
Chapter 7
Self-Organization of Network Structure
in Coupled-Map Systems

Junji Ito and Kunihiko Kaneko

Abstract Coupled map models with variable connection weights between the units
are studied. A generally observed feature in this type of model is the appearance
of the units with massive outgoing connections. Such structure formation is the
consequence of the feedback between unit and connection dynamics.

7.1 Introduction

Unveiling network structure is often important in studying biological and social
systems. Universal topological properties of network structure have been found in
a variety of natural and artificial networks [1–3]. Some of those properties such
as scale-free or small-world structures have been shown to emerge from simple
construction rules or by evolution of networks to achieve some function [4, 5]. Since
the main interest in these early studies of complex networks was in the structure of
networks, the dynamics of the constituent units were largely ignored.

Recently, more and more studies on complex networks have taken into account
the activity of nodes and/or the flow through links, since they are often primary
determinants of network growth or structure formation. For example, the relation-
ship between abundances of chemicals on nodes in a chemical-reaction network has
been studied from the viewpoint of the optimization of metabolic flow through the
network [6, 7]. In these studies, each unit (i.e., chemical concentration) on a node
is in a stationary state and therefore the interplay between the dynamics of the units
and the network structure is not considered. This aspect is sought in another line of
studies where behaviors of coupled dynamical systems in a network of units with
non-trivial dynamics are extensively investigated. Some of those studies searched
for the synchronization condition for oscillatory elements in a network and exam-
ined how it depends on network topology [5, 8–10], while others focused on dynam-
ical systems of chaotic elements on a network interacting through links, which show
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synchronization, clustering, and chaotic itinerancy [11–15]. In these studies, though
the units on the network showed rich dynamics, the network structure itself was
not dynamic: once initially given, it did not change in time. Following these pre-
vious studies, the next step should be to seek common principles in systems with
an interplay between the network structure formation and dynamical systems on the
network [16–21].

Adaptive network is the term given to the types of network whose structure varies
depending on the dynamics of the units on the nodes [22]. The aim of the present
study is to discover the generic features in the dynamics and the structure of adaptive
networks. We adopt the system of coupled maps with variable connection weights
as our tool to explore a class of models for adaptive networks, as coupled map
dynamics have been thoroughly investigated for cases with various forms of fixed
regular couplings [23–27]. We mainly focus on how non-trivial dynamic structure
emerges from homogeneous populations of units and connections, and try to extract
the underlying mechanisms of such structure formation.

We review three types of coupled map models, following our earlier studies
[16–18]: the first one is coupled logistic maps, the second one is coupled circle
maps, and the last one is coupled circle maps with external input. For all these
three models, coupling strengths between nodes change according to the correla-
tion between the values on the nodes. For the first model, an exhaustive analysis of
unit and connection dynamics is given in Sect. 7.2. To avoid redundant description
on similar behaviors in different models, only the characteristic behaviors specific
to the latter two models are described in Sects. 7.3 and 7.4. The last section is a
summary and discussion on our findings.

7.2 Adaptive Network of Logistic-Map Units

Throughout the present review we discuss a system of coupled maps on a network.
Each node in the network is assigned with map dynamics which depend on the
instantaneous state of the node as well as on those of the other nodes that are
linked to it. This sort of dynamical system is known as coupled maps and has been
extensively studied over decades. In particular, coupled map lattices with nearest
neighbor couplings on a regular lattice [23, 24] and globally coupled maps (GCM)
with all-to-all coupling of equal weight [25] are two standard models. Here we adopt
the coupled map approach, but instead of fixed global or nearest-neighbor couplings
a time-varying connection weight is introduced in our models.

In this section, we consider the model of coupled logistic maps. Logistic map is
a nonlinear map from xn to xn+1 with one parameter a representing its nonlinearity,
defined as:

xn+1 = axn(1 − xn). (7.1)

Successive application of this mapping yields, depending on the value of the param-
eter a, oscillatory dynamics with arbitrary period as well as chaotic dynamics.
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Owing to this variety in dynamics, one network of logistic-map units can represent
a wide range of networks with various kinds of unit dynamics. For this reason, this
type of network is of primary and special interest in our study.

7.2.1 Model Formulation

Our coupled map model is defined as follows. Suppose we have a network of N
units, each of which has its own time-dependent internal state. Let xi

n denote the
state variable of the i-th unit (1 ≤ i ≤ N ) at the n-th time step. Connectivity
between these units is given by the connection matrix wi j

n which represents the
weight (or strength) of the connection from unit j to unit i at the n-th time step.
To introduce dynamics to the network, we install the following two functions into
our model. One is the function f that defines the mapping from xi

n to xi
n+1, in other

words, the dynamics of the units. The other is the function g that represents the rule
of connection change. For simplicity, we assume that the range of g is between 0
and 1, and g depends only on the two state variables of the units at the both ends
of the connection. With this setup, our model is described by the following set of
equations:

xi
n+1 = (1 − c) f (xi

n) + c
∑

j

wi j
n f (x j

n ), (7.2)

wi j
n+1 = [1 + δg(xi

n, x j
n )]wi j

n
∑

j [1 + δg(xi
n, x j

n )]wi j
n

, (7.3)

where c (0 ≤ c ≤ 1) is the parameter that represents the strength of the interac-
tion between units and δ (0 ≤ δ ≤ 1) is the parameter that represents the degree
of plasticity of connections. The normalization of incoming connection weights in
Eq. (7.3) is introduced in order to avoid the divergence of connection weights in the
case where the steady state of unit dynamics satisfies strengthening condition of the
connection change, which could lead to endless growing of the connection weights.
This normalization also imposes competition among incoming connections of a unit.
When δ = 0, this model reduces to the standard GCM.

