
Chapter 5
Self-Organized Criticality and Adaptation
in Discrete Dynamical Networks

Thimo Rohlf and Stefan Bornholdt

Abstract It has been proposed that adaptation in complex systems is optimized
at the critical boundary between ordered and disordered dynamical regimes. Here,
we review models of evolving dynamical networks that lead to self-organization of
network topology based on a local coupling between a dynamical order parameter
and rewiring of network connectivity, with convergence towards criticality in the
limit of large network size N . In particular, two adaptive schemes are discussed and
compared in the context of Boolean Networks and Threshold Networks: (1) Active
nodes loose links, frozen nodes aquire new links, (2) Nodes with correlated activity
connect, de-correlated nodes disconnect. These simple local adaptive rules lead to
co-evolution of network topology and -dynamics. Adaptive networks are strikingly
different from random networks: They evolve inhomogeneous topologies and broad
plateaus of homeostatic regulation, dynamical activity exhibits 1/ f noise and attrac-
tor periods obey a scale-free distribution. The proposed co-evolutionary mechanism
of topological self-organization is robust against noise and does not depend on the
details of dynamical transition rules. Using finite-size scaling, it is shown that net-
works converge to a self-organized critical state in the thermodynamic limit. Finally,
we discuss open questions and directions for future research, and outline possible
applications of these models to adaptive systems in diverse areas.

5.1 Introduction

Many complex systems in nature, society and economics are organized as networks
of many interacting units that collectively process information or the flow of matter
and energy through the system; examples are gene regulatory networks, neural net-
works, food webs in ecology, species relationships in biological evolution, economic
interaction and the internet. From an abstract point of view, one can distinguish net-
work structure, i.e. the (typically directed) graph that describes the wiring of interac-
tions between the nodes the network is composed of, and network dynamics, refer-
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ring to certain state variables assigned to the nodes which can change in response
to inputs or perturbations from other nodes. In the case of the genome, for example,
dynamics of regulatory networks, as captured in changes of gene expression levels,
results from repression and -activation of gene transcription controlled by regulatory
inputs (transcription factors) from other genes [25].

A main characteristic of all these systems is that they evolve in time, under
the continuous pressure of adaptation to highly dynamic environments. Since net-
work topology and dynamics on the network are typically tightly interrelated, this
implies a co-evolutionary loop between a time-varying network wiring and adaptive
changes in the nodes’ dynamics. For example, there is evidence from the analysis
of gene regulatory networks that interactions between genes can change in response
to diverse stimuli [58], leading to changes in network toplogy that can be far greater
than what is expected from random mutation. In the case of nervous systems, it is
evident that self-organization and adaptation processes have to continue throughout
the lifetime of a network, since learning is a major function of such networks. In
this context, a major conceptual challenge lies in the fact that, in order to properly
function as information processing systems, adaptive networks have to be, on the
one hand, highly robust against random (or dys-functional) perturbations of wiring
and dynamics (noise) [5, 9, 90], and, on the other hand, stay responsive to essential
cues (information) from the environment that can change in time. While robustness
would clearly favor highly ordered dynamics that is basically insensitive to any
perturbation, sensitivity and adaptive pressure tend to favor an ergodic sampling
of the accessible state space. The latter comes with the risk of leading network evo-
lution into regimes of chaotic dynamics with large parameter ranges where network
dynamics is not easily controlled [63].

Two interesting and interrelated questions arise: First, is there a critical point,
given by specific values of order parameters that characterize network toplogy and
-dynamics, where adaptive dynamics with its delicate balance between robustness
and flexibility is optimized? Second, can we find simple, very general principles
of network self-organization from local co-evolutionary rules that couple network
rewiring and -dynamics such that the network globally evolves to this point?

In the inanimate world, phase transitions from ordered to disordered dynam-
ics at critical values of a system parameter are found in several classes of many
particle systems, as for example in ferromagnets, where the system can main-
tain spontaneous magnetization below the Curie temperature, while above this
critical point disorder induced by thermal fluctuations wins. Similar transitions
form an organized to a disorganized state also have been observed in living sys-
tems, for example in enzyme kinetics [64], growth of bacterial populations [66]
and brain activity [43]. Most biological networks are different in many regards
from the many particle systems as considered in standard statistical mechanics.
In particular, interactions between units are typically asymmetric and directed,
such that a Hamiltonian (energy function) does not exist. Furthermore, to make
global dynamical properties accessible despite the overall stunning degree of com-
plexity found in these networks, a number of simplifying assumptions have to
be made.
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In this line, random Boolean networks (RBN) were proposed as simplified model
of large gene regulatory networks [39, 88]. In these models, each gene receives
a constant number K of regulatory inputs from other genes. Time is assumed to
proceed in discrete steps. Each gene i is either “on” or “off”, corresponding to a
binary state variable σi ∈ {0, 1}, which can change at time t according to a (fixed)
Boolean function of its inputs at time t − 1 (a more formal definition will be given
in Sect. 5.2.2). RBNs can easily be generalized to a variable number of connec-
tions per node, and “biased” update rules 1 Despite its simple deterministic update
rule, this model exhibits rich dynamical behavior. In particular, RBNs exhibit an
order-disorder phase transition when each unit has on average two inputs from other
nodes2 [29].

Combinatorial and statistical methods have provided quite detailed knowledge
about properties of RBNs near criticality [3, 4, 11, 12, 16, 17, 23, 24, 30, 32, 35, 40–
42, 44, 45, 55–57, 79, 83]. The second class of discrete dynamical networks that
we will consider are Random Threshold Networks (RTN) with sparse asymmetric
connections (for details, cf. Sect. 5.2.3). Networks of this kind were first studied as
diluted, non-symmetric spin glasses [26] and diluted, asymmetric neural networks
[28, 47]. For the study of topological questions in networks, a version with discrete
connections ci j = ±1 is convenient and will be considered here. It is a subset of
Boolean networks with similar dynamical properties. Random realizations of these
networks exhibit complex non-Hamiltonian dynamics including transients and limit
cycles [10, 49]. In particular, a phase transition is observed at a critical average
connectivity Kc with lengths of transients and attractors (limit cycles) diverging
exponentially with system size for an average connectivity larger than Kc. A the-
oretical analysis is limited by the non-Hamiltonian character of the asymmetric
interactions, such that standard tools of statistical mechanics do not apply [28].
However, combinatorial as well as numerical methods provide a quite detailed pic-
ture about their dynamical properties and correspondence with Boolean Networks
[10, 11, 27, 29, 30, 35, 48, 49, 57, 65, 75, 77, 79].

From the observation that complex dynamical behavior in these simple model
systems is primarily found near criticality, Kauffman [39, 40] and other researchers
[50, 91] postulated that evolution should drive living systems to this “edge of chaos”.
Indeed, a number of parameters that are highly relevant for biological systems, as,
for example, robustness [40] and basin entropy [46] of attractors (limit cycles),
mutual information in the switching dynamics of nodes [55, 73] and information
diversity in structure-dynamics relationships [68] are maximized near the order-
disorder transition of RBNs, supporting the idea that this point provides unique
properties for balancing the conflicting needs of robustness and adaptive flexibility.
Today, experimental results provide strong support for the idea that many biological

1 The bias is typically parameterized in terms of a stochastic control parameter p, which determines
the probability that a particular input configuration generates the output “1”.
2 This critical connectivity Kc = 2 refers to the simplest case, when all Boolean functions
have equal probability to occur. For the case of biased update rules, this generalizes to Kc =
1/(2p(1 − p)).
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systems operate in a regime that shares relevant properties with criticality in ran-
dom networks. Indications for critical behavior were found, for example, in gene
expression dynamics of several organisms [67, 72, 82] and in neuronal networks
in the brain [14, 52]. Since, in all these systems, there generally exists no central
control that could continuously adjust system parameters to poise dynamics at the
critical state, we are forced to postulate that there are simple, local adaptive mecha-
nisms present that are capable of driving global dynamics to a state of self-organized
criticality. Evolution towards self-organized criticality was established in a number
of non-equilibrium systems [6], namely, avalanche models with extremal dynamics
[8, 71], multi-agent models of financial markets [59], forest fires [60] and models of
biological macroevolution [31]. Still, these approaches are limited in the sense that
they consider a fixed or at least pre-structured topology.

