.1 Parameters of transonic outflows for different models
The model 1 + h0 h2 q2 b0 b2

r∗/R = 1.1, Γ = 4/3 2.9 −0.8 −0.40 2.2 −0.41
r∗/R = 2.0, Γ = 4/3 3.2 −3.3 −0.71 2.5 −0.47
r∗/R = 10, Γ = 4/3 8.0 −56.0 −2.18 5.7 −0.92
r∗/R = 1.1, Γ = 1.1 1.7 −0.8 −0.15 1.8 −0.37
r∗/R = 2.0, Γ = 1.1 2.1 −2.3 −0.18 2.2 −0.40
r∗/R = 10, Γ = 1.1 7.4 −26.0 −0.40 7.2 −0.58
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where the coefficients q2 are also given in Table 1.1. Since in expression (1.207)
there is no dependence on r , we can conclude that the flow at large distances
becomes radial.

3. Accordingly, the asymptotic expression for the concentration n has the form

lim
r→∞

n(r, θ )

n∗
= c∗

v∞

r2
∗

r2

[
1 + Ω2 R3

G M
b0 + 1

2

Ω2 R3

G M
b2(3 cos2 θ − 1)

]
, (1.208)

where v2
∞ = v2

R −2G M/R. As seen from Table 1.1, the condition b2 < 0 is satis-
fied for all examples considered. This implies that the rotation leads to the occur-
rence of a dense disk in the equatorial plane; this result is well known (Lammers
and Cassinelli, 1999), but it was earlier obtained on the basis of the numerical
computations only.

4. Finally, the negative values of q2 in (1.207) show that for ε2 ≥ 1 the larger part
of the matter flux is also concentrated in the vicinity of the equatorial plane.

Certainly, the visible difference from the spherically symmetric outflow takes place
for large enough ε2 > 1, when the very approach under consideration is not valid.

1.4 Axisymmetric Stationary Flows in the Vicinity of a Black
Hole

1.4.1 Physical Intermezzo—(3 + 1)-Splitting in the Kerr Metric

Let us see now how the GS equation method can be used for the axisymmetric sta-
tionary flows in the vicinity of a rotating black hole. Recall that one of the main diffi-
culties of General Relativity is the necessity to work with four-dimensional objects.
As a result, we cannot often use our three-dimensional intuition when analyzing the
relativistic processes.

Nevertheless, there was found a simple language—the so-called (3 + 1)-
splitting—which makes it possible to work with three-dimensional values even in
the framework of General Relativity (Thorne and Macdonald, 1982). A compre-
hensive introduction can also be found in the book “Black Holes. The Membrane
Paradigm” edited by K. Thorne, D. MacDonald, and R. Price (1986). The main
idea of this approach is that for the stationary metrics the proper time τ is uniquely
connected with the “time at infinity” t . This fact allows one to separate the time t
from the space coordinates xi (i = 1, 2, 3). As a result, all equations can be rewrit-
ten in simple three-dimensional form whose physical meaning remains absolutely
transparent. We give the main results of this approach below.

Let us first recall the basic relations for the Kerr metric—the metric of a rotating
black hole. In the Boyer–Lindquist coordinates t , r , θ , and ϕ it has the form

ds2 = −α2dt2 + gik(dxi + β i dt)(dxk + βkdt), (1.209)
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where the value

α = ρK

Σ

√
Δ (1.210)

is a lapse function (gravitational red shift) and the vector β is toroidal:

βr = βθ = 0, βϕ = −ω. (1.211)

Here

ω = 2aMr

Σ2
(1.212)

—the so-called Lense–Thirring angular velocity (recall that βϕ is the contravariant
component of the vector β). Finally, M and a are the mass and the specific angu-
lar momentum of a black hole (a = J/M). Besides, we introduced the standard
notation:

Δ = r2 + a2 − 2Mr, ρ2
K = r2 + a2 cos2 θ,

Σ2 = (r2 + a2)2 − a2Δ sin2 θ, � = Σ

ρK
sin θ. (1.213)

Further, everywhere in this section we use the units in which c = G = 1. Finally, it
is important that the three-dimensional metric gik in (1.209) is a diagonal one

grr = ρ2
K

Δ
, gθθ = ρ2

K, gϕϕ = � 2. (1.214)

The Kerr metric has the following properties:

• It is axisymmetric and stationary. It is just what is needed to use the GS approach.
• The Kerr metric is a two-parameter one, i.e., it depends on two parameters: the

mass M and the specific angular momentum a.
• The Kerr metric becomes the Schwarzschild metric for a nonrotating black hole:

grr = α−2, gθθ = r2, gϕϕ = r2 sin2 θ . Here α2 = 1 − 2M/r .
• At large distances r � 2M the Boyer–Lindquist coordinates coincide with the

spherical coordinates: grr = 1, gθθ = r2, gϕϕ = r2 sin2 θ .

As we see, one of the main parameters of the Kerr metric is the lapse function
α. This quantity allows us to determine the main space–time characteristics in the
vicinity of a rotating black hole.

• For nonrotating black hole the lapse function α describes the delay between the
proper time τ and the time at infinity t : dτ = αdt .

• The condition α = 0 specifies the location of the event horizon, i.e., the black
hole radius
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rg = M +
√

M2 − a2. (1.215)

• The Boyer–Lindquist coordinates do not describe the space–time inside the hori-
zon; for r = rg the Kerr metric has a coordinate singularity.

Let us also itemize the main properties of the Lense–Thirring angular velocity ω

which is the second key parameter in the Kerr metric.

• The Lense–Thirring angular velocity ω corresponds to the proper space motion
around a black hole.

• By definition, ΩH = ω(rg) is the angular velocity of the black hole rotation (it is
independent of the angle θ ).

• For any rotational velocities

ΩH = a

2Mrg
. (1.216)

• For small angular velocities ω ∝ a.
• As seen from relation (1.215), the parameter a is bounded above: a ≤ M .

Finally, it is convenient to introduce the special coordinate system—ZAMO (zero
angular momentum observers) (Thorne and Macdonald, 1982)—which has the fol-
lowing properties:

• ZAMO observers are located at the constant radius r = const, θ = const, but
they rotate with the Lense–Thirring angular velocity dϕ/dt = ω.

• For ZAMO, the four-dimensional metric gαβ is a diagonal one, and its three-
dimensional part gik coincides with (1.214).

• In the ZAMO local experiment, there is no gyroscopic precession.
• For ZAMO, dτ = αdt for arbitrary ΩH.

Problem 1.23 Show that the ergosphere surface of the black hole

rerg = M +
√

M2 − a2 cos2 θ (1.217)

(within which there is no body at rest) is given by the simple condition

α2 = ω2� 2. (1.218)

Check it by direct substitution.

To clarify the physical meaning of α and ω we consider the motion of a particle in
the gravitational field of a rotating black hole. It turns out that the four-dimensional
equation of motion
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d2xα

ds2
+ Γ α

βγ

dxβ

ds

dxγ

ds
= 0 (1.219)

can be rewritten in the simple three-dimensional form:

dpi

dτ
= mp√

1 − v2
gi + Hik

mpv
k

√
1 − v2

, (1.220)

where

g = − 1

α
∇α, (1.221)

Hik = 1

α
∇iβk . (1.222)

Recall that

• the Greek indices α, β, and γ stand for the four-dimensional values, whereas the
Latin indices i , j , and k stand for the three-dimensional ones;

• τ is the proper time, and all the three-dimensional physical quantities are mea-
sured by ZAMO;

• ∇i is a covariant derivative in the three-dimensional metric (1.214).

It turns out that in the weak gravitational field, i.e., far from a black hole there
is a remarkable analogy between the gravitational and electromagnetic equations.
Indeed, the equation of motion (1.220) can be rewritten as

mp
d2r
dτ 2

= mp

(
g + dr

dτ
× H

)
, (1.223)

where

g = −∇α, H = ∇ × β, (1.224)

and, as we see, α and β act as scalar and vector potentials, respectively. Moreover,
time-independent Einstein’s equations in the weak gravitational field are also fully
equivalent to Maxwell’s equations (recall that G = c = 1, and v � c)

∇ · g = −4πρ, (1.225)

∇ × g = 0, (1.226)

∇ · H = 0, (1.227)

∇ × H = −16πρv. (1.228)

The difference is only in the signs of the first and last equations (the like charges in
the gravitation are attracted). In other words, the gravitational field g is analogous
to the electric field, and the new (so-called gravitomagnetic) field H to the magnetic
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field which is proportional to the angular velocity of a black hole. The source of the
gravitoelectric field g is masses and the source of the gravitomagnetic field H is mass
fluxes. The occurrence of an extra gravitational force is an important consequence
of the motion of bodies in General Relativity.

A rotating sphere with mass M and angular momentum J, for example, produces
the fields (Thorne et al., 1986)

g = − M

r2
er̂ , (1.229)

H = 2
J − 3er̂ (Jer̂ )

r3
, (1.230)

i.e., the ordinary radial gravitational field g and the dipole gravitomagnetic field H.
Another example—an infinitely long massive cylinder at rest (which, for simplicity,
is oriented along the vertical axis) produces a gravitational field

g = − 2

�
μge�̂ , (1.231)

where μg(g/cm) is the mass per unit length. If the cylinder is now moving along its
axis with the velocity V � c, in addition to the gravitoelectric field g the toroidal
gravitomagnetic field H occurs, its value according to (1.228) can be determined
exactly by the Biot–Savart law:

H = −8V

�
μgeϕ̂ . (1.232)

The main difference from the electrodynamics is that in the gravitation theory there
are particles of the same sign of charge only. Therefore, the gravitomagnetic force
always is vV/c2 times smaller than the gravitoelectric one. In electrodynamics, it
may happen that a current carrying wire has no full charge, i.e., there is only a
magnetic field and no electric field at all.

1.4.2 Basic Equations

Thus, the (3 + 1)-splitting allows us to describe the physical processes in a simple
three-dimensional language. If, besides, we use ZAMO as basic observers, in this
case, we are able to write the equations of motion in more compact form. The point
is that ZAMO is the analogue of the inertial reference frame, in any event, relative
to the toroidal motion. Thus, within the (3 + 1)-splitting

• all three-dimensional vectors must be defined by the local ZAMO measurements,
• all computations must be carried out in the three-dimensional diagonal metric

(1.214), for example (Korn and Korn, 1968) (g = grr gθθgϕϕ),
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∇ · A = 1√
g

∂

∂xi

(√
g Ai

)
, (1.233)

∇ × A = 1√
g

⎛
⎝

√
grr er̂

√
gθθeθ̂

√
gϕϕeϕ̂

∂/∂r ∂/∂θ ∂/∂ϕ√
grr Ar̂

√
gθθ Aθ̂

√
gϕϕ Aϕ̂

⎞
⎠ , (1.234)

• all vector relations remain the same as in flat space, for example, ∇×(∇a) = 0,
∇ · (∇ × A) = 0.

On the other hand, all thermodynamic functions within the (3 + 1)-splitting must
be specified in the comoving coordinate system. In fact, there is only one difficulty
here: in the relativistic case, we have to deal with the relativistic enthalpy μ involv-
ing the rest mass

μ = εm + P

n
≈ mpc2 + mpw + · · · . (1.235)

Here εm is the relativistic internal energy density including rest mass of particles.
For the polytropic equation of state P = k(s)nΓ (1.26), we have for c = 1 (Shapiro
and Teukolsky, 1983)

μ = mp + Γ

Γ − 1
k(s)nΓ−1, (1.236)

c2
s = 1

μ

(
∂P

∂n

)
s

= Γ

μ
k(s)nΓ−1. (1.237)

Finally, the relativistic energy–momentum tensor has the same symmetric form
as in flat space:

T αβ =
(
ε S
S T ik

)
=

(
(εm + Pv2)γ 2 (εm + P)γu
(εm + P)γu (εm + P)ui uk + Pgik

)
. (1.238)

Recall that γ is the Lorentz factor of the medium measured by ZAMO. Using the
relativistic expression for the energy–momentum conservation law ∇αT αβ = 0, we
get (Thorne and Macdonald, 1982)

− 1

α2
∇ · (α2S) + Hik T ik = 0, (1.239)

∇k T k
i + 1

α
Sϕ

∂ω

∂xi
+ (εδk

i + T k
i )

1

α

∂α

∂xk
= 0. (1.240)

The additional terms in the energy (1.239) and momentum (1.240) equations are due
to the action of the gravitomagnetic force. In particular, the poloidal component of
Eq. (1.240) (i.e., simply the poloidal component of the relativistic Euler equation)
is written as (Frolov and Novikov, 1998)
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nub∇b(μua) + ∇a P − μn(uϕ̂)2 1

�
∇a� + 1

α
μnγ�uϕ̂∇aω + 1

α
μnγ 2∇aα = 0.

(1.241)
Here the indices a and b only run from r to θ .

Problem 1.24 Show that for a Schwarzschild black hole the velocity along a
circular orbit is

v2
ϕ̂ = M

rα2
. (1.242)

How can we explain that for r < 3rg/2 the velocity vϕ̂ > 1?

Problem 1.25 Show that for a Kerr black hole the angular velocity
Ω = dϕ/dt measured by a distant observer for a circular orbit in the equa-
torial plane has the form (Shapiro and Teukolsky, 1983)

Ω = M1/2

r3/2 ± aM1/2
. (1.243)

We proceed to the study of the axisymmetric stationary flows. We introduce,
as in the flat space, the stream function Φ(r, θ ) through the poloidal four-velocity
component up as

αnup = ∇Φ × eϕ̂
2π�

. (1.244)

Since |eϕ̂| = 1, this vector definition involves the following relations for the physical
components:

αnur̂ = 1

2π�
(∇Φ)θ̂ , αnu θ̂ = − 1

2π�
(∇Φ)r̂ . (1.245)

The physical components of the gradient ∇Φ are defined as

(∇Φ)r̂ = 1√
grr

∂Φ

∂r
, (∇Φ)θ̂ = 1√

gθθ

∂Φ

∂θ
, (1.246)

because the derivatives ∂Φ/∂r and ∂Φ/∂θ are the covariant components of the
gradient ∇Φ.

From the definition (1.244) it also follows that the continuity equation

∇ · (αnu) = 0 (1.247)
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holds automatically. Let us clear up the occurrence of the additional factor α in
Eq. (1.247). It is due to the circumstance that the three-dimensional continuity equa-
tion (1.247) is actually a consequence of the four-dimensional equation for the flux
Nβ = nuβ

∇β Nβ = 1√
−g(4)

∂

∂xβ

(√
−g(4) Nβ

)
= 0, (1.248)

where g(4) is the determinant of the four-dimensional metric gαβ . It is easy to verify
that for the metric (1.209) we have −g(4) = α2g, where g = grr gθθgϕϕ , which
results in relation (1.247).

Using now definitions (1.238) and (1.244), we can rewrite the energy equation
(1.239) and the ϕ-component of Eq. (1.240) as

u · ∇(αμγ ) + μuϕu · ∇ω = 0, (1.249)

u · ∇(μuϕ) = 0. (1.250)

Hence, two integrals of motion can be represented as

E(Φ) = αμγ + μω�uϕ̂ , (1.251)

L(Φ) = μ�uϕ̂ . (1.252)

Problem 1.26 Find expressions (1.249), (1.250), (1.251), and (1.252).

Problem 1.27 Show that inside the ergosphere the relativistic energy E
(1.251) can be negative.

Expressions (1.251) and (1.252) are the generalization of nonrelativistic relations
(1.92) and (1.96) to the case of a rotating black hole. Indeed, for ω = 0 we have, for
example, for the Bernoulli integral (with dimension taken into account)

E = γμα ≈
(

1 + 1

2

v2

c2
+ · · ·

) (
mpc2 + mpw + · · · )

(
1 − G M

c2r
+ · · ·

)

≈ mpc2 + mp

(
v2

2
+ w + ϕg

)
+ · · · . (1.253)

As we see, the dimension of the relativistic Bernoulli integral E , as well as the
invariant L , differs from the nonrelativistic values En and Ln by the factor mp. As
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to the third invariant, it is still the entropy

s = s(Φ). (1.254)

As a result, the relativistic Bernoulli’s equation (γ 2 = 1 + u2
ϕ̂ + u2

p) can now be
written as

(E − ωL)2 = α2μ2 + α2

� 2
L2 + M̂4

64π4� 2
(∇Φ)2, (1.255)

where we introduced the thermodynamic function

M̂2 = 4πμ

n
. (1.256)

By analogy with (1.111) Bernoulli’s equation can be rewritten in differential form
as

∇kM̂2 = −M̂2 Nk

D
. (1.257)

Here

Nk = −∇ iΦ · ∇i∇kΦ

(∇Φ)2
+ ∇′

k F

2(∇Φ)2
, (1.258)

F = 64π4

M̂4

[
� 2(E − ωL)2 − α2L2 − � 2α2μ2

]
, (1.259)

and the operator ∇′
k acts on all variables except for M̂2. Recall that in (1.255)

and (1.258) the relativistic enthalpy μ must be regarded as the function M̂2 and
s: μ = μ(M̂2, s). In the general case, the corresponding differential relation has the
form (Beskin and Pariev, 1993)

dμ = − c2
s

1 − c2
s

μ
dM̂2

M̂2
+ 1

1 − c2
s

[
1

n

(
∂P

∂s

)
n

+ T

]
ds. (1.260)

Therefore, as in the nonrelativistic case, Bernoulli’s equation (1.255) implicitly
defines M̂2 in terms of the stream function Φ and three integrals of motion:
M̂2 = M̂2(∇Φ; E, L , s).

Using now the invariants E , L , and s, we can again write the poloidal component
of the relativistic Euler equation (1.241) as [Euler]p = [GS]∇Φ, where the stream
equation [GS] = 0 has the form
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− M̂2

[
α� 2∇k

(
1

α� 2
∇kΦ

)
+ ∇ iΦ · ∇kΦ · ∇i∇kΦ

(∇Φ)2 D

]
+ M̂2∇′

k F · ∇kΦ

2(∇Φ)2 D

+32π4

M̂2

∂

∂Φ

[
� 2(E − ωL)2 − α2 L2

] − 16π3α2� 2nT
ds

dΦ
= 0. (1.261)

Here the operator ∂/∂Φ acts only on the invariants E(Φ), L(Φ), and s(Φ). Finally,
now the denominator D looks like

D = −1 + 1

u2
p

c2
s

1 − c2
s

, (1.262)

and the physical component of the poloidal four-velocity up can be obtained from
the definition (1.244). In compact form, the relativistic equation is

− α� 2∇k

(
M̂2

α� 2
∇kΦ

)
+ 32π4

M̂2

∂

∂Φ

[
� 2(E − ωL)2 − α2L2

]

−16π3α2� 2nT
ds

dΦ
= 0. (1.263)

The hydrodynamical version of the GS equation in the Kerr metric was first
obtained in Anderson (1989) within the standard four-dimensional formalism and
also in Beskin and Pariev (1993) within the (3 + 1)-splitting.

Finally, it is convenient to use the other form for the poloidal physical four-
velocity up:

u2
p = (E − ωL)2 − α2L2/� 2 − α2μ2

α2μ2
. (1.264)

Hence, up → ∞ as α−1 when approaching the horizon. As was already stressed,
this behavior results from the choice of the coordinate system that has a coordinate
singularity for r = rg. Note, finally, that relation (1.264) results in an important
conclusion—in the vicinity of the black hole horizon the flow must be supersonic
(vp > cs).

Using the definitions (1.244), (1.245), and (1.246), we easily show that when
approaching the black hole horizon only the radial component of the poloidal four-
velocity diverges, whereas the θ -component remains finite:

|ur̂ | = O(α−1), |u θ̂ | = O(1). (1.265)

Accordingly, as L is finite, the toroidal four-velocity component remains finite as
well:

|uϕ̂| = O(1). (1.266)
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The latter relation shows that in the vicinity of the horizon |vϕ̂| = O(α) and, there-
fore, for a distant observer all bodies in the vicinity of the horizon rotate with the
Lense–Thirring angular velocity ω. As we will see, this important property remains
valid for magnetized flows as well.

Problem 1.28 Show that when approaching the horizon vr̂ → −1, vθ̂ → 0,
so that the motion from the ZAMO viewpoint becomes purely radial.

1.4.3 Exact Solutions

1.4.3.1 Spherically Symmetric Accretion

If the gas velocity at infinity is zero (γ∞ = 1) and the thermodynamic functions
are isotropic, then E = μ∞ = const and s = s∞ = const. Consequently, as in the
nonrelativistic case, two thermodynamic functions specify two integrals of motion
E and s. Finally, for the spherically symmetric flow we can put L = 0. Under these
conditions the stream equation (1.261) has the trivial solution Φ = Φ0(1 − cos θ ),
where the accretion rate 2Φ0 must be determined from the critical conditions on the
sonic surface r = r∗.

As a result, we can obtain the expression for the radius of the sonic surface

r∗ = M

2

(
1

c2∗
+ 3

)
, (1.267)

so that for c2
∗ � 1 we return to the nonrelativistic expression (1.52). As to the value

c2
∗ itself, it can be expressed in terms of the velocity of sound at infinity c∞ from the

implicit relation (Michel, 1972)

(
1 − c2

∞
Γ − 1

)2

= (1 + 3c2
∗)

(
1 − c2

∗
Γ − 1

)2

. (1.268)

In the limit c∞ � 1, it becomes the well-known expression (1.44). Further, M̂2
∗ and

μ∗ on the sonic surface are defined as

M̂2
∗ = M̂2

∞

(
c2
∞

c2∗

)1/(Γ−1) (
Γ − 1 − c2

∗
Γ − 1 − c2∞

)(2−Γ )/(Γ−1)

, (1.269)

μ∗ = μ∞
Γ − 1 − c2

∞
Γ − 1 − c2∗

. (1.270)

Thus, the accretion rate can be written as Ṁ = 2mp|Φcr|, where in the relativistic
case we have
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Φcr = −8π2r2
∗ Ec∗

M̂2∗
. (1.271)

Problem 1.29 Find expressions (1.267), (1.268), and (1.271) using the
explicit form of the numerator and the denominator in (1.257) for E = const,
L = 0, s = const, and ω = 0.

Problem 1.30 Show that, with account taken of the effects of General Rela-
tivity, the transonic accretion occurs for Γ = 5/3 as well.

Finally, in the supersonic region r � r∗ we have for Γ 
= 1 and c∗ � 1

M̂2

M̂2∗
≈ 2

(
r

r∗

)3/2

, (1.272)

and

c2
s

c2∗
≈ 1

2Γ−1

(
r

r∗

)−3(Γ−1)/2

. (1.273)

In particular, on the horizon

c2
s (rg) = 1

16Γ−1
c5−3Γ
∗ . (1.274)

Hence, for c2
∗ ≈ c2

∞ � 1 and Γ < 5/3 the sound velocity remains small (cs � 1)
up to the horizon of a black hole.

We should point out that accretion onto black holes considerably differs from
the nonrelativistic flows. The point is that in the relativistic case, all subsonic solu-
tions existing by accretion onto ordinary stars have the singularity v(r → rg) = 0,
n(r → rg) = ∞ on the horizon (see Fig. 1.8). Otherwise, for the subsonic stationary
accretion regime to be maintained the infinite gravitational force in the vicinity of
the horizon should be balanced by the infinite pressure gradient. Clearly, this regime
of accretion cannot be realized. Thus, we can formulate a theorem:

Theorem 1.2 The only physically acceptable accretion regime onto the black hole
is a transonic accretion (Michel, 1972).

As will be demonstrated below, this conclusion remains true for magnetohydrody-
namic accretion as well.
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Fig. 1.8 The structure of
spherically symmetric
accretion onto a black hole.
The transonic flow (bold
curve) again corresponds to
the critical accretion rate
Φ = Φcr (1.271). All fine
curves below the X -point
corresponding to the subsonic
accretion with Φ < Φcr have
a singularity on the horizon
vr̂ → 0 (i.e., n → ∞)

cr

cr

*

*

1.4.3.2 Dust Accretion (P = 0)

.
For the accretion of matter with zero pressure (dust accretion) the streamlines must
coincide with the trajectories of particles freely moving in the gravitational field of
a rotating black hole. For the case L = 0 (uϕ = 0) and the zero kinetic energy at
infinity γ∞ = 1, these trajectories are “straight lines” θ = const for the arbitrary
rotation parameter a (Frolov and Novikov, 1998). Moreover, for the zero pressure
P = 0 the streamlines density can be arbitrary. Otherwise, the arbitrary function

Φ = Φ(θ ) (1.275)

must be the solution of the GS equation. In particular, this implies that the accretion
rate can be arbitrary. It is not surprising because the flow is supersonic in the whole
space.

Problem 1.31 Using Bernoulli’s equation (1.255) and the compact form of
the relativistic stream equation (1.263), check that for E = μ = const, L = 0
and s = 0, the arbitrary function Φ(θ ) is really the solution.

1.4.3.3 Gas Accretion with cs = 1

It follows from relation (1.262) that for cs = 1 we have D−1 = 0. Hence, for
E = const, L = 0, and s = const, the stream equation becomes linear:

Δ

ρ2
K

∂2Φ

∂r2
+ sin θ

ρ2
K

∂

∂θ

(
1

sin θ

∂Φ

∂θ

)
= 0. (1.276)

As a result, its solution can again be expanded in terms of the eigenfunctions of the
operator L̂θ (Petrich et al., 1988). Thus, for a moving black hole we find
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Φ = Φ0(1 − cos θ ) + πn∞v∞(r2 − rgr ) sin2 θ. (1.277)

On the other hand, the absence of a singularity on the horizon for the concentration
n results in the additional relation which, as in the Bondi accretion, again fixes the
accretion rate onto a black hole Φ0 = Φcr, where

Φcr = −8π2r2
g Ecs(rg)

M̂2(rg)
. (1.278)

1.4.4 Bondi–Hoyle Accretion—The Relativistic Regime

We first consider the accretion onto a moving black hole, i.e., the relativistic ver-
sion of the Bondi–Hoyle accretion. The small parameter of the problem is again
ε1 = v∞/c∞. In the relativistic case, the linearized stream equation for the flux
function Φ = Φ0[1 − cos θ + ε1 f (r, θ )] can be written as (Beskin and Pidoprygora,
1995)

− ε1α
2 D

∂2 f

∂r2
− ε1

r2
(D + 1) sin θ

∂

∂θ

(
1

sin θ

∂ f

∂θ

)
+ ε1α

2 Nr
∂ f

∂r
= 0, (1.279)

where now

Nr = 2

r
− μ2

E2 − α2μ2

M

r2
. (1.280)

We see that this equation has the same properties as the nonrelativistic equation
(1.142), viz.,

• Eq. (1.279) is linear;
• the angular operator coincides with the operator L̂θ (1.120);
• because all terms of the equation contain the small parameter ε1, the functions

D, cs, etc., can be taken from the zero approximation;
• because for the spherically symmetric flow the functions D, cs, etc., are indepen-

dent of θ , the solution of Eq. (1.279) can be expanded in terms of the eigenfunc-
tions of the operator L̂θ .

However, Eq. (1.279) has another remarkable property. According to (1.262) and
(1.264)

D + 1 = α2μ2

E2 − α2μ2

c2
s

1 − c2
s

, (1.281)

so that the factor α2 is present in all terms of Eq. (1.279). Therefore, Eq. (1.279) has
no singularity on the horizon. In particular, this implies that no additional boundary
condition is to be specified on the horizon. It is not surprising because the horizon
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is associated with the supersonic region that cannot affect the flow structure at large
distances from a black hole.

As a result, the solution of Eq. (1.279) can again be sought in the form

Φ(r, θ ) = Φ0[1 − cos θ + ε1g1(r ) sin2 θ ], (1.282)

and the equation for the radial function g1(r ) now looks like

− D
d2g1

dr2
+ Nr

dg1

dr
+ 2

μ2

E2 − α2μ2

c2
s

1 − c2
s

g1

r2
= 0. (1.283)

As in the nonrelativistic case, the accretion rate does not change in the first order of
ε1.

Introducing now dimensionless variables

x = r

r∗
, u = M̂2

∗
M̂2

≈ n

n∗
, l = c2

s

c2∗
, (1.284)

one can rewrite Eq. (1.283) for cs � 1 in the form

(
1 − x4lu2

) d2g1

dx2
+ 2

(
1

x
− x2u2

)
dg1

dx
+ 2x2lu2 g1 = 0. (1.285)

Here, according to polytropic equation of state (1.26) l = uΓ−1 and dimensionless
value u(x), due to (1.257) and (1.258), again satisfies Eq. (1.191)

du

dx
= −2

u

x

1 − x3u2

1 − x4lu2
, (1.286)

but now with boundary conditions

u(x)|x=1 = 1,
du

dx

∣∣∣∣
x=1

= −4 + √
10 − 6Γ

Γ + 1
. (1.287)
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As to the boundary conditions for the equation for the radial function g1(r ), they
are formulated as follows:

1. The regularity condition on the sonic surface. It yields g1(r∗) = 0.
2. At infinity

g1(r ) → K (Γ )
r2

r2∗
, (1.288)

where

K (Γ ) = 1

2

M̂2
∗

M̂2∞

c∞
c∗

. (1.289)

As a result, we have (see Table 1.2)

K (Γ ) = 1

2

(
5 − 3Γ

2

)(Γ+1)/2(Γ−1)

, Γ 
= 5/3, (1.290)

K (Γ ) = 9

8
c2
∞, Γ = 5/3. (1.291)

More exactly, Table 1.2 gives the values for c∞ � 1; in the general case, these
values depend on c∞ as well.

Equation (1.283) with boundary conditions 1 and 2 fully determines the structure
of the Bondi–Hoyle accretion onto a nonrotating black hole. In particular, the sonic
surface radius still looks like

r∗(θ ) = r (0)
∗

[
1 + 2ε1

(
Γ + 1

D2
1

)
k1(Γ ) cos θ

]
, (1.292)

where now

D2
1 = 10 − 6Γ + 18c2

∗, Γ 
= 5/3,

(1.293)

D2
1 = 12c∞, Γ = 5/3,

and again k1(Γ ) = g′
1(r∗)r∗. The values of k1(Γ ) are given in Table 1.2.

Table 1.2 Parameters of the Bondi–Hoyle accretion for different polytropic indices Γ

Γ 1.01 1.1 1.2 1.333 1.5 1.6

K (Γ ) 0.11 0.09 0.07 0.044 0.016 0.003
k1(Γ ) 0.66 0.56 0.46 0.31 0.12 0.026
Kin(Γ ) −0.16 −0.090 −0.026 0.025 0.008 0.0002
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The flow structure as a whole slightly differs from the nonrelativistic case shown
in Fig. 1.7. We can stress only one new property. The point is that for r � r∗ the
radial function g1(r ) has the asymptotic behavior

g1(r ) ≈ Kin(Γ )

(
r

r∗

)−1/2

(1.294)

(the values of Kin can also be found in Table 1.2). Consequently, for ε1 > (M/r∗)1/2

in the vicinity of a black hole (i.e., for r < ε2
1 K 2

inr∗) the linear approximation is not
valid so that in this domain it is necessary to analyze already the full nonlinear
equation (1.261). Since the sign of the coefficient Kin(Γ ) depends on the polytropic
index Γ , the confluence region of the streamlines occurs either in the frontal part
of a black hole for Γ > 1.27 or in its rear part for Γ < 1.27. This concentration
of the streamlines corresponds, however, to the supersonic flow region that does
not affect the above-constructed solution. On the other hand, the intersection of
ballistic trajectories can result in additional heating which, in principle, can be
detected (Shcherbakov, 2005).

1.4.5 Accretion onto a Slowly Rotating Black Hole

We now consider the accretion of a gas with zero intrinsic angular momentum L = 0
(i.e., i = 2 and b = 2 + 2 − 1 = 3) onto a slowly rotating black hole. In this case,
the small parameter is

ε3 = a

M
� 1. (1.295)

The components of the metric gik (1.214) differ from the metric of a nonrotating
black hole by the values of order ε2

3. On the other hand, we assume that the ther-
modynamic functions at infinity s∞ and μ∞ remain the same as for the spherically
symmetric accretion. Therefore, we again can seek the solution of Eq. (1.261) in the
form

Φ(r, θ ) = Φ0[1 − cos θ + ε2
3 f (r, θ )], (1.296)

where the flux Φ0 corresponds to the unperturbed case a = 0. Substituting expres-
sion (1.296) in (1.261), we obtain in the first order of ε2

3

−ε2
3α

2
0 D

∂2 f

∂r2
− ε2

3

r2
(D + 1) sin θ

∂

∂θ

(
1

sin θ

∂ f

∂θ

)
+ ε2

3α
2
0 Nr

∂ f

∂r

= a2

r4

(
1 − 2M

r

)(
1 − 2

μ2

E2 − α2
0μ

2

M

r

)
sin2 θ cos θ, (1.297)

where Nr is, as before, defined by relation (1.280), and α2
0 = 1 − 2M/r .
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Clearly, the properties of Eq. (1.297) are quite analogous to those of (1.279). In
particular, Eq. (1.297) has no singularity on the horizon. As a result, as for the ejec-
tion from a slowly rotating star, the flux Φ(r, θ ) contains only two harmonics m =0
and m =2. Therefore, the stream function Φ(r, θ ) can be represented as (Beskin and
Pidoprygora, 1995)

Φ(r, θ ) = Φ0[(1 − cos θ ) + ε2
3g0(1 − cos θ ) + ε2

3g2(r ) sin2 θ cos θ ]. (1.298)

The equation for the radial function g2(r ) now has the form

− D
d2g2

dr2
+ Nr

dg2

dr
+ 6

μ2

E2 − α2
0μ

2

c2
s

1 − c2
s

g2

r2
= M2

r4

(
1 − 2

μ2

E2 − α2
0μ

2

M

r

)
.

(1.299)
Accordingly, the regularity condition on the sonic surface Nθ (r∗) = 0 is

g2(r∗) = −1

2

M2

r2∗
α2

0(r∗). (1.300)

On the other hand, the condition at infinity (which is the third boundary condition
besides s∞ and μ∞) yields g2(r → ∞) = 0.

Introducing again dimensionless variables (1.284) and

y(x) = r2
∗

M2
g2(xr∗), (1.301)

we can rewrite Eq. (1.299) for cs � 1 in the form

(
1 − x4lu2

) d2 y

dx2
+ 2

(
1

x
− x2u2

)
dy

dx
+ 6x2lu2 y = 1

x4
− 4u2

x
, (1.302)

with the boundary conditions y(0) = −1/2, y(∞) = 0. Analyzing now the system
of equations (1.302) and (1.286), one can find that the radial function g2(r ) for
r � r∗ can be written as

g2(r ) = −G(Γ )
M2

r2∗

(
r

r∗

)(1−3Γ )/2

, (1.303)

where G(Γ ) ∼ 1 (see Table 1.3). Hence, on the horizon g2(rg) ∼ (M/r∗)(5−3Γ )/2.
Therefore, the perturbation of the spherically symmetric flow remains small up to
the horizon of a black hole (ε2

3g2(r ) � 1). On the other hand, since g2(r ) < 0,
the rotation of a black hole leads to the concentration of the streamlines in the
equatorial plane. Finally, the complementary consideration similar to that for the
nonrelativistic Bondi–Hoyle accretion shows that (Beskin and Pidoprygora, 1995)
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Table 1.3 Parameters of the accretion onto a rotating black hole for different polytropic indices Γ

Γ 1.01 1.1 1.2 1.333 1.5 1.6

G(Γ ) 9.31 4.14 1.89 0.79 0.35 0.27
k2(Γ ) 0.889 0.890 0.891 0.896 0.910 0.935
k3(Γ ) 0.22 0.23 0.24 0.24 0.22 0.17
k4(Γ ) 4.61 4.09 3.52 2.73 1.67 0.91

g0 = −2
M3

r3∗
. (1.304)

Hence, the black hole rotation decreases the accretion rate. However, under the nor-
mal conditions, generally, c2

∞ � 1 (and, therefore, M/r∗ � 1), so that the effects
of the black hole rotation prove extremely small.

Finally, the expression for the sonic surface radius has the form

r∗(θ ) = r (0)
∗

{
1 + ε2

3
M2

D2
1r2∗

[
k3(Γ ) − k4(Γ ) cos2 θ

]}
. (1.305)

Here D2
1 is again defined from relations (1.293), and the coefficients

k3(Γ ) = [1 − k2(Γ )](Γ + 1), (1.306)

k4(Γ ) = 10 − 6Γ + 3[1 − k2(Γ )](Γ + 1) (1.307)

depend on the derivative k2(Γ ) = r3
∗ g′

2(r∗)/M2 (see Table 1.3). As we see, k2(Γ )
changing in the range 0.89–0.93 is practically independent of the polytropic index
Γ . The availability of the additional small parameter M2/r2

∗ shows that the form
of the sonic surface slightly differs from the spherical one even for the parameter
ε3 ≈ 1. Nevertheless, we see that the sonic surface turns out to be flattened at the
poles and extended at the equator [r∗(0) < r∗(π/2)]. This implies that the standard
singular point is located at the poles and the nonstandard one in the equatorial plane.
As a result, the separatrix characteristics come out from the points located at the
equator, are again tangent to the sonic surface in the polar regions, and then bent in
the direction of a black hole.

1.4.6 Accretion of Matter with Small Angular Momentum

We now consider the problem of matter accretion with small angular momentum
onto a nonrotating black hole (Anderson, 1989; Beskin and Malyshkin, 1996). To
obtain the analytical solution we, following the computing method developed ear-
lier, believe that the angular momentum of an accreting matter L is sufficiently
small so that the radial velocity vr̂ is always larger than the toroidal velocity vϕ̂ .
In this case, it is logical to assume that the flow structure slightly differs from the
spherically symmetric accretion.
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Let us point to one important difference of this problem from the case of matter
accretion with zero angular momentum. The point is that the angular momentum
conservation law L ∝ rvϕ̂ shows that at large distances vϕ̂ ∝ r−1. On the other hand,
for the spherically symmetric accretion for r � r∗, we have vr̂ ∝ r−2. Thus, for
any arbitrary small angular momentum L at large distances from the gravitational
center the flow structure already greatly differs from the case of the spherically
symmetric accretion. Therefore, we restrict our consideration only to the domain
within some outer radius R, inside which the radial velocity vr̂ is always much
larger than the toroidal velocity vϕ̂ . Incidentally, this statement of the problem is
more realistic because it is logical to consider only the domain in which the velocity
of turbulent pulsations in the external medium vturb is everywhere smaller than the
hydrodynamical velocity v. As we will see, the conditions on the outer boundary
r = R do not essentially affect the accretion structure in the supersonic region.

Thus, we consider the axisymmetric stationary accretion of an ideal gas onto
the nonrotating (Schwarzschild) black hole. Following (1.64), this problem also
requires four boundary conditions. These boundary conditions are, for example,
two thermodynamic functions s and cs, the angular momentum L , and also one
more function on the outer boundary r = R. Here, for simplicity, the entropy s is
assumed to be the same for all the streamlines. We suppose also that far from a
black hole cs � 1, so that μ ≈ mp. Finally, to specify the angular momentum L
on the outer boundary r = R we assume that the gas rotates homogeneously, i.e.,
vϕ̂(R, θ ) ∝ sin θ , vθ̂ (R, θ ) = 0. Hence,

L(R, θ ) = mp Rvϕ̂ sin θ = L0 sin2 θ, (1.308)

E(R, θ ) = E0 + mpv
2
ϕ̂

2
= E0 + L2

0

2R2 E0
sin2 θ, (1.309)

vθ̂ (R, θ ) = 0. (1.310)

As we see, the small parameter of our problem is ε2
L , where

εL = L0

E0rg
. (1.311)

We seek, as before, the solution of our problem in the form of

Φ(r, θ ) = Φ0
[
1 − cos θ + ε2

L f (r, θ )
]
, (1.312)

where the latter term is a perturbation of the spherically symmetric flow with the
small parameter ε2

L . If we linearize Eq. (1.261) with respect to small values ε2
L ,

L2, and dE/dθ and again go from the derivatives d/dΦ to the derivatives d/dθ
according to expression dΦ = Φ0 sin θdθ , we obtain (cf. (1.183))
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− ε2
L D

∂2 f

∂ r2
− ε2

L

D + 1

α2r2
sin θ

∂

∂ θ

(
1

sin θ

∂ f

∂ θ

)
+ ε2

L Nr
∂ f

∂ r
=

− D + 1

α2

E

E2 − α2μ2

sin θ

r2

dE

dθ
− 1

E2 − α2μ2

1

r4

(
cos θ

sin2 θ
L2 − D + 1

sin θ
L

dL

dθ

)

(1.313)

It is clear that in this equation all values (except for L , dL/dθ , and dE/dθ ) are
to be taken from the spherically symmetric solution. In particular,

D = −1 + 1

u2
p

c2
s

1 − c2
s

= −1 + α2
0μ

2

E2
0 − α2

0μ
2

c2
s

1 − c2
s

, (1.314)

Nr = 2

r
− μ2

E2
0 − α2

0μ
2

M

r2
, (1.315)

where α2
0 = 1 − 2M/r . We should again emphasize the fact that since D + 1 ∝ α2

0,
as in the above examples, Eq. (1.313) has no singularity on the event horizon.

As a result, Eq. (1.313) can be rewritten as

− D
∂2 f

∂ r2
− D + 1

α2
0r2

sin θ
∂

∂ θ

(
1

sin θ

∂ f

∂θ

)
+ Nr

∂ f

∂ r
=

4E2
0

E2
0 − α2

0μ
2

M2

r2

(
2D + 1

r2
− D + 1

α2
0 R2

)
sin2 θ cos θ. (1.316)

If we expand the function f (r, θ ) in terms of the eigenfunctions of the operator
L̂θ by analogy with what was done earlier and substitute this series in Eq. (1.316),
we obtain the system of ordinary differential equations for the functions gm(r ):

−D
d2gm

dr2
+ Nr

dgm

dr
− qm

μ2

E2
0 − α2

0μ
2

c2
s

1 − c2
s

gm

r2
= 0, m 
= 2, (1.317)

−D
d2g2

dr2
+ Nr

dg2

dr
+ 6

μ2

E2
0 − α2

0μ
2

c2
s

1 − c2
s

g2

r2
=

4E2
0

E2
0 − α2

0μ
2

M2

r2

(
2D + 1

r2
− D + 1

α2
0 R2

)
, m = 2. (1.318)

Here qm = −m(m + 1) are the eigenvalues of the operator L̂θ .
As a result, as in the above examples, only two radial functions g0 = const and

g2(r ) appear different from zero. For R � r∗, c∗ � 1, we get
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g0 = −16

3
c2
∗, (1.319)

g2(r∗) = 8

3
c2
∗. (1.320)

Together with the condition on the outer boundary u θ̂ (R) = 0, which is equivalent
to

dg2

dr

∣∣∣∣
r=R

= 0, (1.321)

Eqs. (1.318), (1.319), and (1.320) completely solve the problem posed. In particular,
the negative value g0 shows that the matter rotation slows down the accretion rate.
Further, the stream function can be written as

Φ(r, θ ) = Φ0
[
(1 + ε2

L g0)(1 − cos θ ) + ε2
L g2(r ) sin2 θ cos θ

]
. (1.322)

Finally, the sonic surface radius r∗(θ ) can be represented as

r∗(θ ) = r (0)
∗

{
1 + ε2

Lc2
∗
[
k6(Γ ) cos2 θ − k7(Γ )

]}
, (1.323)

where the values

k6(Γ ) = 3(Γ + 1)

10 − 6Γ
k5(Γ ) + 8(3 − Γ )

5 − 3Γ
, (1.324)

k7(Γ ) = Γ + 1

10 − 6Γ
k5(Γ ) + 8(3 − Γ )

5 − 3Γ
, (1.325)

as well as k5(Γ ) = r∗g′
2(r∗)/c2

∗, are given in Table 1.4. Clearly, in the studied case
r∗ � rg (c∗ � 1), the sonic surface perturbation is extremely small even for ε2

L ∼ 1.
We see that the sonic surface is extended along the rotation axis (k6 > 0). Therefore,
in this case, the nonstandard singular points are located at the poles and the standard
ones in the equatorial plane.

For further investigation, it is again convenient to introduce the dimensionless
variables

y(x) = 1

c2∗
g2(xr∗), x = r

r∗
, u = M̂2

∗
M̂2

≈ n

n∗
, l = c2

s

c2∗
. (1.326)

Table 1.4 Parameters of the accretion of matter with angular momentum for different polytropic
indices Γ
Γ 1.1 1.2 1.3 1.4 1.5 1.6 1.65

k5(Γ ) 3.8 3.2 2.6 1.8 0.75 −0.80 −2.4
k6(Γ ) 16.0 17.8 20.5 24.1 26.6 40.4 57.2
k7(Γ ) 11.3 12.8 15.1 18.7 25.9 50.8 376.4
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Using these variables, we can rewrite Eq. (1.318) as (cf. (1.186))

(
1 − x4lu2

) d2 y

dx2
+ 2

(
1

x
− x2u2

)
dy

dx
+ 6x2lu2 y

= −16u2

[
1 − 2x4lu2

(
1 − x2

2

r2
∗

R2

)]
, (1.327)

with the boundary conditions

y(x)|x=1 = 8

3
;

dy

dx

∣∣∣∣
x=R/r∗

= 0. (1.328)

Here again l = uΓ−1, and we, for simplicity, assume that c∗ � 1, so that r∗ � rg

and α2(r∗) = 1.
As an illustration, let us consider in more detail the asymptotic behavior of

Eq. (1.327) in the supersonic region r < r∗, i.e., for x � 1. According to Bernoulli’s
equation (1.255), we have

u = 1

2x3/2
. (1.329)

Then from (1.327) it follows that the function y(x) must satisfy the equation

d2 y

dx2
+ 3

2x

dy

dx
+ 3l

2x
y = − 4

x3
. (1.330)

As a result, for small x the solution of this equation is universal (i.e., it is indepen-
dent of the boundary conditions) and given by the equality

y(x) = − 8

x
. (1.331)

This property is due to the circumstance that both particular solutions of the homo-
geneous equation increase slower than the solution of the nonhomogeneous equa-
tion. Accordingly, the stream function in the vicinity of a black hole has the form

Φ(r, θ ) = Φ0

[(
1 − 16

3
ε2

Lc2
∗

)
(1 − cos θ ) − 2ε2

L

rg

r
sin2 θ cos θ

]

≈ Φ0

(
1 − cos θ − 2ε2

L

rg

r
sin2 θ cos θ

)
, (1.332)

i.e., it is dependent on the small parameter εL only and independent of the conditions
on the outer boundary r = R and the polytropic index Γ .

Finally, the gas concentration n in the vicinity of the black hole horizon (for
obtaining which we should use relation (1.264)) for the nonrelativistic temperatures
cs � 1 can be written as
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n = |Φ0|
2π

√
rgr3

[
1 − ε2

L

2

rg

r

(
13 cos2 θ − 5 + rg

r
sin2 θ

)]
. (1.333)

As we see, for nonzero angular momentum of an accreting matter, the gas density
in the vicinity of the equator becomes larger than the density in the vicinity of the
rotation axis. Analogously, for the four-velocity components we obtain

ur̂ = − 1√
1 − rg/r

(rg

r

)1/2
[

1 − ε2
L

2

rg

r

(
1 − rg

r

)
sin2 θ

]
, (1.334)

u θ̂ = 2ε2
L

(rg

r

)3/2
sin θ cos θ, (1.335)

uϕ̂ = εL
rg

r
sin θ. (1.336)

Clearly, relations (1.334), (1.335), and (1.336) can be used only when ε2
Lrg/r

� 1.
In Fig. 1.9, the streamlines Φ(r, θ ) = const are drawn in the interval of the angles

0◦<θ <90◦ for the distances from a black hole rg<r< 3rg and the values of ε2
L equal

to 0.1 and 0.3. The points indicate the streamlines for the spherically symmetric
flow. As to the domain of parameters εL > 1, in this case at the distances r ≈ rgε

2
L ,

within ideal hydrodynamics, the gas stop point vr̂ = 0 must inevitably appear so
that the considered approximation vr̂ � vϕ̂ is not valid.

Thus, the GS equation method allows us to find the exact solution for the case of
matter accretion with small angular momentum. We are able to obtain the analytical
asymptotic solution (1.331) in the vicinity of a black hole, or, more exactly, in the
whole supersonic region r � r∗. The solution obtained confirms the well-known

a b

Fig. 1.9 The streamlines for angles 0◦ < θ < 90◦ and for the distances rg < r < 3rg from a
black hole (Beskin and Malyshkin, 1996). Dotted lines indicate the streamlines for the spherically
symmetric accretion. (a) ε2

L = 0.1. (b) ε2
L = 0.3
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fact that, already within ideal hydrodynamics, the presence of the angular momen-
tum in an accreting matter leads to the formation of a disk.

Certainly, for εL � 1, for which the solution was found in the whole space, we
can only speak about the trend of its formation. On the other hand, in the domain
r > rgε

2
L (εL > 1), where the viscosity and the thermal conductivity do not play a

substantial role, solutions (1.322) and (1.331) still remain valid; therefore, they can
be used in the external regions of the real accretion disks in which the condition
εL � 1 is, generally, satisfied. Note, finally, that for the nonrelativistic temperatures
c∗ � 1 (hence, for r∗ � rg), the obtained solution can be directly applied to the
problem of accretion onto the Newtonian gravitational center, i.e., to the external
regions of most other sources in which the transonic accretion regime occurs. They
can include, in particular, young stellar objects and, possibly, some X-ray sources
in which there is accretion onto a neutron star with a weak magnetic field.

To conclude this section, note that a similar approach was also used to construct
the solution for the accretion of a gas with the nonrelativistic temperature (c∞ � 1)
and the zero intrinsic angular momentum (L = 0) onto a black hole rotating at an
arbitrary angular velocity (Pariev, 1996). The construction of this solution becomes
possible because

• for c∞ � 1 the radius of the sonic surface is much larger than that of a black
hole; therefore, the effects of the nonradial gravitational field appear small here;

• at low temperature the matter accretion onto an arbitrarily rotating black hole, as
we saw, is along the radial coordinate (θ = const).

As a result, the solution of the GS equation can be sought as a small perturbation to
the spherically symmetric solution.

To sum up, we can say that the simple zero approximation—the spherically sym-
metric flow—allows us to find the analytical solution for a number of important
astrophysical cases. Unfortunately, the above flows are so far the only examples of
how it was possible to obtain the analytical solution to the two-dimensional flows in
the vicinity of a black hole.

1.4.7 Thin Transonic Disk

We consider, as the last example, the inner two-dimensional structure of a thin accre-
tion disk. This accretion regime is realized if the angular momentum of an accreting
gas is rather large (εL � 1) (Shapiro and Teukolsky, 1983). Here, for simplicity, we
consider only a nonrotating (Schwarzschild) black hole (Beskin and Tchekhovskoy,
2005).

According to the standard model (Shakura, 1973; Shakura and Sunyaev, 1973;
Novikov and Thorne, 1973) for εL � 1 an accreting matter forms a disk rotating
around the gravitational center with the Keplerian velocity vK(r ) = (G M/r )1/2. The
disk is thin provided that its temperature is sufficiently low (cs � vK), because, as is
evident from the vertical balance of the gravitational force and the pressure gradient,
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H ≈ rcs/vK. According to the estimate vr/vK ≈ αSSc2
s /v

2
K (1.14), for cs � vK the

radial velocity vr remains much smaller than both the Keplerian velocity vK and the
velocity of sound cs.

The effects of General Relativity lead to two important properties:

• the absence of stable circular orbits for r < r0 = 3rg;
• the transonic accretion regime.

It is important that the fast gas accretion inside the last stable orbit occurs in the
absence of viscosity. Note also that for the small radial four-velocity on the last
stable orbit u0 � 1, a free particle, according to (1.6), makes a great number of
rotations ∼ u−1/3

0 before it reaches the black hole horizon.
Clearly, the GS equation method is not applicable in the stable orbit region, where

the dissipative viscous forces play a leading role. However, as we saw, on passing
the last stable orbit the viscosity effect must no longer be a crucial one. Therefore,
we can suppose that the ideal hydrodynamical approximation is quite good when
describing the flows in the inner regions of an accretion disk.

As was noted, in the great number of theoretical papers dealing with accretion
disks the vertical averaging procedure was used, the velocity vθ̂ in the vertical bal-
ance of forces (1.18) assumed to be zero. Therefore, the vertical component of the
dynamic force nub∇b(μuθ ) in (1.241) was also assumed to be small up to the hori-
zon of a black hole. Thus, it was concluded that the disk thickness must be defined
by the pressure gradient in the supersonic region (Abramowicz et al., 1997). It is
shown here that the assumption u θ̂ = 0 in the vicinity of the sonic surface is not
valid. As a result, as in the case of the Bondi accretion, the dynamic force can
become substantial in the vicinity of the sonic surface.

We first consider the subsonic flow region in the vicinity of the last stable orbit
r0 = 3rg, where the poloidal velocity up is even much smaller than the velocity of
sound. In this case, Eq. (1.261) can be substantially simplified. Indeed, for up � cs,
we can drop the terms proportional to D−1 ∼ u2

p/c2
s . As a result, we have

−M̂2 1

α
∇k

(
1

α� 2
∇kΦ

)
+ 64π4

α2� 2M̂2

(
� 2 E

dE

dΦ
− α2 L

dL

dΦ

)
−16π3nT

ds

dΦ
= 0.

(1.337)
This equation describing the subsonic flow is of an elliptic type.

To specify the two-dimensional subsonic flow structure (s ′ = 0, and, hence,
b = 2 + 3 − 0 = 5) we must give five values (three velocity components and two
thermodynamic functions) on some surface r = r0(θ ). It is logical to choose, as
such a surface, the surface of the last stable orbit r0 = 3rg, where α(r0) = √

2/3,
uϕ̂(r0) = 1/

√
3, and γ (r0) = √

4/3 (Shapiro and Teukolsky, 1983). We consider,
for simplicity, the case in which the radial velocity is constant on the surface r = r0,
and the toroidal velocity is exactly equal to uϕ̂(r0):

ur̂ (r0,Θ) = −u0, (1.338)

uΘ̂ (r0,Θ) = Θu0, (1.339)

uϕ̂(r0,Θ) = 1/
√

3. (1.340)
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Here the condition for uΘ̂ � |ur̂ | corresponds to the plane parallel flow on the last
stable orbit. We introduced the new angular variable Θ = π/2 − θ (Θdisk ∼ c0)
counted from the equator in a vertical direction.

Further, we assume that the velocity of sound is also constant on the whole sur-
face r = r0

cs(r0,Θ) = c0. (1.341)

For the polytropic equation of state P = knΓ (1.26), this implies that both the
temperature T0 = T (r0) and the relativistic enthalpy μ0 = μ(r0) are also constant
on this surface. As a result, according to (1.14), for the nonrelativistic temperatures
cs � 1 the small parameter of the problem can be defined as

ε5 = u0

c0
∼ αSSc0 � 1. (1.342)

Finally, as the last fifth boundary condition, it is convenient to choose the entropy
s(Φ).

We emphasize that the availability of the small parameter ε5 � 1 is fully based
on relation (1.14) for the radial velocity of a gas flow in an accretion disk. In the
vicinity of the last stable orbit this estimate is not, evidently, realistic (Igumenshchev
et al., 2000; Artemova et al., 2001). Nevertheless, below, we consider the parameter
ε5 to be small because

• the availability of the small parameter allows us to analytically study the flow in
more detail;

• when the small parameter is available, the discussed effect turns out to be more
pronounced.

To conclude this section, we formulate the general properties that remain valid for
the arbitrary radial velocity of the matter on the last stable orbit.

Introducing the values e0 = α(r0)γ (r0) = √
8/9 and l0 = uϕ̂(r0)r0 = √

3rg, we
can write the invariants E(Φ) and L(Φ) as

E(Φ) = μ0e0 = const, (1.343)

L(Φ) = μ0l0 cosΘm . (1.344)

Here Θm = Θm(Φ) is a latitude for which Φ(r0,Θm) = Φ(r,Θ). Otherwise, the
function Θm(r,Θ) has the meaning of the Lagrange coordinate Θ on the marginally
stable orbit connected with the given point (r , Θ) by the streamline Φ(r,Θ) =
const. In particular, Θm(r0,Θ) = Θ .

We first see that the condition E = const (1.343) makes it possible to rewrite
Eq. (1.337) even in the simpler form
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∂2Φ

∂r2
+ cosΘ

α2r2

∂

∂Θ

(
1

cosΘ

∂Φ

∂Θ

)
= −4π2n2 L

μ2

dL

dΦ
− 4π2n2r2 cos2 Θ

T

μ

ds

dΦ
.

(1.345)
Further, as shown in Appendix A, for r = r0 the right-hand side of Eq. (1.345)
describes the transverse balance of forces of the pressure gradient and the gravita-
tional potential, whereas the left-hand side corresponds to the dynamic force (u·∇)u.
On the marginally stable orbit it is of a u2

0/c2
0-order infinitesimal and, hence, can be

dropped. Therefore, it is logical to choose the entropy s(Φ) from the condition of
the transverse balance of forces on the surface r = r0

r2
0 cos2 Θm

ds

dΘm
= −Γ

c2
0

L

μ2
0

dL

dΘm
, (1.346)

where the invariant L(Θm) is defined from the boundary condition (1.344). Thus,
we have

s(Θm) = s(0) − Γ

3c2
0

ln(cosΘm). (1.347)

In view of (1.237), this implies that for cs = c0 = const relation (1.347) corresponds
to the standard density profile

n(r0,Θ) ≈ n0 exp

(
− Γ

6c2
0

Θ2

)
. (1.348)

Problem 1.32 Using relations (1.25) and (1.26), show that the exact expres-
sion for n(r0,Θ) has the form n(r0,Θ) = n0(cosΘ)Γ/3c2

0 .

Finally, note that the definition (1.244) leads to the relation between the functions
Φ and Θm

dΦ = 2πα(r0)r2
0 n(r0,Θm)u0 cosΘmdΘm . (1.349)

Hence, because of (1.344), (1.348), and (1.349), the invariant L(Φ) can also be
directly expressed in terms of the boundary conditions.

Equation (1.345) together with the boundary conditions (1.344), (1.347), (1.348),
and (1.349) and also with relation (1.339) fixing the derivative ∂Φ/∂r specifies the
structure of the ideal subsonic flow immediately after passing the marginally stable
orbit. For example, for the nonrelativistic temperatures cs � 1 we have

u2
p = u2

0 + w2 + 1

3

(
Θ2

m − Θ2
) + 2

Γ − 1
(c2

0 − c2
s ) + · · · . (1.350)
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Here w(r ) defined as

w2(r ) = e2
0 − α2l2

0/r2 − α2

α2
≈ 1

6

(
r0 − r

r0

)3

(1.351)

and dependent only on the coordinate r is the poloidal four-velocity of a free par-
ticle that has the zero poloidal velocity for r = r0. As we see, w2 increases very
slowly when receding from the marginally stable orbit. Therefore, for u0 � c0 its
contribution can, generally, be disregarded.

Problem 1.33 Show that the exact expression for w(r ) is

w2(r ) = 1

9

(r0 − r )3

r2(r − rg)
. (1.352)

An extremely important conclusion can be drawn directly from the analysis of
relation (1.350) in which in the equatorial plane we can putΘm = Θ = 0. Assuming
that up = cs = c∗ and disregarding w2, we find that the velocity of sound c∗ on the
sonic surface r = r∗, Θ = 0 is to be of the same order as that on the marginally
stable orbit

c∗ ≈
√

2

Γ + 1
c0. (1.353)

It is important that this conclusion remains true for the other streamlines, because
the characteristic value of the angles Θ is not larger than c0 either. Since the entropy
s remains rigorously constant along the streamlines, the gas concentration must also
remain roughly constant on the surfaces Φ = const [n(r∗,Θ) ∼ n(r0,Θm)]. In other
words, as was already shown for the Bondi accretion for Γ 
= 5/3, the subsonic flow
can be regarded as an incompressible one.

On the other hand, since the density remains roughly constant and the radial
velocity changes from u0 to c∗ ∼ c0, i.e., for ε5 � 1 changes by several orders,
because of the continuity equation the disk thickness H must change in the same
proportion (see Fig. 1.10)

H (r∗) ≈ u0

c0
H (3rg). (1.354)

As a result, the fast change of the disk thickness must be accompanied by the
appearance of a vertical velocity component that must be taken into account in Euler
equation (1.241). Recall once again that in this domain both the radial and vertical
velocity components remain much smaller than the toroidal one.

Indeed, analyzing the asymptotic solution of Eq. (1.345), we find that when
approaching the sonic surface located at
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Fig. 1.10 Thin accretion disk
structure (real scale) after
passing the marginally stable
orbit r = 3rg, which results
from the numerical solution
of Eq. (1.345) for c0 = 10−2,
u0 = 10−5. The solid lines
correspond to the domain of
parameters u2

p/c2
0 < 0.2, for

which the solution does not
differ from the solution of the
full equation (1.261). The
dashed lines show the
extrapolation of the solution
to the sonic surface region. In
the vicinity of the sonic
surface the flow has the form
of a flat nozzle (Beskin et al.,
2002)

Θ /c0

r 3rg rg

r∗ = r0 − Λu2/3
0 r0, (1.355)

where the logarithmic factor Λ ≈ (3/2)2/3[ln(c0/u0)]2/3 ≈ 5–7, the four-velocity
components of the matter u and the pressure gradient ∇θ̂ P in order of magnitude
tend to the values (Beskin et al., 2002)

uΘ̂ → − c0

u0
Θ, (1.356)

ur̂ → −c∗, (1.357)

−∇θ̂ P

μ
→ c2

0

u2
0

Θ

r
. (1.358)

In the vicinity of the sonic surface the longitudinal scale δr defining the radial
derivatives is of the order of the transversal disk dimension: δr ≈ H (r∗) ≈ u0r0, so
that the logarithmic derivative of the concentration is

η1 = r

n

∂n

∂r
≈ u−1

0 . (1.359)

As a result, in the vicinity of the sonic surface both the dynamic force components
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uΘ̂

r

∂uΘ̂

∂Θ
→ c2

0

u2
0

Θ

r
, (1.360)

−ur̂
∂uΘ̂

∂r
→ c2

0

u2
0

Θ

r
, (1.361)

in order of magnitude become of the same order as the pressure gradient (1.358).
To verify the validity of our conclusion we consider the flow structure in the

vicinity of the sonic surface in more detail. Using again Theorem 1.1 (the transonic
flow is analytical at the critical point), we can write (cf. (1.65) and (1.66))

n = n∗

(
1 + η1h + 1

2
η3Θ

2 + · · ·
)
, (1.362)

Θm = a0

(
Θ + a1hΘ + 1

2
a2h2Θ + 1

6
b0Θ

3 + · · ·
)
, (1.363)

where h = (r − r∗)/r∗. We suppose here that three invariants E , L , and s are known
beforehand, i.e., i = 0 and b = 2 + 0 − 1 = 1. Hence, as for the plane parallel flow,
our problem needs one more boundary condition. If we compare the corresponding
coefficients in Bernoulli’s equation (1.255) and in the full GS equation (1.263), we
find by disregarding the terms ∼ u2

0/c2
0 and the difference r∗ from r0

a0 =
(

2

Γ + 1

)(Γ+1)/2(Γ−1) c0

u0
, (1.364)

a1 = 2 + 1 − α2
∗

2α2∗
≈ 2.25, (1.365)

a2 = −(Γ + 1)η2
1, (1.366)

b0 =
(
Γ + 1

6

)
a2

0

c2
0

, (1.367)

η3 = −2

3
(Γ + 1)η2

1 −
(
Γ − 1

3

)
a2

0

c2
0

, (1.368)

where α2
∗ = α2(r∗) ≈ 2/3. Unlike the potential plane flow, all coefficients are

expressed in terms of the radial logarithmic derivative η1 (1.359) that acts as the last
boundary condition.

The coefficients (1.364), (1.365), (1.366), (1.367), and (1.368) have a clear
physical meaning. Thus, a0 defines the degree of compression of the streamlines:
a0 = H (r0)/H (r∗). According to the estimate (1.354) we have a0 ≈ c0/u0. Further,
a1 defines the slope of the streamlines relative to the equatorial plane. Since a1 > 0,
in the vicinity of the sonic surface there is already an increase rather than a decrease
in the angular thickness of the accretion disk. On the other hand, since a1 � u−1

0 ,
for r = r0 the divergence of the streamlines is still very weak. Consequently, for
u0 � c0 the flow has the form of the ordinary flat nozzle (see Fig. 1.2). Finally,
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since a2 ∼ η3 ∼ b0 ∼ u−2
0 , we can conclude that the transversal scale of the

inhomogeneity ∼H (r∗) is really of the same order as the longitudinal scale. The
last conclusion results in an extremely important consequence. As we see, the flow
in the vicinity of the sonic surface is essentially a two-dimensional one so that it
cannot be analyzed within the standard one-dimensional approach.

One should stress that the logarithmic derivative η1 = η1(r∗) itself cannot be
explicitly expressed in terms of the physical boundary conditions on the surface of
the marginally stable orbit r = r0 (it is necessary to know all expansion coefficients
in (1.362) and (1.363)). In particular, it is impossible to formulate a relationship
between five boundary conditions (1.338), (1.339), (1.340), (1.341), and (1.347)
resulting from the critical condition on the sonic surface. Nevertheless, the estimate
(1.359) allows us to determine the parameter η1 sufficiently reliably. According to
(1.364), (1.365), (1.366), (1.367), and (1.368), the relation between all the other
expansion coefficients can be defined exactly.

Using now expansions (1.362) and (1.363), it is easy to define all the main char-
acteristics of the transonic flow. In particular, we have

u2
p = c2

∗

[
1 − 2η1h + 1

6
(Γ − 1)

a2
0

c2
0

Θ2 + 2

3
(Γ + 1)η2

1Θ
2 + · · ·

]
,

c2
s = c2

∗

[
1 + (Γ − 1) η1h + 1

6
(Γ − 1)

a2
0

c2
0

Θ2 − 1

3
(Γ − 1)(Γ + 1)η2

1Θ
2 + · · ·

]
.

As a result, the sonic surface up = cs has the standard parabolic form

h = Γ + 1

3
η1Θ

2. (1.369)

Clearly, in this region the motion is mostly of an azimuth type (uϕ̂ � up).
In conclusion, we would like to say a few words about the supersonic region

r < r∗. Here, as we saw, the role of the pressure gradient in the common balance
of forces becomes unessential. Therefore, the θ -component in the Euler equation
(1.241) can be rewritten as (cf. Abramowicz et al., 1997)

αur̂
∂(ruΘ̂ )

∂r
+ (ruΘ̂ )

r2

∂(ruΘ̂ )

∂Θ
+ (uϕ̂)2 tanΘ = 0. (1.370)

Using the explicit expression (1.252) for the invariant L(Ψ ), we can rewrite uϕ̂ as
uϕ̂ = √

3/x , where x = r/rg. On the other hand, it is clear that in the vicinity of the
equator the velocity uΘ̂ must be the odd function Θ . Therefore, it is convenient to
introduce the dimensionless functions f (x) and g(x)

Θ f (x) = xuΘ̂ , (1.371)

g(x) = −αur̂ > 0. (1.372)
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Thus, Eq. (1.370) can be written as a simple ordinary differential equation for the
function f (x)

d f

dx
= f 2 + 3

x2g(x)
. (1.373)

Integrating Eq. (1.373), we get

f (x) =
√

3 tan

[√
3
∫ x

x∗

dξ

ξ 2g(ξ )
+ π

2

]
. (1.374)

According to (1.350), in the vicinity of a black hole u2
p → w2. On the other hand,

up ≈ c∗ ≈ c0 for r ∼ r∗. Therefore, in the whole supersonic domain rg < r < r∗,
with good accuracy, we can put

g(x) ≈
√

(αw)2 + (αc∗)2, (1.375)

and according to (1.352),

(αw)2 = (3 − x)3

9x3
. (1.376)

As a result, as shown in Fig. 1.11, the accretion disk in the supersonic flow
region must have the quasiperiodic structure. After the expansion stage, the flow
caused by the effect of the vertical component of the gravitational field begins to
compress again. By definition (1.371), the locations of the nodes correspond to the
condition f (xn) = ±∞. Therefore, the node coordinates can be found from the
obvious condition

√
3
∫ x∗

xn

dξ

ξ 2g(ξ )
= nπ, (1.377)

where the node n = 0 corresponds to the sonic surface. For the case c0 � 1, we can
also analytically estimate the distance (Δr )1 = r∗ − r1 between the sonic surface

Fig. 1.11 Thin accretion disk structure in the supersonic region for the case c0 = 10−2, u0 = 10−5,
and a = 0. The numbers show the coordinate r in units of the gravitational radius rg
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and the first node. Assuming that g(x) remains constant and equal to its value on the
sonic surface ξ = x∗, we find

(Δr )1 = π√
3

x2
∗g(x∗)rg ≈ 3

√
3πα∗c∗rg ≈ 6π√

Γ + 1
c0rg. (1.378)

We emphasize that expression (1.378) does not comprise u0. Therefore, in the stud-
ied approximation u0 � c0, the locations of the nodes shown in Fig. 1.12 are defined
by the parameter c0 only. As we see, the visible vertical oscillations of the disk
thickness take place for a very thin disk only: c0 < 10−2.

Fig. 1.12 The location of the
nodes for the different values
of c0 for a = 0 (dashed
lines), a = −M/2 (dotted
lines), and a = M/2 (solid
lines) for Γ = 4/3 (Beskin
and Tchekhovskoy, 2005)
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Problem 1.34 Show that the simple form of the Euler equation (1.373) in the
vicinity of the equator remains valid for a rotating black hole as well

d f

dr
= f 2 + a2(1 − e2

0) + l2
0

r2g(r )
. (1.379)

Here the constants e0 and l0 again correspond to the specific values of energy
and angular momentum on the marginally stable orbit. The function f (r ) is
specified from the condition Θ f = ruΘ̂ .
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Problem 1.35 Show that the characteristic thickness of a disk in the super-
sonic region is close to its thickness in the stable orbit region: H ∼ rcs/vK.

Thus, the hydrodynamical GS equation (1.261) makes it possible to specify the
internal structure of a thin transonic disk. As was shown, for ε5 = u0/c0 � 1, an
abrupt decrease in the thickness of a disk when approaching the sonic surface must
inevitably give rise to the vertical velocity component of an accreting matter. As
a result, we can no longer disregard the contribution of the dynamic term (v · ∇)v
to the vertical balance of forces. In this sense, the situation is quite similar to the
Bondi accretion where the contribution of the dynamic term becomes substantial in
the vicinity of the sonic surface and crucial in the supersonic flow region. It is clear
that this property remains valid for the arbitrary radial flow velocity, i.e., even when
the transversal disk compression is not very pronounced.

On the other hand, in the Bondi accretion case, the dynamic term (v · ∇)v has
only the single component vr∂vr/∂r that in the vicinity of the sonic surface is of
the same order as both the pressure gradient and the gravitational force. For a thin
accretion disk we already have two components of the dynamic force [(v · ∇)v]θ ,
(1.360), and (1.361), and both of them on the sonic surface are, in order of mag-
nitude, compared with the pressure gradient. However, the gravitational force is
still defined as ∇θϕg ∼ Θ/r , i.e., now it is c2

0/u2
0 times less than the leading

terms.
As a result, for the small parameter ε5 � 1, the transonic disk in the vicinity of

the sonic surface is quite analogous to the ordinary flat nozzle in which the grav-
itation does not play a crucial role. For ε5 ∼ 1, all terms turn out to be of the
same order so that the vertical oscillations become less pronounced. However, in
any case, taking account of the dynamic forces gives rise to two additional degrees
of freedom connected with the higher derivatives in the GS equation. In view of this,
one more general conclusion independent of the value of the parameter ε5 can be
made. In a thin accretion disk, the critical condition on the sonic surface no longer
fixes the accretion rate but specifies the bending of the streamlines in the vicinity
of the sonic surface. Evidently, given the accretion rate, the critical condition thus
gives the vertical velocity vθ on the marginally stable orbit r = r0, which slightly
affects the transonic flow characteristics.

Further, regardless of ε5, if the vertical velocity is taken into account, in the sonic
surface region the small transversal scale δr‖ ≈ H∗ inevitably occurs, which for a
thin disk (i.e., under the condition c0 � 1) proves much smaller than the distance to
a black hole. Only in this case, the dynamic contribution μvr∂vθ/∂r may be of the
same order as the pressure gradient and, hence, the flow can pass the sonic surface.
In the standard one-dimensional approach, this small parameter does not occur.

Finally, it is obvious that the time it takes for the supersonic matter flux to pass
among the nodes must be exactly equal to half the time of the orbital motion of a
free particle on the corresponding radius, because both the spiral motion for r < r∗
and oscillations in the vertical plane are due to the effect of the gravitational field
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of a black hole. Therefore, for c0 � 1 the flight time between the nodes must not,
generally, depend on the properties of an accreting gas.

In conclusion, note that in the studied approximation of the harmonic oscillations
all streamlines must intersect at the same point. Clearly, Eq. (1.373) is thus inappli-
cable in the node domain, where again the pressure gradient cannot be disregarded.
In particular, the nodes can become domains of additional energy release, which, in
turn, must result in a decrease in the oscillation amplitude in the vertical plane. It is
clear, however, that the thorough analysis of all these problems is beyond the scope
of our discussion (see Beskin and Tchekhovskoy 2005 for details).

1.5 Conclusion

Thus, in this chapter we formulated the basic equations describing the axisymmetric
stationary hydrodynamical flows in the vicinity of a rotating black hole. Having
begun with the equations for the nonrelativistic ideal flows, we gradually turned to
the general case in which the effects of General Relativity were self-consistently
taken into account. It was possible to construct the analytical solution for a num-
ber of important, from the astrophysical viewpoint, examples, in particular, for the
transonic accretion onto rotating black holes.

There were several reasons why the purely hydrodynamical flows were studied in
detail. Above all, the hydrodynamical version of the GS equation is not as popular as
its full MHD version. On the other hand, it essentially contains all information con-
cerning the full GS equation structure. Finally, already within the hydrodynamical
approach, one can introduce the (3 + 1)-splitting language that is most convenient
when considering the flows in the vicinity of a rotating black hole.

As a result, analysis of the hydrodynamical version made it possible to demon-
strate the potentialities and the bounds of applicability of the GS equation method.
As was shown, in some simplest cases this method allows us to construct the exact
analytical solution of the problem. In particular, this approach is very convenient
when studying the analytical properties of the transonic flows and specifying the
number of the necessary boundary conditions. On the other hand, in the general
case, within the GS equation method the consistent procedure for constructing the
solution does not exist. The point is that the location of the critical surfaces on
which the critical conditions are to be formulated is not known beforehand and is to
be defined from the solution of the problem.



Chapter 2
Force-Free Approximation—The
Magnetosphere of Radio Pulsars

Abstract The general view of the radio pulsar activity seems to have been estab-
lished over many years. On the other hand, some fundamental problems are still to
be solved. It is, first of all, the problem of the physical nature of the coherent radio
emission of pulsars. In particular, as in the 1970s, there is no common view of the
problem of the coherent radio emission mechanism of a maser or an antenna type.
Moreover, there is no common view of the pulsar magnetosphere structure. The
point is that the initial hypothesis for the magnetodipole energy loss mechanism is,
undoubtedly, unrealistic. Therefore, the problem of the slowing-down mechanism
can be solved only if the magnetosphere structure of neutron stars is established.
However, a consistent theory of radio pulsar magnetospheres has not yet been devel-
oped. Thus, the structure of longitudinal currents circulating in the magnetosphere
has not been specified and, hence, the problems of neutron star braking, particle
acceleration, and energy transport beyond the light cylinder have not been solved
either. The theory of the inner structure of neutron stars is also far from completion.
Naturally, it is impossible to dwell on all these problems here and, therefore, we dis-
cuss in detail only the problems directly associated with the main theme of this book,
viz., the theory of radio pulsar magnetospheres. The first two sections consider the
basic physical processes in neutron star magnetospheres and the secondary plasma
generation mechanism. Then we formulate a pulsar equation, i.e., the force-free
Grad–Shafranov equation in flat space providing the correct determination of the
energy losses of radio pulsars. Further, the exact analytical solutions obtained for
radio pulsar magnetospheres are also discussed in detail. It is demonstrated that,
within the force-free approximation, a self-consistent theory cannot be formulated.
Finally, the current pulsar magnetosphere models are analyzed.

2.1 Astrophysical Introduction

It would be no exaggeration to say that the discovery of radio pulsars at the end
of the 1960s—sources of cosmic pulse radio emission with characteristic period
P ∼ 1 s (Hewish et al., 1968)—can be called one of the most important events in
astrophysics in the 20th century. Indeed, the new class of space sources connected
with neutron stars was first discovered, the existence of which was even predicted
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in the 1930s (Baade and Zwicky, 1934; Landau, 1932). Most of the other compact
objects discovered later [X-ray pulsars, X-ray novae (Giacconi et al., 1971)] showed
that neutron stars, even if they are not the richest ones, are really one of the most
active populations in Galaxy. It is not surprising, therefore, that A. Hewish was
awarded the Noble Prize for this discovery in 1974.

Neutron stars (mass M of the order of solar mass M� = 2 × 1033 g with the
radius R of only 10–15 km) are to evolve from the catastrophic compression (col-
lapse) of ordinary massive stars at the later stage of their evolution or, for example,
from white dwarves that exceeded, due to the accretion, the Chandrasekhar limit
of mass 1.4 M�. The simplest interpretation of both the small rotation periods P
(the smallest known period P = 1.39 ms) and the superstrong magnetic fields
B0 ∼ 1012 G is based on exactly this generation mechanism (Kardashev, 1964;
Pacini, 1967). Indeed, if the neutron star is supposed to evolve from a normal star
(radius Rs ∼ 1011 cm, the rotation period Ps ∼ 10–100 years) with the magnetic
field Bs ∼ 1 G, from the laws of angular momentum and magnetic flux conservation

M R2
sΩs = M R2Ω, (2.1)

R2
s Bs = R2 B0, (2.2)

it follows that, when compressed to the sizes R, the rotation period P and the mag-
netic field B0 of the neutron star are of order

P ∼
(

R

Rs

)2

Ps ∼ (0.01 − 1) s (2.3)

and

B0 ∼
(

Rs

R

)2

Bs ∼ 1012 G. (2.4)

It is interesting to note that the basic physical processes specifying the observed
radio pulsar activity were actually identified immediately after their discovery. Thus,
it was clear that the extremely regular pulsations of the observed radio emission
are connected with the neutron star rotation (Gold, 1968). In some pulsars, the
frequency stability on the scale of a few years is even larger than that of the
atomic standards; therefore, work is underway on the development of a new pulsar
timescale (Ilyasov et al., 1998). Further, the energy source of radio pulsars is due
to the rotational energy, and the energy release mechanism is connected with their
superstrong magnetic field B0 ∼ 1012 G. Indeed, when estimated by the simple
magnetodipole formula (Pacini, 1967), the energy losses

Wtot = −IrΩΩ̇ ≈ 1

6

B2
0Ω

4 R6

c3
sin2 χ, (2.5)
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where Ir ∼ M R2 is the moment of inertia of the star, χ is the inclination angle of
the magnetic dipole axis to the rotation axis, and Ω = 2π/P is the angular velocity,
amount to 1031–1034 erg/s for most pulsars.

This energy release is just responsible for the observed slowdown Ṗ ∼ 10−15,
which corresponds to the dynamical age τD = P/2Ṗ ∼ 1–10 mln years. The radio
pulsars are thus the only space objects whose evolution is fully specified by the
electrodynamic forces. Recall that the intrinsic radio emission is only 10−4–10−6 of
the total energy losses. For most pulsars, this corresponds to 1026–1028 erg/s, which
is 5–7 orders less than the luminosity of the Sun. Moreover, the extremely high
brightness temperature Tbr ∼ 1025–1028 K uniquely shows that the radio emission
of pulsars is generated by a coherent mechanism (Ginzburg et al., 1969; Ginzburg,
1971).

As was noted, the possibility for existence of these objects has already been the
subject for study since the 1930s. Moreover, since the early 1960s, the possibility
of superfluidity and superconductivity in the interior regions of neutron stars has
been actively discussed (see, e.g., Ginzburg and Kirzhniz 1968). Nevertheless, it
was believed that because of their small size, neutron stars were actually impossible
to detect. Accordingly, in spite of a number of papers (Kardashev, 1964; Pacini,
1967), before the discovery of radio pulsars it was not understood that neutron stars
must rotate so fast that the main source of radiated energy is their kinetic rotational
energy. As a result, no attempts were actually made to detect the pulsating radiation
of the known objects. This was in spite of the fact that by that time an unusual
optical star coinciding with an unusual radio source had already been detected in
the Crab Nebula. The activity of this star was exactly responsible for the energy
release Wtot ≈ 5 × 1038 erg/s needed to supply the Crab Nebula with relativistic
electrons (Rees and Gunn, 1974). Otherwise, the Crab Nebula would have ceased to
glow long ago.

Only when it was clear that this unusual source is really connected with a rotating
neutron star, the analysis of variability of its optical flux was made (Wampler et al.,
1969). It turned out that the optical radiation also reaches us in the form of separate
pulses, the period of which (P ≈ 0.033 s) exactly coincides with the period speci-
fied by the data in the radio band. The truth was found after the rotational slowdown
Ṗ of the pulsar in the Crab Nebula was measured, and it was clear that

1. the rate of the energy loss of the rotating neutron star, which was determined by
the slowdown of the angular rotational velocity W = −IrΩΩ̇ , coincides with
Wtot ≈ 5 × 1038 erg/s;

2. the dynamical age of the radio pulsar τD = Ω/2|Ω̇| ≈ 1000 years coincides
with that of the Crab Nebula that came into existence, as is known, during the
explosion of the historical supernova AD 1054.

Most radio pulsars are single neutron stars. Of over 1800 pulsars discovered
by mid-2008, only about 100 of them belong to binary systems. However, in all
these cases, it is known with certainty that in these binary systems there is not any
substantial flux of matter from a star-companion onto the neutron star. Since, as
we noted, the radio luminosity of pulsars is not high, the present-day receivers’
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accuracy allows one to observe pulsars only up to distances of order 3–5 kpc, which
is less than the distance to the center of Galaxy. Therefore, we have the possibility
to observe only a small part of all “working” radio pulsars. The total number of
neutron stars in our Galaxy is 108–109. This large number of extinct neutron stars is
naturally connected with their short lifetime mentioned above.

The discovery of neutron stars was, undoubtedly, an upheaval in astrophysics.
Besides the emergence of new purely theoretical problems [magnetosphere struc-
ture and the coherent radio emission mechanism (Michel, 1991; Beskin et al., 1993;
Lyubarskii, 1995; Mestel, 1999), the theory of accreting sources in close binary sys-
tems (Shapiro and Teukolsky, 1983; Lipunov, 1992), the theory of the inner struc-
ture and the surface layers of neutron stars (Baym and Pethick, 1979; Sedrakyan and
Shakhabasyan, 1991; Liberman and Johansson, 1995; Kirzhnits and Yudin, 1995)],
which gave impetus to theoretical research, the radio pulsars are used for concrete
astrophysical measurements. This was possible due to the unique properties of the
impulse emission of radio pulsars that make it possible, in particular, to control not
only the frequency but also the signal phase. Here we can mention, for example,

• the determination of the electron density in the interstellar medium by the time
delay of the arrival of pulses at different frequencies (Lyne and Graham-Smith,
1998; Johnston et al., 1999);

• the determination of the galactic magnetic field by the polarization plane rota-
tion at different frequencies (Lyne and Graham-Smith, 1998; Brown and Taylor,
2001);

• the refined diagnostics of the GR effects in close binary systems (Taylor and
Weisberg, 1989);

• the search for relic gravitational waves (Sazhin, 1978).

Thus, the general pattern of the radio pulsar activity seems to have been estab-
lished over many years. On the other hand, some fundamental problems are still
to be solved. It is, first of all, the problem of the physical nature of the coherent
radio emission of pulsars. In particular, as in the 1970s, there is no common view
of the problem of the coherent radio emission mechanism of a maser or an antenna
type (Blandford, 1975; Melrose, 1978; Beskin et al., 1988; Lyubarskii, 1995; Usov
and Melrose, 1996; Lyutikov et al., 1999). Besides, there is no common viewpoint
on the structure of the pulsar magnetosphere (Michel, 1991; Beskin et al., 1993;
Lyubarskii, 1995; Mestel, 1999). The point is that the initial hypothesis for the
magnetodipole energy loss mechanism (2.5) is, undoubtedly, unrealistic. Strictly
speaking, this chapter primarily deals with the proof of this assertion. We only
stress here that low-frequency waves with frequency ν = 1/P cannot propagate
in the interstellar medium for which the plasma frequency is, on average, several
kilohertz (Lipunov, 1992). Therefore, the problem of the slowing-down mechanism
can be solved only by determining the magnetosphere structure of the neutron star.
However, the consistent theory of the radio pulsar magnetosphere has not been
constructed yet. Thus, the structure of the longitudinal currents circulating in the
magnetosphere is not specified and, hence, the problem of the neutron star braking,
particle acceleration, and energy transport beyond the light cylinder still remains
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unsolved. The theory of the inner structure of neutron stars is also far from comple-
tion. Naturally, it seems impossible to discuss all these problems here. Therefore,
we discuss in detail only the problems directly connected with the main theme of
this book, viz., the theory of the pulsar magnetosphere. The main problems to be
discussed are the following:

1. the magnetosphere structure of a rotating neutron star;
2. the determination of the energy loss mechanism of radio pulsars;
3. the energy transport from the rotating neutron star within the magnetosphere;

and
4. the determination of the particle acceleration mechanism in the pulsar wind.

2.2 Basic Physical Processes

2.2.1 Vacuum Approximation

Before proceeding to the discussion of the consistent theory of radio pulsars, we
consider the basic physical processes taking place in the magnetosphere. We should
make a reservation that in this chapter we do not actually discuss the GR effects, the
exception is one of the particle generation mechanisms. Though the GR effects on
the neutron star surface can amount to 20% (Kim et al., 2005), they are not, gener-
ally, taken into account in the development of the pulsar magnetosphere theory. The
point is that the electromagnetic force Fem ∼ eE acting on a charged particle near
the neutron star surface turns out to be many orders greater than the gravitational
force Fg = G Mm/R2. This condition allows us to disregard the electromagnetic
field distortion connected with the space curvature in the vicinity of the neutron
star.

We first discuss the simplest vacuum model which, even if very far from reality,
gives an insight into the key properties of the real magnetosphere of the neutron star.
Thus, we consider a homogeneous magnetized star rotating in vacuum. The basic
parameters defining the properties of the magnetosphere are the magnetic field B0,
the star radius R, and the angular rotational velocity Ω . For a well-conducting star,
we find that in its interior

Ein + Ω × r
c

× Bin = 0. (2.6)

In this chapter, we, as usual, restore the dimension. The condition (2.6) simply
implies that the electric field in the coordinate system rotating with the star is zero:
E′ = 0.

Suppose now that the star rotation axis is parallel to the magnetization axis. Then
the problem is stationary and, therefore, the electric field is fully defined by the
potential Φe (E = −∇Φe), which inside the star can be written as
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Φe(r < R, θ ) = 1

2

ΩB0

c
r2 sin2 θ. (2.7)

Hence, on the star surface

Φe(R, θ ) = Φ0(θ ) = −1

3

ΩB0

c
R2P2(cos θ ) + const, (2.8)

where P2(x) = (3x2 − 1)/2 is the Legendre polynomial. The electric potential
beyond the star can be found from the solution of the Laplace equation ∇2Φe = 0
with the boundary conditions

1. Φe(R, θ ) = Φ0(θ );
2. Φe(r, θ ) → 0 for r → ∞.

The solution corresponding to the zero total electric charge of the star has the form

Φe(r > R, θ ) = −1

3

ΩB0

c

R5

r3
P2(cos θ ). (2.9)

As shown in Fig. 2.1, the rotation of homogeneously magnetized star gives rise to
a quadrupole electric field beyond it. As to the magnetic field, for an axisymmetric
rotator, it is exactly equal to the dipole magnetic field

B(r > R) = 3(mn)n − m
r3

, (2.10)

where n = r/r , and |m| = B0 R3/2 is the star magnetic moment.

