
Chapter 11
A Dynamic Model of Social Network Formation

Brian Skyrms and Robin Pemantle

Abstract We consider a dynamic social network model in which agents play
repeated games in pairings determined by a stochastically evolving social network.
Individual agents begin to interact at random, with the interactions modeled as
games. The game payoffs determine which interactions are reinforced, and the net-
work structure emerges as a consequence of the dynamics of the agents’ learning
behavior. We study this in a variety of game-theoretic conditions and show that the
behavior is complex and sometimes dissimilar to behavior in the absence of struc-
tural dynamics. We argue that modeling network structure as dynamic increases
realism without rendering the problem of analysis intractable.

11.1 Introduction

Pairs from among a population of ten individuals interact repeatedly. Perhaps they
are cooperating to hunt stags and rabbits, or coordinating on which concert to attend
together; perhaps they are involved in the somewhat more antagonistic situation
of bargaining to split a fixed payoff, or attempting to escape the undesirable but
compelling equilibrium of a Prisoner’s Dilemma. As time progresses, the players
adapt their strategies, perhaps incorporating randomness in their decision rules, to
suit their environment. But they may also exert control over their environment. The
players may have choice over the pairings, though not perfect information about
the other players. They may improve their lot in two different ways. A child who
is being bullied either learns to fight better, or to run away. Similarly, a player who
obtains unsatisfactory results may choose either to change strategies or to change
associates. Regardless of whether the interactions are mostly cooperative or mostly
antagonistic, it is natural and desirable to allow evolution of the social network (the
propensity for each pair to interact) as well as the individuals’ strategies.
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We build a model that incorporates both of these modes of evolution. The idea is
simple.

(*)
Individual agents begin to interact at random. The interactions are modeled as games. The
game payoffs determine which interactions are reinforced, and the social network structure
emerges as a consequence of the dynamics of the agents’ learning behavior.

As the details of the specific game and the reinforcement dynamics vary, we then
obtain a class of models. In this paper we treat some simple reinforcement dynamics,
which may serve as a base for future investigation.

The idea of simultaneous evolution of strategy and social network appears to
be almost completely unexplored. Indeed, the most thoroughly studied models of
evolutionary game theory assume mean-field interactions, where each individual is
always equally likely to interact with each other. Standard treatments of evolution-
ary game dynamics [1, 2] operate entirely in this paradigm. This is due, to a large
extent, to considerations of theoretical tractability of the model. Models have been
introduced that allow the agents some control over their choice of partner [3], but
the control is still exerted in a mean-field setting: one chooses between the present
partner and a new pick at random from the whole population.

Evolutionary biologists know that evolutionary dynamics can be affected by non-
random encounters or population structure, as in Sewall Wright’s models of assor-
tative mating [4]. Wright [5] already realized that positive correlation of encounters
could provide an account of evolution of altruism. Thus the need for social network
models has been long recognized.

When the social network is modeled, it is almost always static.1 Interactions, for
example, may be posited to occur only between players whose locations are close,
according to some given spatial data. Biological models in which encounters are
governed by spatial structure have become increasingly frequent in the 1990s; see
for example the work of Durrett, Levin and Neuhauser [7–9]. A similar hypothesis
of spatial structure, in a game theory context, arises in [10]. Here, technology from
statistical mechanics is adapted to the analysis of games whose interactions take
place between neighbors in a grid.

A number of recent investigations by game theorists, some directly inspired by
biological models, have shown that the dynamics of strategic interaction can be
strikingly different if interaction is governed by some spatial structure, or more
generally, some graph structure [11–13]. For instance, one-shot Prisoner’s Dilemma
games played with neighbors on a circle or torus allows cooperation to evolve in
a way that the random encounter model does not. The spatial or graph structure
can be important in determining which equilibria are possible, whether repeated
interactions can be expected to converge to equilibrium, and if so, how quickly
convergence takes place [14].

Since the outcome of a repeated game may vary with the choice of network
model, it is important to get the network model right. Further progress in the theory

1 An exception, perhaps, is a preprint we have recently encountered by Jackson and Watts [6]
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of games and adaptive strategies would be greatly enhanced by a theory of net-
works of social interaction. In particular, it would be desirable to have a framework
within which models may be developed that are both tractable, and plausible as a
mechanism governing interactions among a population of agents seeking to improve
their lot.

When the network changes much more slowly than do the strategies of individu-
als, it is reasonable to model the social network by a structure which is fixed, though
possibly random. The question of realistically modeling the randomness in such a
case is taken up in a number of papers, of which a recent and well known example
is the “small world” model [15]. In the other extreme [16–18] evolution of social
structure is modeled by agents moving on a fixed graph in the absence of strategy
dynamics.

In the general case, however, interaction structures are fluid and evolve in tan-
dem with strategy. What is required here is a dynamics of interaction structure to
model how social networks are formed and modified. We distinguish this structure
dynamics from the strategic dynamics by which individuals change their individual
behaviors or strategies.

In this paper we introduce a simple, additive model for structure dynamics, and
explore the resulting system under several conditions: with or without discounting
of the past, with or without added noise, and in the presence or absence of strategic
dynamics. Common to all our models is a stochastic evolution from a (usually sym-
metric) initial state. Individuals in a population start out choosing whom to interact
with at random, then modify their choices according to how their choice is rein-
forced, and the process is repeated. An infinite variety of such models is possible.
We will consider only a few basic models, meant to illustrate that rigorous results on
structure dynamics are not out of reach, and that further inquiry will be profitable.