Network models of evolving topology, in general, have been studied with respect
to critical properties earlier in other areas, e.g., in models of macro-evolution [84].
Network evolution with a focus on gene regulation has been studied first for Boolean
networks in [20] observing self-organization in network evolution, and for threshold
networks in [21]. Combining the evolution of Boolean networks with game theoret-
ical interactions is used for model networks in economics [70].

Christensen et al. [22] introduced a static network with evolving topology of
undirected links that explicitly evolves towards a critical connectivity in the largest
cluster of the network. In particular they observed for a neighborhood-oriented
rewiring rule that the connectivity of the largest cluster evolves towards the criti-
cal Kc = 2 of a marginally connected network. However, in this model the core
characteristics of adaptive networks, a co-evolution between dynamics and topol-
ogy [37], is hard to establish, since the evolution rule, here chosen according to
the Bak-Sneppen model of self-organized criticality [7], does not provide a direct
coupling between rewiring of connections and an order parameter of the dynamics
on the networks.

Keeping the idea of local connectivity adaptations, a different line of research
pursues models of adaptive co-evolutionary networks in the context of discrete
dynamical networks, in particular based on RBNs and RTNs. The common prin-
ciple in these models is the coupling of local rewiring events to approximate, local
measurements of a dynamical order parameter. In the limit of large network sizes
N , this principle leads to network evolution towards a global self-organized critical
state. Bornholdt and Rohlf [19] introduced a topology-evolving rule based on the
dynamical activity of nodes in RTNs: Active nodes, whose binary state changes
in time, tend to lose links, while inactive (frozen) nodes, whose binary states are
fixed, tend to gain new links. In a recent extension [76], also adaptive changes of
the nodes’ activation thresholds were considered. A very similar co-evolutionary
rule was applied to RBNs by Liu and Bassler [53]; besides the case where only the
rewired node is assigned a new Boolean function, they also consider “annealed”
networks, where each node is assigned a new logical function in each evolutionary
time step. Teuscher and Sanchez [87] showed that this adaptive principle can also
be applied to turing neural networks. Self-organized critical neural networks with
stochastic dynamics and a rewiring rule based on dynamical correlations between
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nodes was studied by Bornholdt and Röhl [18], observing robust self-organization
of both network toplogy and -dynamics. In the same context, Bertschinger et al.
[15] studied a synaptic scaling rule leading to self-organized criticality in recurrent
neural networks. A different adaptive scheme, based on a input-dependent discon-
nection rule and a minimal connectivity in RBNs, was studied by Luque et al. [54].
A perturbation analysisindicates the emergence of self-organized critical behavior.

The remainder of this chapter is organized as follows: in Sect. 5.2, the dynamics
of RBNs and RTNs are defined and basic dynamical and statistical properties of
these systems are summarized. In particular, central order parameters that are rele-
vant for the definition of adaptive algorithms will be introduced. In Sect. 5.3, we will
review different models of adaptive, discrete dynamical networks leading to evolu-
tion towards self-organized criticality that have been established in this context so
far, with a focus on activity- and correlation-based rewiring rules. Finally, Sect. 5.4
contains a summary and conclusions.

5.2 Dynamics of Random Boolean Networks and Random
Threshold Networks

In this section, we provide definitions for the two types of discrete dynamical
networks under consideration, Random Boolean Networks and Random Thresh-
old Networks. First, the underlying graph structure that connects dynamical units
(automata) is defined, then dynamical update rules are provided. Further, basic
dynamical properties of these systems are summarized.

5.2.1 Underlying Graph Structure

Concerning topology, discrete dynamical networks are described by random directed
graphs G(N , Z , g), where N is the number of nodes, Z the number of edges or links
(arrows connecting nodes), and g a function that describes the statistical distribution
of the links between nodes. Arrows pointing at a node are considered as inputs,
arrows pointing from this node to another node as outputs. If, for example, Z links
out of the 2N 2 possible are assigned at random such that the average connectivity
K̄ := Z/N is fixed at a predefined value and Z � 2N 2 (sparse network), the
resulting statistical distributions of the number k of inputs and outputs follow a
Poissonian [34]:

P(k) = K̄ k

k!
exp (−K̄ ). (5.1)

A schematic example of interaction graph structure is shown in the left panel of
Fig. 5.1.
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Fig. 5.1 Left panel: example of an interaction graph structure for a RBN of size N = 5 with
average connectivity K̄ = 6/5; fi are individual Boolean functions assigned to each node i =
1, .., 5, black circles mark σi = 1, white circles σi = 0. Right panel: example of a Boolean update
table assigned to a site (AND function of the site’s inputs)
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Fig. 5.2 Schematic sketch of a threshold dynamical unit: input states (circles on the left, black
circles correspond to a state σ j = +1, white circles to σ j = −1) are multiplied (�) with interaction
weights ci j (lined arrows: ci j = +1, dashed arrows: ci j = −1); these values are summed (Σ) and
added to a threshold. Finally, the output σi (t + 1) is determined by the sign (+/−) of the resulting
signal
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Fig. 5.3 Example of a dynamical trajectory for a N = 5 Boolean network, time is running from
left to right, network nodes are labeled from top to bottom. Black squares correspond to σi = 1,
white squares to σi = 0. After a transient of Θ = 3 system states Σ the first state A1 appears that
repeats itself after Γ = 4 time steps, defining a periodic attractor (limit cycle) with period 4
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5.2.2 Random Boolean Networks

A Random Boolean Network (RBN) is a discrete dynamical system composed of
N automata. Each automaton is a Boolean variable with two possible states: {0, 1},
and the dynamics is such that

F : {0, 1}N �→ {0, 1}N , (5.2)

where F = ( f1, ..., fi , ..., fN ), and each fi is represented by a look-up table of Ki

inputs randomly chosen from the set of N automata. Initially, Ki neighbors and a
look-up table are assigned to each automaton at random.

An automaton state σi (t) ∈ {0, 1} is updated using its corresponding Boolean
function:

σi (t + 1) = fi (σi1 (t), σi2 (t), ..., σiKi
(t)). (5.3)

We randomly initialize the states of the automata (initial condition of the RBN).
The N automata are updated synchronously using their corresponding Boolean
functions, leading to a new system state Σ := (σ1, ..., σN ):

Σ(t + 1) = F(Σ(t)). (5.4)

The right panel of Fig. 5.1 provides an example of an individual update table
assigned to a network site.

5.2.3 Random Threshold Networks

A Random Threshold Network (RTN) consists of N randomly interconnected binary
sites (spins) with states σi = ±1. For each site i , its state at time t + 1 is a function
of the inputs it receives from other spins at time t :

σi (t + 1) = sgn ( fi (t)) (5.5)

with

fi (t) =
N∑

j=1

ci jσ j (t) + h. (5.6)

The N network sites are updated synchronously. In the following discussion the
threshold parameter h is set to zero. The interaction weights ci j take discrete values
ci j = +1 or −1 with equal probability. If i does not receive signals from j , one has
ci j = 0.
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5.2.4 Basic Dynamical Properties of RBNs and RTNs

Let us review a few aspects of the dynamics of Random Boolean Networks and
Random Threshold Networks. In fact, they share most basic properties which is
closely related to the fact that RTNs are a subset of RBNs.