Fig. 2.1 The structure of the
axisymmetric vacuum
magnetosphere of the neutron
star. The rotating
homogeneously magnetized
star generates the dipole
magnetic field (solid lines)
and the quadrupole electric
field E (dashed lines)

B

E

Problem 2.1 Show that the surface charge density σs defined by the jump of
the normal electric field component 4πσs = {En} has the form (Mestel, 1971)
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σs(θ ) = 1

8π

ΩR

c
B0(3 − 5 cos2 θ ). (2.11)

Explain why the total surface charge is different from zero

Q∗ =
∫

σs(θ )do = 2

3

ΩB0

c
R3 
= 0. (2.12)

Using the simplest vacuum model, we can make a number of general conclusions.

• The longitudinal electric field E‖ = (E · B)/B in the vicinity of the star surface
can be estimated as

E‖ ∼ ΩR

c
B0. (2.13)

• In the axisymmetric case (and for the zero total electric charge), the sign of the
product (E · B)(B · n) remains the same over the neutron star surface.

The latter conclusion is very important. The particles in the strong magnetic field can
move along the magnetic field only (see below). This implies that for the axisym-
metric rotator, particles of the same sign are ejected from both magnetic poles of
the neutron star. As we will see, this important property retains in the case of the
plasma-filled magnetosphere.

For an arbitrary inclination angle χ , the problem was solved by Deutsch (1955)
long before the discovery of pulsars. In this case, the electromagnetic fields are a
sum of the fields of the rotating magnetic dipole and the electric quadrupole, and
the quadrupole moment can be represented as

Qik = R2

c

[
miΩk + mkΩi − 2

3
(m · Ω)δik

]
. (2.14)

The electromagnetic fields for the arbitrary distance r in the limit R → 0 for χ =
90◦ are described by the known expressions (Landau and Lifshits, 1989)

Br = |m|
r3

sin θ Re

(
2 − 2i

Ωr

c

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
, (2.15)

Bθ = |m|
r3

cos θ Re

(
−1 + i

Ωr

c
+ Ω2r2

c2

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
, (2.16)

Bϕ = |m|
r3

Re

(
−i − Ωr

c
+ i

Ω2r2

c2

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
, (2.17)

Er = E Q
r , (2.18)
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Eθ = |m|Ω
r2c

Re

(
−1 + i

Ωr

c

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
+ E Q

θ , (2.19)

Eϕ = |m|Ω
r2c

cos θ Re

(
−i − Ωr

c

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
+ E Q

ϕ . (2.20)

Here EQ is the quadrupole static electric field

EQ = −∇ΦQ
e , ΦQ

e = Qikni nk

2r3
. (2.21)

At distances much smaller than the wavelength r � c/Ω , the electromagnetic fields
are close to the sum of the fields of the magnetic dipole and the electric quadrupole
at rest, and at large distances r � c/Ω , they correspond to a spherical wave.
Since, according to (2.13), the quadrupole electric field on the star surface is much
smaller than the magnetic field and, on the other hand, the quadrupole electric field
decreases with distance faster than the dipole magnetic field, the electric quadrupole
does not make a real contribution to the energy loss of the rotating star. Conse-
quently, the energy losses are determined, with adequate accuracy, by the standard
expression (2.5). Therefore, we restrict ourselves in (2.18), (2.19), and (2.20) to the
static part of the electric quadrupole field only.

One should stress here that the magnetodipole radiation turned out to result in
the change of not only the rotation period P = 2π/Ω but also the evolution of the
inclination angle χ , since, for the magnetodipole losses the invariant Imd remains
constant (Davis and Goldstein, 1970)

Imd = Ω cosχ. (2.22)

Hence, for the magnetodipole losses, the inclination angle of the rotating magne-
tized star must decrease with the characteristic time τχ coinciding with the dynami-
cal lifetime τD = P/2Ṗ . As a result, a decrease in the energy release is due not only
to an increase in the rotation period but also to a decrease in the inclination angle χ .

Unfortunately, the only direct observational channel permitting us to judge the
radio pulsar energy release mechanism is the so-called braking index

nbr = Ω̈Ω

Ω̇2
= 2 − P̈ P

Ṗ2
, (2.23)

which, as is easily checked, coincides with the exponent in the slowing-down depen-
dence on the angular velocity, viz., Ω̇ ∝ Ωnbr . As we see, to determine the braking
index, we must know the second derivative of the period P̈ . However, for most radio
pulsars, we fail to identify the second derivative of the noise background associated
with faster (than the slowing-down time) variations of the rotation period of the
neutron star (Johnston and Galloway, 1999). Therefore, it is possible to determine
the breaking index only for the fastest radio pulsars. As seen from Table 2.1, in all
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Table 2.1 Braking index nbr for fast radio pulsars

PSR P (s) Ṗ(10−15) nbr

B0531 + 21 0.033 421 2.51 ± 0.01
B0540 − 693 0.050 479 2.14 ± 0.01
J1119 − 6127 0.408 4022 2.91 ± 0.05
B1509 − 58 0.150 1490 2.84 ± 0.01
J1846 − 0258 0.324 7083 2.65 ± 0.01

cases, the braking index is less than 3, whereas the dipole slowing-down law (2.5)
yields nbr = 3.

Problem 2.2 Show that in a more realistic model taking into account the evo-
lution of the inclination angle χ (2.22), the braking index is even larger than
3 (Davis and Goldstein, 1970)

nbr = 3 + 2cot2χ. (2.24)

Problem 2.3 Integrate the evolution equation (2.5), with account taken of the
integral of motion (2.22), and show that the period of the pulsar P(t) exponen-
tially fast (with characteristic time τD = P0/2Ṗ0) approaches the maximum
value of Pmax = P0/ cosχ0 and the angle χ approaches 0◦.

Thus, we can conclude from the analysis of the braking index that the simple
magnetodipole mechanism cannot, evidently, be responsible for the observed slow-
ing down of the radio pulsar rotation. Therefore, there were numerous attempts to
correct relation (2.24) for example, by the magnetic field evolution (Blandford and
Romani, 1988; Chen et al., 1998) or the interaction of the superfluid component in
the neutron star nucleus with its hard crust (Allen and Horvath, 1997; Baykal et al.,
1999) (see also Melatos, 1997; Xu and Qiao, 2001). It turned out, however, that most
of the similar effects can lead to insignificant corrections only and cannot change
the value appreciably (2.24). In any event, the determination of the braking index
of other neutron stars and also the second-order braking index n(2)

br = Ω2 ...
Ω/Ω̇3

[this parameter is now known only for Crab pulsar (Lyne and Graham-Smith, 1998)]
would make it possible to greatly clarify the nature of the radio pulsar slowing down.
On the other hand, almost immediately after the discovery of the radio pulsars, it
was obvious that the vacuum model is not a good zero approximation to describe
the neutron star magnetosphere. And the reason, strange as it may seem, is that a
superstrong magnetic field exists.
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2.2.2 Particle Generation in the Strong Magnetic Field

The superstrong magnetic field B ∼ 1012 G leads to a number of important conse-
quences.

• The synchrotron lifetime (Landau and Lifshits, 1989)

τs ≈ 1

ωB

(
c

ωBre

)
∼ 10−15 s (2.25)

(ωB = eB/mec—electron cyclotron frequency, re = e2/mec2—the classi-
cal electron radius) appears much smaller than the time it takes for a particle
to escape the magnetosphere. Consequently, the charged particle motion in the
neutron star magnetosphere includes the motion along the magnetic field lines
and the electric drift in a transverse direction.

• Since the dipole magnetic field lines are curved, the relativistic particle motion
along a curved trajectory gives rise to the emission of hard γ -quanta due to the
so-called curvature radiation (Zheleznyakov, 1996). This process is quite anal-
ogous to the ordinary synchrotron radiation, because the nature of the accel-
erated motion is unessential and for relativistic particles the formation length
δr ∼ Rcγ

−1 is much smaller than the curvature radius Rc. Therefore, all formulae
for the synchrotron radiation can be used to describe the curvature radiation with
the only change, viz., the Larmor radius rB = mec2γ /eB is to be replaced by
the radius of curvature of the magnetic field line Rc. In particular, the frequency
corresponding to the maximum radiation now looks like

ωcur = 0.44
c

Rc
γ 3. (2.26)

The extra degree γ as compared to the synchrotron radiation case ωsyn =
0.44ωBγ

2 is associated here with the fact that for the synchrotron losses the
Larmor radius rB itself is proportional to the particle energy.

• Finally, the importance of the one-photon generation of electron–positron pairs
in the superstrong magnetic field γ + B → e+ + e− + B was understood, which
occurs when photons in their motion cross the magnetic field lines (Sturrock,
1971). Indeed, the probability (per unit length) of the conversion of a photon
with energy εph propagating at an angle of θ to the magnetic field B far from the
threshold (i.e., for εph � 2mec2) is (Berestetsky et al., 1982)

w = 3
√

3

16
√

2

e3 B sin θ

�mec3
exp

(
−8

3

B�

B sin θ

mec2

εph

)
. (2.27)

Here the value

B� = m2
ec3

e�
≈ 4.4 × 1013 G (2.28)
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Fig. 2.2 Structure of the
acceleration region and
particle generation in the
vicinity of the neutron star
surface. The primary particles
that penetrated the nonzero
longitudinal electric field
region are accelerated along
the curved magnetic field
lines and begin to radiate hard
γ -quanta. These curvature
photons (dotted lines)
propagating in the curved
magnetic field reach the
particle generation threshold
and create electron–positron
pairs. Secondary particles
radiate synchrophotons and,
after acceleration, start to
radiate new generation of
curvature γ -quanta

corresponds to the critical magnetic field for which the energy gap between two
Landau levels reaches the rest energy of an electron, viz., �ωB = mec2. Recall
that, unlike the electric field, the magnetic field itself cannot generate particles.
However, it can act as a catalyst that ensures the fulfillment of the laws of energy
and momentum conservation for the process studied.

As we see, the characteristic magnetic fields of neutron stars are not much
smaller than the critical magnetic field B�. Therefore, the neutron star magneto-
sphere appears nontransparent even to low-energy photons with energy εph ∼ 2–3
MeV, i.e., in the vicinity of the particle generation threshold. We thus have the chain
of processes (see Fig. 2.2).

1. The primary particle acceleration by the longitudinal electric field existing, as
was shown, in the vacuum approximation.

2. The emission of curvature photons with characteristic frequencies ω ≤ ωcur

(2.26).
3. The photons propagation in the curved magnetic field up to the generation of the

secondary electron–positron pairs.
4. The acceleration of secondary particles, the emission of curvature photons,

which, in turn, give rise to the generation of new secondary particles.
5. The screening of the longitudinal electric field by the secondary plasma.
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Thus, we can conclude that the vacuum magnetosphere of the neutron star with
magnetic field B0 ∼ 1012 G proves unstable to the charged particle generation.

Some comments for correcting the above-formulated pattern are necessary. Note
first that though the curvature photons are actually emitted parallel to the magnetic
field lines, due to the same curvature of the magnetic lines a γ -quantum in its prop-
agation starts moving at an increasingly greater angle of θ to the magnetic field.
On the other hand, for the small, as compared to the curvature radius, photon free
path lγ , we can take sin θ ≈ lγ /Rc. Therefore, the γ -quantum free path lγ can be
estimated as (Sturrock, 1971)

lγ = 8

3Λ
Rc

B�

B

mec2

εph
, (2.29)

where Λ ≈ 20 is a logarithmic factor.
Further, for not too strong magnetic fields B < 1013 G, the secondary particles

are generated on the nonzero Landau levels (Beskin, 1982; Daugherty and Hard-
ing, 1983). Because of the short synchrotron lifetime τs (2.25), all the “transverse”
energy is radiated actually instantaneously due to the synchrotron emission. It turns
out that the energy of these synchrophotons is high enough for these photons to
be absorbed by the strong magnetic field and generate secondary particles. As to
primary particles, they can be generated by the cosmic background radiation. A
comprehensive analysis showed (Shukre and Radhakrishnan, 1982) that the cosmic
γ -ray background leads to the generation of 105 primary particles per second. This
is quite enough for the neutron star magnetosphere to be effectively filled with an
electron–positron plasma.

Problem 2.4 Having determined the free path length lγ as
∫ lγ

0 w(l)dl = 1,
show that

Λ ≈ ln

[
e2

�c

ωB Rc

c

(
B�

B

)2 (mec2

εph

)2
]
. (2.30)

Problem 2.5 Show that if a photon of energy εph � mec2 generates a pair
moving at an angle of θ to the magnetic field, after the secondary particles
descend to the lower Landau level, their Lorentz factors are

γ ≈ 1

θ
≈ Rc

lγ
. (2.31)
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Problem 2.6 Using the law of motion of a relativistic particle

dεe

dl
= eE‖ − 2

3

e2

R2
c

γ 4, (2.32)

where the first term on the right-hand side corresponds to the acceleration in
the electric field and the second one to the radiation reaction, show that for
the standard radio pulsar (B0 = 1012 G, P = 1 s) the primary electron energy
εe (and the positron one) can amount to 108 MeV, and the energy of curvature
photons to 107 MeV.

2.2.3 Magnetosphere Structure

Thus, the important conclusion is that the plasma-filled magnetosphere model rather
than the vacuum model is a more natural zero approximation. This implies that in
the zero approximation the longitudinal electric field can be considered to be zero

E‖ = 0. (2.33)

Physically, this condition implies that light electrons and positrons can always be
redistributed so as to screen the longitudinal electric field. The occurrence of the
longitudinal field in some magnetosphere region immediately leads to an abrupt
plasma acceleration and to the explosive generation of secondary particles.

As a result, we can determine the main features defining the pulsar magneto-
sphere.

Corotation. Due to the presence of plasma in the pulsar magnetosphere, the
frozen-in condition (2.6)

E + Ω × r
c

× B = 0 (2.34)

is, with adequate accuracy, satisfied not only in the interior of the neutron star but
also in the whole magnetosphere. As a result, the drift velocity

Udr = c
E × B

B2
= Ω × r + j‖B (2.35)

( j‖—a scalar function) consists of the motion along the magnetic field and the rigid
corotation with the neutron star. This corotation is present in the magnetosphere of
the Earth and large planets.

Light cylinder. It is clear that the rigid corotation becomes impossible at large dis-
tances from the rotation axis �>RL, where the light cylinder radius RL is defined as
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RL = c

Ω
. (2.36)

Actually, this scale defines the magnetosphere boundary. For the ordinary pulsars
RL ∼ 109–1010 cm, i.e., the light cylinder is at distances several thousand times
larger than the neutron star radius.

Light surface. As we see in the following, of great importance in the radio pulsar
magnetosphere structure is the so-called light surface—the surface on which the
electric field becomes equal to the magnetic one, viz., |E| = |B|. In the presence
of longitudinal currents, this surface does not coincide with the light cylinder but is
at larger distances and extends to infinity for rather high longitudinal currents. The
light surface defines the magnetosphere boundary more correctly, because the drift
approximation (2.34) and (2.35) becomes inapplicable beyond its boundaries and so
does the MHD approximation.

Polar cap. Since in the polar coordinates r , θ the dipole magnetic field lines are
described by the relation r = rmax sin2 θm , where rmax is the maximum distance of
the given field line from the star center, we can estimate the polar cap radius at
the pulsar magnetic pole R0 = R sin θ0 from which the magnetic field lines extend
beyond the light cylinder. Substituting for rmax the light cylinder radius RL, we get

R0 = R

(
ΩR

c

)1/2

, (2.37)

where the factor

εA =
(
ΩR

c

)1/2

∼ 10−2 (2.38)

is, as we will see, the main small parameter in the theory of the pulsar magneto-
sphere. Thus, for ordinary radio pulsars the polar cap size is only several hundreds
of meters. And on this extremely small, on a cosmic scale, area comparable with
the stadium size, the basic processes responsible for the observed activity of radio
pulsars occur.

Open and closed field lines. As shown in Fig. 2.3, the magnetic field lines going
beyond the light cylinder can diverge and extend to infinity. Since, as was noted, the
particle motion is possible only along the magnetic field, two groups of magnetic
field lines stand out in the magnetosphere. One group passing through the polar
cap intersects the light cylinder and extends to infinity. The other group located far
from the magnetic axis is closed within the light cylinder. The plasma located on the
closed magnetic lines turns out to be captured, whereas the plasma filling the open
magnetic lines can escape the neutron star magnetosphere.

Critical charge density. Finally, it is very important that the charge density in
the magnetosphere of the rotating neutron star must be different from zero. Indeed,
using relation (2.34), we find ρe ≈ ρGJ where
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Fig. 2.3 The magnetosphere
structure of radio pulsars. The
open field lines coming out
from the magnetic poles cross
the light cylinder (dashed and
dotted line). The charge
density  GJ (2.39) changes
the sign on the surface on
which the magnetic lines are
orthogonal to the angular
velocity vector Ω

open
field
lines

light
cylinder

closed
field
lines

ρGJ = 1

4π
divE ≈ −Ω · B

2πc
. (2.39)

This expression was first obtained in P. Goldreich and P. Julian’s pioneer paper (Gol-
dreich and Julian, 1969). Therefore, the critical charge density (2.39) is, generally,
called the Goldreich–Julian (GJ) charge density. For ordinary pulsars, the appropri-
ate concentration nGJ = |ρGJ|/e near the star surface is 1010–1012 1/cm3. Accord-
ingly, the characteristic value of the current density can be written as jGJ = ρGJc.
Finally, the characteristic value of the total electric current in the magnetosphere
can be estimated as a product of the polar cap area, the GJ charge density, and the
velocity of light:

IGJ = πR2
0ρGJc. (2.40)

The physical meaning of the GJ charge density is simple—it is the charge den-
sity needed to screen the longitudinal electric field. The perpendicular electric field
occurs and its value, as we saw, turns out to be exactly the value of the electric drift
in the crossed fields to generate the plasma corotation.

Problem 2.7 Show that for the case of the total corotation (i.e., when the
poloidal currents are absent in the neutron star magnetosphere and, therefore,
the total current j can be written as j = ρeΩ × r), the exact expression for the
GJ charge density has the form
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ρGJ = − Ω · B

2πc

(
1 − Ω2� 2

c2

) . (2.41)

How can the singularity on the light cylinder be explained?

Problem 2.8 Show that the total electric charge of the neutron star for the
plasma-filled magnetosphere is

Q∗ = 1

3

ΩB0

c
R3 
= 0. (2.42)

Compare it with the charge Q∗ (2.12) obtained by integrating the surface
charge density for the vacuum magnetosphere.

Some explanation is also necessary here. First of all, as is evident from relation
(2.35), the light cylinder is the real boundary of the magnetosphere only for the zero
toroidal magnetic field, i.e., for the zero longitudinal electric current. As we will
see, for the sufficiently large longitudinal current (and, hence, for the large enough
toroidal magnetic field), the drift motion can occur at distances much larger than the
light cylinder radius RL. However, as shown in Fig. 2.4, in this case, there is almost
the full compensation of the corotational velocity Ω×r and the toroidal slip velocity
along the magnetic field j‖ Bϕ , so that the drift velocity Udr is directed radially from
the star. Therefore, beyond the light cylinder, in spite of the validity of the drift
approximation, the particle motion is actually perpendicular to the magnetic field
lines.

Further, relation (2.37) for the polar cap radius is only an estimate in order of
magnitude. The point is that the electric currents connected with electric charges
filling the pulsar magnetosphere in the vicinity of the light cylinder begin to disturb
the dipole magnetic field. Therefore, the exact form of the polar cap can be found
together with the solution of the complete problem of the neutron star magneto-
sphere. On the other hand, expression (2.37) allows us to estimate the maximum
value of the voltage drop in the vicinity of the magnetic poles ψmax = E(R0)R0:

ψmax =
(
ΩR

c

)2

RB0. (2.43)

For ordinary pulsars, it yields ψmax ∼ 107–108 MeV.
Finally, important consequences follow from expression (2.39) for the GJ charge

density. As shown in Fig. 2.3, in the vicinity of the neutron star, the charge den-
sity ρGJ changes sign on the surface, where Ω · B = 0. Therefore, except for the
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Fig. 2.4 The drift motion of a
charged particle beyond the
light cylinder in the presence
of the strong toroidal field
Bϕ � Bp is nearly in a radial
direction. The velocity Udr

(which is, naturally, smaller
than the velocity of light) can
be formally resolved into the
corotation velocity Ω × r and
the slip velocity along the
magnetic field j‖B, each of
them can be much larger than
the velocity of light. The
rotation axis is perpendicular
to the figure plane

orthogonal rotator χ = 90◦, the GJ charge density has the same sign in the vicinity
of both magnetic poles (in fact, this property is directly associated with the already
mentioned property of the vacuum magnetosphere—the radial electric field in the
region of the magnetic poles is identical). This implies that an inverse current flow-
ing in the vicinity of the boundary of the closed and open magnetic field lines is sure
to occur—only, in this case, the total charge of the neutron star does not change. We
should call attention to this property since it is the key property in the development
of the theory of the neutron star magnetosphere.

Problem 2.9 Show that the light cylinder (where the corotation velocity
approaches the velocity of light) is just the scale on which

• the electric field is compared in magnitude with the poloidal magnetic
field;

• the toroidal electric currents flowing in the magnetosphere begin to disturb
the poloidal magnetic field of the neutron star;

• the toroidal magnetic field connected with the longitudinal GJ current is
compared in magnitude with the poloidal magnetic field.

2.3 Secondary Plasma Generation

2.3.1 “Inner Gap”

Thus, in the radio pulsar magnetosphere, two substantially different regions must
develop, viz., the regions of open and closed magnetic field lines. The particles
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located on the field lines which do not intersect the light cylinder turn out to be
captured, whereas the plasma on the field lines intersecting the light cylinder can
extend to infinity. Consequently, the plasma must be continuously generated in the
region of the magnetic poles of a neutron star.

The necessity to take into account the secondary plasma generation in the mag-
netic pole region was indicated by Sturrock (1971) and then this process was studied
in more detail by Ruderman and Sutherland (1975), and also by V.Ya. Eidman’s
group (Al’ber et al., 1975). It is based on the above one-photon particle generation in
the strong magnetic field. The longitudinal electric field is generated by a continuous
escape of particles along the open field lines beyond the magnetosphere. As a result,
the longitudinal electric field region forms in the vicinity of the magnetic poles,
the height of which is determined by the secondary plasma generation condition.
Otherwise, the chain of processes is (see again Fig. 2.2)

1. the primary particle acceleration by the longitudinal electric field induced by the
difference of the charge density ρe from the GJ charge density ρGJ;

2. the emission of curvature photons with characteristic frequency ω ≤ ωcur (2.26);
3. the photons propagation in the curved magnetic field up to the secondary electron–

positron pair generation;
4. the secondary particles acceleration, the emission of curvature photons, which,

in turn, give rise to the new generation of secondary particles.

It is important that a greater part of secondary particles is generated already over the
acceleration region, where the longitudinal electric field is rather small, so that the
secondary plasma can escape the neutron star magnetosphere.

To estimate the longitudinal electric field we consider, for simplicity, only the
one-dimensional equation

dE‖
dh

= 4π (ρe − ρGJ), (2.44)

which can be used if the gap height H is much smaller than the size of the polar
cap R0 (2.37). Unfortunately, this approximation is valid for the fastest pulsars only.
Nevertheless, it contains all information concerning the inner gap structure. In spite
of its outward simplicity, Eq. (2.44) comprises a number of substantial uncertainties.
The main uncertainty is, undoubtedly, in the expression for the charge density ρe,
which depends on the particle generation mechanism, which, in turn, is defined by
the value of the longitudinal electric field.

We discuss the basic properties of Eq. (2.44). Thus, for the models with the non-
free particle escape from the neutron star surface, which are, generally, called the
Ruderman–Sutherland model (see the next section), we can take |ρe| � |ρGJ| in the
zero approximation, and the electric field on the star surface can be different from
zero. As a result, we have (Ruderman and Sutherland, 1975)

E‖ ≈ ERS
H − h

H
, (2.45)
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where

ERS = 4πρGJ H, (2.46)

and H is the height of the longitudinal electric field region. Its value should just
be determined from the condition for the onset of the secondary plasma generation.
Indeed, for H < Hcr the longitudinal electric field is not strong enough to effectively
generate particles, whereas for H > Hcr, the secondary plasma results in the fast
screening of the acceleration region. Besides, for the solid star surface, this event
can occur for the antiparallel directions of the magnetic and rotation axes, when
near the polar caps ρGJ > 0, and positively charged particles are to be ejected from
the surface. Within this model, the longitudinal current I , generally speaking, can
be arbitrary, but, certainly, not larger than the GJ current IGJ.

Problem 2.10 Using expression (2.46) connecting the longitudinal electric
field with the gap height H and relations (2.26) and (2.29) for the charac-
teristic energy and the free path of curvature photons, find the expressions for
gap height H and potential drop ψ = E‖ H (Ruderman and Sutherland, 1975)

HRS ∼ λ
2/7
C R2/7

c R3/7
L

(
B

B�

)−4/7

, (2.47)

ψRS ∼ mec2

e
λ

−3/7
C R4/7

c R−1/7
L

(
B

B�

)−1/7

. (2.48)

Here λC = �/mec is the Compton wavelength.
(Hint: the gap height H can be estimated as a sum of primary particle acceler-
ation length lacc and free path of emitted curvature photon lγ . For small accel-
eration lengths lacc, the primary particle energy εe = eE‖lacc and, therefore,
the emitted photon energy εph are low, and the free path of such low-energy
photons appears significant. The short free paths can be realized only for the
sufficiently high energy of photons, for the emission of which a primary par-
ticle is to pass a large distance. Therefore, the minimum value of the sum
lacc + lγ is the scale on which the secondary plasma generation starts, which
can screen the longitudinal electric field. This value is taken as an estimate of
the gap height H .)

On the other hand, if particles can freely escape from the neutron star surface, it
is logical to take here

E‖(h = 0) = 0, (2.49)

and the charge density ρe is close to ρGJ. The longitudinal electric field must also be
zero on the upper boundary of the acceleration region
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E‖(h = H ) = 0. (2.50)

Otherwise, the secondary particles of one of the signs would fail to extend to infinity.
As we see, in this model the longitudinal electric current I is to be very close to GJ
current IGJ. As a result, in the free particle escape model, the longitudinal electric
field is specified only by a small difference between the charge density ρe and the
critical density ρGJ. Indeed, the GJ charge density can be written as

ρGJ = −ΩB cos θb

2πc
, (2.51)

where θb is an angle between the magnetic field and the rotation axis. On the other
hand, for the relativistic plasma moving with velocity v ≈ c, we have within the
same accuracy

ρe = C(Ψ )B, (2.52)

where C(Ψ ) is constant along the magnetic field lines. As we see, the charge densi-
ties (2.51) and (2.52) change differently along the magnetic field line. Thus, the GJ
charge density (2.51), besides the factor B, also contains the geometric factor cos θb.
As a result, the charge-separated relativistic plasma in its motion fails to satisfy the
condition ρe = ρGJ, which gives rise to the particle acceleration in the longitudinal
electric field. The longitudinal electric field gives rise to particle acceleration, to
hard photon emission, and, hence, to secondary electron–positron plasma genera-
tion. Therefore, beyond the acceleration region, the field must already be close to
zero.

Note that the conditions (2.49) and (2.50) can be satisfied simultaneously only if
the electric charge density on the acceleration region boundaries does not coincide
with the GJ density, i.e., when the derivative dE‖/dh is different from zero here (see
Fig. 2.5). As a result, Eq. (2.44) can be rewritten as

Mestel

Arons

Fig. 2.5 The longitudinal electric field on the “preferable” magnetic field lines Aa > 0 in the Arons
(1981) and Mestel (1999) models for Ω · B > 0. In the Mestel model, the plasma charge density
ρe on the star surface is equal to the GJ charge density ρGJ (and, hence, dE/dh = 0), whereas in
the Arons model, the charge density for h = 0, due to the presence of a particle backflow, differs
from ρGJ. As a result, though in both cases the electric field is zero on the star surface, the electric
field direction and, hence, the particle acceleration appear different
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dE‖
dh

= Aa

(
h − H

2

)
, (2.53)

where

Aa = 4π
d(ρe − ρGJ)

dh

∣∣∣∣
h=H/2

. (2.54)

Finally, we have for χ > εA

Aa = 3

2

ΩB0

cR
θm cosϕm sinχ. (2.55)

Here θm ∼ εA is the polar angle and ϕm is an azimuthal angle relative to the magnetic
dipole axis. The solution to Eq. (2.53) has the form

E‖ = −EA
h(H − h)

H 2
, (2.56)

where

EA ≈ 3π

2
|ρGJ| H 2

R
θm cosϕm tanχ ∼ εA

H

R
ERS, (2.57)

so that |EA| � |ERS|. Therefore, for this solution to exist, a particle backflow is
needed; the value of which can be determined from Eq. (2.44):

jback

jGJ
≈ εA

H

R
∼ 10−4. (2.58)

This model was first studied by J. Arons’ group (Fawley et al., 1977; Scharlemann
et al., 1978; Arons and Scharlemann, 1979).

Note that the acceleration regime (when the generated longitudinal electric field
accelerates particles from the star surface) can occur only on the northern half of
the polar cap −π/2< ϕm < π/2 (Aa > 0), for which the magnetic field lines bend
in the direction of the rotation axis and, hence, cos θb increases with distance from
the star surface. In this case, the generated longitudinal electric field accelerates
particles from the star surface. These field lines were called the “preferable” lines.
In the domain π/2 < ϕm < 3π/2 (Aa < 0), where the magnetic field lines, on
the contrary, tend to be perpendicular to the rotation axis, the generated longitu-
dinal electric field would lead to the deceleration of particles rather than to their
acceleration. As a result, within this model, the acceleration and the generation of
the secondary particles occur only in one-half of the region of the open field lines
and, accordingly, the radiation directivity pattern should also have the form of a
semicircle (Arons and Scharlemann, 1979). However, this conclusion contradicts
the observational data (Lyne and Graham-Smith, 1998).

If the bulk particle backflow is absent, Eq. (2.44) yields the completely different
solution
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E‖ ≈ 3π

2
|ρGJ| θm cosϕm tanχ

h2

R
∼ EA

h2

H 2
, (2.59)

in which the longitudinal electric field turns out to be in the opposite direction.
Clearly, relation (2.59) can be used only up to distances h � R0; at larger distances
the longitudinal electric field tends to zero. Consequently, the particle acceleration
is possible only on the “unpreferable” magnetic field lines. Exactly this model, in
which the particle backflow must naturally be rather small, had been developed for
many years by L. Mestel (Mestel and Wang, 1979; Fitzpatrick and Mestel, 1988;
Mestel and Shibata, 1994; Mestel, 1999). Thus, only the consistent kinetic model
can choose between these two realizations [the thorough investigation of this prob-
lem can be found in Shibata (1997) and Shibata et al. (1998)].

2.3.2 Neutron Star Surface

The problem of the neutron star surface structure, which is of interest by itself, is
directly associated with the theory of the radio pulsar magnetosphere. Indeed, as
was mentioned, the inner gap structure greatly depends on the work function ϕw

for electrons (the cohesive energy for nuclei) on the neutron star surface. Recall
that in the 1970s, the nonfree particle escape model was mainly developed. It was
based on a series of theoretical papers on the matter structure in the superstrong
magnetic field, in which the work function had a rather large value ϕw ∼ 1–5
keV (Kadomtsev and Kudryavtsev, 1971; Ginzburg and Usov, 1972; Chen et al.,
1974; Hillebrandt and Müller, 1976; Flowers et al., 1977). However, from the early
1980s, when due to the more accurate computations the work function reduced to
ϕw ∼ 0.1 keV, the free particle escape models grew in popularity (Müller, 1984;
Jones, 1980; Neuhauser et al., 1986).

We stress that the problem remains unsolved. The point is that the accuracy of
determination of work function and cohesive energy is not high enough yet (Usov
and Melrose, 1996). It turned out that even the chemical composition of the neutron
star surface layers is not known—possibly, they do not consist of iron atoms, as
was supposed in most papers. The point is that the chemical composition of the
surface layers on the polar caps can greatly change because of their bombardment by
energetic particles accelerated by the longitudinal electric field in the gap. Besides,
and it is the subject of wide speculation now, iron atoms (which, being the most
stable nuclei, are, undoubtedly, copiously produced) could have been “sunk” by
the action of the gravitational field within the first few years after the formation of
the neutron star when its surface was not solid yet (Salpeter and Lai, 1997). It is not
improbable, therefore, that, in reality, the neutron star surface layers consist of much
lighter atoms rather than iron atoms—hydrogen and helium ones. Since the melting
temperature roughly estimated by the formula (Shapiro and Teukolsky, 1983)

Tm ≈ 3.4 × 107 K

(
Z

26

)5/3 (
ρ

106g/cm3

)
(2.60)
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depends on the atomic number Z , the neutron star surface at temperature T ∼ 106 K
characteristic of ordinary radio pulsars should be liquid and, in any event, must not
prevent the free particle escape. The radio pulsar thermal radiation models are just
based on this pattern (Zavlin and Pavlov, 2002; Haensel et al., 2007).

2.3.3 Propagation of γ -Quanta in the Superstrong Magnetic Field

We now proceed with a brief discussion of the effects of the propagation of high-
energy photons in the superstrong magnetic field in the vicinity of the neutron star
surface. This problem is directly associated with the particle generation mechanism
in the polar regions of radio pulsars. The quantum effects in the magnetic field, the
value of which is close to the critical value B� = 4.4 × 1013 G (2.28), were known
long ago (Berestetsky et al., 1982), but only after the discovery of radio pulsars
there was hope of their direct observation. These may include, for example, the
photon splitting process γ + B → γ + γ + B (Bialynicka-Birula and Bialynicka-
Birula, 1970; Adler, 1971), the change in the cross-section of the two-photon pair
generation γ + γ → e+ + e−, especially near the generation threshold (Kozlenkov
and Mitrofanov, 1986), the quantum synchrotron cooling connected with the fast
particle transition to the lower Landau level (Mitrofanov and Pozanenko, 1987), as
well as the propagation effects due to both the vacuum refraction (Bialynicka-Birula
and Bialynicka-Birula, 1970) and the peculiarities of the photon trajectories in the
vicinity of the generation threshold of secondary electron–positron pairs (Shabad
and Usov, 1984, 1985, 1986). As a result, in the 1970s, the possibility of the direct
detection of the effects connected with a quantizing magnetic field (2.28) seemed
absolutely real (Mésźaros, 1992). Nevertheless, these effects for most radio pulsars
appeared rather weak. The point is that, for example, the expression for the refrac-
tion index in the strong magnetic field (the formula corresponds to one of the linear
polarizations)

n = 1 + 7αfin

90π

(
B

B�

)2

(2.61)

comprises the fine structure constant αfin = e2/�c ≈ 1/137; therefore, we can
expect the occurrence of considerable quantum effects only in the fields B > 1014 G.
For most neutron stars observed as radio pulsars, we can, with adequate accuracy,
suppose that γ -quanta propagate rectilinearly.

However, in the context of the discovery of magnetars (pulsating X-ray sources,
the periods of which amount to a few seconds and the magnetic field estimated
by formula (2.5) reaches 1014–1015 G (Thompson and Duncan, 1993; Kouveliotou
et al., 1998)), this problem has recently become an urgent one. Therefore, the new
thorough computations of both the secondary particle generation process (Weise
and Melrose, 2002) and the photon splitting (Baring and Harding, 1997; Chistyakov
et al., 1998), and the determination of the trajectories of hard γ -quanta near the
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particle generation threshold (Shaviv et al., 1999) were carried out. In particular, it
was shown that for sufficiently large magnetic fields B ∼ 1014–1015 G, the process
of the γ -quanta conversion due to the photon splitting can be considerably sup-
pressed (Baring and Harding, 1998). Consequently, the secondary plasma genera-
tion process can be considerably suppressed as well. It is not surprising, therefore,
that most magnetars are not manifested as radio pulsars.

On the other hand, it was shown (Usov, 2002) that the splitting of ‖-polarized
photons (i.e., those with the electric vector located in the plane containing the
external magnetic field and the wave vector) below the pair production threshold
is strictly forbidden in arbitrary magnetic fields. Solving the system of kinetic equa-
tions for splitting photons and taking into account their polarization, it was shown
that the photon splitting, which was earlier considered as a suppression factor for the
secondary electron–positron plasma generation, is not suppressed at all (Istomin and
Sobyanin, 2007). Moreover, the plasma density in the magnetar magnetosphere can
be even higher than that in the magnetosphere of a pulsar with a weak magnetic field.
Thus, some light can be shed on the recent discovery of the pulsed radio emission
from several magnetars (Malofeev et al., 2007).

But, in general, the new qualitative phenomena that could be helpful in the obser-
vation of the quantum effects in the superstrong magnetic field were not found, and
the earlier obtained results were only refined in the computations.

2.3.4 General Relativity Effects

We consider the GR effects which, unlike the quantizing magnetic field effects, can,
undoubtedly, greatly affect the particle generation process in the vicinity of radio
pulsars. It turned out that in the model of free particle escape from the neutron star
surface, the GR effects must be of vital importance. Recall that the gravitational
potential ϕg on the pulsar surface is rather large

εg = 2|ϕg|
c2

≈ 2G M

Rc2
∼ 0.2, (2.62)

and any computations whose accuracy is better than 20% must be carried out, with
account taken of the relativistic effects. However, in the nonfree particle escape
models, taking account of these effects does not ensure substantial corrections,
because the qualitative structure of the electrodynamic equations does not change.
On the other hand, in the free particle escape model in Eq. (2.44), besides the small
geometric factor εA (2.38), the purely relativistic factor εg appears, which is asso-
ciated with the frame-dragging (Lense–Thirring) effect (Thorne et al., 1986). For
most radio pulsars with P ∼1 s, the relativistic correction εg turns out to be, at least
in order of magnitude, larger than εA so that the GR effects are to be taken into
consideration.

Indeed, as was already mentioned, in the Arons model, the occurrence of longi-
tudinal electric field in the gap region is due to the difference in the plasma charge
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density ρe from the GJ charge density ρGJ (2.39). In the general relativistic case,
Eq. (2.44) is to be rewritten as (Thorne et al., 1986)

d

dh

(
1

α
E‖

)
= 4π (ρe − ρGJ), (2.63)

and the GJ density has the form (see Sect. 3.2.5 for details)

ρGJ = − 1

8π2
∇k

(
Ω − ω

αc
∇kΨ

)
. (2.64)

Here again α is the lapse function, ω is the Lense–Thirring angular velocity, and Ψ

is a magnetic flux. Within the necessary accuracy, they can be written as

α2 = 1 − rg

r
, (2.65)

ω = Ω
rg Ir

Mr3
, (2.66)

Ψ = 1

2
B0 R3 sin2 θm

r
, (2.67)

where B0 is the magnetic field at the neutron star pole and Ir is its moment of inertia.
In the linear order with respect to the small values εA and εg, we now have

ρGJ = − (Ω − ω)B cos θb

2πcα
, (2.68)

where θb is again an angle between the magnetic field line and the rotation axis. On
the other hand, the expression for the charge density of the relativistic plasma has
the form

ρe = C(Ψ )
B

α
, (2.69)

where, as before, C(Ψ ) is constant along the magnetic field lines. As a result, the GJ
charge density (2.68), besides the factor B/α identical to the density ρe (2.69), as
well as the geometric factor cos θb, also contains the factor (Ω −ω), which changes
by the dependence of ω(r ) on r . As a result, for sinχ > εA and cosχ > εA, the
constant Aa in Eq. (2.53) has the form (Muslimov and Tsygan, 1990; Beskin, 1990;
Muslimov and Tsygan, 1992)

Aa = 3

2

ΩB0

cR

[
4
ω

Ω
cosχ + θm cosϕm sinχ + O(ε2

g) + · · ·
]
. (2.70)

As we see, taking account of the GR effects leads to the additional term, pro-
portional to ω/Ω ∼ εg. According to (2.70), for 4ω/Ω > εA tanχ , the major
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contribution to Aa is made by the gravitational term. For the homogeneous density
of the star when on its surface

ω

Ω
= 2

5
εg, (2.71)

this condition can be rewritten as

P > 10−3 s

(
R

106 cm

)2 ( M

M�

)−2

. (2.72)

Hence, the GR effects are of vital importance for all observed pulsars. The most
important consequence of expression (2.70) is that all open field lines prove “prefer-
able” (Beskin, 1990), because the first term in (2.70) proves positive. Thus, allowance
for the GR effects qualitatively changes the conclusions of the first version of the
Arons model. The stationary generation becomes possible over the entire polar cap
surface.

2.3.5 Particle Generation in the Magnetosphere

We discuss how all the above physical processes affect the particle generation in
the vicinity of the neutron star surface. We first consider the effects of the super-
strong magnetic field B > 1014 G characteristic of magnetars. As was noted, only
for these magnetic fields, the pronounced effects of the quantizing magnetic field
should be expected (Baring and Harding, 1997; Shaviv et al., 1999). First of all, it
was obvious long ago that the strong magnetic field must suppress the secondary
plasma generation process. First, with the fields larger than 1013 G, a secondary
electron–positron pair is to be produced at the lower Landau level, which results in
the suppression of the synchrotron radiation (Beskin, 1982; Daugherty and Harding,
1983). Second, the nontrivial vacuum permeability in the vicinity of the generation
threshold at the zero Landau level with the transverse photon momentum close to
2mec can give rise to the deflection of the γ -quanta along the magnetic field. As
a result, instead of two free particles, their bound state is generated, viz., positro-
nium (Shabad and Usov, 1985, 1986). Third, as was mentioned, the photon split-
ting process γ → γ + γ becomes significant, which results in a decrease in their
energy and the suppression (though incomplete) of the secondary particle genera-
tion (Baring and Harding, 1998). However, most radio pulsars have insufficiently
large magnetic fields for these effects to be detected.

On the other hand, for ordinary radio pulsars, the interaction process of primary
particles accelerated in the gap, with X-ray photons radiated by the heated neutron
star surface, may appear substantial; Kardashev et al. (1984) first pointed to the
importance of inverse Compton (IC) scattering in the particle generation region. As
it turned out, the hard γ -quanta generated by this interaction have enough energy
to produce electron–positron pairs and, hence, affect the inner gap structure (Cheng



2.3 Secondary Plasma Generation 115

et al., 1986; Hirotani and Shibata, 2001). Finally, as was already noted, the value of
the work function ϕw also substantially affects the electric field structure.

Nevertheless, in this part of the theory, new important results have recently been
obtained. In particular, one should mention A. Harding and A. Muslimov (1998,
2002) who studied both the GR effects and the process of (the nonresonance and
resonance) IC scattering of X-ray photons emitted by the neutron star surface. It is
interesting to note that in this model, the acceleration region may not be adjacent
to the neutron star surface, but it is as if suspended over the magnetic poles of the
pulsar. However, as was noted, for a comprehensive analysis, it is necessary to take
into account the kinetic effects, as it was first done by Gurevich and Istomin (1985),
for the acceleration region in vicinity of the neutron star surface within the nonfree
particle escape model (see also Hirotani and Shibata, 2001). Recall that analysis of
the kinetic effects is needed, in particular, for the determination of particle backflow,
which, in turn, is directly associated with the problem of constructing the plasma
generation region.

In conclusion, we emphasize that the general properties of the secondary
electron–positron plasma outflowing from the magnetosphere appeared, as a whole,
to be low-sensitive to the details of the acceleration region structure. For most mod-
els (Ruderman and Sutherland, 1975; Daugherty and Harding, 1982; Gurevich and
Istomin, 1985), both the density and the energy spectra of the outflowing plasma
appear rather universal. Therefore, it is safe to say that the plasma flowing along the
open field lines in the pulsar magnetosphere consists of a beam of primary particles
with energy ε ≈ 107 MeV and density close to the GJ density nGJ and also of
the secondary electron–positron component. Its energy spectrum, within adequate
accuracy, has the power form

N (εe) ∝ ε−2
e , (2.73)

and the energies are enclosed in the range from εmin ∼ 100 MeV to εmax ∼ 104–105

MeV (true, if we suppose the presence of a strong nondipole component near the
magnetic poles, the minimum energies can be reduced to 10 MeV and even 3 MeV).
Note that the minimum energy εmin directly follows from the estimate (2.31), where
for most low-energy particles we should take lγ = R, because for longer free paths
the decrease in the magnetic field with distance from the neutron star surface is
substantial. The total secondary plasma density, as the numerous calculations show,
is to be 103–104 times greater than the GJ density:

λ = ne

nGJ
∼ 103 − 104. (2.74)

Exactly this model was studied in a great number of papers devoted to the pulsar
radio emission theory. It is important that the electron and positron distribution
functions must be shifted from one another [this was already shown in Ruderman
and Sutherland (1975)]. Only in this case, the outflowing plasma charge density
coincides with the GJ charge density.



116 2 Force-Free Approximation—The Magnetosphere of Radio Pulsars

2.3.6 “Hollow Cone” Model

As was noted, there is no common viewpoint on the nature of the pulsar coherent
radio emission now. Nevertheless, it turned out that the basic observed properties of
the radio emission can be interpreted by the above particle generation pattern. It is
the so-called hollow cone model (Radhakrishnan and Cooke, 1969), which was pro-
posed already at the end of the 1960s and perfectly accounted for the basic geometric
properties of the radio emission. Indeed, as was shown, the secondary particle gen-
eration is impossible in the rectilinear magnetic field when, first, the intensity of the
curvature radiation is low and, second, the photons emitted by relativistic particles
propagate at small angles to the magnetic field. Therefore, as shown in Fig. 2.6, in
the central regions of the open magnetic field lines, a decrease in secondary plasma
density should be expected.

Fig. 2.6 The hollow cone model. If the intensity of the radio emission is directly connected with
the outflowing plasma density, in the center of the directivity pattern there must be a decrease in
the radio emission. Therefore, we should expect a single mean profile in pulsars whose line of sight
intersects the directivity pattern far from its center and the double profile for the central passage.
The plasma rotation around the magnetic axis leads to the observed subpulse drift

If we make a rather reasonable assumption that the radio emission must be
directly connected with the outflowing plasma density, there must be a decrease
in the radio emission intensity in the center of the directivity pattern. Therefore,
without going into details (actually, the mean profiles have a rather complex struc-
ture (Rankin, 1983, 1990; Lyne and Graham-Smith, 1998)), we should expect a
single (one-hump) mean profile in pulsars in which the line of sight intersects the
directivity pattern far from its center and the double (two-hump) profile for the cen-
tral passage. It is exactly what is observed in reality (Beskin et al., 1993; Lyne and
Graham-Smith, 1998).
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Fig. 2.7 Pulsar distribution in
the P–Ṗ diagram. Encircled
dots indicate radio pulsars in
binary systems. Dashed lines
indicate magnetic field B0

evaluated by magnetodipole
formula (2.5), dashed and
dotted lines indicate
dynamical age τD (Seiradakis
and Wielebinski, 2004). The
death line corresponds to the
relation H = R0

As a result, it was possible to explain all the basic properties of the pulsar radio
emission such as

• the death line in the P–Ṗ diagram (see Fig. 2.7);
• the statistical distribution of pulsars with single and double mean profiles (double

profiles are mainly observed in pulsars in the vicinity of the death line when
particles can be generated only in a thin ring in the vicinity of the polar cap
boundary) (Beskin et al., 1993);

• the characteristic S-shaped change in the position angle of the linear polarization
along the mean profile (Radhakrishnan and Cooke, 1969) (as shown in Fig. 2.8,
the complete change in the position angle is close to 180◦ if the line of sight
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Fig. 2.8 The change in the position angle (left panel) of two linear polarizations along the double
mean profile, which is naturally connected with the change in the magnetic field orientation (right
panel, radial lines) in the picture plane. With the central passage of the directivity pattern, the
change in the position angle is close to 180◦ (with side passage, it is much less)
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intersects the directivity pattern in the vicinity of its center and the small change
in the periphery passage); and also

• the radio window width Wd and even its statistical dependence on the pulsar
period (Rankin, 1990; Beskin et al., 1993).

The latter circumstance is based on the assumption that the generation of radio
emission in all pulsars occurs roughly at the same distance rrad from the neutron
star. We thus have for the width of the directivity pattern Wd

Wd ≈
(
Ωrrad

c

)1/2

≈ 10◦ P−1/2
( rrad

10R

)1/2
, (2.75)

i.e., Wd ∝ P−1/2, which is in agreement with the observations.
As to the death line, it is natural to connect it with the termination of the sec-

ondary plasma generation in the vicinity of the magnetic poles. Indeed, as was men-
tioned, the radio emission must be generated by the secondary electron–positron
plasma produced in neutron star polar regions. Therefore, the condition

H (P, B) = R0(P) (2.76)

(i.e., ψ = ψmax) can be regarded as an “ignition condition” dividing the active and
passive ranges of parameters when the neutron star does not manifest itself as a
radio pulsar. In the nonfree particle escape model, relation (2.76) can be rewritten
as (Ruderman and Sutherland, 1975; Beskin et al., 1984)

Pmax ≈ 1s

(
B0

1012 G

)8/15

≈ 1−3 s. (2.77)

This condition is usually represented as a “death line” in the P–Ṗ diagram. This
satisfactory agreement can, unconditionally, be regarded as the confirmation of the
pattern discussed here. For the free particle escape model, because of the much
smaller values of the accelerating potential, the limit period must be smaller:

Pmax = 0.1 − 0.3 s. (2.78)

The expectations that Pmax can be increased by taking account the GR effects were
not realized (Arons, 1998). Here there are still different solutions, for example,
a dipole displacement from the neutron star center (Arons, 1998) or the exis-
tence of a rather strong nondipole magnetic field near the neutron star surface (Gil
and Melikidze, 2002; Asséo and Khechinashvili, 2002; Kantor and Tsygan, 2003),
which results in a decrease in the curvature of the magnetic field lines Rc and, hence,
in an increase in the particle generation efficiency. Nevertheless, as we see, the free
particle escape models encounter certain difficulties.

Note also that for the nonfree particle escape models, it is convenient to introduce
the dimensionless parameter Q
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Q = 2

(
P

1 s

)11/10 ( Ṗ

10−15

)−4/10

, (2.79)

determined, as we see, directly from the observations. It turns out to be an extremely
convenient parameter characterizing the main characteristics of radio pulsars (Beskin
et al., 1984; Taylor and Stinebring, 1986; Rankin, 1990). For example, the ratios of
the inner radius of the hollow cone near the star surface rin and the inner gap height
H to the polar cap radius R0 are written as

rin

R0
≈ Q7/9, (2.80)

H

R0
≈ Q. (2.81)

Therefore, the pulsars with Q > 1, in which the directivity pattern is a rather narrow
cone, mostly have a double mean profile of the radio emission. It is in these pul-
sars that various irregularities, such as the full radio emission termination (nulling),
mode switching, are detected. Conversely, the pulsars with Q � 1 (rin � R0) are
characterized by stable radio emission, and their mean profiles are mostly of a single
type.

Finally, some properties of radio pulsars (for example, subpulse drift) indirectly
confirm the existence of the potential drop and the particle acceleration over the
magnetic poles of the neutron star (Ruderman and Sutherland, 1975). Indeed, if in
the vicinity of the pulsar surface there is a longitudinal electric field region on the
open field lines, an additional potential difference develops between the central and
periphery domains over the acceleration region so that the additional electric field is
directed to or from the magnetic axis (see Fig. 2.9). As a result, besides the general
motion around the rotation axis, the additional electric drift results in the plasma

Fig. 2.9 Equipotential
surfaces ψ = const (dashed
lines) in the region of the
open field lines. The potential
drop in the acceleration
region gives rise to an
additional potential
difference between the
magnetic surfaces. The
electric drift produced by the
additional electric field (fine
arrows) results in an
additional plasma rotation
around the magnetic axis neutron star

acceleration
region

separatrix
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rotation around the magnetic axis, which, in turn, can be observed as the regular drift
of radiating regions within the mean pulse (see Fig. 2.6). About 200 radio pulsars
with drifting subpulses are known now (Lyne and Graham-Smith, 1998; Weltevrede
et al., 2007).

2.3.7 Secondary Plasma Generation—“Outer Gap”

Finally, we should point to another particle generation mechanism that can occur
already far from the neutron star. As seen from Fig. 2.3, on some open field lines,
where Ω · B = 0, the charge density, according to (2.39), changes the sign. Clearly,
the charge-separated plasma outflowing from the star could not ensure the fulfill-
ment of the condition ρe =ρGJ. Therefore, the hypothesis for the existence of an
“outer gap” in the vicinity of the line ρGJ=0 was put forward, in which the emerg-
ing longitudinal electric field also produces the secondary plasma. However, since,
because of a weak magnetic field, the one-photon conversion becomes impossi-
ble, the main particle generation mechanism is the two-photon conversion process
γ + γ → e+ + e− (Cheng et al., 1986). At present, the thorough computations of
cascade processes in the outer gap were carried out and their aim was to explain
the high-energy radiation of radio pulsars (Chiang and Romani, 1994; Zhang and
Cheng, 1997; Cheng et al., 2000; Hirotani and Shibata, 2001). The chain of pro-
cesses is the following:

1. The occurrence of the longitudinal electric field, because the condition ρe = ρGJ

cannot be satisfied.
2. The acceleration of primary particles.
3. The emission of curvature photons.
4. The IC scattering of thermal X-ray photons emitted from the neutron star surface.
5. The secondary particles generated by the collision of high-energy IC γ -quanta

with soft X-ray photons.

Certainly, in the real conditions, plasma outflowing from the magnetosphere con-
tains particles of both signs so that, in principle, the condition ρe = ρGJ could
be satisfied by slightly changing the longitudinal particle velocities. However, this
problem, which requires, generally speaking, kinetic analysis, has not been solved
yet (see, e.g., Lyubarskii, 1995).

2.4 Pulsar Equation

2.4.1 Force-Free Approximation. The Magnetization Parameter

Let us return to our main subject and place a force-free limit to the GS equation. For
this approximation to be used, it is necessary that
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1. the plasma energy density εpart is much smaller than the energy density of the
electromagnetic field εem;

2. the amount of plasma is enough to screen the longitudinal electric field E‖.

The force-free approximation must be valid in the radio pulsar magnetosphere
with large margin, because the plasma filling the magnetosphere is secondary with
respect to the magnetic field. Following Michel (1969), for a quantitative estimate,
one can introduce the magnetization parameter

σ = eΩΨtot

4λmec3
, (2.82)

where Ψtot is the total magnetic flux and λ = n/nGJ (2.74) is the multiplicity of
particle generation. One should, however, stress that in Michel (1969), the case of
the monopole magnetic field was considered for simplicity. Therefore, we must be
careful when determining this value for concrete astrophysical objects. In particular,
for radio pulsars

Ψtot ≈ πB0 R2
0 ≈ πB0 R2ΩR

c
, (2.83)

which corresponds to the magnetic flux only in the region of open field lines. There-
fore, for the radio pulsar magnetosphere

σ = eB0Ω
2 R3

4λmec4
. (2.84)

As a result, the smallness condition of the particle contribution to the energy–
momentum tensor T αβ

part � T αβ
em up to the light cylinder can be written as

σ � γin. (2.85)

Here γin ∼ 102–104 is the characteristic Lorentz factor of the plasma near the star
surface.

Problem 2.11 Using definitions (2.74) and (2.84), check that relation (2.85)
really corresponds to the smallness condition of the particle contribution (up
to the light cylinder!) for the component T 00, i.e., for the energy density.

The magnetization parameter is one of the key dimensionless parameters char-
acterizing the relativistic plasma moving in the magnetic field. As we see, up to the
factor γin, it coincides with the ratio of the electromagnetic energy flux to the particle
energy flux. In particular, the large value of σ shows that the main contribution to
the energy flux in the interior regions of the magnetosphere is made by the electro-
magnetic flux. For the characteristic parameters of radio pulsar (P∼1 s, B0 ∼1012
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G), we have σ∼104–105, and only for the youngest ones (P∼0.1 s, B0∼1013 G) the
value σ∼106. Nevertheless, the condition σ � γin turns out to be satisfied. As to
the screening of longitudinal electric field, this condition must also be satisfied with
large margin by relation λ � 1 (2.74).

Thus, in the zero order with respect to the parameters σ−1 and λ−1, the radio
pulsar magnetosphere can actually be described by the force-free approximation.
The force-free approximation implies that in the general equation—the energy–
momentum conservation law ∇αT αβ = 0—we can now disregard the particle con-
tribution. Using the explicit form of the energy–momentum tensor of the electro-
magnetic field (Landau and Lifshits, 1989)

T αβ
em =

⎛
⎜⎜⎝

(E2 + B2)

8π

c

4π
E × B

c

4π
E × B − 1

4π
(Ei Ek + Bi Bk) + 1

8π
(E2 + B2) δik

⎞
⎟⎟⎠ , (2.86)

we obtain for the space components the known equation

1

c
j × B + ρeE = 0, (2.87)

or

[∇ × B] × B + (∇ · E) E = 0. (2.88)

Equation (2.87) in the nonrelativistic limit naturally reduces to zero of Ampére’s
force FA = j × B/c. Therefore, the approximation studied is called the force-free
approximation.

2.4.2 Integrals of Motion

Recall now that we are, first of all, interested in axisymmetric stationary configura-
tions. In this case, it is convenient to take, as an unknown variable, the magnetic flux
function Ψ (r, θ ). Strictly, it was just the method first successfully used by H. Grad
(1960) and V.D. Shafranov (1958).

Thus, we write the magnetic field as

B = ∇Ψ × eϕ
2π�

− 2I

c�
eϕ, (2.89)

dependent on two scalar functions Ψ (r, θ ) and I (r, θ ). Here the numerical coef-
ficient in the first term is chosen so that the function Ψ (r, θ ) coincides with the
magnetic flux passing through the circle r, θ, 0 < ϕ < 2π (see Fig. 2.10).

Indeed, the definition of the magnetic flux function is quite analogous to that of
the stream function Φ(r, θ ) (1.90) introduced in Sect. 2.4.2. Therefore, all the basic
properties retain.
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Fig. 2.10 Axisymmetric
magnetic surfaces Ψ (r, θ) =
const. For the case Ψ > 0,
the GJ charge density
ρGJ < 0. Therefore, in the
vicinity of the north polar
cap, I is positive and the
current jp is antiparallel to the
magnetic field B

I

• The condition dΨ = B · dS is always satisfied (dS—an area element). Therefore,
the function Ψ (r, θ ) has the meaning of a magnetic flux.

• The condition ∇ ·B = 0 is satisfied automatically. Therefore, three magnetic field
components are fully specified by two scalar functions Ψ (r, θ ) and I (r, θ ).

• The condition B · ∇Ψ = 0 is also satisfied. Therefore, the lines Ψ (r, θ ) = const
prescribe the form of the magnetic surfaces.

As to I (r, θ ), it is the total electric current passing through the same circle. We
can easily verify this fact by the obvious relation

∫
Bϕdϕ = −(4π/�c)I . The minus

sign in this expression and in the toroidal magnetic field expression (2.89) is chosen
from the condition that the value I is positive for the electric current connected with
the GJ charge density outflow. For the case Ψ > 0 shown in Fig. 2.10, the GJ charge
density is negative, viz., ρGJ < 0 (and, conversely, ρGJ > 0 for Ψ < 0). Therefore,
in the vicinity of the north polar cap, the current jp is always antiparallel to the
magnetic field B. Having written the definition of the poloidal density of the electric
current as

jp = −∇ I × eϕ
2π�

, (2.90)

we obtain the same set of properties as for the magnetic flux function.

• The condition dI = −j · dS is satisfied. Therefore, the function I (r, θ ) has the
meaning of the total electric current inflowing into the magnetosphere.

• The continuity condition ∇ · j = 0 is satisfied automatically (recall that we con-
sider the stationary configurations only).

• The condition j·∇ I = 0 is satisfied. Therefore, the lines I (r, θ ) = const prescribe
the form of the current surfaces in the magnetosphere.

Finally, the toroidal electric current can easily be determined from the
ϕ-component of Maxwell’s equation ∇ × B = (4π/c)j. Thus, using the definition
(2.89), we have
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jϕ = − c

8π2r sin θ

[
∂2Ψ

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ

∂Ψ

∂θ

)]
. (2.91)

As we see, in the definition of the toroidal current density jϕ , the known operator
L̂ = � 2∇k

(
�−2∇k

)
(1.119) written in the spherical coordinates is available again.

On the other hand, when investigating the radio pulsar magnetosphere, as we will
see, it is more convenient to use the cylindrical coordinates (�, z). In this case, the
expression for the toroidal current density looks like

jϕ = − c

8π2�

[
∇2Ψ − 2

�

∂Ψ

∂�

]
. (2.92)

We now proceed to the electric field definition. Naturally, it has three independent
components in the general case. However,

1. Maxwell’s equation ∇ × E = 0, in the axisymmetric case, yields the condition
Eϕ = 0;

2. the full screening assumption yields E‖ = 0.

Thus, it is convenient to write the electric field as

E = − ΩF

2πc
∇Ψ, (2.93)

i.e., express it in terms of one scalar function ΩF(r, θ ).
This expression yields the following important properties:

• The condition E · B = 0 is satisfied automatically.
• From Maxwell’s equation ∇ × E = 0, it follows that ∇ΩF × ∇Ψ = 0. In

the axisymmetric case, where all the values depend only on two variables, this
implies that

ΩF = ΩF(Ψ ), (2.94)

i.e., the surfaces ΩF(r, θ ) = const are to coincide with the magnetic surfaces
Ψ (r, θ ) = const.

• The drift velocity Udr = c E × B/B2, as was mentioned, is now written as

Udr = ΩF × r + j‖B, (2.95)

where again j‖ is some scalar function. As we see, the introduced function ΩF

has the meaning of the angular velocity of particles moving in the magnetosphere.
The condition (2.94) is the known Ferraro isorotation law (Ferraro, 1937; Alfven
and Fälthammar, 1963) according to which the particle angular velocity is to be
constant on the axisymmetric magnetic surfaces.



2.4 Pulsar Equation 125

Finally, using definitions (2.89) and (2.90) for B and jp, we can write the toroidal
component of Eq. (2.88) as [∇ I ×eϕ]×[∇Ψ ×eϕ] = ∇ I ×∇Ψ = 0. Consequently,
the total current inside the magnetic surface is also an integral of motion:

I = I (Ψ ). (2.96)

Problem 2.12 Show that in the force-free limit the total energy and angular
momentum losses are now defined as

Wtot = 1

c

∫
E(Ψ )dΨ, Ktot = 1

c

∫
L(Ψ )dΨ, (2.97)

where

E(Ψ ) = ΩF I

2π
, (2.98)

L(Ψ ) = I

2π
. (2.99)

2.4.3 Grad–Shafranov Equation

We are now ready to formulate the GS equation describing the poloidal structure of
the magnetic field. As in the hydrodynamical case, we write the poloidal component
of Eq. (2.87) as

jϕ
c

∇Ψ + Bϕ

c
∇ I − ∇ · E

4π

ΩF

2π�
∇Ψ = 0. (2.100)

This vector equation, under the condition ∇ I = (dI/dΨ )∇Ψ resulting from (2.96),
can again be reduced to the scalar equation multiplied by ∇Ψ . In the cylindrical
coordinates, it has the form

−
(

1 − Ω2
F�

2

c2

)
∇2Ψ + 2

�

∂Ψ

∂�
− 16π2

c2
I

dI

dΨ
+� 2

c2
(∇Ψ )2 ΩF

dΩF

dΨ
= 0, (2.101)

where ∇2 is the Laplace operator. It is just the pulsar equation obtained in dozens
of papers in the 1970s (see, e.g., Mestel (1973); Scharlemann and Wagoner (1973);
Michel (1973a); Mestel and Wang (1979); the final version containing the latter term
was deduced by Okamoto (1974)). The nonrelativistic version of the force-free GS
equation is formulated in Appendix B.
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The pulsar equation has the following properties:

• As any GS equation, it comprises only the stream function Ψ (�, z) and the
invariants ΩF(Ψ ) and I (Ψ ).

• On the other hand, the force-free equation does not contain any additional param-
eters associated with the plasma properties; therefore, it must not be supple-
mented with Bernoulli’s equation.

• Equation (2.101) remains elliptic over the entire space where it is defined; this
observation, as we will see, is very important. Indeed, the force-free equa-
tion (2.87) has meaning only if the condition |E| < |B| is satisfied, whereas
Eq. (2.101) can formally be extended to the nonphysical domain |E| > |B|.

• The differential operator

L̂psr =
(

1 − Ω2
F�

2

c2

)
∇2Ψ − 2

�

∂Ψ

∂�
(2.102)

is linear in the derivatives Ψ ; for ΩF = const, all nonlinearity of the pulsar equa-
tion is only in the last two terms associated with the integrals of motion.

• The differential operator (2.102) does not explicitly contain the coordinate z.
• At small distances, as compared to the light cylinder radius � � RL, the differ-

ential operator Lpsr coincides with L̂ (1.119).
• The equation contains one critical surface—the light cylinder �L = c/ΩF.
• For known flow structure (i.e., given Ψ (�, z), ΩF(Ψ ), and I (Ψ )), the electric

field and the toroidal component of the magnetic field are specified from the
algebraic relations.

• According to the general formula b = 2 + i − s ′ for the number of boundary
conditions, we have b = 3, i.e., the problem requires three boundary conditions.

For example, within the analytical approach, it is convenient to take, as such
boundary conditions, two integrals of motion ΩF = ΩF(Ψ ) and I = I (Ψ ), as well
as the normal component of the magnetic field on the neutron star surface r = R or,
what is the same, the magnetic flux Ψ = Ψ (R,θ ). Thus, for example, for the dipole
magnetic field

Ψ (R, θ ) ≈ |m| sin2 θ

R
. (2.103)

Here m is the magnetic moment of the neutron star. But in this case, it is not clear
whether the solution can be extended to infinity. Therefore, in numerical simula-
tions, one generally uses another set of boundary conditions, viz., the angular veloc-
ity ΩF = ΩF(Ψ ) and the magnetic flux Ψ both on the neutron star surface and “at
infinity” (i.e., on the outer boundary of the computational domain). Then the current
I (Ψ ) is to be determined from the solution.

It is very important that Eq. (2.101) contains two key values—the longitudinal
current I and the angular rotational velocity ΩF, the latter is directly associated with
the voltage drop in the inner gap. Indeed, as shown in the following section, the
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electric and magnetic fields for the arbitrary inclination angle χ must be connected
by the relation

E + Ω × r
c

× B = −∇ψ, (2.104)

where ψ at small distances � � RL has the meaning of the electric potential
in the rotating coordinate system. In particular, since in the interior of a perfectly
conducting star Ein + (Ω × r/c) × Bin = 0, we have ψin = 0. On the other hand,
for the case of the zero longitudinal electric field E‖ = 0, we have B · ∇ψ = 0.
Thus, in the domain, where the condition E‖ = 0 is satisfied, the potential ψ must
be constant on the magnetic surfaces

ψ = ψ(Ψ ). (2.105)

Hence, in the region of the closed magnetic field lines (i.e., the field lines not out-
going beyond the light cylinder), we simply have ψ = 0. On the other hand, in
the region of the open field lines, which are separated from the neutron star by the
longitudinal electric field region, the potential ψ is different from zero (see Fig. 2.9).
Its value coincides with the electric potential drop in the particle generation region.
The occurrence of the nonzero potential ψ in the region of the open field lines
leads to additional plasma rotation around the magnetic axis, which is observed as
a subpulse drift (see Fig. 2.6).

Indeed, using the definition of the electric field (2.93), we find that in the axisym-
metric case the angular velocity ΩF can be written as

ΩF = Ω + 2πc
dψ

dΨ
. (2.106)

It is easy to verify that the derivative dψ/dΨ is always negative, so the plasma angu-
lar velocity ΩF is always smaller than the angular velocity of the neutron star Ω .
The value ψ(P,B0) is determined by the concrete particle generation mechanism. In
the following, it is convenient to introduce the dimensionless accelerating potential

β0 = ψ(P,B0)

ψmax
, (2.107)

where ψmax (2.43) is the maximum potential drop in the acceleration region. As a
result, the angular velocity ΩF over the acceleration region, where the secondary
plasma screens the longitudinal electric field (and, therefore, the GS equation
method can be used), is simply determined by ΩF = (1−β0)Ω . As to the longitudi-
nal currents, it is convenient to normalize them to the GJ current density jGJ = cρGJ.
As a result, we can write

I (Ψtot) = i0 IGJ, (2.108)
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where

IGJ = B0Ω
2 R3

2c
(2.109)

is the characteristic total current across the polar cap surface.

2.4.4 Mathematical Intermezzo—Quasistationary Formalism

In this section, we call attention to some relations involving the quasistationary
generalization of the above equations describing the magnetosphere of an inclined
rotator. The assumption of quasistationarity implies that we consider the electro-
magnetic fields that depend on time t and angular coordinate ϕ only in ϕ−Ωt com-
bination. Note that the condition for quasistationarity is wider than the condition for
time independence of all values in the reference frame rotating with angular velocity
Ω , because the quasistationarity condition can be extended beyond the light cylinder
where the rotation with angular velocity Ω is impossible. In particular, the spherical
wave (2.15), (2.16), (2.17), (2.18), (2.19), and (2.20) emitted by the rotating neutron
star in vacuum satisfies the quasistationarity condition.

When the time dependence is available in all equations only in the ϕ − Ωt
combination, all time derivatives can be replaced by derivatives with respect to the
coordinates using the relations (Mestel, 1973)

∂

∂t
Q = −Ω

∂

∂ϕ
Q, (2.110)

∂

∂t
V = −(Ω × r,∇)V + Ω × V (2.111)

for the arbitrary scalar Q(�,ϕ−Ωt, z) and the vector V(�,ϕ−Ωt, z) fields. Using
now the known vector relation ∇ × [U × V] = −(U∇)V + (V∇)U + (∇ · V)U −
(∇ · U)V, we can rewrite the condition (2.111) as

1

c

∂

∂t
V = ∇ × [βR × V] − (∇ · V)βR. (2.112)

Hereafter, by definition,

βR = Ω × r
c

(2.113)

is the corotation vector. As is easily checked, ∇ · βR = 0.

Problem 2.13 Check relations (2.110), (2.111), and (2.112).
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Using relations (2.110), (2.111), and (2.112), we can rewrite Maxwell’s equa-
tion as

∇ · E = 4πρe, (2.114)

∇ × E = −∇ × [βR × B], (2.115)

∇ · B = 0, (2.116)

∇ × B = ∇ × [βR × E] + 4π

c
j − 4πρeβR. (2.117)

Equation (2.115) just yields relation E + βR × B = −∇ψ (2.104), where

ψ = Φe − (βR · A), (2.118)

and Φe and A are, respectively, the scalar and vector potentials of the electromag-
netic field.

If the (4π/c)j − 4πρeβR combination in (2.117) is also zero (for example, this is
the case for the vacuum approximation), this equation can be resolved as

B − βR × E = −∇h, (2.119)

where h(�,ϕ − Ωt, z) is an arbitrary scalar function. In this case, the electric and
magnetic fields are expressed in terms of the potentials ψ and h as

Ep = 1

1 − β2
R

(−∇ψ + βR × ∇h) , (2.120)

Eϕ = − 1

�

∂ψ

∂ϕ
, (2.121)

Bp = 1

1 − β2
R

(−∇h − βR × ∇ψ) , (2.122)

Bϕ = − 1

�

∂h

∂ϕ
. (2.123)

Substituting these expressions in equations ∇ · E = 0 and ∇ · B = 0 valid for the
vacuum case, we obtain the system of equations (Beskin et al., 1993)

L̂2ψ − 2

1 − x2
r

∂h

∂z′ = 0, (2.124)

L̂2h + 2

1 − x2
r

∂ψ

∂z′ = 0, (2.125)

where xr = Ω�/c, z′ = Ωz/c, and the operator L̂2 is
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L̂2 = ∂2

∂x2
r

+ 1

xr

1 + x2
r

1 − x2
r

∂

∂xr
+ 1 − x2

r

x2
r

∂2

∂ϕ2
+ ∂2

∂z′2 . (2.126)

Problem 2.14 Check that the solutions to system (2.124) and (2.125) for the
orthogonal rotator (i.e., if sinχ = 1)

h = |m| sin θ Re

(
1

r2
− i

Ω

c

1

r
− Ω2

c2

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
,(2.127)

ψ = |m| sin θ cos θ Re

(
Ω

c

1

r
− i

Ω2

c2

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
,(2.128)

exactly correspond to the electromagnetic fields (2.15), (2.16), (2.17), (2.18),
(2.19), and (2.20) for the rotating magnetic dipole.

Within the quasistationary approximation, we can write the general equation for
the magnetic field. Indeed, the condition for constancy of the total current I (2.96)
on the magnetic surfaces can be regarded as a consequence of Eq. (2.95) for the drift
velocity Udr. Therefore, the electric current can also be represented as the expansion
j = ρe Ω × r + i‖B. Substituting this condition in the general equation (2.117), we
readily see that ∇ · (i‖B) = 0 and, hence, the function i‖ must also be constant along
the magnetic field lines, viz., B · ∇i‖ = 0. In particular, if the longitudinal current is
zero near the neutron star surface, it is to be zero in the entire magnetosphere. As a
result, Eq. (2.117), with account taken of (2.104), can be rewritten as (Beskin et al.,
1983)

∇ × {(1 − β2
R)B + βR(βR · B) + [βR × ∇ψ]} =

4π

1 − β2
R + βR[∇ψ × B]/B2

[
i‖
c

(
(1 − β2

R)B + [βR × ∇ψ]
)

+ [∇ψ × B]

B2

(
Ω · B
2πc

+ 1

4π
(∇2ψ − (βR∇)(βR∇ψ))

)]
. (2.129)

Along with the equation ∇ · B = 0 (given the scalar functions i‖ and ψ), it specifies
the quasistationary magnetic field structure.

The quasistationary approximation is a natural generalization to axisymmetrical
stationary configurations studied here. On the other hand, the possibility to use it
seems unlikely. The point is that in the quasistationary case, it is impossible to intro-
duce the analogue of the unique function Ψ describing the magnetic surfaces. As a
result, one fails to reduce Maxwell’s equations to a single scalar equation for the
stream function by formalizing the constancy condition of the potential ψ and the
current i‖ along the given magnetic field line. Therefore, Eq. (2.129) was not essen-
tially analyzed and its solutions were found only in the exceptional cases (Beskin
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et al., 1983; Mestel et al., 1999), where it was actually reduced to the system of
equations (2.124), (2.125) for the scalar functions ψ and h.

2.5 Energy Losses of Radio Pulsars

2.5.1 Current Loss Mechanism

Before proceeding to the discussion of the exact solutions to the pulsar equation,
we consider the problem of the energy losses of the rotating neutron star. As was
noted, in the vacuum approximation, the only mechanism resulting in the pulsar
slowing down is a magnetodipole radiation. However, in the case of the plasma-
filled magnetosphere, another slowing-down mechanism connected with the electric
currents flowing in the magnetosphere occurs.

Indeed, the total current outflowing from the pulsar surface is to be zero. On the
other hand, as was specially noted above, the charges of the same sign are to outflow
from both magnetic poles (the charge densities ρGJ in the vicinity of the magnetic
poles are identical). Therefore, an inverse current making up for the charge loss
of the neutron star must inevitably flow along the separatrix dividing the open and
closed magnetic field lines. As a result, the currents Js that close the longitudinal
currents in the magnetosphere flow over the pulsar surface (see Fig. 2.11). The pon-
deromotive action of these currents must result in the slowing down of the radio pul-
sar rotation (Beskin et al., 1993). It is important that this slowing-down mechanism
occurs for the axisymmetric rotator when the magnetodipole losses are obviously
zero. Actually, this mechanism was developed even in P. Goldreich and P. Julian’s
(1969) pioneer paper that was devoted to the axisymmetric magnetosphere.

Fig. 2.11 Electric current
structure (contour arrows) in
the magnetic pole region of
the neutron star. Ampére’s
force FA connected with the
surface current Js generates
the moment of force K
resulting in the neutron star
slowing down. For inclination
angles χ not too close to 90◦,
the slowing-down moment K
is antiparallel to the neutron
star magnetic moment. The
energy flux over the
acceleration region is mainly
connected with the Poynting
vector (shaded arrows)

Js Js

A A
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We first emphasize that if the energy losses of radio pulsars are really connected
with the rotational kinetic energy loss of the neutron star, the total energy losses
Wtot = −IrΩΩ̇ and the angular momentum losses Ktot = −IrΩ̇ should be con-
nected by the relation

Wtot = ΩKtot. (2.130)

Hence, the energy and the angular momentum for the outgoing radiation must satisfy
the same condition.

To show that relation (2.130) really holds for the current losses, we write the
energy losses as

Wtot = −Ω · K, (2.131)

where

K = 1

c

∫
[r × [Js × B]]dS (2.132)

is a slowing-down moment connected with Ampére’s force of the current flowing
on the surface. Here, for simplicity, we consider the axisymmetric case. The general
relations are given in the following section.

It is easy to show that for χ = 0◦, the slowing-down moment is exactly antipar-
allel to the neutron star angular velocity. The surface current Js must satisfy the
continuity equation

∇2Js = jn, (2.133)

where ∇2 is a two-dimensional differentiation operator and jn is the normal com-
ponent of the longitudinal current flowing in the magnetosphere. As a result,
Eq. (2.133) can be rewritten as

1

R sin θ

d

dθ
(sin θ Jθ ) = [∇ I × eϕ]n

2πR sin θ
. (2.134)

It yields

Js = I

2πR sin θ
eθ . (2.135)

Using formulae (2.131) and (2.132), we can write the total energy losses as

Wtot = Ω

2πc

∫
I (Ψ )dΨ. (2.136)
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On the other hand, the total losses of the angular momentum Ktot (2.132) are rewrit-
ten as

Ktot = 1

2πc

∫
I (Ψ )dΨ. (2.137)

As a result, relation (2.130), as was expected, turns out to be identically valid for
the current losses.

Besides, we should point out that expression (2.136), as is seen, can be expanded
into the sum of two terms

Wtot = Wem + Wpart. (2.138)

Here the first term

Wem = 1

2πc

∫
ΩF(Ψ )I (Ψ )dΨ, (2.139)

according to definitions (2.89) and (2.93), is just the Poynting vector flux

Wem = c

4π

∫
[E × B]dS. (2.140)

Therefore, Wem corresponds to the electromagnetic energy flux flowing away from
the neutron star. As is expected, the electromagnetic energy losses are different from
zero only in the presence of the longitudinal electric current generating the toroidal
magnetic field. Note that the energy is transported at zero frequency; therefore, the
electromagnetic field transporting this energy is not an electromagnetic wave in an
ordinary sense.

On the other hand, the second term

Wpart = 1

2πc

∫
I (Ψ )[Ω − ΩF(Ψ )]dΨ, (2.141)

according to relation (2.106), can be rewritten as

Wpart = −
∫

dψ

dΨ
I (Ψ ) dΨ = −

∫
I (Ψ )dψ =

∫
ψdI = −

∫
ψjedS. (2.142)

Here, when integrating by parts, we used the zero condition of the potential ψ on
the polar cap boundary. As we see, the losses Wpart correspond to the energy gained
by primary particles in the acceleration region.

Problem 2.15 Show that relation (2.138) holds for any inclination angle χ

and, in particular, for any form of the polar cap.
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(Hint: since the source of both the surface current Js and the additional mag-
netic field BT is the longitudinal current i‖B flowing in the region of open
field lines (∇ · Js = i‖ Bn , ∇ × BT = (4π/c)i‖B), as is easily checked, they
are connected by the simple relation

Js = − c

4π
[BT × n]. (2.143)

As a result, formulae (2.131) and (2.132) valid for any inclination angle χ can
be identically rewritten as

Wtot = c

4π

∫
(βR · B)(B · dS). (2.144)

Further, it is necessary to use relation (2.104) yielding the identity

[E × B]dS = (βR · B)(B · dS) + [∇ψ × B]dS (2.145)

and the condition ψ = 0 on the polar cap boundary.)

Thus, already from the analysis of the axisymmetric case, we can make a number
of important conclusions.

1. The compatibility condition Wtot = ΩKtot (2.130) cannot be obtained within the
force-free approximation, because in this approximation there is no additional
term Wpart (2.141) corresponding to the energy of particles accelerated in the
inner gap. Attempts to solve the loss problem by the force-free approximation,
inevitably, lead to misunderstanding (Holloway, 1977; Shibata, 1994).

2. Under the condition ψ � ψmax, of major importance in the total balance of
current losses is the electromagnetic energy flux at zero frequency Wem (2.139).
But for pulsars located near the “death line” in the P–Ṗ diagram (for which
the condition ψ ∼ ψmax is satisfied), the losses Wpart correspond to the energy
gained by primary particles in the acceleration region rather than to the energy
of particles flowing along the open field lines. As was shown, a considerable
part of the energy loss Wpart is not used to generate particles but low-energy
γ -quanta able to freely escape the neutron star magnetosphere. Therefore, the
γ -quanta luminosity of radio pulsars located near the “death line” region is up
to a few percent of the total losses IrΩΩ̇ . In these pulsars, the efficiency of
the rotation energy processing in the high-energy radiation appears much larger
than in the radio band. Consequently, the particle energy flux, at least, inside
the light cylinder, appears much smaller than the flux Wem transported by the
electromagnetic field. This fact just corresponds to the condition σ � 1 (2.82)
valid for all radio pulsars.
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3. On the other hand, for the slowing-down current mechanism discussed, the
change in the angular moment Ktot is due to the electrodynamic losses (2.137).
This must be the case as the angular momentum of photons Lph emitted in the
vicinity of the star surface is much less than εph/Ω . Therefore, the γ -quanta
emitted in the vicinity of the neutron star surface cannot play a considerable role
in the total balance of the angular momentum losses.

2.5.2 Slowing Down of Inclined and Orthogonal Rotators

We now discuss the problem of the energy losses of neutron stars for the arbitrary
inclination angle χ . The necessity to do this is already obvious from an uncertainty
in the expression for the energy losses of radio pulsars at the stage of the orthogonal
rotator. The point is that the simple assumption based on the analysis of only the
longitudinal currents results in a decrease in the factor (ΩR/c)1/2 as compared to
the current losses of the axisymmetric rotator (Mestel et al., 1999). Indeed, let us
estimate the energy losses by the Poynting vector flux through the light cylinder
surface RL = c/Ω

Wtot = c

4π

∫
[E × B]dS ∼ cE(RL)Bϕ(RL)R2

L. (2.146)

The electric field in the vicinity of the light cylinder E(RL) is determined only by
the value of the poloidal magnetic field Bp

E(RL) ≈ ΩRL

c
Bp ≈ Bp, (2.147)

and according to the dependence B ∝ r−3 for the dipole magnetic field within
the light cylinder, we have Bp(RL) ≈ (ΩR/c)3 B0, where B0 is a magnetic field
on the neutron star surface. The toroidal magnetic field Bϕ is connected with the
longitudinal currents flowing in the magnetosphere. Therefore, the charge density
of the orthogonal rotator within the polar cap R0 ∼ (ΩR/c)1/2 R is εA = (ΩR/c)1/2

times less than that of the axisymmetric rotator. The toroidal magnetic field on the
light cylinder can be estimated as

Bϕ(RL) ≈
(
ΩR

c

)1/2

Bp(RL), (2.148)

which yields the additional factor εA in the expression for the energy losses. How-
ever, a comprehensive analysis shows that, in reality, a decrease in the factor must
have the form ε2

A = (ΩR/c), so that the total losses of the orthogonal rotator should
be written as (Beskin et al., 1993; Beskin and Nokhrina, 2004)
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W orth
tot ≈ B2

0Ω
4 R6

c3

(
ΩR

c

)
. (2.149)

To show this, we are to write the most general expression for the surface current
Js in the presence of the strong magnetic field. It can be divided into two compo-
nents, a parallel and a perpendicular one to the surface electric field Es, i.e., we write
the current Js as

Js = J(1)
s + J(2)

s , (2.150)

where

J(1)
s = Σ||Es, (2.151)

J(2)
s = Σ⊥

[
Bn

Bn
× Es

]
. (2.152)

Here Σ|| is the Pedersen conductivity and Σ⊥ is the Hall conductivity. Suppose now
that the pulsar surface conductivity perpendicular to the magnetic field is homoge-
neous and the field Es has the potential ξ ′. Hence, relations (2.151) and (2.152) look
like

J(1)
s = ∇ξ ′, (2.153)

J(2)
s = Σ⊥

Σ‖

[
Bn

Bn
× ∇ξ ′

]
. (2.154)

Note at once that since the magnetic field structure in the vicinity of the pulsar
surface is symmetric about the plane passing through the vectors of the angular
velocity and the magnetic moment of the neutron star, the surface current should
have the same symmetry. Thus, the currents proportional to Σ⊥ do not contribute to
the energy losses of the neutron star.

As a result, Eq. (2.133) is now rewritten as

∇2
2ξ

′ = −i‖ B0. (2.155)

If we make in this equation the substitution xm = sin θm and introduce the dimen-
sionless potential ξ = 4πξ ′/B0 R2Ω and the current i0 = −4π i‖/ΩR2, we finally
get

(
1 − x2

m

) ∂2ξ

∂x2
m

+ 1 − 2x2
m

xm

∂ξ

∂xm
+ 1

x2
m

∂2ξ

∂ϕ2
m

= i0(xm, ϕm). (2.156)

Here again θm and ϕm are spherical coordinates relative to the magnetic axis. Natu-
rally, the solution to Eq. (2.156) substantially depends on the boundary conditions.
As is shown below, this boundary condition is the assumption that beyond the polar
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cap there are no surface currents associated with the bulk longitudinal current flow-
ing in the magnetosphere. In this case, the boundary condition can be written as

ξ [x0(ϕm), ϕm] = const, (2.157)

where the function x0(ϕm) prescribes the form of the polar cap.
We should emphasize that the main uncertainty is just in this assertion. Indeed,

the absence of the longitudinal current in the region of the closed field lines xm > x0,
i.e., the fulfillment of the condition i0(xm > x0, ϕm) = 0, does not imply that the
gradient ∇ξ (and, hence, the surface current Js) is also zero here. In the case of the
inclined rotator, the longitudinal current closure can occur beyond the polar cap,
where the equation for the potential ξ has the form ∇2ξ = 0. The solution to this
equation is a set of multipole flows ξn ≈ An cosn ϕm/xn

m whose amplitudes An could
be quite arbitrary. The corresponding jump of the derivative of the potential ξ on the
polar cap boundary fixes the value of the surface current flowing along the separatrix
dividing the region of closed and open field lines (see Fig. 2.12). Otherwise, this
implies that, besides the bulk current flowing along the open field lines, additional
surface current must flow in the magnetosphere; the value of the current, at first
sight, can be in no way associated with the value of the bulk current.

However, it is easy to show that, in reality, the closing surface currents cannot
extend beyond the polar cap. If this were the case, the longitudinal currents would
exist in the closed magnetosphere region (see Fig. 2.13). Indeed, as is evident from
relations (2.151) and (2.152), the existence of the surface current Js must, inevitably,
be accompanied by the occurrence of the surface electric field Es, i.e., the electric
potential difference between various points of the neutron star surface, which are

Fig. 2.12 The structure of
electric currents flowing in
the vicinity of the magnetic
poles of the orthogonal
rotator. The currents flowing
along the separatrix (bold
arrows) dividing the region of
closed and open field lines
are compatible with the bulk
currents (contour arrows), so
the closing surface currents
(fine arrows) are totally
concentrated within the polar
cap

Ω

Closed
field
lines

Open
field

linesm
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Fig. 2.13 Surface current
structure (fine lines) and the
toroidal magnetic field
(dotted lines) for two
magnetic poles of the
orthogonal rotator. If the
surface currents flew beyond
the polar caps (dashed lines),
this would give rise to a
potential difference between
the points A and A′

connected by the closed
magnetic field line. The
surface current structure
corresponds to the solution
(2.159)

A' A

connected by the closed magnetic field lines. But this contradicts the assumption
of the absence of longitudinal currents in the closed magnetosphere. Consequently,
the current flowing along the separatrix must be compatible with the bulk currents
flowing within the open field line region so that the closing surface currents may be
totally concentrated within the polar cap. This just leads to the boundary condition
(2.157).