By choosing appropriate functions for f and g, Eqs. (7.2) and (7.3) can model
various types of adaptive networks. This choice would depend on the purpose
of modeling. For example, connection dynamics that strengthen the connections
between units in different dynamical states would lead to global synchronization of
the whole system. This type of rewiring rule is introduced by Chen and Kurth to
a coupled phase oscillator model and described in detail in the subsequent chap-
ter. In this study, however, we focus on the opposite type of connection dynamics,
i.e., “Hebbian” type dynamics, which is characterized by the strengthening of con-
nections between units in a similar state. This type of dynamics is called Hebbian
because it can be considered as a natural extension of the Hebb rule, which is widely
used as a synaptic update rule in neural network studies and considered as the
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Fig. 7.1 The logistic map and its bifurcation diagram. (Left) The mapping function f (x) =
ax(1 − x); a = 3.97. The open circle in the graph represents the unstable fixed point of the
dynamics generated by this map. (Right) The bifurcation diagram of logistic map. Asymptotic
values of x are plotted for each value of the parameter a. This map generates chaotic dynamics for
values of a larger than about 3.57

fundamental principle of structure formation in neural networks, to systems with
continuous state variables. The function that we use in practice for the connection
dynamics in our simulations is g(xi , x j ) = 1 − 2|xi − x j |, but any other function
which monotonically decreases with the difference between its two arguments gives
essentially identical results. For unit dynamics, as mentioned above, we adopt the
logistic map: f (xi ) = axi (1 − xi ). Figure 7.1 shows the graph of this mapping
function and how the unit dynamics depend on the value of the parameter a.

To this end, our model possesses three parameters: a for the nonlinearity of unit
dynamics, c for the strength of interaction between units, and δ for the plasticity
of connection. In this section, δ is set to 0.1, though a wide range of δ values give
similar results [17].

In the following, we study the dynamics of the networks described by Eqs. (7.2)
and (7.3) using numerical simulations. In most of the simulations, we use the fol-
lowing initial condition. First, the initial value of self-connection wii

0 is set to 0 for
all i . This assures that the self-connections (besides the term (1 − c) f (xi

n)) are 0 at
any time step n. Second, all the remaining connection weights are set to be identical.
This means that, at the initial step, every unit in the system uniformly connects to
all the other units. Due to the normalization of incoming connections, the initial
connection weight is determined to be 1/(N − 1). Finally, xi

0 are randomly chosen
from the uniform distribution between 0 and 1.

7.2.2 Unit Dynamics

We start our analysis from studying the dependence of unit dynamics on the values
of the parameters a and c. It is known that the dynamics of coupled map systems
are characterized by the formation of synchronized clusters of units. In Fig. 7.2,
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Fig. 7.2 The number of
clusters plotted against the
parameters a and c, obtained
from the numerical
simulations of our model
composed of 10 units. The
number of clusters is counted
after 5,000 steps of transient
period and averaged over 100
simulations starting from
random initial conditions 1
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the number of clusters observed in our model is plotted against the parameters a
and c. Basically, the number of clusters increases as a gets larger or c gets smaller,
which is consistent with the previous studies of GCM [25] where the connection
weights are constant over elements and time. A novel dynamical feature induced by
the introduction of connection change is the appearance of a large regime of N/2-
cluster state in the (a, c)-space. In this state, every unit forms a pair with another
unit and the state variables of the units in a pair are synchronized, resulting in N/2
clusters in the system. Destabilization of this pair (by increase of a or decrease of
c) immediately results in the total absence of synchronized clusters, because all the
units in our model have the same set of parameter values, and therefore, once a pair
is destabilized, so are all the other pairs as well. This means that there is hardly any
set of parameter values that allows an intermediate number of clusters between N/2
and N .

In the following, we give a more detailed description for the three representative
states of unit dynamics observed in our model.

Synchronized state: For small a and large c values, all the units in the system are
synchronized. The dynamics of the units are either periodic or chaotic, depending
on the value of a (Fig. 7.3a). The connection weights do not change in this state,
because in our model, connection dynamics are driven by the difference between the
state variables, and all the state variables have an identical value in the synchronized
state. Due to this lack of connection dynamics, the system is essentially identical to
the standard GCM. The stability of the synchronized state in the standard GCM can
be estimated using the tangential Lyapunov exponent, or split exponent [25], defined
as follows for our model:

λspl(a, c) = ln

(
1 − N

N − 1
c

)
+ λ0(a), (7.4)

where λ0 represents the Lyapnov exponent of, in our case, the logistic map with
parameter value a. With this quantity, the stability condition for the synchronized
state is written as λspl(a, c) < 0, and hence the boundary of the region (in (a, c)-
space) where a synchronized state is allowed is given by:
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Fig. 7.3 Time series of xi
n (1 ≤ i ≤ N , N = 50). Traces for all state variables are superimposed.

(a) coherent state. a = 3.6, c = 0.3. (b) ordered state with two clusters. a = 3.6, c = 0.2. (c)
ordered state with N/2 clusters. a = 3.97, c = 0.3. (d) desynchronized state. a = 3.97, c = 0.125

ln

(
1 − N

N − 1
c

)
+ λ0(a) = 0. (7.5)

Desynchronized state: For large a and small c values, unit dynamics are not syn-
chronized between any pair of units. Each unit shows chaotic dynamics (Fig. 7.3d).
Due to the difference between the state variables, connection weights show temporal
change, which can lead to self-organization of network structure. The interaction
between unit and connection dynamics will be discussed later in detail.