5.2.4.1 Attractors and Transients

Update dynamics as defined in 5.2.2 and 5.2.3, given the binary state σi (t) of each
node i at time t − 1, assigns a state vector Σ(t) = (σ1(t), ..., σN (t)) to the network
at each discrete time step t . The path that Σ(t) takes over time t is a dynamical
trajectory in the phase space of the system. Since the dynamics is deterministic
and the phase space of the system is finite for finite N , all dynamical trajectories
eventually become periodic. When we start dynamics from a random initial state,
e.g. with each σi (0), i = 1...N set to 0 or 1 (−1 or +1 for RTN, respectively)
independent from each other with equal probability p = 1/2, the trajectory will
pass through Θ transient states before it starts to repeat itself, forming a limit cycles
given by

Σ(t) = σ (t + Γ ). (5.7)

The periodic part of the trajectory is the attractor of the dynamics, and the mini-
mum Γ ≥ 1 that satisfies Eq. (5.7) is the period of the attractor.

5.2.4.2 Definition of Average Activity and Average Correlation

Let us now define two local measures that characterize the typical dynamical behav-
ior of a network site, and the dynamical coordination of pairs of sites.

The average activity A(i) of a site i is defined as the average over all states σi (t)
site i takes in dynamical network evolution between two distinct points of time T1

and T2:

A(i) = 1

T2 − T1 + 1

T2∑

t=T1

σi (t) (5.8)

“Frozen” sites i which do not change their states between T1 and T2 obviously
have |A(i)| = 1 (or |A(i)| = 0, in the case of RBN), whereas sites that occasionally
change their state have 0 ≤ |A(i)| < 1. The average correlation Corr(i, j) of a
pair (i, j) of sites is defined as the average over the products σi (t)σ j (t) in dynamical
network evolution between two distinct points of time T1 and T2:

Corr(i, j) = 1

T2 − T1 + 1

T2∑

t=T1

σi (t)σ j (t) (5.9)
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If the dynamical activity of two sites i and j in RTN is (anti-)correlated, i.e. if σi

and σ j always have either the same or the opposite sign, one has |Corr(i, j)| = 1.3

If the relationship between the signs of σi and σ j occasionally changes, one has
0 ≤ |Corr(i, j)| < 1.

5.2.4.3 Properties of A(i) and Corr(i, j ) and Their Relation to Criticality

If we consider statistical ensembles of randomly generated networks with sparse
wiring (K̄ � N ), both A(i) and Corr(i, j) of RBNs and RTNs exhibit a second
order phase transition at a critical average connectivity Kc (averaged over the whole
network ensemble). Below Kc, network nodes are typically frozen, above Kc, a
finite fraction of nodes is active; this can be clearly appreciated from the behavior
of the frozen component C(K̄ ), defined as the fraction of nodes that do not change
their state along the attractor. The average activity A(i) of a frozen site i thus obeys
|A(i)| = 1. In the limit of large N , C(K ) undergoes a transition at Kc vanishing for
larger K . With respect to the average activity of a node, C(K ) equals the probability
that a random site i in the network has |A(i)| = 1. Note that this is the quantity
which is checked stochastically by the local rewiring rule that will be discussed in
Sect. 5.3.1.2. The frozen component C(K , N ) is shown for random networks of two
different system sizes N in Fig. 5.4. One finds that C(K , N ) can be approximated by

Fig. 5.4 The frozen component C(K , N ) of random threshold networks, as a function of the net-
works’ average connectivities K . For both system sizes shown here (N = 256 and N = 1,024) the
data were measured along the dynamical attractor reached by the system, averaged over 1,000 ran-
dom topologies for each value of K . One observes a transition around a value K = K0 approaching
Kc = 2 for large N . A sigmoid function fit is also shown. To avoid trapping in exponential diver-
gence of attractor periods for K > 2, the simulations have been limited to Tmax = 10,000. The
mismatch of data and fit for N = 1,024, K ≥ 2.75 is due to this numerical limitation

3 In RBN, correlated pairs have |Corr(i, j)| = 1 and anti-correlated pairs |Corr(i, j)| = 0.
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C(K , N ) = 1

2
{1 + tanh [−α(N ) · (K − K0(N ) )]}. (5.10)

This describes the transition of C(K , N ) at an average connectivity K0(N ) which
depends only on the system size N . One finds for the finite size scaling of K0(N )
that

K0(N ) − 2 = a · N−β (5.11)

with a = 3.30 ± 0.17 and β = 0.34 ± 0.01 (see Fig. 5.5), whereas the parameter α

scales with system size as

α(N ) = b · N γ (5.12)

with b = 0.14 ± 0.016 and γ = 0.41 ± 0.01. This indicates that the transition of
C(K , N ) exhibits a sharp decay near the critical connectivity Kc when the thermo-
dynamic limit N → ∞ is approached.

The number of frozen nodes is a decisive quantity for the evolution of adaptive
networks. If all nodes are frozen (C = 1), as it is typically found for networks with
very sparse K̄ , the network is basically irresponsive to signals from the environment
and hence can neither process information nor adapt. If, on the other hand, C van-
ishes, all nodes exhibit more or less chaotic switching behavior – dynamics becomes
completely autonomous and hence again useless for information processing. A finite
number of frozen nodes, as it is found near Kc, enables adaptive response to envi-
ronmental signals by assignment of new, functional behavior to previously frozen
nodes, and also makes sure that global network dynamics avoids the extremes of
overly ordered and chaotic regimes. In the following section, we will discuss mod-
els of adaptive network evolution by local dynamical rules that lead to emergence

Fig. 5.5 The finite size
scaling of the transition value
K0, obtained from sigmoidal
fits as shown in Fig. 5.4. K0

approaches Kc = 2 with a
scaling law ∼N−β ,
β = 0.34 ± 0.01. The inset
shows the scaling behavior of
the parameter α(N ); one finds
α(N )∼N γ , γ = 0.41 ± 0.014
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of self-organized critical networks, i.e. networks that evolve to the “optimal” point
just at the phase transition from ordered to chaotic dynamics.

5.3 Network Self-Organization from Co-evolution of Dynamics
and Topology

In this section, we will discuss models of adaptive network self-organization in the
context of discrete dynamical networks. The common principle that governs net-
work evolution is a co-evolution of dynamics and topology from local dynamical
rules: An order parameter of network dynamics is estimated from local measure-
ments (often averaged over a representative number of dynamical update cycles,
e.g., over one attractor period of a limit cycle the dynamics converged to, cf.
Sect. 5.2.4.1). Based on the measured value of the order parameter, network con-
nectivity and/or the switching behavior of nodes is adapted by local adaptive rules.
Usually, there is a time scale separation between frequent dynamical updates and
rare rewiring events. After a large number of adaptive cycles, evolution towards a
self-organized critical state is observed.