We first consider a baseline case of uniform reinforcement. Here, any choice of
partner is reinforced as strongly as any alternative choice would have been. In other
words, the interaction game between any pair of players always produces a constant
reward or punishment. One might expect that such cases would not lead to interest-
ing dynamics, but that is far from the truth. We show both by computer simulation
and analytically how structure emerges spontaneously even in these cases. Since the
strategic dynamics here are trivial, the baseline case is intended mostly as a build-
ing block on which more interesting strategic dynamics are to be grafted. We note,
however, that the constant reward game is not completely unreasonable. Studies
have shown that in the absence of other environmental attributes, sheer familiarity
brings about positive attitudinal change [19]. In fact, an abstract model of network
evolution under uniform positive re-weighting has appeared before under the name
of “Reinforced Random Walk” [20].

Next, we move to the case where players of different types play a non-trivial
game and are reinforced by the payoffs of the game. Here, we examine the co-
evolution of behavior and structure when the structural dynamics and strategic
dynamics are both operative. The relative speeds of structural dynamics and strate-
gic dynamics affect which equilibrium is selected in the game. In particular, this can
determine whether the risk-dominant or payoff-dominant equilibrium is selected.
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11.2 Making Friends: A Baseline Model of Uniform
Reinforcement

11.2.1 Friends I: Asymmetric Weights

Each morning, each agent goes out to visit some other agent. The choice of whom to
visit is made by chance, with the chances being determined by the relative weights
each agent has assigned to the others. For this purpose, agent number i has a vector
of weights 〈wi1, . . . , win〉 that she assigns to other players (assume wi i = 0). Then
she visits agent j with probability

Prob(agent i visits j) = wi j∑
k wik

. (11.1)

Here we are interested in a symmetric baseline model, so we will assume that all
initial weights are 1. Initially, for all agents, all possible visits are equiprobable.

Every agent is treated nicely on her visit and all are treated equally nicely. They
each get a reinforcement of 1. Each agent then updates her weight vector by adding
1 to the weight associated with the agent that she visited. Her probabilities for the
next round of visits are modified accordingly. At each stage we have a matrix pi j of
probabilities for i to visit j . Do these probabilities converge, and if so to what?

Given all the symmetry built into the starting point and the reinforcement, it
is perhaps surprising that all sorts of structure emerge. Here is a description of a
simulated sample run of length 1,000. The probabilities, to two decimal places, seem
to converge after a few hundred rounds of visits, to a matrix that is anything but
uniform (and to a different matrix each time the process is run from the initial,
symmetric weights). There is one agent, A, who visits another agent, B, more than
half the time. There is no reciprocation, so this has no bearing on how often B visits
A, and in fact most agents will not visit any one agent more than a third of the time.

In the analysis section, we show that this outcome is typical.

Theorem 1. The probability matrix for Friends I with n players will converge to a
random limit p as time goes to infinity. The distribution of the limit is that the rows
of p are independent, each having Dirichlet distribution (ignoring the zero entry on
the diagonal) whose parameters are n − 1 ones.

Thus we see spontaneous emergence of structure. This type of simple model has
been used before in the economics literature to explain the stabilization of market
shares at seemingly random equilibria, due to random reinforcement in the early
phases of growth of an industry [21]. We remark that the choices made by each
agent are independent of the choices made by each other agent, so the social aspect
of the model is somewhat degenerate and the model may be viewed as a model of
individual choice. Nevertheless, it fits our definition of social network model in that
it gives a probabilistic structure to interactions; one may then extend the model so
the interactions are nontrivial games.
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11.2.2 Friends II: Symmetrized Reinforcement

Suppose now that the interaction is as pleasant to the host as the visitor. Thus when
agent i visits agent j , we add 1 to both wi j and w ji . A typical outcome for 10
agents after 1,000 rounds of visits looks similar to the table for Friends I, except
that the entries are nearly symmetric. There are, however, subtle differences that may
cause the two models to act very differently when strategic dynamics are introduced.
To see these differences, we describe what is typically observed after 10 runs of
a simulation of Friends II to time 1,000 for a set of three agents, this being the
minimum population size for which structural dynamics are interesting. What we
see typically is one or two runs in which each players visits are split evenly (to two
decimal places) between the others. We see another several runs that are close to this.
We see one run or so in which two agents nearly always visit the third agent, which
splits its time among the other two. The remaining runs give something between
these extreme outcomes.

What may not be apparent from such data is that the limiting weights for
Friends II are always 1/2. Only a small fraction of sample outcomes decisively
exhibit the proven limiting behavior. The data, in other words, show that after 1,000
iterations, the weights may still be far from their limiting values; when this is the
case, one of the three agents is largely ignored by the other two, and visits each
of the other two herself equally often. Since the lifetime of many adaptive games
is 1,000 rounds or fewer, we see that limiting behavior may not be a good guide
to behavior of the system on time scales we are interested in. The analysis section
discusses both limiting results for this model and finite time behavior. When the
population size is more than 3, the weights will always converge, but the limit is
random and restricted to the subspace of symmetric matrices. Again, convergence
of the weights to their limiting values is slower than in the non-reciprocal game of
Friends I.

Theorem 2. The probability matrix pi j for Friends II with n players converges to
random limit p as time goes to infinity. If n = 3, the limit is the matrix all of whose
off-diagonal entries are 1/2. In general, the limit may be any symmetric matrix
whose rows sum to 1; that is, the closed support of the random limit is the entire
subspace of symmetric stochastic matrices.

11.2.3 Analysis of Friends I and II

To fit this in the framework of (∗), construct the following degenerate games. Each
of the two players has only one strategy, and the payoff matrix is as follows.

