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Future scientific and technological developments in many fields will necessarily depend upon
coming to grips with complex systems. Such systems are complex in both their composition –
typically many different kinds of components interacting simultaneously and nonlinearly with
each other and their environments on multiple levels – and in the rich diversity of behavior of
which they are capable.

The Springer Series in Understanding Complex Systems series (UCS) promotes new
strategies and paradigms for understanding and realizing applications of complex systems
research in a wide variety of fields and endeavors. UCS is explicitly transdisciplinary. It has
three main goals: First, to elaborate the concepts, methods and tools of complex systems at
all levels of description and in all scientific fields, especially newly emerging areas within
the life, social, behavioral, economic, neuro- and cognitive sciences (and derivatives thereof);
second, to encourage novel applications of these ideas in various fields of engineering and
computation such as robotics, nano-technology and informatics; third, to provide a single
forum within which commonalities and differences in the workings of complex systems may
be discerned, hence leading to deeper insight and understanding. UCS will publish mono-
graphs, lecture notes and selected edited contributions aimed at communicating new findings
to a large multidisciplinary audience.
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The world around is full of the wonderful interplay of relationships and emergent behaviors.
The beautiful and mysterious way that atoms form biological and social systems inspires
us to new efforts in science. As our society becomes more concerned with how people are
connected to each other than how they work independently, so science has become interested
in the nature of relationships and relatedness. Through relationships elements act together to
become systems, and systems achieve function and purpose. The study of complex systems
is remarkable in the closeness of basic ideas and practical implications. Advances in our
understanding of complex systems give new opportunities for insight in science and improve-
ment of society. This is manifest in the relevance to engineering, medicine, management and
education. We devote this book series to the communication of recent advances and reviews
of revolutionary ideas and their application to practical concerns.
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traditional fields of science.
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disciplines of physical, biological and social sciences, as well as engineering, man-
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ring, international development and terrorism.

The study of complex systems is about understanding indirect effects. Problems
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interdependent. This has become more and more apparent in our efforts to solve
societal problems or avoid ecological disasters caused by our own actions. The field
of complex systems provides a number of sophisticated tools, some of them concep-
tual helping us think about these systems, some of them analytical for studying these
systems in greater depth, and some of them computer based for describing, modeling
or simulating them.
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tems. Throughout the year, classes, seminars, conferences and other programs assist



students and professionals alike in their understanding of complex systems. Courses
have been taught all over the world: Australia, Canada, China, Colombia, France,
Italy, Japan, Korea, Portugal, Russia and many states of the U.S. NECSI also spon-
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Preface

Adding one and one makes two, usually. But sometimes things add up to more than
the sum of their parts. This observation, now frequently expressed in the maxim
“more is different”, is one of the characteristic features of complex systems and, in
particular, complex networks. Along with their ubiquity in real world systems, the
ability of networks to exhibit emergent dynamics, once they reach a certain size,
has rendered them highly attractive targets for research. The resulting network hype
has made the word “network” one of the most influential buzzwords seen in almost
every corner of science, from physics and biology to economy and social sciences.

The theme of “more is different” appears in a different way in the present vol-
ume, from the viewpoint of what we call “adaptive networks.” Adaptive networks
uniquely combine dynamics on a network with dynamical adaptive changes of the
underlying network topology, and thus they link classes of mechanisms that were
previously studied in isolation. Here adding one and one certainly does not make
two, but gives rise to a number of new phenomena, including highly robust self-
organization of topology and dynamics and other remarkably rich dynamical behav-
iors.

Adaptive networks have for a long time been implicitly contained in models from
a wide range of fields including discrete mathematics, computer science, statistical
physics, systems biology, social sciences, engineering and medicine. However, only
recently research in the different fields has begun to converge on the functioning
of the adaptive networks as such. In the different fields, adaptive networks have
appeared as a topic of intense research almost at the same time. Consequently, they
are currently attacked from many different angles by the tools different disciplines
have established.

It is becoming more and more apparent that adaptive networks could hold the key
to many phenomena observed in a wide variety of applications. Major breakthroughs
have recently been made and common themes now frequently appear across disci-
plines. A unified theory of adaptive networks seems within reach.

The book you have at hand, “Adaptive Networks: Theory, Models and Applica-
tions”, is the first edited volume that illustrates the dawn of a new research field
on the coevolution of topologies and states of complex networks. It showcases
the recent advances in the theory, models and applications of adaptive networks
by cutting-edge scientists. We hope that the book will play a role in setting the
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scope and directions of this emerging field of research, by raising the researcher’s
awareness to developments in different fields. It can also act as introductory text for
the large group of researchers who presently start working on adaptive networks.

The project about this book started in January 2008 when the first editor (T.G.)
invited the second editor (H.S.) as a guest scientist to the Max-Planck Institute for
the Physics of Complex Systems in Dresden, Germany. For both of us it was clear
that the coevolutionary dynamics of states and topologies in adaptive networks will
be the next big movement in network research. Fortunately, at that time we had
an offer to edit a book in the Springer/NECSI Studies on Complexity Collection;
therefore it did not take long to come up with an idea to compile a book that col-
lects the most influential and state-of-the-art in the forefront of adaptive network
research. T.G. took the lead of selecting and inviting contributions primarily from
statistical physics community, while H.S. invited contributions from empirical net-
work research and computer science communities. All the chapters were included
based on invitation only.

The contributors, who collectively represent the cutting edge of the rapidly
advancing fields of network research, were enthusiastic about the concept this book
aimed to illustrate, and they were extremely cooperative in preparing their chapters
on a timely manner following a tight project timeline. We are wholeheartedly thank-
ful for their contribution to and cooperation for this book project, without which it
would not have been possible.

We are also very thankful to several people who played key roles in this book
project, including: Dan Braha at UMass Dartmouth (Series Editor of the Springer/
NECSI Studies on Complexity Collection) and Chris Caron at Springer for inviting
us to guest-edit a book; Gabriele Hakuba and Sabine Lehr at Springer for their edito-
rial assistance; Ellen Madison at the Department of Bioengineering at Binghamton
University for clerical assistance; and the last but not the least, Cristian Huepe who
unconsciously served as a key “hub” in the huge social network that made the two
editors get to know each other in the first place and work together for this book.
Finally, we thank the Visitor Program of the Max-Planck Institute for the Physics of
Complex Systems for financial support.

Dresden, Germany Thilo Gross
Binghamton, NY Hiroki Sayama
May 2009
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petter.holme@physics.umu.se

Junji Ito Theoretical Neuroscience Group, RIKEN Brain Science Institute, 2-1
Hirosawa, Wako, Saitama, 351-0198, Japan, j-ito@brain.riken.jp

Kunihiko Kaneko Department of Basic Science, University of Tokyo
and ERATO complex systems biology, Meguro, Tokyo 153-8002, Japan,
kaneko@complex.c.u-tokyo.ac.jp

Haruhisa Kurokawa National Institute of Advanced Industrial Science and
Technology (AIST), Tsukuba, Ibaraki 305-8564 Japan, kurokawa-h@aist.go.jp

Jürgen Kurths Potsdam Universität, Center for Dynamics of Complex Systems,
Am Neuen Palais 10, 14469, Germany, jkurths@gmx.de

Craig Laramee Collective Dynamics of Complex Systems Research
Group/Department of Bioengineering, Binghamton University, State University of
New York, Binghamton, NY 13902-6000, USA, claramee@binghamton.edu

Satoshi Murata Department of Computational Intelligence and Systems
Science, Interdisciplinary Graduate School of Science and Technology, Tokyo
Institute of Technology, 4259 Nagatsuda, Midori-ku, Yokohama, 226-8502 Japan,
murata@dis.titech.ac.jp

Toshiyuki Nakagaki Research Institute for Electronic Science, Hokkaido
University, Sapporo, 060-0812, Japan, nakagaki@es.hokudai.ac.jp

Jorge M. Pacheco ATP-Group and CFTC, Departamento de Fı́sica da Faculdade
de Ciências, 1649-003 Lisboa, Codex, Portugal, pacheco@cii.fc.ul.pt

Gergely Palla Statistical and Biological Physics Research Group of HAS, 1117
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Chapter 1
Adaptive Networks

Thilo Gross and Hiroki Sayama

1.1 Introduction

Over the past decades it has become clear that the metaphor of networks – ensem-
bles of discrete nodes connected by links – offers a powerful conceptual framework
for the description and analysis of many real world systems [1–5]. The science of
networks has grown into a field which is by now firmly established in several disci-
plines, including mathematics, physics, biology, computer science, economics and
the social sciences. Dramatic progress has been made both in the characterization
of real world networks and in the study of dynamical models of networks.

It is interesting to note that the notion of dynamical networks has so far referred
to either one of two distinct concepts. First, the nodes can be individual dynamical
systems which are coupled through static links. Second, the pattern of links, i.e. the
network topology, can evolve dynamically in time. We can thus distinguish between
dynamics ON networks and dynamics OF networks. Combining the two yields an
adasptive network – a network whose links change adaptively with respect to its
states, resulting in a dynamical interplay between the state and the topology of the
network [6].

Adaptive networks are hardly new. Almost all real world networks are adaptive
to some extent. Consequently, examples of adaptive networks occur in many disci-
plines and can be found in a large number of applied models. What is new, however,
is that only over the recent years adaptive networks have come into focus of rig-
orous investigations that employ simple conceptual models. These investigations
have revealed a number of new mechanisms and phenomena: Adaptive networks
based on simple local rules can self-organize robustly toward phase transitions [7]
and highly non-trivial complex topologies [8]; distinct classes of nodes can emerge
spontaneously from an initially homogeneous population [9]; and, complex dynam-
ics can be observed as a consequence of phase transitions [10] and bifurcations [11]
that involve topological as well as local degrees of freedom.

T. Gross (B)
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2 T. Gross and H. Sayama

While the results of the recent surge of activity on adaptive networks have been
predominately reported in the statistical physics literature, the investigation of adap-
tive networks has profited greatly from approaches and insights from other fields of
science, most prominently discrete mathematics, nonlinear dynamics, game theory,
sociology, and computer science. As a consequence, the questions posed by adaptive
networks are currently attacked from many different directions with the tools that
the different disciplines have established. Despite the different approaches, common
themes frequently emerge in the investigations, and insights of broad importance
begin to crystallize. A theory of adaptive networks that provides a unifying frame-
work linking the previously isolated phenomena has come within reach.

The purpose of this book is to provide a broad overview over major insights in the
functioning of adaptive networks. We aim on the one hand to provide an accessible
introduction for researchers starting to work on adaptive networks, and, on the other
hand, to draw the attention of experts to parallel developments outside their own
disciplines.

In the remainder of this introductory chapter, we will explain basic concepts and
illustrate the origin of adaptive networks in different disciplines. We will start in
Sect. 1.2 by introducing some key notions, especially the interplay between state
and topology that is the key to many intriguing phenomena observed on adaptive
networks. In Sect. 1.3, we will specifically discuss the separation of timescales
between the dynamics of states and the evolution of topologies, and several impor-
tant critical phenomena discovered with models that adopt separable timescales. In
Sect. 1.4, we will focus on the formation of self-organized topology in adaptive
networks, and discuss some important research agendas. In Sect. 1.5, we will intro-
duce a more complex class of adaptive network models in which the timescales of
changes of states and topologies are not separable. Finally, in Sect. 1.6, we will give
an overview of the other chapters in this book, where we will highlight how the
approaches shed light on adaptive networks from different directions and how these
different views could be combined to reveal a coherent picture of this intriguing,
rapidly evolving field.

1.2 The Interplay Between State and Topology

What makes dynamics in adaptive networks so different from dynamics ON net-
works or dynamics OF networks? To answer this question, we begin by considering
dynamics on a static network first.

It is well known that almost all dynamical processes that can be placed on a
network are highly sensitive to the network topology. This means that the dynamics
explores the network topology and thereby, somehow, “encodes” topological infor-
mation in the time series of the states of the nodes. A simple example is an infectious
disease spreading across the network. Each node is either susceptible to the disease
or infected. Susceptible nodes that are linked to infected nodes become infected
with a certain rate, while infected nodes recover at a different rate, coming back
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to susceptible again. Whether such a disease can persist in the network depends
on the rates of infection and recovery, but also on the number of connections per
network node, or the degree of the nodes. Specifically, it depends on a quantity
called mean excess degree, which denotes the average number of additional links
that one finds connected to a node that is reached by following a random link. In a
large connected network in which the excess degree exceeds a certain threshold, the
disease can persist indefinitely. In this case, every node will be infected once in a
while. Consequently, we can estimate whether the mean excess degree exceeds the
threshold (global topological information) just by watching the behavior of a single
node (time series of states of an individual node) for a sufficiently long period of
time.

The example given above illustrates how topological information could be
encoded in the dynamics of every single node. In certain situations, we can use
the information that is thus encoded; for instance, it has been proposed to simulate
the dynamics of coupled oscillators on a given network in order to detect cliques
of closely connected nodes. However, on networks with static topology, the flow of
information is a one-way road. The information about the states of nodes cannot
feed back to the network topology.

Let us return to the example of the disease spreading, but now we allow the
susceptible nodes to cut links to infected neighbors with a certain probability. As a
result of this additional rule, a dynamical feedback loop is formed between topolo-
gies and states of the network. Namely, the dynamics of the prevalence of the disease
depends on the network topology, but the evolution of the network topology also
depends on the prevalence of the disease.

1.3 Timescale Separation and Critical Phenomena

The coupling of the topological evolution and the dynamics of states leads to an
intriguing interplay. The effect of this interplay can be well understood in systems
with timescale separation. A good example that can be seen in our everyday life is
a road network. It is apparent that the decision where to build new roads depends
on the traffic load on the existing roads, and therefore on the dynamical state of the
network. Once a new road is built, it will alter the traffic patterns. However, the two
processes – the road construction and the traffic shift in response to it – take place
at very different timescales: years compared to days.

From the theory of dynamical systems, it is known that, in systems with timescale
separation, the fast processes are governed by the slow processes. For example, if
we start our road network in a random initial state, the traffic load will quickly
settle down to some pattern. This pattern is a dynamical attractor of the fast sys-
tem. Only if the network is observed on a much longer timescale, one can notice
that the traffic pattern still changes in response to the evolving topology. However,
compared to phenomena on the longer timescale, the response of the traffic load
to topological changes is so fast that it can be regarded an instantaneous process.
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Unless discontinuous dynamical transitions in the dynamics of the fast system take
place, it will remain in this quasi-attractor all the time. The states visited in this
quasi-attractor, i.e., the specific patterns of traffic, are then governed by the network
topology.

An important consequence of timescale separation was described in a ground-
breaking paper by Bornholdt and Rohlf [7]. Suppose that the dynamics on the net-
work undergoes a phase transition, if the topology is altered in a certain way. In
the language of statistical physics, this transition is detected by an order parame-
ter – a global property of the dynamics. Bornholdt and Rohlf showed that the order
parameter is encoded in the dynamics and therefore accessible to every node when
the system falls in its quasi-attractor. In the meantime, the topological evolution
is assumed to take place a slower timescale, and therefore the information about
the order parameter can be extracted and utilized for topological changes. If the
topological evolution follows appropriate rules, it is conceivable that this system
self-organizes toward a critical state in which the dynamics on the network is exactly
in the critical, transitional regime. While this mechanism sounds slightly artificial
at first, it turns out that it arises almost automatically if the system is governed by
simple natural rules.

Let us return once again to the example of epidemics, but now assume that the
nodes are very reluctant to cut links so that the topological dynamics is much slower
than the dynamics of the epidemic. If we start the system in the epidemic state, every
node will be infected once in a while. On a longer time scale, every node will decide
to cut a link once in a while. This decreases the connectivity of the network very
slowly, and eventually, the epidemic threshold is reached and the disease becomes
extinct, freezing the network exactly at the critical connectivity. Many more realistic
examples can be found in the context of regulatory and neural networks.

Critical states have some peculiar dynamical properties. In particular they are
frequently linked to the appearance of power-laws in the sizes of avalanches of
events. Furthermore, they can give rise to multiple coexisting periodic and quasi-
periodic attractors. Several authors have presented evidence that this form of self-
organization is present in biological systems at many different scales.

1.4 Self-Organization of Non-trivial Network Topologies

A different form of topological self-organization was first observed in a model by
Ito and Kaneko [9]. They describe a system that is initially homogeneous, where
every node is connected to every other node and all nodes are in the same state
(except for very small perturbations). In their model, the states of the nodes as well
as the strength of the links change continuously. A rule is applied that increases the
link strength between nodes in similar states but effectively weakens the connection
between nodes in different states. This rule leads to the evolution of two distinct
classes of nodes: Leaders, which exert a strong influence on other nodes, and fol-
lowers, which exert little influence on others. Although the topology of the network
keeps evolving indefinitely, leaders remain leaders and followers remain followers.
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The work of Ito and Kaneko has inspired several subsequent investigations, in
particular in the context of game theory. Although the mechanism that drives the
spontaneous formation of the distinct classes of nodes is still unclear, an interesting
pattern can be observed: All models in which nodes in similar states are linked
preferentially lead to the formation of heterogeneous topologies, which either follow
a scale-free degree distribution or split into distinct classes of nodes with different
mean degrees. By contrast, if the opposite rule is applied so that nodes in different
states are linked preferentially, homogeneous topologies that favor synchronization
are obtained [12].

Both the self-organized formation of distinct classes of nodes and the ability to
communicate topological information seem to be important ingredients for the self-
organized formation of global non-random topologies based on local rules. Indeed,
the formation of such topologies, although not stationary ones, was first reported by
Holme and Ghoshal [8], and later, the self-assembly of adaptive networks was stud-
ied by Rosvall and Sneppen [13]. Nevertheless, the formation of distinct topologies
in adaptive networks still remains largely unexplored at this point. More work in
this direction would be highly desirable as it is likely to reveal the mechanisms that
govern structure formation in biological networks and could, in the form of design
principles, be utilized in engineering applications.

1.5 Adaptive Networks with Inseparable Timescales

So far we have mainly focused on systems in which the dynamics on the network
is faster than the topological evolution. We have seen that, in these networks, the
dynamics can be used to communicate topological information among nodes. How-
ever, the opposite is also possible: if the topological evolution is much faster than the
dynamics on the network then topology can be used as a medium to communicate
information on the state of the nodes.

Yet another, particularly interesting situation can arise if the dynamics on the
network and the dynamics of the network take place at the same timescale. In
such a case, the states and the topology of the network are truly coupled, and the
entwined feedback loops between topological and local information may give rise to
highly complex outcomes. For instance, it has been shown that the adaptive interplay
can give rise to new bifurcations and phase transitions that involve changes in the
dynamics of state and the topology of the network [10, 11].

An alternative approach to describing the interplay between states and topolo-
gies at the same timescale is the graph transformation (also called graph rewrit-
ing or graph grammars), which has been studied in discrete mathematics and
theoretical computer science for the last couple of decades. While very diffi-
cult to treat analytically, the graph transformation is a convenient way to for-
mulate the evolution of networks in both states and topologies algorithmically,
using some local rules of substructure rewriting applied to labeled graphs. This
kind of formulation is particularly powerful for the description of complex net-
work growth processes, such as morphogenesis and self-replication of biologi-
cal systems. It is anticipated that the combination these algorithmic approaches
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and other statistical-physics-based ones will produce novel research directions on
adaptive networks.

1.6 In this Book

This book contains a broad survey of the state-of-the-art in adaptive networks. The
individual chapters are contributed by leading researchers from different disciplines.
The chapters aim on the one hand to provide first-hand accounts focused on signif-
icant insights that have been gained, and on the other hand to provide mini-reviews
of selected areas.

The following three chapters of the book focus on empirical investigations of
real-world adaptive networks. In Chap. 2, Palla, Pollner, Barabási, and Viscek
present an approach to the evolution of communities in social networks. This
approach is illustrated by the analysis of social network data which reveals sig-
nificant differences between small and large communities. Chapter 3 by Braha and
Bar-Yam connects almost seamlessly to the first. Here a different approach to the
analysis of real-world social networks is proposed by which the role of nodes in
the network can be quantified. Again the application to social network data reveal a
surprising result; while local hubs are found as expected, who is a hub and who is not
changes on short timescales. This result strongly emphasizes the inherent dynamic
nature of adaptive networks that has long been neglected in the literature. The theme
of the investigation of real world adaptive networks continues in the fourth chapter
in an entirely different context. Fricker, Boddy, Nakagaki, and Bebber present data
on the growth of fungal mycelial networks. In the forest floor these networks can
grow to enormous size and play an important role for forest ecosystems. In the
context of this book mycelial networks are interesting as they can be cultured in
the lab and thus constitute an example of real-world adaptive networks that can be
studied with relative ease.

In the fifth chapter we launch into the theoretical investigation of adaptive net-
works. In this chapter Rohlf and Bornholdt review their original work on self-
organized criticality in adaptive networks as well as several subsequent models
inspired by the original paper. The basic mechanism proposed is probably respon-
sible for self-organization of many systems in biology and beyond. The self-
organization of adaptive networks with time-scale separation is further illustrated
by the work of Caldarelli and Garlaschelli presented in Chap. 6. Here, an adaptive
ecological network is considered in which Bak-Sneppen-like dynamics are coupled
to topological evolution rules. This model illustrates clearly how the behavior of
both the topological model and the Bak-Sneppen-model are significantly altered as
they are combined.

The subsequent chapters focus on a different form of self-organization of adap-
tive networks. In Chap. 7 Ito and Kanako show how distinct classes of nodes can
spontaneously emerge in a system of coupled oscillators. While many other models
have been used to investigate the emergence of discrete classes, the models reviewed
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in this chapter remain, to our knowledge, the only ones that show such an emer-
gence from an initially homogeneous population and use deterministic dynamics.
Chapter 8 by Chen and Kurths likewise focuses on systems of coupled oscillators.
In contrast to the setting studied by Ito and Kaneko, the aim is to build up not het-
erogeneous topologies but very homogeneous ones promoting synchronization. The
authors discuss different adaptive rewiring rules by which this aim can be achieved.

After networks with weighted links and continuous states have been discussed
in Chaps. 7 and 8, we return to the far simpler models with unweighted links and
discrete node states. In Chap. 9 Do and Gross review several recent investigations,
which apply such models for the study of opinion formation and epidemic spreading
on networks of social contacts. The comparison of the different model approaches
reveals several interesting parallels and differences. This chapter also introduces the
moment closure, an approximation scheme by which the dynamics of an adaptive
network can be captured in a low dimensional system of differential equations. This
approximation is then used by Shaw and Schwartz in Chap. 10 to analyze a more
complex epidemiological model. This chapter also contains an interesting discus-
sion of the effect of noise in adaptive networks.

Another class of systems that can be described by unweighted links and a finite
number of node states are discrete games on adaptive networks. In Chap. 11 we
return to the formation of complex topologies, but this time consider it from a game
theoretical perspective. Skyrms and Pemantle discuss several network formation
games of which Rosseau’s stag hunt, a coordination game, is the most complex.
With great skill and mathematical rigor the authors show that, in the context of
adaptive networks, even very simple scenarios can yield interesting results. The sub-
sequent chapter, Chap. 12, connects almost seamlessly with a discussion of slightly
more complex games. Traulsen, Santos and Pacheco study three fundamental classes
of games using a powerful approximation scheme and numerical simulation. It is
shown that adaptive rewiring effectively changes the rules of the game. Thus, the
players actually behave as if they were playing a different type of game in a static or
well-mixed system. While well studied models from game theory can thus show new
types of behavior if considered on an adaptive networks, also entirely new games
become possible. In Chap. 13 Holme and Ghoshal propose a game in which the
players do not attempt to maximize an abstract payoff, but struggle for an advanta-
geous topological position on the network. The desired position is characterized by
low degree and high centrality which presents the nodes with a dilemma and results
in interesting dynamics.

The models discussed in Chaps. 9–13 show that even very simple rules can lead
to the formation of complex network topologies and non-trivial dynamics. Several
graph-transformation-based approaches for the automated discovery of such “inter-
esting” rules have been proposed in the context of computer science. In Chap. 14
Tomita, Kurokawa, and Murata propose a restricted, but very flexible class of adap-
tive networks for which an exhaustive search for rules and initial network config-
urations is possible. The authors apply this framework to construct self-replicating
networks by evolutionary optimization. Finally in Chap. 15, Sayama and Laramee
propose a modeling framework named generative network automata that extends
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established methods for the investigation of cellular automata and other discrete
dynamical systems to adaptive networks. This formal framework allows for an enu-
meration of all possible rules and therefore for an exhaustive search, which reveals
several distinct classes of dynamical behavior.

References

1. R. Albert, A. Barabasi, Rev. Mod. Phys. 74(1), 1 (2002)
2. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks (Oxford University Press, Oxford,

2003)
3. M.E.J. Newman, SIAM Rev. 45(2), 167 (2003)
4. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. Hwang, Phys. Reports 424, 175 (2006)
5. M.E.J. Newman, A. Barabasi, D.J. Watts, The Structure and Dynamics of Networks (Princeton

University Press, Princeton, 2006)
6. T. Gross, B. Blasius, J. R. Soc. Interface 5, 259 (2008)
7. S. Bornholdt, T. Rohlf, Phys. Rev. Lett. 84(26), 6114 (2000)
8. P. Holme, G. Ghoshal, Phys. Rev. Lett. 96, 908701 (2006).
9. J. Ito, K. Kaneko, Phys. Rev. Lett. 88(2), 028701 (2002)

10. P. Holme, M.E.J. Newman, Phys. Rev. E 74, 056108 (2007).
11. T. Gross, C. Dommar D’Lima, B. Blasius, Phys. Rev. Lett. 96, 208701 (2006)
12. C.S. Zhou, J. Kurths, Phys. Rev. Lett. 96, 164102 (2006).
13. M. Rosvall, K. Sneppen, Euro. Phys. Lett. 74(6), 1109 (2006)



Part I
Real-World Examples of Adaptive

Networks



Chapter 2
Social Group Dynamics in Networks

Gergely Palla, Péter Pollner, Albert-László Barabási, and Tamás Vicsek

Abstract The rich set of interactions between individuals in the society results in
complex community structure, capturing highly connected circles of friends, fam-
ilies, or professional cliques in a social network. Due to the frequent changes in
the activity and communication patterns of individuals, the associated social and
communication network is subject to constant evolution. The cohesive groups of
people in such networks can grow by recruiting new members, or contract by loos-
ing members; two (or more) groups may merge into a single community, while a
large enough social group can split into several smaller ones; new communities are
born and old ones may disappear. We discuss a new algorithm based on a clique
percolation technique, that allows to investigate in detail the time dependence of
communities on a large scale and as such, to uncover basic relationships of the sta-
tistical features of community evolution. According to the results, the behaviour of
smaller collaborative or friendship circles and larger communities, e.g., institutions
show significant differences. Social groups containing only a few members persist
longer on average when the fluctuations of the members is small. In contrast, we
find that the condition for stability for large communities is continuous changes in
their membership, allowing for the possibility that after some time practically all
members are exchanged.

2.1 Introduction

Mapping social relations between people onto a network has a long tradition in
sociology [20, 72, 76]. The standard method for revealing the topology of the con-
nections is to use questionnaires and personal interviews. The advantage of this
approach is that it can provide very detailed information about the social ties, e.g.,
the type of acquaintance behind a given connection, what sort of emotions do the
examined pairs of people induce in each other, whether the relation is mutual or
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not, etc. The drawback of this data collection framework is that the typical size
of the examined sample is of the order of N ≈ 102 individuals and the strength
associated to the links between people is subjective.

In the last decade a change of paradigm took place due to the rapid development
of complex network theory [2, 4, 39, 75]. This new interdisciplinary field is devoted
to the analysis of the statistical features of systems ranging from protein interac-
tion networks through stock correlation graphs to the Internet. Since the size of the
investigated networks can grow up to more than N ≈ 106 nodes, the underlying
data must be collected in an automated way, extracting the relevant information
from large electronic databases. This approach has been successfully used to create
large social networks as well [50, 51, 73]. E-mail databases [10, 12, 13], phone-call
records [1, 50, 51] and scientific co-authorship data [5, 22, 23, 42] provide good
examples for the starting point of a social network analysis on large scale. Although
the range of social interactions that can be detected using data bases of this type
is narrow compared to the questionnaires, in some cases the strength of the con-
nections (e.g., the number of phone-calls between two individuals in a certain time
period) may be more objectively quantifiable.

In this chapter we present a study concerning the statistical properties of two
large social networks of major interest, capturing the collaborations between sci-
entists and the calls between mobile phone users. Our focus is on the community
dynamics, where the communities (also called as modules, clusters or cohesive
groups) can correspond to families, friendship circles, work groups [63, 74], etc.
These structural sub-units have no widely accepted unique definition, however we
can assume that a community member is usually more tightly connected to its group
than to other parts of the network, and that most people in a community know each
other [15, 33, 43, 57, 64] (the groups are dense).

Although most empirical studies have focused on snapshots of these commu-
nities, thanks to frequent changes in the activity and communication patterns of
individuals, the associated social and communication network is subject to constant
evolution [5, 11, 31, 38, 47, 70, 78]. Our knowledge of the mechanisms govern-
ing the underlying community dynamics is limited, but is essential for a deeper
understanding of the development and self-optimisation of the society as a whole
[25, 28, 32, 34, 37, 56].