5.3.1 Activity-Dependent Rewiring

5.3.1.1 Motivation

Living organisms process their information by dynamical systems at multiple levels,
e.g. from gene regulatory networks at the cellular level, to neural networks in the
central nervous system of multi-cellular organisms. As complex adaptive systems,
organisms have to deal with the conflicting needs of flexible response to chang-
ing environmental cues, while maintaining a reasonable degree of stability in the
dynamical networks that process this information. This led to the idea that these
systems may have evolved to the “edge of chaos” between ordered and disordered
dynamical regimes [40, 50]. In the following, a simple evolutionary mechanism will
be introduced [19], based on a local coupling between a dynamical order parame-
ter – the average activity of dynamical units (sites) in RTNs (Eq. 5.8) – and a topo-
logical control parameter – the number of inputs a site receives from other units. In
a nutshell, the adaptive rule can be summarized as frozen nodes grow links, active
nodes lose links. This rule abstracts the need for both flexibility and stability of
network dynamics. In a gene regulatory network, for example, a frozen gene cannot
respond to different inputs it may receive, and hence is practically dysfunctional; the
addition of a new regulatory input potentially assigns a new function to this gene.
On the other hand, a very active gene will tend to show chaotic switching behavior
and may lead to loss of stability in network dynamics – a reduction in input number
reduces the probability of this undesirable behavior [78]. Similar demands for a
local, homeostatic regulation of activity and connectivity can be expected in neural
networks of the nervous system and are supported by experimental evidence [33].
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5.3.1.2 Model

Let us consider a Random Threshold Network of N randomly interconnected binary
elements as defined in Sect. 5.2.3. In the beginning, network topology is initialized
as a directed, random graph with connectivity distributed according to a Poissonian
with average connectivity Kini (cf. Sect. 5.2.1), and ci j = +1 or ci j = −1 with
equal probability for non-vanishing links. While network evolution is insensitive to
Kini in general (as will be shown), we choose 0 < Kini < 3 in simulations to obtain
reasonably fast convergence of the evolutionary dynamics. Network dynamics is
iterated according to Eq. (5.5) starting from a random initial state vector Σ(0) =
(σ1(0), ..., σN (0)), with σi = +1 or σi = −1 with equal probability for each i .
After T iterations, the dynamical trajectory eventually reaches a periodic attractor
(limit cycle or fixed point, compare Sect. 5.2.4.1). Then we apply the following
local rewiring rule to a randomly selected node i of the network: If node i does not
change its state during the attractor, it receives a new non-zero link ci j from
a random node j . If it changes its state at least once during the attractor, it
loses one of its non-zero links ci j . Iterating this process leads to a self-organization
of the average connectivity of the network. The basic idea of this rewiring rule is
sketched schematically in Fig. 5.6, a particular algorithmic realization is provided in
Box 5.1.

Fig. 5.6 The selective
criterion leading to
topological self-organization:
A dynamically frozen site
(|A(i)| = 1) receives an
additional regulatory input,
an active site (|A(i)| < 1)
looses one of its inputs

Box 5.1 Adaptive algorithm for activity-dependent rewiring

This box gives an example of an adaptive algorithm that realizes the local
rewiring rule “frozen nodes grow links, active nodes lose links” [19]:

1. Choose a random network with an average connectivity Kini .
2. Choose a random initial state vector Σ(0) = (σ1(0), ..., σN (0)).
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3. Calculate the new system states Σ(t) according to Eq. (5.2), using par-
allel update of the N sites.

4. Once a previous state reappears (a dynamical attractor with period Γ

is reached) or otherwise after Tmax updates the simulation is stopped.
Then, a site i is chosen at random and its average activity A(i) during
the last T = Γ time steps is determined (in case no attractor is reached,
T = Tmax/2 is chosen).

5. If |A(i)| = 1, i receives a new link ci j from a site j selected at random,
choosing ci j = +1 or −1 with equal probability. If |A(i)| < 1, one of
the existing non-zero links of site i is set to zero.

6. Finally, one non-zero entry of the connectivity-matrix is selected at ran-
dom and its sign reversed.

7. Go to step number 2 and iterate.

5.3.1.3 Results

The typical picture arising from the model as defined above is shown in Fig. 5.7
for a system of size N = 1, 024. Independent of the initial connectivity, the system
evolves towards a statistically stationary state with an average connectivity Kev(N =
1, 024) = 2.55 ± 0.04. With varying system size we find that with increasing N the
average connectivity K̄ approaches Kc (which, for threshold h = 0 as considered
here, is found slightly below K̄ = 2 [77]), see Fig. 5.8. In particular, one can fit the
scaling relationship

Fig. 5.7 Evolution of the average connectivity of threshold networks rewired according to the rules
described in the text, for N = 1,024 and two different initial connectivities (Kini = 1.5 and Kini =
3.0). Independent of the initial conditions chosen at random, the networks evolve to an average
connectivity Kev = 2.55 ± 0.04. The plot shows the time series and the corresponding cumulative
means for Kev. The evolutionary time t is discrete, each time step representing a dynamical run on
the evolved topology. Individual runs were limited to Tmax = 1,000 iterations
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Fig. 5.8 The average connectivity of the evolved networks converges towards Kc with a scaling
law ∼N−δ , δ = 0.47 ± 0.01. For systems with N ≤ 256 the average was taken over 4 · 106 time
steps, for N = 512 and N = 1,024 over 5 · 105 and 2.5 · 105 time steps, respectively. Finite size
effects from Tmax = 1,000 may overestimate Kev for the largest network shown here

Kev(N ) − 2 = c · N−δ (5.13)

to the measured connectivity values with c = 12.4±0.5 and δ = 0.47±0.01. In the
evolutionary steady state, the average connectivity K̄ of evolving networks exhibits
limited fluctuations around the evolutionary mean Kevo which are approximately
Gaussian distributed, with a variance vanishing ∼1/N [74].

Going beyond averaged topological quantities, one can also measure the degree
distributions of inputs and outputs in evolving networks, and compare it to what is
expected for random networks (cf. Sect. 5.2.4.3). In finite size networks, substantial
deviations from random graphs are found [78]: While the outdegree distribution
stays close to the Poissonian of a random graph, evolved in-degree distributions
are considerably flatter. For the averaged statistical distribution p(K ) of in-links
(Fig. 5.9) of the evolving networks one observes a flat exponential decay

p(K ) ≈ p0 · exp [−αK ], (5.14)

with p0, α = const. This observation indicates that the self-organized network state,
at least for finite N , is substantially different from random networks with the same
average connectivity. Since network evolution is based on co-evolutionary adapta-
tion of dynamics and topology by local rewiring rules, this raises the question of
whether the evolutionary statistically stationary state exhibits specific characteris-
tics and correlations between dynamical and toplogical order parameters also on the
global scale. This is indeed the case for finite N : If we compare, for example, the
frozen component C(K̄ ) or fraction of “frozen genes” for different values of connec-
tivity fluctuations around the evolutionary mean Kevo (Fig. 5.10), we observe that
this curve exhibits a broad plateau where activity is stabilized at intermediate values,



5 Self-Organized Criticality and Adaptation 87

Fig. 5.9 Statistical distribution p(K ) of the number of inputs K per node (gene) in the proposed
model for a network of size N = 64. Compared to the Poisson distribution for random networks
with K̄ = 4.46, it shows a flatter decay ∝ exp [−K ]

with almost step-like boundaries for small and large K̄ , whereas the correspond-
ing curve for random networks is much smoother and decays earlier (compare also
Sect. 5.2.4.3 for the phase transition observed in ensembles of random networks).
This indicates that coevolution of dynamics and topology extends to a global scale,
in spite of local rewiring events and a pronounced time scale separation between
dynamical and topological updates.4

Fig. 5.10 The frozen component C (fraction of frozen genes) as a function of the average connec-
tivity for an evolved network of size N = 64 (crosses). The dashed line shows the corresponding
curve for random networks

4 This time scale separation can be easily identified e.g. from step 4 of the adaptive algorithm
summarized in Box 5.1: After T dynamical system updates, one out of N sites is rewired, hence
time scale separation is at the order of T · N .
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Last, let us characterize dynamics on the evolving networks, and investigate in
how far it may exhibit signatures of self-organized critical behavior even in the
finite size networks we studied so far (which, concerning average connectivity, are
evidently super-critical). In contrast to random, noise-driven dynamics, where cor-
relations decay fast (typically as an exponential), the self-organized critical state
is characterized by non-trivial, long-range correlations in dynamical trajectories. A
convenient measure to characterize such long-range correlations is the power spec-
trum of the dynamical time series. Let us consider the autocorrelation function of a
time signal f (t), defined by

R(τ ) =
∫ +∞

−∞
f (t) f (t − τ ) dt. (5.15)

The power spectrum G( f ) is the Fourier transform of the autocorrelation func-
tion, i.e.