On the other hand, for the arbitrary inclination angle χ the current i0 can be
written as a sum of the symmetric and antisymmetric components. It is natural to
normalize the longitudinal current to the GJ current jGJ = cρGJ. Supposing the
pulsar magnetic field to be a dipole one, we obtain for the GJ current with xm � 1

iGJ(xm, ϕm) ≈ cosχ + 3

2
xm cosϕm sinχ. (2.158)

Since within the polar cap xm ∼ εA � 1, we obtain iGJ ∼ 1 for χ � 0 and iGJ ∼ εA

for χ � 90◦. In the following, we write the current i0 as i0 = iS + iAxm cosϕm,
where iS and iA are the amplitudes of the symmetric and antisymmetric longitudinal
currents normalized to the corresponding components of the GJ current (2.158).
In particular, for the GJ current, we have iS = cosχ and iA = (3/2) sinχ . Thus,
the solution to Eq. (2.156) is fully defined by the bulk longitudinal current i0. For
example, for χ = 90◦ for the GJ current i0 = iAxm cosϕm and for x0 = const, we
have (Beskin et al., 1993)

ξ = iA
xm(x2

m − x2
0 )

8
cosϕm. (2.159)
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Problem 2.16 Show that in this case the total current Isep flowing along the
separatrix is 3/4 the total bulk current Ibulk flowing in the region of the open
field lines:

Isep

Ibulk
= −3

4
. (2.160)

Further, we expand the slowing-down moment K (2.132) in terms of the vec-
tors em, n1, and n2, where em = m/|m|, the unit vector n1 is perpendicular to the
magnetic moment m and lies in the plane formed by the vectors Ω and m (and
Ω · n1 > 0), and n2 = em × n1

K = K‖em + K⊥n1 + K†n2. (2.161)

As a result, we have (Beskin et al., 1993)

K‖ = − B2
0 R4Ω

c

∫ 2π

0

dϕm

2π

∫ x0(ϕm)

0
dxm x2

m

√
1 − x2

m
∂ξ

∂xm
, (2.162)

and K⊥ = K1 + K2, where

K1 = B2
0 R4Ω

c

∫ 2π

0

dϕm

2π

∫ x0(ϕm)

0
dxm

(
xm cosϕm

∂ξ

∂xm
− sinϕm

∂ξ

∂ϕm

)
, (2.163)

K2 = B2
0 R4Ω

c

∫ 2π

0

dϕm

2π

∫ x0(ϕm)

0
dxm x3

m cosϕm
∂ξ

∂xm
, (2.164)

and K†, as we will see, does not enter the Euler equations at all. Here we also took
into account that both magnetic poles contribute to the slowing-down moment.

Since integration over xm in (2.163) and (2.164) is taken to the polar cap bound-
ary x0(ϕm) ∼ εA, as an estimate, we could take K2 ∼ ε2

A K1, i.e., K2 � K1. How-
ever, as is readily checked, when the boundary condition (2.157) is satisfied, the
integrand in (2.163) is a complete derivative with respect to ϕm:

∫ x0(ϕm)

0
dxm

(
xm cosϕm

∂ξ

∂xm
− sinϕm

∂ξ

∂ϕm

)
=

∂

∂ϕm

[
−

∫ x0(ϕm)

0
dxm ξ sinϕm + ξ (x0, ϕm) x0(ϕm) sinϕm

]
. (2.165)

Therefore, the contribution K1 appears identically equal to zero. As a result, the
expressions for K‖ and K⊥ have the form
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K‖ = − B2
0Ω

3 R6

c3

[
c‖iS + μ‖

(
ΩR

c

)1/2

iA

]
, (2.166)

K⊥ = − B2
0Ω

3 R6

c3

[
μ⊥

(
ΩR

c

)1/2

iS + c⊥

(
ΩR

c

)
iA

]
, (2.167)

where c‖ and c⊥ are factors of the order of unity dependent on the particular profile
of the longitudinal current i0 and the form of the polar cap. As to the coefficients μ‖
and μ⊥, they are associated with the polar cap axisymmetry and their contribution
proves unessential. In particular, μ‖(0) = μ⊥(0) = 0 and μ‖(90◦) = μ⊥(90◦) = 0.

We can explain the unavailability of the leading term K1 (2.163) for the energy
losses. As was shown above, the energy losses of radio pulsars Wtot can be identi-
cally rewritten as (2.144)

Wtot = c

4π

∫
(βR · B)(B · dS). (2.168)

On the light cylinder, expression (2.168) coincides with the estimate (2.146) but can
be used in the vicinity of the neutron star surface as well. It is easy to verify that
the condition of the current closure within the polar cap (2.157) is equivalent to the
condition of the complete screening of the magnetic field BT, which is caused by the
longitudinal currents flowing in the region of the open field lines. This fact is obvious
for the axisymmetric rotator; however, it needs a substantial additional assumption
for the angles χ ≈ 90◦. As shown in Fig. 2.13, the toroidal magnetic field specifying
the value (βR · B) must not extend beyond the polar cap. As a result, in the zero
approximation, the mean value of the scalar product (βR · B) in the region of open
field lines turns out to be zero and the energy loss itself is determined by the small
corrections ∼ε2

A associated with the curvature of the neutron star surface. Clearly,
the pattern must be the same on the light cylinder. In other words, for the orthogonal
rotator, the mean value of the toroidal magnetic field of order Bϕ(RL) ∼ i0 Bp(RL)
is to be zero on the light cylinder. This establishes the difference in the estimates of
the energy losses for the orthogonal rotator.

Writing the Euler equations, we can find the change in the angular velocity Ω̇

and the inclination angle χ̇ of the pulsar:

Ir
dΩ

dt
= K‖ cosχ + K⊥ sinχ, (2.169)

IrΩ
dχ

dt
= K⊥ cosχ − K‖ sinχ. (2.170)

Here we, for simplicity, suppose that the neutron star is spherically symmetric, and
its moment of inertia Ir is thus independent of the orientation of the rotation axis.
As a result, for angles χ not too close to 90◦, so that cosχ > ε2

A (i.e., when the
symmetric currents are of major importance), we find
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dΩ

dt
= −c‖

B2
0Ω

3 R6

Irc3
iS cosχ, (2.171)

dχ

dt
= c‖

B2
0Ω

2 R6

Irc3
iS sinχ. (2.172)

We readily see that Eqs. (2.171) and (2.172) yield the conservation of the invari-
ant

Icur = Ω sinχ, (2.173)

different from (2.22). This is because, as was mentioned, the slowing-down moment
K (2.132) for the symmetric currents is opposite to the magnetic dipole m, so the
projection of the angular velocity Ω onto the axis perpendicular to m is an integral
of motion. For the orthogonal rotator χ ≈ 90◦, where cosχ < ε2

A, we get

dΩ

dt
= −c⊥

B2
0Ω

4 R7

Irc4
iA. (2.174)

Because of the dependence iS ≈ cosχ , the contribution of the symmetric current
can be disregarded here. The comparison of relations (2.171) and (2.174) shows
that the energy release of pulsars at the orthogonal rotator stage (and for GJ current
iA ≈ 1) is ΩR/c times less than that of axisymmetric pulsars.

To sum up, we can make the general conclusions:

1. For inclination angles χ < 90◦, the slowing-down moment K (2.132) is antipar-
allel to the magnetic moment of the neutron star m. Therefore, for the current
losses the invariant value is

Ω sinχ = const. (2.175)

This conclusion directly follows from the analysis of the Euler equations, viz.,
the projection of the angular velocity onto the direction perpendicular to the
applied moment of forces is an invariant of motion (Landau and Lifshits, 1976).
Consequently, unlike the magnetodipole losses, the inclination angle must increase
with time. According to the invariant (2.173), the characteristic time of the
change in the inclination angle χ (τχ = χ/2χ̇ ) coincides with the dynamical
age of the pulsar τD = P/2Ṗ

τD ≈ Irc3

2B2
0Ω

2 R6
≈ 10 mln years

(
P

1 s

)2 ( B0

1012 G

)−2

. (2.176)

2. The current losses Wtot can be rewritten as Wtot = V I . Here

V ∼ E L ∼
(

B0
ΩR0

c

)
R0 (2.177)
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is the characteristic potential drop within the polar cap and I is the total current
circulating in the magnetosphere. Using now the definition i0 = I/IGJ and the
fact that for χ not too close to 90◦, we can take V ≈ ψmax to obtain

Wtot = c‖
B2

0Ω
4 R6

c3
i0 cosχ. (2.178)

The coefficient c‖∼ 1, as seen from relation (2.164), depends on the longitudi-
nal current profile. One should stress here that, besides the factor cosχ con-
nected with the scalar product in (2.131), the substantial dependence of the
current losses Wtot on the inclination angle is in the factor i0 ≈ iS. The point
is that in the definition of the dimensionless current, there is the GJ current
for the axisymmetric case, whereas for nonzero χ the GJ charge density in
the vicinity of the magnetic poles substantially depends on the angle χ , viz.,
ρGJ ≈ −(Ω · B)/2πc ∝ cosχ . Therefore, it is logical to expect that for the
inclined rotator the dimensionless current i0 is bounded from above

i (max)
0 (χ ) ∼ cosχ. (2.179)

As a result, the current losses decrease as the angle χ increases, at least, as
cos2 χ .

3. As to radio pulsars, in which the inclination angle χ is close to 90◦, for the
antisymmetric longitudinal currents iA the energy losses can be written as

Wtot = c⊥
B2

0Ω
4 R6

c3

(
ΩR

c

)
iA. (2.180)

Here the coefficient c⊥∼ 1 already depends not only on the antisymmetric lon-
gitudinal current profile but also on the form of the polar cap. Consequently, the
current losses for the orthogonal rotator (and for iA ∼ 1) turn out to be (ΩR/c)
times less than in the axisymmetric case. Certainly, if the current density can be
much larger than the local GJ current ρGJ,90c, then iA � 1, the energy losses can
be large enough. We discuss this possibility in Sect. 2.6.3.

Problem 2.17 Show that for the constant current density iS = const within
the polar cap (Beskin et al., 1993)

c‖ = f 2
∗
4
, (2.181)

where f∗ is the dimensionless area of the polar cap: S = f∗π (ΩR/c)R2.
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Problem 2.18 Using relation (2.159), show that for the orthogonal rotator

c⊥ = f 3
∗

64
. (2.182)

Thus, the important conclusion is that for currents I ∼ IGJ (i.e., for i0 ∼ 1)
characteristic of the radio pulsar magnetosphere, the current losses (2.178) in this
expression coincide with the magnetodipole losses (2.5). On the other hand, the
current and magnetodipole losses have a number of considerable differences.

• The magnetodipole losses (2.5) are absent in the axisymmetric case, whereas the
current losses are maximal for χ = 0◦.

• The magnetodipole losses result in a decrease in the inclination angle with time
(Ω cosχ = const), whereas for the current losses the angle χ , on the contrary,
is to increase (Ω sinχ = const) approaching 90◦. However, in both cases, the
evolution of the angle χ is in the range of parameters, where the energy losses of
the neutron star become minimal.

• For the magnetodipole losses, the braking index nbr is larger than three (see
(2.24)), whereas for the current losses, it can be less than three (see Beskin et al.
(1993) for details).

• The magnetodipole losses are universal i.e., they are independent of the addi-
tional parameters. On the other hand, the current losses (2.178) are proportional
to the electric current i0 circulating in the magnetosphere.

Otherwise, the difference between the current and magnetodipole losses is rather
substantial. Theoretically, this brings up the question of the relative role of these two
slowing-down mechanisms in the total balance of the energy losses. The answer to
this question can be given only together with the solution to the complete problem
of the neutron star magnetosphere. On the other hand, one should note that for most
radio pulsars the dimensionless current is i0 ∼ 1, so that the simplest magnetodipole
formula (2.5) yields, in the large, a reliable estimate for the total energy losses of the
rotating neutron star. As a result, both the magnetodipole and the current losses give
similar results when analyzing the statistical characteristics of radio pulsars (Michel,
1991; Beskin et al., 1993). The direct determination of the sign of the derivative χ̇
different for the two slowing-down mechanisms is now beyond the sensitivities of
the present-day receivers. Therefore, up to now, the observations do not allow one
to choose between these two slowing-down mechanisms (see Appendix C as well).

2.6 Magnetosphere Structure

2.6.1 Exact Solutions

We again return to our main topic and consider the structure of the radio pulsar mag-
netosphere. It was shown that in the zero order with respect to the small parameters
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σ−1 and λ−1, the magnetosphere structure can be described by the force-free equa-
tion (2.101). As was noted, this equation contains only one singular surface and,
therefore, needs three boundary conditions. As such boundary conditions, one can
take the values of the invariants ΩF(Ψ ) and I (Ψ ), as well as the normal component
of the magnetic field on the neutron star surface (or, what is the same, the stream
function Ψ (R, θ ) on its surface).

Equation (2.101) is of a nonlinear type. However, unlike the hydrodynamical
GS equation version, the whole nonlinearity is now associated with the integrals of
motion. In particular, in the absence of the longitudinal current and for the constant
angular velocity ΩF(Ψ ) = Ω , it becomes linear

−
(

1 − Ω2� 2

c2

)
∇2Ψ + 2

�

∂Ψ

∂�
= 0. (2.183)

On the other hand, unlike the hydrodynamical case, for the constant value of the
angular velocity ΩF, the location of the singular surface ΩF�/c = 1 is known
beforehand. Since Eq. (2.183) does not explicitly comprise the cylindrical coordi-
nate z, its solution can be sought by the method of separation of variables (Michel,
1973a; Mestel and Wang, 1979)

Ψ (�, z) = |m|
RL

∫ ∞

0
Rλ(� ) cos(λz) dλ. (2.184)

These properties made it possible to obtain the solution to Eq. (2.101) for a number
of the simplest cases.

2.6.1.1 Axisymmetric Magnetosphere with the Zero Longitudinal Current for
the Dipole Magnetic Field of the Neutron Star

In the absence of the longitudinal currents, the only currents in the magnetosphere
are corotation currents ΩF�ρGJeϕ . Recall that we assume here ΩF = const. There-
fore, the range of applicability of Eq. (2.183) extends only to the light cylinder which
coincides with the light surface. Substituting expansion (2.184) in Eq. (2.183), we
obtain for the radial function Rλ(xr ) (Michel, 1973a; Mestel and Wang, 1979)

d2 Rλ(xr )

d2xr
− (1 + x2

r )

xr (1 − x2
r )

dRλ(xr )

dxr
− λ2 Rλ(xr ) = 0. (2.185)

Hereafter, we again use the dimensionless variables xr = Ω�/c and z′ = Ωz/c.
The boundary conditions for Eq. (2.185) are

1. the dipole magnetic field in the vicinity of the star surface B = [3(nm)n−m]/r3,
i.e.,

Ψ (xr , z′) = |m|
RL

x2
r

(x2
r + z′2)3/2

(2.186)

for xr → 0 and z′ → 0;



2.6 Magnetosphere Structure 145

2. the absence of a singularity on the light cylinder xr = 1.

According to the known expansion

x2
r

(x2
r + z′2)3/2

= 2

π

∫ ∞

0
λxr K1(λxr ) cos(λz′) dλ, (2.187)

where K1(x) is the Macdonald function of the first order, the first condition implies
that for xr → 0 the relation

Rλ(xr ) → 2

π
λxr K1(λxr ) (2.188)

must hold. As we see, the situation is absolutely equivalent to the hydrodynamical
limit when one of the boundary conditions for the ordinary differential equation is
connected with a field source and the second one corresponds to the absence of a
singularity on the critical surface.

Problem 2.19 Show that the solution to Eq. (2.185) can be constructed in the
form of the series

Rλ(xr ) = D(λ)
∞∑

n=0

an(1 − x2
r )n, (2.189)

where the expansion coefficients an satisfy the recurrent relations

a0 = 1, a1 = 0, an+1 = 4n2

4(n + 1)2
an + λ2

4(n + 1)2
an−1. (2.190)

The value D(λ) can be determined from the boundary condition (2.188) near
the neutron star surface. Indeed, using the asymptotic behavior K1(x) = x−1

for x → 0, we get

D(λ)−1 = π

2

∞∑
n=0

an. (2.191)

Figure 2.14 shows the magnetic field structure obtained from the solution to
Eq. (2.183) (Michel, 1973a). As was expected, the dipole magnetic field is dis-
turbed only in the vicinity of the light cylinder; at small distances the magnetic
field remains dipole. Note also that the magnetic field on the light cylinder appears
orthogonal to its surface. This fact can be directly checked by definition (2.89)
in the form of expansion (2.189)—the z-component of the magnetic field on the
light cylinder Bz(xr = 1) turns out to be automatically equal to zero. This is, by
the way, the solution to the singularity problem in expression (2.41)—the charge
density remains finite on the light cylinder. At the equator of the light cylinder
(� = RL, z = 0), the magnetic field is zero. Finally, it turned out that the total
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Fig. 2.14 Magnetic field structure for the zero longitudinal current and the accelerating poten-
tial (i0 = 0, β0 = 0) for the dipole axisymmetric magnetic field of the neutron star (Michel,
1973a). The numbers indicate the values of the dimensionless magnetic field function f (Ψ =
πB0 R2(ΩR/c) f ) (Reproduced by permission of the AAS, Fig. 1 from Michel, F.C.: Rotating
magnetosphere: a simple relativistic model. ApJ 180, 207–226 (1973))

magnetic flux crossing the light cylinder is about 1.592 times larger than that in the
vacuum case. This result implies that the area of the polar cap increases in the same
proportion (Michel, 1973a)

Scap ≈ 1.592πR2
0 . (2.192)

As to the toroidal magnetic field, since the longitudinal electric currents are absent,
it is identically equal to zero in the whole magnetosphere.

Problem 2.20 Having written the expression for the magnetic flux through the
light cylinder surface, show that the coefficient f∗ ≈ 1.592 (so-called Michel
number) is connected with the function D(λ) by the relation

f∗ =
∫ ∞

0
D(λ)dλ. (2.193)
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It is also interesting to note that when receding from the equatorial plane, within
the light cylinder, the electric and magnetic fields decrease exponentially fast rather
than by a power law: B ∝ exp(−pz/RL), where p ≈ 3.0. This property is associated
with the structure of expansion (2.184) and the existence of the pole of the function
Rλ for λ = i p (Beskin et al., 1993). This fast decrease in the fields is possible
because the magnetic moment of the corotation currents almost fully screens the
magnetic moment of the neutron star.

Further, the electric field on the light cylinder is compared in magnitude with the
magnetic one, but its direction is along the rotation axis of the neutron star. Since
the normal component of the electric field vanishes on the light cylinder, one can
conclude that the total charge of the neutron star and the magnetosphere turns out to
be zero. Otherwise, part of the charge Q∗ (2.12) located, in the vacuum case, on the
neutron star surface passes into the pulsar magnetosphere. On the other hand, the
equality of the electric and magnetic fields on the light cylinder shows that for the
zero longitudinal current the light cylinder coincides with the light surface. There-
fore, the constructed solution cannot be extended beyond the light cylinder, though,
formally, the pulsar equation does not have any singularities here.

2.6.1.2 Axisymmetric Magnetosphere with the Zero Longitudinal Current for
the Monopole Magnetic Field

At first sight, there is no sense to consider this case, because the monopole magnetic
field does not occur in reality. However, as we see in the following, the analysis of
the rotating monopole magnetosphere proves very fruitful, especially, for the case
of the black hole magnetosphere.

The solution of the problem for the monopole magnetic field is analogous to the
previous one (Michel, 1973a). There is a difference only in boundary condition 1
on the star surface and, hence, only in the explicit form of the function D(λ). As
a result, as for the dipole magnetic field, the magnetic field on the light cylinder
appears orthogonal to its surface and also decreases exponentially with distance
from the equatorial plane, and at small distances from the star the monopole field
perturbations prove small (see Fig. 2.15). On the other hand, as in the previous
example, the electric field on the light cylinder is compared with the magnetic one
and, therefore, the solution of the pulsar equation cannot be extended beyond the
light cylinder.

2.6.1.3 Magnetosphere with the Zero Longitudinal Current for the Inclined
Rotator

The exact solution for the zero longitudinal currents (and in the absence of the
accelerating potential ψ = 0) can be constructed at an arbitrary inclination angle of
χ (Beskin et al., 1983). This becomes possible because for i‖ = 0 and ψ = 0 the
quasistationary GS equation (2.129) also becomes linear

∇ × [
(1 − β2

R)B + βR(βR · B)
] = 0. (2.194)
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Fig. 2.15 Magnetic field structure for the zero longitudinal current and the accelerating potential
(i0 = 0, β0 = 0) for the monopole magnetic field of the compact object (Michel, 1973a) [Repro-
duced by permission of the AAS, Fig. 2 from Michel, F.C.: Rotating magnetosphere: a simple
relativistic model. ApJ 180, 207–226 (1973)]

The solution to Eq. (2.194) [so-called Mestel equation (Mestel, 1973)] can be writ-
ten as

(1 − β2
R)B + βR(βR · B) = −∇h, (2.195)

while, for the zero accelerating potential ψ , Maxwell’s equation ∇ · B = 0 looks
like L̂2h = 0:

∂2h

∂x2
r

+ (1 + x2
r )

xr (1 − x2
r )

∂h

∂xr
+ (1 − x2

r )

x2
r

∂2h

∂ϕ2
+ ∂2h

∂z′2 = 0. (2.196)

On the other hand, the electric field for ψ = 0 can be found from the condition
E + βR × B = 0, because relation (2.104) must hold for any quasistationary con-
figurations. Therefore, the electric and magnetic fields can again be specified by
equalities (2.120), (2.121), (2.122), and (2.123) in which we must take ψ = 0
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Ep = [βR × ∇h]

1 − β2
R

, (2.197)

Eϕ = 0, (2.198)

Bp = − ∇h

1 − β2
R

, (2.199)

Bϕ = − 1

�

∂h

∂ϕ
. (2.200)

To construct the solution to Eq. (2.196), we see that in the studied linear case, the
magnetic field of the neutron star can be expanded into axisymmetric and orthogonal
parts. In other words, the potential h(xr , ϕ − Ωt, z′) can be represented as

h(xr , ϕ − Ωt, z′) = h0(xr , z′) cosχ + h1(xr , z′) cos(ϕ − Ωt) sinχ, (2.201)

and now the potentials h0(xr , z′) and h1(xr , z′) satisfy the equations

∂2h0

∂x2
r

+ (1 + x2
r )

xr (1 − x2
r )

∂h0

∂xr
+ ∂2h0

∂z′2 = 0, (2.202)

∂2h1

∂x2
r

+ (1 + x2
r )

xr (1 − x2
r )

∂h1

∂xr
+ ∂2h1

∂z′2 − (1 − x2
r )

x2
r

h1 = 0. (2.203)

Therefore, as in the case of the axisymmetric rotator, the solution to Eqs. (2.202)
and (2.203) can be found in the form

h0(xr , z′) = |m|
R2

L

∫ ∞

0
R(0)
λ (xr ) sin(λz′) dλ, (2.204)

h1(xr , z′) = |m|
R2

L

∫ ∞

0
R(1)
λ (xr ) cos(λz′) dλ, (2.205)

where the radial functions R(0)
λ (xr ) and R(1)

λ (xr ) must satisfy the equations

d2 R(0)
λ (xr )

d2xr
+ (1 + x2

r )

xr (1 − x2
r )

dR(0)
λ (xr )

dxr
− λ2 R(0)

λ (xr ) = 0, (2.206)

d2 R(1)
λ (xr )

d2xr
+ (1 + x2

r )

xr (1 − x2
r )

dR(1)
λ (xr )

dxr
−

(
λ2 + 1 − x2

r

x2
r

)
R(1)
λ (xr ) = 0. (2.207)

The boundary conditions for Eqs. (2.206) and (2.207), as before, are

1. the dipole magnetic field B = [3(nm)n−m]/r3 in the vicinity of the star surface,
i.e.,
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h0(xr , z′) → |m|
R2

L

z′

(x2
r + z′2)3/2

, (2.208)

h1(xr , z′) → |m|
R2

L

xr

(x2
r + z′2)3/2

, (2.209)

for xr → 0 and z′ → 0;
2. the absence of a singularity on the light cylinder xr = 1:

dR(0)
λ

dxr

∣∣∣∣∣
xr =1

= 0, (2.210)

dR(1)
λ

dxr

∣∣∣∣∣
xr =1

= 0. (2.211)

Using expansion (2.187) again, we find that for xr → 0, the following relations must
hold:

R(0)
λ (xr ) → 2

π
λK0(λxr ), (2.212)

R(1)
λ (xr ) → 2

π
λK1(λxr ). (2.213)

Here K0(x) and K1(x) are the Macdonald functions of zero and the first order.
Besides (and it is very important), it is also necessary that the magnetic field

should decrease at infinity along the rotation axis for z →∞. The necessity to intro-
duce an “additional” boundary condition is that the magnetic field line extending to
infinity along the rotation axis does not intersect the light cylinder and, hence, there
is no additional regularity condition for it. When this condition is not satisfied, we
have the nonphysical solution (Endean, 1983)

hE(xr , ϕ, z′, t) = h∗[xr J0(xr ) − J1(xr )] cos(ϕ − Ωt) (2.214)

(h∗—an arbitrary constant) independent of z and, hence, not decreasing at infinity.

Problem 2.21 Show that the solution to Eqs. (2.206) and (2.207) can be con-
structed in the form of the formal series (Beskin et al., 1983; Mestel et al.,
1999)

R(0)
λ (xr ) = D0(λ)

∞∑
n=2

bn(1 − x2
r )n, (2.215)

R(1)
λ (xr ) = D1(λ)

∞∑
n=2

cn(1 − x2
r )n, (2.216)
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where the expansion coefficients bn and cn satisfy the recurrent relations

bn+1 = n

n + 1
bn + λ2

4(n2 − 1)
bn−1, (2.217)

cn+1 = n(2n − 3)

n2 − 1
cn − 4(n − 1)(n − 2) − λ2

4(n2 − 1)
cn−1 − λ2 − 1

4(n2 − 1)
cn−2, (2.218)

where b0 = b1 = c0 = c1 = 0 and b2 = c2 = 1.

Problem 2.22 Using the asymptotic behavior K0(x) → − ln x and
K1(x) → x−1 for x → 0, show that

D0(λ)−1 = − π

2λ
lim

xr →0

1

ln xr

∞∑
n=2

bn(1 − x2
r )n, (2.219)

D1(λ)−1 = π

2
lim

xr →0
xr

∞∑
n=2

cn(1 − x2
r )n. (2.220)

Problem 2.23 Using definitions (2.197), (2.198), (2.199), and (2.200) and
(2.215) and (2.216), show that the magnetic field and the charge density on
the light cylinder are defined as

B� (RL, ϕ
′, z′) = (2.221)

4
|m|
R3

L

[
cosχ

∫ ∞

0
D0(λ) sin(λz′)dλ + sinχ cosϕ′

∫ ∞

0
D1(λ) cos(λz′)dλ

]
,

ρe(RL, ϕ
′, z′) = (2.222)

Ω|m|
2πcR3

L

[
cosχ

∫ ∞

0
D0(λ)λ cos(λz′)dλ − sinχ cosϕ′

∫ ∞

0
D1(λ)λ sin(λz′)dλ

]
,

where ϕ′ = ϕ − Ωt .

Problem 2.24 Show that in the axisymmetric case the singular solution inde-
pendent of z has a singularity on the light cylinder and, hence, must be aban-
doned automatically.
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Fig. 2.16 Magnetic field
structure for the zero
longitudinal current and the
accelerating potential (i0 = 0,
β0 = 0) for the inclined
dipole magnetic field of the
neutron star (Beskin et al.,
1983)

As shown in Fig. 2.16, for the case of the inclined rotator, the basic properties
valid for the axisymmetric magnetosphere fully retain. In the absence of the longitu-
dinal currents, the boundary of the region of applicability is the light cylinder, where
the corotation currents begin to distort the dipole magnetic field. The magnetic field
itself becomes orthogonal to the light cylinder here. On the other hand, the electric
and magnetic fields exponentially decrease with distance from the equatorial plane.
Finally, the total electric charge in the magnetosphere is zero.

Relations (2.215) and (2.216) allow us to get the complete information concern-
ing the magnetosphere structure. Thus, Table 2.2 gives the values of the magnetic
field (in |m|/R3

L units) and the charge density (in ΩB/2πc units) on the light cylin-
der for four different inclination angles χ . Besides, Fig. 2.17 shows the change in the
polar cap form as the inclination angle χ increases. Its area varies from 1.592πR2

0
for χ = 0◦ to 1.96πR2

0 for χ = 90◦.

Problem 2.25 Using the nonphysical solution (2.214), show that the dimen-
sionless area of the polar cap surface f∗(90) ≈ 1.96 for χ = 90◦ is expressed
in terms of the Bessel functions J0 and J1

f∗(90) = 2

π [J0(1) − J1(1)]
. (2.223)
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Table 2.2 The magnetic field Bx (2.221) and the charge density ρe (2.222) on the light cylinder at
different inclination angles of χ

χ = 0◦ χ = 30◦ χ = 60◦ χ = 90◦

z/RL Bx ρe Bx ρe Bx ρe Bx ρe

1.5 0.16 −0.13 0.17 −0.14 0.12 −0.11 0.05 −0.05
1.4 0.22 −0.17 0.23 −0.19 0.18 −0.16 0.07 −0.08
1.3 0.30 −0.23 0.32 −0.26 0.25 −0.22 0.11 −0.12
1.2 0.41 −0.30 0.44 −0.35 0.36 −0.31 0.18 −0.19
1.1 0.54 −0.38 0.61 −0.48 0.51 −0.44 0.27 −0.29
1.0 0.71 −0.48 0.83 −0.63 0.72 −0.61 0.41 −0.43
0.9 0.93 −0.58 1.11 −0.81 1.00 −0.84 0.62 −0.63
0.8 1.17 −0.65 1.48 −1.02 1.39 −1.11 0.93 −0.90
0.7 1.44 −0.67 1.93 −1.20 1.89 −1.41 1.36 −1.24
0.6 1.70 −0.59 2.43 −1.32 2.52 −1.70 1.93 −1.62
0.5 1.89 −0.35 2.96 −1.30 3.24 −1.90 2.65 −1.99
0.4 1.95 0.08 3.44 −1.05 4.01 −1.90 3.50 −2.23
0.3 1.81 0.67 3.77 −0.53 4.72 −1.59 4.41 −2.22
0.2 1.41 1.31 3.84 0.22 5.23 −0.92 5.23 −1.82
0.1 0.78 1.82 3.58 1.06 5.42 0.01 5.81 −1.04
0.0 0.00 2.01 3.01 1.74 5.22 1.01 6.02 0.00

−0.1 −0.78 1.82 2.23 2.09 4.64 1.81 5.81 1.04
−0.2 −1.41 1.31 1.39 2.05 3.82 2.23 5.23 1.82
−0.3 −1.81 0.67 0.64 1.69 2.91 2.25 4.41 2.22
−0.4 −1.95 0.08 0.06 1.18 2.06 1.97 3.50 2.23
−0.5 −1.89 −0.35 −0.31 0.69 1.35 1.55 2.65 1.99
−0.6 −1.70 −0.59 −0.51 0.30 0.82 1.11 1.93 1.62
−0.7 −1.44 −0.67 −0.57 0.04 0.45 0.74 1.36 1.24
−0.8 −1.17 −0.65 −0.55 −0.11 0.22 0.46 0.93 0.90
−0.9 −0.92 −0.58 −0.49 −0.18 0.08 0.26 0.62 0.63
−1.0 −0.71 −0.48 −0.41 −0.20 0.00 0.14 0.41 0.43
−1.1 −0.54 −0.38 −0.33 −0.19 −0.04 0.06 0.27 0.29
−1.2 −0.41 −0.30 −0.26 −0.16 −0.05 0.02 0.18 0.19
−1.3 −0.30 −0.23 −0.20 −0.13 −0.05 −0.01 0.11 0.12
−1.4 −0.22 −0.17 −0.16 −0.11 −0.05 −0.01 0.07 0.08
−1.5 −0.16 −0.13 0.12 −0.08 −0.04 −0.01 0.05 0.05

(Hint: it is necessary to determine the Poynting vector flux through the light
cylinder surface and the neutron star surface.)

On the other hand, from the analysis of the above solutions, we conclude that
over the entire surface of the light cylinder, the toroidal magnetic field is zero
though, unlike the axisymmetric case, it is not zero in the interior regions of the
magnetosphere. Indeed, since expansions (2.215) and (2.216) begin with the second
powers (1 − x2

r ), definitions (2.199) and (2.200) show that at small distances from
the light cylinder, the magnetic field components behave as

Bz ∝ (1 − x2
r ), Bϕ ∝ (1 − x2

r )2. (2.224)
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Fig. 2.17 The change in the polar cap form with increasing inclination angle χ . The numbers
indicate the values of the angles ϕ (in degrees) and for χ = 90◦ the values of z/RL for which the
field line coming out from the given point intersects the light cylinder
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It is, at first sight, a purely mathematical property but, actually, is of fundamental
importance and one of the key conclusions in this chapter. Therefore, the solution
of the pulsar equation is thoroughly derived and given in the theorem:

Theorem 2.1 In the absence of the longitudinal currents and the accelerating
potential the Poynting vector flux through the surface of the light cylinder is zero.
Otherwise, the corotation currents flowing in the magnetosphere completely screen
the magnetodipole radiation of the neutron star. Therefore, in the case of the inclined
rotator, all energy losses are connected with the longitudinal current circulating in
the magnetosphere (Beskin et al., 1983; Mestel et al., 1999).

One should note that the conclusion that there are no losses is, in no way, con-
nected with the quasistationary approximation used here. Indeed, as was shown
above, the magnetodipole radiation can be produced within this formalism. The
point is that in the vacuum case we have two second-order equations (2.124) and
(2.125) for the functions ψ and h, which can be rewritten as a single fourth-order
equation for one of these values. Therefore, in the vacuum case, two independent
solutions corresponding to retarded and advanced potentials are possible. The choice
of only the retarded potentials involves an additional physical assumption in the
absence of the confluence energy flux from infinity. In the case of the plasma-filled
magnetosphere, Eq. (2.196) has the unique solution in the form of a standing wave
that does not transport energy to infinity.

2.6.1.4 Axisymmetric Magnetosphere with a Nonzero Longitudinal Current
for the Monopole Magnetic Field

F.C. Michel found another remarkable analytical solution for the monopole mag-
netic field of the star (Michel, 1973b). It turned out that for the special choice of the
longitudinal current

I (Ψ ) = IM = ΩF

4π

(
2Ψ − Ψ 2

Ψ0

)
(2.225)

and for ΩF = const, the monopole magnetic field

Ψ (r, θ ) = Ψ0(1 − cos θ ) (2.226)

is the exact solution to the pulsar equation (2.101), beyond the light cylinder as well.
Otherwise, for the current I = IM (2.225), the effects of the longitudinal currents
and the corotation currents are fully compensated. It is easy to check that the current
I takes the form I (θ ) = I (A)

M sin2 θ , where

I (A)
M = ΩFΨ0

4π
, (2.227)

which, actually, corresponds to the GJ current density. As is evident from relations
(2.225) and (2.226), in the Michel solution the electric field E having only the
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θ -component is equal in magnitude to the toroidal component of the magnetic field

Bϕ = Eθ = −B0

(
ΩR

c

)
R

r
sin θ, (2.228)

which at distances larger than the light cylinder radius becomes larger than the
poloidal magnetic field Bp = B0(R/r )2. On the other hand, in this solution the
full magnetic field remains larger than the electric one everywhere, which makes
the light surface extend to infinity.

As was already noted, the Michel solution, in spite of its artificial character, is
of great importance in the black hole magnetosphere theory. Therefore, we return
to this solution in the next chapter. We note here that the Michel solution proves
useful for the radio pulsar magnetosphere theory as well, because this structure
of the magnetic field can be realized beyond the light cylinder in the pulsar wind
region. Therefore, we should emphasize at once that under the real conditions we,
of course, deal with the so-called split monopole

Ψ (r, θ ) = Ψ0(1 − cos θ ), θ < π/2, (2.229)

Ψ (r, θ ) = Ψ0(1 + cos θ ), θ > π/2, (2.230)

rather than with a monopole when the magnetic flux converges in the lower hemi-
sphere and diverges in the upper one, as shown in Fig. 2.18. In other words, for this
solution to exist it is necessary to introduce the current sheet in the equatorial plane
dividing the convergent and divergent magnetic fluxes. One should remember that
in this geometry topologically equivalent to the dipole magnetic field both in the
northern and in the southern parts of the magnetosphere, there is a charge outflow
of the same sign. Therefore, the poloidal surface currents closing the bulk currents
and ensuring the electric current conservation must flow along the sheet. This sheet
is possible in the presence of the accretion disk in which the studied force-free
approximation becomes inapplicable.

Problem 2.26 Show by direct substitution in Eq. (2.101) that the monopole
magnetic field remains an exact solution for the arbitrary profile of the angular
velocity ΩF(Ψ ) if the electric current is still connected with it by the rela-
tion (Blandford and Znajek, 1977; Beskin et al., 1992a)

4π I (Ψ ) = ΩF(Ψ )

(
2Ψ − Ψ 2

Ψ0

)
. (2.231)

Later Bogovalov (2001) demonstrated that in the force-free approximation (when
massless charged particles can move radially with the velocity of light), the inclined
split monopole field



2.6 Magnetosphere Structure 157

Fig. 2.18 The Michel
monopole solution in which
the electric field Eθ is exactly
equal to the toroidal magnetic
field Bϕ . In the real
conditions, this solution can
be realized in the presence of
the conducting disk in the
equatorial plane along which
the electric current closure
occurs (contour arrows)

Ψ (r, θ, ϕ, t) = Ψ0(1 − cos θ ), θ < π/2 − χ cos(ϕ − Ωt + Ωr/c), (2.232)

Ψ (r, θ, ϕ, t) = Ψ0(1 + cos θ ), θ > π/2 − χ cos(ϕ − Ωt + Ωr/c), (2.233)

is the solution of the problem as well. In this case, within the cones θ < π/2 − χ ,
π − θ < π/2 − χ near the rotation axis, the electromagnetic field is not time
dependent, while in the equatorial region the electromagnetic fields change the sign
at the instant the processing current sheet intersects the given point.

2.6.1.5 Axisymmetric Magnetosphere with a Nonzero Longitudinal Current
for the Parabolic Magnetic Field

It turned out that the exact solution can be constructed by the “nonphysical”
parabolic field Ψ ∝ r (1 − cos θ ) (1.127) shown in Fig. 2.19 (Blandford, 1976).
Certainly, this structure of the magnetic field can again be realized only in the pres-
ence of the conducting disk so that the magnetic field lines in the lower and upper
hemispheres specularly repeat one another. The jump of the tangential component
of the magnetic field is connected with the electric currents flowing within the disk.
One should stress at once that in the studied solution only the form of the magnetic
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Fig. 2.19 The parabolic
structure of the magnetic field
and the longitudinal currents
for the “nonphysical”
solution (2.237). The angular
velocity ΩF(Ψ ) is determined
by the rotational velocity of
the disk. Therefore, according
to (2.235), the longitudinal
current closes at the finite
values of the magnetic flux
Ψ . Dashed line indicates the
light cylinder
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surfaces coincides with the vacuum magnetic field. The density of the magnetic
field lines should differ from that of the magnetic field in vacuum. Otherwise, the
magnetic flux Ψ (r, θ ) should have the form Ψ (r, θ ) = Ψ (X ), where for θ < π/2

X = r (1 − cos θ ). (2.234)

As in the previous case, this structure of the magnetic field can occur only if there
is a certain connection between the angular velocity ΩF and the current I , viz., when
the following relation holds:

I (Ψ ) = CΩF(X )X

2

[
1 + Ω2

F(X )X2

c2

]1/2 , (2.235)

where C is an integration constant. In this case, the magnetic flux can be found from
the condition

dΨ

dX
= πC[

1 + Ω2
F(X )X2

c2

]1/2 . (2.236)

As we see, here the solution also exists for any profile ΩF(X ). In particular, for the
constant angular velocity, it has the form (Lee and Park, 2004)
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Ψ (r, θ ) = πCc

ΩF
ln

⎡
⎣ΩF X

c
+

√
1 + Ω2

F X2

c2

⎤
⎦ . (2.237)

We should emphasize that though the above solution is formally valid for any
value ΩF(X )X/c, in reality, only the configurations in which

ΩF(X )X

c
< 1 (2.238)

can be realized. The point is that, as shown in Fig. 2.19, all magnetic surfaces must
intersect the region of the accretion disk that must determine the value of the angular
velocity ΩF. But the accretion disk cannot rotate with the velocity larger than the
velocity of light. Since in the equatorial plane X = � , the condition (2.238) is to
be satisfied over the entire space. As a result, the magnetic field structure does not
differ too much from the vacuum solution.

On the other hand, for a fast decrease in the angular velocity ΩF(Ψ ) with
increasing Ψ , so that ΩF(Ψ )�/c → 0, the longitudinal current, according to
(2.235), is concentrated only in the region ΩF(0)X/c ∼ 1, so that the char-
acteristic magnetic flux, within which the current closure occurs, can be
estimated as

Ψ0 = πCc

ΩF(0)
. (2.239)

This relation defines the connection between the integration constant C and the
flow Ψ0 involved, for example, in the definition of the magnetization parameter
σ (2.82).

The “nonphysical” solution was not as known as the Michel monopole solution
though it, in many respects, much better describes the structure of the magnetized
wind outflowing from compact objects. In particular, it adequately models the jet
formation process. On the other hand, one should remember that for the existence
of the magnetic field decreasing with distance as r−1 (and it is exactly how the
magnetic field corresponding to the potential X = r (1 − cos θ ) is constructed), the
toroidal currents flowing in the equatorial plane are needed. In the absence of these
currents, the parabolic magnetic field cannot be realized.

Problem 2.27 Show that for the parabolic solution, as in the Michel monopole
solution, at large distances r → ∞ the electric field is compared in
magnitude with the magnetic one so that Bp � Bϕ and Bϕ ≈ |E|,
where
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Bϕ = − CΩF

c

[
1 + Ω2

F(X )X2

c2

]1/2

(1 − cos θ )

sin θ
, (2.240)

|E| = CΩF

c

[
1 + Ω2

F(X )X2

c2

]1/2

(
1 − cos θ

2

)1/2

. (2.241)

2.6.1.6 Perturbation of the Monopole Magnetic Field

In conclusion, we consider another model problem of the small perturbation of
the Michel monopole solution (Beskin et al., 1998). As was already mentioned,
Eq. (2.101) needs three boundary conditions. We suppose that the angular velocity
ΩF = const remains the same as in the Michel solution. As to the longitudinal cur-
rent I (R, θ ), it is assumed to differ little from the Michel current (2.228)

I (R, θ ) = IM(θ ) + l(θ ) = I (A)
M sin2 θ + l(θ ), (2.242)

so that l(θ ) � I (A)
M . Since the perturbations are assumed to be small, relation (2.242)

defines the value of the current as a function of the stream function Ψ .
Writing now the solution to Eq. (2.101) as Ψ (r, θ ) = Ψ0[1 − cos θ + ε f (r, θ )],

we obtain in the first order with respect to the small parameter ε = l/I (A)
M

ε(1 − x2 sin2 θ )
∂2 f

∂x2
+ ε(1 − x2 sin2 θ )

sin θ

x2

∂

∂θ

(
1

sin θ

∂ f

∂θ

)
− 2εx sin2 θ

∂ f

∂r

−2ε sin θ cos θ
∂ f

∂θ
+ 2ε(3 cos2 θ − 1) f = − 1

I (A)
M sin θ

d

dθ
(l sin2 θ ). (2.243)

Here x = ΩFr/c. Equation (2.243), as was expected, has a singularity on the light
cylinder x sin θ = 1.

In the general case, the solution to Eq. (2.243) is extremely cumbersome. How-
ever, for the special choice of the perturbation

l(θ ) = ε∗ I (A)
M sin2 θ, (2.244)

where |ε∗| = const � 1, the analytical solution can be found. It has the form

Ψ (r, θ ) = Ψ0

[
1 − cos θ + ε∗

(
ΩFr

c

)2

sin2 θ cos θ

]
. (2.245)
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The solution (2.245) shows that for I < IM (ε∗ < 0), the magnetic field lines are
concentrated near the equator (δΨ < 0 for θ < π/2). In this case, the light surface
is located at finite distance from the light cylinder. It has the form of a cylinder with
the radius

�C = |2ε∗|−1/4 RL, (2.246)

on which the monopole field perturbation can still be considered to be small.
Accordingly, for I > IM (ε∗ > 0), the magnetic field lines turn to the rotation
axis (δΨ > 0 for θ < π/2), and the light surface is reached only at infinity.

Problem 2.28 Find relation (2.246).

The above exact solutions of the pulsar equation lead to the following general
conclusions:

1. The solution to the force-free equation (2.101) can be constructed only within the
light surface |E| = |B|, which, for the zero longitudinal currents, coincides with
the light cylinder � = c/ΩF. Beyond the light surface, the electric field becomes
larger than the magnetic one, which results in violation of the frozen-in condition
E+v×B/c = 0. In the general case, the light surface does not coincide with the
light cylinder but is located at larger distances. As we will see, the presence or
the absence of the light surface is of crucial importance for the discussion of the
particle acceleration problem (within the force-free approximation the particle
Lorentz factor on the light surface, formally, is infinite).

2. In the case of zero longitudinal currents, regardless of the inclination angle χ ,
the magnetic field on the light cylinder must be perpendicular to its surface (Hen-
riksen and Norton, 1975; Beskin et al., 1983). This mathematical result leads to
the most important physical conclusion—the Poynting vector does not have a
normal component here and, hence, the electromagnetic energy flux through the
light cylinder surface is zero. Consequently, in the absence of the longitudinal
currents, the secondary plasma filling the magnetosphere must fully screen the
magnetodipole radiation of the neutron star (Beskin et al., 1983; Mestel et al.,
1999). Therefore, all the energy losses of the rotating neutron star are to be
associated with the ponderomotive action of the surface currents closing the
longitudinal currents flowing in the magnetosphere. Thus, formula (2.178) fully
defines the slowing down of radio pulsars.

3. In the absence of the longitudinal currents, the magnetic field lines are con-
centrated in the vicinity of the equator. Otherwise, the toroidal currents j =
ρGJ Ω × r connected with the corotation of the GJ charge density ρGJ do not
collimate the magnetic field lines but, on the contrary, make them diverge and
concentrate near the equator. As a result, the magnetic field along the rotation
axis decreases exponentially fast rather than by the power law.
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2.6.2 Magnetosphere Structure with Longitudinal Currents

We proceed to the key part of this chapter, viz., to the discussion of the magneto-
sphere structure in the presence of the longitudinal current I and the accelerating
potential ψ . The importance of this problem is obvious—as was shown above, the
energy losses of radio pulsars are fully specified by the longitudinal electric currents
circulating in the magnetosphere. Therefore, the question of the value of the longi-
tudinal currents (and, hence, the presence or the absence of the light surface) is the
key one the neutron star magnetosphere theory is to answer.

At the same time, there are two important circumstances. First, as was already
noted, within the force-free approximation, the longitudinal current is a free param-
eter. Second, and it was also mentioned, the particle acceleration problem cannot
be solved within this approximation. Therefore, we can analyze a limited set of
problems only. A more comprehensive analysis is made in Chap. 5 on the basis of
the full magnetohydrodynamic version of the GS equation.

On the other hand, in the presence of the longitudinal current even in the force-
free approximation, Eq. (2.129) becomes essentially nonlinear. It is not surprising,
therefore, that in most papers the analysis of only the axisymmetric magnetosphere
was made. Indeed, since the total current within the polar cap is to be zero, expres-
sion I dI/dΨ cannot be a linear function Ψ on all open field lines. Except for the
Michel and Blandford remarkable solutions (Michel, 1973b; Blandford, 1976), only
some analytical solutions were obtained (Beskin et al., 1983; Lyubarskii, 1990;
Sulkanen and Lovelace, 1990; Fendt et al., 1995; Beskin and Malyshkin, 1998).
Therefore, the problem of construction of magnetosphere with nonzero longitudinal
currents is still to be solved. As to the case of an inclined rotator, there are only
preliminary results here (Mestel and Wang, 1982; Bogovalov, 1999, 2001).

Technically, the reason is that Eq. (2.101) contains a critical surface—a light
cylinder, the passage of which requires the expansion of the solution into eigenfunc-
tions that have no singularity on this surface. Exactly this method of solution was
described above when analyzing the magnetosphere with zero longitudinal current.
Therefore, in most cases, the similar problem was solved only analytically, which,
in turn, could be done only for a certain class of functions I (Ψ ), viz., when the
current density is constant in the whole region of open magnetic field lines (i.e.,
when I (Ψ ) = kΨ ), and the current closure occurs along the separatrix dividing the
open and closed field lines. In this statement, Eq. (2.101) appears linear in the region
of not only closed but also open magnetic field lines, and the main problem reduces
to matching the solutions in these two regions. It is in this direction that the main
results of the magnetosphere structure with longitudinal electric field were obtained.

Consider now the analytical method for constructing the solution in more detail,
since it allows us to formulate the main problems that arise when trying to construct
the self-consistent model of the magnetosphere of radio pulsars containing longi-
tudinal currents. Thus, we consider the axisymmetric force-free magnetosphere of
the rotating neutron star. As was already mentioned, with the special choice of the
longitudinal current I and the potential ψ , Eq. (2.101) can be reduced to a linear
one. This is possible if we take the values of ΩF(Ψ ) and I (Ψ ) in the form



2.6 Magnetosphere Structure 163

ΩF(Ψ ) = Ω(1 − β0), (2.247)

I (Ψ ) = Ω

2π
i0Ψ, (2.248)

where i0 and β0 are constant. Recall that their physical meaning is defined by rela-
tions (2.107) and (2.108).

The pulsar equation in the region of open field lines in the dimensionless vari-
ables xr = Ω�/c, z′ = Ωz/c takes the form

− ∇2Ψ
[
1 − x2

r (1 − β0)2
] + 2

xr

∂Ψ

∂xr
− 4i2

0Ψ = 0. (2.249)

In the region of closed field lines, where, as was already noted, the potential ψ = 0
(i.e., β0 = 0), we simply have

− ∇2Ψ
(
1 − x2

r

) + 2

xr

∂Ψ

∂xr
= 0. (2.250)

As a result, all nonlinearity is enclosed in a thin transition layer in the vicinity of the
separatrix, the very position of which must be found from the solution. Note that,
unlike the case of the zero longitudinal current, the zero point of the magnetic field
must not necessarily lie on the light cylinder surface xr = 1.

Problem 2.29 Show that, in this case, the solution to Eq. (2.249) that has no
singularity on the surface xr = (1 − β0)−1 can be constructed in the form of
the series (Beskin et al., 1983)

Rλ(x1) = D(λ)
∞∑

n=0

an(1 − x2
1 )n, (2.251)

where x1 = (1 − β0)xr , α1 = 4i2
0/(1 − β0)2, and the expansion coefficients an

satisfy the recurrent relations

a0 = 1, a1 = −α1

4
, an+1 = 4n2 − α1

4(n + 1)2
an + α1 + λ2

4(n + 1)2
an−1. (2.252)

Here D(λ)−1 = (π/2)(1 − β0)−1 ∑∞
n=0 an .

We now specify the boundary conditions for the system of equations (2.249) and
(2.250). In the region of open field lines, Eq. (2.249), according to (1.64), requires
three boundary conditions. These conditions are, first of all, the values i0 and β0

determined on the star surface. The third boundary condition is not only the value
of the stream function Ψ (R, θ ) on the star surface (2.103) but also the value of the
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function Ψ on the surface of the separatrix z′
∗(xr ) dividing the region of the open

and closed magnetospheres (Okamoto, 1974)

Ψ (1)
∣∣
z′=z′∗(xr ) = Ψ (2)

∣∣
z′=z′∗(xr ) . (2.253)

Finally, the regularity condition (2.211) on the light cylinder xr = xL is written as

2

xr

∂Ψ

∂xr

∣∣∣∣
xr =(1−β0)−1

− 4i2
0Ψ

∣∣
xr =(1−β0)−1 = 0. (2.254)

Clearly, in the presence of the longitudinal current (i.e., for Bϕ 
= 0), the light
surface no longer coincides with the light cylinder. Relation (2.254) also shows that
in the studied statement of the problem, the magnetic field lines on the light cylinder
must be directed from the equator (Bz > 0 for Ω · m > 0).

As to the region of closed field lines, which, in the general case, does not reach
the light cylinder, exactly the conditions of matching the regions of closed and open
field lines must act as additional boundary conditions for it. These conditions should
be, first of all, the coincidence of the location of the separatrix field line z′ = z′

∗(xr )
for both the regions (2.253) and, besides, the continuity of the value B2 − E2:

{B2 − E2} = 0. (2.255)

The latter condition is easy to deduce by integrating the force-free equation written
as (∇·E)E+[∇×B]×B = 0 over a thin transition layer (Okamoto, 1974; Lyubarskii,
1990). It is important that the condition (2.255) is obtained if the curvature of the
magnetic field lines is disregarded and, therefore, cannot be used in the vicinity of
singular points.

Problem 2.30 Find the condition (2.255) for the Cartesian coordinate system
in which the transition layer coincides with the xy-plane (Lyubarskii, 1990).

We can now mention the main papers concerned with the force-free magneto-
sphere of radio pulsars (in which, in particular, the system of equations (2.249) and
(2.250) was analyzed) for the real dipole field of the neutron star.

1. In Beskin et al. (1983), the case i0 
= 0, β0 
= 0 was studied. Only relation
(2.253) was used; the equilibrium condition (2.255) was not taken into account.
Besides, the region of closed field lines was supposed to remain the same as in
the absence of the longitudinal current.

2. In Lyubarskii (1990), for β0 = 0, both the equilibrium conditions (2.253) and
(2.255) were taken into account. Incidentally, the additional assumption was that
the last open field line, as in the Michel monopole solution, coincides with the
equator beyond the light cylinder. Finally, in the paper, the absence of an inverse
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current along the separatrix was implicitly assumed, which substantially changed
the magnetic field structure in the vicinity of the zero point.

3. In Sulkanen and Lovelace (1990), for β0 = 0, the case of the strong longitudinal
current i0 > 1 was studied. As was expected, with these longitudinal currents, the
magnetic surface collimates to the rotation axis. The equilibrium conditions with
the region of closed field lines were not used at all. As a result, there occurred
a region, in which the poloidal magnetic field is absent, between the regions of
open and closed field lines.

4. In Beskin and Malyshkin (1998), both the two equilibrium conditions and the
perturbation of the region of closed field lines were taken into account. It was
also shown that the zero point can be located inside the light cylinder: x (∗)

r < 1.
However, the magnetic field structure in the equatorial region beyond the zero
point was not discussed in the paper.

Figure 2.20 shows, as an example, the structure of the magnetic surfaces for the
nonzero longitudinal current i0 and the accelerating potential β0 obtained numer-
ically by solving Eqs. (2.249) and (2.250) (Beskin and Malyshkin, 1998). It was
shown that the solution of the problem cannot be constructed for any values of i0

and β0. The point is that, for certain parameters i0, β0, the solution to Eq. (2.249)
in the region of open field lines shows that the zero line of the magnetic field is
located beyond the light cylinder xL = 1. Clearly, in this case, the solution cannot
be matched to the closed magnetosphere region because the solution with i0 = 0
cannot be extended to the region xr > 1. As shown in Fig. 2.21, on the plane of the
parameters i0 − β0, the forbidden region corresponds to rather small values of i0.

Fig. 2.20 The magnetosphere structure of the axisymmetric rotator for i0 = 0.39 and β0 = 0.05.
The values of i0 and β0 do not correspond to “Ohm’s law” (2.256) and, therefore, the zero point
is within the “light cylinder” xr = 1. The real light cylinder (dashed line) is at a distance of
xr = 1/(1 − β0) from the rotation axis. The dotted line indicates the light surface (in this paper, its
location was not established) (Beskin and Malyshkin, 1998)
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Fig. 2.21 The range of
parameters i0–β0, for which
the construction of the
solution is possible. The
dotted line indicates “Ohm’s
law” (2.256) (Beskin and
Malyshkin, 1998)

Thus, the important conclusion is that the existence in the neutron star mag-
netosphere of the closed magnetic field lines that do not intersect the light cylin-
der can impose a certain constraint on the longitudinal currents circulating in
the magnetosphere. The thorough computations show that the total energy of the
electromagnetic field proves minimal exactly in the vicinity of the boundary line
β0 = β0(i0), when, by the way, the zero point of the magnetic field lies in the
vicinity of the light cylinder (Beskin and Malyshkin, 1998). Consequently, we can
suppose that the equilibrium of the radio pulsar magnetosphere is realized only for a
certain connection between the accelerating potential ψ(P, B0) and the longitudinal
current I .

The existence of this “Ohm’s law” (Beskin et al., 1983) is certainly a very impor-
tant conclusion. Indeed, as was shown, it is the longitudinal currents that specify
the energy losses of a rotating neutron star. Consequently, if there is a connec-
tion between the longitudinal current and the accelerating potential, the energy
losses of the neutron star are fully determined by the concrete particle generation
mechanism near the pulsar surface. Note that the compatibility relation prescribing
nonlinear “Ohm’s law” can be derived directly from the pulsar equation. Indeed,
supposing that the field line Ψ = Ψ∗ corresponding to the solution of Eq. (2.249)
in the open magnetosphere region passes in the vicinity of the zero point (where
Bz ∝ (∂Ψ/∂xr ) = 0) located on the light cylinder (where xr = 1), we have directly
from (2.249)

β0(i0) = 1 −
(

1 − i2
0

i2
max

)1/2

, (2.256)
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where imax =
√

(∇2Ψ )∗/4Ψ∗ ≈ 0.79. As seen from Fig. 2.21, the analytical estimate
(2.256) is in good agreement with the numerical computations. Relation (2.256), in
the large, remains valid for the inclined rotator (Beskin et al., 1993).

On the other hand, as shown in Fig. 2.21, relation (2.256) actually yields only the
lower bound for the longitudinal current. Accordingly, the conclusion of the small
value of the longitudinal current was not confirmed independently in other papers.
Therefore, the question of the value of the longitudinal current remains open. What
can be stated with assurance is that the longitudinal current circulating in the radio
pulsar magnetosphere does not, evidently, exceed the GJ current. Thus, the problem
of the exact value of the energy losses Wtot and the existence of the light surface,
on which, as we will see, the extra acceleration of particles is possible, remains
unsolved. However, for most applications, the estimate I ≈ IGJ appears adequate,
so that relation (2.5) is a good approximation to Wtot. In any event, the problem
of the value of the longitudinal current cannot be fully solved by the force-free
approximation.

As was already noted, the analytical approach is restricted by the choice of the
homogeneous longitudinal current density (I (Ψ ) = kΨ ). Only a quarter of a cen-
tury later, after the pulsar equation was formulated, Contopoulos et al. (1999) first
studied the system of equations (2.249) and (2.250) numerically. In particular, they
succeeded in (by an iterative procedure) passing the singularity on the light cylin-
der for the arbitrary current I (Ψ ). For the case β0 = 0, the additional assumption
that the last open field line coincides with the equator was also made there (see
Fig. 2.22). It is not surprising, therefore, that the longitudinal current (which in the
presence of the additional condition is no longer a free parameter) appeared close to

Fig. 2.22 The magnetosphere
structure in the
model (Contopoulos et al.,
1999). The additional
assumption that the last open
field line coincides with the
equator was made
(Reproduced by permission
of the AAS, Fig. 3 from
Contopoulos, I., Kazanas, D.,
Fendt, C.: The axisymmetric
pulsar magnetosphere. ApJ
511, 351–558 (1999))
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the current IM (2.225) for the Michel monopole solution which does not correspond
to the GJ current density jGJ = ρGJc ≈ const. At the same time, the equilibrium
condition (2.255) was not taken into account in the paper. This statement of the
problem was later discussed in Ogura and Kojima (2003), Goodwin et al. (2004),
Gruzinov (2005), Contopoulos (2005), Komissarov (2006), McKinney (2006a), and
Timokhin (2006), and, in a number of papers, the case, in which the zero point of
the magnetic field can be located within the light cylinder, was also analyzed.

Let us briefly enumerate the main difficulties the force-free magnetosphere the-
ory encounters. First of all, it turned out that the analytical solution method dis-
cussed above does not, actually, allow us to uniquely specify the magnetic field
structure. The point is that the dipole magnetic field in the vicinity of the neutron
star corresponds to the high harmonics λ in expansion (2.184), whereas the visible
magnetic field structure on scales comparable with those of the light cylinder is
specified by the small values of λ. As a result, the solution

Ψ (�, z) = |m|
RL

∫ ∞

0
Q(λ)Rλ(� ) cos λzdλ, (2.257)

where Q(λ) → 1 for λ → ∞, still corresponds to the dipole magnetic field for
r → 0. This is because on the background of the large dipole magnetic field near
the neutron star surface, one fails to control the harmonics with the small value of
λ, which is crucial at large distances from the star.

The problem of the magnetic field structure in the equatorial region beyond the
zero point is not solved either. As was mentioned, in most papers it was supposed
in the example of the solar wind that a current sheet is to develop here, which sepa-
rates the oppositely directed flows of the magnetic field (see Fig. 2.22) (Lyubarskii,
1990; Contopoulos et al., 1999; Uzdensky, 2003; Goodwin et al., 2004). It was,
generally, believed that the inverse current is enclosed in an infinitely thin sheet
and, therefore, the toroidal magnetic field Bϕ does not disappear up to the sepa-
ratrix surface. However, as was shown (Beskin and Malyshkin, 1998; Uzdensky,
2003), allowance for the width finiteness of the sheet with the inverse current (i.e.,
allowance for the continuity of Bϕ) can appreciably change the main conclusions
of the magnetic field structure in the vicinity of the separatrix. In particular, it is
obvious that if the toroidal magnetic field Bϕ is zero in the equatorial plane, the
light surface |E| = |B| must pass through the point � = c/Ω , z = 0 on the light
cylinder surface (see Uzdensky (2003) for details). This problem does not arise for
the solar wind since the Earth is within the light cylinder.

On the other hand, one should note that this topology is not the only possibility.
Indeed, as is seen from the form of Eq. (2.250), at the zero point (i.e., at the point
at which ∂Ψ/∂xr = 0), either the condition (∇2Ψ )∗ = 0 or the condition x2

r = 1 is
to be satisfied. Therefore, for rather large longitudinal currents when the zero point
is located within the light cylinder, the condition (∇2Ψ )∗ = 0 is to be satisfied. This
implies that the angle between the separatrices is 90◦. There is the same angle for
the vacuum case. Therefore, this zero point can be matched to the outer region that is
not connected by the magnetic field lines with the neutron star surface, for example,
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with the chain of magnetic islands located in the equatorial plane (see Fig. 3.12b).
Only in the limiting case, in which the zero point lies on the light cylinder xr = 1
(as, for example, is the case for the solution with the zero longitudinal current), the
value (∇2Ψ )∗ remains finite at the zero point (the angle between the separatrices, as
shown in Fig. 2.14, is 70◦).

Finally, one should remember that most of the solutions, which influence our
viewpoint on the radio pulsar magnetosphere structure, referred to the axisymmet-
ric case. For the inclined rotator, quite new effects can occur, which completely
change the entire pattern involved. Unfortunately, in this region (except for the
case of the above zero longitudinal current) no reliable results that would allow
us to confidently judge the magnetosphere properties of the inclined rotator were
obtained (Mestel and Wang 1982; Bogovalov 1999, 2001; Spitkovsky, 2006).

Nevertheless, let us try to point out the general properties following from the
analysis of Eq. (2.101) describing the force-free neutron star magnetosphere.
1. In the case of zero longitudinal currents independent of the inclination angle χ ,

the secondary plasma filling the magnetosphere fully screens the magnetodipole
radiation (Beskin et al., 1983; Mestel et al., 1999). Therefore, the energy losses
of the rotating radio pulsar can be caused only by the ponderomotive action of the
surface currents closing the longitudinal currents flowing in the pulsar magneto-
sphere. Consequently, formula (2.178) fully defines the slowing down of radio
pulsars.

2. When the longitudinal current coincides with the Michel current IM, the full
compensation of two opposite processes occurs, viz., the decollimation con-
nected with the toroidal current and the collimation due to the longitudinal cur-
rents. As a result, the monopole magnetic field, which is an exact vacuum solu-
tion, turns out to be an exact solution to Eq. (2.101) in the presence of plasma.
Certainly, the exact value of the critical current depends on the concrete geometry
of the poloidal magnetic field. However, we can confidently state that jcr ≈ ρGJc.

3. For j‖ > jcr, the light surface (which, in the general case, does not coincide
with the light cylinder) extends to infinity. This implies that for sufficiently large
longitudinal currents the solution can be really extended to infinity. The magnetic
surfaces are collimated to the rotation axis (Sulkanen and Lovelace, 1990).

4. If there are any physical constraints from above on the value of the longitudinal
current so that j‖ < jcr, the magnetosphere has a “natural boundary”—the light
surface. In this case, the complete problem comprising the outer regions can-
not be solved within one-fluid magnetic hydrodynamics because, in this case,
multiple flow regions occur.

2.6.3 Magnetosphere Models

As was mentioned, the pulsar wind problem is impossible to solve by the force-free
approximation. Therefore, we briefly discuss here only the common features of the
most developed models of the radio pulsar magnetosphere. The particle acceleration
problems are discussed in Chap. 5.
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Recall first that the existence of the light surface depends on the value of the
longitudinal current. The point is that, as was noted, the presence of light surface at a
finite distance from the neutron star must result in the efficient particle acceleration
in the pulsar wind. In particular, in the nonfree particle escape models (in which
the electric current in the plasma generation region can be arbitrary), the longitu-
dinal current i0 is to be determined from relation (2.256). For sufficiently small
values of the potential drop β0 < 1, the longitudinal current should also be small.
This implies that the light surface, on which the additional particle acceleration,
inevitably, occurs, should be at a finite distance from the neutron star. Certainly, the
existence of the light surface leads to the substantial complication of the theory—in
fact, not a single, at least, somewhat reliable result of the plasma behavior beyond
the light surface has been obtained yet.

Besides, one should not think that the existence of the light surface can be real-
ized only within the model of the nonfree particle escape from the neutron star
surface. Indeed, as is evident from the example of the force-free approximation,
the light surface extends to infinity only for rather large values of the longitudinal
current. As shown in Chap. 4, this conclusion remains valid for the MHD flows
as well. Therefore, for any additional constraints from above on the value of the
longitudinal electric current, the occurrence of the light surface at a finite distance
from the pulsar can be expected. However, within the particle generation model
with free particle escape from the star surface, the value of the longitudinal electric
current 4π I (Ψ ) = 2ΩFΨ ( j‖ = jGJ) is fixed and, what is especially important,
substantially differs from the Michel current 4π IM = ΩF(2Ψ −Ψ 2/Ψ0). Therefore,
it is not improbable that in the real dipole geometry of the pulsar magnetic field
this current is not strong enough for a continuous (in particular, transonic) plasma
outflow to exist up to large distances as compared to the light cylinder radius. In
any case (and it is very important), in the numerically obtained solutions, the value
of the longitudinal current I (Ψ ) is smaller than that of the limit current IM (2.225)
corresponding to the Michel monopole solution. Therefore, the light surface for
this solution can be at a finite distance from the neutron star (see, e.g., Ogura and
Kojima, 2003). Certainly, the exact proof of this fact invites further investigation.

Indeed, the analysis of the axisymmetric magnetosphere produced up to now did
not clarify this point. As was demonstrated, exact analytical solutions (having the
longitudinal current j‖ ≈ const within open magnetic field lines) contain the light
surface at a finite distance. But their behavior is irrational near the equatorial plane
outside the light cylinder. On the other hand, the numerical calculations postulating
the existence of the current sheet outside the light cylinder demand the presence of
the longitudinal current I ≈ IM, which is inconsistent with any particle generation
mechanism ( j‖ → 0 near the separatrix).

The above arguments for the existence of the light surface were brought forward
for the axisymmetric magnetosphere. It turned out that in the case of the inclined
rotator, the situation is much more obvious. Indeed, for the orthogonal rotator the GJ
charge density in the vicinity of the magnetic pole should be εA = (ΩR/c)1/2 times
less than that in the axisymmetric magnetosphere. Accordingly, one can expect that
the longitudinal current flowing along the open field lines is weaker in the same
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proportions. Then in the vicinity of the light cylinder, the toroidal magnetic field
appears much smaller than the poloidal magnetic field. On the other hand, as we
saw in the example of the Michel solution, for the light surface to extend to infinity,
it is necessary that the toroidal magnetic field on the light cylinder be of the order
of the poloidal field. Therefore, if the longitudinal current j‖, in reality, is not ε−1/2

A
times higher than ρGJ,90c, where ρGJ,90 is the mean charge density on the polar cap
for χ ∼ 90◦ (and for ordinary pulsars this factor is 102), the light surface for the
orthogonal rotator must, inevitably, be in the immediate vicinity of the light cylinder.

Thus, the presence or the absence of the light surface must be the basic element
when constructing the radio pulsar magnetosphere model. Therefore, we will try
to classify the magnetosphere models with this in mind. The first class of mod-
els suggests the presence of the light surface in the vicinity of the light cylinder,
which can be realized for rather weak longitudinal currents flowing in the magneto-
sphere (Beskin et al., 1983; Chiueh et al., 1998). Within this approach, it is supposed
that

• the energy losses of the rotating neutron star are fully defined by the current
losses;

• the small value of the longitudinal current i0 < 1 results in the occurrence of the
light surface;

• in the vicinity of the light surface almost the total electromagnetic flux is trans-
ferred to the particle energy flux;

• accordingly, the full closure of the longitudinal current circulating in the magne-
tosphere really occurs here (see Fig. 2.23).

The problems of the particle acceleration in the vicinity of the light surface are
beyond the scope of our discussion. Therefore, we only point to the main features of
this process. In the simplest cylindrical geometry when solving the two-fluid hydro-
dynamical equations (describing exactly the difference in the electron and positron
motion), it was shown (Beskin et al., 1983) that a considerable part of the energy
carried within the light surface by the electromagnetic field in the thin transition
layer

Δr ∼ λ−1 RL (2.258)

in the vicinity of the light surface is transferred to the particle energy flux (λ ∼ 104

is the multiplicity parameter). Here, as shown in Fig. 2.23, the total closure of the
longitudinal current circulating in the magnetosphere really occurs. As a result, the
high efficiency of the particle acceleration has its logical explanation.

Note, however, that the presence of the light surface leads to a considerable com-
plication of the whole problem of the neutron star magnetosphere structure. In this
case, it is possible to somewhat reliably describe only the interior regions of the
magnetosphere. The problems of the future destiny of the accelerated particles, the
energy transport at large distances, and also the current closure are still to be solved.
As was noted, these problems are beyond the scope of one-fluid hydrodynamics;
evidently, they cannot be solved at all within the analytical approach.
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Fig. 2.23 Magnetosphere structure in the model by Beskin et al. (1993). If there are some physical
constraints on the value of the longitudinal current (contour arrows) so that j‖ < jcr, the mag-
netosphere has a “natural boundary”—the light surface |E| = |B|, where the frozen-in condition
becomes inapplicable. Therefore, electrons and positrons begin to accelerate in different directions
along the electric field and a strong poloidal electric current is generated. As a result, in the thin
layer Δr ≈ RL/λ, the full closure of the electric current really occurs and the particle energy flux
becomes comparable with the total energy flux

The analogous result was later obtained on the basis of the solutions of the two-
fluid hydrodynamical equations for more realistic geometry when the poloidal mag-
netic field is close to the monopole one (Beskin and Rafikov, 2000). It was shown
that all results obtained for the cylindrical case remain valid for the more realistic
two-dimensional geometry. In particular, it was confirmed that the particles can be
accelerated up to energy

εe ∼ eB0 R
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λ

(
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c

)2

∼ 104 MeV
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1012G

)(
P

1s

)−2

, (2.259)

but not more than 106 MeV, when the radiation friction effects become appreciable.
However, as in the one-dimensional case, the problem of constructing the solution
beyond the light surface remains unsolved.

The second class of models also suggests the existence of the “dissipation
domain” in the vicinity of the light cylinder (see Fig. 2.24). However, only the
insignificant energy transfer from the electromagnetic field to particles is postulated
here (Mestel and Shibata, 1994; Mestel, 1999). Otherwise, within this model, it is
assumed that

• the longitudinal current is close to the critical current (i0 ≈ 1);
• in the vicinity of the light surface, only a small amount of the electromagnetic

energy flux is transferred to the particle energy flux;
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Fig. 2.24 The magnetosphere structure in the Mestel model (Mestel and Shibata, 1994). The
existence of the particle acceleration region in the vicinity of the light surface is also supposed.
However, only a small change in the longitudinal current (contour arrows) is assumed, whereas
the potential drop along the magnetic field lines (and, hence, the change in the angular velocity
ΩF) was assumed to be significant but insufficient for the particle energy to change appreciably.
Therefore, at large distances from the neutron star, the main energy flux is still connected with the
Poynting flux

• accordingly, there is only the partial closure of the longitudinal currents circulat-
ing in the magnetosphere;

• at large distances from the neutron star, the main energy flux is still connected
with the Poynting flux.

Note that in this model the properties of the transition layer were only postulated.
In particular, it was assumed that in the transition layer only a small change in
the longitudinal current occurs, whereas the relative change in the electric potential
along the magnetic field lines (and, hence, the change in the angular velocity ΩF)
was assumed to be significant. As a result, the light surface again extended to infin-
ity. Therefore, at large distances from the neutron star, the main energy flux was still
connected with the Poynting flux.

One should stress that the basic property of the transition layer studied—the large
change in the angular velocity ΩF with a relatively small longitudinal current—
is in contradiction with the properties of the acceleration region in the vicinity of
the light surface. As the analysis of the two-fluid MHD equations showed (Beskin
et al., 1983; Beskin and Rafikov, 2000), it is the longitudinal current rather than the
electric potential that should change most rapidly in the direction perpendicular to
the transition layer.

This result can be readily explained. The point is that in the vicinity of the light
surface, as was already mentioned, the particle energy formally tends to infinity.
As a result, the frozen-in equation is violated, which requires transition to the more
exact two-fluid equations. Physically, the result is that electrons and positrons begin
to accelerate in different directions along the electric field. Consequently, a strong
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poloidal electric current occurs, which is generated by the entire electron–positron
density λ|ρGJ|/|e|. This poloidal current results in an abrupt decrease in the toroidal
magnetic field, i.e., in a decrease in the Poynting flux. As to the electric potential,
its change in the layer is specified by the electric charge density proportional to
the difference in the electron and positron densities only. Since in the radio pulsar
magnetosphere the particle density is many orders of magnitude higher than the GJ
density nGJ = |ρGJ|/|e|, the relative change in the layer current must considerably
exceed the change in the electric potential. Actually, the availability of the factor
1/λ in expression (2.258) is exactly associated with this event.

Finally, the third class includes models in which the light surface is absent
(Lyubarskii, 1990; Bogovalov, 1997b; Contopoulos et al., 1999). Otherwise, it is
assumed here that

• the longitudinal current is larger than the critical current (i0 > 1);
• the light surface extends to infinity;
• the longitudinal current is closed at large distances from the light cylinder;
• at large distances from the neutron star the main energy flux is still connected

with the Poynting flux.

This class of models has presently been studied quite thoroughly, though mainly for
the axisymmetric case only (Goodwin et al., 2004; Gruzinov, 2005; Contopoulos,
2005; Komissarov, 2006; McKinney, 2006a; Timokhin, 2006). Only a few years
ago, the new and rather fruitful efforts have been made in constructing the force-
free model of the inclined rotator (Spitkovsky and Arons, 2003; Spitkovsky, 2006)
(see Fig. 2.25). In particular, the existence of the surface currents flowing along the
separatrix in the direction opposite to the bulk current in the region of open field
lines was confirmed. It was also confirmed that for the existence of the outflowing

Fig. 2.25 The magnetosphere
structure of the orthogonal
rotator in which the light
surface is absent (Spitkovsky,
2006). At large distances
from the neutron star, the
main energy flux is connected
with the Poynting flux.
Rotation axis is perpendicular
to the figure plane
[Reproduced by permission
of the AAS, Fig. 2a from
Spitkovsky, A.:
Time-dependent force-free
pulsar magnetospheres:
axisymmetric and oblique
rotators. ApJ 648, L51–L54
(2006)]



2.7 Conclusion 175

wind, the longitudinal current density for the inclined rotator must be much larger
than the local GJ one (iA � 1). For this reason, it is not surprising that the energy
losses even increase with the inclination angle χ

Wtot = 1

4

B2
0Ω

4 R6

c3

(
1 + sin2 χ

)
. (2.260)

On the other hand, since there is no restriction to the value of the longitudinal
current, one fails to confirm or refute the hypothesis for the existence of the light
surface in the vicinity of the light cylinder, where the efficient acceleration of par-
ticles is possible. Moreover, within this approach, it was impossible to effectively
transfer the electromagnetic energy to the particle energy flux. This problem will be
studied in more detail in Chap. 5.

2.7 Conclusion

As we see, the consistent theory of the radio pulsar magnetosphere is now still far
from completion. One of the main problems is the insufficient potentialities of the
analytical methods that fail, in the general case, to construct the solution even in
the rather simple force-free approximation. Evidently, only a dozen papers dealing
with this set of problems appeared in the 1990s. Attempts to formulate, in general
form, the problem of the magnetosphere structure due to the particle motion in the
self-consistent electromagnetic field were long beyond the available computating
resources (Krause-Polstorff and Michel, 1984, 1985; Petri et al., 2002; Smith et al.,
2001).

To sum up, the situation with the existence of the light surface in the pulsar
magnetosphere remains unclear. The behavior of the exact analytical solutions cor-
responding to reasonable longitudinal currents j‖ ≈ const within the open magnetic
field lines is irrational in the equatorial region outside the light cylinder. On the
other hand, the numerical solutions postulating the reasonable quasispherical out-
flow at large distances are in disagreement with the longitudinal current that can be
generated in the polar regions of the neutron star.

Thus, within the force-free approximation, it is impossible to determine the lon-
gitudinal current flowing in the magnetosphere and, hence, find the energy losses.
Therefore, the force-free statement of the problem, inevitably, calls for the con-
cretization of the medium properties on the boundary of the force-free region, be it
infinity or the current sheet, which is to be included in the equatorial region in most
models. As we will see, this flaw will be naturally eliminated in the full GS equation
version, which takes into account that the particle mass is finite.



Chapter 3
Force-Free Approximation—The Black Hole
Magnetosphere

Abstract This chapter mainly deals with the magnetosphere structure of supermas-
sive black holes for which the magnetic fields are of greater importance than for
galactic solar mass black holes. Therefore, it is advisable to discuss the problems
of the magnetic field generation in accretion disks in this chapter. We also briefly
discuss the effect of the magnetic field on the disk accretion and matter outflow
processes. Since the black hole itself cannot have a self-magnetic field (so-called
“no hair” theorem), the large-scale magnetic field in the vicinity of the black hole
can be generated only in the accretion disk. The missing link that helps one under-
stand the energy release mechanism, which effectively transfers the energy from
the rotating black hole and/or the inner parts of the disk to the active regions, is, in
most cases, exactly associated with this regular magnetic field and the collimation
mechanism responsible for the jet formation. In other words, to explain the galactic
nuclei activity we use the pulsar idea of a unipolar inductor, the work of which is just
provided by the regular poloidal magnetic field, the central object rotation (giving
rise to the induction electric field E), and the longitudinal electric current (giving
rise to the toroidal magnetic field Bϕ). Within this model, the energy flux, as in the
case of the radio pulsar magnetosphere, is fully connected with the electromagnetic
energy flux, and the jet formation is, ultimately, due to the known property of the
parallel current attraction. Thus, the main constituent elements of the central engine
are a supermassive black hole, the accretion disk, and the regular magnetic field. On
the basis of this model, the physical nature of the Blandford–Znajek mechanism is
discussed in detail. Finally, the exact analytical solutions obtained by the force-free
approximation are discussed.

3.1 Astrophysical Introduction—The Central Engine in Active
Galactic Nuclei

3.1.1 Possible Mechanisms of Black Hole Formation

There is little doubt about the existence of black holes now. Several dozens of space
sources, in which these unusual objects predicted by General Relativity are sup-
posed to exist, have so far been discovered (Camenzind, 2007). Black holes can be
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generated at the final stage of the evolution of massive stars, for example, due to the
supernova explosion or in close binary systems in which, because of the accretion
onto the neutron star, its mass becomes larger than the stability limit ∼3 M�. It is
clear that the characteristic masses of these black holes cannot be larger than the
values of 3–30 M�. It is these masses that are observed in the galactic candidates
for black holes.

If we try to point to the main features of the central engine in the active galactic
nuclei (AGN), we can say that most of the astrophysicists now believe that in the
center of a host galaxy there is a supermassive black hole (its mass is 106–109 M�)
and the surrounding matter accretes onto it (Rees, 1984). It is now the only way
to explain both the extremely high efficiency of the energy release and the central
engine compactness. The energy source of the galactic nuclei activity can be both
the black hole rotation energy

Etot = IrΩ
2

2
∼ 1063 erg

(
M

109 M�

) ( a

M

)2
(3.1)

and the accreting matter energy. In both cases, it is possible to assure the extremely
high efficiency of the accreting matter reprocessing in the radiation observed.
Besides, the indirect evidence for the black hole existence is that the Eddington
luminosity

LEdd ≈ 1047 erg/s

(
M

109 M�

)
(3.2)

is close to the AGN luminosity (Zel’dovich and Novikov, 1971).
Further, it is generally (but not by everybody) believed that the matter accretion

is of a disk type (Lynden-Bell, 1969). Thus, the preferential direction is naturally
in the space, viz., it is the rotation axis along which jets are generated. Generally
speaking, it is not improbable that this outflow can be produced in the absence of
the regular magnetic field, for example, by the corona heating (Galeev et al., 1979)
or the intrinsic energy excess in the accreting matter (Blandford and Begelman,
1999). However, most preferable is a model in which the regular poloidal magnetic
field acts as a belt drive between the central engine and the jets (Blandford, 1976;
Lovelace, 1976). Indeed, both the acceleration of particles and their efficient emis-
sion, for example, due to the synchrotron mechanism can now be most naturally
explained by exactly the electrodynamical processes.

A lot of observational data really point to the presence of a supermassive compact
object in the galactic nuclei centers (in both active and “quiet” galaxies) (Begelman
et al., 1984; Krolik, 1999a). At present, there are several views of the problem of
the formation of supermassive black holes, viz., whether they appeared already after
the formation of galaxies, in the very process of their formation, or they existed
long before the formation of galaxies and thus contributed to their generation (Rees,
1984; Dokuchaev, 1991b).
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The massive black holes in the pregalactic era could have been produced by
the gravitational instability of the primordial density fluctuations resulting in the
collapse of the most developed (and, hence, most dense) regions of dark mat-
ter (Zel’dovich and Novikov, 1967a,b; Hawking, 1971; Polnarev and Khlopov,
1985; Gurevich and Zybin, 1995; Gurevich et al., 1997; Niemeyer and Jedamzik,
1999). The formation of black holes can be induced by the phase transitions asso-
ciated with the diverse topological defects—for example, domain walls (Hawking
et al., 1982; Moss, 1994; Khlopov et al., 2000) or cosmological strings (Hawking,
1989; Polnarev and Zembowicz, 1991). One should stress here that only small-mass
black holes can be generated in this way. The supermassive black holes can be
generated only if the spectrum of initial fluctuations is a nonstandard one, which
has a rather extended plateau. Besides, all these mechanisms are, to a large extent,
controversial, and it is too early to speak about them in the context of the black hole
formation in the galactic nuclei.

Further, the favorable conditions for the formation of a central massive object
can be achieved at the earlier stages of the galaxies formation (Rees, 1997) when
a young galaxy has a lot of gas that is not condensed yet to form stars. The gas
accreting onto the galactic center first generates the spherical component of a stellar
population. However, part of the gas cannot participate in the star formation process;
moreover, the massive first-generation stars quickly lose part of their mass in the
evolution process. Therefore, at a certain stage of the stellar component formation,
the free gas can no longer take part in the star formation—the radiation pressure,
in particular, hinders the gas condensation (Rees, 1993; Haehnelt and Rees, 1993).
Then, when the gas loses a greater part of its angular momentum and kinetic energy
due to the heat dissipation, it inevitably condenses to form a black hole as the gas
disk is dynamically unstable. By then the first-generation gas of the evolved stars
could have taken part in the black hole formation. The black hole is either directly
generated from the gas as a whole, while part of the gas already passed through one
cycle, or its formation passes through the intermediate stage of a supermassive star
M ∼ 103–106 M� (Rees, 1997) with its relatively short age of ∼107 years and this
star inevitably collapses to become a black hole. In the following the black hole
mass can increase due to the accretion and the coalescence of black holes at the
collision of galaxies (Haehnelt and Kauffmann, 2000).

As an argument for this scenario of the black hole formation, one should often
consider the fact that there is a strong correlation between the black hole mass and
the mass of the bulge (the old spherical component of the stellar population—
a massive one in elliptic galaxies and a low-mass one in spiral galaxies), viz.,
Mc � 0.1% Mbuldge (Kormendy and Richstone, 1995; Faber et al., 1997). In the gen-
eral case, the mass resulting from the above black hole formation process depends
not only on the spherical stellar component mass but also, for example, on the
angular momentum of the galaxy. Indeed, in the absence of the efficient withdrawal
mechanism of the angular momentum excess the black hole formation process is
suppressed. Therefore, the brightest quasars are observed exactly in the elliptic
galaxies in which the specific angular momentum is much less than that of the spiral
ones.
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Finally, the black holes can be generated already after the galaxy formation due
to the dynamic evolution of their central parts. The gravitational collapse passes
through the evolutionary compression of the central star cluster (Begelman and
Rees, 1978; Rees, 1984; Quinlan and Shapiro, 1990; Berezinsky and Dokuchaev,
2001). When in the dynamic evolution process of the central cluster the velocity dis-
persion of the stars reaches the critical value ∼ 620 km/s (M∗/M�)1/2(R∗/R�)−1/2,
the mean kinetic energy of the stars is compared with their gravitational binding
energy. If two ordinary stars collide or move at a close distance from each other
with this kinetic energy, they would inevitably be disrupted by the tidal inter-
action (Spitzer and Saslaw, 1966; Colgate, 1967; Sanders, 1970; Spitzer, 1971;
Dokuchaev, 1991a). Only compact objects such as neutron stars or black holes of
small (stellar) mass can survive. At this stage, the central galaxy region is a cluster
of compact stars, which is submerged in the gas resulting from the star disruption at
the previous evolution stage. In the following, in the dynamic process of the cluster
evolution the velocity dispersion of compact stars becomes larger and when it is
of the order of the light velocity, the cluster is sure to collapse to form a black
hole (Bisnovatyi-Kogan, 1978; Rees, 1984; Berezinsky and Dokuchaev, 2001).
What process—the gas condensation or the compact star coalescence—proves more
efficient depends on the concrete parameters of the initial stellar cluster.

3.1.2 Nature of Activity and Variability

According to the present-day notions, the massive central objects are present in most
galaxies and become active when a sufficient amount of matter (“fuel”) falls onto
them. Regardless of the interstellar gas composition in the vicinity of the central
object, there is always a process that supplies its neighborhood with matter—it is
the tidal disruption of the stars moving in the vicinity of the black hole (Lacy et al.,
1982; Rees, 1988; Evans and Kochanek, 1989; Khokhlov et al., 1993; Frolov et al.,
1994). The estimates show that, for example, in galaxy M31 this event occurs every
104 years. Apart from the fact that this process enriches the accretion disk around the
central object, an individual event (lasting about several months) can be detected,
and the observations could be used to study the nearest neighborhood of the central
object. At present, a search for these events continues (Renzini et al., 1995), but
the potentialities of this method are limited because of the difficulties associated
with gas-dynamic computations. Therefore, it is hardly possible to calculate the
parameters of the central object (angular velocity of the black hole, its inclination
angle, disk mass, etc.) even if the corresponding observations are available.

In several active galaxies, short events lasting from a few minutes to a day
were observed (Papadakis and Lawrence, 1993, 1995; Halpern and Marshall, 1996;
Tagliaferri et al., 1996). This “intraday” variability is, possibly, associated with the
accretion disk instabilities, for example, the occurrence of a hot spot in the disk
(Iwasawa et al., 1998). The mechanism of these flares has not been adequately stud-
ied yet. However, in this case, we cannot determine the characteristics of the central
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object by the observed variability, because the flare is not directly connected with
the orbital motion around the black hole but is rather a manifestation of some local
instability. This variability also naturally occurs in the same model of the accretion
disk, where the iron line is emitted by cold (106 K) gas clouds. Indeed, if this cloud
in its motion accidentally turns out to be between the observer and the central object,
the X-ray flux must change considerably (Abrassart and Czerny, 2000).