Clustered state: For intermediate values of a and c, units spontaneously form
clusters, within which units oscillate synchronously. The dynamics of the units are
either periodic or chaotic, depending on the value of a (Fig. 7.3b, c). The con-
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nection weights between the units in the same cluster do not vary in time, while
the connection between units in different clusters can have temporal change. The
number of the clusters is 2 near the boundary with the synchronized state region.
As a gets larger or c gets smaller, the number increases to reach the maximum
number N/2 at the boundary against the desynchronized state. As mentioned above,
in an N/2-cluster state, every unit forms a pair and the two units in a pair synchro-
nize to each other. The stability of the N/2-cluster state can be evaluated again
with the split exponent according to the following argument. Due to the increase
in connection strength between the units forming a pair (and the normalization of
incoming connections), the connection between the units in different pairs vanishes.
In this state, a unit in a pair interacts only with its partner and therefore the system
can be regarded as a collection of GCM of 2 units. Hence, the estimation of the
stability of this state is reduced to that of a small GCM system. The split expo-
nent of GCM of 2 units is obtained by substituting 2 to N in Eq. (7.4), resulting
in λspl(a, c) = ln (1 − 2c) + λ0(a). Thus, the boundary between the region of the
N/2-cluster state and that of the desynchronized state is given by:

ln (1 − 2c) + λ0(a) = 0. (7.6)

According to Eqs. (7.5) and (7.6), we define in the (a, c)-space the following
three phases, named after those in GCM system [25]: (I) coherent phase, which is
above Eq. (7.5), (II) ordered phase, which is between Eqs. (7.5) and (7.6), and (III)
desynchronized phase, which is below Eq. (7.6).

7.2.3 Connection Dynamics

We proceed to study connection dynamics, which are largely influenced by the unit
dynamics discussed above. It is intuitively expected that connection weights would
be kept constant in the coherent and ordered phases and that they would show active
dynamics in the desynchronized phase. To confirm this in a quantitative manner, we
define a measure of the network activity, which represents the intensity of temporal
change in connection weights, as follows:

A = 1

(N − 1)2

∑

i �= j

〈|wi j
n − wi j

n−1|〉, (7.7)

where 〈·〉 stands for temporal average taken after an appropriate transient period.
This is the connection change in one time step averaged over time and over connec-
tions. Figure 7.4(top) is the plot of A against the parameters a and c. As expected,
It can be seen that A is zero in the coherent and the ordered phases and that finite
values of A are observed only within the desynchronized phase. An interesting point
is that there are regions in the desynchronized phase where A takes extremely small
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Fig. 7.4 Plot of the activity A
(top panel) and the instability
I (bottom panel) of the
network against the
parameters a and c, obtained
from the numerical
simulation of our model
composed of 10 units. The
values of A and I are
calculated from wi j

n values
during the 1,000 steps after
100,000 steps of transient
period. The network activity
A represents the intensity of
connection change and the
network instability I
represents the fragility of
network structure. See the
main text for their definitions
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values, and that the region of large A values forms a complex structure in (a,c)-
space.

Vanishing values of A reflect diminishing connection change, which means
the appearance of long-lasting structure in the network. From Fig. 7.4(top), it is
expected that such network structures are present in the coherent and the ordered
phases, and also in a part of the desynchronized phase where A shows extremely
small values. On the other hand, large values of A reflect active connection dynam-
ics. Under such situation, it seems impossible for a stable structure to survive in the
network. However, there is a possibility that the change in connection weights is due
to fluctuations around some fixed values, which are kept stable over time. In such
a case, the network activity A takes a non-zero value but some stable structure is
preserved in the network. To check for this possibility, we define a measure for the
instability of network structure using the temporal variance of connection weight
around its mean as follows:

I = 1

(N − 1)2

∑

i �= j

(
〈wi j

n
2〉 − 〈wi j

n 〉2
)

, (7.8)

where 〈·〉 is the temporal average as in Eq. (7.7). Large I values reflect that con-
nection weights have large fluctuations and are not fixed in time so that the network
structure is unstable. Figure 7.4(bottom) is the plot of I against the parameters a and
c. By definition, I = 0 in the area where A = 0, which corresponds to the trivial
fact that if there is no connection change, network structure is maximally stable. An
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Fig. 7.5 A rough phase
diagram illustrating the
regions in the desynchronized
phase. Letters in the panel
stand for static region (S),
where static networks are
observed, dynamic region I
(D1), where dynamic and
unstable networks are
observed, and dynamic region
II (D2), where dynamic and
stable networks are observed.
See the main text for the
definition of the regions
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interesting observation is that the high activity region in Fig. 7.4(top) seems to be
separated into two subregions; one with large I values and the other with moderate,
namely ∼ 0.01, I values. For example, at a = 3.8, the intervals 0.03 < c < 0.07
and 0.07 < c < 0.13 seem to belong to the moderate I and the large I subregions,
respectively. This implies the possibility that dynamic but structured networks are
allowed to exist in certain parts of the desynchronized phase.

Based on these observations, we separate the desynchronized phase into three
regions (Fig. 7.5): (i) static region, characterized by extremely small A values, (ii)
dynamic region I, characterized by large A values and large I values, and (iii)
dynamic region II, characterized by large A values and moderate I values.

7.2.4 Network Structure

As mentioned above, in the beginning of the numerical simulations, connection in
the network is uniform and all-to-all. From this initial condition, the system develops
to various kinds of structured network, depending on the type of unit dynamics. Here
we run through the phases and the regions and see what type of network structure is
formed in each of the phases (regions) by examining the connection matrix wi j .