Typically, the communities in a complex system are not isolated from each other,
instead, they have overlaps, e.g., people can be members in different social groups
at the same time [72]. This observation naturally leads to the definition of the com-
munity graph: a network representing the connections between the communities,
with the nodes referring to communities and links corresponding to shared members
between the communities. Accordingly, the community degree dcom of a community
is given by the number of other communities it overlaps with, and is equal to the
degree of the corresponding node in the community graph. So far, in the networks
investigated, the community degree distribution was shown to decay exponentially
for low and as a power law for higher community degree values. This means that
fat tailed degree distributions appear at two levels in the hierarchy of these systems:
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both at the level of nodes (the underlying networks are scale free), and at the level
of the communities as well.

Preferential attachment is a key concept in the field of scale-free networks. In a
wide range of graph models the basic mechanism behind the emerging power law
degree distribution is that the new nodes attach to the old ones with probability
proportional to their degree [2, 4, 39]. Furthermore, in earlier works the occurrence
of preferential attachment was directly demonstrated in several real world networks
with scale free degree distribution [5, 41]. The observed fat tails in the degree
distribution of the community graphs indicate that the mechanism of preferential
attachment could be present at the level of communities as well. One of our aims in
the present chapter is to examine the attachment statistics of communities in order
to clarify this question.

We further develop a new algorithm based on the clique percolation method
(CPM) [9, 53], that allows to investigate in detail the time dependence of over-
lapping communities on a large scale and as such, to uncover basic relationships of
the statistical features of community evolution [52, 55]. According to our results,
the behaviour of large – and small communities show an interesting difference. We
find that large groups persist longer if they are capable of dynamically altering their
membership, suggesting that an ability to change the composition results in better
adaptability and a longer lifetime for social groups. Remarkably, the behaviour of
small groups displays the opposite tendency, the condition for stability being that
their composition remains unchanged. We also show that the time commitment of
members to a given community can be used for estimating the community’s lifetime.

This chapter is organised as follows. We begin with the construction of the inves-
tigated networks from the basic data sets in Sect. 2.2. and continue with the main
aspects of the CPM in Sect. 2.3. We detail the algorithm for building evolving com-
munities from subsequent snapshots of the community structure in Sect. 2.4. The
main results are discussed in Sect. 2.5, whereas the concluding remarks are drawn
in Sect. 2.6.

2.2 Construction of the Networks

The data sets we consider contain the monthly roster of articles in the arXiv.org
cond-mat archive spanning 142 months, with over 30,000 authors [71], and the
complete record of phone-calls between the customers of a mobile phone company
spanning 52 weeks (accumulated over two week long periods), and containing the
communication patterns of over 4 million users [50, 51]. Both type of collabora-
tion events (a new article or a phone-call) document the presence of social inter-
action between the involved individuals (nodes), and can be represented as (time-
dependent) links. We assumed that in both cases the social connection between
people had started some time before the collaboration/communication events and
lasted for some time after these events as well. ( E.g., the submission of an article to
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the archive is usually preceded by intense collaboration and reconciliation between
the authors, which is in most cases prolonged after the submission as well). Col-
laboration/communication events between the same people can be repeated from
time to time again, and higher frequency of collaboration/communication acts usu-
ally indicates closer relationship [58]. Furthermore, weights can be assigned to the
collaboration and communication events quite naturally: an article with n authors
corresponds to a collaboration act of weight 1/(n − 1) between every pair of its
authors, whereas the cost of the phone-calls provide the weight in case of the phone-
call network. Based on this, we define the link weight between two nodes a and b at
time t as

wa,b(t) =
∑

i

[
wiΘ (t − ti ) exp (−λ+ (t − ti ) /wi )

+wiΘ (ti − t) exp (−λ− (ti − t) /wi )
]
, (2.1)

where the summation runs over all collaboration events in which a and b are
involved e.g., a phone-call between a and b, and wi denotes the weight of the event
i occurring at ti . (The constants λ+ and λ− are decay time characteristic for the
particular social system we study. The function Θ(t) is the step function taking 0
at negative t values and 1 for positive). Thus, in this approach the time evolution
of the network is manifested in the changing of the link weights. However, if the
links weaker than a certain threshold w∗ are neglected, the network becomes truly
restructuring in the sense that links appear only in the vicinity of the events and dis-
appear further away in time (Fig. 2.1). The above method of weighting ties between
people is very useful in capturing the continuous time dependence of the strength of
connections when the information about them is available only at discrete time steps.
Except for our analysis of the preferential attachment of communities (Sect. 2.3.2.)
we used symmetric decay characteristics λ− = λ+, whereas in Sect. 2.3.2. we
applied a special choice corresponding to a simple growing network.

Fig. 2.1 The link-weight as a
function of time for a
connection in the phone-call
network. If a weight
threshold of w∗ = 1 is
introduced, the link is absent
outside the shaded intervals.
Here λ− = λ+. Figure from
the Suppl. of [52]
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2.3 Finding Communities

2.3.1 The Clique Percolation Method

The study of the intermediate-scale substructures in networks, made up of vertices
more densely connected to each other than to the rest of the network, has become
one of the most highlighted topic in complex network theory. These structural sub-
units can correspond to multi-protein functional units in molecular biology [59, 65],
a set of tightly coupled stocks or industrial sectors in economy [30, 49], groups
of people [52, 63, 74], cooperative players [66, 67, 69], etc. The location of such
building blocks can be crucial to the understanding of the structural and functional
properties of the systems under investigation. Furthermore, a reliable method to
pinpoint such objects has many potential industrial applications, e.g., it can help
service providers (phone, banking, Internet, etc.) identify meaningful groups of cus-
tomers (users), or support biomedical researchers in their search for individual target
molecules and novel protein complex targets [3, 35].

Since communities have no widely accepted unique definition, the number of
available methods to pinpoint them is vast [15, 16, 19, 24, 26, 27, 33, 40, 43, 53,
54, 60–64]. The majority of these algorithms classify the nodes into disjunct com-
munities, and in most cases a global quantity called modularity [44, 45] is used to
evaluate the quality of the partitioning. However, as pointed out in [17, 36], the mod-
ularity optimisation introduces a resolution limit in the clustering, and communities
containing a smaller number of edges than

√
M (where M is the total number of

edges) cannot be resolved.
One of the big advantages of the clique percolation method (CPM) is that it

provides a local algorithm for detecting the communities, and therefore, it does
not suffer from resolution problems of this type [9, 53]. In this approach the com-
munities are built up from k-cliques, corresponding to complete (fully connected)
sub-graphs of size k. Two k-cliques are said adjacent if they share k − 1 nodes
[6, 9, 14], and a k-clique community corresponds to a set of k-cliques in which
all k-cliques can reach each other through chains of k-clique adjacency. In other
words, the communities defined in this way are equivalent to k-clique percolation
clusters. These objects can be best visualised with the help of k-clique templates
(Fig. 2.2), that are objects isomorphic to a complete graph of k vertices. Such a
template can be placed onto any k-clique in the graph, and rolled to an adjacent
k-clique by relocating one of its vertices and keeping its other k − 1 vertices fixed.
Thus, the k-clique percolation clusters (k-clique communities) of a graph are all
those subgraphs that can be fully explored by rolling a k-clique template in them
but cannot be left by this template.

The further advantages of the community definition above (beside its local-
ity) are that it is not too restrictive, it is based on the density of the links and it
allows overlaps between the communities: a node can be part of several k-clique
percolation clusters at the same time. Revealing overlaps between communities
has obtained a significant attention in the recent literature devoted to community
detection [7, 18, 29, 40, 46, 60, 68, 77, 79]. Indeed, communities in real-world
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rolling the k−clique template
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Fig. 2.2 Illustration of k-clique template rolling at k = 4. Initially the template is placed on
A-B-C-D (left panel) and it is “rolled” onto the subgraph A-C-D-E (middle panel). The position of
the k-clique template is marked with thick black lines and black nodes, whereas the already visited
edges are represented by thick gray lines and gray nodes. Observe that in each step only one of the
nodes is moved and the two 4-cliques (before and after rolling) share k − 1 = 3 nodes. At the final
step (right panel) the template reaches the subgraph C-D-E-F, and the set of nodes visited during
the process (A-B-C-D-E-F) are considered as a k-clique percolation cluster

graphs are often inherently overlapping: each person in a social web belongs usually
to several groups (family, colleagues, friends, etc.), proteins in a protein interaction
network may participate in multiple complexes [29] and a large portion of web-
pages can be classified under multiple categories. Prohibiting overlaps during mod-
ule identification strongly increases the percentage of false negative co-classified
pairs. As an example, in a social web a group of colleagues might end up in different
modules, each corresponding to e.g., their families. In this case, the network module
corresponding to their work-group is bound to become lost.

2.3.2 Preferential Attachment at the Level of Communities

In this section we examine whether the fat tails observed earlier in the community
distribution could result from preferential attachment mechanisms at the level of
communities. The method presented below can be applied in general to any empir-
ical study of an attachment process where the main goal is to decide whether the
attachment is uniform or preferential with respect to a certain property (e.g., degree,
size, etc.) of the attached objects (e.g., nodes, communities etc.).

2.3.2.1 Method for Detecting Preferential Attachment

If the studied process is uniform with respect to a property ρ, then objects with a
given ρ are chosen at a rate given by the distribution of ρ amongst the available
objects. However, if the attachment mechanism prefers high (or low) ρ values, then
objects with high (or low) ρ are chosen with a higher rate compared to the ρ distri-
bution of the available objects. To monitor this enhancement, one can construct the
cumulative ρ distribution Pt (ρ) of the available objects at each time step t , together
with the un-normalised cumulative ρ distribution of the objects chosen by the pro-
cess between t and t + 1, denoted by wt→t+1(ρ). The value of wt→t+1(ρ∗) at a given
ρ∗ equals to the number of objects chosen in the process between t and t + 1, that
had a ρ value larger than ρ∗ at t . To detect deviations from uniform attachment, it
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is best to accumulate the ratio of wt→t+1(ρ) and Pt (ρ) during the time evolution to
obtain

W (ρ) =
tmax−1∑

t=0

wt→t+1(ρ)

Pt (ρ)
. (2.2)

If the attachment is uniform with respect to ρ, then W (ρ) becomes a flat func-
tion. However, if W (ρ) is an increasing function, then the objects with large ρ are
favoured, if it is a decreasing function, the objects with small ρ are favoured in
the attachment process. The advantage of this approach is that the rate-like variable
wt→t+1(ρ) associated to the time step between t and t +1 is always compared to the
Pt (ρ) distribution at t . Therefore W (ρ) is able to indicate preference (or the absence
of preference) even when Pt (ρ) is slowly changing in time (as in the case of the
community degree in the co-authorship network under investigation).

We have tested the above method on simulated graphs grown with known attach-
ment mechanisms, (i) uniform attachment (new nodes are attached to a randomly
selected old node), (ii) linear preferential attachment (new nodes are attached to
old ones with a probability proportional to the degree), (iii) and anti-preferential
attachment (new nodes are attached to the old ones with a probability proportional to
exp(−d), where d is the degree). In these cases the degree d of the individual nodes
plays the role of the parameter ρ. For each time step, we recorded the cumulative
degree distribution of the nodes Pt (d), together with the number of nodes gaining
new links with a degree higher than a given d, labelled by wt→t+1(d). By summing
the ratio of these two functions along the time evolution of the system one gets
W (d) = ∑tmax−1

t=0 wt→t+1(d)/Pt (d). In Fig. 2.3a. we show the empirical results for
W (d) obtained for the simulated networks grown with the three different attachment
rules. The curves reflect the difference between the three cases very well: for the
uniform attachment probability W (d) is flat, for the preferential attachment W (d) is
clearly increasing, and for the anti-preferential attachment W (d) is decreasing.

We have also calculated the attachment statistics of the nodes in the studied
co-authorship network. In this case we used extremely asymmetric decay charac-
teristics in (2.1): λ− = ∞ and λ+ = 0. This results in a simply growing network,
where every collaboration event gives rise to a set of links between each pair of
collaborators at the very moment of the collaboration act, and the strengths of these
links remain constant from then on. As it can be seen in Fig. 2.3b., the corresponding
W (d) curve is increasing, therefore preferential attachment is present at the level of
nodes in the system.

2.3.2.2 Community Growth in the Co-authorship Network

The two properties to be substituted in place of ρ in Eq.(2.2) are the community
degree dcom and the community size s, therefore, the cumulative community size
distribution Pt (s) and the cumulative community degree distribution Pt (dcom) were
recorded at each time step t . To study the establishment of the new community links,
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we constructed the un-normalised cumulative size distribution wt→t+1(s) and the un-
normalised cumulative degree distribution wt→t+1(dcom) of the communities gaining
new community links to previously unlinked communities. The value of these distri-
butions at a given s (or given dcom) is equal to the number of unlinked communities
at t that establish a community link between t and t + 1 with a community larger
than s (or having larger degree than dcom) at t . By accumulating the ratio of the
rate-like variables and the corresponding distributions we obtain

W (s) =
tmax−1∑

t=0

wt→t+1(s)

Pt (s)
, W (dcom) =

tmax−1∑

t=0

wt→t+1(dcom)

Pt (dcom)
. (2.3)

For the investigation of the appearance of new members in the communities,
we recorded the un-normalised community size distribution ŵt→t+1(s) and the un-
normalised community degree distribution ŵt→t+1(dcom) of the communities gain-
ing new members (belonging previously to none of the communities) between t and
t + 1. The corresponding distributions that can be used to detect deviations from the
uniform attachment are

Ŵ (s) =
tmax−1∑

t=0

ŵt→t+1(s)

Pt (s)
, Ŵ (dcom) =

tmax−1∑

t=0

ŵt→t+1(dcom)

Pt (dcom)
. (2.4)

In Fig. 2.4a. we show the empirical W (s) and Ŵ (s) functions, whereas in
Fig. 2.4b. the empirical W (dcom) and Ŵ (dcom) are displayed. All four functions are
clearly increasing, therefore we can draw the following important conclusions:
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• When a previously unlinked community establishes a new community link, com-
munities with large size and large degree are selected with enhanced probability
from the available other communities.

• When a node previously belonging to none of the communities joins a commu-
nity, communities with large size and large degree are selected with enhanced
probability from the available communities.

2.3.2.3 Model for Growth of Community Network

In this section we outline a simple model for the growth of overlapping communi-
ties. Our goal is to demonstrate that preferential attachment of the nodes to com-
munities with the community size, together with minor additional assumptions are
enough for the emergence of a community system with a scaling community size
and community degree distribution.

In our model the underlying network between the nodes is left unspecified, the
focus is on the content of the communities. During the time evolution, similarly to
the models published in [28, 48, 58], new members may join the already existing
communities, and new communities may emerge as well. The new nodes introduced
to the system choose their community preferentially with the community size, there-
fore the size distribution of the communities is expected to develop into a power-law.
The appearance of the new community links originates in new nodes joining several
communities at the same time. The detailed rules of the model are the following:

• The initial state of the model is a small set of communities with random size.
• The new nodes are added to the system separately. For each new node i , a mem-

bership mi is drawn from a Poissonean distribution with an expectation value
of μ.
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communities found in the co-authorship network [53]. Figure from [56]

• If mi ≥ 1, communities are subsequently chosen with probabilities proportional
to their sizes, until mi is reached, and the node i joins the chosen communities
simultaneously.

• If mi = 0, the node i joins the group of unclassified vertices.
• When the ratio r of the group of unclassified nodes compared to the total number

of nodes N exceeds a certain limit r∗, a number of q vertices from the group
establish a new community. (Obviously, q must be smaller than Nr even in the
initial state).

To be able to compare the results of the model with the community structure of
the co-authorship network, the runs were stopped when the number of nodes in the
model reached the size of the co-authorship network.

Our experience showed that the model is quite insensitive to changes in r or q,
and μ is the only important parameter. For small values (μ < 0.3) the resulting com-
munity degree distribution is truncated, whereas when μ is too large (μ > 1), a giant
community with abnormally large community degree appears. For intermediate μ

values (0.3 < μ < 1), the community size – and community degree distributions
become fat tailed, similarly to the co-authorship network. In Fig. 2.5. we show the
cumulative community size distribution P(s) and the cumulative community degree
distribution P(dcom) of the communities obtained in our model at μ = 0.6. (Changes
in the parameters r and q only shifts these curves, their shape remains unchanged).
Our model grasps the relevant statistical properties of the community structure in the
co-authorship network [53] quite well: the community size distribution and the tail
of the community degree distribution follow a power-law with the same exponent.

2.3.3 The Static Communities

Turning back to the study of the community evolution (where links corresponding
to abandoned social connections may disappear with time, 0 < λ− = λ+ < ∞),
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the communities at each time step were extracted with the CPM for both the co-
authorship and the phone-call networks. When applied to weighted networks, the
CPM has two parameters: the k-clique size k, (in Fig. 2.6a, b we show the commu-
nities for k = 4), and the weight threshold w∗ (links weaker than w∗ are ignored).
By increasing k or w∗, the communities start to shrink and fall apart, but at the
same time they become also more cohesive. In the opposite case, at low k there
is a critical w∗, under which a giant community appears in the system that smears
out the details of the community structure by merging (and making invisible) many
smaller communities. The criterion used to fix these parameters is based on finding
a community structure as highly structured as possible: at the highest k value for
which a giant community may emerge, the w∗ is decreased just below the critical
point. The actual values of these parameters in our studies were k = 3, w∗ = 0.1 in
case of the co-authorship network, and k = 4, w∗ = 1.0 in case of the phone-call
network.

In Fig. 2.6a, b we show the local structure at a given time step in the two net-
works in the vicinity of a randomly chosen individual (marked by a black frame).
The communities (social groups represented by more densely interconnected parts
within a network of social links) are coloured with different shades of gray, so that
white nodes (and dashed edges) do not belong to any community, and those that
simultaneously belong to two or more communities are shown in black. The two
networks have rather different local structure: due to its bipartite nature, the collab-
oration network is quite dense and the overlap between communities is very signif-
icant, whereas in the phone-call network the communities are less interconnected
and are often separated by one or more inter-community nodes/edges. Indeed, while
the phone record captures the communication between two people, the publication
record assigns to all individuals that contribute to a paper a fully connected clique.
As a result, the phone data is dominated by single links, while the co-authorship

co−authorship phone−calla) b)

Fig. 2.6 (a) The local community structure at a given time step in the vicinity of a randomly
selected node in case of the co-authorship network. (b) The same picture in the phone-call network.
Figure from [52]
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data has many dense, highly connected neighbourhoods. Furthermore, the links in
the phone network correspond to instant communication events, capturing a rela-
tionship as is happens. In contrast, the co-authorship data records the results of a
long term collaboration process. These fundamental differences suggest that any
potential common features of the community evolution in the two networks poten-
tially, represent generic characteristics of community formation, rather than being
rooted in the details of the network representation or data collection process.

2.3.4 Validating the Communities

When validating the found communities, as a first step, it is important to check
if the uncovered communities correspond to groups of individuals with a shared
common activity pattern. For this purpose we compared the average weight of the
links inside communities, wc, to the average weight of the inter-community links,
wic. For the co-authorship network wc/wic is about 2.9, while for the phone-call
network the difference is even more significant, since wc/wic 	 5.9, indicating that
the intensity of collaboration/communication within a group is significantly higher
than with contacts belonging to a different group [8, 21, 50, 51].

While for coauthors the quality of the clustering can be directly tested by study-
ing their publication records in more detail, in the phone-call network personal
information is not available. In this case the zip-code and the age of the users
provides additional information for checking the homogeneity of the communities.
In Fig. 2.7a we show the size of the largest subset of people having the same zip
code in the communities, 〈nreal〉, averaged over the time steps, as the function of the
community size s, divided by 〈nrand〉, representing the average over random sets of
users. The significantly higher number of people with the same zip-code in the CPM
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Fig. 2.7 (a) The black symbols correspond to the average size of the largest subset of members
with the same zip-code, 〈nreal〉, in the phone-call communities divided by the same quantity found
in random sets, 〈nrand〉, as the function of the community size s. Similarly, the white symbols show
the average size of the largest subset of community members with an age falling in a three year
time window, divided by the same quantity in random sets. The error-bars in both cases correspond
to 〈nreal〉 /(〈nrand〉+σrand) and 〈nreal〉 /(〈nrand〉−σrand), where σrand is the standard deviation in case
of the random sets (b) The 〈nreal〉 /s as a function of s, for both the zip-code (black symbols) and
the age (white symbols). Figure from [52]
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communities as compared to random sets indicates that the communities usually cor-
respond to individuals living relatively close to each other. It is of specific interest
that 〈nreal〉 / 〈nrand〉 has a prominent peak at s 	 35, suggesting that communities
of this size are geographically the most homogeneous ones. However, as Fig. 2.7b
shows, the situation is more complex: on average, the smaller communities are more
homogeneous, but there is still a noticeable peak at s 	 30 − 35. In Fig. 2.7a we
also show the average size of the largest subset of members with an age falling into a
three years wide time window, divided by the same quantity obtained for randomly
selected groups of individuals. The fact that the ratio is larger than one indicates that
communities have a tendency to contain people from the same generation, and the
〈nrand〉 /s plot indicates that the homogeneity of small groups is on average larger
than that of the big groups.

Another interesting feature of Fig. 2.7 is that the difference in the homogeneity
of the age is less pronounced than in case of the zip-code. A plausible reason for this
effect is that due to the strong social relation between parents and children, many
communities contain members coming from different generations. This is supported
by the distribution of the age difference in communities, shown in Fig. 2.8a: there is
a major peak at zero corresponding to members with the same age, however there is
also another peak at 25, corresponding to the typical age difference between parents
and children.

Beside the zip-code and the age, the statistics of the service usage of the cus-
tomers supports the validity of the communities as well. In our primary data, the
number of times people have used a certain service in one of the two weeks long
periods was also available. (There were altogether 34 available services for the
customers). However, for most services, the probability for a randomly selected
customer using the service at all is very low. For this reason, instead of comparing
the average number of members using the same service in communities and random
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Fig. 2.8 (a) The probability distribution of the age difference between community members in the
phone-call network. The most probable values are zero and 25, indicating that a pair of members
from a community are most likely to be of the same age, or to be a generation apart from each
other. (b) The number of communities divided by the average number of random sets containing
the same nu number of people using a given service. Each sample of the random sets was prepared
with size distribution of the communities determined for the phone-call network. Figure from the
Suppl. of [52]
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sets, we compared the N com
u (nu) number of communities having nu members using

the same service to the same quantity in random sets, denoted by N rand
u (nu). For

each service, random sets with the same size distribution as the communities were
constructed 10,000 times, and N rand

u (nu) was averaged over the samples. As it can
be seen from Fig. 2.8b, for 13 services the N com

u (nu) number of communities having
nu members using the service is significantly larger than in case of random sets.
In fact, the N com

u (nu)/N rand
u (nu) ratio in some cases reaches infinity, indicating that

there were no random sets at all containing such high number of service users as
some communities.

In summary, the phone-call communities uncovered by the CPM tend to contain
individuals living in the same neighbourhood, and with comparable age, a homo-
geneity that supports the validity of the uncovered community structure.

2.4 Evolving Communities

Our focus is on the statistical properties of evolving communities, therefore, we need
a reliable method for matching the static “snap-shots” of the community structure
at subsequent time steps. The basic events that may occur in the life of a commu-
nity are shown in Fig. 2.9a: a community can grow by recruiting new members,
or contract by loosing members; two (or more) groups may merge into a single
community, while a large enough social group can split into several smaller ones;
new communities are born and old ones may disappear.

Given the huge number of groups present at each time step, it is a significant algo-
rithmic and computational challenge to match communities uncovered at different
time steps. The fact that the communities obtained by the CPM can have overlaps
makes the problem even more complicated.

A simple approach would be to match communities from consecutive time steps
in descending order of their relative overlap. The relative overlap between commu-
nities A and B can be defined as

Fig. 2.9 Possible events in
the community evolution.
When new members are
introduced, the community
grows, whereas leaving
members cause decay in the
size. Communities can merge
and split, new groups may
emerge and old ones can
disappear. Figure from [52]
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C(A, B) ≡ |A ∩ B|
|A ∪ B| , (2.5)

where |A ∩ B| is the number of common nodes in A and B, and |A ∪ B| is
the number of nodes in the union of the two communities. However, the nodes
shared between the communities can undermine this type of community conjugation
between consecutive time steps: In case a small community A is inflated by large
magnitude between time steps t and t +1, and at t +1 it overlaps with a small static
community B = Bt = Bt+1, then the relative overlap (2.5) between At+1 and Bt

can be larger than the relative overlap between At+1 and At .
To overcome this difficulty, we refine the identification of communities as shown

in Fig. 2.10. For each consecutive time steps t and t + 1 we construct a joint graph
consisting of the union of links from the corresponding two networks, and extract
the CPM community structure of this joint network (we thank I. Derényi for pointing
out this possibility). When new links are introduced in a network, the CPM com-
munities may remain unchanged, they may grow, or a group of CPM communities
may become joined into a single community, however no CPM community may
decay by loosing members. From this it follows that if we merge two networks, any
CPM community in any of the original networks will be contained in exactly one
community in the joined network.

Let us denote the set of communities from t by A, the set of communities from t+
1 by B, and the set of communities from the joint network by V. For any community

Fig. 2.10 Simple scenarios in
the community evolution of
the phone-call network for
k = 4. The communities at t
are coloured black on light
gray, the communities at
t + 1 are coloured white on
light gray, and the
communities in the joint
network are coloured dark
gray on light gray. (a) a
community simply
“propagates”, (b) the larger
community swallows the
smaller one, (c) a small
community is detached from
a larger one. Figure from the
Suppl. of [52]
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Ai ∈ A or B j ∈ B we can find exactly one community Vk ∈ V containing it. When
matching the communities in A and in B, first for every community Vk ∈ V in
the joint system we extract the list of communities Ak

i ∈ A and Bk
j ∈ B that are

contained in Vk (this means Ak
i ⊆ Vk and Bk

j ⊆ Vk). (Note that either of the lists
may be empty). Then the relative overlap between every possible (Ak

i , Bk
j ) pairs can

be obtained as

Ck
i j =

∣∣∣Ak
i ∩ Bk

j

∣∣∣
∣∣∣Ak

i ∪ Bk
j

∣∣∣
, (2.6)

and we match the pairs of communities in descending order of their relative overlap.
As an illustration of the above process, in Fig. 2.10 we show three simple scenar-

ios occurring in the community evolution of the phone-call network. In Fig. 2.10a
both lists Ak

i and Bk
j consist of only a single community, therefore these can be

matched right away. However, in Fig. 2.10b the Ak
i list contains two elements, let us

denote the smaller community of size s = 6 at t by Ak
1 and the larger community

consisting of nine nodes at t by Ak
2. The corresponding Bk

j list contains a single
community Bk

1 having 15 members. The relative overlaps between the communities
are given as Ck

1,1 = 2/5 and Ck
2,1 = 3/5. Since the Ck

2,1 relative overlap of the Bk
1

community with Ak
2 community is larger than the Ck

1,1 relative overlap with Ak
1, we

assign Bk
1 to Ak

2. As a consequence the Ak
1 community comes to the end of its life

at t , and it is swallowed by Ak
2. The opposite process is shown in Fig. 2.10c: in this

case the Ak
i list consists of a single community Ak

1 of size s = 15, whereas the Bk
j

list has two elements, the community with six members labelled by Bk
1 , whereas

and the community containing ten nodes labelled by Bk
2 . The relative overlaps are

Ck
1,1 = 2/5 and Ck

1,2 = 2/3, therefore the Ak
1 is matched to Bk

2 , and Bk
1 is treated

as a new born community. In general, whenever the community Vk contains more
communities from A than from B, the communities Ak

i left with no counterpart from
Bk

j finish their life’s at t , and when Vk contains more communities from B than from
A, the communities Bk

j left with no counterpart from Ak
i are considered as new born

communities.
In some cases we can observe that although a community was disintegrated,

after a few steps it suddenly reappears in the network. Our conjecture is that this
is more likely to be the consequence of a temporally lower publishing-rate/calling-
rate of the people in question than of the real disassembly and re-assembly of
the corresponding social community between the people. Therefore, whenever a
newborn community includes a formerly disintegrated one, then the last state of
the old community is elongated to fill the gap before the reappearance, and the
newborn community is treated as the continuation of the old one, as shown in
Fig. 2.11.
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Fig. 2.11 (a) A community is disintegrated after step t5, and it is reborn at step t8. (b) We treat the
community as if it was alive at steps t6 and t7 too, with the same nodes as at step t5. Figure from
the Suppl. of [52]

2.5 Statistical Properties of the Community Dynamics

2.5.1 Basic Statistics

One of the most basic properties characterising the partitioning of a network is the
overall coverage of the community structure, i.e. the ratio of nodes contained in at
least one community. In case of the co-authorship network the average value of this
ratio was above 59%, which is a reasonable coverage for the CPM. In contrast, we
could only achieve a significantly smaller ratio for the phone-call network. At such
a large system size, in order to be able to match the communities at subsequent
time steps in reasonable time we had to decrease the number of communities by
choosing a higher k and w∗ parameter (k = 4 and w∗ = 1.0), and keeping only the
communities having a size larger or equal to s = 6. Therefore, in the end the ratio
of nodes contained in at least one community was reduced to 11%. However, this
still means more than 400,000 customers in the communities on average, providing
a representative sampling of the system. By lowering the k to k = 3, the fraction
of nodes included in the communities is raised to 43%. Furthermore, a significant
number of additional nodes can be also classified into the discovered communities.
For example, if a node not yet classified has link(s) only to a single community
(and, if it has no links connecting to nodes in any other community) it can be safely
added to that community. Carrying out this process iteratively, the fraction of nodes
that can be classified into communities increases to 72% for the k = 3 co-authorship
network, and to 72% (61%) for the k = 3 (k = 4) mobile phone network, which, in
principle, allows us to classify over 2.4 million users into communities.