Another type of variability is the so-called quasiperiodic oscillations (QPO).
Here the characteristic time of the process is from a day for Seyfert galaxies to a
month for the most active quasars; therefore, the data collection process becomes
more difficult. But, at least, one QPO example has already been found, viz., Seyfert
galaxy IRAS 18325-5926 with the variability period of about 16 hours (Iwasawa
et al., 1998). This time just coincides with the orbital period around the black hole
with mass M ∼ 107–108 M� at a distance of 10–20 rg. Possibly, in this case,
we directly observe the eigenmodes of accretion disk oscillations—diskoseismic
modes which were first used to describe the accreting sources in the interior of our
Galaxy (Kato and Fukui, 1980; Nowak and Wagoner, 1992, 1993; Nowak et al.,
1997). It is also possible that QPOs result from the geometric effect, viz., if the
disk axis does not coincide with the rotation axis of the black hole, due to the GR
effects at distances less than 10 rg there occurs a force that tends to change the
disk orientation (Bardeen and Petterson, 1975; Rees, 1984). Thus, instabilities and
oscillations occur and, as a consequence, radiation variability. All these processes
take place in the strong gravitational field of the central black hole and, therefore,
are of great interest for the study of its nearest neighborhood. Finally, the disks,
in which there are regions of oppositely directed rotational velocities, have been
studied lately (Kuznetsov et al., 1999). This can be the case if the accretion disk is
fed from the tidal collapse of stars that can have an arbitrary angular momentum.

3.1.3 Magnetized Accretion Disk

When studying accretion disks in the vicinity of supermassive black holes, besides
the purely hydrodynamical models discussed in Chap. 1, much attention was given
to the study of magnetized flows when there is a rather strong regular poloidal mag-
netic field in the disk (Bisnovatyi-Kogan and Ruzmaikin, 1973; Campbell et al.,
1998; Stone and Pringle, 2001; Krolik, 1999a). We separately discuss below both
the nature of occurrence of this field and its role in the jet formation. Here we discuss
the role of the regular magnetic field in the matter accretion onto the central black
hole and the magnetic field effect on the process of the plasma outflow from the
accretion disk surface.

Let us first discuss the main effects for which the regular magnetic field is respon-
sible. First of all, as we will see, the open field lines are very good conductors along
which not only the energy but also, what is not less important, the angular momen-
tum can be removed. Therefore, even if the energy density of the magnetic field in
the disk is much lower than the plasma energy density, the role of the magnetic field
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can be significant. In particular, the accretion (i.e., the occurrence of the nonzero
radial velocity vr ) is possible even in the absence of viscosity. Besides, the occur-
rence of Ampére’s additional forces connected with the strong regular magnetic field
in the disk can change the regular rotational plasma velocity. Note that the magnetic
field can be substantial in slightly ionized disks (for example, in their outer and,
hence, slightly heated regions), because the ambipolar diffusion effects are able to
effectively connect neutrals with the ionized component (Königl, 1989).

There are different versions of magnetized flows from slightly ionized disks, in
which the violation of the frozen-in condition is associated with the ambipolar dif-
fusion of charged particles (Wardle and Königl, 1993; Königl, 1989; Li, 1996), to
systems, where Ohm’s diffusion is of major importance (Li, 1995; Ferreira and Pel-
letier, 1993a,b, 1995; Ogilvie, 1997; Ogilvie and Livio, 1998; Kaburaki, 2000). In
the large, the computations showed that the magnetic field weakly affects the angular
gas velocity (this would be possible only if the energy density of the magnetic field
εem were higher than the plasma energy density εpart). A more significant effect is a
considerable increase in the radial velocity due to which the accretion can become
supersonic already at large distances from the black hole (Li, 1995; Shalybkov and
Rüdiger, 2000). Finally, the existence of the strong electric currents in the accretion
disk is capable of distorting the magnetic field lines of the poloidal magnetic field
already on the scale of the disk itself (Ogilvie, 1997; Ogilvie and Livio, 1998). This,
in turn, must result in a substantial increase in the plasma outflow velocity.

The point is that, as (Blandford and Payne, 1982) first showed, the magnetic field
can act as a sling for the particle ejection from the accretion disk surface. Indeed, let
us consider the motion of a particle rotating along the Keplerian orbit in the presence
of the regular poloidal magnetic field inclined to the vertical axis at an angle of αm.
For a rather strong magnetic field, a charged particle, as a “bead on a wire,” can
move only along the magnetic field lines and, therefore, has to preserve its initial
angular velocity. It is easy to verify that for αm > 30◦, the effective potential
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which is connected with both the gravitational force of the central body and the
centrifugal force, yields the acceleration of particles from the rotation axis. As a
result, the outflow from the disk surface is possible even for the cold plasma.

Problem 3.1 Show that a particle moving in the effective potential (3.3) really
begins to accelerate from the rotation axis for αm > 30◦.

Certainly, the studied process is not universal, because, otherwise, the disk could
not exist at all (Ogilvie and Livio, 1998). The outflow is possible only in the corona,
where the energy density of the magnetic field exceeds the plasma energy density.
In this case, the (poloidal) motion of particles must, as a whole, occur along the
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magnetic field lines. Besides, in R. Blandford and D. Payne’s paper, the effects of
the finite disk thickness, in which, in particular, the inclination of the magnetic field
lines must change, were not taken into account. Nevertheless, the paper outlined the
direction of investigation. Later, attempts were made to construct a unified model
describing both the accretion disk, where the magnetic field weakly affects the mat-
ter motion, and the corona, in which the outflow along the magnetic field lines is
possible (see, e.g., Ferreira and Pelletier, 1995).

Finally, the plasma outflow becomes even more intensive if the particle ejection is
accompanied by the generation of a strong longitudinal electric current and, hence,
by the occurrence of a toroidal magnetic field (in the previous example, the outflow
was for Bϕ = 0). As we see, exactly this model proves most advantageous for
interpreting the intensive matter outflow from the accretion disk surface.

In conclusion, note that even if the electrodynamic processes play the main role
in the work of the central engine, the significance of the accretion disk should not
be underrated. First of all, as is discussed in detail in the following section, it is in
the accretion disk that the regular magnetic field, in which the black hole turns out
to be submerged, is to be generated. Further, it is possible that the electron–positron
plasma generation needed for the work of the central engine is connected with hard
γ -quanta emitted from the inner (and, therefore, hottest) regions of the accretion
disk. Finally, it is not improbable that the fast-rotating inner parts of the accretion
disk are the central engine rather than the black hole (Livio et al., 1999). On the
other hand, it is the properties of the accretion disk that are responsible for the
high-energy radiation detected in the central source region.

3.1.4 Regular Magnetic Field Generation

As was mentioned, the external magnetic field can not only greatly change the accre-
tion regime (and thus affect the rate of the energy release of the accreting matter) but
also facilitate the jet formation. Therefore, the magnetic field generation problem is
certainly one of the key problems arising from the construction of the central engine
model in AGN.

Theoretically, the magnetic field problem splits into two problems—the problem
of generation of the regular magnetic field and the problem of its structure beyond
the accretion disk. The point is that, as was noted, the black hole cannot have its self-
magnetic field. In particular, any loop of the magnetic field (for example, generated
by the magnetic dipole freely falling onto the black hole) disappears for the distant
observer in the dynamic time τ ∼ rg/c (Thorne et al., 1986). The exception is only
the monopole magnetic field; however, a large number of magnetic monopoles are
needed for its existence, which is, undoubtedly, unrealistic.

On the other hand, it is hardly possible that the strong magnetic field can be con-
nected with the amplification of the external magnetic field, because the magnetic
field is frozen in the accreting matter. In any event, it is clear that the magnetic field
energy density cannot be larger than the energy density of the accreting plasma,
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which is also true for the process of the magnetic field generation in the disk. The
point is that both the nature of the ordinary viscosity ν resulting in the matter accre-
tion and, hence, the amplification of the magnetic field and the magnetic viscosity
νm resulting in the violation of the frozen-in condition and, hence, the magnetic
field diffusion, are evidently identical, viz., it is the magnetic turbulence (Balbus
and Hawley, 1998). Consequently, the Prandtl magnetic number P = ν/νm cannot
greatly differ from unity. It is possible, directly from the analysis of the leading
terms in MHD equations (Lubow et al., 1994), to considerably amplify the external
(for example, homogeneous) magnetic field attracted to the accretion center only
if the condition (r/H )P � 1 is satisfied (H is the half-thickness of the accre-
tion disk). Therefore, this process cannot be of crucial importance. It was possible
to amplify the magnetic field only by an additional generation mechanism in the
disk (Campbell, 1999), but it is a different story.

Thus, the source of the regular magnetic field should be sought in the accretion
disk itself rather than in the environment. Indeed, the accretion disk has all the nec-
essary properties to generate a regular magnetic field. Both the differential rotation
(the matter rotates at velocities close to the Keplerian velocity vK = (G M/r )1/2,
and, hence, the angular velocity depends on the distance from the center) and the
inhomogeneous matter density in a vertical direction are present in it, which give rise
to a reflecting nonsymmetric turbulence. As a result, the accretion disk can work as
a dynamo amplifying the stochastic magnetic field (Balbus and Hawley, 1998).

Nevertheless, until recently, the magnetic field generation mechanism was not
known. In particular, it is not yet clear if it is possible to generate a sufficiently
strong regular magnetic field of order 104 G, which is needed, as we will see, for the
efficient work of the electrodynamic mechanism of energy release in AGN. Recall
that this estimate of the magnetic field is associated with the simple assumption
that the magnetic field energy density is compared with the energy density of the
accreting plasma giving rise to the Eddington luminosity (3.2). As a result, we have

BEdd ≈ 104 G

(
M

109 M�

)−1/2

. (3.4)

Problem 3.2 Find the formula (3.4).

It is clear that the Eddington magnetic field BEdd (3.4) can be regarded as an
upper limit only. Indeed, since the magnetic field amplification mechanism is of
a turbulent character, for the generation of the critically strong magnetic field the
turbulent motion of the accreting matter should contain, in any case, the energy
comparable with its energy. Besides, the dynamo mechanism itself should be quite
effective to transfer a considerable part of the turbulent motion energy to the mag-
netic field. Therefore, in reality, the magnetic field must be much smaller than is
known from the estimate (3.4). Finally, it is very difficult to generate the quasidipole
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magnetic field in the disk systems—the main growing mode is of a quadrupole char-
acter (Ruzmaikin et al., 1988).

Nevertheless, in the past years much progress has been made in this field. It is
due to the high speed of the present-day computers that provide the direct simulation
of the turbulent motion and thus determine the key transport coefficients and, in
particular, the model parameter αSS (1.9) by directly averaging the corresponding
correlators [it was believed earlier that the machine viscosity fails to realize the
turbulence in the numerical simulation (Balbus and Hawley, 1998)].

The magnetorotational instability studied by Velikhov (1959) in the context of
the laboratory plasma instability is now regarded as the main source of turbulence
needed for the efficient dynamo work. However, as is often the case, it was long
unknown in astrophysics and rediscovered by Balbus and Hawley for the case of
accretion disks (1991). It is connected with the instability of slow magnetosonic
waves in a shear flow realized in the Keplerian motion. Its important property is
the absence of the threshold and, therefore, there is an instability in the arbitrarily
small magnetic field. In other words, even the small magnetic field gives rise to new
unstable degrees of freedom.

As a result, the numerical simulation of the magnetic turbulence showed that
the effective amplification of the regular magnetic field can really occur in accretion
disks (Brandenburg and Sokoloff, 2002; von Rekowski et al., 2003). The direct com-
putations yielded some unexpected results. It turned out that in accretion disks the
dynamo parameter αdyn entering, for example, into the phenomenological equation

∂ < B >

∂t
= ∇ × (αdyn < B >) (3.5)

can prove negative (Brandenburg et al., 1995; Ziegler and Rüdiger, 2000). In
this case, the field amplification due to the low-order process—the so-called αω-
dynamo—is impossible, since the higher-order process—the α2ω-dynamo—can
only be realized (Ruzmaikin et al., 1988). But, in this case, the dipole regular mag-
netic field rather than the quadrupole one is to be amplified, which is necessary
for the most efficient work of the central engine. Finally, much larger values of the
viscous parameter αSS (1.9) up to the values of αSS ∼ 0.01 were obtained by direct
calculation (Stone et al., 1996; Arlt and Rüdiger, 2001).

In conclusion, one cannot but mention the number of papers which dealt with the
possibility to analyze the magnetic field generation in the disk by the GR effects.
The point is that due to the frame-dragging associated with the Lense–Thirring
effect the rotating black hole submerged in the magnetic field becomes a source
of extra electromagnetic voltage. As seen from the induction equation written in the
reference frame of local nonrotating observers (ZAMO)

∂B
∂t

= −∇ × (αE + β × B), (3.6)
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the GR effects give rise to the additional term ∇×[β×B] acting as an electromotive
force (EMF). In particular, the Cowling theorem (Alfven and Fälthammar, 1963)
known in dynamo theory and prohibiting the existence of an axisymmetric station-
ary dynamo is no longer valid (Khanna and Camenzind, 1994). In fact, it is due to
the differential ZAMO rotation, so that toroidal electric fields can be generated by
poloidal electric fields.

Therefore, the hypothesis was put forward (Khanna and Camenzind, 1994,
1996a) that this process can really lead to magnetic field amplification in the vicinity
of rotating black holes. However, in numerical calculations of the kinematical prob-
lem (Brandenburg, 1996; Khanna and Camenzind, 1996b), the poloidal magnetic
field amplification produced by the Lense–Thirring effect is always suppressed by
the direct process of the induction action in the variable magnetic field. Neverthe-
less, the idea of magnetic field generation in accretion disks by GR effects seems
rather fruitful and calls for further investigation (Khanna, 1997, 1998; Tomimatsu,
2000). In any event, GR effects should be taken into account when constructing a
consistent theory of magnetic field generation in the inner regions of accretion disks.

To sum up, we can say that now we have no direct evidence that in the nuclei of
active galaxies there are strong regular magnetic fields that significantly affect the
accreting flow dynamics. Nevertheless, even if the effect of the magnetic field can
be disregarded when describing the gas accretion, the magnetic field generated in
the accretion disk, in view of its long-distance action, can be of crucial importance
beyond the accretion disk, viz., in the neighborhood of the black hole and in the
corona, in particular, it can specify the outflowing plasma dynamics.

3.2 Basic Equations

3.2.1 (3 + 1)-Splitting for the Electromagnetic Field

We now proceed to the discussion of the theory of force-free black hole magneto-
spheres. Note at once that in the following we, as before, consider the flows in the
Kerr metric rather than in the Kerr–Newman one. Otherwise, we believe that the
total charge of black holes is rather small so that it cannot affect the space–time
curvature near the black hole. As shown below, in the case of stationary plasma-
filled magnetospheres, this condition is satisfied with large margin. The effect of
the black hole charge on the electrodynamic processes in its magnetosphere was
discussed, for example, in Ruffini et al. (1999) and Punsly (2001).

As was already demonstrated by the example of hydrodynamical flows, a very
convenient language to describe the processes in strong gravitational fields is the
(3 + 1)-splitting. Thus, Maxwell’s equations

∇αFβγ + ∇β Fγα + ∇γ Fαβ = 0, (3.7)

∇αFαβ = 4π jβ, (3.8)
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for the stationary flows (∂/∂t = 0) have the form (Macdonald and Thorne, 1982)

∇ · E = 4πρe, (3.9)

∇ · B = 0, (3.10)

∇ × (αE) = L̂βB, (3.11)

∇ × (αB) = −L̂βE + 4παj. (3.12)

Here the Lie derivative L̂β acting by the rule

L̂βA = (β∇)A − (A∇)β (3.13)

results from the differential ZAMO rotation (that, as we remember, defines the three-
dimensional quantities in their laboratory). We further use the system of units G = 1
and c = 1 again.

The physical meaning of first two equations (3.9) and (3.10) is quite transparent.
Regardless of the space curvature, the magnetic field is a curl one and the electric
field sources can be electric charges only. On the other hand, in the case of the
rotating black hole the gravitomagnetic field Hik = 1/α∇iβk (1.222) yields the Lie
derivatives on the right-hand sides of Eqs. (3.11) and (3.12). The Lie derivatives
are similar to the additional terms appearing in the quasistationary formalism on
the right-hand sides of Eqs. (2.115) and (2.117), so that Maxwell’s equations (3.9),
(3.10), (3.11), and (3.12) appear close in form to Eqs. (2.114), (2.115), (2.116), and
(2.117). As a result, as we will see, it is due to the action of the gravitomagnetic
forces that in the induction equation (3.11) there appears an electromotive force
resulting in the energy losses of the rotating black hole. In flat space, EMF can be
connected only with the time-depending magnetic flux through the given circuit. In
the case of the rotating black hole, the change in the magnetic flux is connected with
the “space flow” moving with the Lense–Thirring angular velocity ω.

Further, as in flat space, in the axisymmetric case it is convenient to express the
magnetic field in terms of the scalar function Ψ (r, θ ) having the meaning of the
magnetic flux:

B = ∇Ψ × eϕ̂
2π�

− 2I

α�
eϕ̂ . (3.14)

Here again I (r, θ ) is the total electric current within the magnetic tube Ψ < Ψ (r, θ )
and the indices with caps correspond to the physical components of the vectors. By
definition (3.14), Maxwell’s equation ∇ · B = 0 holds automatically. It is readily
seen that the condition B · ∇Ψ = 0 is satisfied, and the relation Ψ (r, θ ) = const
thus prescribes the magnetic surfaces. The proportionality factor in (3.14) is again
chosen so that Ψ coincides with the magnetic flux inside the tube Ψ = const, i.e.,
dΨ = B · dS.
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3.2.2 “No Hair” Theorem

Before proceeding further, we formulate an important statement that is generally
called the “no hair” theorem (see, e.g., Frolov and Novikov, 1998). We prove it here
for the simplest case.

Theorem 3.1 Nonrotating black holes cannot have magnetic fields themselves; the
electric field in the exterior of a nonrotating black hole must coincide with the field
of a point charge located in its center.

Indeed, for a nonrotating (Schwarzschild) black hole, Eqs. (3.11) and (3.12) can
be rewritten as

∇ × (αE) = 0, (3.15)

∇ × (αB) = 0. (3.16)

It is logical to assume here that the black hole is in vacuum. Therefore, Eqs. (3.15)
and (3.16) must be supplemented with the relations ∇ · E = 0 and ∇ · B = 0. As
we see, in the case of the nonrotating black hole, the equations for the electric and
magnetic fields are separated and appear absolutely identical. As a result, to prove
it we can consider the magnetic field structure only. Using now the definition (3.14)
and the relation (1.234), to write the equation ∇ × (αB) = 0, we obtain for I = 0

r2 ∂

∂r

[(
1 − rg

r

) ∂Ψ

∂r

]
+ sin θ

∂

∂θ

(
1

sin θ

∂Ψ

∂θ

)
= 0. (3.17)

Problem 3.3 Find Eq. (3.17).

As we see, the differential operator in Eq. (3.17) differs from the GS operator L̂
(1.119) only by the additional factor (1 − rg/r ). Therefore, we can again seek the
solution in the form (see, e.g., Ghosh, 2000)

Ψ (r, θ ) =
∞∑

m=0

gm(r )Qm(θ ), (3.18)

and now the radial functions gm(r ) are to be found from the solution to the equations

x(x − 1)
d2gm

dx2
+ dgm

dx
− m(m + 1)gm = 0. (3.19)

Here x = r/rg.
We consider the solutions to Eqs. (3.19) in more detail. The first family of solu-

tions has the form
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g(1)
m (x) = x2 F(1 − m,m + 2, 3, x), (3.20)

where F(a, b, c, x) is a hypergeometric function (see Appendix D). Since (1 − m)
is an integer less than or equal to zero for m 
= 0, the functions g(1)

m (x) for m 
= 0
reduce to polynomials. As a result, up to a dimensional factor we have for the full
magnetic flux function Ψ (r, θ )

1. m = 1

• Ψ
(1)
1 (r, θ ) = r2 sin2 θ is a homogeneous field (see Fig. 1.4a),

2. m = 2

• Ψ
(1)
2 (r, θ ) =

(
r3 − 3

4
rgr2

)
sin2 θ cos θ—a zero point (see Fig. 1.4c),

3. . . .

• Ψ (1)
m (r, θ ) ∝ rm+1 Qm(θ ) for r → ∞.

The solution with m = 0

Ψ
(1)
0 (r, θ ) =

[
r + rg ln

(
1 − r

rg

)]
(1 − cos θ ) (3.21)

has a singularity for r = rg. On the other hand, there exists the regular solution

Ψ
(1)
0 (r, θ ) = r (1 − cos θ ) + rg(1 + cos θ )[1 − ln(1 + cos θ )] − 2rg(1 − ln 2), (3.22)

corresponding to the asymptotic behavior Ψ ∝ r (1 − cos θ ) for r � rg (the latter
term is added to satisfy the condition Ψ (r, 0) = 0) (Blandford and Znajek, 1977;
Ghosh and Abramowicz, 1997). As for the hydrodynamical case, it is a “nonphysical
solution,” i.e., it can be realized only in the presence of currents beyond the black
hole.

The second family of solutions can be written as

g(2)
m (x) = x−m

[
F

(
m,m + 2, 1, 1 − 1

x

)
ln

(
1 − 1

x

)
+ Pm(x)

]
, (3.23)

where Pm(x) are some polynomials regular on the horizon. Thus, for example,

P1(x) = x2 + x

2
,

P2(x) = 4x4 − x3 − x2

6
, (3.24)

P3(x) = 15x6 − 25x5

2
+ x4 + x3

12
.

As a result, the asymptotic behavior of the second family for m 
= 0 is

• Ψ (2)
m (r, θ ) → r−m Qm(θ ) for r → ∞,
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• Ψ (2)
m (r, θ ) → ln

(
1 − rg

r

)
Qm(θ ) for r → rg.

In particular, for the dipole harmonic m = 1, we have

Ψ
(2)
1 (r, θ ) = 2π |m| sin2 θ

r
f (r ), (3.25)

where (Ginzburg, 1964)

f (r ) = −3
r3

r3
g

[
ln

(
1 − rg

r

)
+ rg

r
+ 1

2

r2
g

r2

]
≈ 1 + 3

4

rg

r
+ · · · . (3.26)

Since f (r ) → 1 for r → ∞, at large distances the stream function Ψ
(2)
1 (r, θ ) (3.25)

really corresponds to the dipole magnetic field. As to a zero harmonic, it again
describes the monopole field

Ψ
(2)
0 = Ψ0(1 − cos θ ), (3.27)

having no singularity on the horizon.
As we see, the first family of solutions does not vanish at infinity and, therefore,

this magnetic field can be realized in the presence of external currents only. Oth-
erwise, the fields that have no singularity on the horizon are not the self-magnetic
fields of the black hole. As to the second family with multipole behavior r−m at large
distances, all of them, except for the case m = 0, have a logarithmic singularity
on the horizon. This implies that if the electric field in the vicinity of electric or
magnetic dipoles (a quadrupole, etc.) located at the point rg + δr is given, at large
distances the observer detects a field which is ln(rg/δr ) times less than in the absence
of the black hole. The exception is only the monopole solution (3.27), but it, in the
absence of the accretion disk, can be realized for the electric field only.

Indeed, let us consider the point charge q located in vacuum in the vicinity of the
black hole horizon at the point r0 = rg + δr , θ = 0. Its electric field resulting from
the solution to the equations ∇ ·E = 0 and ∇× (αE) = 0 has the form (Linet, 1976)

E = q

r0r2

[
M

(
1 − r0 − M + M cos θ

D

)

+ r ((r − M)(r0 − M) − M2 cos θ )(r − M − (r0 − M) cos θ )

D3

]
er̂

+ αq(r0 − 2M) sin θ

D3
eθ̂ , (3.28)

where

D2 = (r − M)2 + (r0 − M)2 − M2 − 2(r − M)(r0 − M) cos θ + M2 cos2 θ. (3.29)

As shown in Fig. 3.1, the electric field is deformed so that the distant observer
detects the field of the electric charge located near the center of the black hole
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Fig. 3.1 The electric field of
the charge q in the vicinity of
the black hole horizon. The
distant observer detects the
field of the electric charge
located near the center of the
black hole. The fictitious
charges appearing in the
vicinity of the horizon are
also shown

q

rather than in the vicinity of the horizon (see Thorne et al. (1986) for details). This
implies that two opposite charges located in the vicinity of the horizon at a fixed
distance from each other are in the vicinity of the black hole center for the distant
observer. The closer the charges to the event horizon, the smaller the seeming dis-
tance between them. This shows a decrease in the dipole moment for the distant
observer.

In the foregoing we dealt with the stationary configurations. The “no hair” the-
orem was just first proved for the static magnetic field (Ginzburg, 1964). However,
this theorem has a clear dynamical meaning. It shows that when the magnetic dipole
approaches the black hole horizon, in the characteristic time τ ∼ rg/c the magnetic
field at large distances from the black hole vanishes. Later, the “no hair” theorem
was generalized to all other physical fields (see, e.g., Frolov and Novikov, 1998).

Finally, we should remember that for the distant observer any process in the
vicinity of the black hole lasts a finite time (in any case, it is limited by the lifetime
of the Universe) and, therefore, is not stationary. This implies that in the Boyer–
Lindquist coordinates in the vicinity of the horizon, there is always a nonstationary
region (a switching-on wave) propagating to the horizon. This switching-on wave
due to a relativistic time delay for the distant observer never reaches the event hori-
zon. It is this property that called for the introduction of a “stretched horizon” in the
membrane approach, which is located over the transition region where the fields can
be regarded as stationary ones. Exactly this stationary field is shown in Fig. 3.1.

3.2.3 Vacuum Approximation

Thus, the “no hair” theorem shows that the black hole magnetosphere can occur
only in the presence of external electric currents. As was mentioned, an obvious
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candidate for this “external winding” is the accretion disk. In this section, we discuss
the simplest vacuum solutions that, as in the case of the radio pulsar magnetosphere,
help us clarify some features of the more realistic plasma-filled magnetosphere.

We first consider the black hole submerged in the external homogeneous mag-
netic field B0. The exact solution for the arbitrary angular velocity of the black hole
parallel to the external magnetic field was obtained by Wald (1974) (see also Bičák
and Dvořák, 1976). In view of the axisymmetric character of the problem, it is con-
venient to write the solution for the magnetic flux function Ψ (r, θ ) as

Ψ (r, θ ) = πB0
Σ2 − 4a2 Mr

ρ2
K

sin2 θ. (3.30)

In particular, in the absence of rotation we again return to the solution

Ψ(r, θ ) = πB0 r2 sin2 θ. (3.31)

On the other hand, in the case of the rotating black hole, as seen from Maxwell’s
equations (3.11) and (3.12), the Lie derivatives act as field sources even for the sta-
tionary case. As a result, the rotating black hole submerged in the external magnetic
field generates the electric field (Thorne et al., 1986)

E = − B0a

ρ2
KΣ

[
2Δr + 2ρ2

K(r − M) − 2
ρ2

KΔ

Σ2
(2r3 + 2a2r − ra2 sin2 θ + Ma2 sin2 θ )

+ M sin2 θ

ρ2
K

(Σ2 − 4a2 Mr )

(
1 + 2

ra2 sin2 θ

Σ2
(r − M) − 4

r2

Σ2
(r2 + a2)

)]
er̂

− B0a3Δ1/2

ρ2
KΣ

sin 2θ

[
−1 + ρ2

KΔ

Σ2
+ Mr sin2 θ

ρ2
KΣ

2
(Σ2 − 4a2 Mr )

]
eθ̂ .

Recall once again that we deal with the fields measured by ZAMO.

Problem 3.4 Show that

• the magnetic flux Ψ∗ passing through the black hole horizon is

Ψ∗ = 4πM
√

M2 − a2 B0; (3.32)

in particular, for the extremely fast-rotating black hole a = M the full
magnetic field expulsion occurs so that Ψ∗ = 0,

• on the other hand, the magnetic flux passing through the black hole ergo-
sphere rerg = M +√

M2 − a2 cos2 θ is independent of the angular velocity
ΩH and equal to
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Fig. 3.2 The quasimonopole
structure of the magnetic
field, which arises in the case
of the limited disk of the
inner radius b. The jump of
the tangential component in
the magnetic field is due to
the toroidal currents flowing
in the accretion disk. All field
lines intersecting the black
hole horizon extend to
infinity

b

Ψerg = 4πM2 B0. (3.33)

It is interesting to note that the solution (3.31) for the nonrotating black hole
does not formally differ from the homogeneous magnetic field in vacuum. However,
this fact is associated only with the convenient choice of a coordinate grid, viz., the
Boyer–Lindquist coordinates r , θ . It is easy to verify that, in reality, at the black hole
equator there is a singularity, viz., a zero point. To show this we write the physical
components of the magnetic field, which, by definition (3.14), have the form

Br̂ = 1

2π�
√

gθθ

∂Ψ

∂θ
, (3.34)

Bθ̂ = − 1

2π�
√

grr

∂Ψ

∂r
. (3.35)

As we see, because of the vanishing metric factor 1/
√

grr for α = 0, the θ -
component of the magnetic field Bθ̂ is to be zero on the entire surface of the black
hole horizon. Consequently, the poloidal magnetic field should be orthogonal to
the horizon. Since the radial component of the magnetic field at the equator also
becomes zero (since ∂Ψ/∂θ = 0 for θ = π/2), here the full magnetic field also
turns out to be zero.

Another example is a rotating black hole having the electric charge QH. In this
case, the rotation gives rise to the dipole magnetic field (Thorne et al., 1986)

E = QH

ρ4
KΣ

[
(r2 + a2)(r2 − a2 cos2 θ )er̂ − 2a2r

√
Δ sin θ cos θeθ̂

]
, (3.36)

B = QHa

ρ4
KΣ

[
2r (r2 + a2) cos θer̂ + (r2 − a2 cos2 θ )

√
Δ sin θeθ̂

]
. (3.37)
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Finally, the magnetic field of a thin conducting disk with inner radius b can be
used as an example (see Fig. 3.2). If we assume that the magnetic field lines do not
intersect the disk surface, the stream function Ψ in the absence of the black hole has
the form (Beskin, 1997)

Ψ (r, θ ) = Ψ0

⎡
⎢⎣1 −

√√√√1

2

(
1 − r2

b2

)
+

√
1

4

(
1 − r2

b2

)2

+ r2 cos2 θ

b2

⎤
⎥⎦ . (3.38)

In the limit b → 0 (with the total flow Ψ0 preserved) formula (3.38) in each hemi-
sphere becomes the monopole field Ψ = Ψ0(1 ± cos θ ). The jump of the magnetic
field at the equator is connected with the currents flowing on the disk surface.

Expanding expression (3.38) around r = 0 into a series in multipoles and match-
ing each harmonic to the horizon, we easily obtain an expression for the function Ψ
in the vacuum approximation (and, hence, for the magnetosphere of the nonrotating
black hole) (Beskin et al., 1992a). Thus, for rg � b, we have (Beskin, 1997)

Ψv = Ψ0

[
1

2

r2

b2
sin2 θ − 1

120

r4

b4
F(r )(4 sin2 θ cos2 θ − sin4 θ ) + · · ·

]
, (3.39)

where F(r ) = F(−4,−2, 1, 1 − rg/r ) is a hypergeometric function. Consequently,
in the vicinity of the black hole the magnetic field is homogeneous

Ψv ≈ 1

2
Ψ0

r2 sin2 θ

b2
. (3.40)

We emphasize that this procedure is possible, because the second family of particu-
lar solutions diverges on the horizon and, therefore, should be dropped. Only in this
case, we can uniquely choose the coefficient of the hypergeometric function.

Analogously, solutions for the black hole enclosed in the center of a ring current
and in the center of two oppositely directed ring currents were constructed (Chitre
and Vishveshwara, 1975; van Putten and Levinson, 2003) and also for the special
choice of currents on the disk surface (Tomimatsu and Takahashi, 2001). All of
them were constructed by the above procedure. Finally, in the presence of the disk
we can use the parabolic solution (3.22). As shown in Fig. 3.3, the solution has the
form (Blandford and Znajek, 1977; Ghosh and Abramowicz, 1997)

Ψ (r, θ ) = C(r − rg)(1 − cos θ ) − Crg(1 + cos θ ) ln(1 + cos θ ), θ < π/2, (3.41)

Ψ (r, θ ) = C(r − rg)(1 + cos θ ) − Crg(1 − cos θ ) ln(1 − cos θ ), θ > π/2, (3.42)

where C is an arbitrary constant. One should note here that the monopole magnetic
field Ψ = Ψ0(1 ± cos θ ), where Ψ0 is the second constant defining the flow, can be
added to solutions (3.41) and (3.42).
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Fig. 3.3 The “nonphysical”
parabolic solution that can be
realized in the presence of the
accretion disk (Ghosh and
Abramowicz, 1997). Here the
jump of the tangential
component on the magnetic
field is also provided by the
toroidal currents flowing in
the equatorial plane

Finally, note that when the magnetic field is generated by two oppositely directed
ring currents, the topology of the solution greatly changes (see Fig. 3.4). The field
lines passing through the black hole horizon do not extend to infinity now but are
closed through the accretion disk surface (or a torus) generating the magnetic field
itself. This topology is now actively discussed in the context of the possible sources
of cosmological gamma bursts (van Putten and Levinson, 2003).

Fig. 3.4 An example of the
magnetosphere in which all
magnetic field lines passing
through the black hole
horizon do not extend to
infinity but are closed through
the torus surface generating
the magnetic field (van Putten
and Levinson, 2003)
(Reproduced by permission
of the AAS, Fig. 2 from van
Putten, M.H.P.M., Levinson
A.: Theory and astrophysical
consequences of a
magnetized torus around a
rapidly rotating black hole.
ApJ 584, 937–953 (2003))
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3.2.4 Force-Free Grad–Shafranov Equation in the Kerr Metric

We now proceed to the discussion of the basic equations describing the force-free
magnetosphere of the rotating black hole. As in the case of the radio pulsar magne-
tosphere, we assume that

1. the plasma energy density εpart is much less than the energy density of the elec-
tromagnetic field εem;

2. but is enough to screen the longitudinal electric field E‖.

It is clear that for these conditions to be satisfied it is necessary for the magneto-
sphere to have a rather efficient particle generation source. This problem is discussed
in Sect. 3.2.5.

For this reason, in the studied stationary case the electric field E can again be
written as a scalar multiplied by ∇Ψ . It is convenient to choose the proportionality
factor in the form

E = −ΩF − ω

2πα
∇Ψ. (3.43)

Substituting relation (3.43) in Maxwell’s equation (3.11), we see that B · ∇ΩF = 0,
i.e., ΩF, as in the flat space, is to be constant on the magnetic surfaces:

ΩF = ΩF(Ψ ). (3.44)

Indeed, the Lie derivative in Eq. (3.11) under the obvious conditions ∇ · B = 0 and
∇ · β = 0 can be written as

L̂βB = −∇ × [β × B] = ∇ ×
( ω

2π
∇Ψ

)
. (3.45)

As a result, Eq. (3.11) can be rewritten as ∇ × (ΩF∇Ψ ) = 0 and yields relation
(3.44). Expression (3.43) is the generalization of the Ferraro isorotation law to the
rotating black hole (Blandford and Znajek, 1977).

Further, as in the nonrelativistic case, the toroidal component of the force-free
balance of forces

[∇ × B] × B + (∇ · E)E = 0 (3.46)

yields ∇ I × ∇Ψ = 0, so the total current inside the magnetic surface is again an
integral of motion:

I = I (Ψ ). (3.47)

It is important that the expressions for the energy and angular momentum fluxes
remain the same as in the flat space:
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E(Ψ ) = ΩF I

2π
, L(Ψ ) = I

2π
. (3.48)

Finally, the GS equation obtained directly from the poloidal component of
Eq. (3.46) can be written as (Macdonald and Thorne, 1982)

1

α
∇k

{
α

� 2

[
1 − (ΩF − ω)2� 2

α2

]
∇kΨ

}
+ ΩF − ω

α2
(∇Ψ )2 dΩF

dΨ
+ 16π2

α2� 2
I

dI

dΨ
= 0.

(3.49)
Equation (3.49) has the following properties:

• As any GS equation, it comprises only the stream function Ψ (�, z) and the
invariants ΩF(Ψ ), I (Ψ ). As in the nonrelativistic case, the force-free equation
should not be supplemented with Bernoulli’s equation.

• Equation (3.49) is of an elliptic type in the entire region where it is defined. The
field of application is limited by the light cylinder on which the electric field
becomes equal to the magnetic one: |E| = |B|. As in the case of the radio pulsar
magnetosphere, Eq. (3.49) cannot be extended beyond the light surface. But if the
magnetic field is larger than the electric one up to the event horizon, Eq. (3.49) is
of an elliptic type up to the horizon.

• In the nonrelativistic limit α → 1, ω → 0, Eq. (3.49) becomes the pulsar equa-
tion (2.101).

• At distances satisfying the condition α2 � (ΩF−ω)2� 2, the differential operator
L̂bh = 1/α∇k{. . .∇k} coincides with the vacuum operator L̂ (3.17). Hence, for
the nonrotating black hole (when ΩF = 0, I = 0 as well) the monopole magnetic
field Ψ = Ψ0 (1 − cos θ ) is the solution.

• The equation contains two singular surfaces—“light cylinders” defined from the
condition A = 0, where

A = α2 − (ΩF − ω)2� 2. (3.50)

As we see in the following, it is appropriate to speak about the Alfvén surfaces.
One of them corresponding to the outflowing plasma is fully equivalent to the
light cylinder in the neutron star magnetosphere and the other inner surface, on
which α ≈ (ΩH − ΩF)�H, is due to the GR effects.

• Besides, as shown below, the solution can be extended to the horizon only if one
more critical condition for α2 = 0 is satisfied.

• According to the general formula b = 2 + i − s ′ for the number of boundary
conditions, we have b = 1 for s ′ = 3, i.e., for the force-free magnetosphere
regular up to the horizon and extending beyond the outer light cylinder, the prob-
lem requires only one boundary condition. If the magnetic field connects the
black hole horizon with the accretion disk surface inside the outer light cylin-
der (s ′ = 2), for the solution regular to the horizon two boundary conditions,
for example, the angular velocity ΩF(Ψ ) and the stream function Ψ on the disk
surface, are to be given.
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• Given the magnetic structure, i.e., the functions Ψ (�, z), ΩF(Ψ ), and I (Ψ ), the
electric field and the toroidal component of the magnetic field are determined
from the algebraic relations.

Some comments clarifying the properties of Eq. (3.49) are necessary. One should
first stress that the occurrence of the inner Alfvén surface due to the GR effects is
a property common to the flows in the vicinity of the black hole. This property is
demonstrated below for the general MHD case. It is important that, as shown in
the following chapter, within ideal magnetohydrodynamics (and for the case of the
positive energy flux from the black hole), the plasma can cross the Alfvén surfaces
only in one direction; clearly, it has nothing to do with the accretion disk itself in
which the viscosity is of vital importance. The outer Alfvén surface can be crossed
only in the direction from the black hole (vr > 0) and the inner one in the opposite
direction (vr < 0) only. Therefore, on the field lines passing through the horizon
there must occur a particle generation region separating the accretion and ejection
flows, where the GS equation is no longer used. However, if in the generation region
the potential drop is much less than the characteristic potential difference and the
surface currents are much weaker than the longitudinal ones, we can assume that
Ω+

F = Ω−
F and I + = I −. As a result, the values of the two integrals of motion

can be identical along the entire magnetic field lines connecting the black hole with
infinity.

Problem 3.5 Show that on the outer Alfvén surface the radial velocity cannot
be negative.
(Hint: in the force-free approximation the velocity is expanded in the drift
velocity perpendicular to the magnetic field and the slip velocity along the
field, see Fig. 2.4. The total velocity should not be larger than the velocity of
light.)

Further, one should mention the problem of the boundary condition on the hori-
zon. Indeed, as was noted above, Eq. (3.49) is of an elliptic type up to the black
hole horizon and, therefore, the event horizon can be regarded as some surface on
which boundary conditions should be given. On the other hand, the horizon cannot
be causally connected with the outer space and, therefore, cannot affect the mag-
netic field structure beyond the black hole. If we recall that, in reality, the event
horizon is separated from the environment by a switching-on wave, prescribing the
boundary condition on the horizon becomes problematic (Punsly, 2001). As we will
see, this problem can be successfully solved only by the full MHD GS equation
version comprising the finite particle mass. We should make some comments on the
free-force limit here.

Recall first that by definitions (3.14) and (3.43), the toroidal component of the
magnetic field and the θ -component of the electric field diverge on the horizon as
α−1. However, this behavior results from the coordinate singularity of the chosen
metric and does not correspond to the physical singularity on the horizon. This
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singularity would occur when freely falling observers rather than ZAMO detect the
infinite fields when crossing the horizon. The condition for electric field finiteness
on the horizon for the freely falling observer E ′

θ̂
= α−1

(
Eθ̂ + Bϕ̂

)
< ∞, i.e.,

Eθ̂ = −Bϕ̂ , (3.51)

in the force-free approximation is rewritten as (Znajek, 1977; Macdonald and
Thorne, 1982)

4π I (Ψ ) = [ΩH − ΩF(Ψ )] sin θ
r2

g + a2

r2
g + a2 cos2 θ

(
dΨ

dθ

)
. (3.52)

Here we just used definitions (3.14) and (3.43).
The condition (3.52) was generally regarded as an additional boundary condition

on the event horizon acting as Ohm’s law (Macdonald, 1984). Indeed, for the given
stream function on the horizon Ψ (rg, θ ), relation (3.52) connects the longitudinal
current I (Ψ ) with the angular velocity ΩF(Ψ ) defining the electric field. The prob-
lem, however, is that we, initially, do not know the poloidal magnetic field structure
in the vicinity of the horizon. Therefore, relation (3.52) cannot be regarded as a cou-
pling between I (Ψ ) and ΩF(Ψ ) only. Otherwise, the magnetic flux on the horizon
Ψ (rg, θ ) can be found only as a solution to Eq. (3.49), given the values of I (Ψ ) and
ΩF(Ψ ).

It is easy to check that, in the force-free limit, the “boundary condition on the
horizon” (3.52) is really an additional one coinciding with the regularity condition
on the event horizon (Beskin, 1997; Uzdensky, 2004). Indeed, the radial derivatives
enter into Eq. (3.49) in combinations of α∂/∂r and α2∂2/∂r2 only. The remarkable
property of the GS equation is that under the regularity condition of the solution
(i.e., if it is possible to drop the terms with the radial derivatives on the horizon) it
becomes one-dimensional and can be integrated. As a result of the integration, we
again return to relation (3.52). Thus, when the condition (3.52) is satisfied, the sin-
gular terms proportional to α∂/∂r and α2∂2/∂r2 are zero on the black hole horizon.
This shows the absence of a singularity for α2 → 0.

However, as will be shown in Chap. 4, in reality, the condition (3.52) is the limit
of the critical condition on the fast magnetosonic surface located over the event
horizon. In particular, this implies that in finite time the switching-on wave is in
the hyperbolic domain of the full GS equation and, hence, cannot affect the flow
structure outside the black hole. Therefore, the term “condition on the horizon” is in
quotation marks indicating that the full MHD GS equation does not have any addi-
tional regularity condition on the horizon. We have already dealt with this property
when analyzing the hydrodynamical flows.

Problem 3.6 Find the “boundary condition” (3.52) by the direct integration
of the force-free equation (3.49) on the horizon.
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Problem 3.7 Show that in the case of the plasma-filled magnetosphere of the
black hole, its electric charge QH is equal to (see, e.g., Lee et al., 2001)

QH = 1

4π

∫ π

0
[ΩH − ΩF]

Σ2

ρ2
K

(
∂Ψ

∂r

)
sin θdθ. (3.53)

Evaluate the magnetic field condition in order for the charge QH (3.53) to
begin to disturb the Kerr metric.

As an illustration, show that the additional condition (3.52) really fixes the value
of the invariant L(Ψ ) = I (Ψ )/2π for Ψ → 0. We consider the magnetic field
structure problem in the neighborhood of the rotating black hole. We believe that
the solution can be extended to the horizon and all magnetic field lines are frozen in
the external rotating shell or in the accretion disk within the outer light cylinder. In
this case, the formula b = 2 + i − s ′ shows that the problem requires two boundary
conditions only. As such conditions, it is logical to choose the value of the function
Ψ (r) on the shell (disk) surface and the angular velocity ΩF(Ψ ). The value L(Ψ )
must be found from the condition of the smooth passage of the solution through the
critical surfaces.

We now consider the behavior of the invariant L(Ψ ) in the vicinity of the rotation
axis. It is convenient to write it as

L(Ψ ) = k
ΩF

4π2
Ψ, (3.54)

where ΩF = ΩF(0) below. Here the proportionality of L(Ψ ) and Ψ results from
the assumption of the constant density of the electric current in the vicinity of the
rotation axis, and the case k = 1 corresponds to the GJ current density. Substituting
expression (3.54) in the “condition on the horizon” (3.52), we obtain at small angles
of θ

dΨ

Ψ
= 2k

ΩF

ΩH − ΩF

dθ

sin θ
, (3.55)

i.e., Ψ (θ ) ∝ θw, where

w = 2k
ΩF

ΩH − ΩF
. (3.56)

Formally, k can be arbitrary. But the finiteness condition of the magnetic field on
the rotation axis yields w = 2, i.e., k = (ΩH − ΩF)/ΩH. Hence, we conclude that
for small Ψ , the invariant L(Ψ ) should have the form
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L(Ψ ) = (ΩH − ΩF)

4π2
Ψ. (3.57)

In the next chapter, we see that the relation (3.57) is really the limit of the critical
condition on the inner fast magnetosonic surface as it approaches the event horizon.

Finally, note that the additional condition (3.52) is available only if we deal with
the solutions that can be extended to the horizon. If the longitudinal currents are
rather small, the field of application of the GS equation is confined to the light sur-
face beyond the horizon. In this case, for the magnetic field lines intersecting both
the inner and outer Alfvén surface, we have s ′ = 2, so that the problem requires
two boundary conditions. In particular, this implies that the solutions with zero lon-
gitudinal current (I = 0) and arbitrary angular velocity ΩF can be constructed. At
large distances, the solution coincides with the Michel monopole solution for the
zero current (see Fig. 2.15) and, at small distances, extends only to the inner light
cylinder α2 ≈ (ΩF − ΩH)2� 2. This problem is not solved yet.

3.2.5 Particle Generation

In order for the force-free approximation to be used it is necessary that the black
hole magnetosphere be filled with plasma screening the longitudinal electric field.
On the other hand, as was mentioned, within ideal magnetohydrodynamics, the
charged particle accretion along the magnetic field lines from infinity to the black
hole horizon becomes impossible. Thus, on the open field lines the plasma must
be generated in the magnetosphere itself between two families of singular surfaces.
One of its parts outflows beyond the magnetosphere and the other accretes onto
the black hole. There are several mechanisms, in which, however, the plasma is
ultimately always generated by two-photon interaction. The one-photon conversion,
which is of major importance in the radio pulsar magnetosphere, appears inefficient
here because for the magnetic fields B ∼ BEdd ∼ 104 G the probability of the pair
generation w(γ → e+e−) (2.27) is extremely small.

The efficient mechanism may be the direct two-photon process γ +γ → e+ +e−

(see., e.g., Svensson, 1984), where the necessary γ -quanta are emitted by the inner
accretion disk regions. However, rather high temperatures providing the necessary
number of hard γ -quanta with energies higher than εmin = mec2 corresponding to
the pair generation threshold are needed in this case.

There is, however, another mechanism that can supply particles in the region of
the field lines passing through the black hole horizon even in the absence of hard
γ -quanta. It is analogous to the particle generation mechanism in the outer gap of
the radio pulsar magnetosphere (Cheng et al., 1986). Indeed, according to (3.9) and
(3.43), the exact relativistic expression for the GJ charge density ρGJ has the form

ρGJ = − 1

8π2
∇k

(
ΩF − ω

α
∇kΨ

)
. (3.58)
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In particular, in the vicinity of the rotation axis we just have

ρGJ ≈ − (ΩF − ω)B

2πα
. (3.59)

It is exactly this expression that was used in Sect. 2.3.4 in the analysis of the GR
effects in the polar regions of the neutron star.

As a result, the GJ charge density due to the GR effects becomes equal to zero
for ω ≈ ΩF. This is the case when the condition 0 < ΩF < ΩH is satisfied, under
which, as we will see, the black hole loses its rotational energy. For example, for the
monopole magnetic field and the condition ΩF = ΩH/2, the surface ρGJ = 0 is a
sphere of the radius

rinj = 21/3rg ≈ 1.26 rg. (3.60)

In the general case, to specify the surface ρGJ = 0 we must know both the magnetic
field structure Ψ (r, θ ) and the dependence of the angular velocity ΩF on the stream
function Ψ .

Problem 3.8 Find expression (3.60).

Thus, in the black hole magnetosphere there occurs a region quite analogous to
the outer gap in the radio pulsar magnetosphere. In this region, longitudinal electric
fields may also occur (see, Beskin et al. (1992b); Hirotani and Okamoto (1998) for
details, where it is also shown that the acceleration region size in AGN is much
smaller than that of the system, so the acceleration region does not affect the global
magnetosphere structure). The chain of processes is the following:

1. The primary particle acceleration by the longitudinal electric field.
2. The curvature photon emission at characteristic frequencies ω ≤ ωcur (2.26).
3. The interaction between relativistic electrons and soft X-ray photons emitted by

the accretion disk; the hard γ -quanta generation by the IC effect.
4. The secondary plasma generation γ + X → e+ + e− due to the interaction

between the hard γ -quanta, the curvature, and X-ray photons.
5. The screening of the longitudinal electric field by the secondary plasma.

In any event, the black hole magnetosphere may be filled with plasma only in the
presence of the accretion disk providing the sufficient number of photons in the
black hole magnetosphere.
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3.3 Energy Release Mechanism

3.3.1 Blandford–Znajek Process

We now discuss in detail the energy release mechanism of rotating black holes
submerged in the external regular magnetic field [so-called Blandford–Znajek (BZ)
process (1977)]. Its main idea is the analogy with the energy transfer process in
the inner regions of the radio pulsar magnetosphere. Indeed, we assume that in the
neighborhood of the rotating black hole there is a regular poloidal magnetic field
along which electric currents flow. Then because of the occurrence of the electric
field Eθ̂ ∼ ΩF� Bp connected with the induction action of the plasma rotating with
the angular velocity ΩF and the toroidal magnetic field Bϕ ∼ −2I/� induced by
the longitudinal current I , the electromagnetic energy flux (the Poynting vector flux)
flowing along the magnetic field lines is generated.

Certainly, in the vicinity of the black hole the GR effects, by definition, become
substantial. Therefore, it is not obvious that the pulsar analogy can be useful every-
where. In any case, it is not applied to the slowing-down mechanism (Punsly, 2001).
Indeed, as we saw, in the radio pulsar magnetosphere the neutron star slowing-down
is produced by the ponderomotive action of the surface currents closing the electric
currents flowing in the magnetosphere. Formally, the surface currents can be intro-
duced for the black hole horizon (or “stretched horizon” as was the case with the
membrane paradigm) by analogy with the expression (2.135) as

JH = I

2π�
eθ̂ . (3.61)

The difference from the neutron star surface is that in the definition of the jump
of the tangential magnetic field there is the finite “regularized” value BH = αBϕ̂

(see Thorne et al. (1986) for details). As a result, the “condition on the horizon”
(3.52) has the form

JH = c

4π
EH, (3.62)

where EH = αEθ̂ and the factor of proportionality corresponds to the universal
resistance R = 4π/c = 377 Ohm. It is one of the basic relations in the membrane
paradigm.

However, the horizon is not a physically separated surface, not to mention it is
not causally connected with the outer space (Punsly and Coroniti, 1990a). Therefore,
these currents cannot result in the black hole slowing down. Indeed, in the vicinity
of the horizon, no toroidal currents can flow. First, as we saw, the gravitational field
appears so strong here that particles (in the ZAMO reference frame) can move in
a radial direction only. Second, as shown in Fig. 3.1, for the current to be closed it
is not necessary that the real charges flow along the horizon. The gravitational field
itself distorts the pattern of electric field lines so that the distant observer seems
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to see that the charge is in the vicinity of the center of the black hole. Accordingly,
there can be no Ampére’s force Js×B associated with charges crossing the magnetic
field lines (the motion of the fictitious image charges over the horizon cannot do any
work).

In reality, as shown in Chap. 5, the slowing-down moment acts in the plasma
generation region over the event horizon. The energy release is due to the negative
energy falling onto the horizon. Otherwise, the BZ mechanism is, in fact, the elec-
tromagnetic realization of the Penrose effect (Takahashi et al., 1990). Therefore,
the rotating black hole, as well as the rotating neutron star, can act as a unipolar
inductor effectively transporting the rotation energy to the outer magnetosphere (see
Fig. 3.5).

Poynting vector

Braking
torque K

Fig. 3.5 BZ process due to longitudinal currents (contour arrows). It is connected with gravit-
omagnetic force L̂βB generating the EMF along any circuit (dotted line). The Poynting vector
(shaded arrows) in the vicinity of the horizon is directed to the black hole, but when condition
(3.69) is satisfied, the energy falling onto the black hole proves negative. Formally, one can intro-
duce the surface currents JH and interpret the slowing-down mechanism as the result of the braking
torque K of Ampére’s forces. However, this language does not correspond to the real physical
processes. The figure also shows the plasma generation region (dashed line) and the direction of
the secondary particle motion. All the vectors are measured by ZAMO

We now define the total energy release that can be produced by the black hole
rotation. It is necessary to find the energy flux in the region of magnetic field lines
passing through the horizon. In the force-free approximation we have for the energy
losses

Wtot =
∫

T0βdSβ =
∫

E(Ψ )dΨ = 1

2π

∫
ΩF(Ψ )I (Ψ )dΨ, (3.63)
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and for the angular momentum losses

Ktot =
∫

L(Ψ )dΨ = 1

2π

∫
I (Ψ )dΨ. (3.64)

As we see, the expressions for the energy and the angular momentum fluxes in the
case of the Kerr metric are the same as in the flat space. It is the conservation of the
values E(Ψ ) and L(Ψ ) along the magnetic field lines that confirms the existence of
the energy flux extending from the black hole horizon to infinity. Finally, using the
“condition on the horizon” (3.52), we get

Wtot = 1

4π

∫
ΩF(ΩH − ΩF) sin θ

r2 + a2

r2 + a2 cos2 θ

dΨ

dθ
dΨ. (3.65)

Problem 3.9 Show that for ΩF = const and the monopole magnetic field
Bn = const, the losses Wtot (3.65) have the form (Lee et al., 2000)

Wtot = ΩF(ΩH − ΩF)

Ω2
H

( a

M

)2
B2

n M2c f

(
a

rg

)
, (3.66)

where

f (h) = 1 + h2

h2

[(
h + 1

h

)
arctgh − 1

]
, (3.67)

so that f (0) = 2/3 and f (1) = π − 2.

We first discuss the above result from a physical viewpoint.

• As seen from relation (3.65), to exactly determine the energy losses one should
know not only the magnetic field structure in the vicinity of the black hole hori-
zon, i.e., the magnetic flux functionΨ (rg, θ ), but also the angular velocityΩF(Ψ ).
Thus, in the case of the black hole magnetosphere the main theoretical problem
is not to find the longitudinal current I (Ψ ), as was the case with the radio pulsar
magnetosphere, but the angular plasma velocity ΩF(Ψ ). This problem cannot be
successfully solved by the force-free approximation. Therefore, as in the case of
radio pulsars, we have to put off the discussion of this problem until the next
chapters.

• If we are interested in the estimate of energy losses in order of magnitude, we
take ΩF = const and Ψ = πr2

g B0. Hence, Wtot ∼ WBZ, where the losses WBZ

correspond to the conditions ΩF = ΩH/2 and Bn = const
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WBZ ≈ 1045 erg/s
( a

M

)2
(

B0

104 G

)2 ( M

109 M�

)2

. (3.68)

One can check that for an extremely fast-rotating black hole and for B = BEdd

the losses WBZ coincide with the Eddington luminosity LEdd = ṀEddc2. Thus,
for the fast-rotating black hole, the theory can really explain the observed energy
of the AGN jets (Blandford and Znajek, 1977; Thorne et al., 1986).

• The energy losses occur only under the condition

0 < ΩF < ΩH, (3.69)

and the largest losses are for ΩF = ΩH/2. It is important that for ΩF < ΩH, the
Poynting vector S = (c/4π )[E × B] on the event horizon is directed to the black
hole. Indeed, as shown in Fig. 3.5, according to the dependence Eθ̂ ∝ (ΩF − ω)
(3.43), for 0 < ΩF < ΩH, the direction of the electric field in the vicinity of the
horizon (ω ≈ ΩH) is opposite to that of the electric field far from the black hole
(ω = 0), whereas the direction of the toroidal magnetic field remains unchanged.
However, this does not imply that the energy of the rotating black hole increases
with time, because Eq. (1.239)

1

α2
∇ · (α2S) = Hik T ik, (3.70)

besides its own conservation law ∇ · S = 0, contains additional terms responsi-
ble for the space curvature. As a result, the flux of the vector S does not retain
along the magnetic field lines. The constant energy flux is given by the invariant
expression (3.63).

• The magnetic field B0 (or, to be exact, the magnetic flux on the horizon Ψ (rg, θ ))
available in expression (3.65) is not known beforehand and must be defined
from the solution to the GS equation. In particular, as we will see, the magnetic
field expulsion from the rotating black hole, which takes place in the case of
the vacuum magnetosphere, can be compensated by the currents flowing in the
magnetosphere of the black hole.

Recall once again that the expression for the energy losses Wtot (3.63) by analogy
with the radio pulsar magnetosphere can, formally, be written under the action of the
electromagnetic forces on the “stretched horizon” (Thorne et al., 1986) as

Wtot =
∫

[EHJH − βH · (σHEH + JH × Bn)] dS. (3.71)

Here βH = β(rg), and the “surface charge” σH and the “surface current” JH are
again defined as
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σH = EH

4π
, (3.72)

4πJH × n = BHeϕ̂ = αBϕ̂eϕ̂ . (3.73)

As was already mentioned, this analogy cannot be interpreted literally.
It is interesting to note that the condition (3.69) of the energy extraction from the

rotating black hole can be given as a theorem.

Theorem 3.2 The energy flux passing through the event horizon is negative (and,
hence, the black hole loses its rotational energy) if the inner Alfvén surface is within
the ergosphere (Takahashi et al., 1990).

Indeed, as is evident from relations (1.218) and (3.50), for ΩF = 0, the Alfvén
surface coincides with the ergosphere surface. In the other limiting case, ΩF = ΩH,
the condition α2 = (ΩF − ω)2� 2 has the solution α = 0, i.e., the Alfvén sur-
face coincides with the event horizon. Therefore, in the whole range of parameters,
in which the condition (3.69) is satisfied, the Alfvén surface is located within the
ergosphere.

We emphasize once again that the regular magnetic field is only a connecting link
that allows one to effectively extract the energy and the angular momentum from
the central engine. The latter is especially important, because, within the standard
model, when the angular momentum transfer is associated with the viscous stresses
in the disk, the angular momentum losses needed for the rather large accretion rate
are not quite large. As for astrophysical applications, they will be considered in
Sect. 5.1.

3.3.2 Physical Intermezzo—Black Hole Thermodynamics

There is another substantial difference between the black hole magnetosphere and
the neutron star magnetosphere. The point is that the energy store of the black hole
is not only in the rotational energy but also in the so-called irreducible mass Mirr,
which depends on the area of the black hole horizon S

Mirr =
(

S

16π

)1/2

= 1

2

(
r2

g + a2
)1/2

. (3.74)

Otherwise, for the black hole there is one more degree of freedom associated with
the area of its surface, and, therefore, relation Wtot = ΩH Ktot equivalent to the
condition (2.130) for radio pulsars may not be satisfied for black holes. Since this
problem is closely connected with black hole thermodynamics, makes it possible to
clarify the process of the energy and angular momentum losses, it seems advisable
to mention the main assertions of this theory here (see Thorne et al. (1986); Frolov
and Novikov (1998) for details).

We first determine the area of the black hole surface



208 3 Force-Free Approximation

S = 4π (r2
g + a2) = 8πM(M +

√
M2 − a2). (3.75)

If we consider the area S as functions of the mass M and the angular momentum
J = a/M , we can write the relation for increments as

δM = 1

8π
gHδS + ΩHδ J. (3.76)

Here gH = (rg − M)/2Mrg is the so-called surface gravity.
Since the mass M is naturally associated with the energy, Eq. (3.76) can be rep-

resented in the thermodynamic form

dE
dt

= TH
dSH

dt
+ ΩH

dJ

dt
. (3.77)

Here dE/dt = −Wtot, dJ/dt = −Ktot, so that the change in the mass is really
associated with the energy loss connected with the Poynting vector flux. As to
the “temperature” TH and the “entropy” SH of the black hole, they are represented
as (Frolov and Novikov, 1998)

TH = �

2π
gH, (3.78)

SH = 1

4�
S. (3.79)

The factors are chosen so that the temperature TH coincides with that of the black
hole, which describes the radiation associated with the Hawking effect. The above
thermodynamic analogy is based on the important theorem.

Theorem 3.3 In any classical processes (matter accretion, black hole coalescence,
etc.) the black hole surface area cannot become smaller

δS ≥ 0. (3.80)

As we see, this theorem is quite analogous to the second law of thermodynamics,
which is the basis for its thermodynamic interpretation. Nevertheless, we used the
terms temperature and entropy in quotation marks, because, in spite of the large
number of papers devoted to this theme, it is not clear yet whether expression (3.79)
corresponds to the real entropy of the black hole.

The problem of the black hole entropy is beyond the scope of our discussion. It is
important here that the electromagnetic process of energy release from the rotating
black hole does not contradict the basic laws of physics. Indeed, as is seen from the
definition of the gravitational radius rg = M + √

M2 − a2, as the angular velocity
ΩH decreases, the black hole radius increases, so does its area due to this process.
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Moreover, because of the thermodynamic relation (3.77), it is possible to clarify
the key properties of the energy transfer from the rotating black hole. Indeed, using
definitions (3.63) and (3.64), we can rewrite relation (3.77) as

−
∫

E(Ψ )dΨ = 1

2π

∫
(ΩH − ΩF)I (Ψ )dΨ − ΩH

∫
L(Ψ )dΨ. (3.81)

The expression on the left-hand side of Eq. (3.81) exactly corresponds to the energy
losses, and two terms on the right-hand side to the change in the “entropy” and the
angular momentum. For example, for ΩF = 0 (when E = ΩF I/2π = 0) the energy
losses of the black hole turn out to be zero and a decrease in the angular momentum
is fully compensated by increasing the black hole area

δSH = −ΩH

TH
δ J. (3.82)

This case (which can take place if the homogeneous magnetic field is frozen in a
nonrotating cloud far from the black hole) corresponds to the adiabatic process in
thermodynamics. Further, for ΩF = ΩH, i.e., for I = 0 (when both the energy and
angular momentum fluxes are zero) not only the mass but also the angular momen-
tum of the black hole remain constant. This case corresponds to the full corotation
of the radio pulsar magnetosphere. If ΩF = ΩH/2, the variations of all the values
are comparable.

To sum up, we once more point to the basic properties of the electrodynamic
mechanism of the energy release of the black hole submerged in the external mag-
netic field.

1. The BZ slowing-down process of the black hole is due to the gravitomagnetic
forces beyond the event horizon. The electromagnetic flux passing through the
horizon transports the negative energy to the black hole. Otherwise, the BZ
mechanism is the electromagnetic realization of the Penrose process. Recall that
this effect allows one to release the energy from the rotating black hole due to
the particle decay in the ergosphere when one of the secondary particles extends
to infinity and the other (having the negative energy) falls onto the event hori-
zon (Frolov and Novikov, 1998). Exactly this pattern, as we saw, is realized in
the black hole magnetosphere. The electric field and the currents connected with
the particles escaping the black hole magnetosphere generate an electromagnetic
energy flux extending to infinity. As a result, the black hole submerged in the
external magnetic field acts as an unipolar inductor losing the rotational energy
due to the electric currents flowing in its magnetosphere.

2. Formally, it is possible to introduce the surface charges and the currents and
interpret the slowing-down mechanism of the black hole by analogy with radio
pulsars, i.e., by the slowing-down mechanism of Ampére’s forces acting on the
membrane [see (3.71)]. However, this language does not correspond to the real
physical processes in the black hole magnetosphere.

3. Technically, the problem of determining the energy losses of the rotating black
hole is associated not so much with the problem of the value of the longitudi-
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nal current I (Ψ ), as in the case of the radio pulsar magnetosphere, as with the
problem of the value of the angular velocity of the magnetic field lines ΩF(Ψ ).
Indeed, in the case of the black hole magnetosphere, the angular velocity ΩF(Ψ )
available in expression (3.65), generally speaking, is in no way connected with
the angular velocity of the black hole ΩH but must be defined from the solution
of the complete problem. In particular, ΩF is to depend on the properties of the
plasma source located between two Alfvén surfaces on the field lines passing
through the black hole. This important conclusion following from the analysis
of the basic properties of the GS equation is associated with the occurrence of
additional critical surfaces due to the GR effects.

4. As in the case of the radio pulsar magnetosphere, the problem of the energy
losses cannot be successfully solved by the force-free approximation. This is
because the force-free equation remains elliptic up to the black hole horizon.

5. Within the full MHD version (i.e., for the finite particle mass), as shown in the
following chapter, the horizon is in the hyperbolic domain of the GS equation.
Therefore, as was expected, the physical conditions on the horizon cannot affect
the flow in the outer regions of the magnetosphere.

3.4 Black Hole Magnetosphere Structure

3.4.1 General Properties

We now discuss the main theoretical results of the magnetosphere structure of the
rotating black hole, i.e., the region over the accretion disk, where the magnetic fields
are of crucial importance. At present, the MHD model of the central engine in AGN
and gamma-bursters seems the most realistic now (see Sect. 5.1). But one should
recognize that, in spite of the numerous efforts of theorists over the past 30 years,
they have failed to construct the consistent model of the black hole magnetosphere,
which would help one answer the key questions, i.e., determine the value of the
energy losses and the matter ejection rate as a function of the natural physical
parameters characterizing the central engine (such as the mass M and the angular
velocity ΩH of the black hole and also the accretion rate Ṁ), and, besides, show the
possibility of the efficient collimation of the magnetic field lines in the direction of
the rotation axis. This is because this problem is of an inherently two-dimensional
type. In this sense, it turned out to be much more complicated than the disk accretion
theory when, in some cases, the problem can be reduced, with adequate accuracy, to
the system of ordinary differential equations or even to an algebraic one.

First of all, as was noted, the GR effects give rise to the second family of singular
surfaces corresponding to the plasma accretion onto the black hole (Phinney, 1983).
Indeed, from the expression for the poloidal four-velocity measured by the local
nonrotating observers (ZAMO) it follows that (1.264)

u2
p = (E − ωL)2 − α2L2/� 2 − α2μ2

α2μ2
, (3.83)
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the physical four-velocity component up tends to infinity when approaching the
black hole horizon. Therefore, the velocity of particles on the horizon (α = 0)
approaches that of light; hence, it must, inevitably, exceed the speed of any natural
oscillations.

One should also point to some features of the black hole magnetosphere, which
substantially reduce the potentialities of the analytical approach. First of all, for the
central engine efficiency to be explained the angular velocity must be close to the
maximum one, so (unlike, for example, the radio pulsar magnetosphere) the small
parameter ε2

A = (ΩR/c) is not available in the problem. Physically, this implies that
the outer light cylinder is to be in the vicinity of the central engine and, therefore,
besides the inner surfaces, the problems of passing the inner singular surfaces are to
be taken into account in the problem as well. In particular, that is why the magnetic
field is not considered to be given. Indeed, as we saw in the example of radio pulsars,
the electric currents flowing in the magnetosphere greatly distort the magnetic field
in the vicinity of the light cylinder. On the other hand, as was mentioned, the black
hole does not have its self-magnetic field. Consequently, when studying the black
hole magnetosphere one cannot use the results of the numerous papers devoted to
the accretion onto neutron (Ghosh and Lamb, 1979) and young (Bardou and Hey-
vaerts, 1996; Ustyugova et al., 2000; Agapitou and Papaloizou, 2000) stars, where
the magnetic field of the central star is of vital importance.

In conclusion, we should mention another important property of the accretion
onto fast-rotating black holes,which, on the contrary, greatly simplifies the prob-
lem studied here. The point is that due to the gravitomagnetic forces associated
with the Lense–Thirring effect the accretion disk in the vicinity of the black hole
is in the equatorial plane of the rotating black hole [so-called Bardeen–Petterson
effect Thorne et al. (1986)]. This is the case even if at large distances the disk
plane substantially deflects from the equatorial plane. Since the magnetic field in
the vicinity of the black hole horizon must be generated exactly in the disk and,
hence, exactly copy its geometry, it is logical to suppose that the symmetry axis
of the regular poloidal magnetic field is to coincide with the black hole rotation
axis. Therefore (at least, for rather cold disks) the black hole magnetosphere can be
considered to be axisymmetric so that, in this sense, the magnetosphere structure of
the black hole appears simpler than that of radio pulsars and accreting neutron stars,
where the magnetic axis can be at an arbitrary angle to the rotation axis.

3.4.2 Exact Solutions

3.4.2.1 Slowly Rotating Black Hole with the Quasimonopole Magnetic Field

The first example of the exact solution to the force-free GS equation was constructed
by Blandford and Znajek (1977) who, as a zero approximation, considered the mag-
netosphere of the nonrotating black hole with the split monopole magnetic field (see
Fig. 3.6). This geometry, as was mentioned, can be realized in the presence of the
thin accretion disk in which there are necessary electric currents. The monopole
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Fig. 3.6 The structure of electromagnetic fields in the case of the quasimonopole magnetic field
in the neighborhood of the slowly rotating black hole (Blandford and Znajek, 1977). The currents
flowing in the well-conducting disk located in the equatorial plane provide both the jump of the
toroidal magnetic field and the closure of bulk currents in the upper and lower hemispheres. Dashed
line indicates the light cylinder

magnetic field Ψ = Ψ0(1 − cos θ ), θ < π/2, as was noted, is the exact solution to
the GS equation for the nonrotating black hole. Here Ψ0 is again the total magnetic
flux in the upper hemisphere.

We now consider the case of the slowly rotating black hole. As was formulated
above, if the solution to Eq. (3.49) can be extended to the black hole horizon, the
problem requires only one boundary condition. For example, it could be possible to
fix the angular velocity ΩF(Ψ ) or the longitudinal current I (Ψ ). However, in Bland-
ford and Znajek’s paper, the inverse problem was actually studied when the values
of the longitudinal current I (Ψ ) and the angular velocity ΩF(Ψ ) were determined
for the concrete structure of the poloidal magnetic field at infinity. These values of
I (Ψ ) and ΩF(Ψ ), for which the solution to the GS equation remains close to the
monopole one, were found. As was noted, in a more complete statement (i.e., when
the finite particle mass is taken into account) these two values can no longer be free
and are to be found from the solution of the problem.

Thus, we again seek the solution to the GS equation for θ < π/2 in the form

Ψ = Ψ0[1 − cos θ + ε2
3 f (r, θ )], (3.84)

where again, ε3 = a/M . Since in the broad domain rg(ΩHrg)2 � r − rg � 1/ΩH

the GS equation up to the small value of ε2
3 coincides with the vacuum equation,

the problem of determining the disturbances of the vacuum magnetic field, in fact,
is separated from the problem of determining the longitudinal current I and the
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angular velocity ΩF. Indeed, as was shown above, at large distances the monopole
magnetic field Ψ = Ψ0(1 − cos θ ) remains the exact solution to the full GS equa-
tion (and, in particular, has no singularity on the light cylinder �L = c/ΩF) under
the condition (2.231) 4π I (Ψ ) = ΩF(Ψ )(2Ψ − Ψ 2/Ψ0), which for the monopole
magnetic field looks like

4π I (θ ) = ΩF(θ )Ψ0 sin2 θ. (3.85)

On the other hand, if we assume that in the vicinity of the horizon the magnetic field
is close to the monopole one, we can use the condition (3.52) which yields

4π I (θ ) = [ΩH − ΩF(θ )]Ψ0 sin2 θ. (3.86)

As a result, combining relations (3.85) and (3.86), we find

ΩF = ΩH

2
, (3.87)

I (Ψ ) = IM = ΩF

4π

(
2Ψ − Ψ 2

Ψ0

)
. (3.88)

Thus, for the problem studied the longitudinal current automatically appears equal
to the critical one, and the angular velocity ΩF exactly corresponds to the case of
the most efficient energy release. We emphasize once again that in the force-free
approximation the values ΩF and I are not fixed and the obtained results correspond
to only one of the infinite numbers of the possible force-free solutions.

Using relations (3.87) and (3.88), we obtain for the linearized GS equation
(Blandford and Znajek, 1977)

r2 ∂

∂r

[(
1 − rg

r

) ∂ f

∂r

]
+ sin θ

∂

∂θ

(
1

sin θ

∂ f

∂θ

)
= −1

2

rg

r

(
1 + rg

r

)
sin2 θ cos θ.

(3.89)
As is seen, it can again be solved by the separation of variables. We, however, should
point to one important difference between Eq. (3.89) and the corresponding hydro-
dynamical equations discussed in detail in Sect.1.4. The point is that the linearized
equation (3.89) has a singularity on the event horizon, more exactly, for r = rg.
This is because in the method of successive approximations, in the zero order with
respect to ε2

3 the inner Alfvén surface coincides with the black hole horizon. Exactly
the singularity on the critical surface led to the singularity of Eq. (3.89) for r = rg. In
reality, the Alfvén surface α2 = (ΩF−ω)2� 2 is beyond the event horizon, where, in
the general case, the regularity condition should be formulated. As to the “condition
on the horizon” (3.52), it was used when defining the right-hand side of Eq. (3.89).
Otherwise, the factor α−2 would appear here and Eq. (3.89) would have a double
singularity for α2 = 0.

Indeed, all terms in the GS equation (3.49) of small order ε2
3 (the terms propor-

tional to Ω2
F and I 2) comprise the factor α−2. Therefore, in the general case, on the
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right-hand side of the linearized equation (3.89) the same factor was to appear. And
only upon substituting the value given by the condition (3.86) in the expression for
the current I , the singularities in the numerator and the denominator are analytically
cancelled and, hence, the right-hand side of Eq. (3.89) is finite for r = rg.

As a result, the solution to Eq. (3.89) for θ < π/2 can be written as

Ψ (r, θ ) = Ψ0
[
1 − cos θ + ε2

3g2(r ) sin2 θ cos θ
]
, (3.90)

and the equation for the radial function g2(r ) has the form

r2 d

dr

[(
1 − rg

r

) dg2

dr

]
− 6g2 = −1

2

rg

r

(
1 + rg

r

)
. (3.91)

In the case discussed here, the boundary conditions for Eq. (3.91) are

1. the absence of the singularity for r = rg (but not on the horizon!)

gm(r ) < ∞ for r = rg, (3.92)

2. the monopole field at infinity

g2 → 0 for r → ∞. (3.93)

Thus, the solution to Eq. (3.91) has the form (Blandford and Znajek, 1977)

g2(r ) = 2
r2

r2
g

− 3
r

rg
+ 7

24
+ 1

36

rg

r
+ 1

2

r2

r2
g

(
1 − rg

r

)(
4

r

rg
− 3

)
ln

(
1 − rg

r

)

+1

2

(
r2

r2
g

)(
4

r

rg
− 3

)
I1

(
r

rg

)
(3.94)

−1

2

[
4

r3

r3
g

− r2

r2
g

− 3
r

rg
+ r2

r2
g

ln
r

rg

]
×

[
4 − rg

r
− 1

6

r2
g

r2
+

(
4

r

rg
− 3

)
ln

(
1 − rg

r

)]
.

Here

I1(x) =
∫ ∞

x

dt

t
ln

(
t

t − 1

)
, (3.95)

g2(rg) = (π2/12−49/72), and g2(r ) → rg/8r for r → ∞. The constructed solution
is a generalization of the Michel solution (1973a) to the case of the slowly rotating
black hole. Recall once more that it contains the electromagnetic energy flux as a
consequence of the problem posed.
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3.4.2.2 Slowly Rotating Black Hole in the Parabolic Magnetic Field

Another solution was constructed for the case in which the stream function Ψ cor-
responds to the parabolic solution (3.41) and (3.42) (see Fig. 3.7) (Blandford and
Znajek, 1977). Indeed, as we saw, for the slow rotation ΩFrg � 1 (and in the flat
space), the parabolic solution (2.237) actually coincides with the vacuum solution
(3.41). Therefore, for the slow rotation of the black hole, the magnetic flux function
can again be specified as

Ψ
(1)
0 (r, θ ) = πCX (r, θ ), (3.96)

where now for θ < π/2

X (r, θ ) = r (1 − cos θ ) + rg(1 + cos θ ) [1 − ln(1 + cos θ )] − 2rg(1 − ln 2). (3.97)

At large distances from the black hole but at small distances as compared to the light
cylinder radius, it becomes the vacuum solution

Ψ (r, θ ) = πCr (1 − cos θ ). (3.98)

Fig. 3.7 Electromagnetic field structure in the case of the parabolic magnetic field in the neigh-
borhood of the slowly rotating black hole (Blandford and Znajek, 1977). Dashed line indicates the
light cylinder
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However, as was shown in Sect. 2.6.1, under the condition ΩF(X )X � 1, the mag-
netic flux (3.98) remains the solution to the GS equation beyond the light cylinder
as well. As a result, we can use the procedure for constructing the solution described
above. In particular, for the slow rotation, we can also seek the solution here as a
small perturbation of the vacuum magnetic field.

In order for the longitudinal electric current I and the angular velocity ΩF to be
determined, it is again enough to use algebraic relations (3.52) and (2.235). Suppos-
ing that the poloidal magnetic field at infinity remains the same as in the vacuum
case, we obtain for the slow rotation (Blandford and Znajek, 1977)

4π I (Ψ ) = 2ΩF(Ψ )Ψ. (3.99)

In turn, the “condition on the horizon” again has the form

4π I (Ψ ) = [ΩH − ΩF(Ψ )] sin θ
dΨ

dθ
. (3.100)

As a result, analyzing the system of two equations (3.99) and (3.100) again, we
readily find that the profile of the angular velocity has the form (Blandford and
Znajek, 1977)

ΩF(rg, θ ) = ΩH sin2 θ [1 + ln(1 + cos θ )]

4 ln 2 + sin2 θ + [sin2 θ − 2(1 + cos θ )] ln(1 + cos θ )
, (3.101)

the angular velocity varies from ΩH/2 for Ψ = 0 to ΩH/(4 ln 2 + 1) ≈ 0.265ΩH

on the last field line Ψ = Ψ∗ passing through the black hole horizon. In this case,

Ψ∗ = 2 ln 2πCrg. (3.102)

As shown in Fig. 3.8, the direction of the longitudinal current remains constant on
nearly all field lines passing through the black hole horizon. Therefore, within this
model, the current closure is to take place through the accretion disk as well.

Problem 3.10 Show that the general solution having the asymptotic behavior
Ψ ∝ r (1 − cos θ ) at infinity and no singularity on the horizon has the form

X (r, θ ) = r (1 − cos θ ) + rg(1 + cos θ ) [1 − ln(1 + cos θ )]

− 2rg(1 − ln 2) + akrg(1 − cos θ ), (3.103)

ΩF(rg, θ ) = (3.104)

ΩH sin2 θ [1 + ln(1 + cos θ ) + ak]

4 ln 2 + sin2 θ + [sin2 θ − 2(1 + cos θ )] ln(1 + cos θ ) + ak(2 − 2 cos θ + sin2 θ )
,

where ak is an arbitrary constant. In the general case, Ψ∗ = πCrg(2 ln 2 + ak).
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Fig. 3.8 The profiles of the
angular velocity ΩF(Ψ )
(3.101) and the longitudinal
current I (Ψ ) (3.99) in the
vicinity of the horizon for the
case of the parabolic
magnetic field. Dashed lines
indicate the solutions (3.103)
and (3.104) for ak = −1.
Here IA = ΩHΨ∗/4π

Problem 3.11 Show that for ak = −1, the total current within the field lines
passing through the black hole is zero (see Fig. 3.8).

3.4.2.3 Slowly Rotating Black Hole Located in the Center of the Limited Disk

Unlike the monopole magnetic field, the more realistic case in which the black hole
is in the center of the well-conducting disk of the inner radius b (see Fig. 3.10) was
studied in Beskin et al. (1992a) (see also Beskin, 1997). It was also assumed that the
magnetic field lines do not penetrate the accretion disk. Then the stream function Ψ
for the nonrotating black hole is described by formula (3.39). In particular, in the
vicinity of the black hole the magnetic field is homogeneous

Ψv ≈ 1

2
Ψ0

r2 sin2 θ

b2
, (3.105)

and at large distances r � b still remains a monopole one.
If we again consider the slowly rotating black hole and assume that for a � M

the perturbation of the magnetic field is small, we can find the values of the angular
velocity ΩF(Ψ ) and the longitudinal current I (Ψ ), which satisfy this assumption.
The only change here is that in the “boundary condition on the horizon” we should
substitute the homogeneous magnetic field (3.105) for the monopole one. As a
result, instead of relation (3.86), the condition (3.52) yields

4π I (Ψ ) = 2Ψ
√

1 − Ψ/Ψ∗ [ΩH − ΩF(Ψ )]. (3.106)

Here Ψ∗ = 0.5Ψ0r2
g/b2 is a magnetic flux passing through the black hole hori-

zon. The condition at large distances is again defined by relation (3.85). Combining
(3.85) and (3.106), we get for Ψ∗ � Ψ0 (Beskin et al., 1992a) (see Fig. 3.9)
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Fig. 3.9 The angular velocity
profiles ΩF(Ψ ) (3.107) and
the longitudinal current I (Ψ )
(3.108) depending on the
stream function Ψ for
rg/b � 1. Here again
IA = ΩHΨ∗/4π

*

ΩF(Ψ ) =
√

1 − Ψ/Ψ∗
1 + √

1 − Ψ/Ψ∗
ΩH, (3.107)

4π I (Ψ ) = 2Ψ

√
1 − Ψ/Ψ∗

1 + √
1 − Ψ/Ψ∗

ΩH. (3.108)

Relations (3.107) and (3.108) specify the structure of the electric field and the lon-
gitudinal currents in the black hole magnetosphere. To determine the magnetic field
perturbation we would have to solve the partial differential equation in which we
fail to carry out the separation of variables. This is because of the complex form
of the zero approximation, which is not as simple as in the case of the monopole
magnetic field. It is important, however, that, as in the monopole magnetic field, the
magnetic surface perturbation problem is separated from the problem of determining
the angular velocity ΩF(Ψ ) and the longitudinal current I (Ψ ).

We see that in the case studied, I (Ψ∗) = 0. Consequently, in the above model,
within the magnetic field lines passing through the black hole horizon, an inverse
bulk current inevitably occurs, and the total current flowing in the domain Ψ < Ψ∗
is thus automatically equal to zero. Accordingly, the condition ΩF(Ψ∗) = 0 shows
that the total electric charge in this region is zero as well. Further, as seen from
Fig. 3.10, the longitudinal current region generates a “jet” at an angle of

θjet = arccos

(
1 − Ψ∗

Ψ0

)
≈ rg

b
. (3.109)

The energy transported by the electromagnetic field Wtot = (1/2π )
∫
ΩF(Ψ )I (Ψ )dΨ

within the “jet” is close to the maximum possible one (Wtot = 0.489 WBZ), because
the angular velocity (3.107) is close to ΩH/2. Besides, Fig. 3.10 shows the form of
the surfaces ρGJ = 0, in the vicinity of which, as shown above, the effective plasma
generation is possible. This surface is always located between the inner and outer
Alfvén surfaces, which is necessary for the plasma to effectively fill the black hole
magnetosphere.
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Fig. 3.10 Magnetosphere
structure and the form of the
surfaces ρG J = 0 (dashed
lines) for the black hole
located in the center of the
limited disk. The total electric
current (contour arrows)
within “jets” is zero

3.4.3 Magnetosphere Models

Thus, for the black hole magnetosphere it has now become possible to obtain the
analytic solutions of the force-free equation for several model cases only. For exam-
ple, the solutions with zero longitudinal currents have not been constructed yet. On
the other hand, a number of numerical solutions (Fendt, 1997a; Fendt and Geiner,
2001; Komissarov, 2001; Uzdensky, 2004; Komissarov, 2004b) make it possible
to point to some general properties typical of the black hole magnetosphere. One
should note that for the strongly magnetized flows (when the energy density of the
electromagnetic field is much higher than the particle energy density), the magne-
tosphere structure should be close to the force-free one. In particular, if the longitu-
dinal current is much weaker than the critical one, with the particle mass taken into
account, there is light surface in the magnetosphere beyond which the GS equation
method cannot be applied. Therefore, the force-free solutions allow one to judge the
general case corresponding to the full GS equation version.

We emphasize that when discussing the concrete astrophysical objects the prob-
lem of the substantial role of the GR effects is not always obvious. There are, for
example, indications that the jets from young stellar objects are connected with the
accretion disk rather than the central rotating star (Pelletier and Pudritz, 1992). If
the jet generation mechanism in AGN is of the same character as that of the young
stars, it is not improbable that the black hole plays only a passive role in the ejection
process and the GR effects are not of vital importance for understanding the nature
of their generation.

On the other hand, the GR effects may play an important role in most compact
objects. First of all, this is evident from the hard spectra and the annihilation lines
in the galactic X-ray sources that are candidates for solar mass black holes (Camen-
zind, 2007). These properties are never observed in X-ray sources in which the
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accretion is known to occur onto the neutron star rather than the black hole. These
may also include the superluminal motion in quasars (Begelman et al., 1984), which
are, possibly, connected with the relativistic electron–positron plasma outflow along
with the weakly relativistic wind (Sol et al., 1989; Henri and Pelletier, 1991; Rees,
1997). All this is in favor of the existence of the extra particle acceleration mecha-
nism in which the GR effects may be of vital importance (Okamoto, 1992; Hirotani
and Tomimatsu, 1994; Horiuchi et al., 1995).

We now proceed to the discussion of the two-dimensional magnetosphere struc-
ture of the black hole. Unfortunately, we are still far from the construction of a
consistent theory even in the force-free approximation. Therefore, we can now point
to only the general properties of the black hole magnetosphere. It is clear, for exam-
ple, that of key importance here is the poloidal magnetic field topology, because, as
was mentioned, the particle outflow and the electromagnetic energy transport occur
exactly along the poloidal magnetic field. There is no complete clarity just at this
point. Therefore, different versions, in which the magnetic field structure differs
appreciably, are being discussed now.

The simplest geometry is present if there was, initially, the quasihomogeneous
magnetic field (see Fig. 3.11a). One can assume that even if the field is amplified
in the accretion disk, its geometry, as a whole, retains and the magnetic field lines
extend to infinity. As a result, the plasma can freely outflow beyond the magneto-
sphere. The exact solutions studied in the previous section do have this structure.
On the other hand, it is obvious that as the magnetic field is generated in the accre-
tion disk, there can exist another family of field lines passing through the black
hole horizon and crossing the accretion disk in the vicinity of the black hole rather

Fig. 3.11 Numerical solutions obtained for the force-free black hole magnetosphere. (a) The mag-
netosphere with quasimonopole magnetic field at infinity (Fendt, 1997a). (b) An example of the
case in which magnetic field lines passing through the horizon do not extend to infinity (Uzdensky,
2005) [Reproduced by permission of the AAS, Fig. 5 from Uzdensky, D.A.: Force-free magneto-
sphere of an accretion disk-black hole system. II. Kerr geometry. ApJ 620, 889–904 (2005)]
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than extending to infinity (see Fig. 3.11b). In particular, these field lines no longer
pass through the outer singular surfaces. This situation was actively studied in the
numerical computations of the accretion onto the neutron star (Ghosh and Lamb,
1979; Bardou and Heyvaerts, 1996) and the young stars (Ustyugova et al., 2000;
Fendt and Elstner, 2000). In the nonstationary regime, this case corresponds to a
“magnetic tower” (Lynden-Bell, 2003) when the disk rotation generates the toroidal
magnetic field. Recently, this geometry not infrequently has been discussed for the
magnetosphere of rotating black holes as well (Uzdensky, 2004). As a result, the
complete problem of the magnetosphere structure of the rotating black hole is to be
constructed by taking into account the existence of both groups of magnetic field
lines whose properties, as we saw, greatly differ from one another. Here, however,
there are a lot of problems for the closed field lines connecting various parts of
the accretion disk, or the accretion disk with the black hole horizon (Fendt, 1997a;
Tomimatsu and Takahashi, 2001; Li, 2003; van Putten and Levinson, 2003), or the
central star (Bardou and Heyvaerts, 1996).