(I) Coherent phase: A snapshot of the connection matrix in this phase is shown in
Fig. 7.6a. In this phase, all-to-all connection is preserved as in the initial state. Con-
nection weights are, however, distributed around the initial values due to the con-
nection change during the transient to the asymptotic state, i.e., synchrony among
all the units. Once the synchronization is achieved, no further connection change
occurs.

(II) Ordered phase: Snapshots of the connection matrix in this phase are shown
in Fig. 7.6b, c. In this phase, network structure depends on the clustering of units.
Once the clusters are formed, connections within a cluster are strengthened and ones
across clusters are weakened, resulting in vanishing connection weights between
clusters. In the case of a 2-cluster state, the network separates into two almost
independent sub-networks, within which units are connected in all-to-all fashion
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Fig. 7.6 Snapshots of the connection matrix wi j in different phases/regions. The value of wi j is
indicated by the size of the filled square at the i-th row and the j-th column. (a) Coherent phase.
a = 3.6, c = 0.3. (b) Ordered state with two clusters. a = 3.6, c = 0.2. (c) Ordered state with
N/2 clusters. a = 3.97, c = 0.3. (d) Static region in desynchronized state. a = 3.97, c = 0.2
(e) Dynamic region I in desynchronized state. a = 3.97, c = 0.15. (f) Dynamic region II in
desynchronized state. a = 3.97, c = 0.125

(Fig. 7.6b). As mentioned above, the maximum number of clusters is N/2. In
an N/2-cluster state, units form pairs and have connections only within the pairs
(Fig. 7.6c).

(III) Desynchronized phase: This phase is separated into three regions.
(i) Static region: A snapshot of the connection matrix in this region is shown in

Fig. 7.6d. This region is characterized by low network activity A. In this region, most
units make pairs and each unit is connected only with its partner. Although their
connection strengths hardly change over time, decomposition and recomposition of
pairs occasionally occurs. Besides those units forming pairs, a few units that do not
form pairs remain. Their connection weights show rapid changes over time. The
dynamics of units forming a pair are not synchronized, but highly correlated, while
there is almost no correlation between units that belong to different pairs.

(ii) Dynamic region I: A snapshot of the connection matrix in this region is
shown in Fig. 7.6e. This region is characterized by high network activity A and
high structural instability I . There is no synchronization between any two units,
and the correlation between units is very weak for any pair of units. Due to these
disordered unit dynamics, connection weights change intensely, and the network
structure seems to be random.
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(iii) Dynamic region II: A snapshot of the connection matrix in this region is
shown in Fig. 7.6f. This region is characterized by high network activity A and
moderate structural instability I . Similarly to the dynamic region I, there is nei-
ther synchronization nor a significant correlation between any two units. Here the
network seems to possess a certain structure which is characterized by the concen-
tration of outgoing connection weights to a small fraction of units, although the
connection weights change as intensely as in dynamic region I.

In the rest of this section, we focus on the dynamic networks observed in the
desynchronized phase and study their structure and dynamics in detail.

7.2.5 Dynamic Networks in the Desynchronized Phase

In this part, we focus on the networks observed in dynamic regions I and II, and
study the difference between the two networks in both structural and dynamical
aspects. Here, we use the parameter values (a, c) = (3.97, 0.15) for dynamic region
I and (a, c) = (3.97, 0.125) for dynamic region II.

7.2.5.1 Network Structure and Its Stability

To compare the structural properties of the networks in a quantitative manner, we
characterize their structure from the values of wi j . First, we look at the distribution
of wi j values. Figure 7.7a shows the distributions calculated for the networks from
dynamic region I and II. Though larger values are observed slightly more often in
dynamic region II, the distribution of wi j values has quite similar shape in both of
the regions, meaning that the apparent difference in the network structure seen in
Fig. 7.6d, f is not due to the difference in the connection weights but based solely on
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Fig. 7.7 Distributions of the values of connection matrix wi j and those of the total weight of outgo-
ing connection weights Wout

i in dynamic region I and II. (a) Distribution of wi j in dynamic region
I and II. Values of wi j at the 500,000th step are collected from 10 simulations. (b) Distribution
of Wout

i in dynamic region I and II. Values of Wout
i at the 500,000th step are collected from 100

simulations
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the manner in which they connect the units. Next, to assess how the distribution of
the connections differs across units, we look at the distribution of the sum of outgo-
ing connection weights Wout

i
n = ∑

j w ji
n . Figure 7.7b shows the distribution of Wout

i

values for the networks from dynamic region I and II. The distributions are clearly
different. In dynamic region I, the distribution is unimodal with the peak at around
0.7 and shows exponential (or even faster) decay for large values. In dynamic region
II, there are two peaks in the distribution: the main peak is at 0 and the distribution
shows exponential (or slower) decay, while the other peak is at around 6, suggesting
the existence of a small group of units that have very large Wout

i values.
As these distributions are calculated from the instantaneous values of wi j , they

tell us nothing about how the network changes its structure in time. To illustrate
the temporal evolution of network structure, time series of Wout

i for the network in
dynamic region II is plotted for all i in Fig. 7.8. In this plot, units are separated into
two groups according to the Wout

i value at the 107th step: units that have Wout
i

values larger than 2 are plotted in gray, and the others are plotted in black. By
retrospectively tracing the Wout

i values of each of the groups, it is confirmed that
the separation of units into the two groups is already evident at a very early stage of
the temporal evolution, namely at the 2.0 × 106th step or even earlier. The moderate
value of the network instability I in dynamic region II reflects this stable separation
of units into large and small Wout

i groups.
To assess this separation in a quantitative manner, we define an autocorrelation

function regarding the separation of units in the following way. First, as a prepara-
tion step, we define a membership function μ as follows:
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Fig. 7.8 Temporal evolution of Wout
i in a network observed in dynamic region II. The values of
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i value larger than 2 are plotted in gray, and the
others in black. N = 100
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Fig. 7.9 The temporal autocorrelation Csep(τl ) regarding the separation of units, plotted for differ-
ent values of τl . See the main text for the definition of Csep(τl )