Another important statistics describing the community system is the commu-
nity size distribution. In Fig. 2.12a we show the community size distribution in the
phone-call network at different time steps. They all resemble to a power-law with a
high exponent. In case of t = 0, the largest communities are somewhat smaller than
in the later time steps. This is due to the fact that the events before the actual time
step cannot contribute to the link-weights in case of t = 0, whereas they can if t > 0.
In Fig. 2.12b we can follow the time evolution of the community size distribution in
the co-authorship network. In this case t = 0 corresponds to the birth of the system
itself as well (whereas in case of the phone-calls it does not), therefore the network
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Fig. 2.12 (a) The cumulative community size distribution in the phone-call network at differ-
ent time steps. (b) The time evolution of the cumulative community size distribution in the co-
authorship network. (c) The number of communities of a given size at different time steps in the
phone-call network. (d) The time evolution of the number of communities with a given size in the
co-authorship network. Figure from [55]

and the communities in the network are small in the first few time steps. Later on,
the system is enlarged, and the community size distribution is stabilised close to a
power-law. In Fig. 2.12c, d we show the number of communities as a function of the
community size at different time steps in the examined systems. For the phone-call
network (Fig. 2.12c), this distribution is more or less constant in time. In contrast,
(due to the growth of the underlying network) we can see an overall growth in the
number of communities with time in the co-authorship network (Fig. 2.12d). Since
the number of communities drops down to only a few at large community sizes in
both systems, we used size binning when calculating the statistics shown in Figs.
2.13, 2.14, and 2.17.

As for evolving communities, we first consider two basic quantities character-
ising a community: its size s and its age τ , representing the time passed since its
birth. s and τ are positively correlated: larger communities are on average older
(Fig. 2.13a), which is quite natural, as communities are usually born small, and it
takes time to recruit new members to reach a large size.

Next we used the auto-correlation function, C(t), to quantify the relative overlap
between two states of the same community A(t) at t time steps apart:

CA(t) ≡ |A(t0) ∩ A(t0 + t)|
|A(t0) ∪ A(t0 + t)| , (2.7)
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Fig. 2.13 (a) The average age τ of communities with a given size (number of people) s, divided
by the average age of all communities 〈τ 〉, as the function of s, indicating that larger communities
are on average older. (b) The average auto-correlation function C(t) of communities with different
sizes (the unit of time, t , is one month). The C(t) of larger communities decays faster. Figure from
[52]
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Fig. 2.14 (a) The average life-span 〈τ ∗〉 of the communities as the function of the stationarity ζ

and the community size s for the co-authorship network. The peak in 〈τ ∗〉 is close to ζ = 1 for
small sizes, whereas it is shifted towards lower ζ values for large sizes. (b) Similar results found
in the phone-call network. Figure from [52]

where |A(t0) ∩ A(t0 + t)| is the number of common nodes (members) in A(t0) and
A(t0 + t), and |A(t0) ∪ A(t0 + t)| is the number of nodes in the union of A(t0) and
A(t0 + t). Figure 2.13b shows the average time dependent auto-correlation function
for communities born with different sizes. We find that in both networks, the auto-
correlation function decays faster for the larger communities, indicating that the
membership of the larger communities is changing at a higher rate. On the contrary,
small communities change at a smaller rate, their composition being more or less
static.

2.5.2 Stationarity and Lifetime

According to the results of Sect.2.5.1 a difference can be observed in the versatility
of small and large communities. To quantify this aspect of community evolution,
we define the stationarity ζ of a community as the average correlation between
subsequent states:
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ζ ≡
∑tmax−1

t=t0
C(t, t + 1)

tmax − t0 − 1
, (2.8)

where t0 denotes the birth of the community, and tmax is the last step before the
extinction of the community. In other words, 1 − ζ represents the average ratio
of members changed in one step; larger ζ corresponds to smaller change (more
stationary membership).

We observe a very interesting effect when we investigate the relationship between
the lifetime τ ∗ (the number of steps between the birth and disintegration of a com-
munity), the stationarity and the community size. The lifetime can be viewed as a
simple measure of “fitness”: communities having higher fitness have an extended
life, while the ones with small fitness quickly disintegrate, or are swallowed by
another community. In Fig. 2.14a, b we show the average life-span 〈τ ∗〉 as a function
of the stationarity ζ and the community size s (both s and ζ were binned). In both
networks, for small community sizes the highest average life-span is at a stationarity
value very close to one, indicating that for small communities it is optimal to have
static, time independent membership. On the other hand, the peak in 〈τ ∗〉 is shifted
towards low ζ values for large communities, suggesting that for these the optimal
regime is to be dynamic, i.e., a continually changing membership. In fact, large
communities with a ζ value equal to the optimal ζ for small communities have a
very short life, and similarly, small communities with a low ζ (being optimal at
large sizes) are disappearing quickly as well.

To illustrate the difference in the optimal behaviour (a pattern of membership
dynamics leading to extended lifetime) of small and large communities, in Fig. 2.15.
we show the time evolution of four communities from the co-authorship network.
As Fig. 2.15. indicates, a typical small and stationary community undergoes minor
changes, but lives for a long time. This is well illustrated by the snapshots of the
community structure, showing that the community’s stability is conferred by a core
of three individuals representing a collaborative group spanning over 52 months.
While new co-authors are added occasionally to the group, they come and go. In
contrast, a small community with high turnover of its members, (several members
abandon the community at the second time step, followed by three new members
joining in at time step three) has a lifetime of nine time steps only (Fig. 2.15b). The
opposite is seen for large communities: a large stationary community disintegrates
after four time steps (Fig. 2.15c). In contrast, a large non-stationary community
whose members change dynamically, resulting in significant fluctuations in both
size and the composition, has quite extended lifetime (Fig. 2.15d). Indeed, while
the community undergoes dramatic changes, gaining (Fig. 2.15e) or loosing a high
fraction of its membership, it can easily withstand these changes.

2.5.3 Predicting Community Break Up

The quite different stability rules followed by the small and large communities raise
an important question: could an inspection of the community itself predict its future?
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Fig. 2.15 Time evolution of four communities in the co-authorship network. The height of the
columns corresponds to the actual community size, and within one column the light gray colour
indicates the number of ”old” nodes (that have been present in the community at least in the
previous time step as well), while newcomers are shown with black. The members abandoning the
community in the next time step are shown with mid gray colours, the shade depending on whether
they are old or new. (This latter type of member joins the community for only one time step). From
top to bottom, we show a small and stationary community (a), a small and non-stationary commu-
nity (b), a large and stationary community (c) and, finally, a large and non-stationary community
(d). A mainly growing stage (two time steps) in the evolution of the latter community is detailed
in panel (e). Figure from [52]

To address this question, for each member in a community we measured the total
weight of this member’s connections to outside of the community (wout) as well as to
members belonging to the same community (win). We then calculated the probability
that the member will abandon the community as a function of the wout/(win + wout)
ratio. As Fig. 2.16a shows, for both networks this probability increases monotoni-
cally, suggesting that if the relative commitment of a user is to individuals outside a
given community is higher, then it is more likely that he/she will leave the commu-
nity.

In parallel, the average time spent in the community by the nodes, 〈τn〉, is a
decreasing function of the above ratio (Fig. 2.16a inset). Individuals that are the
most likely to stay are those that commit most of their time to community members,
an effect that is particularly prominent for the phone network. As Fig. 2.16a shows,
those with the least commitment have a quickly growing likelihood of leaving the
community.
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Fig. 2.16 (a) The probability p� for a member to abandon its community in the next step as a
function of the ratio of its aggregated link weights to other parts of the network (wout) and its total
aggregated link weight (win + wout). The inset shows the average time spent in the community
by the nodes, 〈τn〉, in function of wout/(win + wout). (b) The probability pd for a community to
disintegrate in the next step in function of the ratio of the aggregated weights of links from the
community to other parts of the network (Wout) and the aggregated weights of all links starting
from the community (Win + Wout). The inset shows the average life time 〈τ ∗〉 of communities as a
function of Wout/(Win + Wout). Figure from [52]

Taking this idea from individuals to communities, we measured for each commu-
nity the total weight of links (a measure of how much a member is committed) from
the members to others, outside of the community (Wout), as well as the aggregated
link weight inside the community (Win). We find that the probability for a commu-
nity to disintegrate in the next step increases as a function of Wout/(Win + Wout)
(Fig. 2.16b), and the lifetime of a community decreases with the Wout/(Win + Wout)
ratio (Fig. 2.16b inset). This indicates that self-focused communities have a sig-
nificantly longer lifetime than those that are open to the outside world. However,
an interesting observation is that, while the lifetime of the phone-call communities
for moderate levels is relatively insensitive to outside commitments, the lifetime
of the collaboration communities possesses a maximum at intermediate levels of
inter-collaborations (collaboration between colleagues who belong to different com-
munities). These results suggest that a tracking of the individual’s as well as the
community’s relative commitment to the other members of the community provides
a clue for predicting the community’s fate.

2.5.4 Merging of Communities

Finally, we investigate a special aspect of the merging process between communi-
ties. During such event, a pair (or a larger group) of initially distinct communities
join together and form a single community. A very interesting question connected
to this is that can we find a simple relation between the size of a community and the
likelihood that it will take part in such process?

To investigate this issue we carried out measurements similar to those in [56] and
presented in Sect. 2.3.2.1. The basic idea is that if the merging process is uniform
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with respect to the size of the communities s, then communities with a given s
are chosen at a rate given by the size distribution of the available communities.
However, if the merging mechanism prefers large (or small) sizes, then commu-
nities with large (or small) s are chosen with a higher rate compared to the size
distribution of the available communities. To monitor this enhancement we used the
indicator function, defined in Eq. (2.2), substituting the ρ = (s1, s2) size-pair object.
At each time step t the cumulative size-pair distribution Pt (s1, s2) was recorded.
Simultaneously, the un-normalised cumulative size-pair distribution of the commu-
nities merging between t and t +1 was constructed; we shall denote this distribution
by wt→t+1(s1, s2). The value of this rate-like variable wt→t+1(s∗

1 , s∗
2 ) at a given value

of s∗
1 and s∗

2 is equal to the number of pairs of communities that merged between t
and t + 1 and had sizes s1 > s∗

1 and s2 > s∗
2 . Here the resulting indicator function

W (s1, s2) ≡
tmax−1∑

t=0

wt→t+1(s1, s2)

Pt (s1, s2)
(2.9)

is defined on a two dimensional plane. When the merging process is uniform with
respect to the community size the W (s1, s2) becomes a flat function: on average we
see pairs of communities merging with sizes s1 and s2 at a rate equal to the probabil-
ity of finding a pair of communities of these sizes. However, if the merging process
prefers large (or small) communities, than pairs with large (or small) sizes merge
at a higher rate than the probability of finding such pairs, and W (s1, s2) becomes
increasing (or decreasing) with the size.

The reason for using un-normalised wt→t+1(s1, s2) distributions is that in this way
each merging event contributes to W (s1, s2) with equal weight, and the time steps
with a lot of merging events count more than those with only a few events. In the
opposite case (when wt→t+1(s1, s2) is normalised for each pairs of subsequent time
steps t, t + 1), the merging events occurring between time steps with a lot of other
merging events are suppressed compared to the events with only a few other parallel
events, as each pairs of consecutive time steps t, t + 1 contribute to the W (s1, s2)
function with equal weights. This difference between normalised and un-normalised
wt→t+1(s1, s2) becomes important in case of the co-authorship network, where in
the beginning the system is small and merging is rare, and later on as the system is
developing, merging between communities becomes a regular event.

In Fig. 2.17. we show W (s1, s2) for both networks, and the picture suggests that
large sizes are preferred in the merging process. This is consistent with our findings
that the content of large communities is changing at a faster rate compared to the
small ones. Swallowing other communities is an efficient way to bring numerous
new members into the community in just one step, therefore taking part in merging
is beneficial for large communities following a survival strategy based on constantly
changing their members.

Another interesting aspect of the results shown in Fig. 2.17. is that they are
analogous to the attachment mechanism of links between already existing nodes
in collaboration networks [5]: the probability for a new link to appear between two
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Fig. 2.17 The merging of communities. (a) the W (s1, s2) function for the co-authorship network,
(b) the W (s1, s2) function for the phone-call network, (c) the region with smaller W (s1, s2) in (a)
enlarged, (d) the region with smaller W (s1, s2) in (b) enlarged. Figure from the Suppl. of [52]

nodes with degree d1 and d2 is roughly proportional to d1 × d2. Similarly, the prob-
ability that two communities of sizes s1 and s2 will merge is proportional to s1 × s2,
therefore the large communities attract each other in a similar manner to hubs in
collaboration networks.

2.6 Conclusion

In this chapter we investigated the statistical properties of community dynamics
in two large social networks. Due to the frequent changes in the communica-
tion/collaboration patterns between individuals, the communities corresponding to
groups of mobile phone users or collaborating scientists are under constant evolu-
tion. In case of a simple growing scenario, we found that similar processes control
the development of the system at different levels in the hierarchy, as the growth of
the communities, the development of the community graph and the growth of the
underlying network are all driven by preferential attachment.

When deletion of the links is taken into account as well, the picture gets more
complex. In order to be able to track the intricate merging, splitting, growth, decay,
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etc. of the investigated social groups, we developed an algorithm based on the CPM
for matching the communities extracted at subsequent time steps. According to our
results, a significant difference can be observed between smaller collaborative or
friendship circles and institutions when subjected to the processes above. At the
heart of small cliques are a few strong relationships, and as long as these persist, the
community around them is stable. In other words, small groups can persist for a long
time if their membership is constant. It appears to be almost impossible to maintain
this strategy for large communities, however. Thus we find that the condition for
stability for large communities is continuous changes in their membership, allow-
ing for the possibility that after some time practically all members are exchanged.
Such loose, rapidly changing communities are reminiscent of institutions, that can
continue to exist even after all members have been replaced by new members. For
example, in a few years most members of a school or a company could change, yet
the school and the company will be detectable as a distinct community at any time
step during its existence.

We also showed that the knowledge of the time commitment of the members to a
given community can be used for predicting the community’s lifetime. Furthermore,
we found that the likelihood of merging between communities is increasing with the
community size. These findings offer a new view on the fundamental differences
between the dynamics of small groups and large institutions.
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Chapter 3
Time-Dependent Complex Networks: Dynamic
Centrality, Dynamic Motifs, and Cycles
of Social Interactions

Dan Braha and Yaneer Bar-Yam

Abstract We develop a new approach to the study of the dynamics of link utiliza-
tion in complex networks using data of empirical social networks. Counter to the
perspective that nodes have particular roles, we find roles change dramatically from
day to day. “Local hubs” have a power law degree distribution over time, with no
characteristic degree value. We further study the dynamics of local motif structure in
time-dependent networks, and find recurrent patterns that might provide empirical
evidence for cycles of social interaction. Our results imply a significant reinter-
pretation of the concept of node centrality and network local structure in complex
networks, and among other conclusions suggest that interventions targeting hubs
will have significantly less effect than previously thought.

3.1 Dynamic Centrality in Large-Scale
Communication Networks

Recent advances have demonstrated that the study of universal properties in physi-
cal systems may be extended to complex networks in biological and social systems
[1–6]. This has opened the study of such networks to experimental and theoreti-
cal characterization of properties and mechanisms of formation. In this chapter we
extend the study of complex networks by considering the dynamics of the activity
of network connections. Our analysis suggests that fundamentally new insights can
be obtained from the dynamical behavior, including a dramatic time dependence of
the role of nodes that is not apparent from static (time aggregated) analysis of node
connectivity and network topology.

We study the communication between 57,158 e-mail users based on data sam-
pled over a period of 113 days from log files maintained by the email server at a
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large university [7]. The time when an e-mail link is established between any pair
of email addresses is routinely registered in a server, enabling the analysis of the
temporal dynamics of the interactions within the network. To consider only emails
that reflect the flow of valuable information, spam and bulk mailings were excluded
using a prefilter. There were 447,543 messages exchanged by the users during 113
days observation. We report results obtained by treating the communications as an
undirected network, where email addresses are regarded as nodes and two nodes
are linked if there is an e-mail communication between them. Analysis based upon
treating the network with asymmetric links (where a distinction is made between
out-going links and incoming links) gave essentially equivalent results. From the
temporal connectivity data, a time series of topological networks can be obtained;
each represents an aggregation of links over a time scale that is short compared to
the duration of observation (113 days). The edges forming each network in the time
series thus represent the short time opportunity for communication as detected by
the log files of the email server. Unless otherwise indicated, we set the time scale to
one day, thus creating 113 consecutive daily networks.

Most studies of large social networks have accumulated data over the entire time
of observation, whereas here using the smaller intervals of accumulation we can
study how the network interactions change over time. Social network dynamics has
historically been of interest, though data was limited [8, 9]. Recent papers have
considered the times between communications [10] or the creation of temporally
linked structures [11]. In this chapter we study for the first time the dynamics of
individual importance and local structure (sub-graphs or motifs) in Dynamic Com-
plex Networks [12].

Our first result is that networks obtained on different days are substantially dif-
ferent from each other. Figure 3.1 shows the correlation between corresponding
edges of the 113 daily networks. Surprisingly, we find that all networks are weakly
correlated, despite the expected routine nature of the social activity. Correlations
between any two networks have a distribution that is approximately normal with a
mean ± standard deviation of 0.15 ± 0.05 (we adopt this notation throughout). The
low correlation implies that the existence of a link between two individuals at one
time does not make it much more likely that the link will appear at another time.
While all networks are weakly correlated, we find that workdays and weekends
are more distinct, so that workday networks, and weekend networks are more cor-
related among themselves (correlations 0.17 ± 0.03 and 0.16 ± 0.05, respectively),
than they are with each other (correlation 0.12 ± 0.02). Remarkably, the low corre-
lations increase only very gradually if we form networks using data over multiple
days, and never reach a high value even if networks are made from communications
over a month or more (Fig. 3.1b).

Using the nodal “degree” (the number of nodes a particular node is connected
to) we characterized the centrality of nodes in the daily networks. Each of the daily
networks has a distribution of nodal degrees well described by a power-law [13],
with exponents in the range . Thus a small number of highly connected nodes have
great importance in the connectivity of the network. However, while each daily net-
work has highly connected nodes, we found that they were not the same nodes. The
degree of a node varied dramatically over time. For each identified “local hub,” we
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Fig. 3.1 (a) Matrix of correlations between pairs of daily networks sampled July 29th, 2001 (Sun-
day) to November 18th, 2001 (Sunday). Days 55 and 56 were excluded from further analysis due
to lack of email communication. (b) Correlation between pairs of daily networks aggregated over
times ranging from 1 to 40 days

measured its degree from day to day over the duration of observation. Surprisingly,
we find that a large number of “local hubs” exhibit a highly fluctuating time-series
(Fig. 3.2). The corresponding distribution of degrees over time itself follows a scale-
free power-law distribution [13, 23] over two orders of magnitude (Fig. 3.2). The
degree distribution of a hub over time implies that the node’s degree does not have a
characteristic value. The degree is small most of the time, but we only need to wait
long enough to encounter degrees of any size.

A broader characterization of which nodes are important on a given day was
made by comparing how the nodes were ranked in importance. We identified the
top 1000 nodes, about 1.7% of the network according to their degree, for each of the
daily networks. We then determined, for each pair of daily networks, the percent-
age of nodes that appear in both top-ranking lists (“centrality overlap,” Fig. 3.3).
The centrality overlap between any two networks is small, around 0.27 ± 0.06.
When considering separately workday and weekend networks, the overlap values
are around 0.33 ± 0.03 and 0.20 ± 0.04, respectively; consistent with the bimodal
nature of the social activity. The distinctiveness of the top 1,000 nodes between daily
networks is also typical for other top-ranking list sizes. By varying the percentage
of nodes in the top-ranking list, it is found that the mean centrality overlap, which
is already small for small percentages (0.3), actually decreases to a value of 0.2
at around 4%, before increasing slowly to 1 when the list includes all the nodes.
The distributions of ranking overlaps are well behaved, having a standard deviation
much smaller than the mean.

We compared daily networks with the aggregate network, as would be considered
by other contemporary studies, by aggregating over the entire 113 day observation.
Our previous results suggest, and direct analysis confirms, that daily networks devi-
ate significantly from the aggregate network. We determined which nodes in the
daily 1,000 top-ranking list also appear in the top-ranking list of the aggregate net-
work, obtaining the binary image in Fig. 3.4a. Though some nodes that are ranked
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Fig. 3.2 Degree variations over time associated with the most connected node (“local hub”) iden-
tified for a particular daily network. (a–c) Time series of degrees associated with nodes 724 (hub
in day 34), 4,631 (hub in day 52), and 450 (hub in day 44), respectively. Small and very large node
degrees are observed. (d–f) The corresponding log–log plots of the cumulative distributions of
degrees over time associated with “local hubs” 724, 4,631, and 450, respectively. The distributions
follow a power law (p < 0.001)

high in the daily networks are also ranked high in the aggregate network, a signifi-
cant number are not. In particular, we find that the centrality overlap is 0.41 ± 0.03
and 0.27 ± 0.04, for weekday and weekends respectively. Comparing other sizes of
the top ranked nodes gives similar results. Perhaps even more surprisingly, the nodes
that are highly ranked in the aggregate network are not even on-average important
in daily networks. To show this we calculated the average ranking position of the
top 1,000 highly connected nodes in the aggregate network for each daily network.



3 Time-Dependent Complex Networks 43

Fig. 3.3 Top-ranking list
overlap between pairs of
daily networks. For each pair
of networks, the color code of
the matrix denotes the
percentage of nodes that
appear in the 1,000
top-ranking list of the
networks
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The average ranking position over time (normalized to a fraction so that 1 is the
highest and 0 is the lowest) exhibits a weekly oscillation from about 0.40 to 0.65.
In the aggregate network these nodes have an average ranking of 0.99. This shows
that highly connected nodes in the aggregate network only play a moderate role in
the daily networks.

Fig. 3.4 (a) Comparison of the aggregate network with daily networks. A binary overlap matrix
describing whether a node, included in the 1,000 top-ranking list of a daily network, also appear
(colored white) in the 1,000 top-ranking list of the aggregate network. (b) Average dissimilar-
ity of networks aggregated over times ranging from 1 to 56 days. Dissimilarity is measured as
one minus the fractional overlap of the 1,000 top-ranking nodes. The plot follows a power law
(p < 0.001) indicating that networks formed over longer time periods do not converge to a well-
defined structure
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Finally, we considered a full range of networks formed by aggregating links over
time scales that are longer than a day and shorter than the full time period (Fig. 3.4b).
Similar relationships between smaller and larger time scales to those found above
are observed. Moreover, the similarity between networks at a particular time scale
increases as a power-law, so there is no particular time scale at which a converged
structure is achieved. Thus, the network dynamics follows a “multiscale” structure
with networks at each scale forming scale-free topologies, but the specific links in
existence vary dramatically between observation time scales as well as over time.

3.2 Dynamic Centrality in Spatial Proximity Social Networks

In addition to the e-mail network studied here, we have found similar results when
analyzing social network data about interactions found from the spatial proximity
of personal Bluetooth wireless devices, recording the interactions between pairs of
students over the period of 31 days of October 2004 [12]. The spatial proximity
network records dynamic interactions among 80 students who are socially related
in some way (students in the same school or class), and thus reliably approximates
social ties.

As before, we start our analysis by testing the association between the 31 tem-
poral sequence of networks. We computed the Pearson’s correlation coefficients as
well as simple matching coefficients between corresponding edges of the 31 data
networks. Consistent with the results previously reported in Sect. 3.1, we find that
all networks are weakly correlated (see Fig. 3.5) despite the expected routine nature
of the social activity. Despite the weak correlations, Fig. 3.5 suggests that neighbor-
ing workday networks tend to be more correlated than networks that are far apart in
time. We also find that networks representing workday social interactions are signif-
icantly more correlated among themselves than they are with networks representing
weekend social interactions, indicating a periodicity in the link dynamics. The rela-
tively strong interactions among the workday networks over the fourth week suggest
that unique patterns of social interactions might show up over time in response
to both internal and external spikes (“external stimuli”). Overall, the above initial
analysis implies that a static network analysis, which is based on aggregating the
interaction data over all various time periods, will lose a lot of valuable information
that is embedded in a dynamic social network.

While the identification of the “most important” nodes in networks has help to
understand or predict the behavior of networked systems, it is based on the assump-
tion that node centrality is a time-invariant property. We have demonstrated in
Sect. 3.1 that, for a dynamic email network, centrality measures are time-dependent
and might fluctuate over time. That is, a highly central node at one time point might
be the least central in a different time point. In general, a node centrality index
in a dynamic network may be better defined as a probability distribution over the
total sampling time of the network. This is in contrast to static network, where node
centrality index is a single measure. To illustrate the above argument in the context
of the spatial proximity network, we computed the ranking of each node (student)
according to its degree for each of the 31 data networks. Figure 3.6 shows that the
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Fig. 3.5 Correlation profiles of the time-series networks sampled over 31 days. (a) The Pearson’s
correlation coefficient between corresponding links of the 31 temporal sequences of networks.
(b) Correlation based on Jaccard’s coefficient of similarity. The Jaccard’s coefficient measures the
degree of overlap between two networks by computing the ratio of the number of shared links
to the number possessed by both networks. The color code of each matrix denotes the degree of
correlation shown in the matrix
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Fig. 3.6 Normalized degree ranking of each actor in each sampled network. The degree ranking is
obtained by sorting actors in ascending order by their degree centrality measure. The normalized
ranking centrality is the ranking position divided by the number of actors. The color code of the
matrix denotes the degree of normalized degree ranking shown in the matrix
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prominence of actors is “spread out” quite consistently over time suggesting that the
prominence of actors embedded in a network is time-based.

3.3 Dynamic Network Motifs and Cycles of Social Interaction

We have found above that the time-series social networks are weakly correlated
(Figs. 3.1 and 3.5). Notwithstanding the weak correlation, it is of interest to analyze
and compare the local structure of the various temporal sequence of networks. It has
been shown that many complex networks include some sub-graphs (motifs) that are
significantly abundant as compared to randomized versions of the same networks,
while others are strongly suppressed [14, 15]. The presence or absence of a given
sub-graph presumably encapsulate information about the system-level function the
network performs [14, 15]. Moreover, a sub-graph significance profile – a set of
counts of the different kinds of sub-graphs that arise in a real-world network com-
pared to randomized networks – serves as a distinctive signature of the network
[14, 15]. For a dynamic network, the local structure is time-dependent and might
evolve over time. Analyzing the time-based local structure might provide important
information about the dynamics of system-level task and functionality.

We present in Fig. 3.7 the significance profiles of the 6 types of connected tetrads
for the different time-series networks. Despite the overall similarity of significance

Fig. 3.7 The tetrad significance profile of networks for the different time-series networks. Con-
tinuous lines are drawn as guide to the eye. The tetrad significance profile shows the normalized
significance level (Z score) for each of the 6 connected tetrads. Tetrad significance (Z score) is the
difference between numbers of occurrence in the given network and in an ensemble of randomly
rewired surrogate networks with the same degree sequence, divided by the standard deviation. The
tetrad significance profile is the normalized vector of tetrad significances (see [14, 15] for details).
The wide fluctuations of the network local structure reproduce the dynamic of social interaction at
the system level
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profiles, the figure indicates a fluctuation of the network local structure over time.
To examine for possible cyclic behavior embedded in the time-series networks,
we calculated the similarities between them by looking at the correlation between
the significance profiles of the 6 types of connected tetrads for the different net-
works. Next, we applied an average-linkage hierarchical clustering algorithm [16]
to the significance profile correlations (Fig. 3.8). Several families of networks –
each includes networks separated by time intervals varying 2–20 days – with very
similar significance profiles (c > 0.995) emerge from this analysis. The relation
between the local structures of networks within tightly interconnected families is
further visualized in Fig. 3.9, which presents the significance profiles of the 6 types
of connected tetrads for several families of networks. The recurrent patterns of net-
work local structure over time might provide empirical evidence for cycles of social
interaction despite being only the aggregate of distinctive behaviors and preferences
of individuals.

4 15 12 18 13 24 5 29 6 11 20 22 1 9 30 7 25 8 27 14 21 19 26 28 16 17 31
0

0.05

0.1

0.15

0.2

0.25

Networks

D
is

ta
nc

e 
(1

−
co

rr
el

at
io

n)

Fig. 3.8 Identifying families of networks over time with similar local structure. The hierarchical
cluster tree that quantifies the relation between the different networks, based on the correlation
coefficients between the tetrad significance profiles of the temporal sequence of networks
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Fig. 3.9 Evidence for cycles of social interaction in dynamic social networks. Families of networks
with highly similar local structure are identified, as suggested by the average-linkage hierarchical
clustering tree (Fig. 3.8)

3.4 Summary

In summary, we have demonstrated that the static topology does not capture the
dynamics of social networks. The prominence of nodes (as measured by degree)
within the networks fluctuates widely from day to day, and a high degree in the
aggregate network does not predict a high degree for individual days. Our conclu-
sions are in sharp contrast to previous complex network research, which empha-
sizes the importance of aggregate nodal centrality in a static network topology
[1–5, 7, 11, 14, 15, 17–20, 24].