G( f ) =
∫ +∞

−∞
R(τ )e−2π i f τ dτ. (5.16)

In the case of time-discrete systems, the integrals are replaced by the correspond-
ing sums. For strongly (auto-)correlated systems, e.g. near the critical point, we
typically expect a flat decay of the power spectrum G( f )∼1/ f α with α ≈ 1, while
for a random walk, e.g., we would obtain α = 2. The dynamical order parameter
that we investigate is the global average activity at evolutionary time step t :

〈A〉(t) =
∣∣∣∣∣

1

N

N∑

i=1

Ai (t)

∣∣∣∣∣ . (5.17)

Figure 5.11 shows a typical snapshot of the time series of 〈A〉 on evolving
networks, the power spectrum is shown in Fig. 5.12. A least squares fit yields
G( f )∼1/ f α with α = 1.298 for the global average activity, i.e. a clear indication of
long-range correlations in dynamics [74]. Other measures of global dynamics also
show evidence for criticality, for example, the statistical distribution of attractor
periods is scale-free, as will be discussed in Sect. 5.3.3 for a RBN variant of the
model.

The self-organization towards criticality observed in this model is different from
other known mechanisms exhibiting the amazingly general phenomenon of self-
organized criticality (SOC) [7, 8, 71, 84]. Our model introduces a (new, and inter-
estingly different) type of mechanism by which a system self-organizes towards
criticality, here K → Kc. This class of mechanisms lifts the notions of SOC to
a new level. In particular, it exhibits considerable robustness against noise in the
system. The main mechanism here is based on a topological phase transition in
dynamical networks.

In addition to the rewiring algorithm as described in this chapter, a number of dif-
ferent versions of the model were tested. Including the transient in the measurement
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Fig. 5.11 Time series of the global average activity 〈A〉 (arbitrary time window of the evolutionary
process). Upper curve: Signal averaged over the whole network, lower curve: Signal averaged over
non-frozen nodes only

of the average activity A(i) results in a similar overall behavior (where we allowed a
few time steps for the transient to decouple from initial conditions). Another version
succeeds using the correlation between two sites instead of A(i) as a mutation cri-
terion (this rule could be called “anti-Hebbian” as in the context of neural network
learning). In addition, this version was further changed allowing different locations
of mutated links, both, between the tested sites or just at one of the nodes. All these
different realizations exhibit the same basic behavior as found for the model above.

Fig. 5.12 Power spectrum of the global average activity 〈A〉 over 105 evolutionary time steps,
averaged over all network sites (compare upper curve in Fig. 5.11, double-logarithmic plot. The
dashed line has slope −1.298
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Thus, the proposed mechanism exhibits considerable robustness. Interestingly, it
has been shown that this mechanism leads to robust topological and dynamical self-
organization also in other classes of dynamical networks. In particular, Teuscher and
Sanchez [87] showed that this rule can be generalized to Turing neural networks and
drives network evolution to Kc = 2 in the limit of large N .

In the next subsection, we will discuss an extension of the model that includes
adaptation of thresholds in RTN, in addition to rewiring of links. This extension still
exhibits robust self-organization as in the original model, however, exhibits several
interesting new features, namely, symmetry breaking of evolutionary attractors, and
correlation of dynamical and toplogical diversity.

5.3.2 Adaptive Thresholds – Time Scale Separation Leads
to Complex Topologies

So far, we assumed that dynamical units in the networks are homogeneous (identi-
cal) with respect to their switching behavior, which for real world networks usually
is a quite unrealistic assumption. Furthermore, recent studies have shown that inho-
mogeneity of thresholds leads to new and unexpected phenomena in RTNs, e.g.
an order-disorder transition induced by correlations between thresholds and input
number of nodes [75]. In the general case of inhomogeneous thresholds, we have to
modify Eq. (5.5) such that

fi (t) =
N∑

j=1

ci jσ j (t) + hi , (5.18)

where the indexed threshold hi now takes into account that thresholds can vary
from node to node. The only restriction we impose is hi ≤ 0, to make activation,
i.e. σi = +1, more difficult.

We now introduce a minimal model linking regulation of activation thresholds
and rewiring of network nodes in RTNs to local measurements of a dynamical order
parameter [76]. Adaptation of thresholds opens up for the possibility of units that
become heterogeneous with respect to their dynamical properties: Nodes with high
thresholds are inert and switch their state only for few input configurations (similar
to the effect of canalizing functions in RBNs), whereas nodes with low thresholds
are more likely to switch. A new control parameter p ∈ [0, 1] determines the prob-
ability of rewiring vs. threshold adaptations. In particular, the activity A(i) of a
site i can be controlled in two ways: If i is frozen, it can increase the probability
to change its state by either increasing its number of inputs ki → ki + 1, or by
making its threshold hi ≤ 0 less negative, i.e. |hi | → |hi | − 1. If i is active, it
can reduce its activity by adapting either ki → ki − 1 or |hi | → |hi | + 1. To
realize this adaptive scheme, we have to modify step 4 in the adaptive algorithm of
Box 5.1: A site i is chosen at random and its average activity A(i) during the last
T = Γ time steps is determined (in case no attractor is reached, T = Tmax/2
is chosen). If |A(i)| < 1, then ki → ki − 1 with probability p (removal of one
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randomly selected input). With probability 1− p, adapt |hi | → |hi |+1 instead.
If |A(i)| = 1, then ki → ki + 1 with probability p (addition of a new input
from a randomly selected site). With probability 1 − p, adapt |hi | → |hi | − 1
instead. If hi = 0, let its value unchanged. If the control parameter p takes values
p > 1/2, rewiring of nodes is favored, whereas for p < 1/2 threshold adaptations
are more likely. Notice that the model discussed in the last subsection is contained
as the limiting case p = 1 (rewiring only and hi = const. = 0 for all sites).

Results. After a large number of adaptive cycles, networks self-organize into a
global evolutionary steady state. An example is shown in Fig. 5.13 for networks with
N = 512: starting from an initial value K̄ini = 1, the networks’ average connectivity
K̄ first increases, and then saturates around a stationary mean value K̄evo; similar
observations are made for the average threshold h̄ (Fig. 5.13, lower panel). The
non-equilibrium nature of the system manifests itself in limited fluctuations of both
K̄ and h̄ around K̄evo and h̄evo. Regarding the dependence of K̄ with respect to p,
we make the interesting observation that it changes non-monotonically. Two cases
can be distinguished: When p = 1, K̄ stabilizes at a very sparse mean value K̄evo,
e.g. for N = 512 at K̄evo = 2.664 ± 0.005. When p < 1, the symmetry of this
evolutionary steady state is broken. Now, K̄ converges to a much higher mean value
K̄evo ≈ 43.5 ± 0.3 (for N = 512), however, the particular value which is finally
reached is independent of p. On the other hand, convergence times Tcon needed
to reach the steady state are strongly influenced by p: Tcon(p) diverges when p
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Fig. 5.13 Upper panel: Evolution of the average connectivity K̄ of threshold networks, using the
adaptive algorithm (cf. Fig. 5.1), for N = 512 and initial connectivity K̄ini = 1. Time series for
five different values of p are shown. Lower panel: The same for the average threshold h̄
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approaches 1 (compare Fig. 5.2 for p = 0.99). We conclude that p determines the
adaptive time scale. This is also reflected by the stationary in-degree distributions
p(kin) that vary considerably with p (Fig. 5.14); when p → 1, these distributions
become very broad. The numerical data suggest that a power law

lim
p→1

p(kin) ∝ k−γ

in (5.19)

with γ ≈ 3/4 ± 0.03 is approached in this limit (cf. Fig. 5.4, dashed line). At
the same time, it is interesting to notice that the evolved out-degree distributions are
much narrower and completely insensitive to p (Fig. 5.14, data points without lines).
Hence, we make the interesting observation of a highly robust self-organization and
homeostatic regulation of the average wiring density, while, at the same time in the
limit p → 1, time scale separation between frequent rewiring and rare threshold
adaptation leads to emergence of complex, heterogeneous topologies, as reflected
in the broad distribution of input numbers approaching a power law. Obviously, we
have a non-trivial coevolutionary dynamics in the limit p → 1 which is significantly
different from the limit of small p. This is also indicated by the emergence of strong
correlations between input number and thresholds in this limit (see the steep increase
of the curves for p > 0.5 in Fig. 5.15), while in the limit of small p correlations are
weak.