μ(Wout
i ) =

{
1 (Wout

i ≥ 1.0)

−1 (Wout
i < 1.0)

(7.9)

This function indicates whether unit i belongs to the large or small Wout
i group.

The threshold value 1.0 used here is the average of the total outgoing connection
weight of a unit. With this function, we define the temporal autocorrelation Csep

regarding the separation as follows:

Csep(τl ) = 1

N

∑

i

〈μ(Wout
i
n)μ(Wout

i
n+τl

)〉, (7.10)

where 〈·〉 is the temporal average as in Eq. (7.7). We measure the stability of the
separation by computing the decay of Csep with the increase of τl . A plot of Csep

for different values of τl is shown in Fig. 7.9. In dynamic region II, the correlation
decays very slowly and remains as large as 0.84 even for a lag of 107 steps, while in
dynamic region I, the correlation decays to almost zero within 106 steps. This shows
that the separation of the units into the high and low Wout

i groups is highly stable
in dynamic region II, while the separation is unstable, or never appears, in dynamic
region I.

7.2.5.2 Mechanism of Structure Formation

In this section, we study the relationship between unit dynamics and the change in
network structure to reveal the mechanism of the structure formation.
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In the dynamic regions, each unit is connected to many other units in a complex
manner. To gain an intuition about how the units interact with each other during the
course of structure formation, we examine the dynamics of the correlations between
a given unit and the others, by calculating the correlations during a short time period,
namely ten steps, and observing their temporal evolution.

In Fig. 7.10 (bottom), the time series of x1 in a simulation of a network in
dynamic region I and the correlations between x1 and the other xi s are shown. The
temporal dynamics of the correlations have the following characteristics: (1) strong
positive or negative correlation lasts for a certain number of steps, followed by a
short period with weak correlation; (2) after this period, the sign of the correlation
reverses in most cases. The unit dynamics in dynamic region II also show the same
characteristics, though the interval between the succeeding weak correlation periods
is much longer than in dynamic region I.

The period of weak correlation sometimes appears simultaneously for all units.
Note that this simultaneous appearance of the weak correlation period coincides
with the approach of x1 to the unstable fixed point (x = 0.748 . . . ), which is
typically accompanied by a reduced oscillation amplitude (Fig. 7.10 (top)). The
dynamics of the logistic map here is dominated by the oscillation around the unsta-
ble fixed point: the state variables take values larger or smaller than this fixed point
alternately. According to the phase of this oscillation, units are naturally separated

Fig. 7.10 Time series of x1 in a simulation (top) and temporal evolution of the instantaneous
correlations (for 10 steps) between unit 1 and the others (bottom), obtained from a simulation of
the network in dynamic region I. The correlations are plotted in a color scale, where green or red
represents positive or negative correlation, respectively, and the brightness of the colors indicates
the magnitude of correlation
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into two groups: when the units of one group take large values, the others take
small values, and vice versa. This separation is not fixed over time. Indeed, each
unit sometimes fails to jump over the fixed point, which reverses the phase of the
oscillation. As a unit moves across the groups, the sign of the correlations to the
other units changes at once, because the phase relationships to the other units are
flipped to the opposite simultaneously. The periods with weak correlation seen in
Fig. 7.10 correspond to the occurrences of this movement of units from one group
to the other. We call this motion across the groups trans-group hopping (TGH).
TGH is closely related to the temporal change in correlations between units. Hence,
the dynamics of TGH are expected to have a strong influence on the formation of
network structures.

To uncover the interaction between the dynamics of TGH and structure formation
in the network, we study how the interval between two succeeding TGHs is related
to the process of the network structure formation. The TGH interval is measured
with the following method. After a transient period of τ f steps, we fix the connection
weights and only allow for the evolution of the state variables. Then we measure the
TGH intervals for a certain time period and compute the average interval, separately
for each of the units. In this way we estimate the expected TGH interval at an arbi-
trary stage in the process of the structure formation.

In Fig. 7.11, we plot the average TGH intervals of units against Wout
i for several

different values of τ f , i.e., at several different stages of network structure formation.
Initially, TGH intervals are almost same for all units (Fig. 7.11a). Then, the intervals
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Fig. 7.11 Average TGH interval of units plotted against Wout
i values. The intervals are calculated

with connection weights fixed after τ f steps of connection dynamics. (a) τ f = 100. (b) τ f =
1, 000. (c) τ f = 5, 000. (d) τ f = 10, 000. (e) τ f = 50, 000. (f) τ f = 100, 000



152 J. Ito and K. Kaneko

become diverse among units (Figs. 7.11b–d). During these stages, TGH intervals
are positively correlated to Wout

i , meaning that a unit with a larger Wout
i value has a

long TGH interval. Finally, at later stages, the correlation between TGH interval and
Wout

i gets weaker (Figs. 7.11e, f), but the separation of units into the large and small
Wout

i groups remains. This observation tells us that during the process of network
structure formation, variety in the values of Wout

i among units is positively reflected
in TGH interval of the units: a unit with a large Wout

i value has a long TGH interval
(or a low TGH rate).