Implications of a dynamic node centrality contrast with existing analyses that
consider targeting nodes with the highest degrees to disrupt network communi-
cation or transport [25]. Dynamic centrality implies that targeting nodes with the
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highest degrees at one time only weakly affects the nodes that are highly connected
at another time. The approach of targeting high-degree nodes has been suggested,
for example, to be an effective disease and computer virus prevention strategy; i.e.
identification and “vaccination” of those nodes, would inhibit the spread of infection
or computer viruses [21, 22]. Similarly, popular influencer marketing techniques
(closely related to word-of-mouth or viral marketing) are based on the premise that
a large number of people are connected to everyone else through a small number of
hubs. Thus, identifying and focusing marketing activities around these hubs could
increase the likelihood of initiating a cascading adoption of products or services – a
type of social epidemic. The perspective of such marketing techniques presupposes
that an individual who is an influencer now is likely to be a social hub later. In other
words, the topology of a social network is quite static. Our work implies that, at the
very least, a more agile strategy of monitoring, vaccinating nodes, or focusing mar-
keting activities based upon centrality over time is necessary. Otherwise a treatment
based upon aggregate connectivity information will miss the impact of a node that
otherwise has a low connectivity, becoming highly connected. More generally, our
findings call for a radical rethink of the mechanisms underlying the processes of
link dynamics and diffusion on Dynamic Complex Networks – both experimentally
and theoretically.

The type of dynamic analysis of networks we performed is pertinent to a wide
range of network types. Whether or not there exists an underlying fixed topologi-
cal structure, the question of which links are actually used is a relevant one. Thus,
actual travel on a transportation network, and actual interactions that occur between
molecules that can bind to each other, are both examples of networks that have an
underlying structure but whose dynamic structure is relevant to the behavior and
functionality of the system over time. This study demonstrated the potential role of
time in complex networks. Ultimately our goal is to understand the role of both time
and space in complex networks, leading to a Spatio-Temporal Complex Network
Theory.
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Chapter 4
Adaptive Biological Networks

Mark D. Fricker, Lynne Boddy, Toshiyuki Nakagaki, and Daniel P. Bebber

Abstract Mycelial fungi and acellular slime molds grow as self-organized networks
that explore new territory to search for resources, whilst maintaining an effective
internal transport system in the face of continuous attack or random damage. These
networks adapt during development by selective reinforcement of major transport
routes and recycling of the intervening redundant material to support further exten-
sion. In the case of fungi, the predicted transport efficiency of the weighted net-
work is better than evenly weighted networks with the same topology, or standard
reference networks. Experimentally, nutrient movement can be mapped using radio-
tracers and scintillation imaging, and shows more complex transport dynamics, with
synchronized oscillations and switching between different pre-existing routes. The
significance of such dynamics to the interplay between transport control and topol-
ogy is not yet known. In a similar manner, the resilience of the network can be
tested in silico and experimentally using grazing invertebrates. Both approaches
suggest that the same structures that confer good transport efficiency also show
good resilience, with the persistence of a centrally connected core. The acellular
slime mold, Physarum polycephalum also forms efficient networks between food
sources, with a good balance between total cost, transit distance and fault tolerance.
In this case, network formation can be captured by a mathematical model driven by
non-linear positive reinforcement of tubes with high flux, and decay of tubes with
low flux. We argue that organization of these simple planar networks has been honed
by evolution, and they may exemplify potential solutions to real-world compromises
between search strategy, transport efficiency, resilience and cost in other domains.

4.1 Introduction

Networks are common within biological systems and have been characterized in
a range of different contexts that include metabolism, protein–protein interaction,
neural circuits and ecological food webs. Despite the recent progress in biological
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network analysis, one area that has received relatively little attention is the charac-
terization of organisms whose entire growth form is as a network. In particular, both
plasmodial slime molds (myxomycetes) and mycelial fungi form elaborate intercon-
nected networks that are highly responsive to local environmental conditions. Unlike
the other biological networks described, the network formed by these organisms is
not part of the organism, it is the organism. These networks develop as the organism
forages for new resources in a patchy environment and must both transport nutri-
ents between spatially separated source and sink regions, and also maintain their
integrity in the face of predation or random damage [4, 5]. The challenges that these
conflicting demands place on the network organization have strong parallels with
those faced in the design of anthropogenic infrastructure networks. The balance
the biological systems have achieved between cost, efficiency and resilience may
represent a good compromise to such a combinatorial optimization problem, and
may yield useful insights into the design of delocalized, robust infrastructure net-
works. This presumes that solutions adopted by biological networks will exemplify
useful generic theoretical principles, such as persistence, robustness, error-handling
or appropriate redundancy, as they have been honed by evolution. The expectation
is that the process of Darwinian natural selection based on variation, competition
and survival has explored a significant range of possible network organizations and
the resulting systems are likely to be well-adapted to survive and reproduce under
particular biotic and abiotic conditions to solve certain ecological problems. A range
of network architectures, development and dynamics can be found within the fungi
and myxomycetes, suggesting a comparative approach may be instructive. How-
ever, the constraints imposed by the components used to construct the network (i.e.
branching tubes) may have a profound effect on the possible network organization
and dynamics, so it is possible that any result can only be generalized to a very
limited set of real-world problems.

In this Chapter we focus on recent work describing the structure and function of
foraging woodland fungi [3, 33], to illustrate how these essentially planar, weighted
spatial networks resolve the conflicting demands of exploration, exploitation, trans-
port and resilience [3]. We provide a brief introduction to network development in
Sect. 4.2 then describe predicted transport of such networks in Sect. 4.3 and how
it compares with experimentally measured nutrient movement in Sect. 4.4. We fur-
ther comment on the experimentally observed oscillations and pulsatile transport in
Sect. 4.5. Section 4.6 covers both predicted and experimentally determined network
robustness. In Sect. 4.7, we compare the results from mycelial fungi with network
development in Physarum, as a second exemplar of an adaptive biological network,
before speculating on the universal features of such biological networks in Sect. 4.8.

4.2 Network Development in Mycelial Fungi

Filamentous fungi grow by apical extension of slender hyphae (Fig. 4.1a) that then
branch sub-apically to form a fractal, tree-like mycelium. In ascomycetes and basid-
iomycetes, tangential hyphal fusions or anastomoses occur as the colony develops to
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Fig. 4.1 Development of mycelial networks. (a) Bright-field image of hyphae of Phanerochaete
velutina growing across agar. (b) Mycelial system of P. velutina grown from 4 cm3 beech wood
inocula on a 24 × 24 cm tray of compressed, non-sterile soil after 39 d. (c) a 75 × 75 cm portion
of an extensive network of the saprotrophic basidiomycete Megacollybia platyphylla interconnect-
ing dead wood resources in Wytham Wood, Oxfordshire, UK. (d) Time lapse imaging of cord-
formation through hyphal aggregation in a growing colony of P. velutina on compressed sand/soil.
(e) Scanning electron micrograph showing the aggregation of hyphae in a cord. (f) Schematic
representation of a cord illustrating the length (l) and area (a) measures used to weight each link.
(g) Time lapse imaging of cord-regression and thinning-out of the network in a growing colony of
P. velutina. Modified from [21]

form an interconnected mycelial network [24, 25, 48, 49]. In the larger, more persis-
tent saprotrophic and ectomycorrhizal basidiomycetes that grow out into soil from
colonized food sources, the network architecture develops further with the formation
of specialized high-conductivity organs, termed cords or rhizomorphs [12]. These
form visible networks interconnecting food resources on a scale of centimetres in
laboratory microcosms (Fig. 4.1b) to meters in undisturbed woodland (Fig. 4.1c),
through parallel aggregation of many individual hyphae (Fig. 4.1d, e), [18]. Indeed
mycelial fungi form the most extensive biological networks so far characterized
[16, 33, 52–54], popularly known as the Wood Wide Web [50, 53].



54 M.D. Fricker et al.

The network topology is defined by classifying junctions (branch-points and
anastomoses) as nodes, and the cords between nodes as links. In general, during
foraging the number of nodes, number of links and the total material in the network,
increase through time. However, the local scale network evolution is also charac-
terized by selective loss of connections and thinning out of the fine mycelium and
weaker cords (Fig. 4.1g). This behaviour is also apparent in the box-count mass
fractal dimension of these networks, which shows a decrease as the networks thin
out [6]. Thus, fungal networks progress from a radial branching tree to a weakly
connected lattice-like network behind the growing margin, through a process of
fusion and reinforcement to form loops, and selective removal and recycling of
excess redundant material [3]. This shift can be quantified by the meshedness or
alpha coefficient [11, 26], that gives the number of closed loops or cycles present as
a fraction of the maximum possible for a planar network with the same number of
nodes. The alpha coefficient measured over the whole colony increased over time
from near zero, as expected for a branching tree, to 0.11 ± 0.04 in control systems,
and to 0.20±0.05 in systems with an additional wood block resource [3]. The values
of the alpha index for Phanerochaete velutina were similar to those for networks of
tunnels in ant galleries [11], Physarum polycephalum (unpublished observations)
and street networks in cities [10, 13], suggesting that addition of around 20% of the
maximum number of cross-links into a planar network may be sufficient to achieve
desirable network properties in a range of different scenarios.

Other topological network measures have not proved to be very informative
as they are heavily constrained by the developmental processes of branching and
fusion, and crowding effects restricting the maximum number of connections pos-
sible in a planar network [2, 3, 3, 19, 29, 33]. Thus, the possible degree (k) of each
node is limited to 1 for tips, 3 for branch points or fusion, or occasionally 4 for
initially overlapping cords that then fuse. Likewise, the mean clustering coefficient,
C [70], is of limited relevance for fungal networks, as their growth habit effectively
precludes formation of triads. The frequency distribution of node strength shows
more diversity than node degree alone, and follows an approximately log-normal
distribution for P. velutina networks [3]. However, we have not found evidence
for power law relationships that have attracted so much attention in other network
analyses.

4.3 Predicted Transport Characteristics of the Mycelial Network

One approach to investigate the transport capacity of the network is to assume that
nutrient fluxes will follow the shortest path between pairs of nodes, calculated from
the predicted resistance of each link where longer, thinner cords have greater resis-
tance to flow. The changes in thickness of the cords during growth and network
re-modeling can be captured by image analysis of the reflected intensity of each
cord, with appropriate calibration, to give each link a weight that depends on its
length (l) and cross-sectional area (a). Each cord is modeled as a cylinder packed
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with identical hyphae (Fig. 4.1f), rather than a single tube that increases in diam-
eter, although the internal structure of cords can be much more complex [62]. An
overall measure of transport is the average network efficiency (E), defined as the
mean of the reciprocal of shortest path lengths for transport through the network
[34, 35].

In isolation, the average efficiency is not useful without some frame of reference.
It is not straightforward to generate suitable reference models against which to test
the extent that differential cord weighting improves the performance of the network.
Indeed elucidation of such biologically-inspired algorithms is a key goal of current
research. At present there are no suitable algorithms available to generate weighted
planar networks with defined properties. In other areas of network theory, compar-
isons are typically made with a reference network produced by random rewiring of
the links. However, this does not make sense biologically. Likewise, randomly reas-
signing the weights to different links does not give an intuitively satisfying model
to test performance, as it also has no biological basis. We currently use a two stage
procedure to evaluate the performance of the fungal networks [3]. In the first step,
nodes within the Euclidean fungal network (Fig. 4.2b), were used to construct model
networks using well defined neighborhood graphs, including the minimum spanning
tree (MST, Fig. 4.2c) as a lower bound giving a low cost, but extremely vulnerable
network, the relative neighborhood graph (RNG, Fig. 4.2d), Gabriel graph (GAB,
Fig. 4.2e) and the Delaunay triangulation (DT, Fig. 4.2f), giving an upper bound
for a well-connected, robust, but rather expensive network [11, 13, 23, 43]. In the
second step of analysis, the effect of including a fixed amount of material in the
network, equivalent to the total material in the real network (Fig. 4.2a), was exam-
ined. Thus, each link in the “uniform” fungal and model networks was allocated a
constant weight, such that the total construction cost was the same. Effectively we
asked what the consequences for transport would be if the fungus had chosen to
allocate the same amount of resource evenly over the existing or model networks,
to determine the functional efficiency of the network. This also allowed comparison
with the real, differentially weighted network (Fig. 4.2a) as the network measures
were in comparable units.

Visual inspection of the resultant networks suggested that the topology of the
fungal network had some similarity to the RNG, in terms of the density of cross-
linking outside of the inoculum itself (Fig. 4.2d). Quantitatively, the RNGs had an
alpha coefficient of ∼0.12, slightly lower than the alpha coefficient of the fungal
networks. It was also apparent that regression of some links triggered substantial re-
arrangements in the layout of the model networks, particularly for the MST, which
showed dramatic alteration in the connections between neighboring nodes over time
(Fig. 4.2c) as the biological network developed.

Perhaps unsurprisingly, the real weighted networks had much shorter physio-
logical paths, especially in the central region, than their corresponding uniform
networks [3]. More surprisingly, the weighted fungal network outperformed both
the uniform DT and the uniform MST when the predicted transport from just the
inoculum to all other nodes was considered (Fig. 4.3). Although very well con-
nected, the DT performed poorly, as distributing material across the large number
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Fig. 4.2 Comparison of weighted fungal networks and neighborhood graphs. P. velutina was
grown from a wood block inoculum over compressed soil in the presence of an additional wood-
block resource, and the weighted network digitized at 9, 18, 25 and 31 d. (A) The weighted fungal
network, in which line thickness and intensity indicate the relative cross-sectional area of each
cord. (B) A simplified version of the network that retains nodes arising from branching or fusion,
but not nodes simply required to trace the outline of each cord correctly. The amount of material
present in the network is distributed evenly across all links to give a uniform network. The nodes
present in the simplified graph were then connected according to well-defined rules to give: the
minimum spanning tree (C); the relative neighborhood graph (D); the Gabriel graph (E); or the
fully connected Delaunay triangulation (F). Modified from [21]
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Fig. 4.3 Comparison of transport efficiency between weighted fungal and uniform model net-
works. The functional efficiency of the fungal network was predicted from the sum of the inverse
of the shortest paths from the inoculum to every node as the colony increased in area. The weighted
fungal network (◦,−) has the highest functional efficiency, in comparison to uniform networks
constructed with the same topology (�, · − · · −), or connected using a Delaunay Triangulation
(�, · · · ), or Minimum Spanning Tree (�,−−). Redrawn from [3]

of links present gave each one low cross-sectional area and consequent high resis-
tance. Conversely, the MST performed better than the DT as it was populated with
few, but extremely thick, links. The uniform fungal networks were similar in perfor-
mance to the MST, although they clearly have a different architecture, but the real
weighted fungal network showed the best predicted transport behavior (Fig. 4.3).
By normalizing to the DT, the local efficiency (Eloc) of the real network, uniform
network and MST were calculated as 4.4 ± 0.11, 2.22 ± 0.07 and 2.08 ± 0.12,
respectively [3]. Thus, differential weighting of links in the real network gave a > 4
fold improvement in local efficiency in comparison to a fully connected uniform
network constructed with the same total cost. The ability of fungal networks to mod-
ify link strengths in a dynamic way is, therefore, crucial to achieve high transport
capacity.

Subtle shifts in the predicted transport performance of the network as it grows
can be identified by which links carry the greatest number of shortest paths and
therefore have a high shortest-path betweenness centrality (SPBC) [17, 36]. The
relative importance of particular links between the inoculum and added resource,
as judged by their SPBC, fluctuate in the early stage of growth with several cords
competing before one thickens up sufficiently to achieve dominance [21]. Equally,
one of the disadvantages of using shortest path analysis is that comparable par-
allel pathways that are only marginally longer do not feature prominently in the
analysis, but might be expected to participate in transport in a real system. A key
area for future development will be to evaluate comparable parallel flow centrality
measures.
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4.4 Comparison Between Predicted Transport
and Experimental Transport

In parallel to the theoretical network analysis, we have developed methods to image
nutrient movement directly in these microcosms by mapping the distribution of
the amino-acid analogue, 14C-amino isobutyrate (14C-AIB), using photon-counting
scintillation imaging (PCSI), [22, 63–66]. 14C-AIB accumulates in the free amino
acid pool and is not metabolized in a range of woodland fungi so far examined, as
judged by the lack of incorporation of 14C in other metabolites or released as 14CO2

[15, 31, 37, 46, 47, 69]. This allows it to be used as a proxy for nitrogen translocation
[69] and provides an opportunity to compare the predictions made by the theoretical
network analysis to the actual pattern of nutrient movement in the same microcosms
[20].

Networks were allowed to develop in microcosms for ∼45 d (Fig. 4.4a) and
the weighted network digitised (Fig. 4.4b) and analysed to give the link evolution
(Fig. 4.4c) and the SPBC (Fig. 4.4d). 14C-AIB was added at the end of the growth
period and imaged using photon-counting scintillation imaging (PCSI) to map nutri-
ent movement (Fig. 4.4e). The topological network was then superimposed on the
14C-AIB image to determine the amount of AIB present in each link from the inte-
grated 14C-AIB intensity (Fig. 4.4f). Ideally we would like to calculate the total
flux through each link rather than just the integrated amount using knowledge of
the amount of 14C-AIB appearing further downstream. However, this is challeng-
ing as it requires assumptions about the flow pathway to reallocate the AIB signal
correctly. Nevertheless, as a first approximation we have compared 14C-AIB maps
with various network parameters such as final link weight (Fig. 4.4g), link evolution
(Fig. 4.4h), based on linear regression of the change in link weight with time, and
SPBC (Fig. 4.4i). A number of different populations of links were identified. The
most prominent were a cluster with high 14C-AIB but low SPBC, corresponding to
the tips where the 14C-AIB accumulated. For the other links there was some degree
of correlation between the AIB distribution and the network parameter. Equally, the
AIB pattern did not always match expectations. For example, there was no obvious
reason from the weighted network image why there should be substantial accumu-
lation on the right-hand side of the colony, or little apparent transport to the added
resource or beyond (Fig. 4.4e) based on the final link weight (Fig. 4.4b, final panel),
link evolution (Fig. 4.4c) or SPBC (Fig. 4.4d). There are clearly additional features
governing the control of nutrient distribution that cannot be captured by simple pre-
dictions of flow, based solely on network measures or shortest path calculations.

4.5 Oscillations and Pulsatile Transport

In addition to the evolution of the longer term trends described above, a strong
pulsatile component was also associated with 14C-AIB transport [22, 64–66]. To
characterize this oscillatory behavior, we have analyzed the image-series in the
frequency domain and mapped the frequency, phase or magnitude, on a pixel-by-
pixel basis as the hue in pseudo-color coded images [22, 64–66]. In single juvenile
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Fig. 4.4 Bright-field images of P. velutina growing from a beech wood block inoculum to a set
of additional resource wood blocks over compressed soil were obtained at ∼3 d intervals for 45
d (a). Branch points and anastomoses were manually coded as nodes connected by links, and the
cord diameter estimated by image analysis, to give a weighted network (b) in which thick cords are
represented in red and thin cords in blue, through a rainbow spectrum. Various network parameters
were calculated including link evolution (c), based on linear regression of the change in link weight
with time and color-coded by gradient of the regression equation, and shortest-path betweenness
centrality, measured as the number of shortest paths passing through each link (d). To compare
the predicted transport properties of the network with actual transport, 14C-AIB movement was
mapped by photon-counting scintillation imaging (PCSI) at the end of the time-series (e) and the
amount of AIB present in each link extracted using the digitized network (f). The distribution of
AIB was then compared with link cross-sectional area at the last time point (g), link evolution (h)
or link betweenness centrality (i). Redrawn from [20]

mycelial systems with no additional resource, the mycelium beneath the inoculum
and that growing over the screen formed distinct oscillatory domains with the same
frequency, but almost 180 degrees out-of-phase with each other [22, 64]. When two
colonies were allowed to grow and fuse, the oscillations synchronized between the
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two connected inocula but still showed a phase shift with respect to the rest of the
colony [22]. Recently we have examined the phase relationships in more complex
systems in which arrays of colonies of both compatible and incompatible strains
were allowed to grow and fuse. A subset of inocula were labeled and rapid, long-
distance transport of 14C-AIB occurred between the connected compatible inocula
following fusion, with eventual distribution throughout the super-organism formed

A B

C D

E F

Fig. 4.5 Synchronized oscillations and phase domains in coupled networks. A 9 × 5 array of
inocula from two incompatible isolates of Coniophora puteana (shown as red and green circles
in panel (a) was set up on a scintillation screen. Several inocula were labeled with 14C-AIB and
transport imaged using photon-counting scintillation imaging (PCSI) for 12 d. When compatible
growing colonies met, they fused and allowed rapid distribution of 14C-AIB throughout the newly
inter-connected system. Initially signals from the inoculum and growing mycelium of each colony
showed out-of-phase oscillations, which are shown in (b–d) as a difference in intensity following
subtraction of the long term trend during Fourier analysis. The phase of the oscillations determined
from the Fourier analysis on a pixel-by-pixel basis was color-coded (e and f), in which regions of
the same color are oscillating in phase. Before the network was fully connected there was con-
siderable variation in the phase relations across the system (e). Following fusion, three domains
of synchronized oscillations emerged, that differed in phase (f). Thus the interconnected inocula
were all synchronized with one phase (green), the central domain (purple) and the outer, growing
margin (blue)
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(Fig. 4.5a–d). Furthermore, whilst oscillations in the individual colonies were not
coupled initially (Fig. 4.5e), they became synchronized following fusion to give
a network of linked cords and inocula with one phase, a central mycelial domain
within the new super-colony that was phase-shifted by a few hours, and a contiguous
foraging margin that was further phase-shifted by a few hours again (Fig. 4.5f).
At this stage we do not know what significance to attribute to these oscillating
phenomena.

4.6 Network Robustness

High transport capacity and low construction cost could have come at the expense
of other network properties, such as robustness to damage, as there is no a priori
reason why link weight allocation for one feature necessarily enhances another. This
is clearly seen in the improved global transport efficiency of the uniformly weighted
MST, even though the MST would be expected to be very vulnerable to disconnec-
tion during attack. Robustness to damage, e.g. by physical breakage or grazing by
invertebrates [5, 7, 27, 30, 67, 68, 71], is of major significance to long-lived mycelial
systems. Having a large number of alternate pathways is important in this context,
and the differential strengthening of links not only imparts high transport capacity
but also robustness to damage. This can be seen by examining the effects of breaking
links in models of the fungal networks in comparison to corresponding uniform
networks. We chose to look at link breakage rather than node removal, which is
commonly used in other networks, as the cord is the biologically relevant target
for attack. Links were broken in order, assuming that the probability of breakage
increased with length and decreased with the thickness of the link. That is long,
thin links were broken before short, thick ones. Robustness was quantified as the
proportion of the total material cost of the network that remained connected to the
inoculum. The fungal networks maintained a much greater system connected with
the inoculum than did the uniform fungal, DT or MST networks (Fig. 4.6), i.e. the
fungal networks were much more robust to damage.

This represents a minimum estimate of the real network resilience in nature, as
the network is also able to respond to local damage, by modification of adjacent link
strength, and to regrow and reconnect. Thus, for example, local mechanical damage
to a small region of the network promoted strengthening of distal circumferential
connections (Fig. 4.7a, c). Continuous grazing trimmed the network back to the
reinforced core, in support of the in silico predictions (Fig. 4.7b), but also promoted
an increase in tangential connections (Fig. 4.7d).

4.7 Simple Networks in the Plasmodial Slime Mould Physarum
Polycephalum

Whilst network analysis of mycelial fungi is in its infancy, considerable progress
has already been made in the analysis of simple networks in the plasmodial slime
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Fig. 4.6 Comparison of network resilience between weighted fungal and uniform model networks.
The amount of mycelium remaining connected to the inoculum was measured as an increasing
fraction of links were broken. When more than ∼0.3 of the total fraction of the link area was
broken, the weighted fungal networks (◦,−) maintained a greater connected core than the uniform
fungal network (�, · − · · −), or networks connected using a Delaunay Triangulation (�, · · · ), or
Minimum Spanning Tree (�,−−). Redrawn from [3]

mould Physarum polycephalum [32, 38–45, 57–61]. P. polycephalum is a large,
single-celled amoeboid organism that forages for food resources in a woodland
environment. During exploration, it spreads with a relatively contiguous foraging
margin to maximize the area searched. However, behind the margin, it resolves this
dense structure into a tubular network, interconnecting captured food resources and
acting as a supply network to support further exploration.

This natural capacity to construct a transport network can be exploited in experi-
mental microcosms in which food sources (FSs), typically oat flakes, are arranged in
specific geometric patterns [39]. As the plasmodium grows, it links each FS encoun-
tered in an efficient manner to form a network that includes both direct connections,
Steiner points and some additional cross-links that improve both transport efficiency
and resilience (Fig. 4.8) [41, 43]. In all cases, the network that is established by the
plasmodium has a relatively short total length of interconnecting tubes, but main-
tains close connections among all the food sources and exhibits a high tolerance to
accidental fragmentation.

Growth can also be constrained by physical barriers [44] or influenced by the
light regime [40], increasing the opportunity for experimental manipulation to
mimic real-world network problems. Thus, for example, P. polycephalum can find
the shortest path through a maze [40, 44, 45], or connect different arrays of FSs in an
efficient manner. For three or more FRs up to about 10, the system strikes a balance
between a low total length (TL) of the interconnected network whilst keeping a
short connection distance (CD) between any pair of FSs and a high degree of fault
tolerance (FT) against accidental disconnection of any tube [41, 43].
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Fig. 4.7 Adaptive network resilience. Colonies of P. velutina were grown from 2 × 2 × 2 beech
wood blocks over compressed soil in the absence (a) or presence (b) of grazing by Folsomia can-
dida. In (a) a localized region of physical damage (indicated by the arrow) stimulated a localized
increase in tangential connections (c). In (b) grazing continuously trimmed the finest hyphae, stim-
ulating more local sprouting, and accentuated growth both of the dominant radial cords and also
tangential connections (d). Redrawn from [19]

The degree of separation is defined as the number of food sources along the
shortest path between two food sources. The average separation (AS) is the degree
of separation averaged over all pairs of food sources, and decreases as food sources
are more closely coupled. To allow comparisons between different arrangements,
AS is normalized to the average separation for the minimum spanning tree [41].
The fault tolerance (FT) is the probability that the organism is not fragmented
into separate pieces if an accidental breakage occurs at a random point along the
tubes. Since the probability of disconnection of a tube is proportional to its length,
a longer tube has a higher risk of disconnection. The combined index, FT/TL, can
be regarded as a measure of the ratio of benefit to cost. By judicious positioning of
food sources, the geometry of the network can be compared to possible theoretical
solutions in terms of path length and fault tolerance, such as the minimal spanning
tree (MST), the Steiner minimal tree (SMT) and a Delaunay triangulation network
(DTN) [41]. Examples are given in Fig. 4.8 for the predicted network with 3 food
sources (Fig. 4.8d) and experimental results for 3 food sources (Fig. 4.8e–g), 6 and
7 food sources (Fig. 4.8h, i) with the associated analysis of path length and fault
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Fig. 4.8 (continued)
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tolerance (Fig. 4.8j), rings of 12 food sources (Fig. 4.8k, l) and grids of 64 food
sources (Fig. 4.8m, n).

In computational terms, it becomes progressively more challenging to find a
good solution to such a combinatorial optimization problem as the number of FSs
increases, particularly with the inclusion of Steiner points [61]. It is remarkable,
therefore, that solutions reached by P. polycephalum, whilst not necessarily optimal
individually, cluster around the predicted optimal solution in replicate experiments.
Furthermore, the solution is reached rapidly, based only on local information and
parallel analogue computing. If it were possible to capture the essence of such a
system in simple rules, it might have significant potential to guide de-centralized
network development in other domains [39, 42, 58–60].

4.8 Universal Features of Biological Networks?

Characterization of mycelial networks is still in its infancy. However, the network
approach provides a way of quantifying and analyzing complex fungal systems for
the first time, and also makes it possible to link measurements in microcosms in
the laboratory to observations of networks in the field. The simple models predict-
ing transport through such networks, so far based on shortest path considerations
through the weighted network, only capture part of the experimentally determined
transport behavior. We anticipate that models that include parallel-flow pathways
and evolution of the network should improve the match between simulation and
experiment, and will benefit from the recent advances in fast algorithms to calculate
the necessary metrics. The next conceptual advance will be to identify the rules that
allow the network iteratively to refine its structure and transport behavior to yield
the network architectures observed. It is conceivable that the identification of such
rules will allow development of generic “fungal colony optimization” algorithms

�
Fig. 4.8 (Opposite page) Self-organization of robust network architecture in Physarum poly-
cephalum. (a–c) Development of a network between three food sources, starting from a continuous
sheet of plasmodium on the surface of agar. Network structure at 0 h (a), 6 h (b) and 36 h (c).
Scale bar = 1 cm. (d) Schematic illustration of the arrangement of food sources (black dots). The
orange, green and blue lines represent the network of minimum spanning tree (MST), Steiner’s
minimal tree (SMT) and Delaunay triangulation network (DTN), respectively. (e–g) Three typical
networks in ascending order of total length (TL) after 35 h. Scale bar = 1 cm. (h, i) Typical emergent
network structure with six (h) and seven (i) food sources (FS) and schematic representation of the
corresponding MST (orange), SMT (green) and DTN (blue). (j) Properties of the plasmodial net-
works, defined by average separation of food sources (AS), normalised to the value for the minimal
spanning tree, and benefit to cost ratio, defined as the fault tolerance over the total length (FT/TL).
Black symbols give the value for each specimen, and red, the value of the mean with associated
s.e.m. Orange, green and blue symbols give the values of MST, SMT and DTN respectively. The
organism maintains a short total length of tubes with close connections between food sources yet
high tolerance of accidental disconnection. (k–n) Network organization with ring (k, l) and grid
(m, n) arrangement of food sources. These systems also show robust network architecture, with
short path length but high fault tolerance. Redrawn from [43]



66 M.D. Fricker et al.

similar to those that have evolved from the study of ant colony foraging patterns
[14] or based on P. polycephalum [40, 41, 58–60].