To summarize, we find that coevolution of both rewiring and threshold adaptation
with the dynamical activity on RTNs leads to a number of interesting new effects:
We find spontaneous symmetry breaking into a new class of adaptive networks that
is characterized by increased heterogeneity in wiring topologies and emergence of
correlations between thresholds and input numbers. At the same time, we find a
highly robust regulation of the average wiring density which is independent of p for
any p < 1.
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Fig. 5.14 Line-pointed curves: in-degree distributions of evolved networks, data points only: the
corresponding out-degree distributions ((�) p = 0.3, (+) p = 0.5, (x) p = 0.8, (*) p = 0.95,
(squares) p = 0.99). Statistics was gathered over 106 evolutionary steps, after a transient of 4 · 106

steps. Networks had size N = 512. The dashed line has slope −3/4
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Fig. 5.15 Average number 〈kin〉 of inputs for a given node in evolving networks, as a function of
the respective nodes (absolute) threshold |h|. Statistics was taken over 106 rewiring steps, after a
transient of 4 · 106 steps. For all values p < 1, a clear positive correlation between k̄in and |h| is
found

In the next subsection, we will discuss another generalization of the adaptive,
coevolutionary scheme of activity-dependent rewiring to Random Boolean Net-
works, which was introduced by Liu and Basler [53].

5.3.3 Extension to Random Boolean Networks

Activity-dependent rewiring was originally introduced for Random Threshold Net-
works, as discussed in Sect. 5.3.1.2, the basic adaptive scheme, however, can be
generalized to other classes of dynamical systems. Since RTN are a subclass of
Random Boolean Networks, one possible direction of generalization is to apply
this coevolutionary, adaptive rule to RBNs. Compared to RTNs, rewiring by local
dynamical rules in RBN comes with an additional complication: While in RTNs
the dynamical transition rule is the same for all network sites (the evaluation of
the weighted sum of regulatory inputs, cf. Eq. 5.6), switching of network nodes in
RBNs is governed by individual logical functions that vary from node to node and
depend on the input number k. If, for example, we have a node with two inputs
and a logical AND function of these two inputs assigned (compare the example
in Fig. 5.1), there does not exist a well-defined mapping that would assign a new
logical function to this node in the case we change its input number to k = 1
or k = 3.

Liu and Bassler [53] suggested two variants of activity-dependent rewiring to
overcome the problem associated to the reassignment of logical functions: in the
first variant, only the node that is rewired at evolutionary time step t is assigned
a new logical function which is randomly drawn out of the 22k

possible Bol-
lean functions of k inputs (where k is the new input number after rewiring).
The adaptive algorithm that was applied in this study is summarized in
Box 5.2.



94 T. Rohlf and S. Bornholdt

Box 5.2 Adaptive algorithm for activity-dependent rewiring in RBN

1. Start with a homogeneous RBN, G(N , K0) with uniform in-degree con-
nectivity Ki = K0 for all N , and generate a random Boolean function fi

for each node i .
2. Choose a random initial system state Σ(0). Update the state using

Eq. (5.4) and find the dynamical attractor.
3. Choose a node i at random and determine its average activity A(i) over

the attractor.
4. Change the network topology by rewiring the connections to the node

chosen in the previous step. If it is frozen, then a new incoming link
from a randomly selected node j is added to it. If it is active, then one
of its existing links is randomly selected and removed.

5. The Boolean functions of network are regenerated. Two different meth-
ods have been used:

• Annealed model: A new Boolean function is generated for every node
of the network.

• Quenched model: A new Boolean function is generated only for the
chosen node i , while the others remain what they were previously.

6. Return to step 2.

For simplicity, all random Boolean functions are generated with p = 1/2, and
therefore all Boolean functions with the same in-degree are equally likely to be
generated.

Results. Liu and Bassler show that for both variants of the model, robust self-
organization of network topology is found. Independent from the initial network
realization, network evolution always converges to a characteristic average connec-
tivity Kev(N ). Graph (a) of Fig. 5.16 shows the evolution of the average in-degree
connectivity K for networks of size N = 30 in the annealed variant of the model,
with results obtained by beginning with networks with different uniform connectiv-
ity K0 = 2, 3, 4, and 5. Each curve is the average of 15000 independent realizations
of the network evolution. All curves approach the same final statistical steady state
that has an average in-degree connectivity 〈K 〉 = 3.06. The steady state value of
〈K 〉 depends on the size of the system as shown in graph (b) of Fig. 5.16. Starting
with networks that all have the same initial uniform connectivity K0 = 4, but which
have different size N = 30, 50, and 100, one finds that larger networks evolve to
steady states with smaller values of 〈K 〉.

Given the steady state value 〈K 〉 = 2 in the large network limit N → ∞, Liu and
Bassler also studied the finite-size effects in the model. They found that the values
of 〈K (N )〉 for finite N obey the scaling function
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Fig. 5.16 (a). Evolution of the ensemble averaged in-degree connectivity in the annealed model,
as studied by Liu and Bassler [53], for networks of size N = 30. The networks in each ensemble
initially start from different uniform connectivity, K0 = 2, 3, 4, and 5, but reach a same statistical
steady state 〈K 〉 = 3.06. (b). Evolution of ensemble averaged in-degree connectivity for networks
of three different size N = 30, 50, and 100 in the annealed model

〈K (N )〉 − 2 = c N−δ. (5.20)

Fitting the data to this function, we find that the coefficient is c = 2.50±0.06 and
the exponent is δ = 0.264±0.005. Thus the value of 〈K (N )〉 is always larger than 2
for finite N . Note that steady state values of the average connectivity in RTNs have
a similar scaling form, but with slightly different values of the scaling parameters
(cf. Sect. 5.3.1.3, Eq. 5.13).

In order to probe the dynamical nature of evolved steady states the authors com-
puted the distribution P(Γ ) of steady state attractor period Γ in the ensemble of
RBNs simulated. The distribution has a broad, power-law behavior for both the
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Fig. 5.17 Power law distribution of steady state attractor period Γ in both annealed (circle) and
quenched (square) models as studied by Liu and Bassler [53], for N = 200 systems. The dashed
straight line has a slope of 1.0
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annealed and quenched variants of the model. Figure 5.17 shows the results for
networks with N = 200. A power-law distribution of attractor periods is a typical
signature of critical dynamics, hence, similar to the results discussed in Sect. 5.3.1.3
for the self-organization of the global average activity, this finding indicates that
dynamics exhibits close-to critical behavior already for finite size networks, while
toplogical criticality is attained in the limit of large N .

To summarize, the results of this study give strong evidence that the local, adap-
tive coevolutionary principle frozen nodes grow links, active nodes lose links leads
to robust self-organization not only in RTNs, but also in the more general class of
RBNs, and hence has the potential to be generalized to large classes of dynamical
systems.