Next, we consider the opposite relationship, i.e., the influence of unit dynamics
on the formation of the network structure. Here we study how the TGH interval is
related to the correlation between units, which is directly reflected in the strength-
ening or weakening of connections. We measure the average correlation Ci of unit
i to all the other units, defined as follows:

Ci = 1

N − 1

∑

j �=i

|〈xi
n x j

n 〉 − 〈xi
n〉〈x j

n 〉|
√

〈xi
n

2〉 − 〈xi
n〉2

√
〈x j

n
2〉 − 〈x j

n 〉2
. (7.11)

In Fig. 7.12, the average correlation Ci , calculated in the network structure at the
10,000th step, is plotted against the average interval of TGH. A simple relationship
can be recognized between Ci and TGH interval. A unit with a longer TGH interval
has a stronger average correlation. Since Ci gives a measure of the degree of the
increase in connections between unit i and the other units, this result suggests that
a unit with a longer TGH interval is more likely to strengthen its connections.

Combining the influences from unit to connection dynamics and the other way
around, the mechanism of network structure formation can now be understood as
follows. A unit with a lower TGH rate grows its connections more rapidly than the
others, and a unit with stronger outgoing connections decreases its rate of TGH. This
mutual enhancement amplifies the difference in the outgoing connection weights

Fig. 7.12 The average
correlation Ci of units plotted
against the average TGH
interval. The correlations are
calculated with connection
weights fixed after 10,000
steps of connection
dynamics. See the main text
for the definition of Ci
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among units. The consequence of this amplification is the separation of units into
the large and the small Wout

i groups observed in dynamic region II.

7.3 Adaptive Network of Bursting Units

In the dynamics of the logistic map, oscillation around the unstable fixed point is
dominant. Indeed, the mechanism of the network structure formation revealed in
the previous section is closely related to this type of oscillatory dynamics. Hence,
in order to infer the generality of such self-organization of network structure, it
is necessary to check whether a similar kind of structure formation is observed in
models with other unit dynamics. For this purpose, in this section, we consider a
coupled-map model which is composed of circle-map units.

7.3.1 Model Formulation

The circle map, which is obtained by the discretization of a nonlinear phase oscilla-
tor, is defined as follows:

xn+1 = xn + ω + K

2π
sin 2πxn mod 1, (7.12)

where ω is the characteristic angular velocity and K represents the nonlinearity of
the map. As the parameter K gets larger, this map yields more complex dynam-
ics and finally gains the property of excitability, characterized by highly nonlinear
responses to external perturbations due to the closely located stable and unstable
fixed points, as shown in Fig. 7.13. Here we use the parameter values corresponding
to Fig. 7.13, so that each unit is an excitable system from a stable fixed point. We

Fig. 7.13 The mapping
function of the circle map.
f (x) =
x + ω + K

2π
sin 2πx mod 1.

ω = 0.4, K = 2.9392. The
filled and the open circles in
the graph represent the stable
and the unstable fixed points
of the dynamics generated by
this map
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consider a network of circle-map units, defined as follows:

xi
n+1 = f (xi

n + c
∑

i �= j

wi j
n x j

n ) (7.13)

where f is the mapping function of circle map, i.e., f (x) = x +ω+ K
2π

sin 2πx mod
1 and c represents the strength of the interaction between units as in the previous
model. The dynamics of connection weights wi j

n are the same as in the previous
model (Eq. (7.3)).

Besides showing synchronization/desynchronization and clustering as in the pre-
vious model, this model exhibits a novel kind of collective dynamics, i.e. syn-
chronized intermittent bursting. In this section, we focus on the structure forma-
tion related to this type of dynamics; parameter values are set to (ω, k, c, δ) =
(0.4, 2.9392, 0.1, 0.01). The initial conditions in simulations are same as in the
previous section: uniform, all-to-all coupling and random state variables.

7.3.2 Unit Dynamics

As mentioned above, our model shows synchronized bursting for the parameter val-
ues we use here. Figure 7.14 (top) shows the temporal evolution of state variables
around the beginning of a simulation. For most of the time, units stay near the
stable fixed point, the value of which is represented by the brightest color in the
gray scale. From time to time, units simultaneously show excursions from the fixed
point, indicated by the simultaneous appearance of darker colors for all the units.
This excursion does not last so long: most of the units return to the position near the
fixed point within a few steps.

We refer to the state where most of the units stay around the fixed point as the
resting state, and the state where most of the units show excursion dynamics as
the bursting state. The transition between the resting and bursting states is captured
by computing the dynamics of the mean of the state variables, or the mean field
Xn defined as Xn = 1

N

∑
i x i

n . The time series of the mean field corresponding
to the unit dynamics shown in Fig. 7.14 (top) is plotted in Fig. 7.14 (bottom).
The resting state is represented by periods of almost constant mean field, while
the bursting state is characterized by fluctuating mean field dynamics with a large
amplitude.