Even at this stage, some common features of biological network formation seem
to emerge. Fungal networks are constructed by local iterative developmental pro-
cesses rather than predetermined blueprints or centralized control, with growth
involving over-production of links and nodes, followed by selective pruning of some
links and reinforcement of others. Such a process mimics the process of Darwinian
evolution in which natural selection removes less fit offspring. This “Darwinian
network model” may be applicable to other biological systems, including foraging
ant trails, P. polycephalum, axon development and angiogenesis, and may represent
a generalized model for growth of physical biological networks. Based on the ant
colony and P. polycephalum models, we might expect the generic ingredients in
such a model will involve a non-linear positive reinforcement term related to the
local flux and a linear decay term. Notably this model differs from other models of
weighted network evolution that incorporate differential strengthening of links, i.e.
“the busiest get busier” [1], rather than differential weakening and loss that is the
hallmark of evolution by natural selection. However, the model has parallels with
the selective link removal model recently proposed for unweighted networks [51].
In infrastructure networks where costs are associated with creation and maintenance
of links, where links differ in some measure of fitness, and where material can be
recycled, such a Darwinian model may be applicable. In practical terms such a pro-
cess may also be witnessed in the evolution of real infrastructure networks, such as
British railways following the Beeching reviews in the early ’60s [8, 9]. In these
reviews, the flux along various routes was measured and routes with too low a level
of traffic, mainly branch lines, were targeted for closure. At the same time, major
routes were strengthened to cope with the expected source-sink relationships for
both passenger and freight traffic. Interestingly, the reports focussed on efficiency
rather than any explicit consideration of resilience, which may explain the sensitivity
of the current UK rail network to disruption.

A second feature of interest emerging, particularly through consideration of the
P. polycephalum and fungal networks, is the extent that coupled flows may contain
global information. Networks involving physical flows obey continuity equations
and are therefore intrinsically coupled across the network. This automatically means
that increasing the flow in one part of the network will lead to reductions elsewhere,
even though the local conditions in the distal region remain the same. Thus each part
of the network is influenced by and can influence the whole network, but without any
global assessment of behavior. Useful properties of the network may emerge from
the interaction between the local update rules governing topology and flows without
the need for long-distance communication or calculation of aggregate properties of
the network. It is this coupling in the P. polycephalum model that allows the network
to resolve from a fine mesh into a quasi-optimal solution [40, 58–60]. Furthermore,
the computational overhead for such self-organized networks scales well with the
number of additional nodes.

The third general observation on these biological networks is the prevalence of
some form of oscillatory process. In P. polycephalum it is an actin-myosin contrac-
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tion with a short (min) period whilst in the fungal networks it is manifest as a change
in the amount of radiolabeled nutrient with a longer (hr to day) period. In both cases
the oscillations can synchronize across large regions of the developing system, even
if the individual components are asynchronous initially [22, 56, 57]. That the oscilla-
tions manage to synchronize is not surprising [55], but the extent that the organisms
may be able to interpret and act upon the oscillations is not known. In other contexts,
such as supply chains or traffic flow, the existing strategy is to minimize oscilla-
tions to achieve maximum throughput [28]. This suggests that either the biological
systems lack the additional sensory and feedback systems to suppress oscillations,
or that maintaining an oscillatory system is an alternative means to achieve a sta-
ble long-term quasi-optimal solution, potentially with less control infrastructure.
In P. polycephalum, oscillations drive protoplasmic shuttle streaming and generate
flows considerably greater than the volume needed simply for extension growth at
the margin. It seems likely therefore that the additional energy demands of rhyth-
mic contraction represent the cost of this indirect information transfer. Nevertheless,
such a cost is minimal compared to the developmental and behavioral complexity
and metabolic cost of the more sophisticated neuron-based sensory systems used by
higher organisms.
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Chapter 5
Self-Organized Criticality and Adaptation
in Discrete Dynamical Networks

Thimo Rohlf and Stefan Bornholdt

Abstract It has been proposed that adaptation in complex systems is optimized
at the critical boundary between ordered and disordered dynamical regimes. Here,
we review models of evolving dynamical networks that lead to self-organization of
network topology based on a local coupling between a dynamical order parameter
and rewiring of network connectivity, with convergence towards criticality in the
limit of large network size N . In particular, two adaptive schemes are discussed and
compared in the context of Boolean Networks and Threshold Networks: (1) Active
nodes loose links, frozen nodes aquire new links, (2) Nodes with correlated activity
connect, de-correlated nodes disconnect. These simple local adaptive rules lead to
co-evolution of network topology and -dynamics. Adaptive networks are strikingly
different from random networks: They evolve inhomogeneous topologies and broad
plateaus of homeostatic regulation, dynamical activity exhibits 1/ f noise and attrac-
tor periods obey a scale-free distribution. The proposed co-evolutionary mechanism
of topological self-organization is robust against noise and does not depend on the
details of dynamical transition rules. Using finite-size scaling, it is shown that net-
works converge to a self-organized critical state in the thermodynamic limit. Finally,
we discuss open questions and directions for future research, and outline possible
applications of these models to adaptive systems in diverse areas.

5.1 Introduction

Many complex systems in nature, society and economics are organized as networks
of many interacting units that collectively process information or the flow of matter
and energy through the system; examples are gene regulatory networks, neural net-
works, food webs in ecology, species relationships in biological evolution, economic
interaction and the internet. From an abstract point of view, one can distinguish net-
work structure, i.e. the (typically directed) graph that describes the wiring of interac-
tions between the nodes the network is composed of, and network dynamics, refer-
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ring to certain state variables assigned to the nodes which can change in response
to inputs or perturbations from other nodes. In the case of the genome, for example,
dynamics of regulatory networks, as captured in changes of gene expression levels,
results from repression and -activation of gene transcription controlled by regulatory
inputs (transcription factors) from other genes [25].

A main characteristic of all these systems is that they evolve in time, under
the continuous pressure of adaptation to highly dynamic environments. Since net-
work topology and dynamics on the network are typically tightly interrelated, this
implies a co-evolutionary loop between a time-varying network wiring and adaptive
changes in the nodes’ dynamics. For example, there is evidence from the analysis
of gene regulatory networks that interactions between genes can change in response
to diverse stimuli [58], leading to changes in network toplogy that can be far greater
than what is expected from random mutation. In the case of nervous systems, it is
evident that self-organization and adaptation processes have to continue throughout
the lifetime of a network, since learning is a major function of such networks. In
this context, a major conceptual challenge lies in the fact that, in order to properly
function as information processing systems, adaptive networks have to be, on the
one hand, highly robust against random (or dys-functional) perturbations of wiring
and dynamics (noise) [5, 9, 90], and, on the other hand, stay responsive to essential
cues (information) from the environment that can change in time. While robustness
would clearly favor highly ordered dynamics that is basically insensitive to any
perturbation, sensitivity and adaptive pressure tend to favor an ergodic sampling
of the accessible state space. The latter comes with the risk of leading network evo-
lution into regimes of chaotic dynamics with large parameter ranges where network
dynamics is not easily controlled [63].

Two interesting and interrelated questions arise: First, is there a critical point,
given by specific values of order parameters that characterize network toplogy and
-dynamics, where adaptive dynamics with its delicate balance between robustness
and flexibility is optimized? Second, can we find simple, very general principles
of network self-organization from local co-evolutionary rules that couple network
rewiring and -dynamics such that the network globally evolves to this point?

In the inanimate world, phase transitions from ordered to disordered dynam-
ics at critical values of a system parameter are found in several classes of many
particle systems, as for example in ferromagnets, where the system can main-
tain spontaneous magnetization below the Curie temperature, while above this
critical point disorder induced by thermal fluctuations wins. Similar transitions
form an organized to a disorganized state also have been observed in living sys-
tems, for example in enzyme kinetics [64], growth of bacterial populations [66]
and brain activity [43]. Most biological networks are different in many regards
from the many particle systems as considered in standard statistical mechanics.
In particular, interactions between units are typically asymmetric and directed,
such that a Hamiltonian (energy function) does not exist. Furthermore, to make
global dynamical properties accessible despite the overall stunning degree of com-
plexity found in these networks, a number of simplifying assumptions have to
be made.
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In this line, random Boolean networks (RBN) were proposed as simplified model
of large gene regulatory networks [39, 88]. In these models, each gene receives
a constant number K of regulatory inputs from other genes. Time is assumed to
proceed in discrete steps. Each gene i is either “on” or “off”, corresponding to a
binary state variable σi ∈ {0, 1}, which can change at time t according to a (fixed)
Boolean function of its inputs at time t − 1 (a more formal definition will be given
in Sect. 5.2.2). RBNs can easily be generalized to a variable number of connec-
tions per node, and “biased” update rules 1 Despite its simple deterministic update
rule, this model exhibits rich dynamical behavior. In particular, RBNs exhibit an
order-disorder phase transition when each unit has on average two inputs from other
nodes2 [29].

Combinatorial and statistical methods have provided quite detailed knowledge
about properties of RBNs near criticality [3, 4, 11, 12, 16, 17, 23, 24, 30, 32, 35, 40–
42, 44, 45, 55–57, 79, 83]. The second class of discrete dynamical networks that
we will consider are Random Threshold Networks (RTN) with sparse asymmetric
connections (for details, cf. Sect. 5.2.3). Networks of this kind were first studied as
diluted, non-symmetric spin glasses [26] and diluted, asymmetric neural networks
[28, 47]. For the study of topological questions in networks, a version with discrete
connections ci j = ±1 is convenient and will be considered here. It is a subset of
Boolean networks with similar dynamical properties. Random realizations of these
networks exhibit complex non-Hamiltonian dynamics including transients and limit
cycles [10, 49]. In particular, a phase transition is observed at a critical average
connectivity Kc with lengths of transients and attractors (limit cycles) diverging
exponentially with system size for an average connectivity larger than Kc. A the-
oretical analysis is limited by the non-Hamiltonian character of the asymmetric
interactions, such that standard tools of statistical mechanics do not apply [28].
However, combinatorial as well as numerical methods provide a quite detailed pic-
ture about their dynamical properties and correspondence with Boolean Networks
[10, 11, 27, 29, 30, 35, 48, 49, 57, 65, 75, 77, 79].

From the observation that complex dynamical behavior in these simple model
systems is primarily found near criticality, Kauffman [39, 40] and other researchers
[50, 91] postulated that evolution should drive living systems to this “edge of chaos”.
Indeed, a number of parameters that are highly relevant for biological systems, as,
for example, robustness [40] and basin entropy [46] of attractors (limit cycles),
mutual information in the switching dynamics of nodes [55, 73] and information
diversity in structure-dynamics relationships [68] are maximized near the order-
disorder transition of RBNs, supporting the idea that this point provides unique
properties for balancing the conflicting needs of robustness and adaptive flexibility.
Today, experimental results provide strong support for the idea that many biological

1 The bias is typically parameterized in terms of a stochastic control parameter p, which determines
the probability that a particular input configuration generates the output “1”.
2 This critical connectivity Kc = 2 refers to the simplest case, when all Boolean functions
have equal probability to occur. For the case of biased update rules, this generalizes to Kc =
1/(2p(1 − p)).
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systems operate in a regime that shares relevant properties with criticality in ran-
dom networks. Indications for critical behavior were found, for example, in gene
expression dynamics of several organisms [67, 72, 82] and in neuronal networks
in the brain [14, 52]. Since, in all these systems, there generally exists no central
control that could continuously adjust system parameters to poise dynamics at the
critical state, we are forced to postulate that there are simple, local adaptive mecha-
nisms present that are capable of driving global dynamics to a state of self-organized
criticality. Evolution towards self-organized criticality was established in a number
of non-equilibrium systems [6], namely, avalanche models with extremal dynamics
[8, 71], multi-agent models of financial markets [59], forest fires [60] and models of
biological macroevolution [31]. Still, these approaches are limited in the sense that
they consider a fixed or at least pre-structured topology.

Network models of evolving topology, in general, have been studied with respect
to critical properties earlier in other areas, e.g., in models of macro-evolution [84].
Network evolution with a focus on gene regulation has been studied first for Boolean
networks in [20] observing self-organization in network evolution, and for threshold
networks in [21]. Combining the evolution of Boolean networks with game theoret-
ical interactions is used for model networks in economics [70].

Christensen et al. [22] introduced a static network with evolving topology of
undirected links that explicitly evolves towards a critical connectivity in the largest
cluster of the network. In particular they observed for a neighborhood-oriented
rewiring rule that the connectivity of the largest cluster evolves towards the criti-
cal Kc = 2 of a marginally connected network. However, in this model the core
characteristics of adaptive networks, a co-evolution between dynamics and topol-
ogy [37], is hard to establish, since the evolution rule, here chosen according to
the Bak-Sneppen model of self-organized criticality [7], does not provide a direct
coupling between rewiring of connections and an order parameter of the dynamics
on the networks.

Keeping the idea of local connectivity adaptations, a different line of research
pursues models of adaptive co-evolutionary networks in the context of discrete
dynamical networks, in particular based on RBNs and RTNs. The common prin-
ciple in these models is the coupling of local rewiring events to approximate, local
measurements of a dynamical order parameter. In the limit of large network sizes
N , this principle leads to network evolution towards a global self-organized critical
state. Bornholdt and Rohlf [19] introduced a topology-evolving rule based on the
dynamical activity of nodes in RTNs: Active nodes, whose binary state changes
in time, tend to lose links, while inactive (frozen) nodes, whose binary states are
fixed, tend to gain new links. In a recent extension [76], also adaptive changes of
the nodes’ activation thresholds were considered. A very similar co-evolutionary
rule was applied to RBNs by Liu and Bassler [53]; besides the case where only the
rewired node is assigned a new Boolean function, they also consider “annealed”
networks, where each node is assigned a new logical function in each evolutionary
time step. Teuscher and Sanchez [87] showed that this adaptive principle can also
be applied to turing neural networks. Self-organized critical neural networks with
stochastic dynamics and a rewiring rule based on dynamical correlations between
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nodes was studied by Bornholdt and Röhl [18], observing robust self-organization
of both network toplogy and -dynamics. In the same context, Bertschinger et al.
[15] studied a synaptic scaling rule leading to self-organized criticality in recurrent
neural networks. A different adaptive scheme, based on a input-dependent discon-
nection rule and a minimal connectivity in RBNs, was studied by Luque et al. [54].
A perturbation analysisindicates the emergence of self-organized critical behavior.

The remainder of this chapter is organized as follows: in Sect. 5.2, the dynamics
of RBNs and RTNs are defined and basic dynamical and statistical properties of
these systems are summarized. In particular, central order parameters that are rele-
vant for the definition of adaptive algorithms will be introduced. In Sect. 5.3, we will
review different models of adaptive, discrete dynamical networks leading to evolu-
tion towards self-organized criticality that have been established in this context so
far, with a focus on activity- and correlation-based rewiring rules. Finally, Sect. 5.4
contains a summary and conclusions.

5.2 Dynamics of Random Boolean Networks and Random
Threshold Networks

In this section, we provide definitions for the two types of discrete dynamical
networks under consideration, Random Boolean Networks and Random Thresh-
old Networks. First, the underlying graph structure that connects dynamical units
(automata) is defined, then dynamical update rules are provided. Further, basic
dynamical properties of these systems are summarized.

5.2.1 Underlying Graph Structure

Concerning topology, discrete dynamical networks are described by random directed
graphs G(N , Z , g), where N is the number of nodes, Z the number of edges or links
(arrows connecting nodes), and g a function that describes the statistical distribution
of the links between nodes. Arrows pointing at a node are considered as inputs,
arrows pointing from this node to another node as outputs. If, for example, Z links
out of the 2N 2 possible are assigned at random such that the average connectivity
K̄ := Z/N is fixed at a predefined value and Z � 2N 2 (sparse network), the
resulting statistical distributions of the number k of inputs and outputs follow a
Poissonian [34]:

P(k) = K̄ k

k!
exp (−K̄ ). (5.1)

A schematic example of interaction graph structure is shown in the left panel of
Fig. 5.1.
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Fig. 5.1 Left panel: example of an interaction graph structure for a RBN of size N = 5 with
average connectivity K̄ = 6/5; fi are individual Boolean functions assigned to each node i =
1, .., 5, black circles mark σi = 1, white circles σi = 0. Right panel: example of a Boolean update
table assigned to a site (AND function of the site’s inputs)
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Fig. 5.2 Schematic sketch of a threshold dynamical unit: input states (circles on the left, black
circles correspond to a state σ j = +1, white circles to σ j = −1) are multiplied (�) with interaction
weights ci j (lined arrows: ci j = +1, dashed arrows: ci j = −1); these values are summed (Σ) and
added to a threshold. Finally, the output σi (t + 1) is determined by the sign (+/−) of the resulting
signal
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Fig. 5.3 Example of a dynamical trajectory for a N = 5 Boolean network, time is running from
left to right, network nodes are labeled from top to bottom. Black squares correspond to σi = 1,
white squares to σi = 0. After a transient of Θ = 3 system states Σ the first state A1 appears that
repeats itself after Γ = 4 time steps, defining a periodic attractor (limit cycle) with period 4
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5.2.2 Random Boolean Networks

A Random Boolean Network (RBN) is a discrete dynamical system composed of
N automata. Each automaton is a Boolean variable with two possible states: {0, 1},
and the dynamics is such that

F : {0, 1}N �→ {0, 1}N , (5.2)

where F = ( f1, ..., fi , ..., fN ), and each fi is represented by a look-up table of Ki

inputs randomly chosen from the set of N automata. Initially, Ki neighbors and a
look-up table are assigned to each automaton at random.

An automaton state σi (t) ∈ {0, 1} is updated using its corresponding Boolean
function:

σi (t + 1) = fi (σi1 (t), σi2 (t), ..., σiKi
(t)). (5.3)

We randomly initialize the states of the automata (initial condition of the RBN).
The N automata are updated synchronously using their corresponding Boolean
functions, leading to a new system state Σ := (σ1, ..., σN ):

Σ(t + 1) = F(Σ(t)). (5.4)

The right panel of Fig. 5.1 provides an example of an individual update table
assigned to a network site.

5.2.3 Random Threshold Networks

A Random Threshold Network (RTN) consists of N randomly interconnected binary
sites (spins) with states σi = ±1. For each site i , its state at time t + 1 is a function
of the inputs it receives from other spins at time t :

σi (t + 1) = sgn ( fi (t)) (5.5)

with

fi (t) =
N∑

j=1

ci jσ j (t) + h. (5.6)

The N network sites are updated synchronously. In the following discussion the
threshold parameter h is set to zero. The interaction weights ci j take discrete values
ci j = +1 or −1 with equal probability. If i does not receive signals from j , one has
ci j = 0.
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5.2.4 Basic Dynamical Properties of RBNs and RTNs

Let us review a few aspects of the dynamics of Random Boolean Networks and
Random Threshold Networks. In fact, they share most basic properties which is
closely related to the fact that RTNs are a subset of RBNs.

5.2.4.1 Attractors and Transients

Update dynamics as defined in 5.2.2 and 5.2.3, given the binary state σi (t) of each
node i at time t − 1, assigns a state vector Σ(t) = (σ1(t), ..., σN (t)) to the network
at each discrete time step t . The path that Σ(t) takes over time t is a dynamical
trajectory in the phase space of the system. Since the dynamics is deterministic
and the phase space of the system is finite for finite N , all dynamical trajectories
eventually become periodic. When we start dynamics from a random initial state,
e.g. with each σi (0), i = 1...N set to 0 or 1 (−1 or +1 for RTN, respectively)
independent from each other with equal probability p = 1/2, the trajectory will
pass through Θ transient states before it starts to repeat itself, forming a limit cycles
given by

Σ(t) = σ (t + Γ ). (5.7)

The periodic part of the trajectory is the attractor of the dynamics, and the mini-
mum Γ ≥ 1 that satisfies Eq. (5.7) is the period of the attractor.

5.2.4.2 Definition of Average Activity and Average Correlation

Let us now define two local measures that characterize the typical dynamical behav-
ior of a network site, and the dynamical coordination of pairs of sites.

The average activity A(i) of a site i is defined as the average over all states σi (t)
site i takes in dynamical network evolution between two distinct points of time T1

and T2:

A(i) = 1

T2 − T1 + 1

T2∑

t=T1

σi (t) (5.8)

“Frozen” sites i which do not change their states between T1 and T2 obviously
have |A(i)| = 1 (or |A(i)| = 0, in the case of RBN), whereas sites that occasionally
change their state have 0 ≤ |A(i)| < 1. The average correlation Corr(i, j) of a
pair (i, j) of sites is defined as the average over the products σi (t)σ j (t) in dynamical
network evolution between two distinct points of time T1 and T2:

Corr(i, j) = 1

T2 − T1 + 1

T2∑

t=T1

σi (t)σ j (t) (5.9)
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If the dynamical activity of two sites i and j in RTN is (anti-)correlated, i.e. if σi

and σ j always have either the same or the opposite sign, one has |Corr(i, j)| = 1.3

If the relationship between the signs of σi and σ j occasionally changes, one has
0 ≤ |Corr(i, j)| < 1.

5.2.4.3 Properties of A(i) and Corr(i, j ) and Their Relation to Criticality

If we consider statistical ensembles of randomly generated networks with sparse
wiring (K̄ � N ), both A(i) and Corr(i, j) of RBNs and RTNs exhibit a second
order phase transition at a critical average connectivity Kc (averaged over the whole
network ensemble). Below Kc, network nodes are typically frozen, above Kc, a
finite fraction of nodes is active; this can be clearly appreciated from the behavior
of the frozen component C(K̄ ), defined as the fraction of nodes that do not change
their state along the attractor. The average activity A(i) of a frozen site i thus obeys
|A(i)| = 1. In the limit of large N , C(K ) undergoes a transition at Kc vanishing for
larger K . With respect to the average activity of a node, C(K ) equals the probability
that a random site i in the network has |A(i)| = 1. Note that this is the quantity
which is checked stochastically by the local rewiring rule that will be discussed in
Sect. 5.3.1.2. The frozen component C(K , N ) is shown for random networks of two
different system sizes N in Fig. 5.4. One finds that C(K , N ) can be approximated by

Fig. 5.4 The frozen component C(K , N ) of random threshold networks, as a function of the net-
works’ average connectivities K . For both system sizes shown here (N = 256 and N = 1,024) the
data were measured along the dynamical attractor reached by the system, averaged over 1,000 ran-
dom topologies for each value of K . One observes a transition around a value K = K0 approaching
Kc = 2 for large N . A sigmoid function fit is also shown. To avoid trapping in exponential diver-
gence of attractor periods for K > 2, the simulations have been limited to Tmax = 10,000. The
mismatch of data and fit for N = 1,024, K ≥ 2.75 is due to this numerical limitation

3 In RBN, correlated pairs have |Corr(i, j)| = 1 and anti-correlated pairs |Corr(i, j)| = 0.
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C(K , N ) = 1

2
{1 + tanh [−α(N ) · (K − K0(N ) )]}. (5.10)

This describes the transition of C(K , N ) at an average connectivity K0(N ) which
depends only on the system size N . One finds for the finite size scaling of K0(N )
that

K0(N ) − 2 = a · N−β (5.11)

with a = 3.30 ± 0.17 and β = 0.34 ± 0.01 (see Fig. 5.5), whereas the parameter α

scales with system size as

α(N ) = b · N γ (5.12)

with b = 0.14 ± 0.016 and γ = 0.41 ± 0.01. This indicates that the transition of
C(K , N ) exhibits a sharp decay near the critical connectivity Kc when the thermo-
dynamic limit N → ∞ is approached.

The number of frozen nodes is a decisive quantity for the evolution of adaptive
networks. If all nodes are frozen (C = 1), as it is typically found for networks with
very sparse K̄ , the network is basically irresponsive to signals from the environment
and hence can neither process information nor adapt. If, on the other hand, C van-
ishes, all nodes exhibit more or less chaotic switching behavior – dynamics becomes
completely autonomous and hence again useless for information processing. A finite
number of frozen nodes, as it is found near Kc, enables adaptive response to envi-
ronmental signals by assignment of new, functional behavior to previously frozen
nodes, and also makes sure that global network dynamics avoids the extremes of
overly ordered and chaotic regimes. In the following section, we will discuss mod-
els of adaptive network evolution by local dynamical rules that lead to emergence

Fig. 5.5 The finite size
scaling of the transition value
K0, obtained from sigmoidal
fits as shown in Fig. 5.4. K0

approaches Kc = 2 with a
scaling law ∼N−β ,
β = 0.34 ± 0.01. The inset
shows the scaling behavior of
the parameter α(N ); one finds
α(N )∼N γ , γ = 0.41 ± 0.014
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of self-organized critical networks, i.e. networks that evolve to the “optimal” point
just at the phase transition from ordered to chaotic dynamics.

5.3 Network Self-Organization from Co-evolution of Dynamics
and Topology

In this section, we will discuss models of adaptive network self-organization in the
context of discrete dynamical networks. The common principle that governs net-
work evolution is a co-evolution of dynamics and topology from local dynamical
rules: An order parameter of network dynamics is estimated from local measure-
ments (often averaged over a representative number of dynamical update cycles,
e.g., over one attractor period of a limit cycle the dynamics converged to, cf.
Sect. 5.2.4.1). Based on the measured value of the order parameter, network con-
nectivity and/or the switching behavior of nodes is adapted by local adaptive rules.
Usually, there is a time scale separation between frequent dynamical updates and
rare rewiring events. After a large number of adaptive cycles, evolution towards a
self-organized critical state is observed.

5.3.1 Activity-Dependent Rewiring

5.3.1.1 Motivation

Living organisms process their information by dynamical systems at multiple levels,
e.g. from gene regulatory networks at the cellular level, to neural networks in the
central nervous system of multi-cellular organisms. As complex adaptive systems,
organisms have to deal with the conflicting needs of flexible response to chang-
ing environmental cues, while maintaining a reasonable degree of stability in the
dynamical networks that process this information. This led to the idea that these
systems may have evolved to the “edge of chaos” between ordered and disordered
dynamical regimes [40, 50]. In the following, a simple evolutionary mechanism will
be introduced [19], based on a local coupling between a dynamical order parame-
ter – the average activity of dynamical units (sites) in RTNs (Eq. 5.8) – and a topo-
logical control parameter – the number of inputs a site receives from other units. In
a nutshell, the adaptive rule can be summarized as frozen nodes grow links, active
nodes lose links. This rule abstracts the need for both flexibility and stability of
network dynamics. In a gene regulatory network, for example, a frozen gene cannot
respond to different inputs it may receive, and hence is practically dysfunctional; the
addition of a new regulatory input potentially assigns a new function to this gene.
On the other hand, a very active gene will tend to show chaotic switching behavior
and may lead to loss of stability in network dynamics – a reduction in input number
reduces the probability of this undesirable behavior [78]. Similar demands for a
local, homeostatic regulation of activity and connectivity can be expected in neural
networks of the nervous system and are supported by experimental evidence [33].
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5.3.1.2 Model

Let us consider a Random Threshold Network of N randomly interconnected binary
elements as defined in Sect. 5.2.3. In the beginning, network topology is initialized
as a directed, random graph with connectivity distributed according to a Poissonian
with average connectivity Kini (cf. Sect. 5.2.1), and ci j = +1 or ci j = −1 with
equal probability for non-vanishing links. While network evolution is insensitive to
Kini in general (as will be shown), we choose 0 < Kini < 3 in simulations to obtain
reasonably fast convergence of the evolutionary dynamics. Network dynamics is
iterated according to Eq. (5.5) starting from a random initial state vector Σ(0) =
(σ1(0), ..., σN (0)), with σi = +1 or σi = −1 with equal probability for each i .
After T iterations, the dynamical trajectory eventually reaches a periodic attractor
(limit cycle or fixed point, compare Sect. 5.2.4.1). Then we apply the following
local rewiring rule to a randomly selected node i of the network: If node i does not
change its state during the attractor, it receives a new non-zero link ci j from
a random node j . If it changes its state at least once during the attractor, it
loses one of its non-zero links ci j . Iterating this process leads to a self-organization
of the average connectivity of the network. The basic idea of this rewiring rule is
sketched schematically in Fig. 5.6, a particular algorithmic realization is provided in
Box 5.1.

Fig. 5.6 The selective
criterion leading to
topological self-organization:
A dynamically frozen site
(|A(i)| = 1) receives an
additional regulatory input,
an active site (|A(i)| < 1)
looses one of its inputs

Box 5.1 Adaptive algorithm for activity-dependent rewiring

This box gives an example of an adaptive algorithm that realizes the local
rewiring rule “frozen nodes grow links, active nodes lose links” [19]:

1. Choose a random network with an average connectivity Kini .
2. Choose a random initial state vector Σ(0) = (σ1(0), ..., σN (0)).
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3. Calculate the new system states Σ(t) according to Eq. (5.2), using par-
allel update of the N sites.