Friends I Host
Visitor (1, 0)

Friends II Host
Visitor (1, 1)

The weights wi j are initialized to 1 for i �= j , and are then updated according to

wi j (t + 1) = wi j (t) + u(i, j ; t) (11.2)
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where wi j (t) is the weight agent i gives to agent j at time t and u(i, j ; t) is the payoff
of the game played at time t between visitor i and host j (and zero if this visit did
not occur at time t). This, together with specification of the visitation probabilities
in Eq. (11.1), defines the model. Changing the initial weights does not affect the
qualitative behavior of any model, so there is no need to vary the initialization.

For Friends I, the updating of the weights for any one agent is the same as a
Pólya urn process [22]. Each agent can be thought of as having an urn with balls of
n − 1 colors, one color representing each other agent. Initially there is one ball of
each color in the urn. The agent picks a ball at random, indicating whom she should
visit, then returns it to the urn along with an extra ball of the same color. The urns
belonging to different agents are statistically independent.

The analysis of this process is well known ([23], Chap. 4). It is easy to show that
the sequence of draws for each agent is exchangeable, that is, permuting a sequence
does not change its probability. Hence by the de Finetti representation theorem, the
random sequence of draws from an urn is equivalent to a mixture of multinomial
processes, that is, of sequences of independent draws. The mixing measure is easily
seen to be Dirichlet. Consequently, the visiting probabilities converge with probabil-
ity one, but they can converge to anything. That they converge to the uniform vector,
where each agent has equal probability to visit each other, has prior probability zero.

Furthermore, convergence to the limiting probability matrix is quite rapid. Let
p(t) denote the matrix whose (i, j)-entry is pi j (t). Then exchangeability implies
that, conditional on the limit matrix p = limt→∞ p(t), the sequence of visits is a
sequence of independent, identically distributed draws from the limit distribution.
Thus at time t , the central limit theorem implies that p(t) − p is t−1/2 times a
multivariate normal.

For Friends II, exchangeability fails. This is not surprising, since the property of
exchangeability is not very robust. More surprising, however, is that the sequence of
probability matrices p(t) does not form a martingale. To explain this terminology, let
Et denote the expectation conditioned on the values at time t . A simple computation
shows that for Friends I, the expected value of pi j (t + 1) conditioned on the time t
value is equal to pi j (t): since wi j increases only when i visits j , we have

Et pi j (t + 1) = Et

n∑

k=1

pik(t)
wi j + δ jk

1 + ∑n
l=1 wil (t)

= wi j (t) + pi j (t)

1 + ∑n
l=1 wil(t)

= pi j (t).

Even without exchangeability, the martingale convergence theorem ([24], Sect. 4.2)
implies convergence of the quantities pi j , though it says very little about the limit.

For Friends II the complete analysis may be found in [25]. Here is an outline of
what is found there. A computation similar to the one for Friends I shows that

Et p(t + 1) = p(t) + 1

t
F(p(t))
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where F is a certain function on symmetric n by n matrices. In other words, the
random sequence of matrices {p(t) : t = 1, 2, . . .} is a stochastic approximation in
the sense of Robbins and Monro [26], driven by the vector field F . General results
of [27] and [28] now imply that p(t) converges to the set where F vanishes. To show
that p(t) always converges to a single point, Pemantle and Skyrms [25] compute a
Lyapunov function for F, that is, a function V for which ∇V · F < 0 with equality
only when F = 0. This, together with an efficiency inequality (bounding the angle
between f and ∇V away from ninety degrees), establish convergence of p. The
remainder of Theorem 2 is then established by showing the only stable zeros of
the vector field F are the symmetric matrices with row sums all equal to 1, and
that the possible limit points of p(t) are exactly the stable equilibria of the flow
determined by F.

Determination of the rate of convergence of p(t) to its limit is somewhat different
in this case. Due to the presence of unstable equilibria from the flow determined by
F, there is a possibility of being stuck near one of these equilibria for a long time
before eventually following the flow to one of the stable equilibria. For the three
player game, the unstable equilibria are the following three matrices:

⎛

⎝
0 1

2
1
2

0 0 1
0 1 0

⎞

⎠

⎛

⎝
0 0 1
1
2 0 1

2
1 0 0

⎞

⎠

⎛

⎝
0 1 0
1 0 0
1
2

1
2 0

⎞

⎠ .

These correspond to cases where one of the three agents is entirely ignored, and
splits her visits equally between the other two. The probability that p(t) is within ε

of one of these traps is roughly 3εt−1/3, so with t = 1, 000 we find a reasonably high
probability that p(1000) is not near the uniform probability matrix but is instead
still near one of the unstable equilibria. This persists with reasonable probability
well beyond t = 106. For greater population sizes similar phenomena apply. Con-
vergence to the invariant set is relatively slow. However, for large populations, say
20 or more, another phenomenon takes place. The portion of the space of possible
p matrices that are within ε of the possible limits goes to 1; this is known as the
concentration of measure phenomenon [29]. Thus it becomes very unlikely to get
stuck initially far away from the limit, simply because the initial randomness will
very likely lead to a point very near a possible limit. Thus for large populations, the
dynamics appear very similar to the dynamics for Friends I.

11.3 Making Enemies

Let us change the “Making Friends” model in just one way. Instead of being
rewarded, agents are punished; instead of uniformly positive interactions, we have
uniformly negative ones:

Enemies I Host
Visitor (−1, 0)

Enemies II Host
Visitor (−1,−1)
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Instead of interactions being reinforcing, we take them as inhibiting. The dynam-
ics of inhibition might be modeled in a number of ways. Continuing to use the
update Eq. (11.2) will not work because the weights will end up becoming negative
and the visitation probabilities in Eq. (11.1) will be meaningless. In this section
we explore two other possible rules for updating the weights so as to inhibit past
behavior. With negative reinforcement, it is easy to predict what will happen: the
social network always becomes uniform, and the dynamics are not sensitive to the
particular updating mechanism. Indeed this is what happens. Since there are no sur-
prises, and since this model is just a building block for a model with both structural
and strategic dynamics, we keep the discussion brief.