This amplitude gets smaller as simulation time elapses. Figure 7.15a is the time
series of the mean field during 37,000–38,000 steps. The resting and bursting states
cannot be clearly distinguished as in the early stage. This seems to indicate that the
bursts of units get less synchronized. However, although system-wide synchronized
bursting no longer exists, synchrony within subgroups of units is still preserved.
Figure 7.15b–d are the mean fields of three subgroups of units. Transition between
the resting and bursting states can be observed in these mean fields, indicating syn-
chronous bursting of units within each of the subgroups. These subgroups show
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Fig. 7.14 Synchronized intermittent bursting of units in the model of coupled circle maps,
observed at the beginning of a simulation. (top) Time series of the state variables xi

n . Values of
xi

n are plotted in a gray scale, where the brightest color is assigned to the stable fixed point of unit
dynamics. The color gets darker as xi

n takes more distant values from the fixed point. (bottom)
Time series of the corresponding mean field

bursting with different timings, which leads to the diminished fluctuation in the
grand mean field shown in Fig. 7.15a. Such separation of units into synchronizing
subgroups is achieved via the interaction between unit and connection dynamics.
Indeed, the synchronized subgroups can easily be identified by looking at the con-
nection matrix.

7.3.3 Connection Dynamics

Figure 7.16 is the connection matrix at the 37,000-th step of the simulation shown
in Fig. 7.15. Units are clearly partitioned into three groups, each of which having
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Fig. 7.15 Time series of the mean field, observed after 37,000 steps of temporal evolution. (a) The
mean field of the whole system. (b–d) The mean fields of three subgroups in the system. These
subgroups are identified from the connection matrix shown in Fig. 7.16. The groups shown in (b),
(c) and (d) are the ones driven by the pacemakers 1, 2 and 3 shown in Fig. 7.16, respectively

a single unit with massive outgoing connections. We call such units pacemakers,
because the synchronized bursting of the units within a group is achieved in the form
that the group’s pacemaker drives the other units to burst. Note that the synchronized
bursting in the early time steps is mediated by uniform, all-to-all connection, mean-
ing that the mechanism of the synchronized bursting is different in the early and the
later stage of temporal evolution.

To illustrate the process of the formation of pacemakers, we plot the time series
of Wout

i values in Fig. 7.17. As mentioned above, there is no pacemaker at the
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Fig. 7.16 Connection matrix
at the 37,000th step of the
simulation trial shown in
Fig. 7.15. Pacemakers are
indicated by the arrows. The
range of the units driven by
each of the pacemakers are
indicated by the square. Note
that, in the group of
pacemaker 1, a new
pacemaker (the 6th unit)
which is still mutually
coupled with pacemaker 1 is
being formed

time steps

unit index
50

1
0 10000 20000 30000 40000 50000

Fig. 7.17 Time series of Wout
i . The length of vertical tics represent the values of Wout

i . This is the
same simulation trial as shown in Fig. 7.15
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beginning of the simulation. As time elapses, the distribution of Wout
i values starts

to show a bias. By the 20,000th step of the simulation shown in Fig. 7.17, a few units
have gained extremely large Wout

i values compared to the others. These units work
as the pacemakers. The separation of units into pacemakers and the rest is not stable
over time. Indeed, births and deaths of pacemakers can be seen in Fig.7.17, and
this process is accompanied by the reorganization of the groups of synchronously
bursting units.

7.3.4 Mechanism of Structure Formation

In this model, the formation of network structure is closely related to the transition
between the resting and the bursting states. Noting that connection change hardly
occurs during the resting state, where all the state variables take similar values, we
can focus our attention on the connection change during the bursting state. As seen
in Fig. 7.14, the onset of bursts is highly synchronized among units in the early time
steps. However, the timing of the burst offsets is quite diverse among units: some
units take much longer time steps to return to the resting state. It is highly likely
that such units rapidly lose their outgoing connection weights to most of the other
units, which are already in the resting state and whose state variables have quite
similar values. This can be stated in the opposite way: the units that return to the
resting state earlier than the other units are likely to grow their outgoing connection
weights.

Based on this consideration, the mechanism of structure formation in this model
can be summarized as follows. At the beginning, all units have the same amount
of outgoing connection weights. Through the temporal evolution, more and more
units lose their outgoing connection weight by failing to return quickly to the resting
state after each burst. This process leads to the concentration of outgoing connection
weights to a small fraction of units. Such units work as pacemakers and drive the
other units to burst synchronously. Once a group of synchronously bursting units is
formed, the connection between the units in different groups is weakened, because
they burst with different timings. Thus, groups are separated and gain a certain
degree of stability.

7.4 Formation of Hierarchical Network Structure Triggered by
External Input

So far, we have considered the models composed of identical units and studied
how heterogeneous network structure emerges from the homogeneous condition.
However, it would also be of general interest to study how externally induced het-
erogeneity influences the formation of network structure. Here we briefly review
the study of a model where the application of external input to a part of the system
triggers the self-organization of a nontrivial network structure [18].
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The model is formulated as follows:

xi
n+1 = xi

n + ω + K

2π
sin 2πxi

n + c

2π

∑

j

wi j
n sin 2πx j

n + I i , (7.14)

where I i is the external input to unit i . This model is essentially same as the one in
the previous section, except for the slight difference in the manner of coupling. The
dynamics of connection weights wi j

n are same as in the previous models (Eq. (7.3)).
For appropriate sets of parameter values (for example, (ω, K , c, δ)=(0,4.1,1.0,0.1),

which is used in the simulations shown below) in the desynchronized phase, this sys-
tem shows self-organization into a nontrivial network structure upon the application
of a constant external input to an arbitrary unit in the system. In this study, network
structure is examined after mapping the network to a graph using digitization of
connections, i.e. considering only the connections having a large weight, namely
larger than 1.0, and ignoring weak ones. In order to examine the network structure
using the obtained graph, a proper measure that extracts a salient network struc-
ture is necessary. By examining the connection matrix, we found that the generated
network structure is characterized by “layers” of nodes. Layers in the network are
defined as follows: first, we define the root node, which is the only node that belongs
to the first layer, and then, define the subsequent layers as the group of the units that
receives direct link from a unit in the previous layer.