4. Once a previous state reappears (a dynamical attractor with period Γ

is reached) or otherwise after Tmax updates the simulation is stopped.
Then, a site i is chosen at random and its average activity A(i) during
the last T = Γ time steps is determined (in case no attractor is reached,
T = Tmax/2 is chosen).

5. If |A(i)| = 1, i receives a new link ci j from a site j selected at random,
choosing ci j = +1 or −1 with equal probability. If |A(i)| < 1, one of
the existing non-zero links of site i is set to zero.

6. Finally, one non-zero entry of the connectivity-matrix is selected at ran-
dom and its sign reversed.

7. Go to step number 2 and iterate.

5.3.1.3 Results

The typical picture arising from the model as defined above is shown in Fig. 5.7
for a system of size N = 1, 024. Independent of the initial connectivity, the system
evolves towards a statistically stationary state with an average connectivity Kev(N =
1, 024) = 2.55 ± 0.04. With varying system size we find that with increasing N the
average connectivity K̄ approaches Kc (which, for threshold h = 0 as considered
here, is found slightly below K̄ = 2 [77]), see Fig. 5.8. In particular, one can fit the
scaling relationship

Fig. 5.7 Evolution of the average connectivity of threshold networks rewired according to the rules
described in the text, for N = 1,024 and two different initial connectivities (Kini = 1.5 and Kini =
3.0). Independent of the initial conditions chosen at random, the networks evolve to an average
connectivity Kev = 2.55 ± 0.04. The plot shows the time series and the corresponding cumulative
means for Kev. The evolutionary time t is discrete, each time step representing a dynamical run on
the evolved topology. Individual runs were limited to Tmax = 1,000 iterations
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Fig. 5.8 The average connectivity of the evolved networks converges towards Kc with a scaling
law ∼N−δ , δ = 0.47 ± 0.01. For systems with N ≤ 256 the average was taken over 4 · 106 time
steps, for N = 512 and N = 1,024 over 5 · 105 and 2.5 · 105 time steps, respectively. Finite size
effects from Tmax = 1,000 may overestimate Kev for the largest network shown here

Kev(N ) − 2 = c · N−δ (5.13)

to the measured connectivity values with c = 12.4±0.5 and δ = 0.47±0.01. In the
evolutionary steady state, the average connectivity K̄ of evolving networks exhibits
limited fluctuations around the evolutionary mean Kevo which are approximately
Gaussian distributed, with a variance vanishing ∼1/N [74].

Going beyond averaged topological quantities, one can also measure the degree
distributions of inputs and outputs in evolving networks, and compare it to what is
expected for random networks (cf. Sect. 5.2.4.3). In finite size networks, substantial
deviations from random graphs are found [78]: While the outdegree distribution
stays close to the Poissonian of a random graph, evolved in-degree distributions
are considerably flatter. For the averaged statistical distribution p(K ) of in-links
(Fig. 5.9) of the evolving networks one observes a flat exponential decay

p(K ) ≈ p0 · exp [−αK ], (5.14)

with p0, α = const. This observation indicates that the self-organized network state,
at least for finite N , is substantially different from random networks with the same
average connectivity. Since network evolution is based on co-evolutionary adapta-
tion of dynamics and topology by local rewiring rules, this raises the question of
whether the evolutionary statistically stationary state exhibits specific characteris-
tics and correlations between dynamical and toplogical order parameters also on the
global scale. This is indeed the case for finite N : If we compare, for example, the
frozen component C(K̄ ) or fraction of “frozen genes” for different values of connec-
tivity fluctuations around the evolutionary mean Kevo (Fig. 5.10), we observe that
this curve exhibits a broad plateau where activity is stabilized at intermediate values,
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Fig. 5.9 Statistical distribution p(K ) of the number of inputs K per node (gene) in the proposed
model for a network of size N = 64. Compared to the Poisson distribution for random networks
with K̄ = 4.46, it shows a flatter decay ∝ exp [−K ]

with almost step-like boundaries for small and large K̄ , whereas the correspond-
ing curve for random networks is much smoother and decays earlier (compare also
Sect. 5.2.4.3 for the phase transition observed in ensembles of random networks).
This indicates that coevolution of dynamics and topology extends to a global scale,
in spite of local rewiring events and a pronounced time scale separation between
dynamical and topological updates.4

Fig. 5.10 The frozen component C (fraction of frozen genes) as a function of the average connec-
tivity for an evolved network of size N = 64 (crosses). The dashed line shows the corresponding
curve for random networks

4 This time scale separation can be easily identified e.g. from step 4 of the adaptive algorithm
summarized in Box 5.1: After T dynamical system updates, one out of N sites is rewired, hence
time scale separation is at the order of T · N .
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Last, let us characterize dynamics on the evolving networks, and investigate in
how far it may exhibit signatures of self-organized critical behavior even in the
finite size networks we studied so far (which, concerning average connectivity, are
evidently super-critical). In contrast to random, noise-driven dynamics, where cor-
relations decay fast (typically as an exponential), the self-organized critical state
is characterized by non-trivial, long-range correlations in dynamical trajectories. A
convenient measure to characterize such long-range correlations is the power spec-
trum of the dynamical time series. Let us consider the autocorrelation function of a
time signal f (t), defined by

R(τ ) =
∫ +∞

−∞
f (t) f (t − τ ) dt. (5.15)

The power spectrum G( f ) is the Fourier transform of the autocorrelation func-
tion, i.e.

G( f ) =
∫ +∞

−∞
R(τ )e−2π i f τ dτ. (5.16)

In the case of time-discrete systems, the integrals are replaced by the correspond-
ing sums. For strongly (auto-)correlated systems, e.g. near the critical point, we
typically expect a flat decay of the power spectrum G( f )∼1/ f α with α ≈ 1, while
for a random walk, e.g., we would obtain α = 2. The dynamical order parameter
that we investigate is the global average activity at evolutionary time step t :

〈A〉(t) =
∣∣∣∣∣

1

N

N∑

i=1

Ai (t)

∣∣∣∣∣ . (5.17)

Figure 5.11 shows a typical snapshot of the time series of 〈A〉 on evolving
networks, the power spectrum is shown in Fig. 5.12. A least squares fit yields
G( f )∼1/ f α with α = 1.298 for the global average activity, i.e. a clear indication of
long-range correlations in dynamics [74]. Other measures of global dynamics also
show evidence for criticality, for example, the statistical distribution of attractor
periods is scale-free, as will be discussed in Sect. 5.3.3 for a RBN variant of the
model.

The self-organization towards criticality observed in this model is different from
other known mechanisms exhibiting the amazingly general phenomenon of self-
organized criticality (SOC) [7, 8, 71, 84]. Our model introduces a (new, and inter-
estingly different) type of mechanism by which a system self-organizes towards
criticality, here K → Kc. This class of mechanisms lifts the notions of SOC to
a new level. In particular, it exhibits considerable robustness against noise in the
system. The main mechanism here is based on a topological phase transition in
dynamical networks.

In addition to the rewiring algorithm as described in this chapter, a number of dif-
ferent versions of the model were tested. Including the transient in the measurement
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Fig. 5.11 Time series of the global average activity 〈A〉 (arbitrary time window of the evolutionary
process). Upper curve: Signal averaged over the whole network, lower curve: Signal averaged over
non-frozen nodes only

of the average activity A(i) results in a similar overall behavior (where we allowed a
few time steps for the transient to decouple from initial conditions). Another version
succeeds using the correlation between two sites instead of A(i) as a mutation cri-
terion (this rule could be called “anti-Hebbian” as in the context of neural network
learning). In addition, this version was further changed allowing different locations
of mutated links, both, between the tested sites or just at one of the nodes. All these
different realizations exhibit the same basic behavior as found for the model above.

Fig. 5.12 Power spectrum of the global average activity 〈A〉 over 105 evolutionary time steps,
averaged over all network sites (compare upper curve in Fig. 5.11, double-logarithmic plot. The
dashed line has slope −1.298
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Thus, the proposed mechanism exhibits considerable robustness. Interestingly, it
has been shown that this mechanism leads to robust topological and dynamical self-
organization also in other classes of dynamical networks. In particular, Teuscher and
Sanchez [87] showed that this rule can be generalized to Turing neural networks and
drives network evolution to Kc = 2 in the limit of large N .

In the next subsection, we will discuss an extension of the model that includes
adaptation of thresholds in RTN, in addition to rewiring of links. This extension still
exhibits robust self-organization as in the original model, however, exhibits several
interesting new features, namely, symmetry breaking of evolutionary attractors, and
correlation of dynamical and toplogical diversity.

5.3.2 Adaptive Thresholds – Time Scale Separation Leads
to Complex Topologies

So far, we assumed that dynamical units in the networks are homogeneous (identi-
cal) with respect to their switching behavior, which for real world networks usually
is a quite unrealistic assumption. Furthermore, recent studies have shown that inho-
mogeneity of thresholds leads to new and unexpected phenomena in RTNs, e.g.
an order-disorder transition induced by correlations between thresholds and input
number of nodes [75]. In the general case of inhomogeneous thresholds, we have to
modify Eq. (5.5) such that

fi (t) =
N∑

j=1

ci jσ j (t) + hi , (5.18)

where the indexed threshold hi now takes into account that thresholds can vary
from node to node. The only restriction we impose is hi ≤ 0, to make activation,
i.e. σi = +1, more difficult.

We now introduce a minimal model linking regulation of activation thresholds
and rewiring of network nodes in RTNs to local measurements of a dynamical order
parameter [76]. Adaptation of thresholds opens up for the possibility of units that
become heterogeneous with respect to their dynamical properties: Nodes with high
thresholds are inert and switch their state only for few input configurations (similar
to the effect of canalizing functions in RBNs), whereas nodes with low thresholds
are more likely to switch. A new control parameter p ∈ [0, 1] determines the prob-
ability of rewiring vs. threshold adaptations. In particular, the activity A(i) of a
site i can be controlled in two ways: If i is frozen, it can increase the probability
to change its state by either increasing its number of inputs ki → ki + 1, or by
making its threshold hi ≤ 0 less negative, i.e. |hi | → |hi | − 1. If i is active, it
can reduce its activity by adapting either ki → ki − 1 or |hi | → |hi | + 1. To
realize this adaptive scheme, we have to modify step 4 in the adaptive algorithm of
Box 5.1: A site i is chosen at random and its average activity A(i) during the last
T = Γ time steps is determined (in case no attractor is reached, T = Tmax/2
is chosen). If |A(i)| < 1, then ki → ki − 1 with probability p (removal of one
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randomly selected input). With probability 1− p, adapt |hi | → |hi |+1 instead.
If |A(i)| = 1, then ki → ki + 1 with probability p (addition of a new input
from a randomly selected site). With probability 1 − p, adapt |hi | → |hi | − 1
instead. If hi = 0, let its value unchanged. If the control parameter p takes values
p > 1/2, rewiring of nodes is favored, whereas for p < 1/2 threshold adaptations
are more likely. Notice that the model discussed in the last subsection is contained
as the limiting case p = 1 (rewiring only and hi = const. = 0 for all sites).

Results. After a large number of adaptive cycles, networks self-organize into a
global evolutionary steady state. An example is shown in Fig. 5.13 for networks with
N = 512: starting from an initial value K̄ini = 1, the networks’ average connectivity
K̄ first increases, and then saturates around a stationary mean value K̄evo; similar
observations are made for the average threshold h̄ (Fig. 5.13, lower panel). The
non-equilibrium nature of the system manifests itself in limited fluctuations of both
K̄ and h̄ around K̄evo and h̄evo. Regarding the dependence of K̄ with respect to p,
we make the interesting observation that it changes non-monotonically. Two cases
can be distinguished: When p = 1, K̄ stabilizes at a very sparse mean value K̄evo,
e.g. for N = 512 at K̄evo = 2.664 ± 0.005. When p < 1, the symmetry of this
evolutionary steady state is broken. Now, K̄ converges to a much higher mean value
K̄evo ≈ 43.5 ± 0.3 (for N = 512), however, the particular value which is finally
reached is independent of p. On the other hand, convergence times Tcon needed
to reach the steady state are strongly influenced by p: Tcon(p) diverges when p
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Fig. 5.13 Upper panel: Evolution of the average connectivity K̄ of threshold networks, using the
adaptive algorithm (cf. Fig. 5.1), for N = 512 and initial connectivity K̄ini = 1. Time series for
five different values of p are shown. Lower panel: The same for the average threshold h̄
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approaches 1 (compare Fig. 5.2 for p = 0.99). We conclude that p determines the
adaptive time scale. This is also reflected by the stationary in-degree distributions
p(kin) that vary considerably with p (Fig. 5.14); when p → 1, these distributions
become very broad. The numerical data suggest that a power law

lim
p→1

p(kin) ∝ k−γ

in (5.19)

with γ ≈ 3/4 ± 0.03 is approached in this limit (cf. Fig. 5.4, dashed line). At
the same time, it is interesting to notice that the evolved out-degree distributions are
much narrower and completely insensitive to p (Fig. 5.14, data points without lines).
Hence, we make the interesting observation of a highly robust self-organization and
homeostatic regulation of the average wiring density, while, at the same time in the
limit p → 1, time scale separation between frequent rewiring and rare threshold
adaptation leads to emergence of complex, heterogeneous topologies, as reflected
in the broad distribution of input numbers approaching a power law. Obviously, we
have a non-trivial coevolutionary dynamics in the limit p → 1 which is significantly
different from the limit of small p. This is also indicated by the emergence of strong
correlations between input number and thresholds in this limit (see the steep increase
of the curves for p > 0.5 in Fig. 5.15), while in the limit of small p correlations are
weak.

To summarize, we find that coevolution of both rewiring and threshold adaptation
with the dynamical activity on RTNs leads to a number of interesting new effects:
We find spontaneous symmetry breaking into a new class of adaptive networks that
is characterized by increased heterogeneity in wiring topologies and emergence of
correlations between thresholds and input numbers. At the same time, we find a
highly robust regulation of the average wiring density which is independent of p for
any p < 1.
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Fig. 5.15 Average number 〈kin〉 of inputs for a given node in evolving networks, as a function of
the respective nodes (absolute) threshold |h|. Statistics was taken over 106 rewiring steps, after a
transient of 4 · 106 steps. For all values p < 1, a clear positive correlation between k̄in and |h| is
found

In the next subsection, we will discuss another generalization of the adaptive,
coevolutionary scheme of activity-dependent rewiring to Random Boolean Net-
works, which was introduced by Liu and Basler [53].

5.3.3 Extension to Random Boolean Networks

Activity-dependent rewiring was originally introduced for Random Threshold Net-
works, as discussed in Sect. 5.3.1.2, the basic adaptive scheme, however, can be
generalized to other classes of dynamical systems. Since RTN are a subclass of
Random Boolean Networks, one possible direction of generalization is to apply
this coevolutionary, adaptive rule to RBNs. Compared to RTNs, rewiring by local
dynamical rules in RBN comes with an additional complication: While in RTNs
the dynamical transition rule is the same for all network sites (the evaluation of
the weighted sum of regulatory inputs, cf. Eq. 5.6), switching of network nodes in
RBNs is governed by individual logical functions that vary from node to node and
depend on the input number k. If, for example, we have a node with two inputs
and a logical AND function of these two inputs assigned (compare the example
in Fig. 5.1), there does not exist a well-defined mapping that would assign a new
logical function to this node in the case we change its input number to k = 1
or k = 3.

Liu and Bassler [53] suggested two variants of activity-dependent rewiring to
overcome the problem associated to the reassignment of logical functions: in the
first variant, only the node that is rewired at evolutionary time step t is assigned
a new logical function which is randomly drawn out of the 22k

possible Bol-
lean functions of k inputs (where k is the new input number after rewiring).
The adaptive algorithm that was applied in this study is summarized in
Box 5.2.
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Box 5.2 Adaptive algorithm for activity-dependent rewiring in RBN

1. Start with a homogeneous RBN, G(N , K0) with uniform in-degree con-
nectivity Ki = K0 for all N , and generate a random Boolean function fi

for each node i .
2. Choose a random initial system state Σ(0). Update the state using

Eq. (5.4) and find the dynamical attractor.
3. Choose a node i at random and determine its average activity A(i) over

the attractor.
4. Change the network topology by rewiring the connections to the node

chosen in the previous step. If it is frozen, then a new incoming link
from a randomly selected node j is added to it. If it is active, then one
of its existing links is randomly selected and removed.

5. The Boolean functions of network are regenerated. Two different meth-
ods have been used:

• Annealed model: A new Boolean function is generated for every node
of the network.

• Quenched model: A new Boolean function is generated only for the
chosen node i , while the others remain what they were previously.

6. Return to step 2.

For simplicity, all random Boolean functions are generated with p = 1/2, and
therefore all Boolean functions with the same in-degree are equally likely to be
generated.

Results. Liu and Bassler show that for both variants of the model, robust self-
organization of network topology is found. Independent from the initial network
realization, network evolution always converges to a characteristic average connec-
tivity Kev(N ). Graph (a) of Fig. 5.16 shows the evolution of the average in-degree
connectivity K for networks of size N = 30 in the annealed variant of the model,
with results obtained by beginning with networks with different uniform connectiv-
ity K0 = 2, 3, 4, and 5. Each curve is the average of 15000 independent realizations
of the network evolution. All curves approach the same final statistical steady state
that has an average in-degree connectivity 〈K 〉 = 3.06. The steady state value of
〈K 〉 depends on the size of the system as shown in graph (b) of Fig. 5.16. Starting
with networks that all have the same initial uniform connectivity K0 = 4, but which
have different size N = 30, 50, and 100, one finds that larger networks evolve to
steady states with smaller values of 〈K 〉.

Given the steady state value 〈K 〉 = 2 in the large network limit N → ∞, Liu and
Bassler also studied the finite-size effects in the model. They found that the values
of 〈K (N )〉 for finite N obey the scaling function



5 Self-Organized Criticality and Adaptation 95

6000 200 400 800 1000
Epoch

2

3

5

4

0 500 1000 1500 2000
Epoch

2

3

4

<K
>

<K
>

(a)

(b)N=30 N=50 N=100

Fig. 5.16 (a). Evolution of the ensemble averaged in-degree connectivity in the annealed model,
as studied by Liu and Bassler [53], for networks of size N = 30. The networks in each ensemble
initially start from different uniform connectivity, K0 = 2, 3, 4, and 5, but reach a same statistical
steady state 〈K 〉 = 3.06. (b). Evolution of ensemble averaged in-degree connectivity for networks
of three different size N = 30, 50, and 100 in the annealed model

〈K (N )〉 − 2 = c N−δ. (5.20)

Fitting the data to this function, we find that the coefficient is c = 2.50±0.06 and
the exponent is δ = 0.264±0.005. Thus the value of 〈K (N )〉 is always larger than 2
for finite N . Note that steady state values of the average connectivity in RTNs have
a similar scaling form, but with slightly different values of the scaling parameters
(cf. Sect. 5.3.1.3, Eq. 5.13).

In order to probe the dynamical nature of evolved steady states the authors com-
puted the distribution P(Γ ) of steady state attractor period Γ in the ensemble of
RBNs simulated. The distribution has a broad, power-law behavior for both the
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Fig. 5.17 Power law distribution of steady state attractor period Γ in both annealed (circle) and
quenched (square) models as studied by Liu and Bassler [53], for N = 200 systems. The dashed
straight line has a slope of 1.0
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annealed and quenched variants of the model. Figure 5.17 shows the results for
networks with N = 200. A power-law distribution of attractor periods is a typical
signature of critical dynamics, hence, similar to the results discussed in Sect. 5.3.1.3
for the self-organization of the global average activity, this finding indicates that
dynamics exhibits close-to critical behavior already for finite size networks, while
toplogical criticality is attained in the limit of large N .

To summarize, the results of this study give strong evidence that the local, adap-
tive coevolutionary principle frozen nodes grow links, active nodes lose links leads
to robust self-organization not only in RTNs, but also in the more general class of
RBNs, and hence has the potential to be generalized to large classes of dynamical
systems.

5.3.4 Correlation-Based Rewiring in Neural Networks

In this section, we will review a different adaptive coeveolutionary scheme of net-
work self-organization which is based on the basic paradigm correlated activity
connects, decorrelated activity disconnects. This local, topology-evolving rule is
inspired by the idea of Hebbian learning in neural networks [38], and, consequently,
was studied first for discrete neural networks with architectural and dynamical con-
straints motivated by corresponding observations in the brain [18]. In particular, an
explicit parameterization of space on a two-dimensional grid is given, and dynam-
ics is not deterministic any more, in contrast to the models discussed in the pre-
vious sections. The core result of this study is that network self-organization by
correlation-driven rewiring is robust even when spatial constraints are present and
dynamics is affected by noise. Correlation-driven rewiring can be considered as a
natural extension of the basic, activity-driven rewiring, as it exploits long range
correlations naturally emerging near phase transitions, and thereby is particularly
suited for neural networks where information processing takes place typically in
form of correlated activity. Let us now briefly motivate the correlation based self-
organization in the context of neural networks.

Neural networks with asymmetric connectivity patterns often exhibit regimes of
chaotic dynamics [63]. In networks whose central function is information transfer,
these regimes would instantly render them useless. Consider, for example, model
neural networks with asymmetric synaptic couplings, where a percolation transition
between regimes of ordered and disordered dynamics is known [48]. In the disor-
dered phase, which occurs for densely connected networks, already small perturba-
tions percolate through the networks.5 In such networks, developmental processes
that change connectivity always face the risk of driving the network into the highly
connected regime (where chaotic dynamics prevails), as long as no explicit mecha-
nism is given that controls the global degree of connectivity.

5 This is reminiscent of avalanche-like propagation of activity in the brain which is observed in
some diseases of the central nervous system [81].



5 Self-Organized Criticality and Adaptation 97

In a correlation-based rewiring rule we will exploit that also the average correla-
tion between the activities of two neurons contains information about global order
parameter of network dynamics. The network can then use this approximate order
parameter to guide the developmental rule. A possible adaptive scheme is that new
synaptic connections preferentially grow between correlated neurons, as suggested
by the early ideas of Hebb [38] and the observation of activity-dependent neural
development [33, 62, 69, 89]. In the remainder of this section let us recapitulate this
problem in the framework of a specific toy model [18]. First a neural network model
with a simple mechanism of synaptic development is defined. Then, the interplay
of dynamics on the network with dynamics of the network topology is modeled.
Finally, robustness of self-organizing processes in this model and possible implica-
tions for biological systems are discussed.

5.3.4.1 Model

Let us consider a two-dimensional neural network with random asymmetric weights
on the lattice. The neighborhood of each neuron is chosen as its Moore neighbor-
hood with eight neighbors.6 The weights ci j are randomly drawn from a uniform
distribution ci j ∈ [−1,+1] and are nonzero between neighbors, only. Note that
weights ci j are asymmetric, i.e., in general, ci j �= c ji . Within the neighborhood of
a node, a fraction of its weights ci j may be set to 0. The network consists of N
neurons with states σi = ±1 which are updated in parallel with a stochastic Little
dynamics on the basis of inputs received from the neighbor neurons at the previous
time step:

σi (t + 1) =
{

+1 with probability gβ ( fi (t))

−1 with probability 1 − gβ ( fi (t))
(5.21)

where

gβ( fi (t)) = 1

1 + e−2β fi (t)
(5.22)

with the inverse temperature β. The transfer function fi (t) is evaluated according
to Eq. 5.18, that defines dynamics of threshold units with individually assigned
thresholds. The threshold is chosen here as hi = −0.1 + γ and includes a small
random noise term γ from a Gaussian of width ε. This noise term is motivated by
the slow fluctuations observed in biological neural systems [1, 2].

6 The choice of the type of neighborhood is not critical, however, here the Moore neighborhood
is more convenient than the von Neumann type since, in the latter case, the critical link density
(fraction of nonzero weights) at the percolation threshold accidentally coincides with the attractor
of the trivial developmental rule of producing a link with p = 0.5. In general, also random sparse
neighborhoods would work as demonstrated in [21].
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The second part of the model is a slow change of the topology of the network
by local rewiring of synaptic weights: If the activity of two neighbor neurons is
on average highly correlated (or anticorrelated), they will obtain a common link. If
their activity on average is less correlated, they will lose their common link. The
degree of correlation in the dynamics of pairs of nodes is quantified by the average
correlation, as defined in Eq. (5.9) in Sect. 5.2.4.2. The full model dynamics is then
realized by the algorithm summarized in Box 5.3.

Box 5.3 Adaptive algorithm for correlation-dependent rewiring in neural
networks

1. Start with a random network with an average connectivity (number
of nonzero weights per neuron) Kini and a random initial state vector
Σ(0) = (σ1(0), ..., σN (0)).

2. For each neuron i , choose a random threshold hi from a Gaussian distri-
bution of width ε and mean μ.

3. Starting from the initial state, calculate the new system state applying
Eq. (5.21) using parallel update. Iterate this for τ time steps.

4. Randomly choose one neuron i and one of its neighbors j and determine
the average correlation according to Eq. (5.8) over the last τ/2 time
steps. (Alternatively, the correlation can be obtained from a synaptic
variable providing a moving average at any given time).

5. If |Corr(i, j)| is larger than a given threshold α, i receives a new link
ci j from site j with a weight chosen randomly from the interval ci j ∈
[−1, 1]. If |Corr(i, j)| ≤ α, the link ci j is set to 0 (if nonzero).

6. Go to step 2 and iterate, using the current state of the network as new
initial state.

The dynamics of this network is continuous in time, with neuron update on a fast
time scale and topology update of the weights on a well-separated slow “synaptic
plasticity” time scale. Note that the topology-changing rule does not involve any
global knowledge, e.g., about attractors.

5.3.4.2 Results

Independent of the initial conditions the networks evolve to a specific average con-
nectivity. Parameters are β = 25, ε = 0.1, a correlation cutoff α = 0.8, and an
averaging time window of τ = 200. One observes that the continuous network
dynamics, including the slow local change of the topology, results in a convergence
of the average connectivity of the network to a characteristic value which is inde-
pendent of initial conditions.

Finite size scaling of the resulting average connectivity indicates the convergence
towards a characteristic value for large network size N and exhibits the scaling
relationship
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Kev(N ) = aN−δ + b (5.23)

with a = 1.2 ± 0.4, δ = 0.86 ± 0.07, and b = 2.24 ± 0.03. Thus, in the large
system size limit N → ∞ the networks evolve towards K ∞

ev = 2.24 ± 0.03. The
self-organization towards a specific average connectivity is largely insensitive to
thermal noise of the network dynamics, up to ≈ 10% of thermal switching errors
(or β > 10) of the neurons. This indicates that the structure of a given dynamical
attractor is robust against a large degree of noise. Figure 5.18 shows the evolved
average connectivity as a function of the inverse temperature β.

While the stability of dynamical attractors on an intermediate time scale is an
important requirement for the local sampling of neural correlation, on the long time
scale of global topological changes, switching between attractors is necessary to
ensure ergodicity at the attractor sampling level. The second source of noise, the
slow random change in neural thresholds as defined in step (2) of the algorithm, is
closely related to such transitions between attractors. While, in general, the model
converges also when choosing some arbitrary fixed threshold h and omitting step (2)
from the algorithm, a small threshold noise facilitates transitions between limit cycle
attractors [61] and thus improves sampling over all attractors of a network, resulting
in an overall increased speed and robustness of the convergence. An asynchronous
change of the threshold hi , updating one random hi after completing one sweep
(time step) of the network, leads to similar results as the parallel rule defined above.

The basic mechanism of the observed self-organization in this system is the weak
coupling of topological change to an order parameter of the global dynamical state
of the network, and thus is different from the mechanism of extremal dynamics,
underlying many prominent models of self-organized criticality [7, 8]. To illustrate
this, let us for a moment consider the absolute average correlation |Corr(i, j)| of two
neurons which is the parameter used as a criterion for the rewiring process. It can
be shown that this quantity undergoes a phase transition depending on the average

Fig. 5.18 Evolved average connectivity Kev as a function of the inverse temperature β. Each point
is averaged over 105 time steps in a network of size N = 64 and α = 0.5. After Bornholdt and
Röhl [18]
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connectivity K̄ which is similar to the transition of the frozen component observed
in RTN (Fig. 5.4, cf. Sect. 5.2.4.3). Note that the correlation is large for networks
with small connectivity, and small for networks that are densely connected. The
rewiring rule balances between these two regimes: For high correlation, it is more
likely that a link is created, at low correlation, links are vanishing. The balance is
reached most likely in the region of the curve where the slope reaches its maximum,
as here the observed correlation reacts most sensitively to connectivity changes. As
the steep portion of the correlation curve occurs in a region of small connectivities
where also the critical connectivity Kc ≈ 2 of the network is located, this makes
the correlation measure sensitive to the global dynamical state of the network and
potentially useful as an approximation of the order parameter. Synaptic development
dependent on averaged correlation between neurons can thus obtain approximate
information about the global dynamical state of the network as is realized in the
above toy model with a simple implementation on the basis of a threshold α. The
exact choice of the threshold α is not critical, which can be seen from the histogram
of the absolute correlation shown in Fig. 5.19 for a typical run of the model. Cor-
relations appear to cluster near high and near low values such that the cutoff can
be placed anywhere in between the two regimes. Even a threshold value close to 1,
as compared with the correlation cutoff α = 0.8 used in the simulations here, only
leads to a minor shift in Kev and does not change the overall behavior.

Up to now we focused on changes of the network structure as a result of the
dynamics on the network. A further aspect is how the structural changes affect the
dynamics on the network itself. Do also dynamical observables of the networks
self-organize as a result of the observed convergence of the network structure? An
interesting quantity in this respect is the average length of periodic attractors.