11.3.1 The Transfer Model

Consider a three player model with the following update rule on the weights. Initial
weights are all positive integers. When i visits j , the weight wi j is diminished by 1
and the weight wik , k �= i, j , is increased by 1. This is equivalent to the Ehrenfest
model of heat exchange between two bodies [30]. In the original Ehrenfest model
there are two urns. A ball is drawn at random from among all balls in both urns and
transferred to the other urn. The distribution of balls tends to the binomial distribu-
tion, where each ball is independently equally likely to be in either urn. In Making
Enemies, with transfer dynamics and three players, each player may be thought of
as having such a pair of urns. The urns are independent.

Since the number of balls is fixed, an Ehrenfest urn is a Markov chain with a
finite number of states, where the states consist of distributions over the two urns.
For example, if there are only two balls, then there are three states, S1, S2 and S3,
corresponding to urn cardinalities of (2, 0), (1, 1) and (0, 2). The transition matrix
for this Markov chain is

⎛

⎝
0 1 0
1
2 0 1

2
0 1 0

⎞

⎠

and the unique stationary vector is (1/4, 1/2, 1/4). In contrast to the Pólya urn, we
do not have convergence of the conditional probabilities of visits at each stage given
the present: at any time, given the present composition, the probability of a given
visit may be 0, 1/2 or 1, depending on the composition of the urns belonging to
the visitor. However, if the number of balls, N is large, approximately equal visit-
ing probabilities are very likely in the following sense. The invariant distribution is
binomial, which is concentrated around nearly even distributions when the number
of balls is large. Thus with high probability, no matter what the initial state, after
roughly N log N/2 steps [31], the composition of an urn with N balls will be close
to a draw from a binomial distribution. The conditional probability of either of the
two possible visits, will therefore be close to 1/2, and will tend to remain there with
high probability. Kac [32] uses these properties to resolve the apparent paradoxes
that beset Bolzmann’s discussion of irreversibility in statistical mechanics.
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11.3.2 The Resistance Model

The transfer model allows for a finite cumulative amount of negative reinforcement,
and indeed yields a finite Markov chain. Let us explore a rather different model,
termed the resistance model, in which negative payoffs generate resistance. Initially
every choice has resistance 1. The magnitude of a negative payoff is added to its
associated resistance, so the Eq. (11.2) becomes

wi j (t + 1) = wi j (t) + |u(i, j ; t)|.

In the case at hand, when all payoffs are negative, the probability of i visiting j
is proportional to the reciprocal of the resistance:

pi j = Prob(agent i visits j) = 1/wi j∑n
k=1 1/wik

with 1/wii = 0 by convention. The dynamics of Enemies I and Enemies II under
resistance dynamics are easy to describe.

Theorem 3. For Enemies I or Enemies II, from any initial conditions, the probability
matrix p(t) converges to the uniform probability matrix p where pi j = 1/(n−1) for
any i �= j . The of convergence is rapid: of order N log N if the initial resistances
are of order N. The deviations from uniform obey a central limit theorem:

t1/2(p − p) → X

where X is a multivariate normal with covariance matrix of rank n(n − 1) in Ene-
mies I and n(n − 1)/2 in Enemies II. In other words, deviations from uniformity
are independent normals, subject to the constraints of adding up to zero for each
individual and, in the case of Enemies II, the constraints of symmetry.

The central limit theorem may be derived from a stronger, functional central limit
theorem, linearizing the system near the uniform probability to see that the paths

t �→ N−1/2(p(Nt) − p)

converge in distribution as N → ∞ to a multivariate Ornstein-Uhlenbeck process.
The rate of convergence follows from standard coupling arguments.

While uniform positive reinforcement breeds structure from unstructured initial
conditions, uniform negative reinforcement evidently breeds uniformity even from
structured initial conditions. It would appear, therefore, that the customary random
encounter (mean-field) model is more suitable for Making Enemies than Making
Friends.
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11.3.3 A Better Model?

We would like a model that allows for both positive and negative reinforcement. A
natural choice is to let wi j keep track of the log-likelihood for i to visit j , so that
probability of i visiting j is given by

pi j = Prob(agent i visits j) = exp(wi j )∑n
k=1 exp(wik)

. (11.3)

In the next section we will see a property this rule has in common with rules that
discount the past, namely that it leads to being trapped in a deterministic state where
i always visits the same j .

Question 1. Is there a model incorporating both positive and negative reinforcement,
that is realistic, tractable, and non-trapping?

11.4 Perturbations of the Models

In this section we add two features, noise and discounting, commonly used to create
more realistic models. We examine the effects on social structure. In particular, these
lead to varying degrees of subgroup formation.

11.4.1 Discounting the Past

In the foregoing models, a positive (or negative) payoff in the distant past contributes
equally to the weight (or resistance) assigned to an edge as does a like payoff in the
immediate past. This is implausible, both psychologically and methodologically. As
a matter of psychology, memories fade. From the standpoint of inductive logic, it
is not at all certain that the learner is dealing with stationary probabilities – indeed,
in cases of prime interest she is not. For this reason, recent experience may have a
better chance of being a relevant guide to future action than the remote past.

A simple and standard way to modify the models to reflect this concern is to
introduce discounting of the past. We will concentrate here on the models of Making
Friends. After each interaction we will now multiply the weights of the previous
stage by a discount factor, d, between 0 and 1. The we add the undiscounted payoffs
from the present interaction to get new weights. The modification of the dynamics
has a dramatic effect on the Making Friends models.

For Friends I, it is immediately evident from simulations with d = 0.9, say,
and ten players, that the probabilities pi j converge to 0 or 1. In other words, each
individual ends up always visiting the same other individual.