Ω = HK
Ω

Fig. 3.12 Interaction between the black hole and the accretion disk due to magnetic field lines. In
those regions, where the disk rotates with the angular velocity exceeding that of the black hole,
the electromagnetic energy flux (shaded arrows) is from the disk to the black hole. In the domain,
where the condition ΩF < ΩK is satisfied, the black hole rotational energy is transported to the
accretion disk

Indeed, let us consider, for example, the magnetic field lines passing through
both the black hole horizon and the accretion disk (see Fig. 3.12). Clearly, for the
well-conducting disk the angular velocity ΩF is to be close to the Keplerian angular
velocity ΩK in the domain of intersection of the field line and the disk. The EMF is
only due to an insignificant incompatibility between the angular velocities ΩF and
ΩK. As a result, if the disk rotates with the angular velocity exceeding that of the
black hole, the electromagnetic energy flux is always directed from the disk to the
black hole. In this case, the angular velocity of the black hole increases.

However, if the black hole rotates rather fast, it is possible to satisfy the condition
ΩF < ΩH for the field lines passing through the accretion disk in the areas where
the Keplerian velocity is rather small. This implies that the rotational energy of the
black hole along these field lines is transported from the black hole to the accre-
tion disk (Li, 2003). This, in turn, should result in an extra energy release which,
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in principle, can be detected. This heating mechanism of the inner regions of the
accretion disk was used when discussing the extremely broad iron line in the bright
Seyfert galaxy MCG–6–30–15 (Wilms et al., 2001). Accordingly, the reverse energy
flux is to flow inside the “magnetic tower” as well (Sherwin and Lynden-Bell, 2007).

Some more comments on the black hole magnetosphere structure are necessary.
It is clear, first of all, that for the zero longitudinal currents the solution cannot be
extended not only beyond the outer (as was the case in the neutron star magneto-
sphere) but also inside the inner light cylinder. As a result, in the vicinity of the
black hole, there must occur a region, in which the electric field is larger than the
magnetic one (see, e.g., Komissarov, 2003). Unfortunately, with account taken of
the GR effects, the separation of variables in the GS equation is impossible and,
therefore, the above-discussed methods are not applied here.

Further, for the fast rotation of the black hole the Wald solution (3.30) and
(3.32) for the vacuum magnetosphere demonstrates the magnetic field expulsion
into the ergosphere (Thorne et al., 1986). This could result in the additional factor
(1 − a2/M2) in expression (3.68) dramatically diminishing the energy losses for the
fast-rotating black hole. But, in reality, as shown in Fig. 3.13a, for the plasma-filled
magnetosphere of the black hole, all magnetic field lines intersecting the inner light
cylinder α2 = (ΩF − ω)2� 2 do not pass through the equatorial plane but are to
intersect the black hole horizon (Beskin, 2003). There is a complete analogy here
with the radio pulsar magnetosphere when the field lines passing beyond the light
cylinder do not intersect the equatorial plane (Fig. 3.13b). Therefore, the energy
release for the critically rotating black hole coincides with expression (3.65) in
order of magnitude. The magnetic field structure shown in Fig. 3.13a was recently

a b

Fig. 3.13 a The magnetosphere structure of the fast-rotating black hole submerged in the exter-
nal homogeneous magnetic field. Magnetic field lines passing through the inner “light cylinder”
do not intersect the equatorial plane but bend to the black hole. b Radio pulsar magnetosphere
structure. The field lines beyond the light cylinder do not cross the equatorial plane but extend to
infinity (Beskin, 2003)
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Fig. 3.14 The structure of the
force-free magnetosphere of
the fast-rotating black hole
submerged in the external
homogeneous magnetic
field (Komissarov and
McKinney, 2007). It contains
the equatorial current sheet
inside the ergosphere

obtained numerically (Komissarov, 2005; Komissarov and McKinney, 2007) (see
Fig. 3.14).

Finally, it is important that the GS equation, as was noted, holds true for the black
hole horizon only if the electric field remains smaller than the magnetic one. On the
other hand, relation (3.52) shows that on the horizon itself the electric field is equal
to the magnetic one. Therefore, one can use the force-free approach up to the black
hole horizon if the following condition is satisfied (Beskin and Kuznetsova, 2000a):

d

dr
(B2 − E2)

∣∣∣∣
r=rg

> 0. (3.110)

Using the definitions of the electric and magnetic fields, we can rewrite the condition
(3.110) as (Hirotani et al., 1992)
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where the parameter
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PJ = −rg

∂Ψ/∂r |r=rg

∂Ψ/∂θ |r=rg

(3.112)

depends on the magnetic field structure in the vicinity of the horizon. Hence, the
condition (3.111) can greatly confine the magnetic field structure in the vicinity of
the black hole horizon. As shown in Fig. 3.15, the homogeneous magnetic field
Ψ (r, θ ) ≈ r2 sin2 θ cannot be the solution to the force-free equation near the equa-
torial plane, whereas the monopole (radial) magnetic field can occur at any angular
velocity. In a sense, this result can be regarded as the confirmation of the pattern
shown in Fig. 3.14, where, as we saw, the field lines of the external homogeneous
magnetic field turn to the black hole horizon.

Fig. 3.15 The critical polar angle θcr on the black hole horizon within which the homogeneous
magnetic field can be the solution to the GS equation in the vicinity of the black hole (Hirotani
et al., 1992) (Reproduced by permission of the AAS, Fig. 1 from Hirotani, K., Takahashi, M.,
Nitta, S., Tomimatsu, A.: Accretion in a Kerr black hole magnetosphere – Energy and angular
momentum transport between the magnetic field and the matter. ApJ 386, 455–463 (1992))

On the other hand, one should remember that, with the finite particle mass taken
into account, as in the hydrodynamical case, the hyperbolic domain of the full GS
equation inevitably occurs, which, actually, cannot be described by the force-free
approximation. Therefore, it would make no sense to analyze in detail the behavior
of the solution to the force-free equation (3.49) in the vicinity of the horizon. More-
over, it is easy to show that attempts to describe the magnetic field by the force-free
approximation can lead to an incorrect result. The appropriate example will be given
in Sect. 4.4.6.

3.5 Conclusion

To sum up, we emphasize that all the above examples are certainly too simplified.
Unfortunately, they are so far the only exact solutions describing the inner regions
of the rotating black hole magnetosphere. Nevertheless, the solutions obtained are
capable of formulating several key statements that allow one to judge the basic prop-
erties of the central engine.
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First of all, as we saw, in all the cases, in which the field lines extend to infinity,
the angular velocity ΩF proved close to half the angular velocity of the black hole.
This implies that the energy release efficiency of the rotating black hole is close
to a maximum one. Since, according to the papers dealing with the analysis of the
secular evolution of accreting black holes (Moderski and Sikora, 1996; Moderski
et al., 1998; Wang et al., 2002), their angular velocity can really be close to the limit
value a ∼ M , one can conclude that the BZ process can play an appreciable role in
the energy release mechanism of the central engine.

On the other hand, the above exact solutions, as was noted, correspond to the
simplest magnetic field topology when there are no field lines connecting the event
horizon of the black hole with the accretion disk (a torus, etc.). And in the pres-
ence of these field lines there are new interesting possibilities. Finally, recall once
again that the studied solutions corresponded to the force-free approximation in
which the longitudinal current I is, in fact, a free variable. Therefore, here, within
the force-free statement of the problem, the value of the current had to be chosen
from some extra condition on the external load and the “surface conductivity on the
horizon” (Thorne et al., 1986; Li, 1995). In the next chapter, we will see how this
problem is solved by the full GS equation version, with the finite particle mass taken
into account.



Chapter 4
Full MHD Version—General Properties

Abstract The full MHD version of the Grad–Shafranov equation combines a well-
conducting hydrodynamical medium and an electromagnetic field. Within this ver-
sion, we can rather simply describe both the transformation of the energy of the
electromagnetic field into particles and the whole magnetic field structure. As a
result, one of the main problems in theory—the construction of the current system
and the determination of the energy losses—can be posed in a mathematically rigor-
ous way. This chapter deals with the general properties of the full MHD version of
the GS equation. As in the presence of the magnetic field, as the number of normal
modes increases, the structure of the GS equation becomes much more complicated
than that in the hydrodynamical case; the properties of the critical surfaces are to
be described in detail. This makes it possible to formulate some important theorems
on the general properties in the magnetosphere of compact objects. In particular, it
is shown that, within the full MHD approach, the electric current circulating in the
magnetosphere is no longer a free parameter but is to be determined from the critical
conditions on the singular surfaces. Asymptotic behavior of the flows at infinity and
in the vicinity of the black hole horizon is considered in detail as well.

4.1 Physical Introduction—Magnetohydrodynamic Waves

Before formulating the basic equations related to the full version of the GS equation,
let us recall the basic properties of MHD waves that can propagate in the magnetized
plasma. Indeed, as was demonstrated in Chap. 1, the structure of the hydrodynam-
ical GS equation greatly depends on the location of the sonic surface connected
with the ordinary sound—the only normal mode capable of propagating in the non-
magnetized medium. In the presence of the magnetic field, as the number of normal
modes increases, the GS equation structure becomes much more complicated. In this
section, we consider only the nonrelativistic case for simplicity, the corresponding
general formulae are given below.

Within ideal one-fluid magnetohydrodynamics, we deal with eight unknowns—
two thermodynamic functions and two vector quantities, viz., the velocity v and the
magnetic field B. All other characteristics, i.e., the electric field E = −v × B/c, the
charge density  e = ∇ · E/4π , etc., can be expressed in terms of these quantities.

V.S. Beskin, MHD Flows in Compact Astrophysical Objects, Astronomy and
Astrophysics Library, DOI 10.1007/978-3-642-01290-7 5,
C© Springer-Verlag Berlin Heidelberg 2010
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However, when considering the wave processes there are, actually, only seven
independent variables. Indeed, let us consider a wave propagating along the z-axis
at an angle of θ with the external magnetic field B(0). Choosing the corresponding
coordinate system, we can always assume that the external homogeneous magnetic
field lies in the xz-plane (B(0)

y = 0) and the undisturbed velocity is zero (v(0) = 0).
Further, we, as usual, consider the small perturbations in the form

ρ = ρ(0) + ρ ′ exp(−iωt + ikz), (4.1)

s = s(0) + s ′ exp(−iωt + ikz), (4.2)

v = v′ exp(−iωt + ikz), (4.3)

B = B(0) + b exp(−iωt + ikz), (4.4)

etc., i.e., we assume that all the disturbed quantities depend only on the time t and
the coordinate z as exp(−iωt + ikz), where k is a scalar wave vector (the index “0”
is omitted in the following). As a result, Maxwell’s equation ∇ · B = 0 gives the
condition kbz = 0. This implies that the longitudinal disturbance of the magnetic
field can be eliminated by the proper choice of the coordinate system.

The other seven equations, i.e.,

• the continuity equation

∂ρ ′

∂t
+ ρ

∂v′
z

∂z
= 0, (4.5)

• the energy equation

∂s ′

∂t
= 0, (4.6)

• three components of the Euler equation

∂v′
x

∂t
− Bz

4πρ

∂bx

∂z
= 0, (4.7)

∂v′
y

∂t
− Bz

4πρ

∂by

∂z
= 0, (4.8)

∂v′
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+ (∂P/∂s)ρ

ρ

∂s ′

∂z
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4πρ

∂bx

∂z
= 0, (4.9)

• and two components of Maxwell’s equation c∇ × E = −∂B/∂t

∂bx

∂t
− Bz

∂v′
x

∂z
+ Bx

∂v′
z

∂z
= 0, (4.10)

∂by

∂t
− Bz

∂v′
y

∂z
= 0, (4.11)
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in which we used the conditions v(0) = 0 and E = −v × B/c, can be rewritten as
one matrix equation (Akhiezer et al., 1975)

∂di

∂t
+ Aik

∂dk

∂z
= 0. (4.12)

Here the vector di and the matrix of the coefficients Aik have the form

di =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ ′

s ′

v′
x
v′

y

v′
z

bx

by

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Aik =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 ρ 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −Bz/4πρ 0
0 0 0 0 0 0 −Bz/4πρ

Pρ/ρ Ps/ρ 0 0 0 Bx/4πρ 0
0 0 −Bz 0 Bx 0 0
0 0 0 −Bz 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.13)

where Pρ = (∂P/∂ρ)s and Ps = (∂P/∂s)ρ .

Problem 4.1 Explain why the three-dimensional equation c∇ ×E = −∂B/∂t
yields only two equations for the disturbed values available in di .

Substituting in (4.12) the wave dependence exp(−iωt + ikz), we get

V di = Aikdk, (4.14)

where, by definition, V = ω/k is the phase velocity of the normal modes. Thus,
the dispersion equation defining the dispersion ω = ω(k, θ ) and the normal wave
polarization is written as

det (Aik − V Iik) = 0, (4.15)

where Iik is the unit matrix. Analyzing Eq. (4.15), we readily show that four dif-
ferent types of disturbances V(i), i = 1, 2, 3, 4, can propagate in the magnetized
plasma. These normal waves are

• the fast and slow magnetosonic waves

V 2
(1,2) = 1

2

(
V 2

A + c2
s

) ± 1

2

[(
V 2

A + c2
s

)2 − 4V 2
Ac2

s cos2 θ
]1/2

, (4.16)

• the Alfvén wave

V(3) = VA cos θ, ω(3) = ± kB√
4πρ

, (4.17)
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• and, finally, the entropy wave

V(4) = 0. (4.18)

Here

VA = B√
4πρ

(4.19)

is the so-called Alfvén velocity and the value c2
s = (∂P/∂ρ)s again corresponds to

the velocity of sound. As we see, three first normal waves turn to be doubly degen-
erated, because for v(0) = 0 the properties of two waves propagating in opposite
directions appear identical. In the general case, we have seven different values for
the phase velocities. In particular, for θ = 0

v(1,2,...,7) = v(0) ± V(1,2,3,4). (4.20)

It is convenient to show the properties of the normal waves on phase and group
polars which are the dependence of the phase V(i) and group vgr(∂ω/∂k)i velocities
on the angle between the external magnetic field B (it is directed along the horizontal
axis in all figures) and the wave vector k and group velocity vgr, respectively (see
Fig. 4.1). We see that the fast magnetosonic wave (i = 1) is a generalization of the
ordinary sonic wave to the case of the nonzero external magnetic field. On all polars,
it intersects the axes at the points with the coordinates

V(1)(θ = 0, π ) = max (VA, cs) , (4.21)

V(1)(θ = π/2, 3π/2) =
√

V 2
A + c2

s . (4.22)

Therefore, for the small magnetic fields VA � cs, its properties do not essentially
differ from those of ordinary sound. However, as we see, in the external magnetic
field, besides a fast wave, the slow magnetosonic wave i = 2 occurs, the properties
of which prove much more nontrivial. This is especially true for the group polar that
has the form of a swallow tail and is characterized not only by the outer point of
intersection with the X-axis

V(2)(θ = 0, π ) = min (VA, cs) , (4.23)

but also by the so-called cusp velocity

Vcusp = VAcs√
V 2

A + c2
s

, (4.24)
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Fig. 4.1 Phase (top) and group (bottom) polars of magnetohydrodynamic waves for weak (left) and
strong (right) magnetic fields. There are also shown Mach cones, the number of which depends on
the relation between the velocity of a disturbing body and the proper velocities of the MHD waves.
The magnetic field is directed along the horizontal axis

corresponding to the smallest velocity of this wave propagation. Both in the fast and
in the slow waves the disturbances affect both the density and the velocity of matter
and, therefore, it is generally difficult to excite them separately. Note also that at
zero temperature the slow wave is absent.

Further, the properties of the Alfvén waves i = 3 are close to those of an ordinary
string whose role here is played by the external magnetic field. As is evident from
their relation (4.17), the group velocity of the Alfvén waves

vgr = ± B√
4πρ

(4.25)

is always directed along the external magnetic field. Therefore, it is shown on
group polars by two points. Only the magnetic field by and velocity v′

y components
perpendicular to the plane, which contains the vectors B and k, are disturbed in this



232 4 Full MHD Version—General Properties

wave. The thermodynamic values are not disturbed. It is not surprising, therefore,
that the Alfvén wave exists at zero temperature. Finally, the entropy wave i = 4,
in which there are oscillations of only the density and the entropy (temperature) at
constant pressure, does not disturb the velocity and the magnetic field. In the system
of plasma at rest it is a standing wave (ω(4) = 0).

Problem 4.2 Show that the eigenvector of the Alfvén wave has the form di=
(0, 0, 0,−1, 0, 0,

√
4πρ).

Problem 4.3 Show that at any angles θ , the three conditions are satisfied:
V(2) ≤ V(3) ≤ V(1), V(1) ≥ cs, V(2) ≤ cs.

In the following it is important that the group polars indicate the velocity of the
energy (information) propagation and, therefore, are the fronts of disturbances prop-
agating from the point located in the polar center. Therefore, as in the case of ordi-
nary sound, the tangents to the group polar drawn from the point corresponding to
the proper velocity of a disturbing body are Mach cones occurring in the supersonic
motion. For the ordinary sound, these tangents can be drawn only if the velocity
of body is larger than the sound velocity cs. In the presence of the magnetic field,
these tangents can be drawn at any arbitrarily small velocity of bodies. However, the
number of Mach cones depends on the velocity of the disturbing body.

Indeed, as shown in Fig. 4.1, at large velocities, in the general case, there are
two Mach cones, one of which is tangent to the fast wave and the second one
to the slow wave. At smaller velocities, which, however, lie beyond the group
polar corresponding to the slow wave, there is only one Mach cone. However, at
velocities within the slow group polar, the number of cones is again equal to two.
Thus, one can make the unexpected conclusion that for the nonzero magnetic field
there is no minimum velocity of the disturbing body for which the Mach cones are
absent.

One should stress that the case, in which the body velocity is directed along the
magnetic field, is isolated. Here the Mach cone (and only one) exists only at rather
large velocities V > V(1) and also in the domain Vcusp < V < V(2). At velocities
satisfying the conditions V(2) < V < V(1) and V < Vcusp, the Mach cones are
absent. As we will see, this property is needed when specifying the structure of the
GS equation.

4.2 Relativistic Flows in the Kerr Metric

4.2.1 Integrals of Motion

We consider the full MHD version of the GS equation. This implies that in the
general energy–momentum conservation law ∇βT αβ = 0 the energy–momentum
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tensor should be written as a sum of the hydrodynamical and electromagnetic parts.
We are at once ready to write all equations in the Kerr metric (1.209), i.e., in the
most general axisymmetric stationary metric, because all the necessary values were
already given in Chaps. 2 and 3. In particular, the expressions for the electric and
magnetic fields remain the same as in the force-free approximation

B = ∇Ψ × eϕ̂
2π�

− 2I

α�
eϕ̂ , (4.26)

E = −ΩF − ω

2πα
∇Ψ (4.27)

(for the generally relativistic expressions we again take c = 1 and G = 1). It
is important that, as shown above, for the plasma-filled magnetosphere the electric
charge of the black hole is no longer a free parameter, but its value is so small that the
Kerr metric disturbance can be disregarded. As to the flat space, the corresponding
equations are obtained by the trivial substitution α → 1, ω → 0. Hereafter we do
not write these relations separately.

We first show how for the axisymmetric stationary flows, in the general case, five
integrals of motion on the magnetic surfaces occur. We assume, as before, that in
the magnetosphere there is enough plasma to screen the longitudinal electric field.
However, now instead of the relation E‖ = 0, we can write the more informative
frozen-in condition

E + v × B = 0, (4.28)

which fixes the electric field perpendicular to the magnetic field lines. Substituting
the expressions for the electric and magnetic fields in Maxwell’s equation (3.11),
we again conclude that ΩF must be constant on the magnetic surfaces (Ferraro
isorotation law):

ΩF = ΩF(Ψ ). (4.29)

Further, by virtue of the frozen-in condition (because in the stationary case the
electric field E has no toroidal component), we can conclude that the poloidal com-
ponent of the hydrodynamical velocity v and, hence, the four-velocity u must be
parallel to the magnetic field. It is convenient to take the factor of proportionality in
the form

up = η

αn
Bp, (4.30)

where η is a scalar function that has the meaning of the particle-to-magnetic flux
ratio. As a result, using the frozen-in condition again, we can write the four-velocity
of matter u as

u = η

αn
B + γ (ΩF − ω)

�

α
eϕ̂ , (4.31)
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where γ is the Lorentz factor of the medium (as measured by ZAMO). Accord-
ing to relation ∇ · (ηB) = 0 resulting from the continuity equation (1.247) and
Maxwell’s equation (3.10), the function η must also be constant on the magnetic
surfaces Ψ = const

η = η(Ψ ). (4.32)

Two integrals of motion are associated with the axisymmetric and stationary
character of the flows studied, which leads to the conservation of the total energy E
and the z-component of the angular momentum L

E = E(Ψ ) = ΩF I

2π
+ μη(αγ + ω�uϕ̂), (4.33)

L = L(Ψ ) = I

2π
+ μη�uϕ̂ . (4.34)

We see that both the energy and angular momentum fluxes consist of the contribu-
tion of the electromagnetic field and particles, the electromagnetic contribution fully
coinciding with the force-free limit, and the hydrodynamical contribution differs
from the hydrodynamical case only by the additional factor η(Ψ ). This factor results
from the different normalization in the expressions for the energy and momentum
fluxes, since expressions (1.251) and (1.252) in Chap. 1 correspond to the normal-
ization to the flow of matter dΦ. It is convenient to define the losses of the energy
Wtot and the angular momentum Ktot in the general MHD case by the relations

Wtot =
∫ Ψmax

0
E(Ψ )dΨ, (4.35)

Ktot =
∫ Ψmax

0
L(Ψ )dΨ, (4.36)

i.e., normalize to the unit magnetic flux. Finally, in the axisymmetric case, the isen-
tropy condition yields s = s(Ψ ), so that the entropy on one particle s(Ψ ) is, in fact,
the fifth integral of motion.

Problem 4.4 Find expression (4.31) for the hydrodynamical four-velocity u.

Problem 4.5 Show that

η(Ψ ) = dΦ

dΨ
. (4.37)

We show now that for the given five integrals of motion ΩF(Ψ ), η(Ψ ), s(Ψ ),
E(Ψ ), and L(Ψ ) and also the poloidal magnetic field Bp, we can restore the toroidal
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magnetic field Bϕ̂ and all the other plasma parameters. To do this, we use the con-
servation laws (4.33) and (4.34), which, along with the ϕ-component of Eq. (4.31),
yield (Camenzind, 1986)

I

2π
= α2L − (ΩF − ω)� 2(E − ωL)

α2 − (ΩF − ω)2� 2 − M2
, (4.38)

γ = 1

αμη

α2(E − ΩF L) − M2(E − ωL)

α2 − (ΩF − ω)2� 2 − M2
, (4.39)

uϕ̂ = 1

�μη

(E − ΩFL)(ΩF − ω)� 2 − LM2

α2 − (ΩF − ω)2� 2 − M2
, (4.40)

where now

M2 = 4πη2μ

n
. (4.41)

We readily see that the value M2 up to the coefficient α2 is the square of the
Mach number of the poloidal velocity up with respect to the poloidal component of
the Alfvén velocity

uA,p = Bp√
4πnμ

, (4.42)

i.e., M2 = α2u2
p/u2

Ap. In the following it is convenient to use exactly the value M2,
since it remains finite on the black hole horizon.

Since the relativistic enthalpy μ can be expressed in terms of two other thermo-
dynamic functions, it is convenient to write it as μ = μ(n, s). Thus, the definition
(4.41) allows us to express the concentration n (and, hence, the specific enthalpy μ)
as the function η, s, and M2. The value ∇μ by the general thermodynamic relation
(1.25) and definition (4.41) must be defined from the relation (Beskin and Pariev,
1993)

∇μ = c2
s

1 − c2
s

μ

(
2
∇η

η
− ∇M2

M2

)
+ 1

1 − c2
s

[
1

n

(
∂P

∂s

)
n

+ T

]
∇s. (4.43)

This implies that, along with five integrals of motion, the expressions for I , γ , and
uϕ̂ depend only on one additional value, i.e., the Mach number M. To determine
the Mach number M one should use the obvious relation γ 2 − u2

ϕ̂ = u2
p + 1,

which, according to expressions (4.39) and (4.40), can be rewritten as relativistic
Bernoulli’s equation

K

� 2 A2
= 1

64π4

M4(∇Ψ )2

� 2
+ α2η2μ2. (4.44)
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Here

A = α2 − (ΩF − ω)2� 2 − M2 (4.45)

is the Alfvén factor and

K = α2� 2(E − ΩFL)2
[
α2 − (ΩF − ω)2� 2 − 2M2

]
+M4

[
� 2(E − ωL)2 − α2L2

]
. (4.46)

Relations (4.38), (4.39), (4.40), and (4.44) are algebraic relations permitting us
to determine, though in implicit form, all the flow characteristics by the known
function field Bp (i.e., the known function Ψ ) and the five integrals of motion. One
should stress that at nonzero temperature they are extremely cumbersome, primarily,
because of the necessity to solve Eq. (4.43). For the cold plasma (s = 0, i.e., for μ =
const), Bernoulli’s equation (4.44) becomes an algebraic four-order equation by the
value M2. As shown below, this often helps one find asymptotic solutions. Equal-
ities (4.38), (4.39), (4.40), and (4.44) were analyzed in a great number of papers,
starting from the stellar (solar) wind (Weber and Davis, 1967; Mestel, 1968; Saku-
rai, 1990), where, certainly, their nonrelativistic limit was used, to the relativistic
pulsar wind (Michel, 1969; Ardavan, 1976; Okamoto, 1978), the hydrodynamical
and MHD accretion of matter onto the black holes (Camenzind, 1986; Punsly and
Coroniti, 1990b; Takahashi et al., 1990; Chakrabarti, 1990). Below, we give several
general assertions that can be derived directly from the analysis of the relations
(4.38), (4.39), and (4.40).

• Within the Alfvén surface (A � 1), we have I ≈ 2πL , i.e., the current I remains
constant on the magnetic surfaces. Consequently, the current closure is impossi-
ble within the Alfvén surface.

• Accordingly, within the Alfvén surface

γ ≈ α(E − ΩF L)

μη
≈ γin. (4.47)

Hence, the particle acceleration within the Alfvén surface is also impossible.
• The toroidal velocity vϕ̂ = uϕ̂/γ within the Alfvén surface is

vϕ̂ ≈ ΩF�. (4.48)

Hence, the full plasma corotation is to occur here.
• Conversely, beyond the outer Alfvén surface we have

I

2π
= ΩF E

Ω2
F + M2�−2

. (4.49)
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For the magnetically dominated flows, when the contribution M2 can be disre-
garded in the denominator, the current I , as was expected, still remains an integral
of motion. Therefore, the current closure is possible for the weakly magnetized
plasma only.

• Further, since L ≈ ΩF�
2(rA)E (see the numerator in (4.38)), beyond the outer

Alfvén surface the toroidal velocity behaves as vϕ̂ ∝ �−1.
• Finally, in the vicinity of the horizon the physical component of the toroidal four-

velocity remains finite, whereas the Lorentz factor behaves as γ ∝ α−1. Thus,
as in the hydrodynamical case, the radial component of the particle velocity (as
measured by ZAMO) for α → 0 tends to the velocity of light and the other
velocity components to zero.

4.2.2 Singular Surfaces

4.2.2.1 Alfvén Surface

Algebraic relations (4.38), (4.39), (4.40), and (4.44) make it possible to define the
singular surfaces in the MHD flows studied, on which the poloidal velocities vp

become equal to the intrinsic velocities of the axisymmetric disturbances capable of
propagating in plasma. The Alfvén surface A is defined from the vanishing condition
of the denominator A (4.45) in algebraic relations (4.38), (4.39), and (4.40)

A = 0. (4.50)

In the force-free limit M2 → 0 the Alfvén surface coincides with the light cylinder.
By definitions (4.41) and (4.50), we find that on the Alfvén surface

u2
p = u2

A,p

[
1 − (ΩF − ω)2� 2

α2

]
, (4.51)

which in the nonrelativistic limit naturally coincides with the condition vp = VA

(4.17). As shown in Weber and Davis (1967), on the ur –r -plane, it is a point of
higher order than, for example, a saddle or a focus. On the other hand, it turned out
that all trajectories with the positive energy square E2 pass through it. This implies
that there is no singularity in algebraic relations (4.38), (4.39), and (4.40) them-
selves, and the regularity condition (the zero equality of the numerators for the zero
denominator) specifies the location of the Alfvén surface only. On the other hand,
as will be shown, the GS equation itself has a singularity on the Alfvén surface.

4.2.2.2 Fast and Slow Magnetosonic Surfaces

The fast and slow magnetosonic surfaces F and S are most easily defined as
singularities in the expression for the gradient of the Mach number M. Indeed,
using relations (4.44), (4.45), and (4.46), which can be rewritten as (∇Ψ )2 =
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F(M2, E, L , η,ΩF, μ), where

F = 64π4

M4

K

A2
− 64π4

M4
α2� 2η2μ2, (4.52)

we find

∇kM2 = Nk

D
, (4.53)

where now

Nk = − A

(∇Ψ )2
∇ iΨ · ∇i∇kΨ + A

2

∇′
k F

(∇Ψ )2
. (4.54)

Here the operator ∇′
k again acts on all values except for M2. The denominator D

can be rewritten as

D = A

M2
+ α2

M2

B2
ϕ̂

B2
p

− 1

u2
p

A

M2

c2
s

1 − c2
s

, (4.55)

where c2
s = 1/μ(∂P/∂n)s is the velocity of sound. We emphasize that when differ-

entiating ∇′
a F in (4.54) we should use relation (4.43), since expression (4.52) for F

comprises μ. The zero condition of the denominator in expression (4.53),

D = 0, (4.56)

specifies the fast and slow singular surfaces. Indeed, using definition (4.41), we find
that D = 0 for

(up)2
1,2 = 1

2

(
Wu2

A,p + c2
s

1 − c2
s

)

±1

2

[(
Wu2

A,p + c2
s

1 − c2
s

)2

− 4

(
1 − (ΩF − ω)2� 2

α2

)
c2

s u2
A,p

1 − c2
s

]1/2

, (4.57)

where

W = 1 − (ΩF − ω)2� 2

α2
+ B2

ϕ̂

B2
p

, (4.58)

and uA,p = Bp/
√

4πnμ, i.e., is again defined by the poloidal component of the mag-
netic field. In the nonrelativistic approximation, relation (4.57) naturally becomes
expression (4.16)
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(vp)2
1,2 = 1

2

(
V 2

A + c2
s

) ± 1

2

√(
V 2

A + c2
s

)2 − 4c2
s V 2

A cos2 θ, (4.59)

where again VA = B/
√

4πρ (ρ is the mass density) and cos θ = Bp/B. Otherwise,
a singularity occurs when the poloidal velocity becomes equal to that of the fast
or slow magnetosonic wave. For the cold plasma cs = 0, the slow magnetosonic
velocity is zero (Akhiezer et al., 1975), so that, in this case, the slow magnetosonic
surface is absent. The fast and slow surfaces, unlike the Alfvén one, are saddle
points, i.e., the transonic solutions exist only for a certain connection between the
integrals of motion. They result from the regularity condition

Nr = 0; Nθ = 0 (4.60)

for D = 0.
The regularity conditions (4.56) and (4.60), as we already saw in the example of

the hydrodynamical flows, play the key role in the construction of analytic solutions
to the GS equation. Therefore, we give the basic properties of the denominator D
specifying, in particular, the locations of the fast and slow magnetosonic surfaces.

• As seen from (4.55), for the zero toroidal magnetic field Bϕ̂ = 0, the condition
D = 0 coincides with the Alfvén condition A = 0. This property immediately
follows from the phase polar structure shown in Fig. 4.1. Indeed, as was noted,
the axisymmetry condition permits all disturbances to propagate in the poloidal
plane only. Hence, the poloidal velocity, according to (4.31), must be parallel to
the magnetic field. When a wave propagates along the magnetic field, the Alfvén
wave coincides with one of the sonic polars. Therefore, the important conclusion
is that on the rotation axis, where the toroidal magnetic field is obviously absent,
the Alfvén and one of the sonic surfaces must be tangent to one another.

• Within the hydrodynamical limit M → ∞ (η → ∞), we turn to expression
D = −1 + c2

s /u2
p(1 − c2

s ) (1.262) and for the small velocities to nonrelativistic
expression D = −1 + c2

s /v
2
p (1.112).

• As shown in the next section, D = −1 on the black hole horizon. This implies
that the external subsonic space D > 0 is automatically separated from the event
horizon by the hyperbolic domain −1 < D < 0. Below, this most important
property is considered in detail.

• The denominator D can also be rewritten as

D = −1 + α2(B2 − E2)

M2 B2
p

− 1

u2
p

A

M2

c2
s

1 − c2
s

. (4.61)

Hence, in any case at zero temperatures, the flow crosses the fast magnetosonic
surface in the field of application of the approach |B| > |E| studied.
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Problem 4.6 Show that on the fast magnetosonic surface the condition
|B| > |E| is satisfied at nonzero temperatures as well.

4.2.2.3 Cusp Surface

As we will see, the GS equation has another singular surface—the cusp surface C
defined from the condition D = −1. This surface is associated with the singularity
occurring on the group polar as a cusp point for a slow magnetosonic wave (see
Fig. 4.1). As a result, we obtain for the corresponding velocity

u2
cusp, p = u2

A,p

[
α2 − (ΩF − ω)2� 2

]
c2

s[
α2 − (ΩF − ω)2� 2 + α2 B2

ϕ̂/B2
p

]
u2

A,p(1 − c2
s ) + α2c2

s

. (4.62)

Within the nonrelativistic limit, this expression coincides with (4.24). Indeed, as
shown in Fig. 4.1, the cusp singularity propagates along the magnetic field. The sin-
gularity in the axisymmetric case, as was seen, occurs when the poloidal velocities
and the velocities of normal modes are equal, with which the nonrelativistic limit of
Eq. (4.62) is associated:

ucusp,p = uA,pcs√
u2

A + c2
s

. (4.63)

The existence of the cusp surface, in the general case, does not provide for additional
regularity conditions.

4.2.2.4 Light Cylinder and Light Surface

The light cylinder RL is a surface on which the electric field |E| is equal to the
poloidal component of the magnetic field |Bp|. According to (4.45) and (4.50), far
from gravitating bodies it is located at a distance of � = RL = 1/ΩF. In the case
of the black hole magnetosphere, there is another “light cylinder” located on the
surface α = |ΩF − ΩH|� . No additional regularity condition is to be specified on
the light cylinder. Note also that since M2 > 0, the Alfvén singularity does not
coincide with the light cylinder. Both for the outer and inner families of critical
surfaces, the flow first crosses the Alfvén surface and then the light cylinder.

Finally, as was noted, the characteristic surface is the light surface SL on which
the electric field |E| is equal to the magnetic field |B|. The light surface is similar
to a limiting line; in ordinary hydrodynamics it specifies the natural boundary of a
continuous flow.

Thus, the plasma with nonzero temperature in its motion first crosses the cusp
and the slow magnetosonic surfaces, then the Alfvén surface, the light cylinder,
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afterward the fast magnetosonic surface. The light surface (if any) is located even
at larger distances. On the other hand, the GR effects give rise to the second family
of singular surfaces in the vicinity of the black hole horizon. Of great importance is
the fact that under the condition of the energy release by the rotating black hole the
outer Alfvén surface (through which all trajectories pass) corresponds to the values
of ur > 0, i.e., the values of the outflowing plasma, whereas the inner Alfvén surface
corresponds to the value of ur < 0, i.e., the value of the accretion (Takahashi et al.,
1990) (this theorem is proved below). But this contradicts the assumption of the
constancy of the function η on the field lines Ψ = const. Consequently, the plasma
flow in the black hole magnetosphere (to be exact, on the field lines passing through
the horizon) cannot be continuous and we must consider the plasma generation
regions in which the GS equation is not applied. Clearly, the above discussion is
not pertinent to the hydrodynamical accretion regime for which the Alfvén surface
is absent (the limiting process from the MHD regime to hydrodynamics is discussed
in detail in Takahashi (2002)).

4.2.3 Grad–Shafranov Equation

We now proceed to the discussion of the GS equation—the equilibrium equation
for the magnetic surfaces. Having written the poloidal component of the energy–
momentum conservation law (which requires a lot of efforts, because the total num-
ber of terms in the case of the Kerr metric is about a hundred), we again see that
this vector equation reduces to a scalar second-order equation multiplied by ∇kΨ .
In compact form, it can be written as (Nitta et al., 1991; Beskin and Pariev, 1993)

1

α
∇k

{
1

α� 2
[α2 − (ΩF − ω)2� 2 − M2]∇kΨ

}
+ ΩF − ω

α2
(∇Ψ )2 dΩF

dΨ

+ 64π4

α2� 2

1

2M2

∂

∂Ψ

(
G

A

)
− 16π3μn

1

η

dη

dΨ
− 16π3nT

ds

dΨ
= 0, (4.64)

where

G = α2� 2(E − ΩF L)2 + α2M2 L2 − M2� 2(E − ωL)2. (4.65)

Substituting in (4.64) the term ∇kM2, by definitions (4.53) and (4.54), we finally
get



242 4 Full MHD Version—General Properties

A

[
1

α
∇k

(
1

α� 2
∇kΨ

)
+ 1

α2� 2(∇Ψ )2

∇ iΨ · ∇kΨ · ∇i∇kΨ

D

]

+ 1

α2� 2
∇′

k A · ∇kΨ − A

α2� 2(∇Ψ )2

1

2D
∇′

k F · ∇kΨ

+ΩF − ω

α2
(∇Ψ )2 dΩF

dΨ
+ 64π4

α2� 2

1

2M2

∂

∂Ψ

(
G

A

)

−16π3μn
1

η

dη

dΨ
− 16π3nT

ds

dΨ
= 0, (4.66)

where the gradient ∇′
k again acts on all values except for M2 and the derivative

∂/∂Ψ on the integrals of motion only. Formula (4.66) defines, in general form, the
GS equation describing the equilibrium of the magnetic surfaces. Recall once again
that Eq. (4.66) comprises only the stream function Ψ and five integrals of motion.
Indeed, the thermodynamic values by the equation of state and definitions (4.41)
and (4.43) can be expressed in terms of the function s(Ψ ), the value η(Ψ ), and
the square of the Mach number M2. The value M2 itself, because of Bernoulli’s
equation (4.44), is expressed, though implicitly, in terms of the gradient (∇Ψ )2 and
five integrals of motion. The physical root of (4.44), certainly, is to be chosen. As to
the classical GS equation

r2 sin2 θ∇k

(
1

r2 sin2 θ
∇kΨ

)
+ 16π2 I

dI

dΨ
+ 16π3r2 sin2 θ

dP

dΨ
= 0, (4.67)

i.e., the equation describing, in the nonrelativistic case (α = 1, ω = 0), the static
(v = 0, i.e., γ = 1) axisymmetric configurations is derived from (4.66) in the limit
ΩF → 0 (which corresponds to the infinitely distant light cylinder RL → ∞), L →
0, and η → 0. In this case, as seen from definitions (4.41) and (4.55), also M2 → 0,
D−1 → 0, and E → μη, while the current I and the enthalpy μ (and, hence, any
other thermodynamic function) become integrals of motion. The hydrodynamical
version of the GS equation (1.115) studied in Chap. 1 can be deduced in the limit
Ψ → 0, η → ∞, when, however, the product ηΨ ∼ Φ remains finite. Formally,
this limit corresponds to the substitution of Ψ → Φ and η → 1.

The GS equation (4.66) is a second-order equation linear with respect to higher
derivatives. Otherwise, it can be written in canonical form

A∂2Ψ

∂r2
+ 2B ∂2Ψ

∂r∂θ
+ C ∂

2Ψ

∂θ2
+ F = 0, (4.68)

where
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A ∝ A

[
D + (∇r̂Ψ )2

(∇Ψ )2

]
, (4.69)

B ∝ A
(∇r̂Ψ )(∇θ̂Ψ )

(∇Ψ )2
, (4.70)

C ∝ A

[
D + (∇θ̂Ψ )2

(∇Ψ )2

]
. (4.71)

The expression F does not contain the second derivatives of Ψ . As one can
check,

AC − B2 ∝ A2 D(D + 1). (4.72)

Therefore, as was expected, the GS equation varies from an elliptic to a hyperbolic
type on the singular surfaces on which the poloidal velocity of matter becomes equal
either to the fast or slow magnetosonic velocity (D = 0) or to the cusp velocity
(D = −1). On the Alfvén surface A = 0, the type of the equation does not change.
Nevertheless, the Alfvén surface is still the singular surface of the GS equation,
since the regularity conditions should be satisfied on it

1

α2� 2
∇′

k A · ∇kΨ + ΩF − ω

α2

dΩF

dΨ
(∇Ψ )2 +

(4.73)

64π4

α2� 2

1

2M2

∂

∂Ψ

(
G

A

)
− 16π3μn

1

η

dη

dΨ
− 16π3nT

ds

dΨ
= 0,

which immediately follows from (4.66). We dealt with this singularity when dis-
cussing the pulsar equation.

To conclude, a few words should be said about the number of boundary condi-
tions. As we see, the full MHD version of the GS equation contains five integrals of
motion which, generally speaking, must be determined by the boundary conditions.
On the other hand, the regularity conditions (4.60) and (4.73) must be satisfied on
the singular surfaces. Therefore, at least, for the simplest topologies when all field
lines cross all s ′ singular surfaces, the number of boundary conditions b can again
be written as (Beskin, 1997)

b = 2 + i − s ′, (4.74)

where i is the number of integrals of motion. We emphasize that since the GS equa-
tion can be rewritten as D + K1 Nr + K2 Nθ = 0, relations (4.60) prescribe only one
regularity condition. The second condition is needed to specify the location of the
singular surface.
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4.3 Special Cases

4.3.1 Nonrelativistic Flows

In this section we formulate the basic equations for the nonrelativistic version of
the GS equation, i.e., for the nonrelativistic velocities v � c and the Newtonian
gravitational potential ϕg � c2. Unlike the relativistic motion in flat space when
all equations can be derived by the obvious limit α → 1, ω → 0, here the situ-
ation should be specially considered, because in all equations the contribution of
the rest energy must be eliminated. In particular, as we saw, in the nonrelativistic
version the dimensions of the integrals of motion En, Ln differ from their dimen-
sions in the relativistic case E and L . For the nonrelativistic case, in the follow-
ing we restore the dimension and consider the physical components of the vectors
only.

We first write the relations defining the electromagnetic fields and the velocity in
terms of the integrals of motion:

B = ∇Ψ × eϕ
2π�

− 2I

�c
eϕ, (4.75)

E = − ΩF

2πc
∇Ψ, (4.76)

v = ηn

ρ
B + ΩF�eϕ. (4.77)

Here again ρ = mpn is the mass density and the nonrelativistic matter-to-magnetic
flux ratio ηn(Ψ ) is connected with the corresponding relativistic value as

ηn = mpcη. (4.78)

The expressions for the energy and the angular momentum fluxes are now written
as

En(Ψ ) = ΩF I

2πcηn
+ v2

2
+ w + ϕg, (4.79)

Ln(Ψ ) = I

2πcηn
+ vϕr sin θ, (4.80)

the relativistic and nonrelativistic expressions connected by the relations

E = cηn + ηn En

c
, (4.81)

L = ηnLn

c
. (4.82)
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As we see, the nonrelativistic integrals, as in the hydrodynamical case, are normal-
ized to the unit matter flux dΦ and, therefore, the total energy and angular momen-
tum losses must be written as (cf. (2.97))

Wtot =
∫

En(Ψ )ηn(Ψ )dΨ, (4.83)

Ktot =
∫

Ln(Ψ )ηn(Ψ )dΨ. (4.84)

Two more invariants are again the angular velocity ΩF(Ψ ) and the entropy s(Ψ ).
As a result, algebraic relations (4.38), (4.39), and (4.40) defining the longitudinal

current and the toroidal velocity have the form (Weber and Davis, 1967)

I

2π
= cηn

Ln − ΩF�
2

1 − M2
, (4.85)

vϕ = 1

�

ΩF�
2 − LnM2

1 − M2
, (4.86)

where now

M2 = 4πη2
n

ρ
. (4.87)

As to the value M2, it must, as in the relativistic case, be determined from
Bernoulli’s equation (4.79) written as

M4

64π4η2
n

(∇Ψ )2 = 2� 2(En − w − ϕg)

− (ΩF�
2 − LnM2)2

(1 − M2)2
− 2� 2ΩF

Ln − ΩF�
2

1 − M2
. (4.88)

Recall that in Eq. (4.88), as in its relativistic version (4.43), the specific enthalpy w

should be regarded as a function of the entropy s, the Mach number M2, and the
integral ηn. The corresponding connection has the form

∇w = c2
s

(
2
∇ηn

ηn
− ∇M2

M2

)
+

[
1

ρ

(
∂P

∂s

)
n

+ T

mp

]
∇s. (4.89)

Relations (4.85) and (4.86) again lead to a number of general conclusions.

• Within the Alfvén surface r � rf, we have I ≈ 2πcηn Ln, i.e., the current I
remains constant on the magnetic surfaces. Hence, the current closure within the
Alfvén surface is impossible in the nonrelativistic case as well.

• The toroidal velocity vϕ within the Alfvén surface is simply
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vϕ ≈ ΩF�. (4.90)

Hence, the full corotation must be available here.
• Conversely, beyond the Alfvén surface we have

I

2π
= cηn

ΩF�
2

M2
. (4.91)

Therefore, the current closure (in the field of application of the GS equation) is
possible only under the strong collimation, i.e., when the condition M2 ∝ � 2 is
violated.

• Finally, since

Ln ≈ ΩF�
2(rA) (4.92)

(see the numerator in (4.85)), beyond the Alfvén surface the toroidal velocity
behaves as

vϕ ≈ ΩF�
2
A

�
. (4.93)

Thus, most of the features of the nonrelativistic flows prove close to those of the
relativistic flows (as to the differences, they are given below).

Problem 4.7 Show that, within the Alfvén surface r < rA, we have

v2
p ≈ v2

0 + Ω2
F�

2, (4.94)

so that for the sufficiently small initial velocity v0 the relation vp ≈ vϕ can
hold here.

Further, the Alfvén factor in the nonrelativistic case is

A = 1 − M2. (4.95)

It is easy to check that this singularity really corresponds to the condition of the
equality of the poloidal velocity vp to the poloidal component of the Alfvén velocity
VA,p. Indeed, using definitions (4.77) and (4.87), we find

M2 = 4πρv2
p

B2
p

. (4.96)

For this reason, it gives the name of the singularity A = 0.
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As to the derivative of the Mach number M2, in the nonrelativistic case, it can
still be represented as

∇kM2 = Nk

D
, (4.97)

where now

Nk = − (1 − M2)

(∇Ψ )2
∇ iΨ · ∇i∇kΨ + (1 − M2)

2

∇′
k Fn

(∇Ψ )2
. (4.98)

In this case,

Fn = 64π4η2
n Kn

M4(1 − M2)2
, (4.99)

where

Kn = 2(1 − M2)2(En − w − ϕg)� 2 + (1 − 2M2)Ω2
F�

4

−2(1 − 2M2)ΩF Ln�
2 − M4 L2

n. (4.100)

The factor D now looks like

D = 1 − M2

M2
+ 1

M2

B2
ϕ

B2
p

− c2
s

v2
p

1 − M2

M2
. (4.101)

Problem 4.8 Check that the condition D = 0 really yields expression (4.16)
for the fast and slow magnetosonic velocity V(1,2) and the condition D = −1
for expression (4.24) for the cusp velocity Vcusp.

Finally, the GS equation in compact form can be written as (Heyvaerts and
Norman, 1989)

1

16π3ρ
∇k

(
1 − M2

� 2
∇kΨ

)
+ dEn

dΨ

+ΩF�
2 − Ln

1 − M2

dΩF

dΨ
+ 1

� 2

M2Ln − ΩF�
2

1 − M2

dLn

dΨ

+
(

2En + 1

� 2

Ω2
F�

4 − 2ΩF Ln�
2 + M2L2

n

1 − M2

)
1

ηn

dηn

dΨ
− T

mp

ds

dΨ
= 0. (4.102)

As was mentioned, the full version of the nonrelativistic GS equation contain-
ing all five invariants was formulated by Soloviev (1965). Though little known
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among the astrophysicists, this equation was often fully reformulated in the follow-
ing (Okamoto, 1975; Heinemann and Olbert, 1978; Heyvaerts, 1996). In particular,
for this reason, there is no unique nomenclature yet. Therefore, it is sometimes very
difficult to compare results in various papers with one another.

4.3.2 Anisotropic Pressure

Here we give general expressions for the GS equation for the medium with anisotropic
pressure. This is the case, for example, for the solar wind when the free path lν
is larger than the Larmor radius rL by many orders, so that near the Earth we
have lν/rL ∼ 109. We restrict ourselves, for simplicity, to the nonrelativistic case
only (Beskin and Kuznetsova, 2000b); the full relativistic version, with account
taken of the GR effects, is formulated in Kuznetsova (2005).

In fact, our problem is again to transform the equation of motion

ρ(v · ∇)v = −∇k Pik + 1

4π
[∇ × B] × B − ρ∇ϕg. (4.103)

Following Chew et al. (1956), for collisionless plasma the anisotropic pressure Pik

can be written as

Pik = Psδik + (Pn − Ps)
Bi Bk

B2
, (4.104)

which contains two scalar function Ps and Pn. As a result, instead of the fifth inte-
gral, viz., the entropy s(Ψ ), we can introduce two additional invariants constant on
the magnetic surfaces. This approximation was called the double adiabatic approxi-
mation, because it is based on the conservation of two adiabatic invariants

s1(Ψ ) = Pn B2

ρ3
, (4.105)

s2(Ψ ) = Ps

ρB
. (4.106)

Thus, these invariants correspond to the polytropic equation of state with Γ‖ = 3
and Γ⊥ = 1.

Integrating now the toroidal and longitudinal (parallel to vp) components of
Eq. (4.103), we readily obtain the expressions for energy and angular momen-
tum (Asséo and Beaufils, 1983; Tsikarishvili et al., 1995)

En(Ψ ) = v2

2
+ Ps

ρ
+ 3

2

Pn

ρ
+ ΩF I

2πcηn
(1 − βa) + ϕg, (4.107)

Ln(Ψ ) = vϕr sin θ + I

2πcηn
(1 − βa) . (4.108)
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Here

βa = 4π
Pn − Ps

B2
(4.109)

is an anisotropy parameter. Along with the angular velocity ΩF(Ψ ) and the integral
ηn(Ψ ), these six invariants define all characteristics of the flow, for example (Asséo
and Beaufils, 1983; Lovelace et al., 1986)

I

2π
= cηn

Ln − ΩF�
2

1 − M2 − βa
, (4.110)

vϕ = 1

�

ΩF�
2(1 − βa) − M2Ln

1 − M2 − βa
. (4.111)

Here again M2 = 4πη2
n/ρ. Hence, in the case of the anisotropic pressure the Alfvén

singularity condition has the form

A = 1 − M2 − βa = 0. (4.112)

One should stress that condition (4.110) specifies the current I in an implicit
way, since the current I in terms of B2

ϕ entering into βa is available on the right-
hand side of Eq. (4.110). Nevertheless, the standard procedure for determining the
flow parameters by the given values of the poloidal field Bp remains unchanged.
Bernoulli’s equation (4.107) that can be rewritten as

M4

64π4η2
n

(∇Ψ )2 = 2� 2

(
En − Ps

ρ
− 3

2

Pn

ρ
− ϕg

)

− [ΩF�
2(1 − βa) − LnM2]2

(1 − M2 − βa)2
− 2� 2ΩF(1 − βa)

Ln − ΩF�
2

1 − M2 − βa
, (4.113)

relation (4.110), and definitions (4.105) and (4.106) implicitly give the Mach num-
ber M2 and the anisotropy parameter βa as the function Ψ (or Bp) and all six invari-
ants:

M2 = M2[(∇Ψ )2, En, Ln,ΩF, ηn, s1, s2], (4.114)

βa = βa[(∇Ψ )2, En, Ln,ΩF, ηn, s1, s2]. (4.115)

Relations (4.110) and (4.111) make it possible to determine all the other values as a
function of the magnetic flux Ψ and the six integrals of motion.

As to the GS equation, it can again be derived from the unused component in the
Euler equation orthogonal to the poloidal magnetic field. In compact form, it looks
like (Beskin and Kuznetsova, 2000b)
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∇k

[
1

� 2

(
1 − M2 − βa

)∇kΨ

]
+ 64π4

� 2

1

2M2

∂

∂Ψ

(
G

A

)

−8π3 Pn
1

s1

ds1

dΨ
− 16π3 Ps

1

s2

ds2

dΨ
= 0, (4.116)

where

(
G

A

)
= 2� 2η2

n

(
En − Ps

ρ
− 3

2

Pn

ρ
− ϕg

)

+η2
n
� 4Ω2

F(1 − βa) − 2� 2ΩF Ln(1 − βa) + M2 L2
n

1 − M2 − βa
. (4.117)

Here again ∇k is a covariant derivative and the operator ∂/∂Ψ acts only on the
invariants En(Ψ ), Ln(Ψ ), ΩF(Ψ ), and ηn(Ψ ). By definitions (4.105) and (4.106)
and relations (4.114) and (4.115), this equation, as any GS-type equation, comprises
only the unknown function of the magnetic flux Ψ (r, θ ) and the six integrals of
motion. In particular, in the static case v = 0, i.e., when ΩF → 0, ηn → 0 (so that
M2 → 0), but ηnLn → const, and for ϕg = 0, we have

∇k

[
1

� 2
(1 − βa) ∇kΨ

]
+ 16π2

� 2
(1 − βa)I

∂ I

∂Ψ

+16π3ρ
d

dΨ

(
Ps

ρ
+ 3

2

Pn

ρ

)
− 8π3 Pn

1

s1

ds1

dΨ
− 16π3 Ps

1

s2

ds2

dΨ
= 0. (4.118)

This equation is the generalization of the static GS equation (4.67) to the medium
with anisotropic pressure. Note that there is the partial derivative ∂ I/∂Ψ here. This
implies that in expression (4.110) the integrals of motion should be differentiated.

It is interesting to note that relations (4.107), (4.108), (4.109), (4.110), and
(4.111) remain valid for the more general case (Denton et al., 1994)

(v · ∇)

(
Pn B2

ρ3

)
= 2Pt

(
B2

ρ3

)
, (4.119)

(v · ∇)

(
Ps

ρB

)
= −Pt

(
1

ρB

)
, (4.120)

where Pt describes the dissipation-free energy exchange between the longitudinal
and transverse particle motions. In this approximation, we have the conservation of
the “total entropy” S = S(Ψ ) determined from the condition

(v · ∇)S = 1

2

ρ3

B2
(v · ∇)s1 + ρB(v · ∇)s2 = 0. (4.121)

In this case, the GS equation (4.118) has the form
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∇k

[
1

� 2
(1 − M2 − βa)∇kΨ

]
+ 32π4

� 2M2

∂

∂Ψ

(
G

A

)
− 16π3 dS

dΨ
= 0. (4.122)

If we introduce the efficient pressure Peff = Peff(Ψ )

dPeff = ρ d

(
Ps

ρ
+ 3

2

Pn

ρ

)
− dS, (4.123)

which is equivalent to the ordinary thermodynamic relation dP = ρdw − nT ds,
instead of (4.118), we have for the static configurations

∇k

[
1

� 2
(1 − βa) ∇kΨ

]
+ 16π2

� 2
(1 − βa)I

∂ I

∂Ψ
+ 16π3 dPeff

dΨ
= 0. (4.124)

For I = 0, this equation was obtained in Nötzel et al. (1985).
Equation (4.118), as all the above equations, is a mixed-type equation. Using

the implicit relations yielding expressions (4.114) and (4.115), we can write the
second-order operator in (4.118) in ordinary expanded form

A

[
∇k

(
1

� 2
∇kΨ

)
+ ∇iΨ · ∇kΨ · ∇i∇kΨ

� 2(∇Ψ )2 D

]
+ · · · = 0, (4.125)

where

D = N

d
, (4.126)

and

N =
(

1 − M2 − βa + 4π
4Pn − Ps

B2

B2
ϕ

B2

)(
1 − 3

Pn

ρv2
p

)

+ B2
ϕ

B2
p

(
1 − βa − 4π

3Pn − Ps

B2
+ 4π

4Pn − Ps

B2

B2
ϕ

B2

)

−
(
M2 − 4π

3Pn − Ps

B2

)
3Pn − Ps

ρv2
p

B2
ϕ

B2
, (4.127)

d =
(

1 − 3
Pn

ρv2
p

B2
p

B2

)(
M2 + 4π

Pn

B2

)
+ Ps

ρv2
p

B2
p

B2

(
M2 − 4π

3Pn − Ps

B2

)
.

(4.128)
As we see, the form (4.125) of Eq. (4.116) coincides with the canonical form of
the GS equation. Hence, it is of an elliptic type in the domain D > 0 and D <−1
and of a hyperbolic type for −1<D < 0. This implies that the condition D = 0
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must define the velocities of the fast and slow magnetosonic waves propagating in
the medium with anisotropic pressure. Accordingly, the condition D = −1 is to fix
the cusp velocity. This property can be readily verified. Indeed, for the nonrotating
medium (ΩF = 0, Ln = 0) when according to (4.110) Bϕ = 0, we have

N = (1 − M2 − βa)

(
1 − 3

Pn

ρv2
p

)
. (4.129)

Using now relations (4.127) and (4.128), we can easily reproduce the expressions
for the sonic, Alfvén, and cusp velocities for the medium with anisotropic pres-
sure (Clemmow and Dougherty, 1969):

c2
s = 3

Pn

ρ
, (4.130)

V 2
A = B2

4πρ
− Pn − Ps

ρ
, (4.131)

V 2
cusp =

3
Pn

ρ

B2

4πρ
+ 6

Pn Ps

ρ2
− P2

s

ρ2

B2

4πρ
+ 2

Ps

ρ

. (4.132)

Recall that the condition V 2
A < 0 corresponds to a fire-hose instability and the con-

dition V 2
cusp < 0 to a mirror one.

4.4 General Properties

4.4.1 Some Useful Relations

Before proceeding to the consistent analysis of the exact solutions to the GS equa-
tion, we try to point to some common properties of the magnetized flows. To begin
with, we formulate several general relations widely used in the following. We first
introduce some new notation. As we saw, in most expressions we have the combi-
nation of invariants e′ = E − ΩF L . Using definitions (4.33) and (4.34), we obtain

e′ = μη
[
αγ − (ΩF − ω)�uϕ̂

]
. (4.133)

Otherwise, the value e′ corresponds to the particle contribution only. Obviously, for
the estimate we can take

e′ ≈ μηγinj, (4.134)
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where γinj is the characteristic Lorentz factor of particles in the plasma generation
region.

Further, it is logical to express the square of the Mach number M2 in the form
of the ratio

q = M2

(ΩF − ω)2� 2
. (4.135)

Indeed, since at large distances r → ∞ for the quasispherical flows M2 ∝ 1/n ∝
r2, even for the magnetically dominated flow (i.e., for the flow in which in the vicin-
ity of the compact object M2 � 1), at large distances the value M2 is much larger
than unity. On the other hand, the parameter q for the magnetically dominated flow
remains small over the whole space. One should stress at once that the definition
(4.135) proves inconvenient in the vicinity of the rotation axis, where � → 0, and
also in the region ΩF ≈ ω.

Finally, in the following we often use the dimensionless value:

Σ2
r = (ΩF − ω)4� 2(∇Ψ )2

64π4 E2
. (4.136)

It yields us the information concerning the poloidal magnetic field structure at large
distances from the central object. Indeed, when moving along the magnetic field
line at large distances from the central source (ω = 0), the dependence Σ2

r on the
radius r is only in the factor � 2(∇Ψ )2 defined by the character of the divergence
of the magnetic field lines. On the other hand, the parameter Σ2

r depends on the
ratio E/ΩF ≈ L and, hence, its value can provide the information concerning the
longitudinal currents flowing in the magnetosphere. In particular, it is easy to check
that for the Michel monopole solution Σ2

r = 1.
Let us see how, using the above values, we can define a number of the key param-

eters characterizing the magnetized plasma flow. We first use expression (4.39) for
the particle Lorentz factor. Far from the Alfvén surface r � RL it can be rewritten
as

γ = q

1 + q

(
E

μη

)
. (4.137)

But γμη is nothing but the particle energy flux density. Therefore, the asymptotic
behavior of q is, in fact, the particle-to-electromagnetic energy flux ratio

q = Wpart

Wem
. (4.138)

As seen from relation (4.137), the maximum particle Lorentz factor is defined by
the ratio E/μη that for the nonrelativistic temperatures (μ ≈ mp) is given by the
values of the invariants E and η.
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Problem 4.9 Show by the direct substitution of the condition nup = ηBp and
asymptotic relations |E| ≈ Bϕ ≈ ΩF� Bp in the definition M2 = 4πμη2/n
that q is really the particle-to-electromagnetic energy flux ratio.

Problem 4.10 Show that

γmax = E

μη
= σ, (4.139)

where σ is the above magnetization parameter (2.84). Otherwise, σ has the
meaning of the limiting value of the particle Lorentz factor.

Further, we consider the asymptotic behavior of relativistic Bernoulli’s equation
γ 2 −u2 = 1 (4.44). At distances of � from the rotation axis, which are much larger
than the light cylinder radius RL, it has the form

M4 E2

μ2η2 A2
− M4(∇Ψ )2

64π4μ2η2� 2
= 1. (4.140)

This relation leads to two important conclusions. We first use the fact that for the
ultrarelativistic flow we have the condition u2 ≈ γ 2. Comparing expression (4.140)
with the definition Σr (4.136), we get

γ ≈ Σr

(
E

μη

)
q. (4.141)

Hence, the conclusion is that the full transformation of the electromagnetic energy
into the particle energy (γ → E/μη, q → ∞) is possible only if the condition
Σr → 0 is satisfied. In other words, there exists a quite definite connection between
the poloidal magnetic field structure and the particle energy at infinity. Below, this
problem is discussed in more detail. On the other hand, for the magnetically domi-
nated flows q � 1 (and in the asymptotic domain r � rf, where rf is the radius of
the fast magnetosonic surface) we find

Σr ≈ 1

1 + q
, (4.142)

i.e., the parameter Σr is to be close to unity.
Relation (4.140) leads to one more important assertion. Indeed, using the defini-

tions of the electric and magnetic fields (3.14) and (3.43), we can rewrite condition
(4.140) as

(
B2
ϕ̂ − |E|2) n2

η2
Ω2

F�
2 = 1. (4.143)
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This implies that for the relativistic flow the condition

B2
ϕ̂ − |E|2 ≈ B2

ϕ̂

γ 2
(4.144)

must be satisfied. On the other hand, in the vicinity of the black hole horizon
(α2 → 0) the asymptotic behavior of Bernoulli’s equation looks like

M2(E − ωL)2

α2μ2η2 A2
− 1

64π4

M2(∇Ψ )2

α2μ2η2� 2
= 1. (4.145)

As a result, using definitions (3.14) and (3.43) again, we get

B2
ϕ̂ − |E|2 ≈

[
(e′)2

(ΩF − ω)2� 2μ2η2
+ 1

]
B2
ϕ̂

γ 2
. (4.146)

As, according to relation (4.134), we have e′/μη ∼ γinj > 1, the first term in square
brackets is much larger than unity.

In both cases, as we see, the usability condition |B| > |E| in the studied approach
seems, at first sight, self-satisfied. However, this does not imply that, with the finite
particle mass taken into account, the flow can always be extended to infinity (or
to the event horizon). The point is that for the solution to exist it is necessary
that the physical root of Bernoulli’s algebraic equation could be extended to the
asymptotic domain. And this is the case not for any choice of the integrals of
motion. This behavior was already observed when analyzing the hydrodynamical
flow. As shown in Fig. 1.1, for rather large accretion rates Φ > Φcr, the trajec-
tory cannot be extended to small distances from the gravity center. There is a
singularity in its derivative rather than in the value of the velocity (energy) itself.
Accordingly, for rather small electric currents the solution to the force-free equa-
tion is confined to the light surface located at a finite distance from the compact
object.

Finally, note that relation (4.144) has a simple physical meaning. Having written
the expression for drift velocity as

U 2
dr ≈ E2

B2
ϕ

≈
(

1 − B2
ϕ̂ − E2

B2
ϕ̂

)
≈

(
1 − 1

γ 2

)
, (4.147)

we conclude that, provided that relation (4.144) holds, the drift velocity fully defines
the particle energy. The drift velocity itself is actually directed nearly almost along
the poloidal magnetic field, because at large distances the toroidal magnetic field is
much larger than its poloidal component. Hence, one can make one more important
conclusion:

Theorem 4.1 For the relativistic flow beyond the outer Alfvén surface the particle
motion is mainly determined by the drift motion in the crossed electric and toroidal
magnetic fields along the poloidal magnetic field.
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On the other hand, relation (4.146) shows that this is not the case in the vicinity
of the black hole horizon and the particle energy is not fully defined by its drift
motion. This must be the case, because in the vicinity of the horizon (where the
energy density of the electromagnetic field is not enough to distort the Kerr metric)
the gravitational forces should be of vital importance in the determination of the
particle energy (Punsly, 2001).

4.4.2 Alfvén Surface

We proceed to the discussion of the general properties of the magnetized flows.
Rather general conclusions can be made from the analysis of the critical conditions
on the singular surfaces. We first consider the problem of the direction of the particle
motion on the Alfvén surface. As shown above, the conclusion that the particles can
cross the Alfvén surface only in one direction leads to the most important conse-
quence that plasma must be generated in the black hole magnetosphere. In view of
this, it seems advisable to consider this problem in more detail.

Thus, we aim to prove the following theorem:

Theorem 4.2 The particles can cross the Alfvén surface in one direction only. When
the central source loses its rotational energy, the outer Alfvén surface can be crossed
only in the direction from the compact object. When the energy flux is directed to
the black hole, the surface is crossed in the direction of the event horizon. As to
the inner Alfvén surface (which exists only in the black hole magnetosphere), the
particles can cross it only in the direction of the horizon.

To prove it we use expression (4.39) for the particle Lorentz factor which, far
from the outer Alfvén surface r � rA (or in the vicinity of the horizon α2 → 0),
can be written as

γ = 1

αμ

M2

(ΩF − ω)2� 2 + M2

E − ωL

η
. (4.148)

It is obvious that the sign of γ must be positive. Hence, this condition can be written
as

sign(E − ωL) = sign η. (4.149)

We first consider the outer Alfvén surface (ω ≈ 0). We suppose that the radial
magnetic field is positive (Br > 0). Then from the definition dΨ = B · dS it follows
that Ψ > 0. On the other hand, for the positive energy losses (Wtot = ∫

EdΨ > 0)
the condition E(Ψ ) > 0 must be satisfied. Hence, according to (4.149), we find that
η > 0. Using definition (4.31) αnup = ηBp, we finally have

ur (r (ext)
A ) > 0. (4.150)
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The similar arguments can be used for the inner Alfvén surface. Indeed, for Br > 0
(i.e., for Ψ > 0) and for the positive energy flux (0 < ΩF < ΩH), the condition
E ≈ ΩF L < ΩH L must be satisfied. It yields E − ΩHL < 0. Therefore, in the
vicinity of the horizon η < 0, i.e.,

ur (r (int)
A ) < 0. (4.151)

Problem 4.11 Show that conditions (4.150) and (4.151) do not change for
Br <0.

Problem 4.12 Show that the particles can cross the inner Alfvén surface only
in the direction of the event horizon for any energy flux direction.

Here, however, it would be more correct to look at condition (4.149) on the other
hand. Indeed, if we do not assume that an additional plasma source is present within
the inner Alfvén surface, which generates a particle flow in the direction from the
black hole, the flows in the vicinity of the horizon can be directed to the event
horizon only. Consequently, for this class of flows (and under the condition Br >0)
the inequality η < 0 must hold. Hence, the MHD flows can be extended to the
horizon only if the condition

E − ΩH L < 0 (4.152)

is satisfied. For example, the flow with E > 0 for ΩH = 0 (i.e., the extraction
of energy from nonrotating black hole) appears impossible. For the magnetically
dominated flows (E ≈ ΩF L) condition (4.152) coincides with condition (3.69) that
the energy loss is positive.

The above proof would seem to be unrelated to the properties of the Alfvén
singularity. However, this is not the case. Relation (4.149) fixes the sign of γ when
expanding the singularity of the type 0/0 by L’Hospital’s rule in expressions (4.38),
(4.39), and (4.40). Therefore, the condition on the Alfvén surface exactly confines
the class of possible flows.

On the other hand, as was noted, the presence of the singularity on the Alfvén
surface in algebraic expressions (4.38), (4.39), and (4.40) does not give rise to addi-
tional critical conditions as was the case on the sonic surfaces. It only prescribes the
location of the Alfvén surface itself. Indeed, using the numerator in relation (4.38),
we find

� 2
A = α2

AL

(ΩF − ωA)(E − ωAL)
. (4.153)

In particular, for the outer Alfvén surface (ω ≈ 0, α2 ≈ 1) we have
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� 2
A = L

ΩF E
, (4.154)

which in the force-free limit (E = ΩF L), as was expected, yields the expression
�A = RL = c/ΩF for the radius of the light cylinder. Finally, for the nonrelativistic
flow we have

� 2
A = Ln

ΩF
. (4.155)

We emphasize that since the invariants themselves are the functions of the magnetic
flux Ψ , in the general case the location of the Alfvén surface can be found only after
the solution to the GS equation.

As to the position of the inner Alfvén surface, it is convenient here to define αA.
As a result, we have for α2

A � 1

α2
A ≈ (ΩH − ΩF)(ΩHL − E)� 2

g

L
, (4.156)

where �g corresponds to � on the event horizon. Thus, all trajectories, for which
conditions (4.150) and (4.151) are satisfied, can freely cross the Alfvén surface.
This is because the Alfvén surface is a higher order singularity than the simplest
singularity of a saddle type (see Fig. 5.14).

4.4.3 Fast Magnetosonic Surface—Relativistic Flows

We first consider qualitatively the features of the relativistic flows in the vicinity of
the outer fast magnetosonic surface. If it is assumed to be at distances much larger
than the Alfvén surface, the denominator D can be rewritten as

D = −1 + B2
ϕ̂ − E2

M2 B2
p

+ 1

M2
. (4.157)

Here we disregarded the finite temperature contribution that, as shown below,
becomes insignificant at large distances from the rotation axis. Using relations
(4.137) and (4.144) and the estimate Bϕ̂ ≈ |E| ≈ ΩF� Bp resulting from the
definition of the electromagnetic fields, we get

D = −1 + 1

γ 3

(
E

μη

)
+ 1

γΩ2
F�

2

(
E

μη

)
. (4.158)

When defining the third term 1/M2 here, we again use the estimate γ = q(E/μη).
Thus, we see that when the third term in expression (4.158) can be disregarded,
the particle Lorentz factor on the fast magnetosonic surface has the universal
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value (Michel, 1969)

γ (rf) ≈
(

E

μη

)1/3

≈ σ 1/3. (4.159)

In the general case, to determine the value γf = γ (rf) we must study Bernoulli’s
equation (4.41) in more detail. It can be written as

q4 + 2q3 +
[

1 − (E − ωL)2

Σ2
r E2

− 2
α2

(ΩF − ω)2� 2
+ α2L2

Σ2
r E2� 2

]
q2 (4.160)

+α2

(
μ2η2

Σ2
r E2

)
+ α2

Σ2
r (ΩF − ω)2� 2

(
e′

E

)2

= 0.

Here and wherever possible we disregarded the terms of order α2/(ΩF − ω)2� 2

as compared to unity. This assumption is obviously valid for the outer fast mag-
netosonic surface at distances much larger than the light cylinder radius. As to the
inner surface, the smallness of α(rf)2/(ΩF − ωf)2� 2

f is proved below. Further, in
Eq. (4.160) the terms proportional to the first degree of q are omitted as they also
prove small. Finally, when deriving Eq. (4.160) we again disregard the finite tem-
perature contribution.

As was noted, Eq. (4.160) defines q (i.e., M2) as the function of the integrals
of motion and the poloidal magnetic field (the stream function Ψ ). The magnetic
field structure, as we see, is available only through the parameter Σ2

r . In particular,
Eq. (4.160) contains the solution (4.141) obtained for q � σ−2/3.

We first consider the outer fast magnetosonic surface. As we saw, for the magnet-
ically dominated flows, at least to the fast magnetosonic surface, we should expect
the values of γf ∼ σ 1/3, i.e., q ∼ σ−2/3 � 1. In this case, in Eq. (4.160) we can
disregard the term q4 and take ω = 0 and α = 1. It gives

q3+1

2

[
1 − 1

Σ2
r

−
(

2 − 1

Σ2
r

)
1

Ω2
F�

2

]
q2+ 1

2Σ2
r

(μη
E

)2
+ 1

2Σ2
r

1

Ω2
F�

2

(
e′

E

)2

= 0.

(4.161)
Here we use the relation E ≈ ΩF L valid for the magnetically dominated flows.

First of all, a very important conclusion can be made from the definitions of q
and Σr. Indeed, having solved Eq. (4.161) for Σ2

r

Σ2
r =

1 − L2

� 2 E2
− 1

Ω2
F�

2

(
e′

E

)2 1

q2
−

(μη
E

)2 1

q2

1 − 2

Ω2
F�

2
+ 2q

(4.162)

(this relation generalizes (4.142)), we readily show that in the vicinity of the fast
magnetosonic surface the value Σr must be close to unity. This implies that the
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angular momentum L ≈ E/ΩF fixing the longitudinal electric current must have
the quite definite value L ≈ Lcr, where

Lcr ≈ ΩF� |∇Ψ |
8π2

. (4.163)

Since � |∇Ψ | ≈ Ψ in the vicinity of the fast magnetosonic surface, the longitudinal
current Icr = 2πLcr is close to the GJ current IGJ = ΩFΨ/2π . Otherwise, we make
the important conclusion:

Theorem 4.3 For the relativistic flows the smooth passage of the fast magnetosonic
surface is possible only if the longitudinal current is close to the GJ current.

We emphasize that this conclusion naturally follows from the conclusion made in the
analysis of the force-free flows. Indeed, as we saw, the flow for small currents could
not be extended beyond the light surface and for rather large currents it remains
subsonic to infinity. In both cases, the force-free flow cannot cross the fast mag-
netosonic surface. This is the case for the moderate longitudinal currents I ≈ IGJ

only.

Problem 4.13 Check that for the magnetically dominated flows (i.e., for
σ � 1, γinj � σ ), the correction to unity in the numerator and the denom-
inator of expression (4.162) really proves small.

At first sight, the above conclusion is too rigorous and at least unexpected. How-
ever, we readily show that for r ≈ rf the condition Σr ≈ 1 must be satisfied for
the transonic flows. To show this, it is supposed that, given the angular velocity ΩF

(and, hence, the approximate location of the Alfvén surface rA), we try to give the
boundary conditions on the surface r � rA, i.e., in the domain where the conditions
needed to obtain Eq. (4.161) are valid. It is obvious that the physically meaningful
(i.e., real positive) roots of Eq. (4.161) exist only if the coefficient of q2 in square
brackets is positive. But this is not, obviously, the case for

Σ2
r >

1 − 2

x2
r

1 − 1

x2
r

(4.164)

(xr = ΩF� ). These large values of Σr correspond to the small longitudinal currents
for which, as was demonstrated in Chap. 2, the solution cannot be extended to large
distances from the light cylinder. As to the range of parameters Σr � 1 (i.e., for
large longitudinal currents), they, as we saw, can be realized only for the subsonic
flows. The flows with Σr ≈ 1, which can satisfy the GS equation, invite further
investigation.
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We now proceed to an extensive analysis of the cubic equation (4.161). Here, we
use the fact that the fast magnetosonic surface corresponds to crossing two roots of
Eq. (4.161) at the same point. On the other hand, Eq. (4.161) has three real roots
only if Q < 0, where the discriminant of the cubic equation Q (for r ≈ rf) is

Q =
[
μ2η2

Σ2
r E2

+ 1

Σ2
rΩ

2
F�

2

(
e′

E

)2
]2

(4.165)

− 1

27

[
μ2η2

Σ2
r E2

+ 1

Σ2
rΩ

2
F�

2

(
e′

E

)2
] [

1

Σ2
r

− 1 +
(

2 − 1

Σ2
r

)
1

Ω2
Fr2 sin2 θ

]3

.

Therefore, the regularity conditions of the solution in the vicinity of the fast magne-
tosonic surface r = rf can be written as

Q|r=rf
= 0,

∂Q

∂r

∣∣∣∣
r=rf

= 0,
∂Q

∂θ

∣∣∣∣
r=rf

= 0. (4.166)

Indeed, as shown in Fig. 4.2, the zero value of Q for curves 1 corresponds to the
coincidence of two of the three roots at the stopping point, so that these solutions
cannot be extended to the domain Q > 0. On the other hand, for the parameters
corresponding to curves 3, the roots of the cubic equation do not intersect at all.
Only curves 2, for which conditions (4.166) are satisfied, intersect at the saddle
point that corresponds to the fast magnetosonic surface.

Fig. 4.2 Motion of the roots
of the cubic equation in the
vicinity of the saddle singular
point. The zero value of Q
for curves 1 corresponds to
the coincidence of two of the
three roots at the stopping
point, so that these roots
cannot be extended to the
domain Q > 0. For the
parameters corresponding to
curves 3, the roots of the
cubic equation do not
intersect at all. Only curves 2,
for which conditions (4.166)
are satisfied, intersect at the
saddle point that corresponds
to the fast magnetosonic
surface

Q

2

2

2

1

1

1

3

3
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q

q

f

x x
f
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Problem 4.14 Check that conditions (4.166) exactly coincide with the regu-
larity conditions D = 0 (4.56), Nr = 0, and Nθ = 0 (4.60).

As a result, the relations Q = 0 and ∂Q/∂r = 0 under the condition Σr ≈ 1 can
be written as

1

x2
f

+ 1

Σ2
f

− 1 ≈ 3qf, (4.167)

1

x2
f

+ xfΣ
′
f

Σ3
f

≈ qf, (4.168)

where again xr = ΩF� , Σ′
r = dΣr/dr, and the indices ’f’ everywhere correspond to

the quantities on the fast magnetosonic surface. When deriving relations (4.167) and
(4.168) we also used the exact expression for q at the moment of the coincidence of
the roots

qf =
[(μη

E

)2
+ 1

Ω2
F�

2

(
e′

E

)2
]1/3

. (4.169)

Since, as seen from (4.162), the derivative Σ′
f in order of magnitude can be estimated

as

xfΣ
′
f ∼ 1 − Σ2

f , (4.170)

we obtain the relation

xf ≈ q−1/2
f . (4.171)

Hence, besides the particle energy, the critical conditions on the fast magnetosonic
surface make it possible to define its position.

Thus, when the second term in expression (4.169) is a leading one, we finally
obtain for the particle Lorentz factor and the radius of the fast magnetosonic surface

�f ≈ RL

(
E

e′

)1/2

, (4.172)

γ (rf) ≈ e′

μη
= γinj. (4.173)

Accordingly, qf ≈ e′/E . If the leading term in (4.169) is the first term, we have by
the previous estimate (4.159)
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�f ≈ RL

(
E

μη

)1/3

, (4.174)

γ (rf) ≈
(

E

μη

)1/3

∼ σ 1/3, (4.175)

and qf ≈ (μη/E)2/3. Recall that the exact angular dependence rf on θ can be
defined, given the functions E(Ψ ) and η(Ψ ) and the solution to the GS equation.
Recall also that all relations are obtained by assuming that ΩF� � 1. Therefore, in
the vicinity of the rotation axis a more detailed consideration is needed.

Besides, one more important conclusion is that for the strongly magnetized flows
(σ � 1, γinj � σ 1/3) the particle energy on the fast magnetosonic surface region is
merely a small part as compared to the maximum possible energy (γ ≈ σ ). Indeed,
the condition γf ∼ σ 1/3 shows that the particle-to-electromagnetic energy flux ratio
is only

Wpart

Wem
∼ max

(
σ−2/3,

γinj

σ

)
. (4.176)

Hence, in the relativistic case the substantial transformation of the energy flux from
the electromagnetic field into the particle energy is possible only beyond the fast
magnetosonic surface.

Thus, in the foregoing we proved the following theorem.

Theorem 4.4 In the relativistic case, in the vicinity of the outer fast magnetosonic
surface the particle Lorentz factor attains the values of

γ (rf) = max

[(
E

μη

)1/3

, γinj

]
. (4.177)

Therefore, here for the strongly magnetized flows (γinj � σ 1/3) the energy fraction
transported by the particles is only a small part (∼σ−2/3) as compared to the elec-
tromagnetic energy flux. The smooth passage of the fast magnetosonic surface is
possible only if the condition Σr(rf) ≈ 1 is satisfied, which corresponds to the GJ
longitudinal current flowing in the magnetosphere.

Estimate (4.175) for the particle energy on the fast magnetosonic surface was first
derived by Michel (1969). However, the assertion was made that the Lorentz factor
γ = σ 1/3 is attained only at an infinite distance from the central body. Afterward this
assertion was reproduced in a lot of papers (see, e.g., Okamoto (1978); Kennel et al.
(1983); Li et al. (1992); Lery et al. (1998)) and regarded as the general property
of the strongly magnetized flows. In reality, the conclusion that the fast magne-
tosonic surface must be at infinity was based on the self-inconsistent choice of the
poloidal magnetic field structure. The point is that in all the above papers the Michel
monopole solution, which is not the exact solution for the nonzero particle mass,
was used as a poloidal magnetic field. As seen from Eqs. (4.167) and (4.168), they
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indeed have no solution for finite xf for the Michel monopole magnetic field (Σr =1,
Σ′

r =0). If the difference between the poloidal magnetic field and the monopole one
is considered self-consistently, as we saw, the fast magnetosonic surface transfers at
a finite distance from the central body.

Finally, note that the conditions for the weakly and strongly magnetized flows
γinj � σ 1/3 and γinj � σ 1/3 correspond to those of the fast and slow rotation of the
central body (Bogovalov, 2001). Indeed, the equality γinj = σ 1/3 can be rewritten as
ΩF = Ωcr, where

Ωcr = 2π

(
μηγ 3

inj

Ψ0

)1/2

, (4.178)

so that for the fast rotation (ΩF � Ωcr) the particle energy may greatly increase
when approaching the fast magnetosonic surface, whereas for the slowly rotating
sources ΩF � Ωcr the particle energy remains actually the same as near the origin.
The values Ωcr for concrete astrophysical objects will be considered in Sect. 5.1.

On the other hand, the leading terms in algebraic equation (4.160) in the vicinity
of the inner fast magnetosonic surface have the form

q3 + 1

2

[
1 − (E − ωL)2

Σ2
r E2

− 2
α2

(ΩF − ω)2� 2
+ α2L2

Σ2
r E2� 2

]
q2

+1

2

α2

Σ2
r (ΩF − ω)2� 2

(
e′

E

)2

= 0. (4.179)

Here, as we see, we can always disregard the next-to-last term in Eq. (4.160), which
in the vicinity of the horizon is Ω2

F�
2
g /γ

2
inj times less than the term proportional to

(e′/E)2. As a result, this equation can be analyzed in the same way as the outer fast
magnetosonic surface. Expression (4.162) for Σ2

r can now be rewritten as

Σ2
r =

(E − ωL)2

E2
− α2L2

� 2 E2
− α2

(ΩF − ω)2� 2

(
e′

E

)2 1

q2

1 − 2
α2

(ΩF − ω)2� 2
+ 2q

. (4.180)

As in the vicinity of the outer fast magnetosonic surface, all corrections to the first
terms in the numerator and the denominator appear much less than unity, we can
take

Σ2
r ≈ (E − ΩHL)2

E2
. (4.181)

Here we also used the condition for closeness of the inner fast magnetosonic surface
to the event horizon.

Further, the discriminant of Eq. (4.179) can be written as
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Q =
[

α2

Σ2
r (ΩF − ω)2� 2

(
e′

E

)2
]2

(4.182)

− α2

27Σ2
r (ΩF − ω)2� 2

(
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E
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.

It yields (Hirotani et al., 1992; Beskin and Kuznetsova, 2000a)

q(rf) ≈ 1

Σr

(
e′

E

)
, (4.183)

α2
f = α2(rf) ≈ (ΩH − ΩF)2� 2

g

Σr

(
e′

E

)
, (4.184)

γ (rf) ≈ γinj

αf
. (4.185)

Main attention should be given to the latter relation. As we see, the particle Lorentz
factor on the inner fast magnetosonic surface γf = γ (rf) differs from the Lorentz
factor in the ejection region only by the coordinate factor αf. This implies that
no additional electromagnetic acceleration near the black hole horizon actually
occurs (Punsly, 2001). The difference in the values γ is just associated with the
particle acceleration by the strong gravitational field of the black hole. Thus, the
following theorem was proved:

Theorem 4.5 On the inner fast magnetosonic surface the particle energy differs
from the particle energy at large distances from the black hole only by the coordinate
factor α: γf ≈ γinj/α(rf). This implies that there is no additional electromagnetic
acceleration of particles in the vicinity of the horizon.

Besides, we see that the fast magnetosonic surface at angles of θ not too close to
zero is located much closer to the horizon than the Alfvén surface

α2(rf) ≈ α2(rA)
γinj

σ
, (4.186)

so that α2(rf) � α2(rA), where α2(rA) ≈ (ΩH −ΩF)2� 2
g corresponds to the Alfvén

surface. As is evident from (4.184), in the vicinity of the fast magnetosonic surface
the ratio

α2
f

(ΩF − ω)2� 2
≈ e′

E
(4.187)

really appears small as compared to unity, which justifies dropping the correspond-
ing terms in the general equation (4.160). Finally, comparing solution (4.181) with
definition (4.136) (and also taking E ≈ ΩF L , which is the case for the strongly
magnetized flows), we immediately obtain the relation
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L ≈ (ΩH − ΩF)

8π2
sin θ

dΨ

dθ
, (4.188)

which, as is readily checked, actually coincides with the “boundary condition on the
horizon.” It is shown below that this coincidence is not accidental.

4.4.4 Fast Magnetosonic Surface—Nonrelativistic Flows

We now proceed to the analysis of the nonrelativistic flows. It is obvious that in this
case we deal with the outer fast magnetosonic surface only. Here, on the contrary,
we can quote the following theorem:

Theorem 4.6 For the nonrelativistic flows the smooth crossing of the fast magne-
tosonic surface is possible only if the particle energy flux is of the order of one-third
of the total energy flux. Otherwise, the transonic nonrelativistic flows cannot be
magnetically dominated at large distances r � rf.

We first show under what conditions we have the relation Wpart(rf) = Wtot(rf)/3.
We consider nonrelativistic Bernoulli’s equation (4.88) assuming that the fast mag-
netosonic surface is at distances much larger than the Alfvén surface radius. In this
case M2(rf) � 1, so that Eq. (4.88) can be roughly rewritten as

1

2

M4

64π4η2
n�

2
(∇Ψ )2 + Ω2

F�
2

M2
= En. (4.189)

Here the first term on the right-hand side corresponds to the kinetic particle energy
v2

p/2 (the toroidal velocity decreases with the distance as r−1 and for rf � rA can
be dropped). The second term is an asymptotic expression for the Poynting vector
flux. Naturally, we also disregarded the contribution of the enthalpy and the gravita-
tional potential which also vanish at large distances. As a result, Eq. (4.189) can be
rewritten as

q3
n − 2

v2
in

Σ2
n En

qn + 2
v4

in

Σ2
n E2

n

= 0. (4.190)

Here now

Σ2
n = Ω4

F�
2(∇Ψ )2

64π4v2
inη

2
n E2

n

. (4.191)

The value qn is given by the relation

qn = v2
in

Ω2
F�

2
M2, (4.192)
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and the normalization factor vin = const in order of magnitude (up to the heat terms
dropped here) coincides with the plasma ejection velocity in the source. The first
term in (4.190) corresponds to the particle flow contribution, the latter to the elec-
tromagnetic flux, and the second term with the opposite sign to the total energy
flux En.