Indeed, this dynamical observable of the network dynamics converges to a spe-
cific value independent of the initial network, similarly to the convergence of the
structural parameter K̄ considered earlier. From the K̄ dependency of the neural

Fig. 5.19 Histogram of Corr(i, j) for a network evolving in time, with N = 64 and β = 10, taken
over a run of 4 × 105 time steps, according to the model of Bornholdt and Röhl [18]
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pair correlation we have seen above that the rewiring criterion tends to favor connec-
tivities near the critical connectivity of the network. Does also the evolved average
attractor length relate to critical properties of the percolation transition? An approx-
imate measure of this aspect is the finite size scaling of the evolved average period.

For static networks we find that the attractor lengths typically scale exponentially
with N in the overcritical regime, but less than linearly in the ordered regime. For the
evolved connectivity Kev in our model, we observe scaling close to criticality. Large
evolved networks exhibit relatively short attractors, which otherwise for random
networks in the overcritical regime could only be achieved by fine tuning. The self-
organizing model studied here evolves non-chaotic networks without the need for
parameter tuning.

In a continuously running network, robust self-organization of the network
towards the percolation transition between ordered and disordered dynamics is
observed, independent of initial conditions and robust against thermal noise. The
basic model is robust against changes in the details of the algorithm. We conclude
that a weak coupling of the rewiring process to an approximate measurement of an
order parameter of the global dynamics is sufficient for a robust self-organization
towards criticality. In particular, the order parameter has been estimated solely from
information available on the single synapse level via time averaging of correlated
neural activities.

5.4 Summary and Outlook

We reviewed models of topological network self-organization by local dynamical
rules. Two paradigms of local co-evolutionary adaptation were applied to discrete
dynamical networks: The principle of activity-dependent rewiring (active nodes lose
links, frozen nodes aquire new links), and the principle of correlation-dependent
rewiring (nodes with correlated activity connect, decorrelated nodes disconnect).
Both principles lead to robust self-organization of global network topology and –
dynamics, without need for parameter tuning. Adaptive networks are strikingly dif-
ferent from random networks: they evolve inhomogeneous topologies and broad
plateaus of homeostatic regulation, dynamical activity exhibits 1/ f noise and attrac-
tor periods obey a scale-free distribution. The proposed co-evolutionary mechanism
of topological self-organization is robust against noise and does not depend on the
details of dynamical transition rules. Using finite-size scaling, it was shown that
networks converge to a self-organized critical state in the thermodynamic limit.

The proposed mechanisms of coevolutionary adaptation in dynamical networks
are very robust against changes in details of the local rewiring rules – in particular,
they only require a local estimate of some dynamical order parameter in order to
achieve network adaptation to criticality.

A classical route to self-organized criticality is the feedback of an order para-
meter onto local dynamics of a system [85]. The local rewiring rules considered
here extend this idea to using only approximate local estimates of a global order
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parameter. As seen in the examples above, locally measured averages prove to be
sufficient for self-organized criticality. In particular, in the presence of a time-scale
separation between fast dynamics on the networks and slow topology evolution, the
evolutionary steady state naturally provides a quasi-ergodic sampling of the phase
space near the critical state, such that accurate order parameter values are not nec-
essary. In the models considered in this review, an estimate of the order parameter is
achieved by local averaging over the switching activity of single nodes, or over the
dynamical correlation of pairs of nodes.

A number of open questions remains to be addressed in the context of the class of
adaptive networks considered here. The robust network self-organization observed
in the models, approaching criticality in the limit of large N , is far from being under-
stood in detail. With regard to dynamics, evolving networks exhibit pronounced dif-
ferences to random networks with comparable connectivity. In particular, the frozen
component exhibits for finite N a plateau around the evolutionary mean Kevo, with
step-like discontinuities when the average wiring density substantially departs from
Kevo (Fig. 5.10); for comparison, the corresponding curves for random networks
show a smooth decay. This may suggest that the self-organized critical state rather
exhibits characteristics of a first order phase transition, while order parameters in
random discrete dynamical networks typically exhibit second order transitions at
Kc. With regard to topology, deviations from random networks become particularly
pronounced when dynamical units are allowed to diversify with respect to their
switching behavior during evolution, leading to symmetry breaking and emergence
of scale-free in-degree distributions; again, these observations are hard to explain
in the context of the traditional statistical mechanics approach based on random
ensembles of networks.

In the studies reviewed in this chapter, evolving networks were treated as com-
pletely autonomous systems, without coupling to an external environment. An
important step in future research will be to introduce network-environment inter-
action and study network evolution under the influence of external signals or per-
turbations; this also connects to the particularities of information processing in
self-organized critical networks, and the idea of optimal adaptation at the “edge
of chaos” [15].

Finally, let us widen the scope of these models beyond their theoretical value,
and discuss possible applications.

On the one hand, they represent prototypical models of self-organized critical
dynamical networks, toy models that demonstrate possible mechanisms for dynam-
ical networks to adapt to criticality. On the other hand, these mechanisms are not
limited to the extremely simple toy models discussed here, and may themselves
occur in natural systems. They do not depend on fine-tuning of parameters or details
of the implementation, and they are robust against noise. This is contrary to stan-
dard mechanisms of self-organized criticality [7, 8] which are sensitive to noise
[80] and, therefore, not easily applied to natural systems. Network self-organization
as reviewed above, however, is itself defined on the basis of stochastic dynamical
operations (update of randomly selected links, noisy local measurement of order
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parameter, for example). We therefore expect that these mechanisms can occur in
natural systems quite easily.

A strong need for adaptive mechanisms is present in nervous systems, where
assemblies of neurons need to self-adjust their activity levels, as well as their con-
nectivity structure [13, 36, 86, 89]. The mechanism discussed here is one possible
route to adaptivity in natural neural networks. It can serve as the basis for more
biologically detailed models [14, 15, 51].

Further applications of the network adaptation models are conceivable, e.g. to
socio-economic systems. Network adaptation could in principle occur in adapting
social links or economic ties of humans acting as agents in complex social or eco-
nomic systems.
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Chapter 6
Self-Organization and Complex Networks

Guido Caldarelli and Diego Garlaschelli

Abstract In this chapter we discuss how the results developed within the the-
ory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited
as ingredients of adaptive network models. In order to maintain the presentation
self-contained, we first review the basic ideas behind fractal theory and SOC. We
then briefly review some results in the field of complex networks, and some of the
models that have been proposed. Finally, we present a self-organized model recently
proposed by Garlaschelli et al. (Nat. Phys. 3: 813, 2007) that couples the fitness
network model defined by Caldarelli et al. (Phys. Rev. Lett. 89: 258702, 2002) with
the evolution model proposed by Bak and Sneppen (Phys. Rev. Lett. 71: 4083, 1993)
as a prototype of SOC. Remarkably, we show that the results obtained for the two
models separately change dramatically when they are coupled together. This indi-
cates that self-organized networks may represent an entirely novel class of complex
systems, whose properties cannot be straightforwardly understood in terms of what
we have learnt so far.

6.1 Introduction

Several important results on both the empirical characterization and the theoretical
modelling of complex networks have been achieved in the last decade [1–5]. Among
the factors that have rendered this fast progress possible, one should surely acknowl-
edge the unprecedented possibility to digitally store, and computationally analyse,
huge datasets documenting the large-scale organization of biological, technological,
and socio-economic systems. This has determined an empirically well-grounded
problem of information extraction from a new form of data, where many units (ver-
tices) are mutually interconnected by links (or edges), requiring novel paradigms for
the identification of relevant patterns, and possibly regularities. A second reason is
surely the scientific awareness, steadily grown during at least the last three decades,
of the ubiquitous presence in nature of collective and emergent phenomena resulting
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from the interaction of many units within a complex system. In particular, the devel-
opments achieved within the broad fields of statistical physics, nonlinear dynamics,
critical phenomena, fractal geometry, spin glasses, and many-body theory have con-
tributed to the formation of a modern and interdisciplinary perspective, whose major
focus is the (often unexpected) role of the interactions between constituents, rather
than the individual details of the latter. Within this research field, whose boundaries
are rather blurred, a diverse set of tools to handle the complexity of heterogeneous
systems was developed. When the empirically-driven pressure towards the under-
standing of networks built up, the scientific community was faced with the possi-
bility, and the challenge, to apply these tools to a genuinely new problem. As a
result, some universal features across different real-world networks were identified,
and theoretical models were proposed to reproduce and interpret them. At the same
time, the scientific horizon extended even further, since a complete framework was
not there to tackle the problem yet. Indeed, a satisfactory and unified approach to
complex networks is still lacking, and this exciting field continues to attract the
interest of a large community of scientists extending across different disciplines.

Broadly speaking, the main lines of research on networks that have been traced in
the last decade are: (i) the definition and the empirical analysis of the static topolog-
ical properties of networks; (ii) the modelling of (either static or growing) network
formation; (iii) the effects that the topology has on various dynamical processes
taking place on networks. Some useful references [1–5] present reviews of these
results. More recently, a few attempts to provide a unified approach to the problem
have been proposed, exploiting the idea that these aspects of networks should in the
end be related to each other. In particular, it has been argued that the complexity of
real-world networks is in the most general case the result of the interplay between
topology and dynamics. While most studies have focused either on the effects that
topological properties have on dynamical processes, or on the reverse effects that
vertex-specific dynamical variables have on network structure, it has been suggested
that one should consider the mutual influence that these processes have on each
other. This amounts to relax the (often implicit) hypothesis that dynamical processes
and network growth take place at well separated timescales, and that one is therefore
allowed to consider the evolution of the fast variables while the slower ones are
quenched. Remarkably, one finds that the feedback between topology and dynamics
can drive the system to a steady state that differs from the one obtained when the
two processes are considered separately [6]. These results imply that adaptive net-
works generated by this interplay may represent an entirely novel class of complex
systems, whose properties cannot be straightforwardly understood in terms of what
we have learnt so far.

In what follows we shall review our contribution to this line of research. In
particular, we shall present a self-organized model [6] where an otherwise static
model of network formation driven by vertex fitness [7] is explicitly coupled
to an extremal dynamics process [8] providing an evolution rule for the fitness
itself. In order to highlight the novel phenomena that originate from the interplay
between the two mechanisms, we first review the main properties of the latter
when considered separately. In Sect. 6.2 we recall some aspects of scale invariance
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and Self-Organized Criticality (SOC), and in particular the biologically-inspired
Bak-Sneppen model [8] where the extremal dynamics for the fitness was originally
defined on static graphs. In Sect. 6.3 we briefly review complex networks and in
particular the so-called fitness model of network formation [7], where the idea that
network properties may depend on some fitness parameter associated to each vertex
was proposed. Finally, in Sect. 6.4 we present the self-organized model obtained
by coupling these mechanisms. The order of the presentation is also meant to high-
light the fruitful synthesis that, as we have already mentioned, has originated by the
application of ideas inherited by the previous understanding of complex systems to
networks.

6.2 Scale Invariance and Self-Organization

Self-similarity, or fractality, is the property of an object whose subparts have the
same shape of the whole. At first, self-similarity appeared as a peculiar property
of a limited class of objects. Only later, due to the activity of Benoit Mandelbrot
[9, 10], it turned out that examples of fractal structures (even if approximate due to
natural cutoffs) are actually ubiquitous in nature. Indeed, in an incredible number of
situations the objects of interest can be represented by self-similar structures over a
large, even if finite, range of scales. Examples include commodity price fluctuations
[9], the shape of coastlines [10], the discharge of electric fields [11], the branching
of rivers [12], deposition processes [13], the growth of cities [14], fractures [15],
and a variety of biological structures [16].

6.2.1 Geometric Fractals

Due to this ubiquity, scientists have tried to understand the possible origins of fractal
behaviour. The first preliminary studies have focussed on mathematical functions
built by recursion (Koch’s snowflake, Sierpiński triangle and carpet, etc.). Based
on these examples, where self-similar geometric objects are constructed iteratively,
mathematicians introduced quantities in order to distinguish rigorously between
fractals and ordinary compact objects.

For instance, one of the simplest fractals defined by recursion is the Sierpinski
triangle, named after the Polish mathematician Waclaw Sierpiński who introduced
it in 1915 [17]. When the procedure shown in Fig. 6.1 is iterated an infinite number
of times, one obtains an object whose empty regions extend at any scale (up to the
maximum area delimited by the whole triangle). It is therefore difficult to measure

Fig. 6.1 First steps in the
iteration procedure defining
the Sierpinski triangle
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its area in the usual way, i.e. by comparison with another area chosen as the unit
of measure. A way to solve this problem is to consider a limit process not only
for the generation of the fractal, but also for the measurement of its area. Note that
at the first iteration we only need three triangles of side length 1/2 to cover the
object (while for the whole triangle we would need four of them). At the second
iteration we need nine covering triangles of side 1/4 (while for the whole triangle
we would need sixteen of them). In general, for a compact triangle the number of
triangles needed grows quadratically as we reduce the size of the covering triangles.
The (scale-dependent) number of objects required to cover a fractal is at the basis
of the definition of the fractal dimension D. Formally, if N (ε) is the number of
DE -dimensional volumes of linear size ε required to cover an object embedded in a
metric space of Euclidean dimension DE , then the fractal dimension is defined as

D = lim
ε→0

ln N (ε)

ln 1/ε
, (6.1)

which approaches an asymptotic value giving a measure of the region occupied by
the fractal.

For a compact object the fractal dimension gives the same value as the Euclidean
dimension DE . Indeed, for the above compact triangle D = DE = 2. To see this,
note that at the first iteration the number of necessary triangles is 4 and 1/ε is 2,
therefore D = ln 4

ln 2 = 2. At the next iteration 1/ε is 4 and the number of covering
triangles is 16 so that again D = ln 16

ln 4 = 2. Clearly, the same value of D is found
at all subsequent iterations, and therefore also in the limit ε → 0. By contrast, for
the Sierpiński triangle it is easy to realise that at the k-th iteration the linear size of
each covering triangle is ε = 2−k and that N = 3k such triangles are needed. This
implies

D = lim
ε→0

ln N (ε)

ln 1/ε
= ln 3

ln 2
	 1.58496... (6.2)

Now we find that D < DE = 2. Therefore the fractal dimension measures the
difference between the compactness of a fractal and that of a regular object embed-
ded in a space of equal dimensionality. In the present example, D is lower than 2
because the Sierpinski triangle is less dense than a compact bidimensional triangle.
D is also larger than 1 because it is denser than a one-dimensional object (a line).
Note that the above formula can be rewritten in the familiar form of a power law by
writing, for small ε,

N (ε) ∝ ε−D (6.3)

This highlights the correspondence between the geometry of a fractal and scale-
invariant laws.
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6.2.2 Self-Organized Criticality

Despite their importance in characterizing the geometry of fractals, purely mathe-
matical algorithms are not helpful in order to understand whether a few common
mechanisms might be responsible for the fractal behaviour observed in so many
different, and seemingly unrelated, real-world situations. This has shifted the inter-
est towards dynamical models. Indeed, open dissipative systems are in many cases
associated with fractals for more than one reason. Firstly, attractors in the phase
space of a nonlinear dynamical system can have a fractal geometry; secondly, their
evolution can proceed by means of scale-invariant bursts of intermittent activity [18]
extending over both time and space. In general, these features are obtained when a
driving parameter of the nonlinear dynamical system is set to a crossover value at
which chaotic behaviour sets on. When this occurs, the nonlinear system is said
to be at the “edge of chaos”. Another situation where self-similarity is observed
is at the critical point of phase transitions. For instance, magnetic systems display
a sharp transition from a high-temperature disordered phase, where microscopic
spins point in random directions and generate no macroscopic magnetization, to a
low-temperature ordered phase where almost all spins point in the same direction,
determining a nonzero overall magnetization. Exactly at the critical transition tem-
perature, spins are spatially arranged in aligned domains whose size is power-law
distributed. This means that domains of all sizes are present, with a scale-invariant
pattern.

In both cases, in order to explain the ubiquity of self-similar systems one should
understand why they appear to behave as if their control parameter(s) were sys-
tematically fine-tuned to the critical value(s). This point led to the idea that feed-
back effects might exist, that drive the control parameter to the critical value as a
spontaneous outcome of the dynamics. In this scenario, it is the system itself that
evolves autonomously towards the critical state, with no need for an external fine-
tuning. This paradigm is termed Self-Organized Criticality (SOC) (for a review see
[19] and references therein). At a phenomenological level, SOC aims at explaining
the tendency of open dissipative system to rearrange themselves in such a way to
develop long-range temporal and spatial correlations. Why this happens is still a
matter of debate, even if some authors claimed that this behaviour may be based on
the minimization of some energy potential [20–22].1 Also, it has been proposed that
a temperature-like parameter can actually be introduced for these systems [24, 25],
and shown to lead to SOC only if fine-tuned to zero. This supports the hypothesis
that SOC models are closely related to ordinary critical systems, where parameters
have to be tuned to their critical value, the fundamental difference being the feasi-
bility of this tuning.

There are several examples of simplified models showing SOC, and most of them
have a common structure. In practice, two classes of SOC models attracted many

1 Interestingly a similar claim has been made for networks as well [23].
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studies: the class of sandpile models [26] and the class of models based on extremal
dynamics such as the Bak-Sneppen [8] and Invasion Percolation [27] models. In
what follows we briefly review these examples.

6.2.2.1 Sandpiles

One prototype is represented by sandpile models [26], a class of open dissipative
systems defined over a finite box Λ in a d-dimensional hypercubic lattice. In d = 2
dimensions, one considers a simple square lattice. Any site i of the lattice is assumed
to store an integer amount zi of sand grains, corresponding to the height reached by
the sandpile at that site. At every time step one grain of sand is added on a randomly
chosen site i , so that the height zi is increased by one. As long as zi remains below
a fixed threshold, nothing happens.2 But as soon as zi exceeds the threshold, the
column of sand becomes unstable and “topples” on its nearest neighbours. Therefore
the heights evolve according to

zi → zi − Δki (6.4)

where

Δki =
⎧
⎨

⎩

2d k = i
−1 k nearest neighbor of i

0 otherwise.
(6.5)

This process is called toppling. As the neighbouring sites acquire new grains,
they may topple in their turn, and this effect can propagate throughout the system
until no updated site is active, in which case the procedures starts again with the
addition of a new grain. While the amount of sand remains constant when toppling
occurs in the bulk, for topplings on the boundary sites (i ∈ ∂Λ) some amount of
sand falls outside and disappears from the system. In the steady state of the process,
this loss balances the continuous random addition of sand.

All the toppling events occurring between two consecutive sand additions are
said to form an avalanche. One can define both a size and a characteristic time for
an avalanche. The size of an avalanche can be defined, for instance, as the total
number of toppling sites (one site can topple more than once) or the total number
of topplings (it is clear that these two definitions give more and more similar results
as the space dimension increases). In order to define the lifetime of an avalanche,
one must first define the unit timestep. The latter is the duration of the fundamental
event defined by these two processes:

• a set of sites becomes critical due to the previous toppling event;
• all such critical sites undergo a toppling process, and the heights of their neigh-

bours are updated.

2 Different functions of the height zi can be defined: for example the height itself, the difference
of height between nearest neighbours (first discrete derivative of the height), the discrete Laplacian
operator of height (second discrete derivative), and so on.
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Then the lifetime of an avalanche can be defined as the number of unit timesteps
between two sand additions. The fundamental result of the sandpile model is that
at the steady state both the size s and the lifetime t of avalanches are characterized
by power law distributions P(s) ∼ s−χ , Q(t) ∼ t−ξ [26]. Therefore the model
succeeds in reproducing the critical behaviour, often associated to phase transitions,
with a self-organized mechanism requiring no external fine tuning of the control
parameter. Note that the grain addition can be viewed as the action of an exter-
nal field over the system. Similarly, the avalanche processes can be viewed as the
response (relaxation) of the system to this field. The spatial correlations that develop
spontaneously at all scales indicate that the system reacts macroscopically even to a
microscopic external perturbation, a behaviour reminiscent of the diverging suscep-
tibility characterizing critical phenomena.

6.2.2.2 The Bak-Sneppen Model

A model that attempts to explain some key properties of biological evolution, even
if with strong simplifications, is the Bak-Sneppen (BS) model [8, 28]. It is defined
by the following steps:

• N species are arranged on the sites of a 1-dimensional lattice (a chain, or a ring
if periodic boundary conditions are enforced);

• a fitness value xi (sometimes interpreted as a fitness barrier) is assigned to each
species i , drawn randomly from a uniform distribution in the interval [0, 1];

• the site with the lowest barrier and its nearest neighbours are updated: new ran-
dom fitness values, drawn from the same uniform distribution on the unit interval,
are assigned them.

The basic idea behind the model is that the species with the lowest fitness is the
one that is most likely to go extinct and replaced by a new one. Alternatively, the
update is interpreted as a mutation of the least fit species towards an evolved species
representing its descendant or offspring. Finally, one can interpret xi as the barrier
against mutation for the genotype of species i : the higher the barrier, the longer
the time between two modifications of the genetic code. The species with lowest
barrier is therefore the first to evolve. In any case, the reason for updating the nearest
neighbours is the same: the mutation of one species changes the state of all the
interacting species (for instance, both predator and prey along the food chain). The
effect of this change on the fitness of the nearest neighbours is not known a priori
(it may be beneficial or not), and is modelled as a random update of their fitness as
well.

If the procedure described above is iterated, the system self-organizes to a critical
stationary state in which almost all the barriers are uniformly distributed over a
certain threshold value τ = 0.66702 ± 0.00008 [29] (see Fig. 6.2, left panel). In
other words, the fitness distribution evolves from a uniform one in the interval [0, 1]
to a uniform one in the interval [τ, 1]. In this model an (evolutionary) x-avalanche is
defined as a causally connected sequence of mutations of barriers, all below a fixed
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Fig. 6.2 Left: plot of the probability distribution of fitness values at the steady state in the Bak-
Sneppen model with 500 species. Right: the probability distribution P(s) for the size of a critical
τ -avalanche

value x . In this way the size of an x-avalanche is uniquely defined as the number of
mutations between two consecutive configurations where all barriers are above x .
For x ≈ τ the avalanche distribution is a power law P(s) ∝ s−χ with an exponent
χ = 1.073 ± 0.003 [29] (see Fig. 6.2, right panel).

The Bak-Sneppen model is a prototype mechanism generating fractal phenomena
as an effect of extremal dynamics [30]. It also provides a possible explanation for the
phenomena of mass extinctions observed in the fossil records [31], some analyses
of which have indicated that extinction sizes are power-law distributed. Rather than
considering large-scale extinctions as triggered by external catastrophic events (such
as meteorites or major environmental changes) and small-scale extinctions as caused
by evolutionary factors, the model shows that a power-law distribution of extinction
events may be interpreted as the outcome of a single internal macroevolutionary
process acting at all scales.

The Bak-Sneppen model has been studied within a variety of different frame-
works ranging from numerical simulation [29, 32], theoretical analysis [33], renor-
malization group techniques [34, 35], field theory [36], mean-field approximations
[28, 30] and probabilistic approaches (run time statistics) [37, 38]. It has also been
defined on higher-dimensional lattices and more general graphs, including complex
networks [8, 28, 38–43], which are the subject of the next section. For a recent
review on this model see [44] and references therein. Being so well studied, the
Bak-Sneppen model is ideal for studying the effects introduced by a feedback
mechanism between fitness dynamics and topological restructuring. For this rea-
son, it is at the basis of the adaptive model [6] that we shall present in detail in
Section 6.4.
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6.3 Complex Networks

Networks are encountered anywhere in nature [1–5]. For example, in biology they
describe protein interactions, metabolic reactions, and gene expressions [45–47].
In the different context of ecology, food webs [48, 49] report predator-prey or
host-parasite interactions, and taxonomic trees are used to classify different species
[50–52]. Socio-economic systems display a strongly networked structure as well, for
instance when considering the relationships between firms [53] or trading countries
[54]. Technology produces network structures as well, the most striking evidences
of which being the Internet and the WWW [55–57]. During the last decade, it has
been found that the overwhelming majority of real-world networks is characterized
by nontrivial features, leading to the term “complex networks”. As for the notion of
“complex systems”, a rigorous and/or widely accepted definition of network com-
plexity does not exist. Nonetheless, what is generally meant is that many topological
properties of real networks are not easily reproduced by simple graph models. Quite
surprisingly, these properties are often shared by networks of very different nature,
suggesting common organizing mechanisms.

6.3.1 Network Properties

One of the widespread features observed in real networks is a scale-free distribution
P(k) ∝ k−γ for the degree k, representing the number of links emanating from a
vertex. More formally, for an undirected network with N vertices, the degree of each
vertex i can be expressed as

ki ≡
∑

j

ai j (6.6)

where ai j = 1 if a link between i and j is there, and ai j = 0 otherwise. The
empirical finding that ki is power-law distributed indicates that even if the major-
ity of vertices has a small number of neighbours, some of them (the “hubs”) are
connected to many vertices.

Another nontrivial property is the (anti)correlation between degrees of neigh-
bouring vertices: vertices with a large value of the degree tend either to “attract”
or to “repel” vertices with similar degree, a property known as assortativity or dis-
assortativity respectively [1, 4]. This can be quantified by measuring the average
degree of the nearest neighbours of a vertex i , defined as

knn
i ≡

∑
j ai j k j

ki
=

∑
jk ai j a jk∑

j ai j
(6.7)

and plotting it versus ki . Assortative mixing corresponds to an increasing trend,
while disassortative mixing corresponds to a decreasing trend of the resulting curve.
In absence of correlations, a flat behaviour would be observed.
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Another observed tendency is the presence of many more triangles (fully con-
nected triples of vertices) than expected by chance, a feature denoted clustering
[1, 4]. For each vertex i , the clustering coefficient ci is defined as the fraction of
links existing among its neighbours:

ci ≡
∑

jk ai j a jkaki

ki (ki − 1)/2
=

∑
jk ai j a jkaki∑

jk ai j aki
(6.8)

When plotted against ki , for most real networks ci displays a decreasing trend, indi-
cating the presence of hierarchy. Unstructured networks would instead display a
flat behaviour. An average of ci over all vertices measures the overall probability
that two vertices, both joined to a third one, are also connected to each other. This
average clustering is found to be much larger than expected by chance.

High clustering is often combined with a small value of the average distance
between pairs of vertices, and the term small world effect is used to describe
this combination [5]. Another property of interest is the existence in large net-
works of (sometimes overlapping) communities, modules, and “rich clubs” [1, 2].
Besides their structural importance, these topological properties have a deep effect
on the dynamical processes that take place on networks. Examples of processes
whose dependence on the underlying network structure has been studied in detail
include the spreading of epidemics [58], percolation [4], critical phenomena [59],
the exchange of wealth [60, 61], and the sandpile [62] and Bak-Sneppen models
themselves [8, 28, 38–43].

6.3.2 Network Models

All these interesting properties are detected by comparing the topology, or the
dynamical performance, of a network with a null model providing a randomized
version of it. Graph models are therefore important benchmarks for understand-
ing complex networks. Moreover, they are also used to test candidate mechanisms
believed to be responsible for the onset of a particular topological feature, thus
providing an insight into realistic network formation processes. The vast majority
of theoretical models can be grouped in two broad classes. On one hand, one has
static models with a fixed number of links and specified connection probabilities
between them. This generates an ensemble of networks whose expected topological
properties can be obtained analytically. The prototype of all static models is the
random graph, that we shall briefly review in Sect. 6.3.2.1. On the other hand, one
has evolving models with a variable number of vertices and links, that grow under
specified stochastic rules. The earliest example of these models is the one proposed
by Barabási and Albert [63], and we shall present it in Sect. 6.3.2.2. Most models
proposed in the last decade are (often nontrivial) modifications of these two simple
ones. For instance, in Sect. 6.3.2.3 we briefly review the fitness model, where the
idea that the connection probability depends on some vertex-specific fitness has
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been introduced. As we have anticipated in the Introduction, besides these two well
established frameworks a third, more recent approach focuses on networks shaped
by the interplay between dynamical processes defined on them and the readjustment
of topology. Our main focus is exactly an example of such adaptive models, which
shall be presented in detail separately in Sect. 6.4.

6.3.2.1 The Random Graph Model

For an undirected network with N vertices, the maximum possible number of edges
(excluding self-loops) one can draw is given by Lmax = N (N − 1)/2. If all these
edges are present, the graph is said to be “complete”. At the opposite limit, if no edge
is present, the graph is said to be “empty”. In between these two extremes, one can
form instances of more or less dense networks by drawing each of the possible edges
independently with a probability p. This defines the random graph model [5], whose
only parameter (besides N ) is p. The case p = 0 recovers the empty graph, while
the case p = 1 yields the complete one. The expected number (average 〈· · · 〉 over
the ensemble of possible realisations) of edges in a random graph with probability
p is given by

〈L〉 = p
N (N − 1)

2
(6.9)

and the expected degree, which is the same for all vertices, is

〈k〉 = p(N − 1) ≈ pN . (6.10)

For N large the correlations between the various degrees can be neglected (degrees
are not independent in a finite graph), and the degree distribution P(k) can be
approximated by the probability that a single vertex has degree k. To obtain a vertex
with degree k, we must have k times a successful event whose probability is p, and
(N −1− k) times an unsuccessful event whose probability is (1− p). Since this can
happen in

(
N − 1

k

)
= (N − 1)!