In Friends II, simulations show the group breaking into pairs, with each member
of a pair always visiting his or her “partner”. Which pairs form depends on the ran-
domness in the early rounds of visits, but pairs always form. In fact there are other
possible limit states, but their frequency is low except at more extreme discount
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rates. The set of possible limit states may be described as follows. Some agents are
grouped in pairs, each member of a pair always visiting the other. Other agents are
grouped in stars. These are clusters of size at least three, in which one agent, called
the center, visits each of the others with positive frequency, while the others always
visit the center.

11.4.2 Analysis of Discounting the Past

It is worth giving a rigorous derivation of the above behavior, since it will shed some
light on a defect in the most obvious log-likelihood model to incorporate positive
and negative reinforcement. Our derivation highlights this, although the results for
discounted Friends I may also be derived from a theorem of H. Rubin ([33], p. 227).

Theorem 4. In Friends II with discount rate d < 1, there is always a partition into
pairs and stars and a random time after which each member of a pair visits only
the other member of the pair and each non-central member of a star visits only the
center. In Friends I, there is a random function f and a random time after which
each player i always visits f (i).

Sketch of Proof : The analysis for Friends I is similar but easier, so we prove the
statement only for Friends II. With each probability matrix p we associate a graph
G(p) as follows. The edge (i, j) is in the graph G if the probability pi j > ε, where
ε < 1/(2n) is some fixed positive number. Among those graphs having at least one
edge incident to each vertex, let S denote the minimal such graphs, that is, ones for
which deleting any edge results in an isolated vertex. It is easy to see that S is the
set G(p) for all p satisfying the conclusion of the theorem.

The principle behind the analysis of discounted Friends is that the future behavior
of p is largely determined by the present G(p). In particular, we find a δ > 0 such
that from any state p, for each subgraph H of G(p) such that H ∈ S, there is a
probability at least δ2 that for all sufficiently large t , G(p(t)) = H . We show this in
two steps: (1) with probability at least δ, there is some t for which G(p(t)) = H ;
(2) from any state p such that G(p) = H , there is probability at least δ that G(p(t))
is equal to H for all later times, t .

To see why (1) is true, for H ∈ S, let fH be any function on vertices of H for
which each value f (i) is a neighbor if i . Observe that there is a number k such that
from any state p with H ⊆ G(p), if each vertex i visits f (i) for the next k rounds,
then G(p(k)) = H . For each round of visits, this probability is at least εn , where
n is the number of vertices, so taking δ ≤ εkn establishes (1). For (2), it suffices to
show that with probability δ each agent visits a neighbor in H at all later times. For
each agent i , the sum over j not neighboring i in H of pi j is at most nε < 1/2 by
the definition of G(p) = H . After k rounds of visits where agents only visit their
neighbors in H , this must decrease to at most (1/2)dk . Thus the probability of N
rounds of visits only to neighbors in H is at least
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N−1∏

k=0

(
1 − 1

2
dk

)n

.

Sending N to infinity yields a convergent infinite product, since (1/2)dk is
summable. Taking δ to be less than the infinite product proves (2).

With (1) and (2), the rest is a standard tail argument. The constraints on evolution
are such that G(p(t)) always contains at least one graph in S. As long as it contains
more than one graph in S, there is always a probability of at least δ of permanently
settling into each one. Thus, with probability 1, eventually G(p(t)) is equal to some
H ∈ S for all future times. This is equivalent to the conclusion of the theorem. QED

Remark 1. It is actually shown that in (2), if we choose ε sufficiently small, we can
choose δ arbitrarily close to 1.

We now also see why the log-likelihood rule (3) leads to fixation of a degenerate
structure. Under these dynamics, an equivalent phenomenon occurs to (1) in the
proof of Theorem 4. For a pair (i, j) whose interaction has a positive mean, if the
pair plays repeatedly, we will see wi j (t)/t → μ > 0. The probability the i will
ever switch partners, once having tried j a few times is at most on the order of∑∞

k=0 B exp(−kμ), where B = exp(
∑

l �= j wil). From here it is easy to construct an
argument parallel to the proof of Theorem 4, to show that in presence of a game
with positive mean payoff, discounted structural dynamics lead with probability 1
to fixation at a pairing.

11.4.3 Introduction of Noise

A common feature in models of adaptation is the introduction of noise: a small
chance of a behavior other than the one chosen by the dynamical equation for
the model. This may stem from an agent’s uncertainty, from agent error, or from
circumstances beyond an agent’s control. Alternatively, an agent may purposefully
add noise to her strategy in order to avoid becoming wedded to a less than optimally
efficient strategy or structure.

From a methodological point of view, noise that does not go to zero with time
transforms the model into an ergodic Markov chain. No state is then trapping. To
the extent that the trapping states produced by discounting or linear log-likelihood
are unrealistic, we may hope to mitigate the problem by adding a noise component.
Since dynamics with a noise term do not lead to a single state, the outcome is usually
phrased in terms of stochastically stable states [34]. A state is termed stochastically
stable if the chance of finding the system near that state does not go to zero as the
magnitude of the noise term goes to zero.

Neither discounting nor noise will affect the limiting behavior of Making Ene-
mies. For Making Friends, let us modify the probability rule (1) so that in the
n-player game, the probability of i visiting j is now some fixed positive number
ε/(n − 1), plus (1 − ε) times what it was before:
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pi j = ε

n − 1
+ (1 − ε)

wi j∑
k wik

.

The effect of this is to push the system by ε toward the uniform point p. Neither
Friends I nor Friends II is now a martingale, and the stable set of each is reduced
to the single point p. Since this is true at any noise level ε > 0, we see that there
is only one asymptotically stable point. Since the qualitative outcome is sensitive to
the existence of a noise term, it is incumbent to ask with regard to specific models
whether a noise term is natural and realistic.