Using the expression for the discriminant of the cubic equation (4.190)

Qn = − 8

27

v6
in

E3
nΣ

6
n

+ v8
in

E4
nΣ

4
n

, (4.193)

and the regularity condition Qn = 0 at the fast magnetosonic point, we obtain for
Σ2

f = Σ2
n(rf)

Σ2
f = 8

27

En

v2
in

. (4.194)

As a result, we have

qn(rf) = 3

2

v2
in

En
. (4.195)

Comparing the corresponding terms in (4.190) and relations (4.194) and (4.195), we
obtain the condition Wpart(rf) = Wtot(rf)/3.

As was specially emphasized, we would have the condition Wpart = Wtot/3 only
if the fast magnetosonic surface is located at the distance much larger than the
Alfvén radius rf. In reality, as is readily verified, solution (4.195) corresponds to
the condition M2

f ∼ 1. Therefore, in the nonrelativistic case, the radius of the fast
magnetosonic surface rf is always close to that of the Alfvén radius rA (to be exact,
the ratio rf/rA is not larger than several units). Therefore, we must analyze full
Bernoulli’s equation

M4Σ2
n + x2

n

v4
in

(
v2

in

En

)2
(v2

inx2
n − M2ΩFLn)2

(1 − M2)2

+2
x4

n

v2
in

(
v2

in

En

)2
ΩF Ln − x2

nv
2
in

1 − M2
= 2x4

n

(
v2

in

En

)
, (4.196)

where the first two terms correspond to the particle flux, the third term to the elec-
tromagnetic flux, and there is the total energy flux on the right-hand side. Here now
xn = ΩF�/vin, and we, for simplicity, returned to the variable M2.

Analysis shows that for fast rotation, solutions (4.194) and (4.195) remain
approximately valid for the full equation (4.196). The fast rotation is associated
with the condition En � v2

in, when in the vicinity of the fast magnetosonic surface
the flow is strongly magnetized, i.e., the contribution of the electromagnetic energy
flux (Poynting vector) proves larger than the particle flux. In this case,
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Σ2
f ≈ En

v2
in

, (4.197)

x2
f ≈ En

v2
in

, (4.198)

M2
f ≈ 1 (4.199)

(the third condition just implies that the Alfvén and fast magnetic surfaces are close).
Relation (4.198) can be rewritten as

r2
f ≈ En

Ω2
F

. (4.200)

Since for the fast rotation we can take En ≈ ΩF Ln, the estimate (4.200) is naturally
close to estimate (4.155) for the Alfvén radius.

Problem 4.15 Using relations (4.88) and (4.101), show that for the magneti-
cally dominated (En ≈ ΩFLn) cold flow the Mach number on the fast magne-
tosonic surface M2

f = M2(rf, θ ) is given by the expression

M2
f = 1

1 − (1 − Ln/ΩF�
2
f )2/3

. (4.201)

Further, comparing solution (4.194) with definition (4.191) and again taking
� (∇Ψ ) ≈ Ψ0, we find

En ≈ Ω
4/3
F Ψ

2/3
0

4π4/3η
2/3
n

. (4.202)

Accordingly, the total energy losses, according to (4.83), can be estimated as

Wtot ≈ EnηnΨ0 ≈ Ω4/3 Ṁ1/3Ψ
4/3
0 , (4.203)

where Ṁ ≈ ηnΨ0 ≈ 4πρinvin R2
in is the mass ejection rate. Thus, we get

Wtot ≈ Ω4/3 Ṁ1/3 B4/3
in R8/3

in , (4.204)

where again the subscripts “in” correspond to the quantities in the source. Besides,
condition (4.202) allows us to estimate the critical angular velocity Ωcrit separating
the fast and slow rotations. Indeed, taking in (4.202) En = v2

in/2, we obtain

Ωcrit =
(
v3

inηn

Ψ0

)1/2

= vin

Rin

(
4πρinv

2
in

B2
in

)1/2

. (4.205)
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Hereafter we take Ψ0 ≈ πR2
in Bin and ηin ≈ ρinvin/Bin. We discuss the values Wtot

and Ωcrit for young stellar objects in Sect. 5.1.3.
Further, the expression for the radius of the fast magnetosonic surface rf can be

written as

r2
f ≈ R2

in

(
B2

in

4πρinv
2
in

) (
ΩF

Ωcr

)−2/3

. (4.206)

Evaluating now the longitudinal current as I ≈ 2πcηn En/ΩF, we make the unex-
pected conclusion that the dimensionless current i0 = I/IGJ must be much larger
than unity

i0 ≈ c

vin

(
ΩF

Ωcr

)−2/3

≈
(

c2

2En

)1/2

. (4.207)

Thus, in the nonrelativistic case for the smooth passage of the fast magnetosonic
surface the longitudinal current must be much larger than the GJ one. As seen from
the second equality in (4.207), in the relativistic limit (En → c2) the longitudinal
current approaches the GJ one.

Finally, comparing the corresponding terms in (4.196), we conclude that in the
whole range of parameters ΩF � Ωcrit the particle energy near the fast magne-
tosonic surface is to be comparable with the total energy En. Otherwise, in the
nonrelativistic case the transonic flow cannot be magnetically dominated at large
distances. Even if the Poynting flux at the base of the flow is much larger than
the particle energy flux, the smooth passage through the fast magnetosonic surface
is possible only if there is substantial particle acceleration in the vicinity of this
surface.

As to the case of small angular velocities ΩF � Ωcrit, we can disregard the
second and third terms in (4.196). As a result, we have

Σ2
f ≈ 2x4

f , (4.208)

r2
f ≈ Ψ0

ηn
. (4.209)

Thus, we find

r2
f ≈ R2

in

(
B2

in

4πρinv
2
in

)
, (4.210)

i0 ≈ c

vin
. (4.211)

In this case, the particle energy flux coincides with the total energy flux.
Note that the above expressions have meaning only if the condition rf � Rin is

satisfied. Otherwise, the critical surfaces would be in the immediate vicinity of the
compact object and there would be no pronounced particle acceleration. According
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to (4.206), the condition rf � Rin is satisfied only for rather small angular velocities
ΩF � Ω2, where

Ω2 = B2
in

4πρinv
2
in

vin

Rin
. (4.212)

Therefore, it is convenient to introduce the nonrelativistic parameter μl = ΩF/Ω2

μl = 4πρinvinΩF Rin

B2
in

, (4.213)

which is sometimes called the “mass loading” (Anderson et al., 2005). As a result,
for μl � 1, the radius of the fast magnetosonic surface rf and the particle velocity
vf ≈ √

2En/3 (which, in fact, is close to the limit velocity v∞) can be written as
(see, e.g., Spruit, 1996)

rf ≈ μ
−1/3
l Rin, (4.214)

vf ≈ μ
−1/3
l ΩF Rin. (4.215)

Accordingly, for μl � 1, we simply have rf ≈ Rin and v∞ ≈ ΩF Rin. Note that the
mass loading μl can be estimated directly from the observations. Indeed,

μl = ṀΩF

B2
in Rin

. (4.216)

As will be shown in Sect. 5.1.3, for young stellar objects (YSO) μl � 1 and P2 =
2π/Ω2 ∼ 102–103 s. As a result, the condition Ω � Ω2 is always satisfied for the
young stars.

Thus, the matter can be effectively accelerated in the range of angular velocities
Ωcrit � ΩF � Ω2 only. Clearly, it is possible only if the condition Ωcrit � Ω2 is
satisfied, which, as is readily verified, corresponds to the condition

B2
in

4πρinv
2
in

� 1. (4.217)

This must be the case, since, as inequality (4.217) is violated, the energy density of
the outflowing plasma would be larger than the energy density of the electromag-
netic field and the electromagnetic acceleration of particles could not take place.

Problem 4.16 Show that, as in the relativistic case, the toroidal magnetic field
on the Alfvén surface is compared with the poloidal one.
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Problem 4.17 Show that the criterion for the slow rotation ΩF � Ωcrit cor-
responds to the condition ωn � 1 and for the fast rotation ΩF � Ωcrit to the
condition ωn ≈ 1, where (see, e.g., Lery et al., 1998)

ωn = ΩFrA

VA(rA)
. (4.218)

Problem 4.18 Show that the value rf ≈ rA (4.206) can be obtained directly
from the definition M(rA) = 1 under the quasimonopole outflow condition
ρvr2 ≈ const.

Problem 4.19 Show that if we again introduce the magnetization parameter

σ = Ω2Ψ0

8π2c3ηn
= vin

c

(
ΩRin

c

)2 B2
in

8πρinV 2
in

, (4.219)

we have

• for the nonrelativistic case σ � 1,
• expression (4.207) for the current i0 can be written in compact form as

i0 = σ−1/3, (4.220)

• the “mass loading” μl can be written as

μl =
(
ΩF Rin

c

)3

σ−1. (4.221)

Note that the condition of the efficient particle acceleration in the vicinity of the
singular surfaces (Wpart ∼ Wtot for r ≈ rf) can be derived from the simplest estimate
of the value of the toroidal velocity vϕ(rf) ≈ ΩFrf (4.90). Indeed, for the magnet-
ically dominated flows we can take En ≈ ΩF I/2πcηn, which immediately yields
the value of En ≈ Ω2

Fr2
f for I ≈ i0 IGJ. Moreover, we readily show that the poloidal

velocity vp in the vicinity of the singular surfaces is also of order ΩFrf. Thus, the
character of the particle acceleration in the magnetically dominated nonrelativistic
wind becomes evident.

Theorem 4.7 Inside the Alfvén surface (where the energy density of the magnetic
field is much larger than that of particles), the magnetic field acts as a sling ensuring
the constant angular velocity of plasma. As a result, the particle velocity linearly



272 4 Full MHD Version—General Properties

increases with distance from the rotation axis: v∼ΩF� . However, this acceleration
ceases at distances of r >rf, where the plasma energy density is compared with the
energy density of the electromagnetic field.

In this domain, the particle energy is mainly determined by the poloidal velocity
component, as the flow has the different asymptotic behavior vϕ ≈ ΩF�

2
A/� (4.93).

Finally, recall that exactly in the vicinity of the fast magnetosonic surface the
structure of characteristic surfaces, which was described in detail for the hydrody-
namical flows, can be reconstructed. Of special interest here is, undoubtedly, the
moment of the analyticity loss when a shock wave is to occur in the vicinity of the
nonstandard singular point as the flow parameters slowly change. Using a concrete
example below, we show that this effect, evidently, really happens for the magneti-
cally dominated wind.

4.4.5 Behavior of the Solution at Large Distances

The behavior of the solution to the GS equation in the asymptotically distant region
r � rf has also been the focus of attention for many years, because the problems
of the current closure and the formation of jets observed in the broadest class of
astrophysical objects are connected with it. Below we return to this problem when
discussing in detail the exact solutions for the magnetized wind. Here we state sev-
eral general assertions of the particle collimation and acceleration.

Note at once that one must distinguish between the physical and mathematical
infinities. As we will see, in the relativistic case the collimation of the magnetic
surfaces is weakly pronounced, so that the visible collimation may be exponentially
far as compared to the characteristic scales in the problem—the light cylinder radius
RL or the fast magnetosonic surface radius rf. Clearly, under the real conditions
the flow properties change much earlier due to the interaction between the wind
and the environment with finite pressure and finite magnetic field. For example,
for the characteristic parameters of the pulsar wind (Bϕ(RL) ≈ Bp(RL) ∼ 1 G,
RL ∼ 1010 cm) and the interstellar medium (Bext ∼ 10−6 G), this change is to occur,
at least, at distances where the toroidal magnetic field of a wind becomes equal to
the external magnetic field. The corresponding scale

Rt ∼ RL
BL

Bext
∼ 1016 cm, (4.222)

where BL = B(RL), as we see, is comparable with the transverse size of the jet
of young pulsars. However, it is not improbable that the pronounced distortion of
the quasimonopole wind occurs already on much smaller scales when the poloidal
component of the magnetic field is compared with the external magnetic field. This
is the case already at distances

R′
t ∼ RL

(
BL

Bext

)1/2

∼ 1013 cm, (4.223)
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which for the characteristic distances to the radio pulsars of order 1 kpc is within
the angular resolution of the present-day telescopes. Thus, under the real conditions
the general results of the asymptotic behavior of the solution for r → ∞ should be
used with caution.

Let us now try to formulate some general properties the magnetized flows must
have at large distances from the central object. It is obvious that we are primar-
ily interested in the transonic flows when the flow is supersonic at large distances.
Therefore, the asymptotic condition can be written as

� � rf. (4.224)

Besides, we assume that the solution can be extended to infinity. The longitudinal
electric current, as we saw, should be rather large.

We first show that for the polytropic index Γ > 1 we can disregard the pressure
gradient contribution at large distances, i.e., we believe that the outflowing plasma
is cold. This conclusion can be readily deduced from both the GS equation and the
Bernoulli’s equation. Analyzing, for example, the nonrelativistic expressions (4.88)
and (4.102), we see how both the enthalpy w = c2

s /(Γ − 1) ∝ nΓ−1 in (4.88) and
the temperature T = k(s)nΓ−1 in (4.102) decrease with distance from the compact
source, because for any divergent flow the concentration vanishes at large distances,
i.e., n → 0 for r → ∞. Therefore, the final temperature contribution (enthalpy,
entropy) as compared to the total energy E and its derivative dE/dΨ is negligible
at large distances.

Problem 4.20 Show that for Γ > 1 the finite temperature contribution can be
disregarded in the relativistic case, both at large distances (i.e., for r � rf)
and in the vicinity of the black hole horizon (α2 � α2

f ).

Problem 4.21 Show that, on the contrary, for the cylindrical jets the thermal
effects can be substantial.

Analyzing the leading terms in the GS equation (4.66), we can show that at
large distances it can be written as (Heyvaerts and Norman, 1989; Bogovalov, 1998;
Okamoto, 1999)

1

2
n⊥ · ∇(B2

p) − B2
ϕ + 4πnmpc2γ

Rc
+ B2

ϕ − E2

�
(n⊥ · e� ) = 0. (4.225)

Here Rc is the curvature radius of the magnetic field line in the poloidal plane and
n⊥ = ∇Ψ/|∇Ψ |. Otherwise, for r � rf, the GS equation describes the balance of
the bulk centrifugal force
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Fc = nmc2γ + S/c

Rc
(4.226)

and of the bulk electromagnetic force

Fem = ρeE + ∇
(

B2

8π

)
. (4.227)

As we see, in the numerator of expression (4.226), besides the obvious term
associated with the particles, there appears a term due to the electromagnetic energy
flux (Poynting vector S ≈ (c/4π )Eθ Bϕ ≈ (c/4π )B2

ϕ). The point is that, as was
noted, the electromagnetic energy, as well as the outflowing matter, propagates
along the curved magnetic surfaces. Consequently, an additional force is needed to
bend the vector S along the particle trajectory. In the nonrelativistic case, this force
is provided by Ampére’s force associated with the longitudinal electric current. In
the relativistic case, it is necessary to include the force ρeE associated with the
electric field.

Analysis of Eq. (4.225) shows that if the curvature of the magnetic field lines is
sufficiently large, the first term due to the bulk force jϕ Bp/c can be dropped. Thus,
in the nonrelativistic case, the GS equation can be written as (Okamoto, 1999)

ρv2
‖

Rc
= 1

c
j‖ Bϕ. (4.228)

In the relativistic case, using the general asymptotic expression (4.144), we obtain
for the weakly magnetized outflow

μnu2

Rc
∼ 1

cγ 2
j‖ Bϕ (4.229)

(a more exact expression is obtained in Sect. 5.2.3). For the magnetically dominated
flow when the main energy is transferred by the Poynting vector, we find using the
general relation (4.144)

|E|Bϕ

4πRc
≈ j‖ Bϕ

cγ 2
. (4.230)

Since at large distances |E| ≈ Bϕ and (4π/c) j‖ = ∂Bϕ/∂� ∼ Bϕ/� , relation
(4.230) can be rewritten in compact form as (Beskin et al., 2004)

γ ≈
√

Rc

�
. (4.231)

Relations (4.229), (4.230), and (4.231) allow us to make a number of rather gen-
eral conclusions:

1. The sign of the curvature radius depends on the direction of the longitudinal
current j‖. Therefore, if there is a bulk back current in the magnetosphere, one
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should expect the collimation of the magnetic surfaces in the vicinity of the axis
and their decollimation in the vicinity of the equator (Okamoto, 1999).

2. In the relativistic case (γ � 1), the curvature radius of the magnetic surfaces
Rc must be much larger than the radius r . Hence, the collimation (decollima-
tion) of the magnetic surfaces for the ultrarelativistic outflow must be strongly
suppressed.

3. Conversely, in the nonrelativistic case (γ ≈ 1), the curvature radius Rc is com-
parable with the radius r . This implies that already in the vicinity of the fast
magnetosonic surface region the pronounced collimation (decollimation) of the
magnetic surfaces must be present.

As was already mentioned, the above relations correspond to the case in which
the curvature of the magnetic surfaces is of vital importance. Clearly, for the flows
close to the cylindrical ones, the equilibrium is to be established already by the
balance of the first and third terms in Eq. (4.225) when the centrifugal force can be
disregarded and the force jϕ Bp/c ∼ ∇(B2/8π ), on the contrary, proves substantial.
Using the estimate Bϕ ≈ (Ω�/c)Bp, we obtain for the relativistic flows the simple
relation

γ = Ω�

c
, (4.232)

which, as we will see, is also rather universal. As a result, the choice between the
asymptotic solutions (4.231) and (4.232) must depend on how much the magnetic
surfaces would be curved.

It is easy to show that the parabolic magnetic field, where the field lines at a
large distance from the central source are described by z(� ) ∝ � 2, is a terminating
configuration. Indeed, the curvature radius Rc for the magnetic surfaces prescribed
by z(� ) ∝ � k can be defined as (Korn and Korn, 1968)

Rc = [z′2 + 1]3/2

z′′ , (4.233)

where z′ = dz/d� and z′′ = d2z/d� 2. At large distance from the equatorial plane
where z′ � 1 formula (4.231) yields for the particle energy moving along the mag-
netic field line

γ ∝ � k−1. (4.234)

Therefore, for k = 2 the acceleration efficiency defined by relations (4.231) and
(4.232) appears identical. As a result, if the magnetic surfaces are collimated more
strongly than those for the parabolic field (i.e., for k > 2), at large distances the
curvature of the magnetic surfaces can be disregarded and the particle energy is
defined by (4.232). If the flow is weakly collimated (i.e., for 1 < k < 2), the
particle acceleration is less effective and relation (4.231) should be used. The cases
k = 2 (parabola) and k = 1 (monopole field) need a special examination given in
Sects. 5.3.4 and 5.3.5. The numerical modeling (Narayan et al., 2007; Barkov and
Komissarov, 2008) completely confirms the above pattern.
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Recall once again that these conclusions can be applied to not too large distances
from the compact object (i.e., only at physical infinity) and to the domain distant
from the rotation axis (θ ∼ 1). As to the behavior of the solution at true (math-
ematical) infinity, this problem invites separate investigation. The point is that at
large distances the right-hand sides of Eqs. (4.228) and (4.229) must decrease as
r−3, whereas the numerator on the left-hand side as r−2. As a result, the curvature
radius of the magnetic surfaces Rc must increase as r . This conclusion immediately
follows from (4.231), because the particle Lorentz factor is bounded from above by
the value of σ . But this behavior cannot be realized at mathematical infinity (Hey-
vaerts and Norman, 2003a,b,c) and, therefore, for r → ∞, only the right-hand
sides of Eqs. (4.228) and (4.229) prove to be leading ones. In particular, for the
nonrelativistic flow we simply have

j‖ = 0. (4.235)

This conclusion can be formulated as follows:

Theorem 4.8 At “mathematical infinity” practically all longitudinal current must
be concentrated in the vicinity of the rotation axis (Heyvaerts and Norman, 1989).
Then the returning current is to flow along the equatorial plane.

Recall that this hypothesis concerns the absence of the environment.

Problem 4.22 Show that at mathematical infinity the decollimation of mag-
netic surfaces is impossible (Heyvaerts and Norman, 1989).

On the other hand, as seen from (4.231), for the ultrarelativistic case the curvature
radius of the magnetic surfaces Rc must be much larger than the radius r . Therefore,
the flow must be radial with adequate accuracy. As shown below, a great difference
from the radial flow (i.e., passage from physical to mathematical infinity) can be
only exponentially far from the compact object.

Nevertheless, analysis of the relativistic equations makes it possible to get impor-
tant additional information. Assuming that at mathematical infinity r → ∞

1. we can disregard the radial derivatives in Bernoulli’s equation and the GS equa-
tion (which implies that the left-hand side in (4.228) and (4.229) is dropped),

2. the square of the Mach number M2 is proportional to r2 and M2/r2 is thus
independent of r ,

we reduce the problem to the one-dimensional one. And, as we know, in the one-
dimensional case the GS equation can be integrated (Heyvaerts and Norman, 1989).
Indeed, for the conical magnetic surfaces Ψ = Ψ (θ ), in the asymptotically distant
region r → ∞ the GS equation (4.66) for μ = const (and c = 1) is rewritten as
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− 1

sin θ

d

dθ

[
Ω2

F sin2 θ + m2(θ )

sin θ

dΨ

dθ

]
+

(
dΨ

dθ

)2

ΩF
dΩF

dΨ

+32π4 ∂

∂Ψ

[
E2

Ω2
F sin2 θ + m2(θ )

]
− 32π4

m2(θ )

d

dΨ
(μ2η2) = 0, (4.236)

where the value m2(θ ) = M2/r2 is independent of the radius r . We recall that
here the derivative ∂/∂Ψ acts on the integrals of motion only. If we now multiply
Eq. (4.236) by (Ω2

F sin2 θ + m2(θ ))(dΨ/dθ ) and use the asymptotic behavior of the
Bernoulli’s relativistic equation (4.44)

[Ω2
F sin2 θ + m2(θ )]2

64π4r4 sin2 θ

(
dΨ

dθ

)2

= E2 − μ2η2

m4(θ )
[Ω2

F sin2 θ + m2(θ )]2, (4.237)

we obtain upon the elementary, though cumbersome, transformations (Heyvaerts
and Norman, 1989)

d

dθ

(
q2Ω2

F

μ2η2

)
= 0, (4.238)

where again q = M2/Ω2
F�

2. In particular, for η = const, ΩF = const, we simply
have

q = const. (4.239)

We emphasize at once that relation (4.238) is of a universal character, i.e.,
it holds for both the relativistic and the nonrelativistic cases. Indeed, using the
asymptotic behavior of the nonrelativistic expression (4.85) for the electric current
I ≈ 2πcηnΩF�

2/M2, we at once conclude that at large distances the condition
I ≈ const is to be satisfied. This implies that the longitudinal current density j‖
should vanish on the conical surfaces. Otherwise, we again return to relation (4.235)
obtained by disregarding the centrifugal force (Rc → ∞).

Problem 4.23 Show that in the relativistic case condition (4.238) yields rela-
tion I/γ ≈ const refining expression (4.229).

As a result, taking into account condition (4.238), Eq. (4.236) can be readily
integrated. For example, under the condition ΩF = const and η = const, i.e., for
q = const, its solution has the form

Ψ (r → ∞, θ ) = Ψ0

[
1 −

√
1 + γin

σ
· (1 + cos θ )p − (1 − cos θ )p

(1 + cos θ )p + (1 − cos θ )p

]
, (4.240)
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where the exponent p is

p =
√

1 + γin/σ

1 + q
. (4.241)

We also used the following assumptions:

1. The angular momentum L(Ψ ) can be taken as

L(Ψ ) = μη

ΩF
σ

(
2
Ψ

Ψ0
− Ψ 2

Ψ 2
0

)
, (4.242)

which corresponds to the Michel monopole solution (2.225).
2. Bernoulli integral E(Ψ ) is

E(Ψ ) = μηγin + μησ

(
2
Ψ

Ψ0
− Ψ 2

Ψ 2
0

)
, (4.243)

where the first term corresponds to the particle contribution and the second to the
electromagnetic field contribution. The constant γin was supposed to be constant
(below we discuss this form of the Bernoulli integral in more detail).

3. We used the boundary condition Ψ (π/2) = Ψ0.

The characteristic profile of the stream function Ψ (θ ) is shown in Fig. 4.3. Anal-
ysis of the exact solution (4.240) leads to a number of conclusions confirming the
above assertions.

Fig. 4.3 The behavior of the
stream function Ψ (θ ) (4.240)
in the asymptotically far
domain r → ∞ for the
different values of q for
γin � σ 30 60 900

0.2

0.4

0.6

0.8

1

• When considering the finite particle mass (σ < ∞) we cannot satisfy the bound-
ary condition Ψ (0) = 0. This implies that in the vicinity of the rotation axis the
flow must differ from the radial one (Bogovalov, 1995).
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• If at large distances the energy is transported by the electromagnetic field (i.e.,
Wem � Wpart, so that q � 1), the flow is to remain actually a radial one, i.e.,
Ψ ≈ Ψ0(1 − cos θ ).

• On the other hand, if at large distances practically the total energy is transported
by particles (so that q � 1), there would be the strong collimation of the mag-
netic surfaces to the rotation axis.

Recall once again that the solution (4.240) allows us to observe only the coupling
between the magnetic field structure and the efficiency of the particle acceleration.
In reality, the value q is not initially known and its value is to be found along with
the solution of the complete problem.

Problem 4.24 Using definition (5.114) for nonrelativistic Bernoulli integral

En = v2
in

2
+ i0σc2

(
2
Ψ

Ψ0
− Ψ 2

Ψ 2
0

)
, (4.244)

and relation (5.123), which are needed to find the values q = M2/Ω2
F�

2

(and for ΩF = const, η = const, i.e., for q = const), find the magnetic flux
Ψ (θ ) in the asymptotically distant domain r → ∞.

Problem 4.25 Estimate the angular dimension of the central core for the non-
relativistic flow.

4.4.6 Behavior of the Solution in the Vicinity of the Horizon

Finally, we consider the behavior of the solution to the GS equation in the vicinity
of the rotating black hole. As shown in the hydrodynamical case, for the physically
reasonable transonic flows the radial velocity of matter on the horizon must not be
zero. Consequently, the concentration n on the horizon (recall that it is determined
in the comoving reference frame) must be finite and, therefore, the Mach number
must be different from zero: M2(rg) 
= 0. As a result, the denominator D(rg, θ ), as
is readily verified, can be rewritten as (c = G = 1)

D(rg, θ ) = −1 + α2

M2 B2
p

(B2
ϕ̂ − E2

θ̂
). (4.245)

Here we dropped all terms that obviously vanish for α2 → 0. On the other hand, if
we take α2 to be zero in algebraic Bernoulli’s equation (4.44), under the condition
M2(rg) 
= 0 on the horizon it can be rewritten as
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(E − ΩHL)2

[
(ΩF − ΩH)2� 2 + M2

]2 = 1

64π4ρ2
K�

2

(
dΨ

dθ

)2

. (4.246)

By definitions (4.26) and (4.27), this relation can be rewritten as |Bϕ̂(rg)| =
|Eθ̂ (rg)|. This result is in good agreement with the main assertion of the “membrane
paradigm,” according to which ZAMO are to detect the ϕ-component of the mag-
netic field and the θ -component of the electric field, which diverge as 1/α (Thorne
et al., 1986). Thus, the second term in expression (4.245) must also vanish for
α2 → 0. Therefore, on the horizon the condition

D(rg, θ ) = −1 (4.247)

must be satisfied. This implies that for M2(rg) 
= 0, Eq. (4.66) in the vicinity of
the horizon must be of a hyperbolic type. Therefore, the full MHD version of the
GS equation (4.66) does not need any boundary condition on the horizon. This must
be the case, because no signal, by definition, can propagate from the horizon to the
outer regions of the magnetosphere (Punsly and Coroniti, 1990b).

Problem 4.26 Show that in the vicinity of the horizon D = −1+α2K, where

K = (E − ΩF L)2

(E − ΩHL)2

A2

M6
+ μ2η2 A2

(E − ΩHL)2M6(1 − c2
s )

[
� 2(ΩF − ΩH)2 + M2c2

s

]
,

(4.248)
so that K > 0. As we see, in the vicinity of the horizon D > −1, which just
corresponds to the hyperbolic domain of the GS equation.

Problem 4.27 Show that the estimate of the location of the inner fast magne-
tosonic surface α2

f ≈ 1/K derived from the condition D = 0 coincides with
expression (4.184).

Problem 4.28 Show that the hydrodynamical limit of (4.246) fixes the accre-
tion rate (1.271) for the case c∗ = 1 (r∗ = rg).

Hence, within the full MHD version, the hyperbolic domain of the general equa-
tion (4.66) must be above the black hole horizon. In particular, according to (4.247),
even in the limit M2 → 0, the condition D = −1 must be satisfied on the horizon.
On the other hand, as we saw, the force-free equation (3.49) remains elliptic up to
the horizon. Therefore, it is necessary to consider the passage from MHD to the
force-free approximation in more detail.
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We first consider the limit of the regularity conditions (4.56) and (4.60) on the
fast magnetosonic surface for M2 → 0. As is obvious from (4.55), the very location
of this surface for M2 → 0 extends to the black hole horizon. On the other hand,
the total singularity in D is in the factor 1/M2. The values M2 D and N ′

k = Nk/A
in the force-free limit remain finite on the horizon. Therefore, as the limit of the
regularity conditions (4.60), we can consider the values of N ′

a for M2 = 0 and
r = rg.

As a result, the condition N ′
θ (rg) = 0 can be rewritten as

d

dθ

[
64π4 (E − ΩHL)2

(ΩF − ΩH)4� 2
g

− 1

ρ2
K(rg)

(
dΨ

dθ

)2
]

= 0. (4.249)

We readily see that condition (4.249) coincides with the “boundary condition on
the horizon” (4.246). Analogously, as is readily verified, the equality M2 D(rg) = 0
yields condition (4.246) as well. Finally, the condition N ′

r (rg) = 0 upon elementary,
though cumbersome, transformations can be reduced to the form

rg
∂

∂r

[
(∇Ψ )2 − 16π2 I 2
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2
K

(
dΨ
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)2

= 0, (4.250)

where

ξ = uϕ̂

αγ

∣∣∣∣
r=rg

, (4.251)

and all the values in (4.250) are taken on the black hole horizon.
As we see, condition (4.250), besides the “force-free” values I (Ψ ) and ΩF(Ψ ),

also comprises the plasma parameters γ and uϕ̂ , while for the relativistic plasma
(αγ � 1) is only their ratio ξ (4.251). Evaluating (∂/∂r )(∇Ψ )2 ∼ Ψ 2

0 /r3
g , we have

uϕ̂(rg) ∼ αγΩH�g, (4.252)

in complete agreement with general relations (4.39) and (4.40).
Here we have one of the key points that shed light on the difference between the

force-free approximation and the full MHD version of the GS equation. Indeed, as is
readily seen, Bernoulli’s equation (4.246) for α2 = 0 in the force-free limit M2 = 0,
E = ΩFL coincides with the “boundary condition on the horizon” (3.52). As a
result, the additional relation resulting from Bernoulli’s equation, available in the
full version, automatically ensures the regularity condition for α2 → 0 (certainly,
provided that the flow is not bounded by the light surface located beyond the event
horizon). To show this, it is convenient to use Eq. (4.64). As a result, in the limit
α2 → 0, the GS equation has the form
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If we suppose now that the solution is regular on the horizon, i.e., if we drop
the terms containing α∂Ψ/∂r and α2∂2Ψ/∂r2, we obtain multiplying (4.253) by
2A(dΨ/dθ )/ sin2 θ
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]
= 0. (4.254)

Clearly, this relation is automatically true if condition (4.246) is satisfied. But, on
the other hand, if the “condition on the horizon” resulting from Bernoulli’s equation
is satisfied, the singular terms α∂Ψ/∂r and α2∂2Ψ/∂r2 in the GS equation are to be
zero for α2 → 0. This implies that the solution is regular on the event horizon.

Thus, we are ready to quote the key statement:

Theorem 4.9 The “boundary condition on the horizon” in the force-free approxi-
mation is the rudiment of the critical condition on the fast magnetosonic surface
when it tends to the black hole horizon. Hence, this condition is given, in fact, on
the surface causally connected with the outer space. Consequently, the force-free
approximation has no intrinsic contradiction associated with the necessity to use an
additional boundary condition in the causally unconnected domain.

We can also note here that, as seen from Fig. 4.4, with account taken of the
nonzero particle mass, the Alfvén surface in the vicinity of the rotation axis is
beyond the ergosphere that, by definition (1.218), crosses the horizon for θ = 0.
Thus, the hypotheses of Theorem 3.2 advanced in the previous chapter are formally
violated. According to this theorem, the energy release in the magnetosphere of the
rotating black hole is possible only if the Alfvén surface is within the ergosphere.
Actually, the theorem is formulated for the continuous flows whose hypotheses are

Fig. 4.4 The location of the
Alfvén (A) and fast
magnetosonic (F) surfaces in
the vicinity of the black hole
poles. The dashed line
indicates the Alfvén surface
in the force-free
approximation and the dotted
line indicates the ergosphere
surface

A

F

α =
2 2
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violated in the plasma generation region. As a result, the particle energy flux on
different sides of the generation region, because of the different sign of the value
η, is positive both for the outflowing plasma and the matter falling onto the black
hole. In particular, in the vicinity of the rotation axis, where the total energy flux
is associated with the particles only, the positive energy flux leaving the black hole
occurs along with the positive energy flux propagating to the event horizon. The
energy source on these field lines contributing to both the increase in the energy of
the black hole and the energy transfer at infinity is a photon source contributing to
the plasma generation.

Finally, the above-mentioned property that the GS equation and Bernoulli’s equa-
tion yield the same “condition on the horizon” can be considered differently. As we
saw, the “condition on the horizon” is deduced from the GS equation (4.66), when
all the terms that do not diverge in the vicinity of the horizon are dropped as α−2.
But, since the same asymptotic behavior follows from Bernoulli’s equation (without
which the GS equation is not closed), all terms of order α−2 can be analytically elim-
inated. As a result, in general form the GS equation in the vicinity of the horizon is

Σ2

ρ2
K

∂2Ψ

∂r2
+ (D + 1)

α2

∂2Ψ

∂θ2
+ G = 0, (4.255)

where G (which is finite for α2 → 0) does not comprise the second derivatives Ψ .
Since always D+1 ∝ α2, the full equation (4.66) (as well as the above hydrodynam-
ical equations) is regular, i.e., in the limit α2 → 0, it has no diverging coefficients
of the higher derivatives.

Hence, the structures of the solution to the GS equation in the vicinity of the
horizon and at large distances greatly differ from one another. Indeed, though for
σ → ∞ the fast magnetosonic surface tends to infinity, for any finite value σ beyond
the outer fast magnetosonic surface there is always, figuratively speaking, infinitely
much space, where the collimation of the magnetic field lines is possible. Therefore,
the angular dependence Ψ (θ ) at infinity and in the sonic surface region can differ
considerably. In the vicinity of the black hole there are no small parameters of the
higher derivatives. Therefore, when the fast magnetosonic surface approaches the
event horizon, the substantial reconstruction of the magnetic field structure between
these surfaces is impossible. That is why the limit of the critical condition on the fast
magnetosonic surface for rf → rg and the “condition on the horizon” are equivalent.

Finally, one can show that the rudiment of the critical condition on the fast mag-
netosonic surface coincides with the regularity condition (3.57) in the vicinity of
the black hole poles. To show this, recall that for the strongly magnetized flow
(VA � cs) in the vicinity of the rotation axis, where Bϕ̂ → 0, the fast magne-
tosonic and Alfvén surfaces coincide with each other. It is important that for the
finite particle mass these surfaces cross the rotation axis for α2 = M2 > 0, i.e.,
above the black hole horizon (see Fig. 4.4). As a result, for the finite particle mass
the critical condition on the fast magnetosonic surface in the vicinity of the rotation
axis can be deduced from the analysis of the numerator in algebraic relations (4.40)



284 4 Full MHD Version—General Properties

(in the general case, as was mentioned, the singularities in algebraic relations (4.38),
(4.39), and (4.40) do not give rise to additional restrictions to the flow parameters).
Since in the vicinity of the axis, as was noted, the energy E is specified only by
particle contribution, we find from (4.40)

L ≈ ω(rf, 0) − ΩF(0)

M2(rf, 0)
(r2

f + a2)(αγ )μ|η|θ2. (4.256)

Using now the definitions αnup = ηBp and M2 = 4πμη2/n and also the relation
Ψ ≈ πBp(r2

f + a2)θ2 valid in the vicinity of the rotation axis, we finally get

L ≈ 1

4π2

(
γ

up

)
[ω(rf, 0) − ΩF(0)]Ψ. (4.257)

In the force-free limit (rf → rg, up → γ ), condition (4.257) naturally becomes
relation (3.57) ensuring the regularity of the force-free solution on the horizon in
the vicinity of the rotation axis.

The above example once again points to the substantial difference of the full
MHD version of the GS equation from its force-free limit in which the Alfvén sur-
face α2 = (ω − ΩF)2� 2 crossed the event horizon for θ = 0, which gave rise to
the irrational solutions Ψ (θ ) ∝ θq with q 
= 2. For the finite particle mass, the
“condition on the horizon” (4.246) for θ → 0 has now the different behavior

E(0)

M2
(r2

g + a2)θ = 1

8π2

(
dΨ

dθ

)
. (4.258)

Since in the vicinity of the axis, where uϕ̂ → 0 and I → 0, the energy E(0) is
specified only by the particle contribution, we obtain the condition

2πBp(r2
g + a2) θ =

(
dΨ

dθ

)
, (4.259)

which is identically satisfied by definition (3.14). This conclusion once again con-
firms the general conclusion that the GS equation for the finite particle mass has no
singularity on the horizon.



Chapter 5
Full MHD Version—Particle Acceleration and
Collimation

Abstract In this chapter, we discuss the analytical solutions obtained for cylindrical
jets, quasimonopole outflows, and the black hole magnetosphere. It is demonstrated
that the self-consistent analysis makes it possible to determine the main charac-
teristics of the outgoing wind, including the determination of the total energy loss
and the poloidal magnetic field structure. The conditions of the effective energy
transformation from the electromagnetic flux to the particle flux are given as well.
For cylindrical jets both the relativistic and nonrelativistic versions are discussed. It
is shown that taking into account the finite ambient pressure, one can determine the
magnetic flux within the central core. For nonrelativistic flows, which are magneti-
cally dominated near the origin, the solution can be constructed only in the presence
of an oblique shock near the jet base, where additional heating is to take place.
The analytical solutions obtained for quasimonopole and parabolic magnetic fields
illustrated the general property that the efficient particle acceleration can take place
only for the strongly collimated outflows. Two toy solutions for the black hole mag-
netosphere support the physical nature of the Blandford–Znajek process. Finally,
the results obtained by the self-similar approach and in the numerical simulation are
briefly discussed. It is demonstrated that there is now a lot of numerical data that
confirms the analytical results obtained by the Grad–Shafranov equation method.

5.1 Astrophysical Introduction

Problems of jet collimation and particle acceleration (the internal structure of jets,
their stability, the interaction with energy release regions) are so diverse that a sepa-
rate survey would be needed to discuss them (see, e.g., Krolik (1999b) and Camen-
zind (2007) and the bibliography therein). Therefore, we would like to discuss only
the problems that can be studied by the GS equation method discussed here.

5.1.1 Radio Pulsars

As was already mentioned, the radio pulsar wind theory has not been constructed
yet. In other words, there is no consistent model describing in a single language
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the energy transfer from the neutron star surface to infinity, including the efficient
particle acceleration, i.e., the total energy transfer from the electromagnetic flux to
the outflowing plasma energy flux. Moreover, there is no reasonable theory of jets
observed in the Crab and Vela radio pulsars (Weisskopf et al., 2000; Helfand et al.,
2001).

Indeed, as was shown in Chap. 2, if the energy release is fully connected with
the current energy losses, the major part of energy within the light cylinder must be
transported by the electromagnetic field and the particle contribution is very small
(σ ∼ 104–106). On the other hand, the observations show that at large distances
from the neutron star the major part of the energy must be transported by relativistic
particles. For example, the analysis of the Crab Nebula radiation from a shock wave
located at a distance of ∼1017 cm from the pulsar in the interaction region of the
pulsar wind with supernova remnant uniquely shows that the ratio Wpart/Wem is only
≈ 10−3 here (Kennel and Coroniti, 1984a,b). Therefore, in the asymptotically far
region the Poynting vector flux must be fully transferred to the outflowing plasma
flux.

However, the transformation, evidently, occurs already at much smaller dis-
tances, viz., at distances comparable with the light cylinder. There is evidence that
the alternating optical emission from companions in some close binary systems
containing radio pulsars was detected (Djorgovski and Evans, 1988). It is logical to
associate this optical emission, whose periodicity exactly coincides with the orbital
period of the binary system, with the heating of part of the companion star facing
the radio pulsar. It turned out that the energy reradiated by the companion actually
coincides with the total energy emitted by the radio pulsar at the corresponding
solid angle. Clearly, this fact cannot be explained either by the magnetodipole radi-
ation or by the strong magnetized flux with a prevailing electromagnetic energy
flux, because the efficiency of the low-frequency wave transformation cannot be
close to unity. Only if a considerable part of energy is connected with the rel-
ativistic particles will the star surface heating be rather effective. Therefore, the
σ -problem—the problem of the efficient energy transfer from the electromagnetic
field to particles in the pulsar wind—is one of the key problems of present-day
astrophysics.

If in the 1970s particular attention was given to the relativistic particle motion in
the intense electromagnetic wave of a rotating magnetic dipole (Max and Perkins,
1971; Asséo et al., 1978), starting from the 1980s when it was clear that the particles
are of crucial importance in the pulsar wind, the MHD approach became the main
line of investigation (Ardavan, 1976; Okamoto, 1978; Li et al., 1992; Begelman
and Li, 1994; Bogovalov, 1997a). Recall that this approach was simultaneously dis-
cussed in the context of the problem of the formation of jets from the active galactic
nuclei (Phinney, 1983; Blandford and Znajek, 1977; Macdonald and Thorne, 1982;
Camenzind, 1986; Begelman et al., 1984) and the young stars (Mestel, 1968; Hey-
vaerts and Norman, 1989; Sakurai, 1990; Pelletier and Pudritz, 1992; Shu et al.,
1994). In fact, we dealt with the possibility to construct a complete solution, i.e.,
extend the solutions obtained by the force-free approximation for the inner magne-
tosphere regions to the pulsar wind region.
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The point is that, as was noted, the force-free approximation, by which the first
results were obtained, encounters certain difficulties. First of all, within this approx-
imation, it is impossible to determine the part of energy transported by relativistic
particles. Besides, since in the force-free approximation the electric current I (Ψ ) is
constant on the magnetic field lines, there is no hope to thoroughly study the current
closure problem.

As to the MHD approach, both the transformation of the energy from the electro-
magnetic field to particles and the poloidal magnetic field structure can be described
rather simply. Besides, as the electric current I must no longer be constant on the
magnetic field lines, the current closure problem can be studied. Unfortunately, as
was shown, it has nothing to do with the angular velocity of the plasma ΩF(Ψ ),
which remains constant on the magnetic surfaces in this approximation. Finally,
what is very important, within the full MHD GS equation version, the value of the
electric current circulating in the magnetosphere is no longer a free parameter but
must be determined from the critical conditions on the singular surfaces (Bogo-
valov, 1992; Beskin, 1997). Otherwise, one of the main problems in theory—the
construction of the current system and, as a result, the determination of the energy
losses—can be posed mathematically rigorously.

It is interesting to note that the first results, within the MHD approach, were
obtained already at the end of the 1960s (Michel, 1969; Goldreich and Julian, 1970).
It was F. Michel who introduced the key relativistic parameter—the magnetization
parameter σ (2.84)

σ = eΩΨtot

4λmec3
, (5.1)

determining the ratio of the electromagnetic energy flux to the particle energy flux
near the star surface. Here Ψtot is the total magnetic flux in the source and λ = n/nGJ

is the multiplicity parameter. We already used this parameter in Chap. 2 in the defi-
nition of the usability condition of the force-free limit σ → ∞.

As was mentioned, for radio pulsars

Ψtot = πB0 R2
0 ≈ πB0 R2ΩR

c
, (5.2)

which corresponds to the magnetic flux only in the region of open magnetic field
lines. As a result, we find
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We see that for ordinary radio pulsars (P ∼ 1 s, B0 ∼ 1012 G, the multiplication
parameter λ = n/nGJ ∼ 103) we have σ ∼ 103–104, and only for the fastest ones
(P ∼ 0.1 s, B0 ∼ 1013 G) σ is ∼ 105–106. The large value of σ just shows that
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the main contribution of the energy flux inside the light cylinder is made by the
electromagnetic field.

Accordingly, the total particle ejection rate Ṅ = λπR2
0nGJc is

Ṅ ∼ 1033 part/s
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)
. (5.4)

Finally, expression (4.178) for the critical period Pcr = 2π/Ωcr has the form
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(5.5)
As we see, actually all radio pulsars should be referred to the slowly rotating
sources. This implies that the particle energy remains constant up to the fast mag-
netosonic surface.

Unfortunately, none of the MHD models allowed one to construct an adequate
pulsar wind model. All attempts to find the self-consistent solution containing the
efficient particle acceleration failed. Recall that this conclusion is true exactly for the
relativistic case; the acceleration efficiency for the nonrelativistic flows, on the con-
trary, must be high (see Sect. 4.4.4). Thus, there is an evident contradiction between
the necessity of the efficient particle acceleration resulting from the observations
and the absence of this acceleration in “smooth” MHD flows in which the electric
current is determined from the critical conditions on the singular surfaces, the light
surface located at infinity. It is not surprising, therefore, that various models are
actively discussed, in which it is proposed, somehow, to go beyond the limits of the
“classical” scheme.

First of all, the efficient particle acceleration can be produced by the above prop-
erty of the relativistic flows—for weak longitudinal electric currents the light sur-
face |E| = |B| is located at a finite distance and for i0 � 1 in the vicinity of the
light cylinder. Therefore, if the interaction between the regions of closed and open
field lines really leads to the limitation of the longitudinal current i0 (or there are
some other causes fixing the value i0 < 1 in the plasma generation region), one
should expect the occurrence of a light surface and the efficient particle accelera-
tion (Beskin et al., 1993; Chiueh et al., 1998). The efficient acceleration can also be
associated with the reconnection processes in the pulsar wind (Michel, 1982; Coro-
niti, 1990; Lyubarsky and Kirk, 2001; Kirk and Skjaeraasen, 2003). However, so far
this model has not provided the explanation of the efficient particle acceleration at
distances comparable with the light cylinder.

Thus, in spite of an understanding of the importance of the pulsar wind and par-
ticle acceleration problem and a great number of papers devoted to this theme, there
is no adequate analytical model of the pulsar wind now. As was noted, one of the
reasons is the impossibility to formulate sufficiently simple equations describing
the behavior of the relativistic plasma when its energy density is comparable with
that of the electromagnetic field. Therefore, there is nothing definite about either the
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energy spectrum of particles escaping from the magnetosphere or their radiation. It
is only clear that already at small distances from the light cylinder the particles must
transport a considerable part of energy as compared to the total energy flux.

To conclude, one should mention a number of papers devoted to the interaction
between the pulsar wind and the supernova remnants (see, e.g., Kennel and Coroniti,
1984a,b; Gallant and Arons, 1994; Bogovalov and Khangoulyan, 2002, 2003) and to
the problem of the formation of jets observed in the Crab and Vela pulsars (Komis-
sarov and Lyubarsky, 2003). However, these processes occur at distances of order
1017 cm, i.e., many orders larger than the light cylinder radius. Therefore, these
papers no longer completely deal with the pulsar wind theory.

5.1.2 Active Galactic Nuclei

The problems of the collimation and particle acceleration in the active galactic
nuclei (AGN) are key to understanding the processes occurring in their “central
engine.” Unfortunately, the angular resolution of the current receivers does not allow
one to directly observe the plasma flow on scales of order 1013–1014 cm as compared
to the black hole radius. Therefore, we have to judge the galactic nuclei activity only
by indirect manifestations analyzing the processes on much larger scales.

Recall that the diffusive radio emission regions first discovered over 50 years
ago were associated with the jets issuing from the nuclei of the active galaxies. It
is the jets that supply these regions with matter and energy extracted by the jets
from the nucleus (Begelman et al., 1984). The observations show that the jets can
be accelerated and collimated very close to the central object. For example, in the
case of our closest active galaxy M87, a jet is generated in the interior of the region
of size 60 rg (Junor et al., 1999).

The matter outflowing from AGN has high energies—the bulk Lorentz factor of
the jet, as a whole, reaches, as a minimum, several units. For example, in the galaxy
M87 this motion is observed directly, and the Lorentz factor of the outflowing matter
is γ ≈ 6 (Junor and Biretta, 1995). In many cases, the matter preserves the rela-
tivistic velocities up to enormous distances from the nucleus before it appreciably
slows down due to the interaction with the intergalactic matter. The other remark-
able property of the jets is a high degree of their collimation—the opening angle is
several degrees only. The separate class is radio-quiet nuclei. Their jets are weakly
collimated and move at subrelativistic velocities (up to ∼ 0.1c). They are observed
directly in the radio band and indirectly on the wide absorption lines visible in the
optical and UV band of the spectrum in 10% sources.

Unfortunately, the observations do not allow us to find the reliable estimates of
the particle energy flux and the mass in the jets, the value of the magnetic field
both in the vicinity of the black hole and in the jet itself, and determine the jet
composition. The spectrum of the jets (unlike, for example, the jets from young
stars) does not show any spectral features of the moving matter, i.e., neither the
atomic (ionic) lines nor the annihilation line of electron–positron pairs is observed.
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There is indirect evidence for (Reynolds et al., 1996b; Hirotani et al., 1999) and
against (Sikora and Madejski, 2000) the leading role of the electron–positron pairs.
Therefore, we cannot say yet which mechanism of the energy transport to the jets
is realized in reality. Possibly, the energy of the ultrarelativistic jet core, which is
observed at high radiofrequencies and in the gamma range, is extracted from the
rotational energy of the black hole, and the collimation is due to a moderately rel-
ativistic outflow accelerated by the inner parts of the disk (Sol et al., 1989). The
external jet is collimated by the flows (wind) from the external parts of the disk.

The visible superluminal motion, flares in the gamma range, and the variability
of the jet radio emission on the timescale of the order of a day (so-called intraday
variability) point to not only the relativistic velocities but also the jet perturbations,
the character and nature of which are not clear yet. Possibly, these perturbations
were due to the jet propagation process. However, it is not improbable that they
resulted from the perturbations generated by the central engine. It is also possible
that these perturbations are shock waves on which the particles are accelerated. In
any event, the representation of the jets with high resolution demonstrate that the jet
is not homogeneous in length but consists of bright spots alternating with slightly
radiating regions.

The study of very compact radio sources by ground interferometers with long
bases (the intercontinental system VLBI and the American telescope VLBA), and,
lately, by a space interferometer (VSOP, Japan), which allows one, on short waves,
to attain the angular resolution of order 10−4 arcseconds, also shows that separate
compact radio components, which may be “extinguished” in a few years, are ejected
from the active nuclei with periodicity of a few months. These radio components
move along a spiral trajectory and are withdrawn from the nucleus as a rather narrow
cone (first with opening angle of several tens of degrees and then several degrees),
with the observed velocities exceeding the velocity of light.

The AGN can be divided into classes depending on the accretion rate and the
angular momentum of the black hole. The point is that the supercritical accretion
gives rise to a strong wind and a high degree of ionization of the accretion disk.
Therefore, these systems should not have spectral singularities in the X-ray radi-
ation of the disk, because the superstrong radiation is to suppress the formation
of a collimated jet. One can even assume that the type of galaxy depends on the
parameters of the central black hole and the accretion flows. For example, if at the
initial stage of evolution a very massive black hole is generated (M ∼ 109 M�) and
the supercritical accretion onto it persists, the produced noncollimated outflow can
interrupt the disk formation. As a result, a radio-quiet elliptic galaxy is generated.
Conversely, the jet is generated in the systems with accretion of the order of the
critical one if only the black hole has a sufficient angular momentum. In the systems
with low accretion rates, outflows and jets can be effectively generated though the
luminosity of these sources due to the accretion is not high.

On the other hand, the strong anisotropy of the jets and their one-sided character
lead to the conclusion of the considerable effect of the jet axis orientation to the
observer. This idea given as an “unified scheme” was used to explain the diversity
of the active nuclei types (Urry and Padovani, 1995). For example, at an angle of
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ejection ϑ > 45◦, the observed radio source is supposed to be a radio galaxy, for
10◦ < ϑ < 45◦, it is already a radio quasar, and for ϑ < 10◦ an object of the
BL Lacertae type that has no absorption lines. True, in the past years, there are
increasingly more facts that the unified scheme fails to explain the differences in
the properties of various AGN types. For example, it cannot explain the differences
between the quasars and the lacertides which, seemingly, must not depend on the
axis orientation. This scheme disregards the possibility of the evolutionary change
in the active nuclei properties.

As to the physical nature of AGN, several particle acceleration and jet collimation
mechanisms were proposed, but there is no confident answer yet which of them
is realized. Possibly, in the various types of sources the different mechanisms are
realized, or, on the contrary, all of them simultaneously.

Gas-Dynamic Acceleration. The jet acceleration and collimation may be asso-
ciated with the existence of the environment with high pressure that drops with
distance from the center (Blandford and Rees, 1974; Sauty and Tsinganos, 1994;
Fabian and Rees, 1995; Tsinganos et al., 1996). It is necessary for the pressure in
the jet to be lower than that in the hot environment, which, in principle, can be
estimated from the observations in the X-ray range (Feretti et al., 1995). This mech-
anism, possibly, explains how weak jets are generated in the relativistic sources in
our Galaxy or in some Seyfert galaxies. On the other hand, the observed pressure
of the hot matter around the most powerful jets from the active nuclei is not high
enough, and an alternative mechanism of plasma confinement should exist (Celotti
and Blandford, 2001).

Radiation Acceleration. The matter acceleration mechanism in the jet due to the
radiation pressure was also proposed, because the photon density in the vicinity
of the central source can be very high (Proga et al., 2000; O’Dell, 1981; Cheng and
O’Dell, 1981). Within this model, the inner parts of the disk are believed to work as a
nozzle, which directs the matter fluxes accelerated by the photon pressure. However,
there are some flaws in this mechanism. For example, there is no correlation between
the jet power and the central source luminosity—many sources with very powerful
jets have a weak luminosity of the compact object (Ghisellini et al., 1990). Another
difficulty is that starting from rather low particle energies γ ≈ 3 the radiation field
slows down the particles much more effectively than accelerating them (Königl and
Kartje, 1994). This contradicts the observations of the “superluminal” sources in
which the particle energy is much higher. Besides, if the jet was generated in the sys-
tem with a thin accretion disk whose radiation is more or less isotropic, one should
use additional mechanisms to collimate the jet. The modification of this model, with
a funnel formed in the thick disk of the accreting matter, can explain the initial jet
collimation, but there are indications that this structure is not stable (Ghisellini et al.,
1990, 1992).

Magnetohydrodynamic Mechanism. As was mentioned, most theorists prefer
the MHD jet formation model (Blandford, 2002). Otherwise, it is believed that
the electromagnetic energy flux—the Poynting vector flux—plays the main role in
the energy transport from the central engine to the active regions as well as in the
vicinity of radio pulsars. The MHD model was successfully used to describe a lot
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of processes in the active nuclei, in particular, in the context of the problem of the
origin and stability of jets and the explanation of the energetics of the central black
hole. The magnetic field is a natural connecting link between the disk and the jet.
Therefore, the problem of the origin and structure of the magnetic field in the central
engine is very important.

Indeed, as was demonstrated in Sect. 3.3.1, the BZ luminosity (3.68)

WBZ ≈ 1045 erg/s

(
a

M

)2 ( B0

104 G

)2 ( M

109 M�

)2

(5.6)

is in good agreement with the observed energy release. Besides, some remarks are
necessary. First of all, as seen from Eq. (5.6), the necessary energy losses at the
level 1045 erg/s characteristic of AGN can be attained only for the limiting values
of the black hole mass of order 109 M�, the maximal magnetic field in its neigh-
borhood B0 ∼ BEdd (3.4), and also for the maximum angular velocity a ∼ M .
Therefore, there have appeared papers, in which the efficiency of the BZ process for
the real astrophysical objects was doubted (Ghosh and Abramowicz, 1997; Livio
et al., 1999). However, this does not imply that the electromagnetic model stud-
ied encounters serious difficulties. The point is that the effectively working central
engine can be connected with the inner regions of the accretion disk, where the fast
rotation with the orbital velocity vϕ̂ ∼ c obviously exists, and the field lines of the
regular magnetic field can also pass through its surface. In particular, this process
can be effective for the accretion onto the nonrotating (Schwarzschild) black hole.

On the other hand, for the electron–positron jets from AGN (B0 ∼ 104 G,
R ∼ 1014 cm), the main uncertainty is in the value of the magnetization parame-
ter σ . Indeed, this value depends on the efficiency of the pairs generation in the
black hole magnetosphere, which, in turn, is specified by the hard γ -quanta density.
As a result, if the density of the hard γ -quanta with energies Eγ > 1 MeV in the
vicinity of the black hole is sufficiently high, the particles are generated by the direct
collision of photons γ + γ → e+ + e− (Svensson, 1984), which results in an abrupt
increase in the multiplicity parameter λ = n/nGJ ∼ 1010–1012. As a result, we find

σ ∼ 10 − 103; γin ∼ 3 − 10. (5.7)

It yields for the total particle ejection rate Ṅ = λπr2
g nGJc

Ṅ ∼ 1048 part/s

(
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M
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)1/2 ( B

BEdd

)
. (5.8)

For the low γ -quanta densities, when the generation of the electron–positron
plasma, as shown above, can occur only in the regions with a nonzero longitudinal
electric field, which are equivalent to an outer gap in the radio pulsar magnetosphere,
the multiplicity of the particle generation appears insignificant, viz., λ ∼ 10–100.
In this case
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σ ∼ 1011 − 1013; γin ∼ 10, (5.9)

and

Ṅ ∼ 1040 part/s

(
λ

102
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M
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)1/2 ( B

BEdd

)
. (5.10)

Thus, in its simplest form, the pattern is the following: the poloidal magnetic field
generated in the disk links the rotating central engine (the disk and the black hole)
and infinity. Thus, the plasma outflow and the energy flux occur along the magnetic
field lines. Due to the differential rotation of the disk and the gas inertness, the field
lines are twisted, the toroidal component of the field occurs, and the field pressure
connected with this component can collimate the gas. The computations showed that
this process can really lead to the collimation and the transferring of a certain part
of the electromagnetic energy flux (Poynting flux) to the kinetic energy of particles.
However, there are still a lot of unsolved problems in this model. In particular, as
was demonstrated, the higher the outflowing plasma energy, the less the efficient
collimation. Therefore, in the relativistic case, the collimation and acceleration effi-
ciency does not appear high.

Thus, within the electrodynamic model, the jet collimation mechanism remains
unclear. In particular, there is no answer yet to one of the crucial questions of
whether the jets are strongly magnetized (and, hence, the electric current specifying
the major energy release of the system really flows along the jet and is closed in the
region of hot spots) or the electric current closure occurs on parsec scales and the
observed jets already contain accelerated particles only. Below, we try to give the
main model-independent results obtained by this approach.

5.1.3 Young Stellar Objects

Young stellar objects (YSO) were indirectly discovered in the early 1950s when
G. Herbig and G. Haro (Herbig, 1950; Haro, 1950) detected a new class of extended
diffusion objects generally existing in pairs and, as was apparent later, connected
by thin jet flows from young fast-rotating stars (Lada, 1985). It was logical to con-
nect the formation of these jets with the necessity to more effectively carry away
the angular momentum of the star that hinders its formation. As we see, the situa-
tion here is quite analogous to AGN, when a number of different objects (quasars,
Seyfert, and radio galaxies) were first discovered, and only later it was clear that the
nature of the activity of all these objects is unique. Moreover, the similarity of the
observed properties suggests that the collimation mechanism in the young stars can
be similar to that of the jets in the active nuclei. Inspite of the physical conditions in
the vicinity of the young stars (the mass of order 3–10 M�, the total energy release
of order 1031–1036 erg/s) considerably differ from those in the AGN center. One of
the main differences is the nonrelativistic character of the flow in the jets from the
young stars.
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Over 150 objects are already now known as Herbig–Haro objects. These are
luminous condensations of dimension of several angular seconds (the linear size
of order 500–1000 AU), which are generally surrounded by a luminous diffusion
shell. Their spectra mainly consist of the emission lines of hydrogen and some
other elements with low excitation energy. The main excitation source is, evi-
dently, a shock wave propagating with velocity 40–200 km/s in a gas with density
∼102 1/cm3 (Reipurth and Bally, 2001).

As in the case of radio galaxies, the activity of the Herbig–Haro objects is con-
nected with jets well pronounced, for example, on the forbidden lines (Lada, 1985;
Reipurth and Bally, 2001). In 60% of objects, both jets are visible; in other cases the
distant jet is hidden from view by the accretion disk. The extension of the optical
jets is 0.01–2 pc, the velocity of motion up to 600 km/s. The gas density in the
jets is estimated as 10–100 1/cm3, and the ejection rate is 10−10–10−6 M�/years.
The degree of the jet collimation (the observed length-to-width ratio) can be 30;
the whole opening angle of jets is 5–10◦. Besides the strongly extended jets, in
the vicinity of the young stars the molecular flows are also observed; their degree
of collimation is much lower. Their dimensions are 0.04–4 pc, and the gas velocity
does not exceed 5–100 km/s. One should stress here that this velocity is much higher
than the velocity of sound in their molecular matter as its temperature is 10–90◦ K
only. The total mass of the ejected gas is estimated as 0.1–200 M�, and the total
kinetic energy of the molecular flows can amount to 1043–1047 erg. In recent years,
the most important discovery has been the direct observation of the jet rotation.
The characteristic velocities at distances of 20–30 AU from the jet axis is 3–10
km/s (Bacciotti et al., 2002; Coffey et al., 2007). There is also a direct indication
to the spiral structure of the magnetic field (Chrysostomou et al., 2007). All this is
uniquely in favor of the MHD model.

Indeed, for the parameters characteristic of the young stars the general relation
(4.204) yields

Wtot ≈ 1035 erg/s
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.

(5.11)
As we see, this value is really close to the energy release characteristic of YSO.
Accordingly, the “mass loading” is

μl ≈ 10−3
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)
. (5.12)

On the other hand, for the ordinary young stars we have Ωcrit ∼ 10−6 1/s, i.e.,
Pcrit = 2π/Ωcrit is about a few months. This implies that for young stars both the
cases Ω > Ωcrit and Ω < Ωcrit can be realized. Hence, the central parts of a jet can
be particle-dominated ones. On the other hand, the fast rotation of the inner region
of the accretion disk (ΩK = (G M/r3)1/2 ∼ 10−3–10−4 1/s) guarantees that the
flow is of a magnetically dominated type in the vicinity of the young star. Finally,
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using relation (4.214) for the radius of the critical surfaces, we obtain

rf ≈ 1 AU
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. (5.13)

This implies that the fast magnetosonic surface radius is much smaller than the
transverse dimension of jets rjet ∼ 10–100 AU. Therefore, it is not surprising that
the nonrelativistic jets observed are supersonic ones.

As to the physical nature of the jet formation, this problem is far from completion.
It is only clear that the central star energy is always enough to accelerate the outflows
of matter; however, the energy transformation mechanism has not been established
yet. We emphasize that, unlike the relativistic galactic objects (for example, micro-
quasars), where the jet formation is associated with the supercritical accretion, the
luminosity in the young stars never approaches the Eddington limit. On the other
hand, there is no doubt that it is the accretion disks, the existence of which in this
class of objects is beyond question, that play the key role in the jet formation. This
is evident from the direct correlation between the energy of the gas outflow and the
mass of the disk estimated by its luminosity.

The parameters of the disks can be rather diverse. Their masses, for example, are
in the range from 0.1 to 60 M� and the radii from 10 AU to 1 pc. It is important
that, unlike the disks surrounding the relativistic objects (neutron stars and black
holes), the gas temperature in them is 20–100 K only. As a result, as in the AGN
case, neither the radiation pressure nor the gas pressure can account for the high
velocities observed in the jets. Therefore, the models, in which the key role was
played by the magnetic field responsible for the effective interaction between the
accretion disk and the jets, were again used to explain the jet formation and the par-
ticle acceleration. Since the real magnetic field structure in the vicinity of the young
stars is not known now, both the models in which the magnetic field of the star itself
is of vital importance (Shu et al., 1994) and the models in which the magnetic field
of the disk is also of importance (Pudritz and Norman, 1986; Pelletier and Pudritz,
1992; Uchida and Shibata, 1984) were proposed here. As we see, one also has to
deal with the same magnetic field structure problems as in the studies of the black
hole magnetosphere.

Problem 5.1 Using the integrals of motion, show that, given from the obser-
vations the toroidal and poloidal velocities in the supersonic nonrelativistic jet
are at a distance of r0 from the rotation axis (and assuming that the observed
jet region started from the accretion disk surface at a distance of rst from the
star), we can estimate both the “loading” μl and the distance rst, while the
value rst is given by the simple formula (Anderson et al., 2003; Ferreira et al.,
2006)
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rst ≈ 0.7 AU
( r0

10 AU

)2/3
(

vϕ

10 km/s

)2/3 (
vp

100 km/s

)−4/3 ( M

M�

)1/3

.

(5.14)

5.1.4 Microquasars, Cosmological Gamma-Bursters, etc.

As to the cosmic compact objects with jets, one cannot but mention microquasars
and sources of cosmological gamma-bursters. Microquasars are galactic objects in
which the jet formation is connected with the supercritical accretion onto a com-
pact relativistic object (a neutron star or a black hole). It is a very small class
of objects including about 10 sources (Fender, 2006) and only half of them have
well-pronounced jets in which the particle velocity is a relativistic one (v > 0.9c).
The characteristic longitudinal size of the jets, generally, amounts to 0.1 pc, and the
opening angle does not exceed several degrees. The total energetics is estimated as
1037 erg/s (Mirabel and Rodriguez, 1994; Fender, 2006). In view of the relativistic
velocities, the effect of the superluminal motion is observed in some sources, and the
visible angular velocity, due to the relative closeness of these objects, is by several
orders higher than that of the jets observed in AGN.

Historically, the first object of this class, which was discovered, was the famous
source SS433 (Spencer, 1979) in which, however, the gas outflow velocity in the
jets was 0.26 c only. This velocity can be readily explained by the radiation pressure
connected with the strongly heated inner regions of the accretion disk. As to the
relativistic jets, the first microquasar was discovered only in 1994 (Mirabel and
Rodriguez, 1994). Since the occurrence of near-light velocities due to the radiation
or the gas pressure is problematic, it is not improbable that for their explanation
one again has to use an electrodynamic model similar to the one used to explain the
formation and collimation of the AGN jets (Blandford, 2002; Sauty et al., 2002). It
counts in favor of this model that, except for object SS433, the emission lines are
not observed in the microquasars, which indirectly points to the electron–positron
composition of the jets (Fender, 2006).

As to the sources of cosmological gamma-bursters, there is only indirect, though
rather reliable, evidence of the existence of the jets in them, which is just connected
with the relativistic strongly magnetized flows considered in this chapter. The dis-
covery of optical afterglow (Akerlof et al., 1999), as well as afterglow in other
energy ranges, which permits one to determine by the red shift the distances to these
objects, imposed very serious constraints on their energetics (Postnov, 1999). If the
radiation in the gamma range is considered to be isotropic, at the distances of order
0.1–1 Gpc characteristic of these sources, we have to assume that their luminosity is
1054 erg/s. However, currently, the processes with this enormous energy release are
not known. The short duration of the burst (∼10 s) limits the size of the radiating
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region, which, in turn, does not allow one to explain the observed gamma radiation
spectra, because the optical thickness of the source proves too high (Ruderman,
1975; Schmidt, 1978).

On the other hand, if we assume that the radiation is concentrated in a narrow
cone ϑ ∼ 1◦, the liberated energy can be reduced to 1051 erg, which in order of
magnitude is already close to the energy liberated during the supernova explosions.
But this implies that the characteristic Lorentz factor of particles responsible for the
observed radiation is to be of order ϑ−1, i.e., γ ∼ 100–300. As a result, it is possible
to remove the compactness problem since the estimated size of the radiating region
is 100–300 times larger. However, the ultrarelativistic character of the flow, in turn,
imposes constraints on the particle composition in the jets, because the existence
of protons with this energy would contradict the total energy release in the gamma-
burst. Therefore, the contribution of protons should be only 10−5 of the total number
of particles, so we can deal exactly with the electron–positron jets. The existence of
the jet flow is supported by the characteristic break of the time dependence of the
luminosity intensity when in about a few days after the burst the exponent αt in the
dependence Wtot ∝ t−αt varies from αt ≈ 1.1 to αt ≈ 2.0. This effect is due to
the completion of the relativistic compression of the radiation cone in the particle
motion rigorously to the observer.

As to the nature of the central engine responsible for the formation of the strongly
magnetized jets, one usually discusses here either the collision of two neutron
stars (Blinnikov et al., 1984; Eichler et al., 1989) or a neutron star and a black hole
(Paczyński, 1991) or the collapse of the massive nucleus of an unusual supernova
(Woosley, 1993; Paczyński, 1998). However, the fast-rotating black hole with mass
of the order of the solar mass, which loses its rotational energy due to the BZ pro-
cess, is thus generated in most models (Paczyński, 1991; Mésźaros and Rees, 1997;
Katz, 1997; Lee et al., 2000; van Putten and Levinson, 2003); indeed, as we saw, it is
this process that allows one to readily explain both the small quantity of baryons and
the large Lorentz factors of particles in the jets. In other words, the model is again
constructed by the same scheme as the model discussed in the context of activity of
the galactic nuclei. In particular, the key processes here are those of the magnetic
field generation in the plasma surrounding the black hole, the interaction between
the black hole and the accretion disk connected by the magnetic field lines, as well
as the particle generation process in the magnetosphere. For the observed energy
release to be interpreted it is necessary to assume that the magnetic field in the
vicinity of the black hole must reach 1014–1015 G. It is believed that the generation
of this field is possible for such nonstationary processes as the star collapse or the
collision of neutron stars (Usov, 1992; Thompson and Duncan, 1995).

As a result, we can obtain for the energy release Wtot ≈ WBZ

Wtot ≈ 1051 erg/s
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. (5.15)

On the other hand, supposing that the jet is already particle dominated (i.e., σ ≈
γ ∼ 100–300), we can obtain for the multiplicity parameter
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This value corresponds to equipartition between particles and radiation field in
the vicinity of the black hole.

5.2 Cylindrical Flows

5.2.1 Cylindrical Jets—The Force-Free Approximation

We now proceed to the discussion of the exact analytical solutions describing the
magnetized plasma flow in the neighborhood of compact astrophysical objects. We
emphasize once again that our goal here is not to construct self-consistent models
but to clarify the general properties of the flows, which can be deduced from the
analysis of the exact analytical solutions.

The problem of the jet formation mechanism is a key one when studying the mag-
netosphere structure of compact astrophysical objects. Indeed, the jets are observed
in most compact sources, beginning with quasars and radio galaxies and ending with
accreting neutron stars, solar mass black holes, and young stellar objects. Moreover,
as was noted, the jets have recently been detected in young radio pulsars. This broad
class of jets shows that their formation mechanism must be rather universal. In
any case, it must be independent of the character of the flow, viz., whether it is a
relativistic or a nonrelativistic one.

In many papers dealing with the MHD model of these objects, in which the jet
formation was connected with the attraction of the longitudinal currents flowing
in the magnetosphere, main attention was given to the proper collimation in the
sense that the environment was supposed to be of no importance (Blandford and
Payne, 1982; Heyvaerts and Norman, 1989; Pelletier and Pudritz, 1992; Sulkanen
and Lovelace, 1990; Li et al., 1992; Sauty and Tsinganos, 1994). However, as shown
below, this is possible only for the nonzero total current I flowing within a jet (Nitta,
1997) and the problem is to close it in the outer regions of the magnetosphere. On the
other hand, as we will see, the longitudinal current must be limited by the regularity
condition on by the fast magnetosonic surface, which does not always give rise to
rather strong longitudinal currents needed for collimation.

Moreover, it is quite clear that the collimation problem cannot be solved ignoring
the environment (see, e.g., Appl and Camenzind, 1992, 1993). In particular, this is
already evident from the example of the magnetosphere of the compact object with
the monopole magnetic field, since for any arbitrarily small external regular mag-
netic field the monopole solution (for which the poloidal magnetic field decreases
as r−2) cannot be extended to infinity. Moreover, as is well known from the example
of moving space bodies such as Jupiter’s satellites (Zheleznyakov, 1996) or the arti-
ficial Earth satellites (Alpert et al., 1965; Gurevich et al., 1975), and radio pulsars in
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binary systems (Tsygan, 1997), the external magnetic field can serve as an efficient
transmission chain sometimes defining the total energy losses in the system.

Certainly, the external regular magnetic field existing in the neighborhood of
compact objects is mainly open to question. In our Galaxy, the regular magnetic
field, i.e., the field homogeneous on scales comparable with the galaxy sizes, is

Bext ∼ 10−6 G (5.17)

and actually coincides with the chaotic component of the magnetic field, which
changes on scales of several parsecs (Marochnik and Suchkov, 1996). However, if
the collimation is assumed to be really due to the presence of the ambient pressure,
it is possible to estimate the transverse jet size rjet. Indeed, assuming the poloidal
magnetic field in the jet to be close to the external magnetic field (5.17), we obtain
from the condition of the magnetic flux conservation

rjet ∼ Rin

(
Bin

Bext

)1/2

, (5.18)

where again Rin and Bin are, respectively, the radius and the magnetic field of the
compact object. Thus, for AGN (Bin ∼ 104 G, Rin ∼ 1013 cm), we have

rjet ∼ 1 pc, (5.19)

which exactly corresponds to the observed transverse sizes of the jets (Begel-
man et al., 1984). Accordingly, for young stellar objects (Bin ∼ 102 G, Rin ∼
1010 cm) (Lada, 1985), we have rjet ∼ 1016 cm, which also corresponds to the
observations. One can expect that the similar pattern retains for the environment
with pressure Pext ∼ B2

ext/8π . Therefore, the problem of the internal structure of the
one-dimensional jet submerged in the external homogeneous magnetic field should
also be included in our investigation.

In this section, we consider the one-dimensional relativistic cylindrical jets in
which the poloidal magnetic field and the poloidal velocity of matter are directed
along the z-axis. Otherwise, we do not discuss here the collimation itself but only
the problem of the internal structure of the really observed cylindrical flows. In this
case, the poloidal magnetic field should be written as

Bz(� ) = 1

2π�

dΨ

d�
, (5.20)

where now the magnetic flux function Ψ depends on one coordinate � only.
Accordingly, it is convenient to write the toroidal component of the magnetic field
and the electric field as

Bϕ(� ) = − 2I

�c
, (5.21)
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E = − ΩF

2πc

dΨ

d�
e� , (5.22)

where I (�0) is the total current within the domain � < �0.
We would like to emphasize several features that are used when investigating

the structure of the relativistic jets characteristic of AGN and radio pulsars. For
the active nuclei and pulsars the transverse jet size rjet is much larger than the
light cylinder radius RL = c/Ω . Indeed, as seen from relation (3.68), the cen-
tral engine efficiency can be high only for the sufficiently large rotation parame-
ter a/M ∼ ΩFrg/c. For example, the light cylinder radius for the magnetic field
lines passing through the black hole horizon (not to mention the field lines passing
through the inner regions of the accretion disk) must be comparable with the black
hole radius. This implies that when investigating the internal jet structure the cor-
responding equations must be written in full relativistic form. On the other hand,
far from the compact object the gravitational forces can be disregarded. Finally, for
simplicity, we consider the cold plasma (μ = const), which, as was shown, is valid
at large distances from compact objects.

We first consider the relativistic jet structure in the force-free approximation. As
was noted, the remarkable feature of the GS equation is that it can be integrated
in the one-dimensional case. For example, the solution to the force-free equation
(2.101) can be written as (see, e.g., Istomin and Pariev, 1994)

Ω2
F(Ψ )� 4

c2
B2

z = � 2 B2
ϕ +

∫ �

0
x2 d

dx
(Bz)

2dx . (5.23)

In particular, it is easy to check that the homogeneous magnetic field Bz = const
is the solution to the nonlinear equation (2.101) for any values of the integrals of
motion ΩF(Ψ ) and I (Ψ ) satisfying the condition

4π I (Ψ ) = 2ΩF(Ψ )Ψ. (5.24)

We emphasize that for small Ψ this relation fully coincides with (2.231) obtained
for the conical flows.

Problem 5.2 Show that the relation similar to (5.24) can be obtained for the
conical solutions Ψ = Ψ (θ ), but only at large distances r � RL from the
compact object. It has the form (Ingraham, 1973; Michel, 1974)

4π I (θ ) = ΩF(θ ) sin θ
dΨ

dθ
. (5.25)

Problem 5.3 Show that for both the cylindrical and the conical flows at large
distances from the rotation axis the condition Eθ = Bϕ is satisfied.
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Thus, in the one-dimensional case, the assignment of any two of three values
Bz(� ), ΩF(Ψ ), and I (Ψ ) fully defines the solution to the GS equation. However,
one should remember that the direct problem (i.e., the determination of the poloidal
magnetic field by the given values Bϕ(� ) and ΩF(� )) does not always have the
solution. Indeed for Bϕ = 0 and ΩF = const, we find

Bz(� ) = Bz(0)

1 − Ω2
F�

2

c2

, (5.26)

so that the solution cannot be extended beyond the light cylinder. On the other hand,
given the magnetic field Bz(� ), we can always find the values of Bϕ(� ) andΩF(� ),
for which this field is the solution to the GS equation. In this case, however, the value
of the longitudinal current is to be close to that of the GJ current IGJ.

Analysis of the force-free equation can already lead to several important con-
clusions that remain valid in the general case, i.e., with account taken of the finite
particle mass (see Fig. 5.1).

1. The key property of the relativistic flows is that the transverse size of the real jets
rjet is 3–5 orders larger than that of the light cylinder radius RL. As a result, at
large distances from the central engine the major part of the magnetic flux must
be far beyond the light cylinder. However, according to the relation

Bϕ

Bp
= ΩF�

c
, (5.27)

resulting from the definition of the magnetic field for I ≈ IGJ, this implies that
the toroidal magnetic field must also be 3–5 orders larger than the poloidal mag-
netic field. Consequently, the magnetic field should have the strongly pronounced
spiral structure. Accordingly, the electric field should also be 3–5 orders larger
than the poloidal magnetic field.

2. Further, the energy flux in the jet must be concentrated in the peripheral part
of the flow rather than in the central one. This is because both the electric and
toroidal magnetic fields vanish on the rotation axis. Accordingly, the Poynting
flux vanishes here. Therefore, the strongly magnetized flows should have the
form of a “hollow cylinder” (see the cover photo, Kovalev (2008)).

3. For the same reason the particle energy turns out to be the largest in the peripheral
regions. Indeed, as shown above, beyond the light cylinder the main motion of
charged particles is a drift motion in the crossed electric and magnetic fields.
As was demonstrated in Sect. 4.4.1, the drift velocity Udr = c|E|/|B| (4.147)
together with the estimates (5.27) Eθ ≈ Bϕ results in the universal form of the
Lorentz factor

γ ≈ ΩF�

c
. (5.28)
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Fig. 5.1 The structure of the
cylindrical strongly
magnetized jet with zero total
electric current (Istomin and
Pariev, 1994). Longitudinal
electric currents (contour
arrows) and the toroidal
magnetic field exist inside the
jet only

Certainly, as shown below, the effects of the finite mass of particles limit their
energy increase at large distances from the rotation axis. Nevertheless, the energy
increase with distance from the rotation axis seems to be the general property of
the strongly magnetized flows.

4. One should emphasize the nontrivial character of the particle motion, which is
important for the jet radiation analysis. The point is that in the jet not only the
toroidal magnetic field Bϕ (5.27) but also the electric field E (directed from or
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to the rotation axis) should be much greater than the poloidal magnetic field Bp.
Therefore, the drift velocity of particles is actually directed along the poloidal
magnetic field. But this implies that the particle motion may not be of a spiral
character. Consequently, one should be careful using the standard synchrotron
formulae to estimate the value of the magnetic field and the synchrotron lifetime
of relativistic particles.

5. Finally, relation (5.24) shows that the homogeneous longitudinal magnetic field
can be the solution to the GS equation for the total zero longitudinal electric
current flowing along the jet. Indeed, according to (5.24), if the angular velocity
ΩF(Ψ ) vanishes on the jet boundary Ψ = Ψ0, the total current I (Ψ0) must also
be zero (Istomin and Pariev, 1994; Fendt, 1997b). As we saw, this was the case
for the homogeneous magnetic field in the vicinity of the black hole horizon.
But then the longitudinal magnetic field on the jet boundary does not vanish.
Therefore, for the stability of these configurations it is necessary to assume that
either the constant magnetic field or the finite gas pressure must exist beyond the
jet. It is very important that in this case the relativistic jet is to be stable to helical
kink (screw) modes (Istomin and Pariev, 1994; Tomimatsu et al., 2001).

As a result, we can formulate the latter assertion in the form of the important theo-
rem.

Theorem 5.1 The stationary cylindrical jet containing the finite magnetic flux Ψ0

can occur either for the nonzero total longitudinal electric current I (Ψ0) 
= 0 or in
the presence of the environment with nonzero magnetic or gas pressure.

We specially formulated these assertions here before we proceed to the discussion of
the full MHD GS equation version as we would like to stress within the hypothesis
of the strongly magnetized jets that these assertions are really universal and model
independent.

5.2.2 Relativistic Jets

5.2.2.1 Basic Equations

We now proceed to a closer consideration of the structure of the one-dimensional
jets in which the finite particle mass is taken into account. In this case, we should
add to the definitions for the magnetic (5.20) and (5.21) and electric (5.22) fields the
expression for the four-velocity (4.31)

u = η

n
B + γ

ΩF�

c
eϕ . (5.29)

According to (1.64), to determine the flow structure for the cold plasma we must
introduce four integrals of motion that should also be regarded as functions of
the magnetic flux Ψ . These are, first of all, the values ΩF(Ψ ) and η(Ψ ) avail-
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able in definitions (5.22) and (5.29) and the fluxes of the angular momentum
L(Ψ ) = I/2π + μη�uϕ̂ and the energy E(Ψ ) = ΩF I/2π + γμη.

We emphasize that in the full statement of the problem the concrete form of
these integrals of motion is to be determined from the boundary conditions on the
compact object surface and also from the critical conditions on the singular surfaces.
The possibility to use the integrals of motion derived from the analysis of the inner
magnetosphere regions is not obvious. Indeed, as we will see, the flow beyond the
fast magnetosonic surface for the cold plasma is fully defined by four boundary
conditions on the rotating body surface. The one-dimensional flow can be gener-
ated by interacting with the environment, which produced disturbances or shock
waves propagating from “acute angles” and other irregularities (see, e.g., Landau
and Lifshits, 1987). Therefore, in the domain, where the usability conditions of ideal
hydrodynamics are sure to be violated, the substantial redistribution of the energy
E and the angular momentum L is to take place, let alone the part which can be
lost as radiation. Nevertheless, below, for simplicity, we believe that the integrals of
motion E(Ψ ) and L(Ψ ) remain exactly the same as in the inner magnetosphere.

As a result, far from gravitating bodies the GS equation (2.101) for the cold
plasma (μ = const) is written as (Beskin and Malyshkin, 2000)

1

�

d

d�

(
A

�

dΨ

d�

)
+ΩF(∇Ψ )2 dΩF

dΨ
+ 64π4

� 2

1

2M2

d

dΨ

(
G

A

)
− 32π4

M2

d(μ2η2)

dΨ
= 0.

(5.30)
Here again

G = � 2(e′)2 + M2 L2 − M2� 2 E2, (5.31)

A = 1 − Ω2
F�

2 − M2, (5.32)

e′(Ψ ) = E(Ψ ) − ΩF(Ψ )L(Ψ ), (5.33)

and the derivative d/dΨ acts only on the integrals of motion. The other parameters
of the jet are to be determined from algebraic relations (4.38), (4.39), and (4.40)
which far from gravitating bodies are written as

I

2π
= L − ΩF�

2 E

1 − Ω2
F�

2 − M2
, (5.34)

γ = 1

μη

(E − ΩF L) − M2 E

1 − Ω2
F�

2 − M2
, (5.35)

uϕ̂ = 1

�μη

(E − ΩF L)ΩF�
2 − LM2

1 − Ω2
F�

2 − M2
. (5.36)

Hereafter we again take, for simplicity, c = 1. In the one-dimensional case studied,
it is convenient to immediately reduce the second-order equation (5.30) to the sys-
tem of two first-order equations for Ψ (� ) and M2(� ). Multiplying Eq. (5.30) by
2A(dΨ/d� ), we get
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d

d�

[
A2

� 2

(
dΨ

d�

)2
]
+A

(
dΨ

d�

)2 dΩ2
F

d�
+ 64π4 A

� 2M2

d′

d�

(
G

A

)
−64π4 A

M2

d

d�
(μ2η2) = 0,

(5.37)
where the derivative d′/d� again acts only on the integrals of motion. Using now

the explicit form of Bernoulli’s equation (4.44) which, with account taken of the
definition of the integrals of motion E(Ψ ) and L(Ψ ), can be written as

A2

(
dy

dxr

)2

= (e′)2

μ2η2

x2
r (A − M2)

M4
+ x2

r E2

μ2η2
− Ω2

F(0)L2

μ2η2
− x2

r A2

M4
. (5.38)

We introduced here the dimensionless variables

xr = ΩF(0)�, (5.39)

y = σ
Ψ

Ψ0
, (5.40)

where Ψ0 is the total magnetic flux inside the jet and the magnetization parameter σ
is again given by relation (5.3) for ΩF = ΩF(0). As a result, substituting the right-
hand side of Eq. (5.38) in the first term of Eq. (5.37) and performing the elementary
differentiation, we obtain (Beskin, 1997)

[
(e′)2

μ2η2
+ Ω2

F

Ω2
F(0)

x2
r − 1

]
dM2

dxr
= M6

x3
r A

Ω2
F(0)L2

μ2η2
− xrM2

A

Ω2
F

Ω2
F(0)

[
(e′)2

μ2η2
− 2A

]

+M2

2

dy

dxr

[
1

μ2η2

d(e′)2

dy
+ x2

r

Ω2
F(0)

dΩ2
F

dy
− 2

(
1 − Ω2

F

Ω2
F(0)

x2
r

)
1

η

dη

dy

]
. (5.41)

The second equation is Bernoulli’s equation (5.38) that should be regarded as an
equation for the derivative dy/dxr . The system of equations (5.38) and (5.41) allows
one to construct the general solution for the cylindrical relativistic jet with zero
temperature. In the general case of the finite temperature (and with account taken of
the dimension), Eq. (5.41) has the form (Beskin and Nokhrina, 2009)

[
(e′)2

μ2η2
− 1 + Ω2

F�
2

c2
− A

c2
s

c2

]
dM2

d�
= M6L2

A� 3μ2η2

+Ω2
F�M2
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[
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Aμ2η2

]
+ M2 e′

μ2η2

dΨ
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de′

dΨ

+M2�
2

c2
ΩF

dΨ
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dΩF

dΨ
− M2

(
1 − Ω2

F�
2

c2
+ 2A

c2
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1

η
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−
[

A
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(
∂P

∂s

)
n

+
(

1 − Ω2
F�

2

c2

)
T

] M2

μ

dΨ

d�

ds

dΨ
. (5.42)

We would like to point to one important advantage of the system of first-order
equations (5.38) and (5.41) as compared to the initial second-order equation (5.30).
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As was mentioned, the relativistic equation (5.30), which is actually a force balance
equation, contains the electromagnetic force Fem = ρeE + j × B, in which at large
distances from the rotation axis � � RL the electric and magnetic contributions
practically compensate one another. Therefore, in the analysis of Eq. (5.30) we have
to retain all terms of a higher-order infinitesimal ∼ γ−2. In Eq. (5.41) the zero-order
values ρeE and j × B are analytically eliminated by Bernoulli’s equation, so all
terms of this equation are of the same order of magnitude. Finally, it is important
here that the exact equation (5.41) has no singularity in the vicinity of the rotation
axis. Otherwise, its solution does not comprise the δ-shaped current I ∝ δ(� )
flowing along the jet axis; the necessity to introduce it was pointed out in a number
of papers (Heyvaerts and Norman, 1989; Lyubarskii, 1997).