In Fig. 7.18, the graph of the network generated under the application of an exter-
nal input to a single unit (unit 00 in the figure) is illustrated by using this digitization,

Fig. 7.18 The graph obtained from the connection matrix by digitalizing connections with a certain
threshold. Circles represent units and the numbers inside are the unit IDs. Only unit 00 is supplied
with external input, and this unit is the only constituent of the 1st layer. The arc of the units next
to unit 00 is the 2nd layer, and the arc next to it is the 3rd layer, . . . and so forth. The lines between
circles are the links of the graph. Thin lines are the links directed from left to right and thick lines
are bidirectional links. Dashed lines represent NLSC, i.e., the links between distant layers
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Fig. 7.19 Time series of the numbers of LSC and NLSC. The onset and the offset of external input
are indicated by the arrows in the graph. See the main text for the definitions of LSC and NLSC

where layers are organized with the input unit at the root. Five layers are recognized
in this case. A surprising finding about the networks self-organized in this model
is that the most of connections are between neighbouring layers or within a layer,
and that only little fraction of connections are between distant layers. Indeed, in
Fig. 7.18, all the connections but one, which is drawn with dashed line, are between
neighbouring layers or within a layer.

Here, we denote the connections between neighbouring layer or within a layer
as layer structural connections (LSC) and the connections between distant layers as
non-layer structural connections (NLSC). In Fig. 7.19, the numbers of LSC and
NLSC are plotted in time. Note that the external input is applied only between
10,000th and 30,000th steps. After the application of input at 10,000th step, the
number of NLSC shows a substantial decrease. Moreover, immediately after the
cut-off of the input, the number of NLSC recovers to the same level as before the
application of the input. This result clearly shows that the formation of the layered
structure is dependent on the application of external input.

Some interesting dynamical properties such as a power law distribution of the
lifetime of unit in a layer have been observed in this model, but the mechanism for
this type of structure formation has not yet been uncovered.

7.5 Summary and Discussion

To summarize, we have introduced three types of coupled map models in order
to study the self-organization of network structure in adaptive networks. First we
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have shown the result of a coupled logistic-map system with Hebbian connection
dynamics. In this system, we found spontaneous separation of units into two groups,
one consisting of units with strong outgoing connections and the other consisting of
units with weak outgoing connections. Only a small fraction of units belongs to the
former group, and the rest of the units belonging to the latter are just driven by the
dynamics of the former. Thus, the units with strong outgoing connections have more
influence on the dynamics of the other units. In this sense, the emergence of a group
of units with strong outgoing connections can be interpreted as the emergence of
leadership in a population.

A similar self-organized network structure was observed in the second type of
model, i.e., a coupled circle-map system. In this model, units self-organize into some
synchronously bursting groups, and each group has a pacemaker unit which has
strong outgoing connections and drives the dynamics of the other units. Though
this model shows quite different unit dynamics from the logistic map model, its
self-organized network structure is similar to that of the logistic map model in the
point that only a small fraction of units attain the influential positions. This suggests
that the emergence of leadership may be a general phenomenon in some class of
adaptive networks.

It should be stressed that in these models all units are identical and the initial net-
work structure is uniform, all-to-all connection. This means that the leaders emerge
spontaneously from a homogeneous population, without any individual differences
among units. In the third model, where external input is applied to only one unit in
the system, units are not homogeneous. The self-organized structure in this system
is more complex than in the other models: units self-organize into a hierarchical
structure, where the unit with external input is located at the root and the other unit
form several layers with decreasing centricity from the root node. There is a rule
in the connectivity between the units in different layers, i.e. connections between
distant layers are avoided. Thus, application of input to only one unit causes global
reorganization of connection structure. This might be regarded as another example
of the emergence of a leader which has strong influence on the behavior of the whole
system.

We studied the mechanism of structure formation for the first model in detail, and
extracted the steps of the process. First, variability among units is created by unit
dynamics (the variability in the TGH interval is created by the chaotic dynamics).
Then, in the next step, this variability is imprinted in connection weights (there is
a simple relationship between TGH interval and the average correlation of units,
which is directly reflected in the connection change). Finally, the connection struc-
ture influences the unit dynamics (we confirmed that units with strong outgoing
connections have long TGH interval, resulting in the amplification of the variability
in TGH interval). Thus, a closed loop of the interaction between unit dynamics and
connection changes is formed. This results in a stable growth of network structure.

Such a feedback process is not properly at work in the second model, which
might be the reason for the weaker stability of the structure in this model. There, the
timing of returning to the resting state after bursts is distributed, and this variation
is reflected in the outgoing connection strength. Up to here, the process is quite
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similar to that in the first model. However, the last step is missing in the second
model, and hence the feedback loop is not closed. If there were a process that makes
pacemakers return quickly to the resting state, the network structure in this model
should be stable. Instead, this model has a process such that a stronger outgoing
connection enhances the burst synchrony within a group, which only weakens the
connections between units in different groups.

We expect that the mechanism of the structure formation we have found here is
rather general in adaptive networks with mutual feedback between chaotic dynam-
ics and coupling with Hebbian-type dynamics. These three steps for the structure
formation clarified above will be discovered in other class of models of adaptive
networks where the emergence of leadership (or strong heterogeneity) is observed,
or, conversely, it will be possible to design a system to form leaders spontaneously
from a homogeneous population by implementing these three steps in the system’s
dynamics.
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manuscript.
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