11.4.4 Noise and Discounting

In the presence of a discount d < 1 and a noise term ε > 0, if 1−d is much smaller
than ε then the discount is so low that the noise term wipes out any effect the dis-
counting might have had. In the other case, where d is held fixed and ε tends to zero,
we may ask about the asymptotically stable states of system with past discounting
dynamics. For Friends I, nothing much interesting happens: discounting causes the
limiting state to be degenerate; with noise, the system may jump from one such state
to the other, which does not change which states are stochastically stable.

For Friends II, as long as the number of players n is at least 4, the introduction of
noise does indeed change the set of stochastically stable states: it gets rid of stars.
Simulations show that pairings are by far the most prevalent states in discounted
Friends II, with a star of size 3 forming when necessitated by an odd number of
players. We now show that states with more than one star, or a star of size greater
than 3, are not stochastically stable.

Theorem 5. In Friends II, with discounting, with n players, and with noise tending
to zero, the stochastically stable states are those that are either unions of pairs (if n
is even) or pairs plus a single star of size 3 (if n is odd).

Sketch of Proof : Let S denote the graphs corresponding to possible limit states as in
the proof of Theorem 4, and let S0 ⊆ S denote those graphs with no stars (perfect
pairings) or with a single star of size 3. The important features of the relation of S to
S0 are as follows. (1) if G is the result of adding a single edge to a graph in S0, then G
contains no graph in S \ S0. (2) for any G ∈ S there is a chain G = G1, G2, . . . , Gk

leading to S0, where each G j+1 may be obtained from G j be adding an edge and
then deleting two edges. Property (1) is apparent. To verify (2), note that if H ∈ S
and i and j are non-central vertices in stars of H , and they are not both in the same
star of size 3, then adding the edge between i and j and removing the two edges
previously incident to i and j produces a new graph in S. Iterating this procedure
starting from H = G1 leads in finite time (since the number of edges decreases each
time) to an element of S0.

We now follow the usual method for determining stochastic stability [35]. Let the
probability ρ of disobeying the structural dynamics equation (11.1) be very small.
If ε (in the definition of S) is very small, then a state p with G(p) = G ∈ S
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will have G(p(t)) = G for all later times with high probability, until there is a
disobeying move. After a single disobedience, the graph G(p) will be the union of
G with one extra edge. By the remark after the proof of Theorem 4, we see that after
a disobedience, the graph will then relax to some subgraph in S. By property (1),
if G ∈ S0 then this subgraph is again in S0. Thus a single disobedience followed
by relaxation back to S will never escape S0. Hence the probability of jumping to
S \ S0 is of order ρ2, which implies that states in S0 stay in S0 for time at least
ρ−2. On the other hand, by property (2), from any state in S \ S0, there is a chain
of single disobediences, such that allowing the system to relax after each may with
positive probability land you back in S0. Thus the expected time spent in S\S0 before
returning to S0 is at most of order ρ. Thus the process spends (1 − ρ) portion of the
time in S0, and sending ρ to zero, we see that only states in S0 are stochastically
stable. It is easy to see that all of these are indeed stochastically stable. QED

11.5 Reinforcement by Games of Nontrivial Strategy

So far we have only considered a baseline model of uniform reinforcement, which
turned out still to have nontrivial structural behavior. Now we examine a reinforce-
ment scheme resulting from the payoff of a nontrivial game. We will consider the
case where evolution of strategy is slower than evolution of structure. Thus, we
will consider the agents as divided into types, each type always playing a fixed
strategy, and see what sort of interaction structure emerges. We then extend this by
allowing strategic switching of types. We find that coordination of strategy occurs,
though whether players coordinate on the risk-dominant or payoff-dominant strat-
egy depends on parameters of the model such as the rate of strategic evolution.
Depending on conditions of the model, the social network may or may not split up
into pairs.

11.5.1 Rousseau’s Stag Hunt

Consider a two-player version of Rousseau’s Stag Hunt [36]. The choices are either
to hunt stag or to hunt rabbit (hare, in the original). It takes two person cooperating
to effectively hunt a stag, while one person acting independently can hunt a rabbit.
Bagging a stag brings a greater payoff.

Hunt Stag Hunt Rabbit
Hunt Stag (1, 1) (0, 0.75)
Hunt Rabbit (0.75, 0) (0.75, 0.75)

There are two equilibria in this game: both hunt stag, and both hunt rabbit. The
first carries the higher payoff and is said to be payoff dominant; the second carries
the least risk and is said to be risk dominant [37]. In models without structural
dynamics, Kandori et al. [38] have shown that only the risk dominant equilibrium of
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a two player coordination game is stochastically stable. In the presence of structural
dynamics, we will describe a more optimistic conclusion.

Theorem 6. Suppose Stag Hunt is played by 2n players, with structural dynamics
given by equation (2) and cumulative weighting dynamics (1) with no noise or dis-
counting. Then in the limit, stag hunters always visit stag hunters and rabbit hunters
visit rabbit hunters.

Sketch of Proof : First note that no visit of a stag hunter to a rabbit hunter is ever
reinforced. Thus wi j (t) = 1 for all t if i is a stag hunter and j is a rabbit hunter.
Observing that the weights wi j (t) go to infinity when i and j are both stag hunters,
we see that the probability of a stag hunter visiting a rabbit hunter goes to zero.