5.3.4 Correlation-Based Rewiring in Neural Networks

In this section, we will review a different adaptive coeveolutionary scheme of net-
work self-organization which is based on the basic paradigm correlated activity
connects, decorrelated activity disconnects. This local, topology-evolving rule is
inspired by the idea of Hebbian learning in neural networks [38], and, consequently,
was studied first for discrete neural networks with architectural and dynamical con-
straints motivated by corresponding observations in the brain [18]. In particular, an
explicit parameterization of space on a two-dimensional grid is given, and dynam-
ics is not deterministic any more, in contrast to the models discussed in the pre-
vious sections. The core result of this study is that network self-organization by
correlation-driven rewiring is robust even when spatial constraints are present and
dynamics is affected by noise. Correlation-driven rewiring can be considered as a
natural extension of the basic, activity-driven rewiring, as it exploits long range
correlations naturally emerging near phase transitions, and thereby is particularly
suited for neural networks where information processing takes place typically in
form of correlated activity. Let us now briefly motivate the correlation based self-
organization in the context of neural networks.

Neural networks with asymmetric connectivity patterns often exhibit regimes of
chaotic dynamics [63]. In networks whose central function is information transfer,
these regimes would instantly render them useless. Consider, for example, model
neural networks with asymmetric synaptic couplings, where a percolation transition
between regimes of ordered and disordered dynamics is known [48]. In the disor-
dered phase, which occurs for densely connected networks, already small perturba-
tions percolate through the networks.5 In such networks, developmental processes
that change connectivity always face the risk of driving the network into the highly
connected regime (where chaotic dynamics prevails), as long as no explicit mecha-
nism is given that controls the global degree of connectivity.

5 This is reminiscent of avalanche-like propagation of activity in the brain which is observed in
some diseases of the central nervous system [81].
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In a correlation-based rewiring rule we will exploit that also the average correla-
tion between the activities of two neurons contains information about global order
parameter of network dynamics. The network can then use this approximate order
parameter to guide the developmental rule. A possible adaptive scheme is that new
synaptic connections preferentially grow between correlated neurons, as suggested
by the early ideas of Hebb [38] and the observation of activity-dependent neural
development [33, 62, 69, 89]. In the remainder of this section let us recapitulate this
problem in the framework of a specific toy model [18]. First a neural network model
with a simple mechanism of synaptic development is defined. Then, the interplay
of dynamics on the network with dynamics of the network topology is modeled.
Finally, robustness of self-organizing processes in this model and possible implica-
tions for biological systems are discussed.

5.3.4.1 Model

Let us consider a two-dimensional neural network with random asymmetric weights
on the lattice. The neighborhood of each neuron is chosen as its Moore neighbor-
hood with eight neighbors.6 The weights ci j are randomly drawn from a uniform
distribution ci j ∈ [−1,+1] and are nonzero between neighbors, only. Note that
weights ci j are asymmetric, i.e., in general, ci j �= c ji . Within the neighborhood of
a node, a fraction of its weights ci j may be set to 0. The network consists of N
neurons with states σi = ±1 which are updated in parallel with a stochastic Little
dynamics on the basis of inputs received from the neighbor neurons at the previous
time step:

σi (t + 1) =
{

+1 with probability gβ ( fi (t))

−1 with probability 1 − gβ ( fi (t))
(5.21)

where

gβ( fi (t)) = 1

1 + e−2β fi (t)
(5.22)

with the inverse temperature β. The transfer function fi (t) is evaluated according
to Eq. 5.18, that defines dynamics of threshold units with individually assigned
thresholds. The threshold is chosen here as hi = −0.1 + γ and includes a small
random noise term γ from a Gaussian of width ε. This noise term is motivated by
the slow fluctuations observed in biological neural systems [1, 2].

6 The choice of the type of neighborhood is not critical, however, here the Moore neighborhood
is more convenient than the von Neumann type since, in the latter case, the critical link density
(fraction of nonzero weights) at the percolation threshold accidentally coincides with the attractor
of the trivial developmental rule of producing a link with p = 0.5. In general, also random sparse
neighborhoods would work as demonstrated in [21].
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The second part of the model is a slow change of the topology of the network
by local rewiring of synaptic weights: If the activity of two neighbor neurons is
on average highly correlated (or anticorrelated), they will obtain a common link. If
their activity on average is less correlated, they will lose their common link. The
degree of correlation in the dynamics of pairs of nodes is quantified by the average
correlation, as defined in Eq. (5.9) in Sect. 5.2.4.2. The full model dynamics is then
realized by the algorithm summarized in Box 5.3.

Box 5.3 Adaptive algorithm for correlation-dependent rewiring in neural
networks

1. Start with a random network with an average connectivity (number
of nonzero weights per neuron) Kini and a random initial state vector
Σ(0) = (σ1(0), ..., σN (0)).

2. For each neuron i , choose a random threshold hi from a Gaussian distri-
bution of width ε and mean μ.

3. Starting from the initial state, calculate the new system state applying
Eq. (5.21) using parallel update. Iterate this for τ time steps.

4. Randomly choose one neuron i and one of its neighbors j and determine
the average correlation according to Eq. (5.8) over the last τ/2 time
steps. (Alternatively, the correlation can be obtained from a synaptic
variable providing a moving average at any given time).

5. If |Corr(i, j)| is larger than a given threshold α, i receives a new link
ci j from site j with a weight chosen randomly from the interval ci j ∈
[−1, 1]. If |Corr(i, j)| ≤ α, the link ci j is set to 0 (if nonzero).

6. Go to step 2 and iterate, using the current state of the network as new
initial state.

The dynamics of this network is continuous in time, with neuron update on a fast
time scale and topology update of the weights on a well-separated slow “synaptic
plasticity” time scale. Note that the topology-changing rule does not involve any
global knowledge, e.g., about attractors.

5.3.4.2 Results

Independent of the initial conditions the networks evolve to a specific average con-
nectivity. Parameters are β = 25, ε = 0.1, a correlation cutoff α = 0.8, and an
averaging time window of τ = 200. One observes that the continuous network
dynamics, including the slow local change of the topology, results in a convergence
of the average connectivity of the network to a characteristic value which is inde-
pendent of initial conditions.

Finite size scaling of the resulting average connectivity indicates the convergence
towards a characteristic value for large network size N and exhibits the scaling
relationship
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Kev(N ) = aN−δ + b (5.23)

with a = 1.2 ± 0.4, δ = 0.86 ± 0.07, and b = 2.24 ± 0.03. Thus, in the large
system size limit N → ∞ the networks evolve towards K ∞

ev = 2.24 ± 0.03. The
self-organization towards a specific average connectivity is largely insensitive to
thermal noise of the network dynamics, up to ≈ 10% of thermal switching errors
(or β > 10) of the neurons. This indicates that the structure of a given dynamical
attractor is robust against a large degree of noise. Figure 5.18 shows the evolved
average connectivity as a function of the inverse temperature β.

While the stability of dynamical attractors on an intermediate time scale is an
important requirement for the local sampling of neural correlation, on the long time
scale of global topological changes, switching between attractors is necessary to
ensure ergodicity at the attractor sampling level. The second source of noise, the
slow random change in neural thresholds as defined in step (2) of the algorithm, is
closely related to such transitions between attractors. While, in general, the model
converges also when choosing some arbitrary fixed threshold h and omitting step (2)
from the algorithm, a small threshold noise facilitates transitions between limit cycle
attractors [61] and thus improves sampling over all attractors of a network, resulting
in an overall increased speed and robustness of the convergence. An asynchronous
change of the threshold hi , updating one random hi after completing one sweep
(time step) of the network, leads to similar results as the parallel rule defined above.