Some comments of the general character, which deal with the peculiarity of the
formulation of the problem for the cylindrical flows, are appropriate here. In the
one-dimensional case studied, the plasma poloidal velocity is always parallel to the
singular surfaces. Therefore, the absence of a singularity in this case shows the
absence of a tangential discontinuity rather than a shock wave. Further, for the cylin-
drical flows the curvature of magnetic surfaces R−1

c is always zero. Consequently,
one of the leading terms in expressions (4.228) and (4.229) is identically equal to
zero. Therefore, as we will see, the balance of forces for the cylindrical flows is only
possible when the force contribution jϕ Bp is taken into account.

Finally, the cylindrical flow is a one-dimensional one. This implies that we ini-
tially impose an additional self-similarity condition that substantially confines the
class of possible solutions. In particular, as was already noted, we confine the class
of possible disturbances, which immediately changes the entire structure of the sin-
gular surfaces. As a result, the one-dimensional equation (5.30) has no singularity
on the fast magnetosonic surface at all. Indeed, as is readily checked, if the stream
function Ψ depends only on one coordinate x1, in the GS equation, the coefficient of
the higher derivative d2/dx2

1 is (D+1). Therefore, the singularity occurs on the cusp
surface rather than on the fast magnetosonic one. Consequently, the cusp surface is
absent for the cold plasma; the GS equation can have a singularity on the Alfvén
surface only. As a result, for the super-Alfvén flows (i = 4, s ′ = 0), Eq. (5.30)
requires six boundary conditions.

For example, for a jet submerged in the environment, we can first choose, as
boundary conditions, the external homogeneous magnetic field

Bz(rjet) = Bext, (5.43)

and the regularity condition on the rotation axis � → 0

Ψ (� ) → C� 2. (5.44)

Besides, all the four integrals ΩF, E , L , and η are to be given. As to the other
values characterizing the flow such as the transverse jet size rjet and the outflowing
plasma energy, they must be found as the solution of the above-posed problem.
Analogously, it is the solution of the problem that should give the answer to the



5.2 Cylindrical Flows 307

question whether the jet flow is a supersonic one. On the other hand, if we con-
sider an isolated jet instead of the boundary condition (5.43), we should choose the
vanishing condition of all the fields for � → ∞.

Clearly, the flow structure is specified by the choice of the integrals of motion.
Moreover, it turned out that most of the key properties can be grasped from the anal-
ysis of the solution behavior in the vicinity of the rotation axis, where the integrals
of motion are written in a rather universal form. Therefore, we begin our analysis
by considering the solution in the inner jet regions (Ψ � Ψ0).

We first emphasize that this analysis cannot be made by the force-free approx-
imation. As was noted, both the electric and toroidal magnetic fields are exactly
zero on the rotation axis. As a result, the Poynting vector is zero too and, therefore,
all energy losses here are connected with the particle flow. The particle energy, as
is immediately evident from relation (4.39), far from gravitating bodies remains
constant near the axis. Therefore, the Bernoulli integral should be written as

E(Ψ ) = γinμη(Ψ ) + ΩF(Ψ )L(Ψ ), (5.45)

which was already used above when defining the solution behavior (4.240) at large
distances. We take into account the fact that E(0) = γinμη 
= 0, as we will see, just
defined the basic properties of the flows in the vicinity of the rotation axis. In the
following, for simplicity, we assume that in the vicinity of the axis

γin = const. (5.46)

Note that the value γin available in expression (5.45) has the meaning of the ejection
Lorentz factor near the origin and does not coincide with the particle Lorentz factor
in the whole jet. Thus, we see that the electromagnetic field contribution is crucial
only for Ψ > Ψin, where

Ψin = γin

σ
Ψ0. (5.47)

In the central part of the jet Ψ < Ψin, the energy is transported by relativistic par-
ticles and their Lorentz factor remains constant and equal to their initial value of
γin.

Further, it is logical to normalize the angular momentum L associated with the
longitudinal current I ≈ 2πL in the vicinity of the compact object to the GJ current
needed for the smooth passage of the critical surfaces in the neighborhood of the
compact object. As to ΩF(Ψ ) and η(Ψ ), in the vicinity of the rotation axis they are
naturally taken to be constant. As a result, the integrals of motion for Ψ � Ψ0, with
adequate accuracy, can be written as
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L(Ψ ) = ΩF

4π2
Ψ, (5.48)

ΩF(Ψ ) = Ω0 = const, (5.49)

η(Ψ ) = η0 = const. (5.50)

Using definition (5.40), we readily find that in the inner jet regions Ψ � Ψ0, relation
ΩF L/μη0 = 2y holds true. Therefore, the Bernoulli integral can be written as

E(y) = μη0(γin + 2y). (5.51)

Thus, Eqs. (5.38) and (5.41) can be rewritten as

(1 − x2
r − M2)2

(
dy

dxr

)2

= γ 2
inx2

r

M4
(1 − x2

r − 2M2)

+ x2
r (γin + 2y)2 − 4y2 − x2

r

M4
(1 − x2

r − M2)
2
, (5.52)

(γ 2
in + x2

r − 1)
dM2

dxr
= 2xrM2− γ 2

inxrM2

(1 − x2
r − M2)

+ 4y2M6

x3
r (1 − x2

r − M2)
. (5.53)

The system of equations (5.52) and (5.53) describing the structure of the central
jet region admits an analytical solution. We can verify by direct substitution that for
xr � γin the asymptotic behavior is

M2(xr ) = M2
0 = const, (5.54)

y(xr ) = γin

2M2
0

x2
r , (5.55)

which corresponds to the constant magnetic field

Bz = Bz(0) = 4πγinμη0

M2
0

= γin

σM2
0

B(RL). (5.56)

Here B(RL) = Ψ0/2πR2
L. We, of course, suppose that γin � 1, which is character-

istic of the jets from AGN and radio pulsars. The current density j‖, by definition
(5.48), is also constant and equal to the GJ current here

j‖ = ΩF Bz

2π
. (5.57)

Thus, Eqs. (5.52) and (5.53) really have no singularity in the vicinity of the rotation
axis.

As to the flow structure beyond the internal core � > �c, where
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�c = γin RL. (5.58)

Here the solution to Eqs. (5.52) and (5.53) substantially depends on the relation
between γin and M0 = M(0).

5.2.2.2 Core Solution

For M2
0 > γ 2

in, when, according to (5.56), the magnetic field on the axis is rather
small, the total magnetic flux Ψcore = Ψ (�c) within the central core �c = γin RL

Ψcore ≈ πγ 2
in R2

L Bz(0) (5.59)

can be written as

Ψcore ≈ γ 2
in

M2
0

Ψin. (5.60)

Here the terminating magnetic flux Ψin is again defined by relation (5.47). Recall
that on the rotation axis the Alfvén condition A = 0 coincides with the fast magne-
tosonic surface condition D = 0 and, therefore, the condition M2 > 1 implies that
the flow here is a supersonic one.

We see that under the condition M2
0 > γ 2

in the magnetic flux Ψcore within the
central core �c is less than Ψin, so that beyond this region the main contribution to
E(Ψ ) is still due to the particles, and the electromagnetic field contribution can be
disregarded. As a result, at large distances as compared to the internal scale �c (i.e.,
for � � γin RL) the solution to Eqs. (5.52) and (5.53) yields a quadratic increase in
M2 and a power decrease in the magnetic field (Chiueh et al., 1991; Eichler, 1993;
Bogovalov, 1995)

M2(xr ) = M2
0

x2
r

γ 2
in

� x2
r , (5.61)

Bz(xr ) = Bz(0)
γ 2

in

x2
r

. (5.62)

It is interesting to note here that dependence (5.61) exactly corresponds to the con-
servation of the invariant

H = μηΩFx2
r

M2
, (5.63)

following from relation (4.238) obtained under the assumption � � RL. Thus,
analysis of the cylindrical flows shows that the condition H = const is violated on
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the scale γin RL coinciding with the internal scale �c. The value M2 itself remains
finite in the vicinity of the rotation axis.

The above-constructed flow structure externally looks like a jet of the character-
istic transverse size rjet = γin RL. However, since it contains only a small part of
the total magnetic flux, this solution does not require the description of the real jets
(not to mention the fact that the scale �c is much smaller than the transverse sizes
of the observed jets). Besides, according to (5.62), within this model, the magnetic
flux very slowly (logarithmically) increases with distance from the rotation axis:

Ψ (xr ) ∝ ln(xr/γin). (5.64)

This behavior of the magnetic field, in turn, shows that the transition value of the
flow Ψ = Ψin is attained exponentially far from the rotation axis, i.e., for

rjet ∼ RL exp(M2
0/γ

2
in), (5.65)

where the poloidal magnetic field must be exponentially small. Accordingly, the
energy density of the magnetic field must also be small for � ∼ rjet. But this
configuration cannot exist in the presence of the finite external gas or magnetic
pressure. On the other hand, as shown below, it may be of interest in the analysis of
the magnetized flow in vacuum.

Problem 5.4 Show that for the core flow for � � �c

• the electric and toroidal magnetic fields have the form

|E| ≈ Bz(0)
γ 2

in

xr
, (5.66)

Bϕ ≈ Bz(0)
γ 2

in

xr
, (5.67)

• the particle Lorentz factor is independent of the distance from the rotation
axis, viz., γ (xr ) ≈ γin.

5.2.2.3 Homogeneous Solution

Thus, if the jet is submerged in the finite pressure medium (for example, with the
constant external magnetic field), the value of the Mach number on the rotation axis
is to be bounded from above

M2(0) < M2
max = γ 2

in. (5.68)
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According to (5.56), in this case, the magnetic field B(0) on the rotation axis cannot
be much less than Bmin, where

Bmin = 1

σγin
B(RL). (5.69)

At first, let us consider the case

Bext > Bmin. (5.70)

Then, it is readily checked that the solution to Eqs. (5.52) and (5.53) outside the
central core �c � � � rjet yields the constant magnetic field (5.56)

Bp = Bext. (5.71)

It corresponds to the solution

y(xr ) = γin

2M2
0

x2
r , (5.72)

and to the linear increase in the square of the Mach number

M2(xr ) = M2
0

xr

γin
� x2

r . (5.73)

Problem 5.5 Show that for the homogeneous flow for � � �c

• the electric and toroidal magnetic fields have the form

|E| = Bz(0)xr , (5.74)

Bϕ = Bz(0)xr , (5.75)

• the particle Lorentz factor linearly increases with decreasing distance from
the rotation axis: γ (xr ) ≈ xr .

Note that the unavailability of the core solution Bz ∝ �−2 is associated with
the first term on the right-hand side of Eq. (5.41) proportional to L2. This term
substantially changing the character of the solution was, evidently, omitted in most
papers dealing with the jets. As was noted, it is not surprising, since, when analyz-
ing the second-order equation (5.30), the corresponding term in it is small. On the
other hand, at large distances from the rotation axis � � �c Eq. (5.41) can be
rewritten as
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d

d�

(
μηΩF�

2

M2

)
− M2

μηΩF� 3(Ω2
F�

2 + M2)
L2 = 0, (5.76)

in which all terms are of the same order of magnitude. Disregarding the term pro-
portional to L2, we again have the conservation of H (5.63). In particular, M2 ∝ x2

r
for ΩF = const and η = const. However, as we see, in cylindrical geometry for the
relativistic jets the H conservation does not occur. To be exact, the second term in
Eq. (5.76) proves to be substantial for all models with the near-constant density of
the longitudinal electric current in the central part of the jet when the invariant L(Ψ )
for Ψ < Ψ0 linearly increases with increasing the magnetic flux Ψ .

Problem 5.6 Show that the first term in Eq. (5.76) corresponds to Ampére’s
force ρe|E| + j‖ Bϕ and the second one to Ampére’s force jϕ Bp.

Thus, the homogeneous solution can be matched to the environment by the
boundary condition (5.43). Naturally, the flow structure greatly depends on the
choice of the integrals of motion. Below, we consider one simple example of this
flow and here we point to two general properties typical of this class of solutions.
First, as was noted above, the jet can have a zero longitudinal electric current. This
is the case if on the jet boundary, where there is no longitudinal motion of matter,
the integrals of motion vanish:

ΩF(Ψ0) = 0, η(Ψ0) = 0. (5.77)

Here again Ψ0 is the finite total magnetic flux inside the jet. This case corresponds
to the absence of tangential discontinuities on the jet boundary. The total electric
current within the jet, according to (5.34), automatically proves equal to zero.

Second, as is readily verified, in the relativistic case studied, we can take γ = uz

for the estimate with good accuracy. Then at large distances from the rotation axis
xr � γin (� � �c), Eq. (5.38) under the condition M2 � x2

r can be rewritten as

dΨ

d�
= 8π2 E(Ψ )

�Ω2
F(Ψ )

, (5.78)

or, what is the same,

Bz(� ) = 4πE(Ψ )

� 2Ω2
F(Ψ )

. (5.79)

As we see, Eq. (5.78) does not comprise M2 and can thus be integrated indepen-
dently. This must be the case, since Eq. (5.78) coincides with the asymptotic behav-
ior of the force-free equation obtained from (5.38) in the limit M2 → 0. Supposing
in (5.79) Bz(rjet) = Bext, we find, in particular, for the transverse size of the jet
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r2
jet = lim

Ψ→Ψ0

4πE(Ψ )

Ω2
F(Ψ )Bext

. (5.80)

Hence, the jet size is determined by the limit of the ratio E(Ψ )/Ω2
F(Ψ ) for Ψ → Ψ0.

However, since for the strongly magnetized flows E(Ψ ) ∝ Ω2
F, the estimate of the

value rjet, in fact, coincides with expression (5.18).
We consider, as an example, the internal structure of the relativistic jet sub-

merged in the external homogeneous magnetic field Bext > Bmin parallel to the jet
axis (Beskin and Malyshkin, 2000). We use the integrals of motion L(Ψ ) =
I (Ψ )/2π , E(Ψ ) = ΩF(Ψ )L(Ψ ) (3.107) and (3.108), and ΩF(Ψ ) deduced for the
force-free black hole magnetosphere. Note at once that these integrals of motion
satisfy conditions (5.77) and, hence, can be directly used to study the jet structure
that has the zero total electric current. As a result, with allowance for the particle
contribution to be taken into account in the vicinity of the rotation axis, we have up
to the terms ∼ σ−1

ΩF(Ψ ) = 2
√

1 − Ψ/Ψ0

1 + √
1 − Ψ/Ψ0

ΩF(0), (5.81)

L(Ψ ) = 1

2π2

√
1 − Ψ/Ψ0

1 + √
1 − Ψ/Ψ0

ΩF(0)Ψ, (5.82)

E(Ψ ) = γinμη + ΩF(Ψ )L(Ψ ). (5.83)

In particular, for the values of E(Ψ ) and ΩF(Ψ ) given by formulae (5.81), (5.82),
and (5.83), we have

lim
Ψ→Ψ0

E(Ψ )

Ω2
F(Ψ )

= 1

4π2
Ψ0, (5.84)

so that the limit (5.80) really exists. Thus, we get

rjet =
(

Ψ0

πBext

)1/2

, (5.85)

which naturally coincides with (5.18). According to (5.40) and (5.72), the transverse
jet size can be written as

rjet =
(
σM2

0

γin

)1/2

RL, (5.86)

which is equivalent to (5.85). Moreover, it is easy to verify that for the invariants
(5.81), (5.82), and (5.83) the constant magnetic field Bz = B(0) turns out to be an
exact solution to Eq. (5.78) up to the jet boundary � = rjet. Therefore, we can take
B(0) = Bext. According to (5.56), we obtain
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M2
0 = γin

σ

B(RL)

Bext
. (5.87)

Using relation (5.87), we can express all the other parameters of the jet in terms of
the external magnetic field. Recall once again that the external magnetic field is to
be larger than Bmin, which is given by relation (5.69).

In order for the energy distribution in the jet and the particle Lorentz factor to be
found it is convenient to return to the value

q(xr ) = M2

x2
r

, (5.88)

which, as we saw, at large distances from the rotation axis is simply the particle-to-
electromagnetic energy flux ratio. As a result, from relation (5.73) for xr � γin we
have

Wpart

Wtot
≈ M2

0

γin
x−1

r � 1. (5.89)

Accordingly, from formulae (4.137) and (5.88) for the particle Lorentz factor for
xr � γin (� > �c) we get

γ (xr ) = xr , (5.90)

which exactly corresponds to estimate (5.28). Finally, expression (5.36) for the four-
velocity uϕ̂ yields for � > �c

uϕ̂ = 1. (5.91)

Accordingly, vϕ̂(xr ) = uϕ̂/γ = 1/xr .
On the other hand, according to expression (5.88), we arrive at the most important

conclusion that far from the light cylinder

q � 1. (5.92)

Hence, according to (4.138), for Bext > Bmin, the particle contribution to the total
energy flux is insignificant. For example, for Bext ∼ Bmin and � ∼ rjet, we have

Wpart

Wtot
∼

(γin

σ

)1/2
, (5.93)

and, accordingly, γ ∼ (γinσ )1/2. In the general case, we get (Beskin and Malyshkin,
2000)

Wpart

Wtot
∼ 1

σ

[
B(RL)

Bext

]1/2

. (5.94)



5.2 Cylindrical Flows 315

Fig. 5.2 Internal structure of
the relativistic cylindrical jet
for Bext > Bmin obtained by
the numerical integration of
Eqs. (5.38) and (5.41) for the
parameters M2

0 = 16,
γin = 8, and σ = 1000. The
radial dependence is shown
for (a) the Mach number M2,
(b) the particle energy flux
γμη, and (c) the poloidal
magnetic field Bz . The
dashed lines indicate the
behavior of these values
following from the analytic
asymptotic behavior (5.73)
and (5.90) (Beskin and
Malyshkin, 2000)

We arrive at the sufficiently nontrivial conclusion that in the one-dimensional jet the
particle acceleration efficiency depends on the environmental parameters. However,
this must be the case, because the external magnetic field Bext (ambient pressure
Pext) determines the transverse jet size that prescribes, as in the nonrelativistic case,
the “sling” radius fixing the maximum particle energy.

As an example, Fig. 5.2a, b shows the radial dependence of the Mach number
M2 and the particle energy flux γμη for the parameters M2

0 = 16, γin = 8, and
σ = 1000 resulting from the numerical integration of Eqs. (5.38) and (5.41) for
the integrals of motion (5.81), (5.82), and (5.83) corresponding to the condition
Bext > Bmin (Beskin and Malyshkin, 2000). The dashed lines indicate the analytic
behavior of these values that follow from (5.73) and (5.90). As we see, for rather
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small values of xr when the integrals of motion (5.81), (5.82), and (5.83) are close to
(5.48), (5.49), and (5.50), the analytic expressions coincide with their exact values.
On the other hand, for Ψ = Ψ0, i.e., on the jet edge, as was expected, the values of
γμη and M2 are zero. Figure 5.2c shows the dependence of the poloidal magnetic
field x−1

r dy/dxr for the inner parts of the jet Ψ < Ψ0. As seen from the graph, the
magnetic field remains nearly constant for xr > γin, which is in agreement with the
analytical estimates (5.56) and (5.72). Certainly, in the general case, the poloidal
magnetic field structure is specified by the concrete choice of the integrals E(Ψ )
and L(Ψ ).

5.2.2.4 Intermediate Solution

As to the weaker external magnetic fields Bext < Bmin, in this case the structure of
the inner regions has the form of the core flow. However, since the external magnetic
field Bext is not exponentially small in the real conditions, the quadratic decrease in
the longitudinal field Bz ∝ �−2 (5.62) is never really realized. But, as shown above,
this is the case only if the Mach number M0 on the rotation axis is not much larger
than γin. Therefore, one can conclude that the relativistic jets submerged in the finite
pressure medium cannot have a magnetic field much smaller than Bmin (5.69) on the
rotation axis. Analyzing now Eq. (5.53), which can now be written as

x2
r

dM2

dxr
= 2xrM2 − 4y2M6

x3
r (x2

r + M2)
, (5.95)

it is easy to show that the solution has no structure M2 ∝ � 2 (i.e., Bz ∝ �−2) only
if the latter term in order of magnitude is close to the other terms in this equation.
This is possible for the arbitrary power dependencies

M2 ∝ xαr , y ∝ xβr , (5.96)

if the condition

α + β = 3 (5.97)

is satisfied.
The results of the numerical calculation confirm that, as the external magnetic

field decreases, the value α gradually increases, and β, on the contrary, decreases,
the condition α+β = 3 remaining true (Beskin and Nokhrina, 2006). As a result, if
for Bext ∼ Bmin we have α ≈ 1 and β ≈ 2, for the weaker external magnetic fields
Bext ∼ Beq, where

Beq = 1

σ 2
B(RL), (5.98)

we have α ≈ 2 and β ≈ 1. Thus, we proved the following theorem:
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Theorem 5.2 In the relativistic case, in the presence of the environment with rather
high pressure (Bext > Bmin) the poloidal magnetic field inside the jet remains prac-
tically constant: Bp ≈ Bext. For small external pressure (Bext < Bmin) in the vicinity
of the rotation axis there must form a core region � < �c = γin RL with the
magnetic field Bp ≈ Bmin (5.69) containing only a small part of the total magnetic
flux Ψ0:

Ψcore

Ψ0
≈ γin

σ
. (5.99)

For � > �c, the poloidal magnetic field Bp decreases as

Bp ∝ � β−2, (5.100)

where β < 2.

The existence of the central core with �c ≈ γin RL was predicted in a lot of papers
(see, e.g., Heyvaerts and Norman, 1989; Bogovalov, 1996). However, the magnetic
flux

Ψcore = π� 2
c Bmin (5.101)

within the central core was not specified.
On the other hand, by definition (4.137), for Bext > Beq (i.e., q � 1) the particle

Lorentz factor

γ ≈ q
E

μη
≈ xα+β−2

r (5.102)

is still described by the universal asymptotic solution γ = xr , so relation (5.94)
appears valid for these external magnetic fields. As a result, for Bext < Beq (i.e.,
α ≈ 2), the particle contribution to the energy flux becomes crucial in the whole
jet volume. Consequently, one can conclude that the full transformation from the
electromagnetic energy flux to the particle energy flux can occur only for rather
weak external magnetic fields Bext < Beq.

Problem 5.7 Show that for Bext ∼ Beq the poloidal magnetic field in the jet
behaves as Bz ∝ x−1

r .

Problem 5.8 Find expression (5.98) for the equipartition magnetic field Beq.

Problem 5.9 Show that the transverse size of the jet for the external magnetic
fields Beq < Bext < Bmin is, as before, given by the expression
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rjet ∼
(

Ψ0

πBext

)1/2

. (5.103)

In conclusion, it is interesting to compare the particle energy in the jet with the
ultimate energy gained by the particles in the outflow from the compact object mag-
netosphere with the monopole magnetic field. As is shown in Sect. 5.3.4, for the
quasimonopole relativistic plasma outflow the particle Lorentz factor beyond the
fast magnetosonic surface r > σ 1/3 RL in the absence of the environment can be
written as

γ (y) = y1/3, y > γ 3
in, (5.104)

γ (y) = γin, y < γ 3
in, (5.105)

where y is defined by formula (5.40). On the other hand, relations (5.72) and (5.90)
for the jet yield

γ (y) =
(M2

0

γin

)1/2

y1/2, y >
γ 3

in

M2
0

, (5.106)

γ (y) = γin, y <
γ 3

in

M2
0

. (5.107)

As shown in Fig. 5.3a, for M2
0 > 1, i.e., for Bmin < Bext < Bcr, where

Bcr = γin

σ
B(RL), (5.108)

the particle Lorentz factor in the jet (5.106) is always larger than the Lorentz factor
gained by the particles in the outflow from the magnetosphere with the monopole
magnetic field, but, of course, always less than the limiting Lorentz factor

γin = 2y, (5.109)

corresponding to the full transformation of the electromagnetic energy to the particle
energy. This implies that for Bext < Bcr in the collimation process connected with
the interaction between the outflowing plasma and the environment there must be
additional particle acceleration. If Bext > Bcr, in the internal jet regions for � < �f,
where

�f = γin

M2
0

RL, (5.110)

the particle energy on the given magnetic field line proves even smaller than the
values obtained for the monopole magnetic field, which is shown in Fig. 5.3b.
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Fig. 5.3 The particle Lorentz factor γ versus the magnetic flux y = σΨ/Ψ0 for the monopole field
γ ∼ y1/3, for the one-dimensional jet γ ∼(

M2
0/γin

)1/2
y1/2 and in the case of the full transformation

of the electromagnetic energy to the particle energy γ = 2y. (a) M2
0 >1 (Bext < Bcr). The dashed

line indicates the behavior of the Lorentz factor for Beq < Bext < Bmin. (b) M2
0 < 1 (Bext > Bcr).

The intersection of the lines (M2 ≈ 1) defines the fast magnetosonic surface location (Beskin and
Malyshkin, 2000)

This result can be readily explained. Indeed, for the studied integrals of motion
(5.48), (5.49), and (5.50) the factor D, whose equality to zero specifies the fast
magnetosonic surface location, for the cold plasma can be rewritten as

M2 D ≡ A + B2
ϕ

B2
p

= A + 4x2
r y2M4

4y2M4 − 2x2
r M2 − x4

r

. (5.111)

It is easy to show that for the values of y and M2 given by formulae (5.72) and
(5.73), expression (5.111) is negative for M2 > 1, i.e., just for the values of xr cor-
responding to (5.110). Hence, one can conclude that for sufficiently large external
magnetic fields Bext > Bcr (5.108), when M2

0 < 1, in the inner regions � < �f,
where

�f ≈ σ

[
Bext

B(RL)

]
RL, (5.112)

a subsonic flow inevitably occurs. The occurrence of the subsonic flow region far
from the compact object is possible either in the presence of the shock wave or due to
the strong distortion of the magnetic field lines within the fast magnetosonic surface
located in the neighborhood of the compact object. In both cases, the magnetic field
disturbance results in a decrease in the particle energy.

5.2.3 Nonrelativistic Jets

We now discuss the structure of the nonrelativistic jets from young stars. In the
general case of nonzero temperature, Eq. (5.41) has the form (Beskin and Nokhrina,
2009)
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[
2en − 2w + Ω2

F�
2 − (1 − M2)c2

s

] dM2

d�
=

M6

1 − M2

L2
n

� 3
− Ω2

F�

1 − M2
M2(2M2 − 1)

+M2 dΨ

d�

den

dΨ
+ M2� 2ΩF

dΨ

d�

dΩF

dΨ

+M2 dΨ

d�

[
2en − 2w + Ω2

F�
2 − 2(1 − M2)c2

s

] 1

ηn

dηn

dΨ

−M2

[
(1 − M2)

1

ρ

(
∂P

∂s

)
ρ

+ T

mp

]
dΨ

d�

ds

dΨ
, (5.113)

where en = En − ΩFLn. In the central part of the jet (Ψ � Ψ0) where it is logical
to assume that j‖ = i0 jGJ = const, the integrals of motion can be written as

En(Ψ ) ≈ v2
in

2
+ i0

Ω2
0

4π2cη0
Ψ, (5.114)

L(Ψ ) ≈ i0
Ω0

4π2cη0
Ψ, (5.115)

where vin has the same meaning as γin for the relativistic flows. Accordingly, we
can take Ω0 = ΩF(0) = const and η0 = ηn(0) = const. As a result, the terminating
magnetic flux Ψin containing a particle-dominated flow is given by

Ψin = 2π2 v
2
incη0

i0Ω
2
0

. (5.116)

We emphasize once again that the value vin, as for relativistic flows, has the meaning
of the characteristic constant rather than the real ejection velocity in the source, and
i0 fixes the angular momentum L rather than the real current in the jet. If the angular
momentum is consistent with the critical condition on the fast magnetosonic surface,
the value of i0 is to be determined by relation (4.207).

Problem 5.10 Show that Eq. (5.113) has a singularity on the cusp surface,
i.e., for D = −1.

As a result, Eq. (5.113) together with nonrelativistic Bernoulli’s equation (4.88)
for Ψ < Ψ0 is written as
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(
1 + x2

r

) dM2

dxr
= 2xrM2 + 4i2

0
v2

in

c2

y2M6

x3
r (1 − M2)

− xrM2

(1 − M2)
, (5.117)

M4

(
dy

dxr

)2

= x2
r + 4i0

vin

c
x2

r y − [x2
r − 2i0(vin/c)yM2]2

(1 − M2)2

− 2x2
r

2i0(vin/c)y − x2
r

1 − M2
. (5.118)

Here xr = Ω0�/vin, y = σnΨ/Ψ0, the “nonrelativistic” magnetization parameter
σn is

σn = Ω2
0Ψ0

8π2v3
inη0

, (5.119)

and we restrict ourselves to the cold plasma flow for simplicity. As we see, Eqs. (5.117)
and (5.118) contain the inner scale

�c = vin

Ω0
. (5.120)

Problem 5.11 Show that the condition σn � 1 coincides with the condition
of the fast rotation ΩF � Ωcrit.

At first, we consider the super-Alfvén flow M2(0) > 1 in more detail. Since,
as was noted, the Alfvén surface in the vicinity of the rotation axis must coincide
with the fast magnetosonic one, the flow in the vicinity of the rotation axis is to be
supersonic. As a result, Eqs. (5.117) and (5.118) can be rewritten as

(
1 + x2

r

) dM2

dxr
= 2xrM2 − 4i2

0
v2

in

c2

y2M4

x3
r

, (5.121)

M4

(
dy

dxr

)2

= x2
r + 4i0

vin

c
x2

r y − 4i2
0
v2

in

c2
y2 − 2

x4
r

M2
. (5.122)

It is easy to verify that under the condition M2
0 � 1, the last term in (5.121) can be

dropped. As a result, we have

M2(� ) = M2
0

(
1 + � 2

� 2
c

)
. (5.123)

Accordingly, under the condition M2
0 � 1, we can disregard the last three terms in

Eq. (5.122). Thus, we have

1

xr

dy

dxr
= 1

M2(xr )
, (5.124)
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which again corresponds to the core solution (5.62) (Eichler, 1993; Bogovalov,
1995)

Bz(� ) = Bz(0)

1 + � 2

� 2
c

. (5.125)

As a result, at large distances from the rotation axis � � �c, we again have
the power dependence M2 ∝ � 2, which corresponds to the conservation of the
invariant H (5.63). On the other hand, the solution studied has no singularity on the
rotation axis. In particular, I (� ) → 0 for � → 0.

Further, using definitions (5.21) and (5.22), we find for � � �c

Bϕ = − vin

Ω0�
B0, (5.126)

E� = − v2
in

cΩ0�
B0, (5.127)

so that the electric field is always smaller than the magnetic one. Finally, the velocity
components, according to (5.29), can be written as

vp = vin, (5.128)

vϕ � vin. (5.129)

As a result, the energy flux is fully determined by the particle flux:

Wpart

Wtot
∼ 1. (5.130)

But, as was already noted, in this case the magnetic flux is to increase logarith-
mically slowly with distance from the rotational axis

Ψ (� ) ∝ ln�. (5.131)

It is clear that in the presence of the environment with finite pressure this solution
can exist only if the magnetic flux within the core Ψcore = Ψ (�c) is comparable
with the total magnetic flux of the jet, i.e., Ψcore ≈ Ψ0. As

Ψcore

Ψ0
≈ 1

M2
0

4πρinv
2
in

B2
in

(
vin

Ω0 Rin

)2

≈ 1

M2
0

(
ΩF

Ωcrit

)−2

, (5.132)

where Ωcrit (4.205) terminates the particle and magnetically dominated flows near
the origin, we proved the following theorem:
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Theorem 5.3 In the presence of the environment the cold nonrelativistic supersonic
cylindrical flow can exist only if the flow is particle dominated in the vicinity of the
central object (ΩF < Ωcrit).

In this case, the magnetic field on the axis cannot be much smaller than Bmin, where

Bmin = Ψ0

π� 2
c

. (5.133)

Integrating now Eqs. (5.117) and (5.118), one can find that

B0 ≈ Bmin

ln(1 + Bmin/Bext)
. (5.134)

Accordingly,

Ψcore ≈ Ψ0

ln(1 + Bmin/Bext)
. (5.135)

This structure was reproduced numerically as well (see Sect. 5.5.3).
On the other hand, for the fast rotation ΩF � Ωcrit the adequate solution cannot

be realized as the core magnetic flux Ψcore is much smaller than even the terminating
flux Ψin (5.116) within the central part of the flow. Indeed, according to definitions
(4.77) and (4.87), one can write for M2

0 > 1

Ψcore

Ψin
≈ i0vin

2cM2
0

<

(
ΩF

Ωcr

)−2/3

� 1. (5.136)

This implies that the jet boundary Ψ = Ψ0 (y = σn) is to locate exponentially far
from the axis:

rjet ∼ �c exp(M2
0σn), (5.137)

where the energy density of the magnetic field B(rjet)2/8π becomes small. This is
in contradiction with the finite energy density of the environment. This implies that
the cold nonrelativistic cylindrical flow resulting from the interaction between the
supersonic, fast-rotating wind and the environment cannot be realized.

To resolve this contradiction, one can suppose that the finite temperature may
play an important role in the force balance of the observed nonrelativistic super-
sonic jets. For example, the additional heating can be connected with the shock
wave formation at the jet foot (Bogovalov and Tsinganos, 2005; Bromberg and
Levinson, 2007). This additional heating is really needed to explain the emis-
sion lines observed in some YSO (Schwartz, 1983). This situation is to be analo-
gous to the case of the interaction between the supersonic flow and a solid wall.
This gas-dynamical analogy is all the more appropriate because the nonrelativistic
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supersonic MHD flow must be weakly magnetized outside the fast magnetosonic
surface.

Finally, contrary to the relativistic jets, we can give the following theorem:

Theorem 5.4 The cylindrical trans-Alfvénic flow cannot be realized in the center
part of the nonrelativistic flow.

To prove this theorem we should make two assumptions. We assume that the deriva-
tive of the Mach number remains finite on the Alfvén surface: Ln − ΩF�

2
∣∣
A = 0.

We also assume that the total current I is not closing on the Alfvén surface.
Let us suppose that the flow in the center of the cylindrical jet is sub-Alfvénic

and is about to cross the Alfvén surface: M2 = 1 − δ1, L2
n = Ω2

F�
4 − δ2, where

δ1 > 0, δ2 > 0. In this case, we can write the leading terms of Eq. (5.113) as

(
v2

in + Ω2
F�

2) dM2

d�
= 1 − δ1

δ1

[
Ω2

F�δ2
1 − δ2

� 3
+

δ1
dΨ

d�

(
den

dΨ
+ � 2

2

dΩ2
F

dΨ
+ (

v2
in + Ω2

F�
2
) 1

η

dη

dΨ

)]
. (5.138)

The term on the right-hand side of the equation is zero for the inner part of the flow.
As the total current does not close on the Alfvén surface,

Ln − ΩF�
2

1 − M2
= δ2

δ1(Ln + ΩF� 2)

∣∣∣∣
A

→ const 
= 0, (5.139)

i.e., δ2 = O(δ1); we can disregard the first term in the right-hand side bracket in
(5.138). Thus, we can conclude that the derivative of the Mach number in the vicin-
ity of the Alfvén surface is negative. However, if we assume that M2 should be
unity, there must be at least one point in the vicinity of the Alfvén surface at which
the derivative is positive. We see a contradiction, so the transition of the Alfvén
surface is impossible.

Problem 5.12 Show that for the subsonic nonrelativistic flows in the vicinity
of the rotation axis, i.e., for M2 � 1,

• the square of the Mach number M2 linearly increases with distance from
the axis and the poloidal magnetic field Bz remains constant regardless of
the choice of the integrals of motion

M2(xr ) ≈ M2
0 (1 + xr ) , (5.140)

y(xr ) ≈ 1

2

1

M2
0

x2
r , (5.141)
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(Hint: the energy density of the poloidal magnetic field is larger than that
of all the other fields and the particle energy density.)

• the matter velocity increases with distance from the rotation axis

vp =
√
v2

in + Ω2
F�

2, (5.142)

vϕ = ΩF�, (5.143)

• the minimum external magnetic field for which the subsonic regime can be
realized is

B1 =
(

4πρinv
2
in

B2
in

)2/3 (
Ω0 Rin

vin

)2/3

Bin. (5.144)

5.2.4 General Properties and Application

We can now make the main conclusions based on the above analysis of the exact
solutions to the GS equation for the one-dimensional cylindrical flows.

1. In the vicinity of the rotation axis (� < �c) of the nonrelativistic supersonic
cylindrical flows there always occurs a core region with a higher value of the
longitudinal magnetic field B ∼ Bmin (5.133) containing a considerable part of
the total magnetic flux. If the flow is magnetically dominated near the origin, the
gas pressure connected, say, with the additional heating in the oblique shock near
the jet base is to play an important role in the force balance.

2. The structure of the relativistic cylindrical flows substantially depends on the
external pressure. For the jets submerged in the medium with rather large pres-
sure (Bext > Bmin or Pext > B2

min/8π ), the longitudinal magnetic field weakly
depends on the distance from the rotation axis, so the flow has no central core.
However, when the external magnetic field is smaller than Bmin, the relativistic
flow must also have the core structure. The central core, in this case, contains
only a small part of the total magnetic flux.

3. The fraction of the energy transported by the particles Wpart/Wtot is defined by
the environmental parameters. Thus, for example, in the relativistic case for the
values of σ � σcr (i.e., for Bext � Beq), where

σcr =
[

B(RL)

Bext

]1/2

, (5.145)

the particle energy flux Wpart is only a small part of the energy flux Wem

transported by the electromagnetic field. Consequently, the jet remains strongly
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magnetized (Wpart � Wtot) only at rather large values of the parameter σ . If the
magnetization parameter is not larger than σcr, the jet is to be particle dominated.
This implies that in the jet collimation process a considerable part of the energy
is to be transferred from the electromagnetic field to the plasma. It is interesting
to note that for both AGN and the fast radio pulsars the value of σcr is about
identical:

σcr ≈ 105−106. (5.146)

4. For sufficiently large external magnetic fields Bext > Bcr (5.108), the central part
of the relativistic cylindrical flow must be subsonic.

5. The important result is the assertion that, with account taken of the external
regular magnetic field, the magnetohydrodynamics equations make it possible
to construct the self-consistent model of the jet in which the total longitudinal
electric current I (Ψ0) is zero.

Thus, the general relations allow us to make direct predictions whose validity
can be checked by the observations. As we saw, they actually depend on three
value only, viz., the magnetization parameter σ , the Lorentz factor in the generation
region γin (velocity vin for the nonrelativistic flows), and the external magnetic field
Bext (ambient pressure Pext). Note that the above results can be applied to both the
electron–positron (Wardle et al., 1998) and electron–proton (Sikora and Madejski,
2000) jets.

As a result, for AGN with σ ∼ 10–103, γin ∼ 3–10, the characteristic magnetic
fields Bmin ∼ 1 G and Beq ∼ 10−3 G are much larger than the magnetic fields
in the interstellar medium. On the other hand, for σ ∼ 1011–1013, γin ∼ 10, the
value Bmin ∼ 10−8 G appears too small as compared to the external magnetic field.
Finally, for the fast radio pulsars of the Crab and Vela type (Bin ∼ 1013 G, the polar
cap radius Rin ∼ 105 cm, and λ = n/nGJ ∼ 104), in which the jets are observed, we
have (Bogovalov, 1998)

Bmin ∼ 10−1 G, Bcr ∼ 103 G. (5.147)

As a result, for AGN with large values of σ ∼ 1012, the particles transport only a
small fraction of energy as compared to the electromagnetic flux, so the flow within
the jet slightly differs from the force-free one. Besides, the external magnetic field
Bext ∼ 10−6 G is larger than the critical magnetic field Bcr ∼ 10−7 G. According to
(5.56) and (5.108), this implies that a subsonic region must exist in the inner regions
of these jets. On the other hand, in the sources with the magnetization parameter
σ ∼ 100 (e.g., gamma-bursters) a considerable part of energy in the jet collimation
process is to be transferred to the plasma particles, and the subsonic region in the
vicinity of the rotation axis is not generated. As to the fast radio pulsars, we have
Bext � Bcr, so that the subsonic flow in the central regions of the jet is not realized
either.
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Finally, as we saw, the homogeneous magnetic field coinciding with the exter-
nal magnetic field Bext can be the solution for the inner regions of relativistic jets.
Consequently, the transverse size of the AGN jets can be explained in a natural
way. Simultaneously, the small efficiency of the transformation of the electromag-
netic energy into the particle energy can account for the energy transport from the
compact object to the energy release region. Moreover, the extension of the MHD
solution to the jet region requires extremely high particle energies (∼104 MeV)
that are not detected now. However, for the discussion of the outflowing plasma
energy problem it is necessary to correctly take into account the interaction with the
environment (for example, with the background radiation), which can greatly affect
the particle energy (Li et al., 1992; Beskin et al; 2004).

5.3 Cold Quasimonopole Outflows

We consider now another characteristic case in which the plasma outflows from the
surface of the rotating body with the monopole magnetic field. As was mentioned,
this model can be regarded as the first approximation to the outer regions in the
magnetosphere of the black hole located in the AGN center. It can also be of interest
for the description of the pulsar wind, since beyond the light cylinder the structure of
the magnetic field lines can also be close to the monopole one. It is not improbable
that this geometry of the magnetic field occurs in the vicinity of the young stars.
Below, we discuss in detail the basic properties of the exact solutions obtained in
the analysis of this set of problems.

5.3.1 Relativistic Slowly Rotating Outflows

At first, let us consider the radial cold outflows of the relativistic plasma, with the
gravitational forces neglected (Bogovalov, 1992). In the absence of rotation (i.e., for
ΩF = 0, L = 0) the monopole magnetic field Ψ = Ψ0(1 − cos θ ) for θ < π/2 is
again the solution to the GS equation, because the radially moving plasma (which
for ΩF = 0 should be electrically neutral) does not disturb the radial magnetic
field. Therefore, the monopole magnetic field can really be chosen as an exact zero
approximation.

According to the general relation b = 2 + i − s ′ (1.64), the GS equation for the
cold plasma requires four boundary conditions on the surface r = R (four integrals
of motion, two critical surfaces). These four boundary conditions can be the angular
velocity ΩF, the Lorentz factor γ , the plasma concentration n, and the magnetic flux
function Ψ (R, θ ). For the nonrotating sphere, they are naturally chosen as

ΩF(R, θ ) = 0,

γ (R, θ ) = γin = const, (5.148)

n(R, θ ) = nin = const,

Ψ (R, θ ) = Ψ0(1 − cos θ ). (5.149)
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Recall that the value n is the concentration in the comoving reference frame.
It is connected with the concentration in the laboratory system by the relation
n(lab) = n/γin. At a distance of

ra = R
Bp√

4πninu2
inmec2

, (5.150)

where uin = (γ 2
in − 1)1/2 and Bp = Ψ0/2πR2 is the magnetic field on the surface

r = R, the plasma flow smoothly crosses the Alfvén surface and the fast magne-
tosonic surface which is coincident with it for I = 0. This expression directly
follows from Bernoulli’s equation (4.44) in which we must take ΩF = 0 and L = 0
(which can be deduced from the relation M2 = 1 as well).

Suppose now that a body begins to rotate with small angular velocity Ω , and the
parameter

εb = Ωra

vin
(5.151)

(vin = c(1 − γ−2
in )1/2) thus becomes much less than unity. Then due to the high con-

ductivity of the central body (another additional assumption), we can take ΩF = Ω .
As to the determination of the longitudinal current I , one should stress that,

with account taken of the finite particle mass (when, besides the Alfvén surface,
the plasma must cross the fast magnetosonic surface), the longitudinal current I is
no longer a free function but must be determined from the critical condition on the
singular surfaces. This is quite similar to the hydrodynamical flows when the critical
conditions on the sonic surface fix the accretion rate.

Indeed, for the nonzero rotation, when at once two parameters, ΩF(Ψ ) and L(Ψ ),
appear to be different from zero, their ratio, generally speaking, may be arbitrary.
Accordingly, the location of the Alfvén surface (4.154)

r2
A = L

ΩF E sin2 θ
(5.152)

proves arbitrary too. Here now E = γinμη = const.
However, as shown in Fig. 5.4, for small values of εb the smooth passage from a

subsonic to a supersonic branch is possible only if the location of the Alfvén surface
(5.152) in zero order with respect to the small value of εb coincides with that of the
fast magnetosonic surface (5.150). As a result, we have

L(θ ) = ΩF

8π2
Ψ0 sin2 θ, (5.153)

so that the longitudinal current I = 2πL must actually coincide here with the
Michel current IM (2.225). It is not surprising, therefore, that, as shown below, the
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Fig. 5.4 The motion of the
roots of relativistic
Bernoulli’s equation (4.44) in
the vicinity of the singular
surfaces. The dotted line
indicates the Mach number
M2(r ) in the absence of
rotation, the solid
lines—ΩF 
= 0. The transonic
flow becomes possible when
the Alfvén radius rA is close
to ra

collimation of the magnetic surfaces along the rotation axis is actually absent for
this current.

As a result, the solution to the GS equation can still be sought as a small per-
turbation of the monopole outflow Ψ (r, θ ) = Ψ0[1 − cos θ + ε2

b f (x, θ )], and the
linearized equation has the form (Bogovalov, 1992)

ε2
b(x2 − 1)

∂2 f

∂x2
+ 2ε2

b x
∂ f

∂x
− ε2

b

x2
sin θ

∂

∂θ

(
1

sin θ

∂ f

∂θ

)
= 2

γ 2
in

(
Ωra

vin

)2

sin2 θ cos θ.

(5.154)
Here x = r/ra . Note that when deriving Eq. (5.154) we use relation (5.153). Oth-
erwise, the right-hand side of this equation would have an additional singularity for
x = 1. Besides, we again used here the fact that the disturbance of the monopole
magnetic field remains insignificant and, therefore, the value L(Ψ ) considered here
as a small perturbation can be rewritten as L(θ ).

Thus, Eq. (5.154) has the same properties as the equations considered for the
hydrodynamical flows.

• It is linear.
• The angular operator coincides with the operator L̂θ (1.120).
• The solution to Eq. (5.154) can be expanded in terms of the eigenfunctions of the

GS operator L̂θ .

Therefore, its solution can be written as

Ψ (r, θ ) = Ψ0[1 − cos θ + ε2
bg2(x) sin2 θ cos θ ], (5.155)

where the radial function g2(x) must be determined from the equation

(x2 − 1)
d2g2

dx2
+ 2x

dg2

dx
+ 6

x2
g2 = 2

γ 2
in

. (5.156)

We emphasize that the singularity for x = 1 in Eq. (5.156) corresponds to the
singularity on the fast magnetosonic surface rather than to the Alfvén singularity
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(which was already used for deriving (5.153)). Thus, though in the zero
approximation these surfaces coincide, they yield two critical conditions rather than
one. We should remember that the example studied is degenerate and, therefore, we
can use these two critical conditions independently of each other. Thus, the critical
condition on the Alfvén surface defines the value L(Ψ ) and that on the fast mag-
netosonic surface defines the poloidal magnetic field structure. In the general case,
there is no division of this kind. Therefore, it is appropriate to say that all critical
conditions on the singular surfaces together define the longitudinal current and the
poloidal field structure.

We now turn to the discussion of the properties of Eq. (5.156). It is the special
case of the equation

(x2 − 1)
d2gm

dx2
+ 2x

dgm

dx
+ m(m + 1)

x2
gm = am (5.157)

for m = 2. The boundary conditions for this equation, as before, are

1. the boundary condition on the body surface gm(R/ra) = 0;
2. the absence of the singularity for x = 1.

As a result, the general solution to Eq. (5.157) is written as (Bogovalov, 1992)

gm(t) = −amC1(t)Pm(t) + amC2(t)Qm(t). (5.158)

Here t = 1/x ,

C1(t) = Qm(ra/R)

Pm(ra/R)

∫ ra/R

1

Pm(y)

y2
dy +

∫ t

ra/R

Qm(y)

y2
dy, (5.159)

C2(t) =
∫ t

1

Pm(y)

y2
dy, (5.160)

and Pm(t) and Qm(t) are the Legendre polynomials of the first and second kinds,
respectively (see Appendix D). These expressions solve the problem posed.

The asymptotic behavior of the solution for r → ∞, as in most hydrodynamical
problems studied in Chap. 1, is fully defined by the inhomogeneous solution to
Eq. (5.154), i.e., it is independent of the boundary conditions. The remarkable fact
is that the particular solutions to the homogeneous equations

(x2 − 1)
d2gm

dx2
+ 2x

dgm

dx
+ m(m + 1)

x2
gm = 0, (5.161)

g(1)
m (x) = c1 and g(2)

m (x) = c2x−1, are limited for x → ∞, whereas the specific
solution of the inhomogeneous equation increases with increasing x . As a result, we
have at distances r � ra
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Ψ (r, θ ) = Ψ0

[
1 − cos θ + 2ε2

b
1

γ 2
in

ln

(
r

ra

)
sin2 θ cos θ + · · ·

]
. (5.162)

As we see, though the magnetic field lines have a tendency for collimation along the
rotation axis (perturbation δΨ > 0 for θ < π/2), this process is extremely weak,
so that in the vicinity of the light cylinder RL ≈ ε−1

b ra that, in the problem studied,
is much farther than the singular surfaces (5.150), the perturbation of the monopole
magnetic field ∼ ε2

b ln(1/εb) is much less than unity. As to the particle energy, in
the problem studied, it does not actually change as compared to the initial energy
γinmpc2.

Problem 5.13 Show that in the first approximation to ε2
b the motion is radial:

vϕ = 0.

5.3.2 Relativistic Outflows with Differential Rotation

The above results can be readily generalized to the inhomogeneous outflows with
differential rotation (Beskin and Okamoto, 2000). Indeed, at zero temperature, as
for the accretion of dust described in Sect. 1.4.3, the radial motion can be realized
for the arbitrary plasma concentration. It is convenient here to give the boundary
conditions as

u(R, θ ) = uinq1(θ ), (5.163)

n(R, θ ) = ninq2(θ ), (5.164)

ΩF(R, θ ) = Ωω(θ ), (5.165)

Ψ (R, θ ) = Ψ0(1 − cos θ ), (5.166)

where the functions q1(θ ) ∼ 1 and q2(θ ) ∼ 1 describe the inhomogeneities in the
initial four-velocity and concentration distribution, and the function ω(θ ) describes
the differential rotation that, for example, can be connected with the differential
rotation of the disk (see Fig. 5.5).

As a result, for the zero rotation the location of the Alfvén and fast magnetosonic
surfaces is given by the relation

r2
A(θ ) = r2

a

q2
1 (θ )q2(θ )

, (5.167)

where ra is again given by relation (5.150). The regularity condition on the Alfvén
surface yields the expression for the angular momentum
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Fig. 5.5 The differential
rotation of the disk in the
vicinity of the compact object
results in the angular
dependence of the angular
velocity ΩF(θ ). The boundary
conditions can be given on
the surface r = R, where the
poloidal magnetic field is
already close to the monopole
one (Beskin and Okamoto,
2000)

r r= a

r R=

FA

L(θ ) = 1

c
ΩF(θ )E0(θ )r2

A(θ ) sin2 θ, (5.168)

where E0(θ ) = γ (θ )μη(θ ) can also be readily determined from the boundary con-
ditions (5.163), (5.164), (5.165), and (5.166). Thus, the longitudinal current I is
written as

I (r, θ ) = 2π

c
ΩF(θ )E0(θ )r2

A(θ ) sin2 θ. (5.169)

Recall that due to the small perturbation of the monopole magnetic field these
expressions hold for any radius r .

The latter relation shows that, with account taken of the differential rotation, as
in the cylindrical jet problem, we can model any longitudinal current profile varying
the angular velocity ΩF(θ ). Thus, if ΩF vanishes on a magnetic surface θ = θ0,
according to (5.169), the total electric current flowing in the domain θ < θ0 is zero.

As to the linearized equation for the function f (r, θ ), it now has the form

q2
1 (θ )q2(θ )

∂

∂x

(
x2 ∂ f

∂x

)
− ∂2 f

∂x2
− sin θ

x2

∂

∂θ

(
1

sin θ

∂ f

∂θ

)
=

1

γ 2
in

ω(θ ) sin θ

q1(θ )

d

dθ

[
ω(θ ) sin2 θ

q1(θ )

]
, (5.170)

where again x = r/ra and γ 2
in = 1+u2

in. As we see, the separation of the variables is
possible only if q2

1 (θ )q2(θ ) = const. In particular, for q1 =q2 =1, the exact solution
can again be written as

f (r, θ ) =
∑

m

gm(r )Qm(θ ), (5.171)
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where the radial functions gm(r ) are to be specified from Eq. (5.157) in which the
coefficients am are defined as

∑
m

am Qm(θ ) = 1

2 sin θ

d

dθ
(ω2 sin4 θ ). (5.172)

On the other hand, the asymptotic behavior of the solution to Eq. (5.170) is again
independent of the boundary conditions and can be obtained directly from the anal-
ysis of the leading terms in the limit r → ∞. It has the form

f (x, θ ) = ln x

2 sin θq2
1 (θ )q2(θ )

d

dθ

[
ω2 sin4 θ

u2
in(θ )

]
, (5.173)

where uin(θ ) = uin q1(θ ).

Problem 5.14 Using relation (5.169), show that expression (5.173) can be
rewritten as

f (x, θ ) = ln x

2I 2
A sin θq2

1 (θ )q2(θ )

d

dθ

[
I 2

γ 2
in(θ )

]
, (5.174)

where IA = 2πcηinr2
aΩ .

Problem 5.15 Show that in the case of the small perturbation of monopole
magnetic field the curvature radius of the magnetic surfaces can be written as
(see, e.g., Begelman and Li, 1994)

1

Rc
= ε2

r sin θ

∂

∂r

(
r2 ∂ f

∂r

)
. (5.175)

Therefore, the asymptotic solution of Eq. (5.170) for r → ∞ can be rewritten
as

μnu2

Rc
∼ 1

2πr3c2 sin2 θ

d

dθ

[
I 2

γ 2
in(θ )

]
. (5.176)

In particular, for γin = const, we return to relation (4.229).



334 5 Full MHD Version—Particle Acceleration and Collimation

5.3.3 Nonrelativistic Slowly Rotating Outflows

Here we give the basic relations for the problem of the nonrelativistic magnetized
plasma outflow from the surface of the slowly rotating body (Beskin and Okamoto,
2000). In this case, the four boundary conditions look like

vp(R, θ ) = vinq1(θ ), (5.177)

ρ(R, θ ) = ρinq2(θ ), (5.178)

ΩF(R, θ ) = Ωω(θ ), (5.179)

Ψ (R, θ ) = Ψ0(1 − cos θ ). (5.180)

As a result, the radius of the Alfvén and fast magnetosonic surfaces for the nonro-
tating body is written as

r2
A(θ ) = r2

a

q2
1 (θ )q2(θ )

, (5.181)

where

r2
a = R2 B2

0

4πρinv
2
in

. (5.182)

The critical condition on the Alfvén surface yields the expression for the angular
momentum Ln and the current I

Ln(r, θ ) = ΩF(θ )r2
a sin2 θ

q2
1 (θ )q2(θ )

, (5.183)

I (r, θ ) = 2πc
vinρinr2

a

B0

ΩF(θ ) sin2 θ

q1(θ )
. (5.184)

Together with (5.182), for q1(θ ) = q2(θ ) = 1 it yields

I (r, θ ) = c

vin
I (A)
M sin2 θ, (5.185)

i.e., i0 = c/vin. We have already obtained this relation in Sect. 4.4.4. Accordingly,
the linearized equation for the function f (r, θ ) looks like

q2
1 (θ )q2(θ )

∂

∂x

(
x2 ∂ f

∂x

)
− ∂2 f

∂x2
− sin θ

x2

∂

∂θ

(
1

sin θ

∂ f

∂θ

)
=

ω(θ ) sin θ

q1(θ )

d

dθ

[
ω(θ ) sin2 θ

q1(θ )

]
, (5.186)
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where again x = r/ra . As a result, for q1 = q2 = 1, the solution to this equation can
again be found by the above procedure; we should only take in Eq. (5.170) γin = 1.
In the asymptotically far region r � ra , this solution has the form

f (x, θ ) = ln x

2I 2
A sin θq2

1 (θ )q2(θ )

dI 2

dθ
, (5.187)

where IA = (c/vin)ΩΨ0/4π . Therefore, the nonrelativistic GS equation, as was
expected, can be rewritten in physically explicit form as ρv2/Rc = j‖ Bϕ/c (4.228).
Since Bϕ < 0 for Ψ > 0, one can conclude that in the nonrelativistic limit in the
vicinity of the rotation axis there must be the collimation of the magnetic surfaces
(Rc > 0 for j‖ < 0), whereas one should expect the decollimation of the magnetic
field lines (Rc < 0 for j‖ > 0) in the bulk closing current region (see Fig. 5.6). The
longitudinal current profile itself can be completely arbitrary. On the other hand,
in the relativistic case, the sign of the curvature radius Rc no longer specifies the
current I but I/γ . We emphasize again that this is not the case at mathematical
infinity, where the disturbance of the monopole magnetic field ε2

b f is of the order of
unity.

Fig. 5.6 The structure of
magnetic surfaces in the
presence of the bulk closing
current outside the critical
surfaces for the
nonrelativistic flow. In the
vicinity of the rotation axis
θ < θsep there is the
collimation, whereas in the
bulk closing current region
θsep < θ < θ0 there is the
decollimation of the magnetic
surfaces (Beskin and
Okamoto, 2000). The profile
of the longitudinal current
itself (contour arrows) can be
arbitrary

Problem 5.16 Show that for the homogeneous outflow (q1 = q2 = 1) the
toroidal magnetic and electric fields have the form (Parker, 1958)
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Bϕ = −ΩF R

vin

R

r
B0 sin θ, (5.188)

Eθ = −ΩF R

c

R

r
B0 sin θ, (5.189)

so in the nonrelativistic case the electric field is always much smaller than the
magnetic one.

5.3.4 Relativistic Fast-Rotating Outflow

Now we consider the cold relativistic plasma outflow from the fast-rotating body
surface (Beskin et al., 1998). The analytic analysis is possible because, as a zero
approximation, we can use the Michel monopole solution (Michel, 1973a) (see
Sect. 2.6.1.4) that is the exact solution to the force-free GS equation for the spe-
cial choice of the longitudinal current IM(θ ) (2.225) and the angular velocity ΩF. In
other words, we consider here a small perturbation associated with the finite particle
mass, while the magnetization parameter is supposed to be much larger than unity:
σ � 1.

According to (1.64), the problem again requires four boundary conditions on the
surface r = R. They can be the monopole condition Ψ (R, θ ) = Ψ0(1 − cos θ ) and
three other physical quantities. For simplicity, we again consider the case

ΩF(R, θ ) = ΩF = const, (5.190)

γ (R, θ ) = γin = const, (5.191)

n(R, θ ) = nin = const. (5.192)

Adding the small perturbations to the force-free integrals L0 = IM(θ )/2π and
E0 = ΩF L0

E(Ψ ) = E0(Ψ ) + b(Ψ ), (5.193)

L(Ψ ) = L0(Ψ ) + l(Ψ ), (5.194)

we get η = ninuin/Bp and

e′ = E − ΩF L = b − ΩFl = Bp

4π
M2(R) = γinμη, (5.195)

the integrals of motion η, ΩF, and e′ being constant over the entire space. In relation
(5.195), M(R) is the Mach number and Bp = Ψ0/2πR2 is the radial magnetic
field on the surface r = R. Recall that according to (2.225), the value E0 can be
represented as E0 = EA sin2 θ , where EA = σμη. Under the condition σ � 1, we
also have e′/E � 1. Finally, according to (5.195), we can write
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b(Ψ ) = e′ + ΩFl(Ψ ). (5.196)

As to the value l(Ψ ) (which for small perturbations of the monopole field can again
be regarded as the function of the angle θ , i.e., l = l(θ )), it must be specified from
the regularity condition on the fast magnetosonic surface.

We again seek the solution to Eq. (4.66) as a small perturbation of the monopole
magnetic field Ψ (r, θ ) = Ψ0[1 − cos θ + ε f (r, θ )], where ε ∼ γinσ

−1 � 1. Substi-
tuting this expansion in (4.66), we find (Beskin et al., 1998) (hereafter c = 1)
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Fr2 sin2 θ cos θ. (5.197)

It is clear that in the limit e′ → 0, M2 → 0, and D → ∞, it becomes the force-free
equation (2.243). Unfortunately, unlike the above-studied flows, this problem cannot
be solved analytically, because we fail to separate the variables. In particular, we can
impose only the constraints on the function l(θ ).

For the same reason, we can only roughly define the location of the fast mag-
netosonic surface. Using the general relations (4.172) and (4.174) and the explicit
dependence E0 on θ , we obtain for γin � σ 1/3

rf(θ ) ≈ RLσ
1/3 sin−1/3 θ (5.198)

for θ > σ−1/2, and

rf ≈ RL(σ/γin)1/2 (5.199)

in the vicinity of the rotation axis. Accordingly, from (4.175), we obtain for the
particle Lorentz factor on the fast magnetosonic surface
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γ (rf, θ ) =
(

E

μη

)1/3

= σ 1/3 sin2/3 θ. (5.200)

The locations of the Alfvén and fast magnetosonic surfaces are shown in Fig. 5.7.

Fig. 5.7 Locations of the
Alfvén (A) and fast
magnetosonic (F) surfaces in
the case γin � σ 1/3 (Beskin
et al., 1998). The dashed line
indicates the magnetic field
line Ψ = Ψin dividing the
strongly (Wpart � Wem) and
weakly (Wpart � Wem)
magnetized flow regions.
There is no particle
acceleration inside the
cylinder � = γin RL (dotted
line)

Problem 5.17 Show that in the other limiting case γin � σ 1/3, the particle
energy coincides with the initial energy (γf ≈ γin) and the fast magnetosonic
surface has a spherical form (Bogovalov, 1998)

rf ≈
(
σ

γin

)1/2

RL. (5.201)

We now proceed to the determination of the magnetic field structure. It is neces-
sary to determine the physical root M2(r ) of the third-order equation (4.161). It is
again convenient to use the value q = M2/Ω2

F�
2 (4.135) and also introduce the

new variable ξ = 1 − Σ2
r . In our case, we have
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ξ = 2
e′ + ΩFl

E
− 2ε

sin θ

∂ f

∂θ
+ 4ε

cos θ

sin2 θ
f. (5.202)

As is readily verified, ξ = 0 for the Michel force-free monopole solution, and ξ is
much smaller than unity for σ−1 � 1. We emphasize that exactly the dependence of
ξ on ε f allows us to analyze our problem self-consistently. As a result, Eq. (4.161)
can be rewritten as

q3 − 1

2

(
ξ + 1

Ω2
Fr2 sin2 θ

)
q2 + μ2η2

2E2
+ (e′)2

2E2

1

Ω2
Fr2 sin2 θ

= 0. (5.203)

We first consider the domain in the vicinity of the rotation axis r sin θ < γin RL,
r < rf (see Fig. 5.7). In this domain, the physical root of Eq. (5.203) (i.e., the
solution corresponding to the subsonic flow D > 0) is

q = e′

E
, (5.204)

i.e., it is independent of the radius r . Hence, there is no particle acceleration in this
domain (see Fig. 5.8)

Fig. 5.8 The change in the
particle energy along
magnetic field lines in the
quasimonopole magnetic
field for the case γin � σ 1/3

for θ ≈ π/2. The dashed line
indicates the nonphysical
root (Beskin et al., 1998)

γ (r, θ ) = γin. (5.205)

In particular, as we saw, for σ < γ 3
in, the particle energy remains constant up to the

fast magnetosonic surface.
In the intermediate domain γin RL < r sin θ , r < rf, which exists for σ > γ 3

in, the
physical root D > 0 of the algebraic equation (5.203) has the form

q =
(μη

E

)
ΩFr sin θ. (5.206)

It yields
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γ (r, θ ) = ΩFr sin θ, (5.207)

M2(r, θ ) = σ−1Ω3
Fr3 sin θ, (5.208)

and D = M−2. As we see, the linear increase in the particle energy γmpc2 is to take
place here. We emphasize that all physical characteristics of the flow in this domain
do not depend on ξ at all and, hence, on the field disturbance ε f (r, θ ). In particular,
the universal dependence (5.207) is again defined by the drift particle motion in
the crossed fields. Therefore, to determine the basic parameters of the flow inside
the fast magnetosonic surface we do not need to know the exact solution to the GS
equation (5.197).

Further, the conditions Q = 0 and ∂Q/∂r = 0 on the fast magnetosonic surface,
which correspond to the conditions D = 0 and Nr = 0, are rewritten as

ξ (rf, θ ) + 1

Ω2
Fr2

f sin2 θ
= 3

(μη
E

)2/3
, (5.209)

rf
∂ξ

∂r

∣∣∣∣
r=rf

− 2

Ω2
Fr2

f sin2 θ
= 0. (5.210)

Thus, supposing that rf ∂ξ/∂r |r=rf
≈ ξ , we conclude that relations (5.209) and

(5.210), besides the above expression for the sonic surface radius rf, yield one more
important condition

ξ (rf) ≈ σ−2/3. (5.211)

As to the third condition ∂Q/∂θ = 0, in the approximation studied, it, in fact,
reduces to (5.210) and does not contain any new information.

If we compare the solution (2.245) with the regularity condition (5.211) on the
fast magnetosonic surface and use the explicit form of the function ξ (5.202), we
can obtain an important restriction to the perturbation of the longitudinal current l,
which is needed for the smooth passage through the fast magnetosonic surface

l/L0 ∼ σ−4/3. (5.212)

Hence, for the transonic flow to exist the longitudinal current must actually coincide
with the force-free current IM. Thus, we justified our choice of the electric current
I = 2πL0(Ψ ) as a zero approximation. Finally, comparing relations (5.211) and
(5.212) with expression (5.202), we find

ε f (rf) ∼ σ−2/3. (5.213)

This implies that the perturbation of the monopole magnetic field remains insignifi-
cant at least up to the fast magnetosonic surface r = rf. Therefore, our assumption of
the possibility to investigate this problem by the perturbation theory seems justified.
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As to the asymptotic domain r � rf, the physical root of equation (5.203), which
corresponds to the supersonic flow D < 0, is

q = ξ

2

(
1 − 4

μ2η2

ξ 3 E2

)
. (5.214)

We easily check that the corresponding particle energy mpc2γ = mpc2q(E/μη)
here also corresponds to the Lorentz factor γ = (1 − U 2

dr)
−1/2 defined by the drift

velocity Udr = |E|/|B| ≈ |E|/Bϕ . On the other hand, the GS equation (5.197) can
be rewritten in simple form as

εr2 ∂
2 f

∂r2
+ 2εr

∂ f

∂r
= sin θ

D + 1

D

∂q

∂θ
, (5.215)

where q is given by formula (5.214) and

D + 1 = 8
μ2η2

E2ξ 3
� 1. (5.216)

We emphasize that if the flow is supposed to be exactly radial (∂/∂r = 0),
Eq. (5.215) would have the form dq/dθ = 0, which just corresponds to the earlier
found integral (4.238) (Heyvaerts and Norman, 1989). However, this relation, as
was shown above, can occur only at mathematical infinity, where the radial deriva-
tives can be really disregarded. In the physical infinity domain, allowance for the
radial derivatives proves absolutely necessary. As a result, according to (5.215), in
the asymptotically far domain r � rf the perturbation of the magnetic field ε f can
be written as (Tomimatsu, 1994)

ε f (r, θ ) = σ−2/3a(θ ) ln1/3

(
r

rf

)
, (5.217)

where a(θ )∼1. Otherwise, for the strongly magnetized flow the collimation appears
weaker than the case Wpart � Wem, where, as we saw, ε f ∝ ln(r/rf). Accordingly,
because of (4.137) and (5.214), beyond the fast magnetosonic surface the particle
energy actually ceases to increase

γ (r � rf) ≈ σ 1/3 ln1/3

(
r

rf

)
sin2/3 θ. (5.218)

Problem 5.18 Show that Eq. (5.215) exactly corresponds to the condition
Fc = Fem, where the electromagnetic force Fem is given by the right-hand
side of relation (5.176), and in the expression for the centrifugal force the
Poynting vector flux S is of major importance now: Fc = S/(cRc).
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Problem 5.19 Show that the magnetic field line passing through the point of
intersection of the fast magnetosonic surface with the cylinder � = γin RL

corresponds to the magnetic field line Ψ = Ψin (5.47) separating the strongly
(Wpart � Wem) and weakly (Wpart � Wem) magnetized flow domains (see
Fig. 5.7).

Problem 5.20 Show that in the vicinity of the axis (Ψ < Ψin for r � rf) an
increase in the disturbance of the monopole magnetic field corresponds to the
weakly magnetized flow ε f ∝ ln(r/rf) (Lyubarsky and Eichler, 2001).

Thus, we constructed one more example of the solution in which the regularity
conditions on the singular surfaces limit the longitudinal current, so beyond the
fast magnetosonic surface both the collimation and the particle acceleration become
inefficient. On the other hand, it is shown that the Michel expression (Michel, 1969)
for the particle energy γf ∼ σ 1/3 (within the model studied) remains valid.

5.3.5 Relativistic Outflow in the Parabolic Magnetic Field

The above example was often used as an argument against the very possibility of
the efficient particle acceleration in the magnetized relativistic wind. However, as
we saw, in the cylindrical jets the particle energy flux can approach the energy flux
of the electromagnetic field (see Sect. 4.4.5 as well). Therefore, it is interesting to
analyze the strongly magnetized flow structure using the parabolic solution of the
force-free GS equation (2.237) (Beskin and Nokhrina, 2006). In this case, already
in the zero approximation the magnetic surfaces are collimated to the rotation axis,
and the main problem thus becomes the particle acceleration problem. On the other
hand, unlike the previous example, the total magnetic flux extends to infinity here.
At large distances, as we will see, the flow, in fact, becomes one-dimensional, i.e.,
close to the cylindrical jets submerged into the homogeneous magnetic field, which
were studied in Sect. 5.2.2.

Recall that in the parabolic magnetic field the angular velocity ΩF cannot be
constant on all magnetic surfaces, since, as shown in Fig. 2.19, the value ΩF(Ψ )
is determined by the angular velocity of the disk. Below, for simplicity, we discuss
only the domain in the vicinity of the rotation axis, where ΩF can be taken to be
constant. In this case, the magnetization parameter σ is naturally determined by the
magnetic flux Ψ0 enclosed at the equator within the light cylinder RL = 1/ΩF,
which yields the expression (c = 1)

σ = CΩF

4πμη
. (5.219)
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Otherwise, the construction of the solution is fully equivalent to the problem of
the relativistic plasma outflow in the monopole magnetic field. Therefore, we do
not discuss the computation in detail and give only the main results for the case
γin � σ 1/3.

We first consider the subsonic domain r < rf. We seek the magnetic flux func-
tion, with the perturbation taking into account the finite particle mass in the form

Ψ (X,Y ) = Ψ (0)(X ) + ε f (X,Y ). (5.220)

Here Ψ (0)(X ) ≈ πCX is the force-free solution (2.237), ε f (X,Y ) is the small per-
turbation, and we introduce again the orthogonal coordinates

X = r (1 − cos θ ), (5.221)

Y = r (1 + cos θ ). (5.222)

In this case, the “working volume” Ψ < Ψ0 (where, as we suppose, ΩF = const) is
written as ΩF X ≈ ΩFrθ2/2 < 1. Now linearizing the GS equation, we obtain the
equation for the function ε f (X,Y ) (Beskin and Nokhrina, 2006)

εX
∂2 f

∂X2
+ ε

∂ f

∂X
− ε

f

X
+ ε

∂

∂Y

(
Y
∂ f

∂Y

)
= −πC

(
X
∂q

∂X
+ 2q

)
, (5.223)

where q is again given by relation (4.135). The most important consequence of
this equation is that in the studied domain ΩF X < 1 (ΩF = const) and Y � X
(θ � 1) the term ε∂/∂Y (Y ∂ f/∂Y ) associated with the curvature of the magnetic
surfaces becomes inessential and can be disregarded. This implies that the parabolic
jet structure should be close to the one-dimensional cylindrical jets. Only the “exter-
nal” homogeneous magnetic field changes. If we define the value q from Bernoulli’s
equation (5.203)

q = 1

σ

(
Y

X

)1/2

, (5.224)

and substitute it in Eq. (5.223), we obtain for the perturbation to the magnetic flux
function for r < rf

ε f (X,Y ) = 2πC
σ

X1/2Y 1/2. (5.225)

We now specify the location of the fast magnetosonic surface r = rf and the
particle Lorentz factor γf = γ (rf). It is necessary again to use Bernoulli’s equation
(4.161). As a result, in the vicinity of the rotation axis θ < γ 2

in/σ , where the particle
energy flux is always larger than the energy flux of the electromagnetic field, the
location of the fast magnetosonic surface and the particle Lorentz factor γf = γ (rf)
are
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rf ≈ σ

γin
RL, (5.226)

γf ≈ γin. (5.227)

In the opposite case θ � γ 2
in/σ , as shown in Fig. 5.9, we have

rf ≈
(σ
θ

)1/2
RL, (5.228)

γf ≈ σ 1/2θ1/2. (5.229)

Note that on the outer boundary of the studied domain ΩF X = 1 (i.e., r ≈ σ 2/3 RL

and θ ≈ σ−1/3) the particle Lorentz factor on the sonic surface is exactly equal to
σ 1/3.

Fig. 5.9 The location of the
Alfvén (long dashed line) and
fast magnetosonic (short
dashed line) surfaces for the
parabolic magnetic field. The
shaded region corresponds to
the “working volume”
ΩF X < 1 (ΩF = const). The
outer region can be described
by the self-similar equations
(Beskin and Nokhrina, 2006) F

If we estimate now the relative role of the perturbation ε f (X,Y ) to the magnetic
flux function Ψ (0) ≈ πCX on the fast magnetosonic surface, we find that

ε f

Ψ (0)
≈ 1

σθ
� 1 (5.230)
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for θ > γ 2
in/σ . Hence, our assumption of the smallness of the perturbation to the

magnetic flux function inside the fast magnetosonic surface is confirmed. Conse-
quently, at least up to the distances r < (σ/γin)RL the poloidal magnetic field is
close to the force-free one. Moreover, if we take, as the external magnetic field
Bext, the poloidal field of the force-free parabolic solution B = C/2r , we readily
see that expression (5.112) for the location of the fast magnetosonic surface for the
cylindrical jet exactly coincides with (5.228). In the case of the smallness of the
angle θ in the studied domain ΩF X < 1, the poloidal magnetic field is actually
constant: Bz ≈ const.

Problem 5.21 Show that, as for the monopole magnetic field

• for r < rf, the particle Lorentz factor is defined by the universal depen-
dence γ ≈ xr ;

• on the fast magnetosonic surface we have γf ≈ y1/3 for y > γ 3
in;

• expression (5.230) exactly matches the asymptotic expression (5.225) for
r < rf.

Clearly, the above results suggest that the flow remains one-dimensional beyond
the fast magnetosonic surface, and we can use the results obtained for the cylindrical
flow for the supersonic region. Otherwise, up to the distance r ∼ r1, where

r1 = γinσ RL, (5.231)

the poloidal field in the domain ΩF X < 1 for r = const can be regarded as constant
and for r1 < r < req, where

req = σ 2 RL, (5.232)

the poloidal magnetic field Bz(r, θ ) has the core structure. In this case, the magnetic
field on the rotation axis for r > r1 slightly differs from the value Bmin (5.69). The
recent numerical simulation (Komissarov et al., 2009) fully confirmed this structure
(see Sect. 5.5.3).

Further, the contribution of the particle energy flux to the entire domain r > rf

increases with distance from the equatorial plane

Wpart

Wtot
≈

(
r

req

)1/2

. (5.233)

At large distances z � rf, the energy of particles moving along the magnetic field
line ΩF X ≈ 1 increases as

γ ≈
(

z

RL

)1/2

, (5.234)
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in agreement with the general relation (4.234). Accordingly, uϕ̂ ≈ 1. Finally, for
r > req, the particle energy flux becomes comparable with the energy flux of the
electromagnetic field. Thus, in the parabolic magnetic field, as was demonstrated
in Sect. 4.4.5, the full transformation of the electromagnetic energy flux into the
particle energy flux becomes possible. Note that on the fast magnetosonic surface
the flow structure can appreciably change, so for r � rf the disturbance of the
force-free parabolic field is no longer small though the perturbation ε f is not much
larger than the magnetic flux Ψ (0) in the zero approximation (see Fig. 5.2c).

5.3.6 General Properties

To sum up, we again turn to the most important conclusions that can be made by
analyzing the above exact solutions.

1. Within the full MHD GS equation version, i.e., with account taken of the finite
particle mass, the longitudinal current I (to be exact, the angular momentum
L(Ψ )) is no longer a free parameter and must be found from the condition of the
smooth passage through all critical surfaces. In the relativistic case, the longitu-
dinal current in the vicinity of the fast magnetosonic surface proves close to the
GJ current. For the nonrelativistic particle-dominated flow i0 ≈ c/vin � 1.

2. The closeness of the longitudinal current I to the characteristic current IGJ

implies that the current I is to be close to the minimum possible current Imin

for which, within the force-free approximation, the fast magnetosonic surface
extends to infinity. Consequently, in the analysis of the strongly magnetized flows
we can use a much simpler force-free GS equation version and determine the
current from the condition

I = Imin (5.235)

(certainly, it is impossible to describe the regions located beyond the fast magne-
tosonic surface). Condition (5.235) can be rewritten as the “boundary condition
at infinity” Eθ (r → ∞) = Bϕ(r → ∞), i.e., as (Okamoto, 2001)

4π I = ΩF sin θ
dΨ

dθ
, (5.236)

which is equivalent to the “boundary condition on the horizon.”
3. In the relativistic case, if the curvature of the magnetic surfaces can be disre-

garded beyond the fast magnetosonic surface r � rf, the efficient acceleration
regime is realized here, so that γ ≈ Ω�/c (5.28). If the curvature Rc appears to
be substantial, the acceleration is inefficient and γ ≈ (Rc/� )1/2 (4.231).

4. The possibility of the particle acceleration is closely connected with the magnetic
field structure. The efficient acceleration is possible only for the strongly colli-
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mated flows. The particle energy flux for the quasimonopole outflow is always
much smaller than the energy flux of the electromagnetic field.

5. As in the nonrelativistic case, the magnetic field works as a sling increasing
the particle energy with distance from the rotation axis. However, for the quasi-
monopole flows, the curvature of the magnetic field lines, which increases with
distance, suppresses the acceleration efficiency. In the parabolic field the cur-
vature of the field lines, though present initially, decreases with distance and at
large distances does not hinder the efficient particle acceleration.

5.4 Black Hole Magnetosphere

We now discuss the main results that can be obtained in the analysis of the full GS
equation version, which describes the rotating black hole magnetosphere. Here we
are, first of all, interested in the general properties of the flows rather than in the
self-consistent model of real rotating black holes (a brief survey of the astrophysical
subject was given in Sect. 3.1). Therefore, it is necessary to formulate the main
questions we will try to answer in the analysis of the exact solutions.

First of all, the determination of the energy losses of the rotating black hole
is not connected so much with the value of the current I , as for the radio pulsar
magnetosphere, as with the value of the angular velocity ΩF(Ψ ). Indeed, in the case
of the black hole magnetosphere, the angular velocity ΩF(Ψ ) is in no way connected
with the angular velocity of the black hole ΩH and is to be determined from the
solution of the complete problem. It is shown below that, with account taken of the
finite particle mass, the number of the critical surfaces is enough to determine not
only the longitudinal current I but also the angular velocity ΩF.

Further, the exact solutions allow us to determine the behavior of the flow in
the vicinity of the black hole and thus confirm our conclusion of the absence of
a singularity on the event horizon. Finally, having established where the boundary
conditions must be given for the flow structure to be fully determined, one can make
conclusions about the slowing-down mechanism of the rotating black hole.

At present, there are only two cases in which the problem of the two-dimensional
magnetosphere structure of the black hole has been solved analytically. Below, we
discuss in detail the basic properties of these solutions, which, though the problem
is greatly simplified, make it possible to clear up most key features in the real flows.

5.4.1 Slowly Rotating Black Hole Surrounded by a Thin Disk

Consider again the black hole with the (split) monopole magnetic field generated in
the thin accretion disk (see Fig. 5.10) (Beskin and Kuznetsova, 2000a). Clearly, in
the absence of rotation the monopole field Ψ = Ψ0(1 ± cos θ ) is an exact solution
to the full GS equation version, because the radial motion of the plasma (which is
again uncharged for ΩF = 0) can, in no way, disturb the magnetic structure. We
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Fig. 5.10 The structure of the
singular surfaces (dashed
lines) and the plasma
generation region r = rinj

(dotted line) for the black
hole submerged in the
monopole magnetic field. In
the absence of rotation the
monopole magnetic field is
the exact solution to the GS
equation. Contour arrows
indicate the currents flowing
in the magnetosphere,
ordinary arrows – motion of
particles

consider here, for simplicity, the flow in which the energy density of the magnetic
field is much higher than that of the plasma

εpart

εem
� 1, (5.237)

but, on the other hand, the black hole rotational velocity is so small that the main
energy flux is determined by particles rather than the Poynting flux

Wpart

Wem
� 1. (5.238)

Otherwise, we do not discuss the generalization of the force-free BZ solution to
the case of the finite particle mass but the generalization of the solution discussed
in Sect. 5.3.1 to the accretion onto the black hole. Besides, we again consider the
plasma to be cold (T = 0, i.e., μ = mp = const).

Further, we assume that even in the absence of the black hole rotation, plasma
is generated in the magnetosphere, and two particle flows are thus generated in it,
one of them extends to infinity and the other moves to the event horizon. Undoubt-
edly, in this statement of the problem there is an obvious inconsistency, because the
solution considered below has no physically meaningful limit ΩH → 0, since the
plasma generation mechanism studied in Sect. 3.2.5 can effectively work only in
the presence of the longitudinal electric field that, in turn, can be produced by the
black hole rotation. Nevertheless, as we saw, a relatively slow rotation is enough
for the plasma generation to be initiated in the vicinity of the surface ρGJ = 0.
Therefore, the particles are generated for the parameter ε3 = a/M � 1. This
surface location (for example, according to (3.60), rinj = 21/3rg for ΩF = ΩH/2)
is independent of the black hole rotation. This justifies the possibility to consider
the solution of our problem again as a small perturbation of the monopole magnetic
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field Ψ = Ψ0(1 ± cos θ ). As to the plasma generation region ρGJ ≈ 0 assumed to be
an infinitely thin surface, its location itself is to be defined from the solution of the
complete problem. The value of rinj = 21/3rg can be taken as a zero approximation.

We now consider in detail the number of boundary conditions which are to be
specified in order to fully determine all flow parameters. One should remember that
the problem studied contains, in fact, two domains in which the integrals of motion
differ from one another. This is evident, at least, from the analysis of the value
η available in the definition αnup = ηBp, which is to have different signs for the
outflowing and accreting plasma. Therefore, according to the general formula (1.64)
b = 2 + i − s ′ = 4 (four integrals of motion, two singular surfaces) valid for the
cold plasma, for each of the domains on the particle generation surface ρGJ = 0, four
functions should be given. Therefore, the complete problem requires eight boundary
conditions.

Clearly, four of them, viz., the concentration ninj and the Lorentz factors γinj

for the outflowing and accreting plasma, can be chosen in the same way as in the
problem of the cold plasma outflow from the surface of the rotating sphere. We con-
sider here, for simplicity, the constant values of the concentrations and the particle
Lorentz factor

n±
inj = ninj = const, (5.239)

γ±
inj = γinj = const. (5.240)

These four values define the four integrals of motion, two each for the outflowing
and accreting plasma

E (out) = αinj μηinj γinj, (5.241)

E (in) = −αinj μηinj γinj, (5.242)

η(out) = ηinj =
αinj ninj

√
γ 2

inj − 1

Binj
, (5.243)

η(in) = −ηinj = −
αinj ninj

√
γ 2

inj − 1

Binj
. (5.244)

Here Binj = Ψ0/(2πr2
inj), μ = mp = const for the cold plasma. As we see, when

the energy flux is connected with the particles (5.238), the energy integrals E (in)

and E (out) have different signs for the outer and inner regions in the magnetosphere.
Note that in this section our formulation of the problem differs from that in Hirotani
et al. (1992), in which the particle velocity was supposed to be close to zero in the
plasma generation region.

As to two other pairs of the functions, we cannot take, as boundary conditions, the
angular velocity ΩF(rinj) and the magnetic flux Ψ (rinj), because they are to be deter-
mined by the solution of the problem. On the other hand, we can give, as boundary
conditions, the following relations and values:
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1. The continuity condition of the magnetic flux in the plasma generation region

Ψ |r=rinj−0 = Ψ |r=rinj+0 . (5.245)

2. Two components of the surface electric current Js flowing along the particle gen-
eration region

J|r=rinj
= Js. (5.246)

This two-dimensional vector yields two other boundary conditions.
3. The drop of the electric potential Vg along the magnetic field lines in the particle

generation region (which must be defined by the concrete plasma generation
mechanism)

Vg = V |r=rinj+0 − V |r=rinj−0 . (5.247)

As we will see, relations (5.239), (5.240), (5.245), (5.246), and (5.247) fully define
the solution of the problem posed.

As a result, in the absence of rotation when E = const, η = const, ΩF = 0 L = 0,
the Alfvén and fast magnetosonic surfaces (having, obviously, a spherical form)
coincide with one another. In the following we denote the values corresponding to
the spherically symmetric solution, by “0”. Using now Bernoulli’s equations

1

64π4

M4(∇Ψ )2

� 2
= E2

0 − α2
0μ

2η2
0, (5.248)

we can obtain the expressions for the location of the outer (M2 = 1)

r (out)
a = r (out)

f =
⎛
⎝ Ψ0

8π2

1√
E2

0 − μ2η2
0

⎞
⎠

1/2

(5.249)

and inner (M2 = α2)

α(in)
a = α

(in)
f =

(
8π2r2

g

Ψ0
|E0|

)1/2

(5.250)

surfaces. Here we used the additional assumption γinj � 1 and relation (5.237) by
which the outer singular surfaces are at large distances from the black hole and the
inner ones, on the contrary, are in the vicinity of the event horizon

r (out)
f � rg, (5.251)

α
(in)
f � 1. (5.252)
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Fig. 5.11 The motion of the
roots to Bernoulli’s equation
(4.44) in the vicinity of inner
Alfvén surface. The dotted
line indicates the dependence
M2(α) for the zero rotation
and solid lines for ΩF 
= 0.
The transonic accretion
regime occurs when the
Alfvén surface location αA is
close to αa

supersonic
flow

subsonic flow

Note that in relations (5.250) we have the modulus of the Bernoulli integral E0,
because, as was noted, the value η is negative for the accreting flow.

Further, we use the above fact that for the slowly rotating body with the monopole
magnetic field the problem of determining the integral of motion can be solved inde-
pendent of the magnetic field structure. Indeed, as in the above example, for nonzero
rotation when simultaneously two parameters, ΩF(Ψ ) and L(Ψ ), differ from zero,
their ratio can again be arbitrary. Accordingly, the location of the Alfvén surface αA

(4.156) proves arbitrary too. The motion of the roots of Bernoulli’s equation for the
inner Alfvén surface is fully equivalent to the outflow case shown in Fig. 5.4, where
for the inner surface the corresponding curves have the form shown in Fig. 5.11. For
the transonic flow to exist we must again suppose that the Alfvén surface location
defined by the numerators in relation (4.38) must coincide with expressions (5.249)
and (5.250).

As a result, comparing relations (4.154) and (4.156) with expressions (5.249) and
(5.250), we obtain the values of the invariants L (in) and L (out)

L (out) = Ω
(out)
F − ω

(out)
A

8π2

E0√
E2

0 − μ2η2
0

Ψ0 sin2 θ, (5.253)

L (in) = −Ω
(in)
F − ω

(in)
A

8π2
Ψ0 sin2 θ. (5.254)

In particular, when the outer surfaces are far from the black hole (i.e., for ω(out)
A ≈ 0)

and the inner ones in the vicinity of the event horizon (i.e., for ω(in)
A ≈ ΩH), we

simply have

L (out) = Ω
(out)
F

8π2

E0√
E2

0 − μ2η2
0

Ψ0 sin2 θ, (5.255)

L (in) = ΩH − Ω
(in)
F

8π2
Ψ0 sin2 θ. (5.256)
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We can now proceed to the solution of the GS equation. For the slow rotation
we can again seek its solution in the form Ψ = Ψ0[1 − cos θ + ε2

3 f (r, θ )], where
ε3 = a/M and Ψ0 is the total magnetic flux passing through the black hole. As a
result, we obtain upon linearizing Eq. (4.64)
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where α0(r ), M0(r ), and E0 refer to the zero rotation. As for ω, with adequate
accuracy, it can be considered to be dependent on the radial coordinate r only.
Besides, note that, as we will see, the condition ΩF ≈ const is satisfied. Therefore,
in Eq. (5.257) we disregarded the terms containing dΩF/dθ .