Next consider the subpopulation of rabbit hunters, call it A. For i ∈ A, let

Z (i, t) =
∑

j /∈A wi j∑n
j=1 wi j

denote the probability of visiting a given rabbit hunter visiting a stag hunter on the
next turn. The expected value of Z (i, t + 1) changes according to the formula

E(Z (i, t + 1)|Z (i, t)) = Z (i, t) + t−1Y (i, t)

where Y (i, t) is the proportion of increase in expected weight wi j due to j /∈ A:

Y (i, t) =
∑

j /∈A pi j + p ji∑n
j=1 pi j + p ji

.

Ignoring the terms p ji in both the numerator and denominator of the above expres-
sion would lead to exactly Z (i, t). The terms p ji for j /∈ A are known to be
small, while the total from the terms p ji for j ∈ A cannot be small. Consequently,
Y (i, t) < (1 − ε)Z (i, t) for some ε > 0, whence

E(Z (i, t + 1) − Z (i, t)|Z (i, t)) ≤ −εZ (i, t)

t
.

Since the increments in Z (i, t) are bounded by C/t , there are a λ,μ > 0 for which
exp(λZ (i, t) + μ log t) is a supermartingale, which implies that Z (i, t) converges to
zero exponentially fast in log t . QED.

Introduction of a discount rate changes this outcome. Stag hunters still end up
visiting stag hunters, since even discounted reinforcement beats a reinforcement of
zero, but now rabbit hunters will get locked either into pairs and stars as in Making
Friends, or into repeated visits to a single stag hunter. These limit states are all
invariant under introduction of noise. When a rabbit hunter visits a stag hunter the
loss to society is the 0.75 that another rabbit hunter would have profited from the
visit. The model is evidently weak here, since it allows only one visit by each agent
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but any number of visits to each agent in a round of visits. That is, a more realistic
loss would be the stag hunter’s wasted time when visited by the rabbit hunter.

It should be noted that although the stochastically stable states include ones that
are not optimally efficient, the optimally efficient states (those states where rabbit
hunters visit rabbit hunters) will have an edge. Due to the possibility of reciprocal
reinforcement, it will be easier for a rabbit hunter to switch from visiting a stag
hunter to visiting a rabbit hunter, than vice versa. Secondly, when the discount rate
is near 1, the model behaves like the undiscounted model for a long enough time
that it is very unlikely for a rabbit hunter to get locked into visiting a stag hunter
in the first place. Simulations of Stag Hunting with ten players and d = 0.9, seem
to show that rabbit hunters “always” visit rabbit hunters. Due to both of the effects
mentioned above, the system is nearly always found in an optimally efficient state,
even though there are stochastically stable states that are not optimally efficient.

11.5.2 Co-evolution of Structure and Strategy

To the previous model, we now add the possibility of an agent switching states: a
stag hunter may decide to become a rabbit hunter, or a rabbit hunter may become
bold and hunt stag. When this kind of strategic evolution is faster than the structural
evolution, we know from studies of random encounter models that the risk dominant
equilibrium of everyone hunting rabbits will be arrived at while the network is still
near its initial state of uniform visitation probabilities.

Whether strategic dynamics are faster or slower than structural dynamics depends,
of course, on the activity being modeled; sometimes interaction structure is exter-
nally imposed, while sometimes it is more easily modified than strategy or character.
Let us suppose that the investment in re-training as a different kind of hunter is
great, so between each round of visits there is only a small chance that one of the
hunters will change types. Then we have seen that hunters always (with no noise or
discounting) or nearly always (in discounted models) hunt with others of like type.
This eliminates the risk inherent in random encounters, and allows hunters to profit
from switching to stag hunting after an initial period where they find another stag
hunter. Slow strategic adaptation gradually converts rabbit hunters to stag hunters
and the payoff dominant strategy dominates.

We describe here the results of simulations of Stag Hunting for 1,000 time steps,
where with some probability q at any given time, an individual changes type to
whichever type was most successful in the previous round. When q = 0.1, we found
that in 22% of the cases all hunters ended up hunting stag, while in 78% of the cases,
all hunters hunted rabbit. Thus there was perfect coordination, but usually not to the
most efficient equilibrium. On the other hand, when q = 0.01, the majority (71%)
of the cases ended in the optimal state of all hunting stag, while 29% ended up all
hunting rabbit. Increasing the initial edge weights made it far less likely to reach
the stag hunting equilibrium, since stag hunters took a long time to perfectly align,
and without alignment, the previous round’s best strategy was almost always rabbit
hunting. For instance, if the initial weights were 1,000 for each visit, under 1% of
the cases ended up all stag hunting, whether q was 0.1 or 0.01.
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Once hunters largely cease to visit hunters of opposite type, the structural evolu-
tion within each of the two subpopulations is a version of Friends II. The resulting
social structure will not be a perfect pairing, but will have each rabbit (stag) hunter
visiting each other rabbit (stag) hunter, but with varying probabilities.

11.6 Conclusion

We have taken some basic steps in exploring dynamics of evolution of interaction
structures and co-evolution of structure and strategy. The ultimate goals are to create
models that are more true to life, and to find theoretical bases for observed behaviors
of systems, including prediction of selection between multiple equilibria.

The particular dynamics we use here are only examples, but it turns out that the
simplest of these may deliver interesting and surprising results. Even in baseline
models where the game being played is degenerate, we find spontaneous emer-
gence of structure from uniformity and spontaneous emergence of uniformity from
structure. We find processes with extremely long transient modes, where limiting
behavior is not a good guide for predicting behavior after thousands of trials.

The social interaction structures that emerge tend to separate the population into
small interaction groups within which there is coordination of strategy. This separa-
tion may be complete, as in discounted Friends II, or may be only a tendency, as in
the non-discounted versions of Friends and Stag Hunting.