The basic mechanism of the observed self-organization in this system is the weak
coupling of topological change to an order parameter of the global dynamical state
of the network, and thus is different from the mechanism of extremal dynamics,
underlying many prominent models of self-organized criticality [7, 8]. To illustrate
this, let us for a moment consider the absolute average correlation |Corr(i, j)| of two
neurons which is the parameter used as a criterion for the rewiring process. It can
be shown that this quantity undergoes a phase transition depending on the average

Fig. 5.18 Evolved average connectivity Kev as a function of the inverse temperature β. Each point
is averaged over 105 time steps in a network of size N = 64 and α = 0.5. After Bornholdt and
Röhl [18]
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connectivity K̄ which is similar to the transition of the frozen component observed
in RTN (Fig. 5.4, cf. Sect. 5.2.4.3). Note that the correlation is large for networks
with small connectivity, and small for networks that are densely connected. The
rewiring rule balances between these two regimes: For high correlation, it is more
likely that a link is created, at low correlation, links are vanishing. The balance is
reached most likely in the region of the curve where the slope reaches its maximum,
as here the observed correlation reacts most sensitively to connectivity changes. As
the steep portion of the correlation curve occurs in a region of small connectivities
where also the critical connectivity Kc ≈ 2 of the network is located, this makes
the correlation measure sensitive to the global dynamical state of the network and
potentially useful as an approximation of the order parameter. Synaptic development
dependent on averaged correlation between neurons can thus obtain approximate
information about the global dynamical state of the network as is realized in the
above toy model with a simple implementation on the basis of a threshold α. The
exact choice of the threshold α is not critical, which can be seen from the histogram
of the absolute correlation shown in Fig. 5.19 for a typical run of the model. Cor-
relations appear to cluster near high and near low values such that the cutoff can
be placed anywhere in between the two regimes. Even a threshold value close to 1,
as compared with the correlation cutoff α = 0.8 used in the simulations here, only
leads to a minor shift in Kev and does not change the overall behavior.

Up to now we focused on changes of the network structure as a result of the
dynamics on the network. A further aspect is how the structural changes affect the
dynamics on the network itself. Do also dynamical observables of the networks
self-organize as a result of the observed convergence of the network structure? An
interesting quantity in this respect is the average length of periodic attractors.

Indeed, this dynamical observable of the network dynamics converges to a spe-
cific value independent of the initial network, similarly to the convergence of the
structural parameter K̄ considered earlier. From the K̄ dependency of the neural

Fig. 5.19 Histogram of Corr(i, j) for a network evolving in time, with N = 64 and β = 10, taken
over a run of 4 × 105 time steps, according to the model of Bornholdt and Röhl [18]
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pair correlation we have seen above that the rewiring criterion tends to favor connec-
tivities near the critical connectivity of the network. Does also the evolved average
attractor length relate to critical properties of the percolation transition? An approx-
imate measure of this aspect is the finite size scaling of the evolved average period.

For static networks we find that the attractor lengths typically scale exponentially
with N in the overcritical regime, but less than linearly in the ordered regime. For the
evolved connectivity Kev in our model, we observe scaling close to criticality. Large
evolved networks exhibit relatively short attractors, which otherwise for random
networks in the overcritical regime could only be achieved by fine tuning. The self-
organizing model studied here evolves non-chaotic networks without the need for
parameter tuning.

In a continuously running network, robust self-organization of the network
towards the percolation transition between ordered and disordered dynamics is
observed, independent of initial conditions and robust against thermal noise. The
basic model is robust against changes in the details of the algorithm. We conclude
that a weak coupling of the rewiring process to an approximate measurement of an
order parameter of the global dynamics is sufficient for a robust self-organization
towards criticality. In particular, the order parameter has been estimated solely from
information available on the single synapse level via time averaging of correlated
neural activities.

5.4 Summary and Outlook

We reviewed models of topological network self-organization by local dynamical
rules. Two paradigms of local co-evolutionary adaptation were applied to discrete
dynamical networks: The principle of activity-dependent rewiring (active nodes lose
links, frozen nodes aquire new links), and the principle of correlation-dependent
rewiring (nodes with correlated activity connect, decorrelated nodes disconnect).
Both principles lead to robust self-organization of global network topology and –
dynamics, without need for parameter tuning. Adaptive networks are strikingly dif-
ferent from random networks: they evolve inhomogeneous topologies and broad
plateaus of homeostatic regulation, dynamical activity exhibits 1/ f noise and attrac-
tor periods obey a scale-free distribution. The proposed co-evolutionary mechanism
of topological self-organization is robust against noise and does not depend on the
details of dynamical transition rules. Using finite-size scaling, it was shown that
networks converge to a self-organized critical state in the thermodynamic limit.

The proposed mechanisms of coevolutionary adaptation in dynamical networks
are very robust against changes in details of the local rewiring rules – in particular,
they only require a local estimate of some dynamical order parameter in order to
achieve network adaptation to criticality.

A classical route to self-organized criticality is the feedback of an order para-
meter onto local dynamics of a system [85]. The local rewiring rules considered
here extend this idea to using only approximate local estimates of a global order
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parameter. As seen in the examples above, locally measured averages prove to be
sufficient for self-organized criticality. In particular, in the presence of a time-scale
separation between fast dynamics on the networks and slow topology evolution, the
evolutionary steady state naturally provides a quasi-ergodic sampling of the phase
space near the critical state, such that accurate order parameter values are not nec-
essary. In the models considered in this review, an estimate of the order parameter is
achieved by local averaging over the switching activity of single nodes, or over the
dynamical correlation of pairs of nodes.

A number of open questions remains to be addressed in the context of the class of
adaptive networks considered here. The robust network self-organization observed
in the models, approaching criticality in the limit of large N , is far from being under-
stood in detail. With regard to dynamics, evolving networks exhibit pronounced dif-
ferences to random networks with comparable connectivity. In particular, the frozen
component exhibits for finite N a plateau around the evolutionary mean Kevo, with
step-like discontinuities when the average wiring density substantially departs from
Kevo (Fig. 5.10); for comparison, the corresponding curves for random networks
show a smooth decay. This may suggest that the self-organized critical state rather
exhibits characteristics of a first order phase transition, while order parameters in
random discrete dynamical networks typically exhibit second order transitions at
Kc. With regard to topology, deviations from random networks become particularly
pronounced when dynamical units are allowed to diversify with respect to their
switching behavior during evolution, leading to symmetry breaking and emergence
of scale-free in-degree distributions; again, these observations are hard to explain
in the context of the traditional statistical mechanics approach based on random
ensembles of networks.

In the studies reviewed in this chapter, evolving networks were treated as com-
pletely autonomous systems, without coupling to an external environment. An
important step in future research will be to introduce network-environment inter-
action and study network evolution under the influence of external signals or per-
turbations; this also connects to the particularities of information processing in
self-organized critical networks, and the idea of optimal adaptation at the “edge
of chaos” [15].

Finally, let us widen the scope of these models beyond their theoretical value,
and discuss possible applications.

On the one hand, they represent prototypical models of self-organized critical
dynamical networks, toy models that demonstrate possible mechanisms for dynam-
ical networks to adapt to criticality. On the other hand, these mechanisms are not
limited to the extremely simple toy models discussed here, and may themselves
occur in natural systems. They do not depend on fine-tuning of parameters or details
of the implementation, and they are robust against noise. This is contrary to stan-
dard mechanisms of self-organized criticality [7, 8] which are sensitive to noise
[80] and, therefore, not easily applied to natural systems. Network self-organization
as reviewed above, however, is itself defined on the basis of stochastic dynamical
operations (update of randomly selected links, noisy local measurement of order
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parameter, for example). We therefore expect that these mechanisms can occur in
natural systems quite easily.

A strong need for adaptive mechanisms is present in nervous systems, where
assemblies of neurons need to self-adjust their activity levels, as well as their con-
nectivity structure [13, 36, 86, 89]. The mechanism discussed here is one possible
route to adaptivity in natural neural networks. It can serve as the basis for more
biologically detailed models [14, 15, 51].

Further applications of the network adaptation models are conceivable, e.g. to
socio-economic systems. Network adaptation could in principle occur in adapting
social links or economic ties of humans acting as agents in complex social or eco-
nomic systems.
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