First, we emphasize that when deriving Eq. (5.257) we essentially used Eqs. (5.253)
and (5.254) for the angular momentum L(Ψ ). Otherwise, this equation would have a
singularity on the Alfvén surfaces. Second, we should remember that the equations
describing the outflowing and accreting plasma differ from one another. They have
different values of the Lense–Thirring angular velocity on the Alfvén surface ωA,
different values of the integrals η0, and, what is especially important, different values
of the integrals ΩF. If the values of ωA and η0 are defined directly from the boundary
conditions (5.239) and (5.240) for defining the integrals ΩF we should already use
the implicit conditions (5.245), (5.246), and (5.247). This procedure is performed
below.

Otherwise, Eq. (5.257) is fully equivalent to the equations studied in Chap. 1.

• It is linear.
• The angular operator coincides with the operator L̂θ (1.120).
• Since all terms in this equation contain the small parameter ε2

3 ∼ Ω2
Hr2

g , the
functions α0(r ), M0(r ), etc., can be taken from the zero approximation and the
Lense–Thirring angular velocity in the form ω = ΩH(rg/r )3.

• Since for the spherically symmetric flow the functions α0(r ), M0(r ), etc., are
independent of θ , the solution to Eq. (5.257) can be expanded in terms of the
eigenfunctions of the operator L̂θ .

In particular, for this reason we can disregard the disturbance of the location of the
critical surfaces. We emphasize here that the singularities α2

0 = M2
0 correspond to
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the critical conditions on the fast magnetosonic surfaces which were not yet used
for the construction of the solution. Therefore, as before, though in the zero approx-
imation the locations of the two singular surfaces coincide, they yield two critical
conditions rather than one.

Finally, one should especially stress that Eq. (5.257) has no singularity on the
event horizon α2 = 0. Indeed, all coefficients in this equation are proportional to
α2

0, so when reduced by this factor, Eq. (5.257) proves regular in the vicinity of the
surface r = rg. This important property present in the analysis of the hydrodynam-
ical flows results from the above general behavior of the GS equation (4.66) in the
vicinity of the event horizon.

Substituting now the disturbance function in the form

f (r, θ ) = g2(r ) sin2 θ cos θ, (5.258)

we obtain the ordinary differential equation for the radial function g2(r )

r2
g

d

dr

[(
α2

0 − M2
0

) dg2(r )

dr

]
− 6

(rg

r

)2
g2(r ) =

−1

4

1

(α2
0 − M2

0)2

E2
0

E2
0 − α2

0μ
2η2

0

[
(2α2

0 − M2
0)

(ΩF − ωA)2

Ω2
H

− M2
0

(ΩF − ω)2

Ω2
H

]

−1

2

(α2
0 − M2

0)2μ2η2
0 + E2

0(2M2 − α2
0)

(α2
0 − M2

0)2(E2
0 − α2

0μ
2η2

0)

(ΩF − ω)2

Ω2
H

+1

2
signη0

M2
0

(α2
0 − M2

0)2

E2
0

E2
0 − α2

0μ
2η2

0

(ΩF − ω)(ΩF − ωA)

Ω2
H

+1

4

(rg

r

)5
(

μ2η2
0

E2
0 − α2

0μ
2η2

0

+ 2

)
− 1

4

(rg

r

)4
M2

0. (5.259)

The boundary conditions (5.245), (5.246), and (5.247) in the plasma generation
region r = rinj now have the form

g2|r=rinj−0 = g2|r=rinj+0 , (5.260)

dg2

dr

∣∣∣∣
r=rinj−0

= dg2

dr

∣∣∣∣
r=rinj+0

+ Δ j, (5.261)

I |r=rinj−0 = I |r=rinj+0 + ΔI, (5.262)

Ω
(out)
F = Ω

(in)
F + ΔΩF. (5.263)

Here the values of Δ j and ΔI are two components of the surface current JS (5.246)
flowing in the plasma generation region. As was noted, they are to be defined by
the concrete particle generation mechanism. The value ΔΩF is connected with the
potential drop Vg in the plasma generation region by the relation
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ΔΩF ≈ ΩH
Vg

Vmax
, (5.264)

where Vmax ≈ ψmax is the maximum possible potential drop in the vicinity of the
horizon. Finally, as in all examples studied, to define the solution we should use the
regularity conditions on the fast magnetosonic surfaces α2

0 = M2
0.

Thus, the solution to Eq. (5.259) can be readily constructed by analogy with the
solutions to the ordinary differential equations that were earlier analyzed in detail.
But since the main characteristics of the flow such as the electric current structure
and the energy losses in the studied quasimonopole geometry are defined indepen-
dently of the poloidal field structure, we only enumerate the basic properties of the
solution to Eq. (5.259).

First of all, the absence of a singularity for α2 = 0 implies that for ε3 � 1
the disturbance of the monopole magnetic field remains small up to the event hori-
zon

ε2
3 f (rg, θ ) ∼ ε2

3 � 1. (5.265)

On the other hand, note that at large distances r � r (out)
a , Eq. (5.257) exactly coin-

cides with Eq. (5.154) describing the cold plasma outflow from the rotating sphere
surface. Therefore, we can use the asymptotic solution (5.162) independent of the
boundary conditions

ε2
3 f (r, θ ) = 2

(
ΩFra

vinj

)2 1

γ 2
inj

ln

(
r

ra

)
sin2 θ cos θ. (5.266)

Finally, the most important result is that in the case studied, not only the longitudinal
current I (to be exact, the angular momentum L(Ψ )) but also the angular velocity
ΩF is not a free parameter and must be determined from the solution of the problem.
Thus, the total energy release is fixed.

Indeed, using the expressions for the angular momentum (5.253) and (5.254) and
the boundary conditions (5.262) and (5.263), we get

ΩF = ω
(in)
A + ω

(out)
A + ΔΩF − ε2(2ωinj + ΔΩF)

2(1 − ε2)
+ 2π (α2

inj − M2
inj)ΔI

α2
injΨ0(1 − ε2) sin2 θ

. (5.267)

Here

ε2 = 8π2r2
inj E0

α2
injΨ0

, (5.268)

so that ε ∼ εpart/εB . Thus, under the condition ε � 1 we have ω
(out)
A � ΩH and

ω
(in)
A ≈ ΩH, so that
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Ω
(out)
F = 1

2

[
ΩH + ΔΩF + 4π (α2

inj − M2
inj)ΔI

α2
injΨ0 sin2 θ

]
, (5.269)

L = ΩF

8π2
Ψ0 sin2 θ. (5.270)

In particular, for ΔI � IGJ and ΔΩF � ΩH we simply have

ΩF = ΩH

2
. (5.271)

Hence, according to (5.44),

Wem = 1

24

( a

M

)2
B2

nr2
g c. (5.272)

As we see, the self-consistent analysis of the GS equation really shows that its
solution is fully determined by the physical boundary conditions in the plasma gen-
eration region and is, in no way, connected with the properties of the flow in the
vicinity of the event horizon. Besides, as we saw, the presence of additional critical
surfaces fixes not only the longitudinal current but also the angular velocity ΩF that,
under reasonable assumptions, ΔI � IGJ and ΔΩF � ΩH proves close to ΩH/2.
Accordingly, the current I (5.270) is close to the Michel current IM. Recall once
again that in the force-free BZ solution, in which the fast magnetosonic surfaces
were absent, the solution ΩF = ΩH/2 depends on the additional hypothesis for the
monopole magnetic field at large distances from the black hole.

5.4.2 Slowly Rotating Black Hole Surrounded by a Rotating Shell

We now consider the case in which the magnetic field lines do not extend to infinity
but are frozen in a spherical shell rotating with angular velocity Ωd, which, due
to its high conductivity, defines the angular velocity ΩF (see Fig. 5.12). Thus, we
try to model the magnetosphere in which the magnetic field lines cross both the
event horizon and the accretion disk surface. For simplicity, we consider the case in
which the differential rotation of the shell is absent, viz., Ωd = const. Obviously, in
the presence of the spherical shell the outer singular surfaces are absent.

Clearly, for the slow rotation of the black hole and the external shell ΩHrg/c � 1
and Ωdrd/c � 1, the problem must be solved in the same way as in the above
example (the values of ΩH and ΩF = Ωd are two independent parameters now). In
particular, the linearized equation, in fact, coincides with Eq. (5.257). As a result,
in this example the GS equation has no singularity on the event horizon either.
Moreover, here we can define the longitudinal current I (angular momentum L)
separately from the analysis of the poloidal structure of the magnetic field. There-
fore, we again consider only the latter problem and do not discuss the solution to
the GS equation.
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Fig. 5.12 The structure of the
singular surfaces (dashed
lines) and the plasma
generation region (dotted
line) for the fast-rotating
(ΩH > Ωd) black hole
submerged in the monopole
magnetic field in the presence
of the distant accretion disk
modeled by the spherical
shell with radius r = rd. The
plasma generated in the
vicinity of the surface r = rinj

flows both to the black hole
and to the external shell

We first consider the flow in which the angular velocity of the black hole is less
than that of the shell

ΩH < Ωd. (5.273)

This case is fully equivalent to that described in Sect. 5.3.1 in which, however, the
outflow from the surface r = rd, on which the boundary conditions are to be given,
occurs in the inner magnetosphere regions r < rd rather than in the outer ones.
Therefore, the energy is transferred from the shell to the black hole.

Problem 5.22 Show that under the condition ΩH < Ωd the electric charge
density does not change the sign in the entire region rg < r < rd, so that it is
not necessary to consider two domains with different values of η.

As a result, at zero temperature the problem again requires four boundary condi-
tions. As such boundary conditions, we can take the concentration and the particle
Lorentz factor, as well as the angular velocity of the shell and the magnetic flux on
its surface

n(rd, θ ) = ninj, (5.274)

γ (rd, θ ) = γinj, (5.275)

ΩF = Ωd, (5.276)

Ψ (rd, θ ) = Ψ0(1 − cos θ ). (5.277)

These relations immediately define the integrals of motion E and η and the location
of the inner singular surfaces for the slow rotation
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E0 = −αinj μηinj γinj , (5.278)

η(inj) = −
αinj ninj

√
γ 2

inj − 1

Binj
, (5.279)

α(in)
a = α

(in)
f =

(
8π2r2

g

Ψ0
|E0|

)1/2

. (5.280)

Here αinj = α(rd) and Binj = B(rd). Thus, comparing again the locations of the
Alfvén and fast magnetosonic surfaces, we can define the angular momentum L
needed for the smooth crossing of these surfaces:

L (in) = −ΩF − ΩH

8π2
Ψ0 sin2 θ. (5.281)

We see that for ΩH � ΩF, the electric current flowing in the magnetosphere is
equal to the GJ current. The negative value of L shows that in the accretion process
the angular momentum of the shell is transferred to the black hole. Therefore, the
angular velocity of the rotating black hole increases with time and that of the shell
decreases. We stress that in the foregoing we implicitly supposed that the flow in the
shell region is subsonic (αinj > αf). If the boundary conditions on the shell surface
correspond to the supersonic flow when the singular surfaces are absent, the value
of the angular momentum can be arbitrary.

Problem 5.23 Having specified the direction of the electric currents flowing
in the spherical shell, show that a slowing down of the shell is again connected
with Ampére’s forces.

Problem 5.24 Consider an example in which the shell and the black hole
rotate in different directions.

If, on the contrary, the angular velocity of the shell Ωd satisfies the condition
0 < Ωd < ΩH (3.69), the situation appears more complicated. Recall first that when
the condition (3.69) is satisfied, the energy flux is directed from the black hole to the
shell. This implies that, besides the acceleration of its rotation, the shell must absorb
the energy and, consequently, must be heated. This situation is unlikely to take place
near the stationary sources, because the strong heating can lead to the destruction of
the shell (which models the inner regions of the accretion disk). However, it may be
of interest for transient objects (microquasars, gamma-bursters).
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Further, it is obvious that the problem statement depends on the existence or
nonexistence of the zero GJ charge density surface between the shell and the black
hole horizon ρGJ = 0, where plasma is to be generated. Indeed, if the radius of the
shell rd is close to that of the black hole, in the entire domain rg < r < rd there is
only a plasma flow to the black hole. For this reason it is enough to have four bound-
ary conditions on the surface r = rd. In this case, the problem is again equivalent to
the problem described in Sect. 5.3.1. As a result, analysis of the critical conditions
(which is carried out in the same way as in the previous example) shows that the
angular momentum L is again defined by (5.281). However, now L is positive and
the energy and angular momentum fluxes are directed from the black hole to the
external shell.

If the shell is far from the black hole, we have two flow regions (see Fig. 5.12).
The singular surfaces (Alfvén and fast magnetosonic ones) exist on the accretion
region only, because the shell cannot rotate with the velocity larger than that of light.
Therefore, in this region we must give b = 2 + 4 − 2 = 4 boundary conditions,
whereas in the outflow region b = 2 + 4 − 0 = 6. Thus, the complete problem
requires 10 boundary conditions. Eight of them must again be given in the particle
generation region. These may be concentrations n±

inj (5.239) and Lorentz factors γ±
inj

(5.240) of the generated plasma and the four conditions (5.245), (5.246), and (5.247)
specifying the magnetic flux continuity, the voltage drop, and the surface current in
the particle generation region. The other two conditions must be the values of the
angular velocity Ωd and the magnetic flux Ψ (rd, θ ) on the shell surface. As we see, it
is not necessary to define here the parameters of the plasma since it does not outflow
but inflows into the shell surface.

Thus, for the small values of the potential drop in the particle generation region
(ΔΩF � ΩH) and in the absence of the surface current (ΔI = 0), the angular
velocity ΩF is defined by the rotational velocity of the shell

ΩF = Ωd. (5.282)

The angular momentum is again defined by (5.281). This implies that for Ωd � ΩH

the longitudinal current I = 2πL appears much stronger than the GJ current defined
by the value of the angular velocity ΩF = Ωd

I = ΩH

ΩF
IGJ. (5.283)

The above example is, of course, too simplified, because, in reality, the angular
velocity of the external parts of the disk is much smaller than that of the internal
ones, and, besides, the disk itself is in the equatorial plane. On the other hand, rela-
tion (5.283) is undoubtedly model independent, because to derive it we need only
the condition ΩF = Ωd along the magnetic field line and the “boundary condition on
the horizon.” But if this is the case, it is easy to show that the outer regions of the disk
cannot be connected by the magnetic field lines with the event horizon (Uzdensky,
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2005). Indeed, as was shown in Chap. 2, under the condition I � IGJ, the magnetic
surfaces must be collimated within the light surface (to be exact, within the distance
� = (IGJ/I )RL from the rotation axis). Otherwise, under condition (5.283), the
magnetic field lines are bended to the rotation axis rather than to the accretion disk.
Therefore, our initial assumption that the black hole horizon is connected with the
accretion disk by the magnetic field lines (and its angular velocity ΩF is thus defined
by the rotational velocity of the disk) is not valid. Therefore, one can conclude that
at least part of the magnetic surfaces crossing the event horizon in the vicinity of the
rotation axis must diverge and extend to infinity.

Problem 5.25 Show that for the constant angular velocity of the shell the
plasma generation region is a sphere of radius

rinj =
(
ΩH

Ωd

)1/3

rg. (5.284)

Problem 5.26 Show that the above 10 boundary conditions are quite enough
to determine not only the value of the longitudinal current but also the dis-
turbance of the magnetic surfaces ε f (r, θ ), which is determined by the GS
equation (5.257).

To sum up, we repeat some conclusions of a general character, which are model
independent.

1. The full MHD GS equation version has no singularity on the event horizon.
Because of the general form (4.255), it is regular for α2 → 0. Therein lies the
main difference of the horizon from the infinitely distant region that is a singular
point of the GS equation.

2. The horizon is in the hyperbolic domain of the flow. Hence, the GS equation
does not require any additional boundary conditions that could affect the solution
structure in the outer space. As a result, the solution of the problem is fully
defined by the boundary conditions in the plasma generation region which is
causally connected with the outer space.

3. The slow-down mechanism of the rotating black hole is connected with the long-
range gravitomagnetic forces which act on the plasma generation region forming
the longitudinal electric currents circulating in the magnetosphere. Otherwise,
the BZ mechanism, in fact, is the electrodynamic realization of the Penrose
mechanism.
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5.5 Other Methods

5.5.1 Analysis of the Algebraic Relations

As was noted, the remarkable property of the GS equation method is that, given
the poloidal structure of the magnetic field and the integrals of motion, all the other
characteristics (the particle energy, the toroidal magnetic field, thermodynamic func-
tions) can be found from the analysis of the system of implicit algebraic relations.
It is due to this simplicity that so many papers were devoted to this direction from
the nonrelativistic stellar (solar) wind (Weber and Davis, 1967; Cao and Spruit,
1994; Paatz and Camenzind, 1996; Breitmoser and Camenzind, 2000) and the rel-
ativistic pulsar wind (Okamoto, 1978; Kennel et al., 1983) to the purely hydrody-
namical (Abramowicz and Zurek, 1981; Abramowicz and Kato, 1989; Chakrabarti,
1990) and MHD accretion (Takahashi et al., 1990; Daigne and Drenkhahn, 2002)
onto black holes. In a great number of cases, the poloidal magnetic field structure
(the hydrodynamical flow) was assumed to be radial, though some other cases were
studied. Using some examples below, we try to briefly survey the main results
obtained by this approach.

5.5.1.1 Hydrodynamical Accretion onto the Black Hole

We consider, as the first example, the hydrodynamical accretion with nonzero angu-
lar momentum (Abramowicz and Zurek, 1981; Chakrabarti, 1990). We again con-
sider the angular momentum to be so small that it cannot hinder the matter accretion
onto the black hole. The corresponding solution can be obtained from the analysis
of hydrodynamical Bernoulli’s equation (1.255). As was noted, in a great number
of papers the motion of nonrelativistic particles was analyzed in Paczyński–Wiita’s
model potential (1.7) ϕPW = −G M/(r −rg), the radial motion of the accreting mat-
ter being supposed, viz., Φ = Φ(θ ). Since we are now interested in the qualitative
behavior of the solution, we restrict ourselves to the discussion of only these model
solutions, as they, with good accuracy, reproduce all the main characteristics of the
accretion with angular momentum onto the black hole.

As shown in Fig. 5.13, the occurrence of the nonzero angular momentum in
the accreting matter substantially changes the whole topology of the phase portrait.
Instead of one saddle point in Fig. 1.1, for nonzero angular momentum the phase
portrait can contain two saddle points and also one center. The analytical solution
studied in Chap. 1 proves equivalent to the upper curve passing through the right
saddle point.

At first sight, the upper curve must correspond to the true solution of the problem.
However, it does not always appear stable (Kovalenko and Eremin, 1998; Das et al.,
2003). Therefore, even in the ideal (dissipation-free) case, the flow under certain
conditions passes to the lower curve. Clearly, this passage can occur only in the
presence of the shock wave. Therefore, the entropy of the accreting matter s(Φ)
on the lower curve differs from the matter entropy at large distances. This example
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Fig. 5.13 The structure of hydrodynamical accretion with nonzero angular momentum onto the
black hole (Das et al., 2003). The presence of the angular momentum results in a substantial change
in the phase portrait (hydrodynamical Mach number M = v/cs versus the distance r ) as compared
to the spherically symmetric accretion (see Fig. 1.1). Under certain conditions, the flow with the
shock wave (vertical arrow) crossing two sonic surfaces is stable (Reproduced by permission of
the AAS, Fig. 3 from Das, T.K., Pendharkar, J.K., Mitra, S.: Multitransonic black hole accretion
disks with isothermal standing shocks. ApJ 592, 1078–1088 (2003))

shows once again how important is the stability checking of the solution obtained
(recall that this can be successfully done only beyond the approach studied here).

5.5.1.2 Nonrelativistic Stellar (Solar) Wind

As was noted, E. Weber and L. Davis’ paper (Weber and Davis, 1967) was the
first one in which algebraic Bernoulli’s equation was thoroughly analyzed for the

Fig. 5.14 Nonrelativistic magnetized wind structure in the equatorial plane (Weber and Davis,
1967). Solid lines indicate the dependence of the poloidal Mach number u/ua as a function of r/ra

for different Bernoulli integrals En. Bold solid lines correspond to transonic flows, X -points to
the slow and fast magnetosonic surfaces, whereas the Alfvén surface is a higher-order singularity
(Reproduced by permission of the AAS, Fig. 1, 2 from Weber, E.J., Davis, L. Jr.: The angular
momentum of the solar wind. ApJ 148, 217–227 (1967))
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strongly magnetized stellar wind (see Fig. 5.14). Only the equatorial region under
the assumption of the radial character of the flow was studied. Solid lines indicate
the dependence of the poloidal Mach number u/ua as a function of r/ra for different
Bernoulli integrals En. Bold solid lines indicate the transonic flows. As for parame-
ters studied in the paper (gas velocity at infinity is about 425 km/s), the Alfvén and
fast magnetosonic surfaces are located in the vicinity of each other; this region is
shown in Fig. 5.14b on a different scale.

As seen from Fig. 5.14, the flow in its motion from the star surface to infinity
successively crosses the slow, Alfvén, and fast magnetosonic surfaces. It is seen that
the fast and slow magnetosonic surfaces are X -points, whereas the Alfvén surface
(u/ua = 1, r/ra = 1), as was specially stressed, corresponds to a higher-order
singularity.

5.5.1.3 Cold Relativistic Plasma Outflow from the Radio Pulsar
Magnetosphere

The cold relativistic plasma outflow corresponds to the particle acceleration problem
in the pulsar wind (Okamoto, 1978). Figure 5.15 demonstrates the dependence of
the poloidal four-velocity γ vp/c on the distance from the rotation axis �/RL. Both
the physical (lower curve) and nonphysical (upper curve) roots are shown. As the
poloidal magnetic field was assumed to be exactly a monopole one, the plasma
reaches the fast magnetosonic surface only at infinity, the limiting Lorentz factor γ∞
being equal to the standard value σ 1/3. It is also seen that there is no nonphysical
root at small distances from the neutron star and the Alfvén surface A is within the
light cylinder (vertical dashed line).

Fig. 5.15 Cold relativistic
wind structure in the
monopole magnetic
field (Okamoto, 1978). The
fast magnetosonic surface
corresponding to the
intersection of physical
(upper curve) and
nonphysical (lower curve)
roots are reached only at
infinity. The Alfvén surface A
is within the light cylinder
(vertical dashed line)
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5.5.1.4 MHD Accretion onto the Black Hole

The strongly magnetized radial cold accretion onto the black hole was first studied
in Takahashi et al. (1990) (see Fig. 5.16). Here we should first mention that the flow
from infinity to the black hole horizon is impossible. Indeed, as was demonstrated,
the plasma can cross the outer Alfvén surface at a positive radial velocity only,
whereas the inner Alfvén surface can be crossed only at a negative radial velocity.
Therefore, it is necessary to generate plasma in some source region S in the mag-
netosphere. The algebraic relations on the Alfvén surface do not impose any con-
straints on the flow parameters, because all physically reasonable trajectories with
E2 > 0 pass through it. Further, it is seen in Fig. 5.16 that, as in the hydrodynamical
case, besides the physically pronounced transonic accretion, there is the infinitely
large number of subsonic flows with the zero radial velocity on the event horizon.
Later, in Takahashi (2002), the accretion with nonzero temperature was studied as
well.

Thus, analysis of the algebraic equations makes it possible to determine the
main characteristics of the axisymmetric stationary flows. On the other hand, it is
necessary to emphasize once again that the algebraic approach does not give answers
to all questions. Moreover, it can lead to incorrect results in some cases.

Fig. 5.16 The structure of the cold magnetized accretion onto the black hole in the vicinity of the
equatorial plane (Takahashi et al., 1990). The shaded domain corresponds to the nonphysical solu-
tions with E2 < 0. The GR effects give rise to the second family of singular surfaces (A—Alfvén,
F—fast magnetosonic) for the regions where the flow velocity is directed to the black hole horizon
(ur < 0). The domain S corresponds to the plasma source (Reproduced by permission of the AAS,
Fig. 7a from Takahashi, M., Nitta, S., Tatematsu, Ya., Tomimatsu, A.: Magnetohydrodynamic flows
in Kerr geometry–Energy extraction from black holes. ApJ 363, 206–217 (1990))
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• As was noted, Bernoulli’s algebraic equation has no singularity on the Alfvén
surface, whereas the Alfvén surface for the GS equation is a singular one.
The critical condition on the Alfvén surface is generally used as an additional
boundary condition for the GS equation determining the magnetic flux function
Ψ (r, θ ).

• The unsuccessful choice of the poloidal magnetic field can greatly change the key
results of the flow structure. For example, the choice of the monopole poloidal
field leads to the incorrect conclusion that the fast magnetosonic surface for the
cold plasma outflow must be at infinity.

5.5.2 Self-Similar Solutions

As was mentioned, the remarkable property of the GS equation is that it has a rather
broad class of self-similar solutions. In fact, we dealt with them in the analysis of the
conical and cylindrical flows. It is not surprising, therefore, that a great number of
papers were devoted to the study of the properties of the self-similar solutions, which
was reduced to the analysis of the ordinary differential equation (Bisnovatyi-Kogan
et al., 1979; Blandford and Payne, 1982; Tsinganos and Sauty, 1992; Contopoulos
and Lovelace, 1994; Sauty and Tsinganos, 1994; Tsinganos et al., 1996; Ostriker,
1997; Sauty et al., 1999). The generalization to the relativistic case was made in Li
et al. (1992). Therefore, it would be unreasonable to disregard this important trend
of research. Nevertheless, it is advisable to point at once to the main restrictions that
cannot be avoided in attempting to describe the real two-dimensional flows by the
self-similar approach (Heyvaerts, 1996).

• We cannot study the direct problem by the self-similar approach, because the
self-similar solutions can be available for quite a definite class of self-similar
boundary conditions.

• It is impossible to consistently describe by this approach the flows in the vicin-
ity of the compact object itself, because (except for the special case considered
below) the self-similar equations cannot have any internal scales such as the star
radius R or the black hole radius rg.

• Accordingly, the self-similar solutions cannot consistently describe the jets that
also have the definite linear scale—their characteristic transverse size rjet. More-
over, as we will see, the angular velocity ΩF is to have a singularity for Ψ → 0.
This implies that the self-similar solutions cannot be matched to the rotation axis.

• There is another reason why the description of the jets is impossible—all real
jets have the finite magnetic flux Ψ0 < ∞, whereas the total magnetic flux in the
self-similar solutions is always equal to infinity.

• Finally, it is impossible to study the electric current closure by the self-similar
approach, since the self-similarity requires the constant sign of the current density
j‖ in the entire space. As a result, one has to postulate that the inverse current
flows either along the rotation axis or in the equatorial plane.

Nevertheless, analysis of the self-similar solutions can be useful. For example,
this is the case with the solutions in which, as in the conical flows, one must
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introduce the cylindrical flow in the vicinity of the rotation axis, with which the
main longitudinal electrical current is contained. Then, the flow structure at the
jet periphery can have a self-similar form. In other words, of major interest are
the self-similar solutions in which all values diverge exactly in the vicinity of the
rotation axis.

We consider, as an example, the classical solution obtained by Blandford and
Payne (1982) for the cold nonrelativistic plasma outflow from the surface of the
thin Keplerian disk. The basis for the construction of the self-similar solution is the
power dependence of the Keplerian angular velocity ΩK on the radius r

ΩK ∝ r−3/2, (5.285)

which is defined by the power dependence of the gravitational potential ϕg ∝ r−1.
Therefore, for the definite choice of the power 1/β in the self-similar substitution

Ψ (r, θ ) = r1/βΘ(θ ) (5.286)

it may happen that all terms in the GS equation and Bernoulli’s equation depend on
the radius r only in terms of power with identical exponents βGS and βB. Clearly,
this can be the case only if

• the square of the Mach number M2, which is commonly available in the combi-
nation (1 − M2), is independent of the radius r ;

• all four invariants En(Ψ ), Ln(Ψ ), ΩF(Ψ ), and ηn(Ψ ) also depend on the magnetic
flux Ψ in terms of power.

As a result, upon canceling by the factors rβi , the GS and Bernoulli’s equations
depend only on the function Θ(θ ) and its first and second derivatives. Therefore, the
solution can be constructed in the same way as in the case of the cylindrical flows.

Analyzing Bernoulli’s equation (4.88), we can at once conclude that, in addition
to relation (5.285), the other three integrals must have the following dependence on
the coordinate r in the equatorial plane:

En ∝ r−1, (5.287)

Ln ∝ r1/2, (5.288)

ηn ∝ r1/β−3/2. (5.289)

These relations show that the density ρ = 4πη2
n/M2 must depend on the radius as

ρ ∝ r2/β−3. (5.290)

Thus, the GS equation (4.102) also has a self-similar form. Since the angular veloc-
ity ΩF

• must be an integral of motion (i.e., depends only on the magnetic flux Ψ ),
• must coincide with the Keplerian angular velocity ΩK on the disk surface,
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it can be defined as

ΩF(Ψ ) = Ω0(Ψ/Ψb)−3β/2, (5.291)

where Ω0 is a constant. Accordingly,

En(Ψ ) = E0(Ψ/Ψb)−β, (5.292)

Ln(Ψ ) = L0(Ψ/Ψb)β/2, (5.293)

ηn(Ψ ) = η0(Ψ/Ψb)1−3β/2. (5.294)

As we see, all freedom in the self-similar simulation reduces to the choice of the
constants Ω0, . . . , η0, as well as Ψb and β. In particular, R. Blandford and D. Payne
studied the case β = 4/3, so that

Ψ (r, θ ) = r3/4Θ(θ ), (5.295)

and B ∝ r−5/4. As was noted, the magnetic flux Ψ (r ) diverges for r → ∞.
As a result, Bernoulli’s equation can be used to define the (generally speaking,

implicit) dependence M2 on θ , while the value M2 appears to be a function of the
first derivative dΘ(θ )/dθ , the function Θ(θ ) itself, and the angle θ . If we substitute
the obtained expression in the compact form of the GS equation comprising both the
second derivatives Θ with respect to θ and the first derivatives M2 with respect to
θ , we obtain the desired second-order ordinary differential equation for the function
Θ(θ ). All singular surfaces, as shown in Fig. 5.17, have the conical form θ = const.
We emphasize again that this solution is available only for Ψ > Ψb. In the cen-

m=1

n=1

t=1

Fig. 5.17 The self-similar solution to the GS equation in which the magnetic surfaces (bold lines)
are repeated according to the substitution (5.296) and (5.297). In this case the field lines are inclined
to the surfaces θ = const at a constant angle. In particular, all singular surfaces (dashed lines)
including the fast magnetosonic surface n = 1 and the singular surface t = 1 also have the conical
form θ = const. The fine lines indicate the behavior of the characteristic surfaces
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tral domain Ψ < Ψb, the self-similar approximation is obviously inapplicable (see
Fig. 5.9).

If now, as was done in Blandford and Payne (1982), instead of the independent
variable θ and the unknown function Θ(θ ), we take the coordinate z = r0χ and
the function ξ (χ ) prescribing the form of the magnetic field line by the self-similar
substitution

z = r0χ, (5.296)

� = r0ξ (χ ) (5.297)

(here the parameter r0 has the meaning of the radius on which the given field line
crosses the equator so that ξ (0) = 1), the GS equation is rewritten as

ξ f 2T (m − 1)2(t − 1)J−1S−2ξ ′′ + H (χ, ξ, ξ ′) = 0, (5.298)

where

H (χ, ξ, ξ ′) = (m − 1)2[ξT + (n − m − 1) f 2 J ]T

+ m(m − 1)[(t − 1)ξT S

− ξ f 2(χ + ξξ ′)(ξξ ′ − ξξ ′S3 − χ S3)]

+ (m − 1)[mξ 2(ξT − m f 2 J ) − 5/4 (n − 1)ξT 2]

+ 2m2(ξ 2 − λ)(m f 2 J − ξT ). (5.299)

Here ξ ′ = dξ/dχ , ξ ′′ = dξ 2/dχ2, and we designate

S = (χ2 + ξ 2)−1/2, (5.300)

T = ξ 2 + 2S − 3, (5.301)

J = ξ − χξ ′, (5.302)

and

m = κξ f J, (5.303)

n = κξ J [1 + (ξ ′)2]/T, (5.304)

t = κξ f 3 J 3S2/T . (5.305)

The values κ and λ are the dimensionless constants of the problem

κ = 8π2η0(G M)1/2Θ−1
0

[1 + (ξ ′
0)2]1/2

[9/16Θ2
0 + (Θ ′

0)2]1/2
, (5.306)

λ = L0Θ
2/3
0

(G M)1/2
, (5.307)
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whereΘ0 = Θ(π/2) andΘ ′
0 = dΘ/dθ for θ = π/2. Finally, the function f = f (χ )

specifying the poloidal velocity of matter by the relation

(v� , vz) = [ξ ′ f (χ ), f (χ )]

(
G M

r0

)1/2

(5.308)

can be found from the algebraic equation

T − f 2U =
[

(λ − ξ 2)m

(1 − m)ξ

]2

. (5.309)

Problem 5.27 Show that in the self-similar solution studied the value f (χ ) in
(5.308) must really be a function of the coordinate χ only.

Problem 5.28 Show that the value m = κξ f J is nothing but the square
of the Mach number relative to the Alfvén velocity (m = M2), the value
n = κξ J [1 + (ξ ′)2]/T is the square of the Mach number relative to the veloc-
ity of the fast magnetosonic wave V(2) (4.16), and the value t = κξ f 3 J 3S2/T
is defined by the ratio of the θ -component of the velocity to the velocity of the
fast magnetosonic wave:

m = 4πρv2
p

B2
p

, (5.310)

n = 4πρv2
p

B2
, (5.311)

t = 4πρv2
θ

B2
. (5.312)

Problem 5.29 Show that the value in square brackets in expression (5.309)
is always positive and the critical condition (λ = ξ 2 for m = 1) exactly
corresponds to condition (4.155) on the Alfvén surface.

As we see, even in the simplest case the self-similar equation proves extremely
cumbersome. Therefore, we do not analyze its solutions. Nevertheless, some general
properties of Eq. (5.298) merit discussion in more detail.
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1. The self-similar equation (5.298) has a singularity on the Alfvén surface m = 1.
This fact is not unusual, because all GS equation versions, for the cylindrical
geometry as well, have a singularity on this surface. We call attention to the
coefficient in (5.298) that comprises the factor (1 − m)2, which just shows that
the GS equation remains elliptic when crossing the Alfvén surface.

2. It is unexpected at first sight that there is no singularity on the fast magnetosonic
surface n = 1 and there occurs a singularity on the surface t = 1 (it is sometimes
called the modified fast magnetosonic surface). However, we readily understand
that this must be exactly the case for the self-similar flows. Indeed, as was
noted, postulating the definite symmetry (axisymmetry, one-dimensionality) of
the problem, we thus restrict the direction of the disturbances. Since, as we saw,
the self-similar equations actually depend on the angle θ only, it is not surprising
that a singularity occurs on the surface, where exactly the θ -component of the
velocity of matter becomes equal to that of the fast magnetosonic wave (Bland-
ford and Payne, 1982). We emphasize that this displacement of the singularity is
the known property of the self-similar solutions, which is often discussed (von
Mises, 1958; Bogovalov, 1997a; Vlahakis et al., 2000).

3. The displacement of the singular surface can be interpreted differently. Since, in
the nonrelativistic case, the denominator D (4.101) at zero temperature can be
written as

D = −1 + B2

M2 B2
p

, (5.313)

we readily show that the coefficient C (4.71) in (4.68) can be represented as

C = 1

M2 B2
p

(
B2 − M2 B2

θ

)
. (5.314)

Since

vθ

vp
= Bθ

Bp
, (5.315)

the condition t = 1 exactly coincides with the condition C = 0. As a result,
according to the general equation (1.129) for the characteristic surfaces, we have
dθ/dr = 0 for t = 1. This implies that, as shown in Fig. 5.17, the singular
surface t = 1 coincides with one of the characteristic surfaces, which appears to
be perpendicular to the direction of the change of the coordinate θ . It is not sur-
prising, therefore, that the singularity in the self-similar equation occurs exactly
on this surface.

4. As the singular surface t = 1 actually coincides with the separatrix characteris-
tic, this gives occasion to consider this example as the confirmation that exactly
the separatrix characteristic rather than the sonic surface is the true singularity
in the GS equation (Bogovalov, 1996; Tsinganos et al., 1996). However, it is not
obvious that this assertion unconditionally valid for the self-similar solutions can
be extended to the general case of the axisymmetric flows.
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Thus, the above example really shows that the GS equation has a rather broad
class of self-similar solutions. It is not surprising, therefore, that the above approach
in the following was studied in many papers, including the relativistic case (Con-
topoulos and Lovelace, 1994; Vlahakis et al., 2000; Vlahakis and Königl, 2003).
Since the gravitational field was disregarded in these papers, the self-similar depen-
dence of the magnetic flux Ψ on the radius r was due to the fact that the Alfvén
factor A = 1 − Ω2

F�
2 − M2 comprises the term Ω2

F�
2 that, as before, must be

independent of the radius r . Therefore, within the relativistic self-similar approach,
it was possible to describe only the flows in which the angular velocity in the equa-
torial plane is inversely proportional to the radius

ΩF ∝ r−1 (5.316)

(this example, in our opinion, very clearly shows the limitation of the self-similar
approach). Thus, it is easy to show that in the relativistic case the self-similar solu-
tion is possible only for the following dependencies of the integrals of motion on
the magnetic flux Ψ :

ΩF(Ψ ) = Ω0(Ψ/Ψb)−β ′
, (5.317)

E(Ψ ) = E0(Ψ/Ψb)1−2β ′
, (5.318)

L(Ψ ) = L0(Ψ/Ψb)1−β ′
, (5.319)

η(Ψ ) = η0(Ψ/Ψb)1−2β ′
. (5.320)

Then, the flux can be written as

Ψ (r, θ ) = r1/β ′
Θ(θ ). (5.321)

The GS equation again has the form (5.298) and the coefficient of ξ ′′ vanishes both
on the Alfvén and on the modified fast magnetosonic surfaces (Li et al., 1992).

Finally, one cannot but mention the other family of self-similar solutions, which
was first introduced in Low and Tsinganos (1986). It is based on the substitution

Ψ (r, θ ) = R(r ) sin2 θ (5.322)

and on the hypothesis that there are solutions in which the density ρ depends only
on the radius r

ρ = ρ(r ). (5.323)

It is also necessary to suppose that E and L are linearly dependent on Ψ

E(Ψ ) = E (0) + E0Ψ, (5.324)

L(Ψ ) = L0Ψ, (5.325)
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and the integrals ΩF, η are constant (this choice is natural when considering the
flows in the vicinity of spherical objects rather than disk ones). Then the Mach
number M2 = 4πη2/ρ depends only on the coordinate r and, therefore, the form
of the Alfvén surface is a spherical one.

As a result, it is easy to verify that the GS equation (4.102) does not actually
comprise the coordinate θ . As to Bernoulli’s equation (4.88), it, unfortunately, takes
the form

G1(R, R′, E0, L0,ΩF, η,M2) + G2(R, R′, E0, L0,ΩF, η,M2) sin2 θ = 0
(5.326)

(R′ = dR/dr ) and, therefore, splits into two equations

G1(R, R′, E0, L0,ΩF, η,M2) = 0, (5.327)

G2(R, R′, E0, L0,ΩF, η,M2) = 0. (5.328)

Thus, in the general case, the standard procedure for defining M2 by the integrals of
motion and the function R(r ) is impossible. There may be agreement only if there is
energy release or generation in the volume, which, besides, has a special self-similar
form. This class of solutions was also studied in a great number of papers (Tsinganos
and Sauty, 1992; Sauty and Tsinganos, 1994; Tsinganos et al., 1996; Sauty et al.,
1999).

5.5.3 Computational Results

At present, there are a lot of papers devoted to the numerical analysis of the rela-
tivistic and nonrelativistic accretion onto the compact objects and the jet outflows.
However, it is hardly possible to encompass all of them. For example, there are a lot
of papers devoted to the generation process, the internal structure, and stability of the
jets (Ouyed and Pudritz, 1997; Lucek and Bell, 1997; Hardee et al., 1998; Nishikawa
et al., 1998; Hardee, 2003), which actually cannot be compared with the analyti-
cal theory predictions discussed here. Accordingly, in Kudoh et al. (1998), Koide
et al. (1999, 2000), and Semenov et al. (2002), the nonstationary regime of the MHD
accretion onto black holes was studied. The familiar “magnetic tower” (Lynden-
Bell, 2003; Sherwin and Lynden-Bell, 2007) is, in fact, a nonstationary configu-
ration as well. Clearly, these flows cannot be described by the stationary equa-
tions either. Further, in Toropin et al. (1999), Toropina et al. (2001, 2003), and
Romanova et al. (2003), the accretion onto the neutron star with a strong dipole
magnetic field was studied, which was also far from a stationary one. Finally, a lot
of three-dimensional MHD calculations have been carried out recently, in which the
flow was supposed to be strongly turbulent and the location of the singular surfaces
could not be actually specified with sufficient accuracy (Balbus and Hawley, 1998;
Igumenshchev et al., 2000; de Villiers and Hawley, 2002; Krolik and Hawley, 2002).
Therefore, we consider here only the papers directly related to the analytical results
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obtained by the GS equation method. As was noted, we are interested in exactly
the general properties of the flows rather than in the possibility to interpret the real
observations.

Let us first recall the results of the hydrodynamical flows. As was shown, the
analytical solution (1.154) corresponding to the Bondi–Hoyle accretion is in excel-
lent agreement with the results of the numerical calculations (Hunt, 1979; Petrich
et al., 1989). Further, the conclusion about the disk formation in the accretion
of matter with angular momentum and in the transonic ejection from the surface
of rotating stars is not new either. Here the analytical solutions only confirm the
known results obtained by the numerical methods earlier (Lammers and Cassinelli,
1999). As for the structure of the thin accretion disk in the vicinity of the black
hole horizon, the comparison, unfortunately, is impossible here, since all papers on
numerical simulation (including the simulation of three-dimensional flows done in
recent years (Papaloizou and Szuszkiewicz, 1994; Igumenshchev and Beloborodov,
1997; Krolik and Hawley, 2002; Daigne and Font, 2004)) deal with thick disks
only, for which the above effects (strong vertical flow compression, nozzle forma-
tion) must not occur. Indeed, as was demonstrated in Sect. 1.4.7, the visible space
oscillations of the disk thickness inside the marginally stable orbit can be realized
for H/r < 10−2 only.

Some results of the numerical simulation within the force-free approximation
were already mentioned in the previous chapters. For example, as was noted at the
end of Chap. 3, the existence of the equatorial current sheet inside the ergosphere of
the fast-rotating black hole was confirmed (Komissarov, 2005) (see Fig. 3.14). As
in the case of the radio pulsar magnetosphere, the magnetic field lines do not cross
the equatorial plane inside the inner Alfvén surface. As a result, the electromagnetic
energy propagates from the black hole to infinity. The above simple analytic depen-
dencies γ ≈ (z/RL)1/2 (uϕ̂ ≈ 1) (5.234) for the energy of particles accelerated in
the parabolic magnetic field were also reproduced. As shown in McKinney (2006b),
these dependencies are seen in a wide range of distances from the central source.

We now proceed to the discussion of the results obtained in the numerical exper-
iments for the MHD flows. Here the “hydrogen atom” is again the problem of the
magnetosphere structure of the rotating body with the monopole magnetic field.
First of all, an important result was obtained clarifying the limitation of the station-
ary solutions when studying the current closure process (Bogovalov and Tsinganos,
1999) (see also Komissarov, 2004b). The authors pose the problem in which there is
a nonrotating sphere with the monopole magnetic field, which at time t = 0 begins
to rotate with angular velocity Ω . As a result, as shown in Fig. 5.18, a switching-on
wave begins to propagate outward with velocity c, and the magnetic field beyond
it thus remains monopole and the electric currents are absent, whereas within the
switching-on wave (it is a very important result) the solution rapidly approaches
the stationary transonic regime fully consistent with the solution (5.173). Thus,
the assumption of the stationary solution is confirmed, in which the longitudinal
currents practically flow along the magnetic surfaces.

As to the current closure, it occurs in the switching-on wave, where the flow is
essentially nonstationary, so the time-dependent term ∂ρe/∂t plays the leading role.
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Fig. 5.18 The electric current
“closure” in the switching-on
wave propagating with
velocity c from the compact
object (Bogovalov and
Tsinganos, 1999). Inside the
switching-on wave, the
time-dependent term ∂ρe/∂t
plays the leading role. Within
the switching-on wave, the
flow structure rapidly
becomes stationary, which is
consistent with the analytical
estimate (5.173)

With the environment disregarded, this switching-on wave propagates to infinity.
This example shows that, within the stationary approach, one can really suppose
that the electric current closure occurs at infinity as was generally recognized. But,
in reality, for any finite external pressure, the current closure takes place in a shock
wave to be generated at a finite distance from the compact object. It is important that
this region cannot affect the flow structure at smaller distances. We emphasize that
in this point the transonic flows substantially differ from the subsonic ones when the
electric current circulating in the magnetosphere is determined by the conductivity
of the boundary of the plasma-filled region (see, e.g., Rafikov et al., 1999).

We can mention, as the next result, the confirmation of the pronounced colli-
mation for the nonrelativistic case (Sakurai, 1985) (Fig. 5.19a) and, conversely, the
confirmation of the absence of collimation for ultrarelativistic flows (Bogovalov,
2001) (Fig. 5.19b). One can also see that in the nonrelativistic case the Alfvén
and fast magnetosonic surfaces are at about the same distance from the origin (see
Fig. 5.19a). Moreover, much subtler predictions of the theory were verified. For
example, for the relativistic flows the additional “linear” acceleration γ = �/RL

up to the values of γ = σ 1/3 within the fast magnetosonic surface and the very
slow one close to the law γ ∝ (ln r )1/3 at larger distances r � rf was confirmed
(see Fig. 5.20). In particular, the condition γf = σ 1/3 is satisfied with high accuracy.
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Fig. 5.19 The structure of the poloidal magnetic field and singular surfaces for plasma outflowing
from the rotating body with the monopole magnetic field. It is seen that in both cases in the vicin-
ity of the rotation axis the fast magnetosonic surface (F) coincides with the Alfvén one (A). (a)
Nonrelativistic plasma with finite temperature (Sakurai, 1985). There is a pronounced collimation.
(b) Ultrarelativistic cold outflow (Bogovalov, 2001). There is not any appreciable collimation

Fig. 5.20 The increase in the particle energy γ with distance r for the ultrarelativistic flow along
the quasimonopole magnetic field (Bogovalov, 2001). Various curves correspond to various mag-
netic surfaces. Attention should be given to the difference in the scales (a logarithmic one along
the horizontal axis and a linear one along the vertical one), so the increase in the particle energy
for r � rf thus appears extremely slow

We emphasize that this figure shows the results corresponding to the rather small
magnetization parameter σ = 10, when there is no, in fact, large parameter σ 1/3/γin

in the problem.
Further, for the nonrelativistic flows both the decollimation in the bulk closing

current region and the asymptotic behavior j‖ = 0 at large distances from the
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Fig. 5.21 The structure of
magnetic surfaces for the
nonrelativistic plasma flow
from the body with the
monopole magnetic
field (Bogovalov and
Tsinganos, 1999). The
differential rotation of the
central body results in bulk
currents closing the
longitudinal currents flowing
in the magnetosphere and, as
a consequence, to
decollimation in the vicinity
of the equatorial plane.
However, resulting from the
redistribution of the
longitudinal currents, at
larger distances the
collimation is present in the
entire region of the open field
lines

compact object were demonstrated (Bogovalov and Tsinganos, 1999). The bulk
closing current region was simulated in the same way as in the analytical exam-
ple described in Sect. 5.3.2, viz., by the dependence of the angular velocity ΩF on
the magnetic flux Ψ . As shown in Fig. 5.21, at small distances from the fast mag-
netosonic surface both the collimation and decollimation of the magnetic surfaces
really occur. However, “nature abhors a vacuum” and, therefore, at large distances
the divergence of the magnetic field lines is replaced by collimation even for the
magnetic surfaces which were initially deflected from the rotation axis. This is the
case only if, with account taken of the finite particle mass, the electric current I is no
longer an integral of motion, which makes it possible to redistribute the longitudinal
current over the region of the open magnetic field lines.

Thus, at large distances (to be exact, at mathematical infinity), in good agreement
with the theoretical predictions, the outflowing current is concentrated in the vicinity
of the rotation axis and the closing one in the vicinity of the equatorial plane. It
is seen in Fig. 5.22 that the longitudinal current I (Ψ ) ∝ xr Bϕ in the collimation
region attains a constant value, at least, on a larger part of the open field lines (a
further increase in the current I , according to the authors of the paper, is associ-
ated with boundedness of the computational domain, which hinders the obtaining
of asymptotic values). As shown in Fig. 5.23 also borrowed from Bogovalov and
Tsinganos (1999), in the vicinity of the rotation axis the dependencies Bp ∝ �−2

(5.62) and Bϕ ∝ �−1 (5.67) for the poloidal and toroidal magnetic fields and also
the logarithmic increase Ψ (� ) ∝ ln� (5.64) for the magnetic flux hold with good
accuracy.
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Fig. 5.22 The longitudinal
current I ∝ xr Bϕ at large
distances from the compact
object for the nonrelativistic
plasma outflow as a function
of the magnetic flux
Ψ (Bogovalov and
Tsinganos, 1999). The
plateau region corresponds to
the zero longitudinal current
density j‖

Fig. 5.23 The core structure
of the poloidal magnetic field
Bp (solid line), the toroidal
magnetic field Bϕ (dotted
line), and the magnetic flux
Ψ (dash-dotted line) in the
vicinity of the rotation axis at
large distances from the
compact object (Bogovalov
and Tsinganos, 1999). All
these dependencies are in
good agreement with
analytical estimates (5.62) for
Bp (dashed line), (5.67) and
(5.64)

The presence of the central core was independently confirmed in other papers as
well. For example, Fig. 5.24a demonstrates the poloidal magnetic field Bz inside the
nonrelativistic jets as a function of the distance from the rotational axis � (Lery
et al., 1999). Different curves correspond to the different angular velocities ΩF
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Fig. 5.24 Central core in the cylindrical jets. (a) Nonrelativistic flow (Lery et al., 1999). Different
curves correspond to different angular velocities ΩF, which changes the radius of the central core
�c = vin/ΩF. (b) Relativistic flow (Komissarov et al., 2009). Different curves correspond to the
different external magnetic field. For sufficiently large external pressure the poloidal magnetic field
remains practically constant, while, as the external pressure diminishes, the magnetic field structure
follows the intermediate regime Bz ∝ �β−2 (5.96), the power β indeed changing from β = 2 for
the homogeneous flow to β ≈ 0 for the core one

which change the radius of the central core �c = vin/ΩF. As we see, the poloidal
magnetic field outside the central core really decreases as Bz ∝ �−2. Figure 5.24b
shows the internal structure of relativistic flows in the parabolic magnetic field,
and different curves correspond to the different distance from the equatorial plane
(or, what is the same, to the different external magnetic field) (Komissarov et al.,
2009). As is seen, for sufficiently large external pressure the poloidal magnetic field
remains practically constant, while, as the external pressure diminishes, the mag-
netic field structure follows the intermediate regime Bz ∝ �β−2 (Ψ ∝ �β) (5.96),
the power β indeed changing from β = 2 for the homogeneous flow to β ≈ 0 for the
core one.

Finally, in the numerical experiment in Bogovalov (1996), the effect of analyt-
icity loss in the vicinity of the nonstandard singular point was, evidently, observed.
The problem of the cold relativistic outflow from the surface of the body with the
monopole magnetic field was again studied. It turned out that for the slow increase
of the rotational velocity Ω when the parameter εa = ΩrA/c becomes of the order
of unity, in the region where the fast magnetosonic surface crosses the equator (the
nonstandard singular point is to be located here), a shock wave abruptly occurs
(see Fig. 5.25). Extensive study shows that for small values of εa � 1 the expres-
sion for the logarithmic derivative η1 = (r∗/n∗)(dn/dr )∗ has the form (Beskin and
Kuznetsova, 1998)

η1 = −4

3
− 2

3
ε2

a −
√

4

9
− 2

9
ε2

a . (5.329)
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Fig. 5.25 The occurrence of
the shock wave in the vicinity
of the nonstandard singular
point for the quasimonopole
cold gas outflow (Bogovalov,
1996). The singularity in the
solution is due to the fact that
the location of the fast
magnetosonic surface FMS
(indicated by stars) for
εa > 1 has no regular
structure

In particular, for εa = 0, we simply obtain η1 = −2, which just corresponds to the
dependence n ∝ r−2 valid for the undisturbed monopole outflow. The corresponding
expression for D1 = r∗(dD/dr )∗ looks like

D2
1 = 4

9
− 2

9
ε2

a . (5.330)

Recall that it is the condition D2
1 < 0 that corresponds to the analyticity loss

described in Sect. 1.3.3. Unfortunately, for εa ∼ 1, the values η1 and D1 become
dependent on the other parameters that cannot be analytically related to εa . Never-
theless, the general trend for vanishing the value D2

1 as εa tends to unity makes one
hope that the above interpretation is realistic.

To conclude, note that various groups have recently carried out the new investi-
gations of the central engine structure. Generally, the initial regular magnetic field
in the computations was supposed to be given, for example, a homogeneous or close
to a monopole one. In most papers, the nonrelativistic approximation was studied
and the problem was to show that the rotation of the disk, in which the magnetic
field lines are frozen-in, actually results in the generation of a jet with a strong
toroidal magnetic field transferring the energy and the angular momentum by the
electromagnetic energy flux (Ustyugova et al., 1995, 2000).

On the other hand, in some papers (Koide et al., 2000; Koide, 2003) the GR
effects were exactly taken into account, because the Kerr metric was used. Accord-
ingly, the plasma motion was described in a self-consistent way. Therefore, it
was possible to model both the accretion disk and the magnetically dominated
magnetosphere. An important property in the models studied was that the envi-
ronment was also taken into account in a rather consistent way, which is, cer-
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tainly, of importance in the jet generation process. As a result, it was demonstrated
how the accreting matter rotation results in the generation of a jet transporting the
energy away from the compact object. In particular, the structure of the longitudinal
currents flowing in the magnetosphere was specified. Recall once again that in the
latter case the nonstationary problem was studied.

5.6 Conclusion

Thus, the existence of the exact solutions to the GS equation made it possible to get
important information concerning the properties of the strongly magnetized flows in
the neighborhood of compact objects. In particular, it was possible to show for the
simplest geometry, though tentatively, the possibility of the efficient energy release
from the rotating black hole. The main element, as was noted, is the existence of
the regular poloidal magnetic field along which the energy is transported and the
angular momentum is removed.

The above examples are, certainly, too simplified. Unfortunately, they are,
presently, the only exact analytical solutions that could, though incompletely,
describe the magnetosphere of the real compact objects. In particular, the problem
of the interaction between the accretion disk and the rotating black hole remains
unsolved. Nevertheless, the solutions obtained allow one to pay attention to several
key points that can help one judge the basic properties of the central engine.

First of all, when it was possible to rather reliably determine the angular velocity
ΩF (provided that the magnetic field lines extend to infinity), it turned out to be close
to half the angular velocity of the black hole ΩF. This implies that the efficiency
of the energy release of the rotating black hole is really close to the maximum
one. Since, according to the papers on the secular evolution of the accreting black
holes (Moderski and Sikora, 1996; Moderski et al., 1998), their angular velocity can
really be large enough (a ∼ M), one can conclude that the BZ process can be of
importance for the energy release mechanism of the central engine.

Further, the above-formulated assertions of the absence of the strong
self-collimation for the ultrarelativistic flows and the appreciable collimation for
the nonrelativistic ones were confirmed. Finally, one should stress that, while there
is search of the mechanisms providing the stationary outflow regime, there are indi-
cations that in some objects this process is not stationary.

As for the observations, as was already mentioned, the present-day telescopes
and the large distances to AGN are not sensitive enough to resolve the inner struc-
ture of the central engine. Therefore, now we really know nothing about the flow of
matter in the vicinity of the central engine or the magnetic fields in the jet generation
region. Not long ago there was information (Junor et al., 1999) according to which
the opening angle of the flow of matter in the immediate vicinity of the central
engine is much larger than that of the jet. If this is the case, the quasimonopole mag-
netic field model has been observationally confirmed. Accordingly, in Lobanov et al.
(2003) and Kovalev (2008), where the internal structure of the jet was specified, it
was shown that it actually has the form of a hollow cylinder, and in Gabuzda et al.
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(1992) and Zhang et al. (2004) it was asserted that the jets have a strong toroidal
magnetic field. However, all these papers can be regarded as preliminary ones and
much has to be done to prove that the really existing jets are just the magnetized
flows studied in this chapter.



Chapter 6
Conclusion

Thus, the GS equation method was shown to be a rather powerful instrument that
helps, in some cases, formulate and solve the direct problems of magnetohydrody-
namics that belong to a very broad class of problems. The potentialities of the GS
equation method were demonstrated when investigating the concrete astrophysical
objects.

On the other hand, it was shown that the GS equation method is, to a great degree,
a dead-end trend in astrophysics. First of all, there is no possibility to generalize
this equation to the case in which the dissipative processes (viscosity, heat conduc-
tivity, plasma radiation and its interaction with radiation, kinetic effects, etc.) are
of importance. This is because the existence of the integrals of motion is intrinsic
in the approach itself. The violation of this assumption makes it impossible, in the
general case, to reduce the full system of equations to a single second-order equa-
tion. Therefore, only in the exceptional cases was it possible to take advantage of
the dissipative processes (Li et al., 1992; Beskin and Rafikov, 2000; Soldatkin and
Chugunov, 2003; Beskin et al., 2004) (for example, for the spherically symmetric
hydrodynamical accretion onto the black hole describing the motion of matter, with
account taken of the interaction with its radiation (Thorne et al., 1981; Nobili et al.,
1991)). For the same reason, it was essentially impossible to generalize this method
to the case of the nonaxisymmetric and nonstationary flows and, hence, study the
obtained solutions in terms of stability. Therefore, we can mention only several
papers in which there was some progress made in this direction (Park and Vishniac,
1989, 1990; Lynden-Bell, 1996; Istomin and Pariev, 1996; Timokhin et al., 1999;
Bogovalov, 2001).

As we saw, the possibility to solve the direct problems was associated with the
availability of the exact analytical solution to the GS equation for spherically sym-
metric flows. In this sense, state of the art in astrophysics proved simpler than in the
other applied problems, because the simplest spherically symmetric flow, in most
cases, describes the real situation quite well. In the general case in which the exact
solution is not known, the direct problem cannot be posed and solved. Therefore,
in the numerical calculations the relaxation method was used, which, even its state-
ment, differs from the GS equation method.

V.S. Beskin, MHD Flows in Compact Astrophysical Objects, Astronomy and
Astrophysics Library, DOI 10.1007/978-3-642-01290-7 7,
C© Springer-Verlag Berlin Heidelberg 2010
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Nevertheless, one can hope that the above results are of considerable interest.
First of all, within the sufficiently simple model problems, one can describe all the
main features of the transonic flows in the vicinity of the real compact objects.
This makes it possible to derive rather simple analytical expressions, in fact, for
all key quantities characterizing these flows. Further, there is hope that most of the
results obtained by the model solutions (the absence of the inherent collimation in
the magnetized relativistic wind outflow, the connection between the current and
the potential in the radio pulsar magnetosphere, the secondary plasma generation
in the black hole magnetosphere) qualitatively correctly describe the real processes,
especially, as many of the other solutions, for example, the disk formation in the
presence of the transonic accretion and ejection, confirmed the earlier obtained
results. Finally, the exact analytical solutions can be used as an adequate verification
in various numerical codes.

To conclude, we point to a number of important problems that, in our opinion,
have not yet been comprehensively studied by the GS equation method.

1. One should first mention the separatrix characteristic problem. Undoubtedly, it
is this surface that separates the causally unconnected space regions. Moreover,
as we saw, the self-similar flows have singularities on this surface. Therefore,
one could assume that the true singularity in the GS equation is exactly in the
separatrix characteristic (Bogovalov, 1994; Tsinganos et al., 1996) and, hence,
the whole solution procedure must be reconsidered. Nevertheless, some argu-
ments presented above (e.g., the necessity to use the critical condition Nθ = 0
on the sonic surface) demonstrate that the question is open. In any case, one
should stress that, in the general case, no matter whether the true singularity in
the GS equation is on the sonic or separatrix surfaces, its location is not known
beforehand. Therefore, the corresponding critical condition does not allow one
to constructively establish the connection between the physical quantities on the
arbitrarily chosen boundary. As to the model problems, for which the exact ana-
lytical solutions were obtained, they, unfortunately, cannot be used as evidence
in this case, since in the studied approximation ε � 1 the singular and separatrix
surfaces coincide with one another.

2. Further, the cusp surface problem is not solved yet. The full GS equation does
not have the same singularity as on the fast and slow magnetosonic surfaces.
However, the type of the equation also changes from an elliptic to a hyperbolic
one here. Moreover, as shown above, in the one-dimensional cylindrical case, a
singularity occurs exactly on the cusp surface rather than on the sonic surface.
Evidently, this singularity is associated with the supposed one-dimensionality
of the problem (in the same way as in the self-similar solutions the singularity
displaces from the sonic surface to the separatrix characteristic). However, there
is no clarity in this problem yet.

3. The other direction that has not been adequately studied yet, where the above
method could be successfully used, is the problem of the two-dimensional struc-
ture of the flows with shock waves. Indeed, the well-known relations can be
readily rewritten for the shock waves in the language of the main terms in the GS
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equation, because the conservation of the flow of matter, energy, and transverse
momentum is simply written as

{Ψ } = 0, {E} = 0, {L} = 0. (6.1)

As to the entropy jump (and also the surface location), they must be found as the
solution of the problem. The investigations in this area started not long ago, but
the first important results have already been obtained both for the case of accre-
tion onto the black hole (Takahashi et al., 2002) and for the interaction between
the pulsar wind and the supernova remnant (Bogovalov and Khangoulyan, 2002,
2003).

4. Finally, the flows with anisotropic pressure call for further investigation as
there are only preliminary results here (Marsch et al., 1982; Hu et al., 1997;
Krasheninnikov and Catto, 2000).

We are hopeful that the thorough discussion of the GS equation method in the mono-
graph will contribute to the solution of both these and other problems in present-day
astrophysics.



Appendix A
From Euler to Grad–Shafranov—The Simplest
Way

Here we show how the subsonic GS equation version (1.345) can be directly derived
from the Euler equation. We consider, for simplicity, only the nonrelativistic flow
and the small angles Θ = π/2 − θ in the vicinity of the equatorial plane.

The θ -component of the Euler equation is

vr
∂vθ

∂r
+ vθ

∂vθ

r∂θ
+ vrvθ

r
− v2

ϕ

r
cotθ = −∇θ P

 n
− ∇θϕg. (A.1)

If we add vϕ∂vϕ/r∂θ to both sides and add and subtract vr∂vr/r∂θ on the left-hand
side, we find

vr
∂vθ

∂r
− vr

∂vr

r∂θ
+ ∇θ

(
v2

2

)
+ vrvθ

r
= v2

ϕ

r
cotθ + vϕ

∂vϕ

r∂θ
− ∇θ P

mpn
− ∇θϕg. (A.2)

By the definition of the Bernoulli integral En = v2/2 +w+ϕg and according to the
thermodynamic relationship dP =  dw − nT ds, we obtain for En = const

vr
∂vθ

∂r
− vr

∂vr

r∂θ
+ vrvθ

r
= rvϕ sin θ

� 2

∂

r∂θ
(rvϕ sin θ ) + T

mp

∂s

r∂θ
. (A.3)

The definition (1.90) yields

vr = 1

2πnr2 sin θ

∂Φ

∂θ
, vθ = − 1

2πnr sin θ

∂Φ

∂r
. (A.4)

Assuming now n ≈ const (this is the case for the subsonic flow), we get
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= rvϕ sin θ
∂

∂θ
(rvϕ sin θ ) + � 2 T

mp

∂s

∂θ
. (A.5)

Finally, if we divide both sides by −(∂Φ/∂θ ), we obtain (1.345).

V.S. Beskin, MHD Flows in Compact Astrophysical Objects, Astronomy and
Astrophysics Library, DOI 10.1007/978-3-642-01290-7,
C© Springer-Verlag Berlin Heidelberg 2010
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Therefore, if the first term on the left-hand side of (1.345) really corresponds to
the component vr∂vθ/∂r and the last term on the right-hand side (cs = const) to the
pressure gradient, the role of the term ∝ Ln∂Ln/∂Φ proves less trivial. It comprises
both the effective potential gradient and, actually, the component vθ∂vθ/∂θ . The
former is the leading one near the marginally stable orbit r ≈ 3 rg; the latter becomes
important only when approaching the sonic surface.



Appendix B
Nonrelativistic Force-Free Grad–Shafranov
Equation

As was noted, the nonrelativistic version of the force-free equation (2.101) reduces
to zero of Ampere’s force [∇ × B] × B, which implies that the contribution of the
electric field is not taken into account. Thus, the GS equation has the form

− ∇2Ψ + 2

�

∂Ψ

∂�
− 16π2

c2
I

dI

dΨ
= 0. (B.1)

As we see, the main difference from the relativistic version is that there is no integral
of motion ΩF in Eq. (B.1). Hence,

• the nonrelativistic GS equation version has no critical surface;
• according to the general formula b = 2 + i − s ′, for a number of boundary con-

ditions we have b = 3, i.e., the problem requires three boundary conditions.

The nonrelativistic GS equation can be substantially simplified if we consider a
one-dimensional cylindrical configuration; the current I (Ψ) is the linear function of
the magnetic flux Ψ. It is convenient to write this relation as

I (Ψ) = c

4π�0
Ψ, (B.2)

where �0 is the constant of length dimension. In this case, Eq. (B.1) becomes linear:

d2Ψ

dx2
r

− 1

xr

dΨ

dxr
+ Ψ = 0. (B.3)

Here xr = �/�0. The solution to Eq. (B.3) is the known fields

Bz = B0 J0(xr ), (B.4)

Bϕ = B0 J1(xr ), (B.5)
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where J0(xr ) and J1(xr ) are the Bessel functions. As we see, in a stable cylindri-
cal discharge at some distance from the axis, the longitudinal magnetic field must
change its direction, which is observed experimentally (see, e.g., Kadomtsev, 1988).



Appendix C
Part-Time Job Pulsars

Recently, Kramer et al. (2006) have reported on the thorough study of radio pulsar
B1931+24. The difference between this pulsar and ordinary radio pulsars is that
the former has 5–10 d active phases. Therefore, the radio emission is switched off in
less than 10 s and is actually undetectable for the next 25–35 d. It is very important
that the neutron star spin-down is different in the on and off states:

Ω̇on = 1.02 × 10−14 1/s2, (C.1)

Ω̇off = 0.68 × 10−14 1/s2. (C.2)

Hence

Ω̇on

Ω̇off
= 1.5. (C.3)

Later, the same ratio was detected for PSR J1832+0031 (ton ∼ 300 d, toff ∼ 700 d).
This discovery offers a unique opportunity to observe both energy-loss mecha-

nisms for the same radio pulsar (Beskin and Nokhrina, 2007; Gurevich and Istomin,
2007). Besides, we can clarify the pulsar braking mechanism. Thus, it is logical to
suppose that in the on state the energy release is due to the current losses only and
in the off state to the magnetodipole radiation (in this case, it is not the plasma-filled
magnetosphere). Using (2.5) and (2.178), we find

Ω̇on

Ω̇off
= 3 f 2

∗
2

cot2χ, (C.4)

which yields the reasonable value of the inclination angle χ ≈ 60◦.
On the other hand, if we take relation (2.260) for the on-state energy losses (Spitkovsky,

2006)

Wtot = 1

4

B2
0Ω4 R6

c3
(1 + sin2 χ ), (C.5)
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we get

Ω̇on

Ω̇off
= 3

2

(1 + sin2 χ )

sin2 χ
. (C.6)

It is obvious that this ratio cannot be equal to 1.5 for any inclination angle.
Comparing the theory with the observations of radio pulsar B1931+24, we can

make the following conclusions (Gurevich and Istomin, 2007):

1. It is for the first time that in the PSR B1931+24 off state the spin-down of
the magnetized neutron star rotation due to the magnetodipole radiation energy
losses was observed.

2. There are really current losses which are fully different from the vacuum ones.
3. As the switching time between the on and off states is very short, the plasma

source is to be located in the open part of the magnetosphere.



Appendix D
Special Functions

D.1 Legendre Polynomials

The Legendre polynomials of the first and second kind Pm(x) and Qm(x) are the
solutions to the equation

d

dx

[
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d

dx

]
f (x) = q f (x). (D.1)

They have the eigenfunctions
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. . .

and
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. . .

and the eigenvalues
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qm = −m(m + 1). (D.10)

The general expression for Pm(x) is

Pm(x) = 1

2mm!

dm

dxm
(x2 − 1). (D.11)

Since the Legendre polynomials are a complete orthogonal system in the interval
−1 < x < 1, any function f (x) can be given as

f (x) =
∞∑

m=0

( f )mPm(x), (D.12)

where

( f )m = 2m + 1

2

∫ 1

−1
Pm(x) f (x)dx . (D.13)

D.2 Bessel Functions

The Bessel functions of the first kind Jm(x) are the solutions to the equation

x2 d2 f (x)

dx2
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d f (x)

dx
+ (x2 − m2) f (x) = 0, (D.14)

having no singularity at x = 0:
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In particular,

J0(0) = 1 − x2

4
+ x4
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+ · · · , (D.16)
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as x → 0, and

Jm(x) =
√

π

2x
cos

(
x − mπ

2
− π

4

)
, (D.18)

as x → ∞.
The Macdonald (modified Bessel) functions Km(x) are the solutions to equation
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x2 d2 f (x)

dx2
+ x

d f (x)

dx
− (x2 + m2) f (x) = 0. (D.19)

They have a singularity at x = 0, but vanish at infinity. In particular,

K0(x) = − ln x + ln 2 − γ, (D.20)

K1(x) = 1

x
, (D.21)

as x → 0, and

Km(x) =
√

π

2x
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as x → ∞. Here γ ≈ 0.577 is the Euler constant.

D.3 Hypergeometric Function

The hypergeometric function F(a, b, c, x) is the solutions to the equation

x(1 − x)
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d f (x)

dx
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having no singularity at x = 0:
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Thus, if a or b is an integer less than or equal to zero, the function F(a, b, c, x)
reduces to a polynomial.



 



Appendix E
List of Symbols

Table E.1 List of symbols

Variable Meaning

a specific angular momentum
a characteristics of the critical point
an expansion coefficients
Aik matrix of the coefficients
A vector potential
A,B, C coefficients in the second-order partial differential equation
b internal radius of a disk
b number of boundary conditions
bn expansion coefficients
b(θ) dimensionless perturbation of the sonic velocity
b disturbance of the magnetic field
B; Bn; Bp; BT magnetic field; normal component; poloidal; additional
B0 magnetic field on the neutron star surface
B� critical quantum magnetic field
Bcr; BEdd; Bext; Bin; Binj critical magnetic field; Eddington magnetic field; external; inside the

star; injection
c speed of light
cn expansion coefficients
c‖, c⊥ coefficients
cs; c∗; cR ; c∞ sound velocity; at the sonic surface; at the star surface; at infinity
C constant
di vector of variables
d(θ ) dimensionless perturbation of the sonic radius
d; D; D denominators
D1 the derivatives of the denominators
D(λ),D0(λ),D1(λ) normalized functions
e′; en hydrodynamical integral; nonrelativistic
er , eθ , eϕ ; em unit vectors; along the magnetic axis
E ; En; E0 energy (Bernoulli integral); nonrelativistic; zero approximation
E; EH; Ein; EQ electric field; on the horizon; inside the neutron star; electric

quadrupole
E‖ electric field parallel to magnetic one
Ee; Eph electron energy; photon energy
f perturbation of hydrodynamic and magnetic fluxes
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Table E.2
f ; f∗ dimensionless area of the polar cap
F ; Fn functions
F(a, b, c, x), F(r ) hypergeometric function
Fαβ electromagnetic tensor
F+ viscous heating
F− thermal radiation of a disk
FA; Fem Ampére force; electromagnetic force
Fc; Fem bulk centrifugal force; bulk electromagnetic force
g gravitational field
gH surface gravity
gm (r ) radial eigenfunctions
gik metrics
G gravitational constant
G, G1, G2 self-similar functions
h additional potential
h1, h2 components of the additional potential
hE Endean nonphysical potential
h∗ coefficient
� Planck constant
h(θ ) dimensionless perturbation of the radial velocity
H disk half-thickness
H inner gap height
H Heyvaerts–Norman invariant
Hcr critical height
HRS Ruderman–Sutherland height
H gravitomagnetic vector
Hik gravitomagnetic tensor
i number of invariants
i0 dimensionless longitudinal current
iA asymmetric dimensionless longitudinal current
iS symmetric dimensionless longitudinal current
i‖ current coefficient
I ; Ibulk; IGJ; IM; Isep electric current; bulk; GJ; Michel current; current along the

separatrix
Icur invariant for current losses
Imd invariant for magnetodipole losses
Ir moment of inertia of a star
j; jp current density; poloidal current density
j‖ velocity coefficient
j‖ current density parallel to the magnetic field
jback back current density
jGJ Goldreich–Julian current density
J angular moment
J self-similar function
J0(x), J1(x) Bessel functions
JH horizon surface current
Js surface current
k constants
K angular momentum losses
K ; Kn functions
Ktot total angular momentum losses
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Table E.3
K1, K2 components of the K⊥
K0(x), K1(x) Macdonald functions
K torque
K‖, K⊥, K† components of the torque
l dimensionless sound velocity
l(θ ) perturbation of the electric current
lγ photon free path
lacc acceleration path
L; Lcr; Ln specific angular momentum; critical; nonrelativistic
L luminosity
L characteristic length
Lph photon angular momentum
L̂ GS operator
L̂2 vacuum operator
L̂psr pulsar operator
L̂β Lie derivative
m self-similar parameter (Alfvén)
m(θ ) asymptotic function
me electron mass
mp particle mass
m magnetic moment of a neutron star
M , M∗ star mass
Mbulge bulge mass
M� solar mass
Ṁ mass accretion/ejection rate
M; M0; Mf Alfvénic Mach number; zero approximation; on the fast

magnetosonic surface
M̂; M̂∞; M̂∗ hydrodynamic “Mach number”; at infinity; at the sonic surface
n; nGJ; nin; ninj; nR ; n∗; n∞ concentration; GJ; initial; injection; on the star surface; at the sonic

surface; at infinity
n self-similar parameter (fast magnetosonic)
n1,n2,n⊥ unit vectors
nbr braking index
N numerators
Nβ particle flux
p(θ ) dimensionless perturbation of the sonic enthalpy
P pressure
P; Ṗ; Pcr; Pcrit pulsar period; period derivative; critical period; nonrelativistic
P parameter
Pn; Ps anisotropic pressure
P Legendre polynomials
Pt dissipation-free energy exchange
q; qf particle-to-electromagnetic flux ratio; on the Alfvén surface
q(θ ) dimensionless perturbation of the sonic concentration
Q pulsar parameter
Q∗ electric charge of a neutron star
Qik quadrupole electric moment
Qm (θ ) angular eigenfunction
r radial coordinate
r∗; rinj; rd sonic radius; injection radius; shell radius
r0 radius of marginally stable orbit
ra; rA Alfvén radius
rB Larmor radius
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Table E.4
re the classical electron radius
req equipartition radius
rf radius of the fast magnetosonic surface
rg black hole radius
rin inner radius of the hollow cone
rjet; rrad jet radius; radiating radius
R, R∗ star radius
R dimensionless distance from the sonic surface
R0 polar cap radius
Rc curvature radius
Rcap capture radius
Rin radius of the compact object
RL light cylinder radius
Rλ(� ) radial function
Rt , R′

t radial scale
R gas constant
R horizon resistance
s; s∞ specific entropy; at infinity
s1, s2, S anisotropic integrals
s ′ number of critical surfaces
S self-similar function
S, Scap area, polar cap area
SH black hole area
S energy flux (Poynting vector)
t time
t self-similar parameter (shifted fast magnetosonic)
T ; Tbr; Te; Ti temperature; brightness temperature; electron temperature; ion temperature
T self-similar function
trϕ stress tensor
TH black hole temperature
T αβ

part particle energy–momentum tensor
T αβ

em electromagnetic energy–momentum tensor
u dimensionless concentration
u four-velocity
uA; uA,p Alfvén four-velocity; poloidal component
up poloidal four-velocity
uϕ ; uϕ̂ toroidal four-velocity; physical component
uθ ; u θ̂ azimuthal four-velocity; physical component
u∗ four-velocity at the sonic surface
v; vp; vr ; vϕ ; vθ velocity; poloidal; radial; toroidal azimuthal;
vR ; v∗; vK; v∞; vinj velocity on the star surface; at the sonic surface; Keplerian; at infinity;

injection
v group velocity
V ; Vcrit; Vg voltage drop; critical; in the gap
V ; V1,...,4 phase velocity
VA Alfvén velocity
Vcusp cusp velocity
w; w∞ specific enthalpy; at infinity
w probability of the one-photon conversion
Wd radio window width
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Table E.5
w,w1,2 parameters of the separatrix characteristics
W ; Wem; Wpart; Wtot energy losses; electromagnetic energy losses; particle energy losses; total
WBZ Blandford–Znajek energy losses
x, y, z Cartesian coordinates
x ; xf; xn dimensionless radius; on the Alfvén surface; nonrelativistic
x0 dimensionless polar cap radius
xL dimensionless radius of the light cylinder
xm = sin θm dimensionless magnetic pole coordinate
xr dimensionless cylindrical coordinate
x∗ sonic surface in planar geometry
X , Y parabolic coordinates
z cylindrical coordinate
z∗ position of the zero point
Z atomic number
α; α0; αinj; α∗ lapse function (gravitational red shift); zero approximation; in the injection

region; on the sonic surface
α1 dimensionless current
αt power
αA lapse function on the internal Alfvén surface
αdyn α-ω dynamo parameter
αfin fine structure constant
αSS Shakura parameter
β, β ′ self-similar exponents
β0 dimensionless potential drop
βa anisotropy parameter
β, β i Lense–Thirring vector
βR corotation vector
γ ; γin; γinj; γ∞; γf particle Lorentz factor; initial; injection; at infinity; on the fast magnetosonic

surface
Γ polytropic index
Γi

jk Christoffel symbols
δ(x); δik δ-function; Kronecker delta
Δ metric coefficient
εpart; εem energy density of the particles; of the electromagnetic field
ε energy density
εi ; εA; εg small parameters; small geometrical parameter; small gravitational parameter
η efficiency
η;ηn; η0; ηinj particle-to-magnetic flux ratio; nonrelativistic; zero approximation; in the

injection region
η1 logarithmic derivative of the concentration
η(θ ) dimensionless perturbation of the concentration at the star surface
θ spherical coordinate
θb an angle between the magnetic field and the rotation axis
Θ latitude
Θ(θ ) self-similar function
Θm initial latitude
ϑ angular distance from the critical point
κ self-similar constant
κm expansion coefficient
λ multiplication parameter
λ expansion function
λ self-similar constant
λC Compton wavelength
λm expansion coefficient
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Table E.6
Λ logarithmic factor
μ; μ∗; μ∞ relativistic enthalpy; at the sonic surface; at infinity
μ‖, μ⊥ coefficients
ν radiofrequency
νm expansion coefficient
ξ dimensionless surface electric potential
ξ self-similar coordinate
ξ ′ surface electric potential
� ; �g; �f cylindrical coordinate; on the horizon; on the fast magnetosonic surface
�A; �c; �core cylindrical radius of the Alfvén surface; of the light surface; of the

central core
 mass density
ρe; ρGJ electric charge density; Goldreich–Julian charge density
 K metric coefficient
 (θ) dimensionless perturbation of the star radius
 m relativistic energy density
σ Michel magnetization parameter
σH horizon surface charge density
σm expansion coefficient
σs surface charge density
Σ metric coefficient
Σ⊥; Σ|| Hall conductivity; Pedersen conductivity
Σr; Σf; Σn outflow parameter; on the Alfvén surface; nonrelativistic
τ proper time
τ (θ) dimensionless perturbation of the star temperature
τD dynamical age
τs synchrotron lifetime
τχ characteristic age
ϕ spherical coordinate
ϕg; ϕeff gravitational potential; effective potential
φ velocity potential for a flat flow
Φ; Φcr particle flux; critical
Φe; ΦQ

e electric potential; of an electric quadrupole
ϕ spherical coordinate
χ inclination angle
χ self-similar coordinate
ψ planar hydrodynamical potential
ψ ; ψmax; ψin potential drop; maximal; inside the star
Ψ stream function
Ψ0, Ψtot total magnetic flux
Ψerg; Ψ∗ magnetic flux through the ergosphere; through the black hole horizon
Ψcore; Ψin magnetic flux within the central core; within the particle dominated core
ω; ωA Lense–Thirring angular velocity; at the Alfvén surface
ωcur characteristic frequency of the curvature radiation
ωn dimensionless nonrelativistic parameter
ωsyn characteristic frequency of the synchrotron radiation
ω(θ ) dimensionless differential rotation
ωB cyclotron frequency
Ω; Ωcr; Ωcrit; Ωd; ΩK angular velocity; critical; nonrelativistic critical; of a shell; Keplerian
Ω̇ angular velocity derivative
ΩF “field” angular velocity
ΩH black hole angular velocity
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Paczyński, B.: Are Gamma-Ray Bursts in Star-Forming Regions? ApJ 499, L45–L48 (1998) 297



References 417
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Ziegler, U., Rüdiger, G.: Angular momentum transport and dynamo-effect in stratified, weakly
magnetic disks. A&A 356, 1141–1148 (2000) 185

Znajek, R.L.: Black hole electrodynamics and the Carter tetrad. MNRAS 179, 457–472 (1977) 199
Zheleznyakov, V.V.: Radiation in Astrophysical Plasmas. Kluwer, Boston (1996) 98, 298



Index

A
Accretion, 6–15

ADAF, 13
ADIOS, 14
advection, 13
Bondi nonrelativistic, 17
Bondi relativistic, 63
Bondi-Hoyle nonrelativistic, 40
Bondi-Hoyle relativistic, 66
of matter with small angular momentum,

71
onto a slowly rotating black hole, 69
onto an arbitrary rotating black hole, 76

Accretion disks, 77–88
magnetic field generation, 183
magnetized, 181
standard model, 10–13

Active galactic nuclei (AGN)
accretion disk, 7
black hole formation, 177
magnetic field, 183
particle acceleration, 289–293
unified scheme, 290
variability, 180

Alfvén factor A
for anisotropic pressure, 249
nonrelativistic, 246
relativistic in the flat space, 304
relativistic in the Kerr metric, 197, 236

Alfvén surface, 237, 256–258
Alfvén velocity

for anisotropic pressure VA, 252
nonrelativistic VA, 230
relativistic uA, 235

Algebraic analysis
cold relativistic outflow, 362
hydrodynamical accretion, 360
MHD accretion onto the black hole, 363
nonrelativistic stellar (solar) wind, 361

Algebraic relations
for anisotropic pressure, 249
nonrelativistic, 245
relativistic in the flat space, 305
relativistic in the Kerr metric, 235

Analytical nozzle
axisymmetric flow, 36
potential plane flow, 24

Anisotropy parameter βa, 249
Asymptotic solutions

at large distances, 272–279
at mathematical infinity, 275
near event horizon, 279–284

B
Bernoulli’s equation

full MHD
for anisotropic pressure, 249
nonrelativistic, 245, 266, 267
relativistic in the flat space, 259
relativistic in the Kerr metric, 236, 259,

264, 279
hydrodynamical

nonrelativistic, 17, 32
relativistic, 61

Black hole magnetosphere
force-free

for limited disk, 217–218
in parabolic magnetic field, 215–217
split monopole, 211–214

full MHD
split monopole, 347–355
with rotating shell, 355–359

vacuum
in the external magnetic field, 192
rotating with electric charge QH,

193
with point electric charge, 190
with the limited disk, 194

423



424 Index

Black holes, 207
“boundary condition”, 199
angular velocity ΩH, 55
electric charge, 200
entropy, 208
ergosphere, 55, 193
formation, 177
irreducible mass Mirr, 207
magnetosphere, 219–224
radius rg, 7, 54
second law of thermodynamics, 208
specific angular momentum a, 54
surface gravity gH, 208
temperature, 208

Blandford-Znajek process, 203–207
energy losses WBZ, 205, 292, 297

C
Chaplygin equation, 22
Christoffel symbols, 30
Continuity equation

in the Kerr metric, 59
nonrelativistic, 15

Corotation, 101, 236, 245
Covariant derivatives

∇·, 57
∇×, 57
∇k , 30

Critical magnetic field B� , 99
Critical surfaces

Alfvén
nonrelativistic, 258
relativistic, 237, 256–258

cusp, 240
fast magnetosonic

nonrelativistic, 247, 266–272
relativistic, 237, 258–266

light cylinder
flat space, 126
full MHD, 240
Kerr metric, 197

light surface
force-free, 102
full MHD, 240

modified fast magnetosonic, 368
slow magnetosonic

nonrelativistic, 247
relativistic, 237

sonic, 18
Curvature radiation, 98
Cusp velocity

for anisotropic pressure Vcusp, 252
nonrelativistic Vcusp, 230

relativistic ucusp, 240
Cyclotron frequency ωB , 98

D
Differential rotation

hydrodynamical outflow, 47
nonrelativistic MHD outflow, 334–336
relativistic MHD outflow, 331–333

E
Eddington limit

luminosity LEdd, 6, 178
magnetic field BEdd, 184

Einstein’s equations—weak field limit, 56
Electromotive force (EMF), 131, 186, 203, 221
Energy-momentum tensor

force-free, 122
hydrodynamical nonrelativistic, 16
hydrodynamical relativistic, 58

Enthalpy
nonrelativistic w, 16, 245
relativistic μ

full MHD, 235
hydrodynamical, 58, 61

Entropy wave, 230
Euler equations

for anisotropic pressure, 248
hydrodynamical nonrelativistic, 15, 385
hydrodynamical relativistic, 59
rigid body dynamics, 140

F
Fast magnetosonic surface

nonrelativistic, 266–272
relativistic, 237, 258–266

Fast magnetosonic velocity
nonrelativistic, 229
relativistic, 238

Ferraro isorotation law
in General Relativity, 196, 233
in the flat space, 124

G
Gamma-bursters, 296
Goldreich-Julian values

charge density ρGJ

nonrelativistic, 102
relativistic, 113, 201

current density jGJ, 103
total current IGJ, 103, 128

Grad-Shafranov equation
classical version, 242
for anisotropic pressure, 249
force-free in the flat space, 125



Index 425

force-free in the Kerr metric, 197
full MHD cylindrical, 304
full MHD in the Kerr metric, 241
full MHD nonrelativistic, 247
hydrodynamical nonrelativistic, 33
hydrodynamical relativistic, 61

Gravitomagnetic field H, 57
GS operator L̂, 34

I
Integrals of motion

angular momentum
for anisotropic pressure Ln, 248
force-free in the flat space L , 125
force-free in the Kerr metric L , 196
full MHD in the Kerr metric L , 234
full MHD relativistic Ln, 244
hydrodynamical nonrelativistic Ln, 29
hydrodynamical relativistic L , 60

angular velocity ΩF, 196
angular velocity ΩF, 124, 233
electric current I , 125, 196
energy (Bernoulli)

for anisotropic pressure En, 248
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Mach number
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Magnetic flux Ψ
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Magnetic flux Ψ
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Marginally stable orbit r0, 8, 79
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Multiplicity parameter λ
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N
Neutron stars
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surface, 110

No hair theorem, 188
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Particle generation
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S
Schwarzschild metric, 54
Self-similar solutions, 364–371
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standard, 44, 71, 74

Sonic velocity cs
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392
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inclined, 156

Stream function Φ

nonrelativistic, 28
relativistic, 59

T
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