When we combine structure and strategy dynamics for a non-trivial game, the
Stag Hunt, we find that the probable outcomes depend on the timing. Where
structure is frozen in a random encounter configuration we get the expected risk-
dominant equilibrium outcome. But when structure is fluid relative to strategy, struc-
tural adaptation neutralizes the risk and we get the socially efficient payoff dominant
equilibrium. Varying between these extremes can give one or the other result with
different probabilities – or may leave the group in a state where both strategies are
used. We expect to see structure dynamics making a difference in other games as
well. Indeed, we have some preliminary simulation evidence showing this to be true
for a bargaining game (“split the dollar”), and for a simple coordination game.

There are many more avenues to pursue. As mentioned in Sect. 11.3, it would be
desirable to find a model in which positive and negative reinforcement are present,
but trapping does not occur. We have not modeled any interaction among three or
more players. We also have yet to model any explicit interaction between strategy
and structure: the choice of a partner to play with and a strategy to play against that
partner need not be independent.

One could continue adding complexity so as to allow information to affect struc-
tural evolution, to include communication between players, and so forth. Our main
point is this. Structural change is a common feature of the real world. A theory
of strategic interaction must take account of it. There is a mathematically rich the-
ory which develops relevant tools. We believe that explicit modeling of structural
dynamics, and the interaction of structure and strategy, will generate new insights
for the theory of adaptive behavior.
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Postscript to: A Dynamic Model of Social Network Formation

At about the same time as our paper was originally published, several economists
initiated a somewhat different account of network formation. [3, 8, 20.] They view
network links as all-or-none, whereas we view them as stochastic. Thus, for them
a network is a graph or a directed graph, while for us it is a random graph. They
imbed the network in a game – a game, where the players acts are choosing to make
or break links, and the graph structure determines the players payoffs. We embed
the games in an evolving network, with the games being played across links. The
network dynamics considered in these three papers is one of best-response with
inertia. At a random time, a player looks at the network structure and chooses a best
response, which may consist of making or breaking links or both. Updating times
are independent across players, so updating is asynchronous, which avoids cycles.
This line of research can be thought of as complementary to that which we and
others to be discussed here have pursued.

We emphasized stochastic networks that evolve as low-rationality agents update
their probabilities by reinforcement learning or imitation or both. Deterministic
networks might or might not crystallize out, depending of the learning dynamics
used and the kind of interaction being modeled. Our point of view is thus close
to that expressed by Kirman [9]. Bonacich and Liggett [4] and Liggett and Rolles,
[10] work in a closely related model. Our baseline interactions, Friends I and II



250 References

always reinforced the visitor, or both the visitor and the host respectively. These
papers consider the case where the host alone is reinforced as a model of gift-
giving – the visitor takes a gift to the host. They also use reinforcement learning
as a dynamics, but the kind of reinforcement learning is different. It derives from
Bush and Mosteller rather than from Herrnstein, Roth and Erev, and it generates a
Markov chain rather than a reinforcement process. [See Pemantle [13], for a survey
of reinforcement processes. See Argiento et al. [2] for application of our kind of
reinforcement learning to a signaling game.] As Bonacich and Liggett remark, their
dynamics tends to freeze into the same sort of structures as our Friends II model
where reinforcement is modified by discounting the past. From the viewpoint of
stochastic approximation theory, such discounting converts a process with dimin-
ishing step size of order (1/time) to one of constant step size. Individuals then have
a tendency to “freeze” into deterministic relationships.

In Pemantle and Skyrms [14, 15] we analyze clique formation in a 3-person
“friends” game, Three’s Company, and in a 3-person version of the Stag Hunt, where
the learning is Herrnstein-Roth-Erev reinforcement with discounting the past. It is
proved that cliques always form in the limit. However, extensive simulations only
show reliable clique formation when the discounting is substantial. It is shown that
for small discounting, long-run limiting results are a poor guide to medium-run
behavior. Rather the medium run should be expected to approximate the limiting
behavior of undiscounted learning. In the 3-person Stag Hunt, in contrast with this
slow clique formation, Stag Hunters learn to visit each other rapidly, and thus the
positive results for social cooperation of our original paper are preserved.

The structure dynamics, the strategy revision dynamics, and the embedded game
may be varied. Skyrms [17, 18] and Skyrms and Pemantle [19] consider various
combinations of structure and strategy dynamics. In double reinforcement dynamics
both network structure and strategy played evolve by reinforcement, but at differ-
ent rates Double reinforcement dynamics in the Stag Hunt agrees with the general
principle that fast evolution of network structure favors cooperation. But if strategy
revision dynamics is changed to best response in the Stag Hunt, individuals may
freeze into two social classes – cooperators and loners.

Coevolution of network structure and strategy is also studied by Zimmerman
et al. [21], and by Santos et al. [16], who also find a positive effect on evolution of
cooperative behavior. Goyal and Vega-Redondo [5] study a model of co-evolution
of structure and strategy where link formation is costly. In their model, high costs of
link formation favor cooperation in the Stag Hunt game. A model with imitate-the-
best strategy revision and with deterministic costly links that require mutual consent,
and are driven by cost-benefit analysis, is analyzed in Hanaki et al. [7]. Pacheco
et al. [11] and Pacheco et al. [12] interpret fast evolution of network structure as a
way of transforming the payoffs of the embedded game. In this way, a Prisoner’s
Dilemma can be transformed into a Stag Hunt. This is quite consonant with view
taken in Skyrms [17]. In both these papers relative rates of network and strategy
revision dynamics again play a key role in evolution of cooperation.

Alexander’s [1] book systematically compares coevolution of structure and strat-
egy with evolution on fixed structures across a range of games. In addition to the
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usual social dilemmas, he also examines bargaining games. There is a comprehen-
sive review across fields of adaptive social networks in Gross and Blasius [6].
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