(N − 1 − k)!k!
(6.11)

combinations, we have

P(k) =
(

N − 1
k

)
pk(1 − p)N−1−k (6.12)

The distribution is automatically normalized since

N−1∑

k=0

P(k) = [p + (1 − p)]N−1 = 1. (6.13)
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The above binomial distribution is well approximated by a Poisson distribution in
the limit N → ∞ and p → 0 (with N p kept constant):

P(k) ≈ (N p)ke−pN

k!
= 〈k〉ke−〈k〉

k!
. (6.14)

where we have used Eq. (6.10). Thus the degree distribution of the random graph
decays exponentially, and is well concentrated about the average value 〈k〉. This is
in stark contrast with the scale-free behaviour of most real networks, characterized
by the power-law tail of P(k).

The expected value of the average nearest neighbours degree defined in Eq. (6.7)
is the same for all vertices as well, and equals the average degree:

〈knn〉 = p2(N − 1)2

p(N − 1)
= p(N − 1) (6.15)

This means that, as expected, in the random graph no (dis)assortative mixing is
present, and the degrees of neighbouring vertices are uncorrelated.

Similarly, for the expected value of the clustering coefficient defined in Eq. (6.8)
one finds

〈c〉 = p3(N − 1)(N − 2)

p2(N − 1)(N − 2)
= p (6.16)

so that no hierarchical structure is present. Moreover, if the value of p is chosen
in such a way that the expected number of links in Eq. (6.9) matches the empiri-
cally observed one, then the resulting value of 〈c〉 is much smaller that the observed
average clustering coefficient.

One can also derive an upper bound for the average distance, by considering the
diameter D (defined as the maximum distance between pairs of vertices). Exploring
the graph as in a breadth first search algorithm, one finds that if the number of first
neighbours of a vertex is 〈k〉, and if the network is connected, then the number of
vertices visited after d steps must be approximately 〈k〉d . The total number N of
vertices is reached in at most D steps, so that

N � 〈k〉D ⇒ D � ln N

ln〈k〉 . (6.17)

Therefore the average distance scales at most logarithmically with N , a feature
which is consistent with the small values observed.

In summary, for random graphs

• no scale-free degree distribution is present;
• degrees of neighbouring vertices are uncorrelated;
• the clustering is too weak and not hierarchical;
• no small world effect is present, even if the average distance is small.
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6.3.2.2 The Barabási-Albert Model

The Barabási-Albert model [63] is the prototype of evolving network models, where
it is assumed that the system grows at any time step. Both the number of vertices
and the number of edges increase with time, since new vertices enter the network
and are assumed to connect to the pre-existing ones with a probability proportional
to the degree of the latter (rich-get-richer mechanisms). This implies that new-
comers establish their connections preferentially with vertices that already have a
large degree. It is then clear that the two novel ingredients in this model of network
formation are growth and preferential attachment. The main success of the model
is that these two simple rules produce naturally scale-free networks with degree
distribution P(k) ∝ k−γ (where γ = 3).

In order to derive this result, we rephrase the model quantitatively. The initial
(t = 0) state consists of N0 vertices and no link. At each timestep t a new vertex
attached to m0 new edges enters the system. The loose ends of these m0 edges
connect to m0 pre-existing vertices, chosen with a probability Π(ki , t) proportional
to their degree at time t :

Π(ki , t) = ki (t)∑
j k j (t)

(6.18)

This directly implies that the numbers of vertices and edges at time t are given by

N (t) = N0 + t

m(t) = 1

2

∑

j

ki (t) = m0t. (6.19)

Using a continuous-time approximation, one can write the time evolution of the
degree ki by noting that its rate of increase is

∂ki

∂t
= m0Π(ki , t) = m0

ki (t)∑
j k j (t)

= m0ki (t)

2m0t
= ki (t)

2t
(6.20)

The above differential equation can be solved using the initial condition k(ti ) = m0,
where ti is the time when vertex i entered the network. The solution is

ki (t) = m0

(
t

ti

)1/2

(6.21)

showing that the degree grows with the square root of time. This relation allows us
to compute the exponent of the degree distribution. The probability P(ki < k) that

a vertex has a degree smaller than k is P(ki < k) = P
(

ti >
m2

0t
k2

)
. Since vertices

enter at a constant rate, the distribution of their injection times is uniform between
the initial time ti = 0 and the current time ti = t . In this interval, P(ti ) = 1/N (t) =
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1/(N0 + t). This implies

P

(
ti >

m2
0t

k2

)
= 1 − P

(
ti ≤ m2

0t

k2

)
= 1 − m2

0t

k2

1

(N0 + t)
(6.22)

from which we have

P(k) = ∂ P(ki < k)

∂k
= 2m2

0t

(N0 + t)

1

k3
∝ k−3 (6.23)

Therefore, we find that the degree distribution is a power law with a value of the
exponent γ = 3.

This derivation highlights the difficulty, as compared with static models, of deriv-
ing exact results for growing networks, which are therefore often explored by means
of numerical simulations. Despite this difficulty, a series of results have been derived
for the model. We only list some of them by reporting that networks generated by
the Barabási-Albert model

• have power-law distributed degrees (as shown above);
• have no correlations between degrees of neighbouring vertices [4];
• show a clustering larger than the random graph case [64, 65];
• display the small-world effect [66].

6.3.2.3 The Fitness Model

A completely different approach to obtain self-similar networks is to extend in a
suitable way the random graph model defined in Sect. 6.3.2.1. In the latter, all ver-
tices are assumed to be statistically equivalent, so unsurprisingly no heterogeneity
emerges. By contrast, one can define a static model where heterogeneity is explicitly
introduced at the level of vertices. In particular, Caldarelli et al. [7] have proposed
a model where each vertex i (i = 1, . . . , N ) is assigned a fitness xi drawn from a
specified distribution ρ(x). Then, each pair of vertices i and j is sampled, and a link
is drawn between them with a fitness-dependent probability pi j = f (xi , x j ). The
expected topological properties of the network can be easily computed in terms of
ρ(x) and f (x, y) [7, 67, 68]. For instance, the expected degree of vertex i is

〈ki 〉 =
∑

j

pi j =
∑

j

f (xi , x j ) (6.24)

For N large, the discrete sum can be approximated by an integral. Thus the expected
degree of a vertex with fitness x is

k(x) = N
∫

f (x, y)ρ(y)dy (6.25)
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where the integration extends over the support of ρ(x). If one consider the cumula-
tive fitness distribution and the cumulative degree distribution defined as

ρ>(x) ≡
∫ +∞

x
ρ(x ′)dx ′ P>(k) ≡

∫ +∞

k
P(k ′)dk ′ (6.26)

then the latter can be easily obtained in terms of the former as

P>(k) = ρ>[x(k)] (6.27)

where x(k) is the inverse of the function k(x) defined in Eq. (6.25).

Similarly, the expected value of the average nearest neighbours degree defined in
Eq. (6.7) is

〈knn
i 〉 =

∑
j pi j 〈k j 〉
〈ki 〉 =

∑
jk pi j p jk∑

j pi j
(6.28)

and the expected value of the clustering coefficient defined in Eq. (6.8) is

〈ci 〉 =
∑

jk pi j p jk pki

〈ki 〉(〈ki 〉 − 1)/2
=

∑
jk pi j p jk pki∑

jk pi j pki
(6.29)

As for Eq. (6.24), the above expressions can be easily rephrased in terms of integrals
involving only the functions f (x, y) and ρ(x), upon which all the results depend.

The constant choice f (x, y) = p is the trivial case corresponding to a random
graph, irrespectively of the form of ρ(x). The simplest nontrivial choice can be
obtained requiring that the fitness-dependent network has no degree correlations
other that those introduced by the local properties alone. It can be shown that this
requirement leads to the form [69, 70]

f (x, y) = zxy

1 + zxy
(6.30)

where z is a positive parameter controlling the number of links. Apart for the so-
called structural correlations induced by the degree sequence [69, 70], higher-order
properties are completely random, as in the configuration model [4, 71]. When z <<

1, the above connection probability reduces to the bilinear choice

f (x, y) = zxy (6.31)

In this case, a sparse graph is obtained where structural correlations disappear.
Also, from Eq. (6.24) one finds that 〈ki 〉 ∝ xi . If one chooses a power-law fitness
distribution ρ(x) ∝ x−γ , it is therefore clear that the degree distribution will have
exactly the same shape: P(k) ∝ k−γ . In the more general case corresponding to
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Eq. (6.30), the same choice for ρ(x) yields again a power-law degree distribution,
with a cut-off at large degree values that correctly takes into account the require-
ment k ≤ N for dense networks. Equation (6.30) also generates disassortativity and
hierarchically distributed clustering, both arising as structural correlations imposed
by the local constraints. For sparse networks, corresponding to Eq. (6.31), these
correlations disappear.

Another interesting choice is given by

f (x, y) = Θ(x + y − z) ρ(x) = e−x (6.32)

where z, which again controls the number of links, now plays the role of a positive
threshold. This choice yields again a power-law degree distribution P(k) ∝ k−γ

(where now γ = 2), anticorrelated degrees with knn(k) ∝ k−1, and hierarchi-
cally distributed clustering c(k) ∝ k−2 (times logarithmic corrections) [7, 67, 68].
Remarkably, it has been shown that both Eqs. (6.30) and (6.32) are particular cases
of a more general expression obtained by introducing a temperature-like parame-
ter [72]. Equation (6.30), with ρ(x) ∝ x−γ , corresponds to the finite-temperature
regime, where the temperature can be reabsorbed in a redefinition of x and z. By
contrast, Eq. (6.32) corresponds to the zero-temperature regime where the graph
reaches a sort of “optimized” topology [72]. In all these cases, the average distance
is small. In summary, for a series of reasonable choices the networks generated by
the fitness model display

• a scale-invariant degree distribution;
• correlations between neighbouring degrees;
• hierarchically distributed clustering;
• a small-world effect.

6.4 A Self-Organized Network Model

As we have anticipated in the Introduction and in Sect. 6.3.2, more recent approaches
to the modelling of complex networks have considered the idea that the topol-
ogy evolves under a feedback with some dynamical process taking place on the
network itself (see for instance [6, 48, 73–80]). Among the various contributions,
some groups have considered a possible connection with Self-Organized Critical-
ity [6, 74–77]. A first such set of results is reviewed in the chapter by Rohlf and
Bornholdt in this issue [74]. Another review of the results obtained for a model
inspired by solar processes can be found in [75]. In what follows, we review a
different set of models inspired by the sandpile and Bak-Sneppen dynamical rules
recalled in Sects. 6.2.2.1 and 6.2.2.2.

Bianconi and Marsili [76] have defined a model where slow network growth,
defined as the gradual addition of links between randomly chosen vertices, is com-
bined to fast relaxation, defined as the random rewiring of links connected to con-
gested (toppling) vertices. To avoid the collapse to a complete graph, dissipation is
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also introduced, allowing toppling nodes to lose all their links at a given rate. The
outcomes of the model depend on the dissipation rate and on the probability density
function for the toppling probabilities to be assigned at each vertex. A particular
choice of these quantities drives the system to a stationary state characterized by a
scale-free topology and a power-law distribution for toppling avalanches.

Fronczak et al. [77] have proposed a model where no parameter choice is required
in order to drive the system to the critical region. They considered the sandpile
dynamics defined in Sect. 6.2.2.1, but where each vertex has a different critical
height equal to its degree, as in other previous studies [62]. In addition, they assumed
that after an avalanche of size A, the A ends of links in the network that have not
been rewired for the longest time are rewired to the initiator of the avalanche. In this
way, the avalanche area distribution and the degree distribution evolve in time, and
at the stationary state become very similar and scale-free.

Garlaschelli et al. [6] have introduced another fully self-organized model where
the Bak-Sneppen dynamics defined in Sect. 6.2.2.2 takes place on a network
whose topology is in turn continuously shaped by the fitness model presented in
Sect. 6.3.2.3. Remarkably, they find that the mutual interplay between topology and
dynamics drives the system to a state characterized by scale-free distributions for
both the degrees and the fitness values. These unexpected properties differ from
what is obtained when the two models are considered separately. The rest of the
chapter is devoted to a detailed description of this model.

6.4.1 Motivation

We have already mentioned that the topology of a network affects dramatically the
outcomes of dynamical processes taking place on it [1, 2, 4, 5]. On the other hand,
the idea behind the fitness model presented in Sect. 6.3.2.3 captures the empirically
observed result [53, 54, 81] that the topology of many real networks is strongly
dependent on some vertex-specific quantity. Clearly, these results imply that in gen-
eral one should consider the mutual effects that dynamics and topology have on each
other. Unfortunately, the overwhelming majority of studies have instead considered
the two processes separately, by postulating either a scenario where the topology
evolves over a much longer timescale than the dynamics, or the opposite situation
where the dynamical variables evolve much more slowly than the topology (and are
therefore assumed fixed as in the fitness model itself). In cases when there is indeed
such a sharp separation of timescales, these approaches are helpful. But in many
cases the topological evolution and the dynamics may occur at comparable rates,
and the decoupled approach gives no insight into the real process. Moreover, even
when the timescales are indeed well separated, it is clear that the variables involved
in the slower of the two processes must be specified as external parameters, and
ad hoc assumptions must therefore be made. For instance, when considering the
spreading of epidemics on a network one should assume an arbitrary fixed topol-
ogy. Similarly, when a network is formed according to the fitness model, one should
assume an arbitrary distribution for the fitness variables.
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These motivations lead Garlaschelli et al. [6] to define a self-organized model
where ad hoc specifications of any fixed structure, either in the topology or in the
dynamical variables, are unnecessary. Rather, it is the interplay between dynamics
and topology that autonomously drives the system to a stationary state. The choice of
both the dynamical rule and the graph formation process was driven by the interest
to highlight the novel effects arising uniquely by the feedback introduced between
them. Therefore, two extremely well understood models where chosen. On one
hand, the extremal fitness dynamics of the Bak-Sneppen model (see Sect. 6.2.2.2),
and on the other hand the fitness network model (see Sect. 6.3.2.3). As we have
shown in Sect. 6.3.2.3, the topology generated by the fitness model can be com-
pletely calculated for any distribution of the fitness values. Similarly, the outcomes
of the Bak-Sneppen model on several static networks are well studied [8, 28, 38–43].
On a generic graph, each of the N vertices is assigned a fitness value xi , initially
drawn from a uniform distribution between 0 and 1, as in the one-dimensional case.
At each timestep the species i with lowest fitness and all its ki neighbours undergo a
mutation, and ki + 1 new fitness values (drawn from the same uniform distribution)
are assigned them. On regular lattices [8, 39], random graphs [28], small-world [40]
and scale-free [41–43] networks it has been shown that, as for the one-dimensional
model, at the stationary state the fitness values are uniformly distributed above a
critical threshold τ . The only dependence on the particular topology is the value
of τ [8, 28, 39–43]. In particular, τ vanishes for scale-free degree distributions with
diverging second moment [41–43].

While these more complicated networks are closer to realistic food webs [49],
as long as the graph is static the model leads to the ecological paradox that, after a
mutation, the evolved species inherits the same connections of the previous species.
By contrast, macroevolution is believed to be at the same time the cause and the
effect of food web dynamics [48]. In particular, after a mutation, a species is
expected to develop a new set of interactions with the other species.

6.4.2 Definition

In order to overcome this problem, Garlaschelli et al. assumed that the Bak-Sneppen
dynamics is combined with a fitness-driven link updating. At the initial state the net-
work is generated as in the fitness model, and between all pairs of vertices i and j a
link is drawn with probability f (xi , x j ) (where the xi ’s are the initial fitness values).
Then, whenever a species i is assigned a new fitness x ′

i , all the set of connections
between i and the other vertices j �= i are drawn anew with updated probability
f (x ′

i , x j ). This automatically implies that major mutations (a large change in xi ) are
associated with very different connection probabilities, while little changes lead to
almost equiprobable interactions. An example of this evolution rule is depicted in
Fig. 6.3.

Two possible choices for updating the fitness of a mutating vertex where pro-
posed. In the original paper [6], the usual prescription was adopted: each neighbour



6 Self-Organization and Complex Networks 125

Fig. 6.3 Example of graph evolution in the self-organized model. The minimum-fitness vertex
(black) and its two neighbours (grey) undergo a mutation: three new fitness values are assigned
them (light grey), and new links are drawn between them and all the other vertices

j of the minimum-fitness vertex receives a fitness drawn anew from the uniform
distribution on the unit interval. This means

x j (t + 1) = η (6.33)

where η is uniformly distributed between 0 and 1. Therefore, x j is completely
updated, independently of its degree k j . In another study [82], a weaker rule was
assumed. In particular, the fitness of each neighbour j is assumed to change only by
an amount proportional to 1/k j :

x j (t + 1) = 1

k j
η + k j − 1

k j
x j (t) (6.34)

where again η is a random number uniformly distributed between 0 and 1. Under
this second assumption, x j is completely modified if the only neighbour of j is the
minimum-fitness vertex, in which case k j = 1. If j has k j −1 additional neighbours,
a share (k j − 1)/k j of x j is unchanged, and the remaining fraction x j/k j is updated
to η/k j . This makes hubs affected less than small-degree vertices. Clearly, it also
implies that the probability of connection to all other vertices varies by a smaller
amount. In what follows we shall present both analytical and numerical results
derived under the first choice [6]. Numerical simulations of the model under the
second rule are reported in [82].

6.4.3 Analytical Solution

Remarkably, the model is exactly solvable for any choice of the connection prob-
ability f (x, y) [6]. Indeed, one can write down a master equation for the fitness
distribution ρ(x, t) at time t :

∂ρ(x, t)

∂t
= r in(x, t) − rout (x, t) (6.35)

where r in(x, t) and rout (x, t) are the fractions of vertices with fitness x entering and
exiting the system at time t respectively. If a stationary (time-independent) distribu-
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tion ρ(x) exists, it is found by requiring

∂ρ(x, t)

∂t
= 0 ⇒ r in(x) = rout (x) (6.36)

where at the stationary state the quantities no longer depend on time. If one man-
ages to write down r in(x) and rout (x) in terms of f (x, y) and ρ(x), then the above
condition will give the stationary form of ρ(x) for any choice of f (x, y).

To this end, it is useful to introduce the distribution q(m) of the minimum fitness
m ≡ xmin . For x small enough, ρ(x) must be very close to q(x)/N (the distribution
of all fitness values must be approximated by the correctly renormalized distribution
of the minimum). The range where ρ(x) ≈ q(x)/N holds can be defined more
formally by introducing the fitness value τ such that

lim
N→∞

Nρ(x)

q(x)

{= 1 x ≤ τ

> 1 x > τ
(6.37)

This means that in the large size limit the fitness distribution for x < τ is deter-
mined by the distribution of the minimum. After an expression for ρ(x) is derived,
the value of τ can be determined by the normalization condition

∫ 1

0
ρ(x)dx = 1 (6.38)

as we show below. Note that we are not assuming from the beginning that τ > 0
as is observed for the Bak-Sneppen model on other networks. It may well be that
for a particular choice of f (x, y) Eq. (6.38) yields τ = 0, signalling the absence of
a nonzero threshold. Also, note that limN→∞ q(x) = 0 for x > τ , since Eq. (6.37)
implies that the minimum is surely below τ . Thus the normalization condition for
q(x) reads

∫ τ

0 q(x)dx = 1 as N → ∞.
The knowledge of q(m) allows one to rewrite r in(x) and rout (x) as r in(x) =∫

q(m)r in(x |m)dm and rout (x) = ∫
q(m)rout (x |m)dm, where r in(x |m), rout (x |m)

are conditional probabilities corresponding to the fractions of vertices with fitness x
which are added and removed when the value of the minimum fitness is m. Let us
consider r in(x) first. If the minimum fitness is m, then 1 + k(m) new fitness values
are updated, where k(m) is the expected degree of the minimum-fitness vertex. Since
each of these 1 + k(m) values is uniformly drawn between 0 and 1, one has

r in(x |m) = 1 + k(m)

N
(6.39)

independently of x . This directly implies

r in(x) =
∫ τ

0
q(m)r in(x |m)dm = 1 + 〈kmin〉

N
(6.40)
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where 〈kmin〉 ≡ ∫ τ

0 q(m)k(m)dm is the average degree of the vertex with minimum
fitness, a quantity that can be derived independently of k(m) as we show below.
Now consider rout (x), for which the independence on x does not hold. For x < τ ,
rout (x |m) = 1/N if x = m since the minimum is surely replaced. For x > τ , the
fraction of vertices with fitness x that are removed equals ρ(x) times the probability
that a vertex with fitness x is connected to the vertex with minimum fitness m. This
probability depends on the fitness values x ′ and m ′ that the vertices currently having
fitness x and m had at the most recent update of the link connecting them, and
simply equals f (x ′, m ′) [6]. This means

rout (x |m) = Θ(τ − x)
δ(x − m)

N
+ Θ(x − τ )ρ(x) f (x, m) (6.41)

where Θ(x) = 1 if x > 0 and Θ(x) = 0 otherwise, and δ(x) is the Dirac delta
function. An integration over q(m)dm yields

rout (x) =
∫ τ

0
q(m)r in(x |m)dm

=
{

q(x)/N x < τ

ρ(x)
∫ τ

0 q(m) f (x, m)dm x > τ
(6.42)

Finally, one can impose Eq. (6.36) at the stationary state. If x < τ , this yields
q(x) = 1 + 〈kmin〉 independently of x . Combining this result with q(x) = 0 for
x > τ as N → ∞, one finds that the distribution of the minimum fitness m is
uniform between 0 and τ :

q(m) = (1 + 〈kmin〉)Θ(τ − m) (6.43)

Requiring that q(m) is normalized yields

〈kmin〉 = 1 − τ

τ
(6.44)

Therefore Eq. (6.40) can be written as

r in(x) = 1

τ N
∀x (6.45)

If x > τ , Eq. (6.36) implies
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ρ(x) = rout (x)∫ τ

0 q(m) f (x, m)dm

= r in(x)∫ τ

0 q(m) f (x, m)dm

= 1

τ N
∫ τ

0 q(m) f (x, m)dm

= 1

N
∫ τ

0 f (x, m)dm
(6.46)

which must be equal to ρ(x) = q(x)/N = (τ N )−1 for x < τ . Using this relation,
the exact solution for ρ(x) at the stationary state is found [6]:

ρ(x) =
⎧
⎨

⎩

(τ N )−1 x < τ
1

N
∫ τ

0 f (x, m)dm
x > τ

(6.47)

where τ is determined using Eq. (6.38), that reads

∫ 1

τ

dx∫ τ

0 f (x, m)dm
= N − 1 (6.48)

The above analytical solution holds for any form of f (x, y). As a strikingly novel
result, one finds that ρ(x) is in general no longer uniform for x > τ . This unex-
pected result, which contrasts with the outcomes of the Bak-Sneppen model on any
static network, is solely due to the feedback between topology and dynamics. At
the stationary state the fitness values and the network topology continue to evolve,
but the knowledge of ρ(x) allows to compute the expected topological properties as
shown in Sect. 6.3.2.3 for the static fitness model.

6.4.4 Particular Cases

In what follows we consider specific choices of the connection probability f (x, y).
In particular, we consider two forms already presented in Sect. 6.3.2.3. Once a
choice for f (x, y) is made, one can also confirm the theoretical results with numer-
ical simulations. As we show below, the agreement is excellent.

6.4.4.1 The Random Neighbour Model

As we have noted, the trivial choice for the fitness model is f (x, y) = p, which
is equivalent to the random graph model. When the Bak-Sneppen dynamics takes
place on the network, this choice removes the feedback with the topology, since
the evolution of the fitness does not influences the connection probability. Indeed,
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this choice is asymptotically equivalent to the so-called random neighbour variant
[28] of the Bak-Sneppen model. In this variant each vertex has exactly d neighbours,
which are uniformly chosen anew at each timestep. Here, we know that for a random
graph the degree is well peaked about the average value p(N −1) (see Sect. 6.3.2.1),
thus we expect to recover the same results found for d = p(N − 1) in the random
neighbour model. Indeed, Eq. (6.47) leads to

ρ(x) =
{

(τ N )−1 x < τ

(pτ N )−1 x > τ
(6.49)

and Eq. (6.48) yields

τ = 1

1 + pN
→

⎧
⎨

⎩

1 pN → 0
(1 + d)−1 pN = d
0 pN → ∞

(6.50)

The reason for the onset of these three dynamical regimes must be searched for in
the topological phases of the underlying network. For p large, there is one large con-
nected component that spans almost all vertices. As p decreases, this giant cluster
becomes smaller, and several separate clusters form. Below the critical percolation
threshold pc ≈ 1/N [4, 5], the graph is split into many small clusters. Exactly at the
percolation threshold pc, the sizes of clusters are power-law distributed according
to P(s) ∝ s−α with α = 2.5 [4]. Here we find that the dense regime pN → ∞
is qualitatively similar to a complete graph, where many fitness values are continu-
ously updated and therefore τ → 0 as in the initial state (thus ρ(x) is not step-like).
In the sparse case where pN = d with finite d > 1 as N → ∞, then each vertex
has a finite number of neighbours exactly as in the random neighbour model, and
one correctly recovers the finite value τ = (1 + d)−1 found in [28]. The subcritical
case when p falls faster than 1/N yields a fragmented graph below the percolation
threshold. This is qualitatively similar to a set of N isolated vertices, for which
τ → 1. It is instructive to notice from Eq. (6.47) that the choice f (x, y) = p is the
only one for which ρ(x) is still uniform. This confirms that, as soon as the feedback
is removed, the novel effects disappear.

6.4.4.2 The Self-Organized Configuration Model

Following the considerations in Sect. 6.3.2.3, the simplest nontrivial choice for
f (x, y) is given by Eq. (6.30). For a fixed ρ(x), this choice generates a fitness-
dependent version of the configuration model [4, 71], where all graphs with the same
degree sequence are equiprobable. All higher-order properties besides the structural
correlations induced by the degree sequence are completely random [69, 70]. In this
self-organized case, the degree sequence is not specified a priori and is determined
by the fitness distribution at the stationary state. Inserting Eq. (6.30) into Eq. (6.47)
one finds a solution that for N → ∞ is equivalent to [6]
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ρ(x) =
{

(τ N )−1 x < τ

(τ N )−1 + 2/(zNτ 2x) x > τ
(6.51)

where τ , again obtained using eq.(6.48), is

τ =
√

φ(zN )

zN
→

⎧
⎨

⎩

1 zN → 0√
φ(d)/d zN = d

0 zN → ∞
(6.52)

Here φ(x) denotes the ProductLog function, defined as the solution of φeφ = x .
Again, the above dynamical regimes are related to three (subcritical, sparse and
dense) underlying topological phases. This can be ascertained by monitoring the
cluster size distribution P(s). It is found that P(s) develops a power-law shape
P(s) ∝ s−α (with α = 2.45 ± 0.05) when d ≡ zN is set to the critical value
dc = 1.32 ± 0.05 [6] (see Fig. 6.4), which therefore represents the percolation
threshold. This behaviour can also be explored by measuring the fraction of ver-
tices spanned by the giant cluster as a function of d (see Fig. 6.5). This quantity is
negligible for d < dc, while for d > dc it takes increasing finite values. Also, one
can plot the average size fraction of non-giant components. As shown in the inset of
Fig. 6.5, this quantity diverges at the critical point where P(s) is a power law.

The analytical results in Eq. (6.51) mean that ρ(x) is the superposition of a
uniform distribution and a power-law with exponent −1. The decay of ρ(x) for
x > τ is entirely due to the coupling between extremal dynamics and topological
restructuring. It originates from the fact that at any time the fittest species is also
the most likely to be selected for mutation, since it has the largest probability to
be connected to the least fit species. This is opposite to what happens on fixed net-
works. The theoretical predictions in Eqs. (6.51) and (6.52) can be confirmed by

Fig. 6.4 Cluster size
distribution. Far from the
critical threshold (d = 0.1
and d = 4), P(s) is well
peaked. At dc = 1.32,
P(s) ∝ s−α with
α = 2.45 ± 0.05. Here
N = 3, 200. (After [6])
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Fig. 6.5 Main panel: the
fraction of nodes in the giant
component for different
network sizes as a function of
d. Inset: the non-giant
component average size as a
function of d for N = 6, 400.
(After [6])
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large numerical simulations. This is shown in Fig. 6.6, where the cumulative fitness
distribution ρ>(x) defined in Eq. (6.26) and the behaviour of τ (zN ) are plotted.
Indeed, the simulations are in very good accordance with the analytical solution.
Note that, as we have discussed in Sect. 6.3.2.3, in the sparse regime z � 1 one
has f (x, y) ≈ zxy. Here, this implies a purely power-law behaviour ρ(x) ∝ x−1

for x > τ . Therefore ρ>(x) is a logarithmic curve that looks like a straight line
in log-linear axes. In the dense regime obtained for large z, the uniform part gives
instead a significant deviation from the power-law trend. This shows one effect of
structural correlations.

Other effects are evident when considering the degree distribution P(k). Using
Eq. (6.25) one can obtain the analytic expression of the expected degree k(x) of a
vertex with fitness x :

Fig. 6.6 Main panel:
cumulative density function
ρ>(x) in log-linear axes.
From right to left, z = 0.01,
z = 0.1, z = 1, z = 10,
z = 100, z = 1, 000
(N = 5, 000). Inset: log-log
plot of τ (zN ). Solid lines:
theoretical curves, points:
simulation results. (After [6]) 0.001 0.005 0.01 0.05 0.1 0.5 1
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Fig. 6.7 Left: k(x)
(N = 5, 000; from right to
left, z = 0.01, z = 0.1, z = 1,
z = 10, z = 100, z = 1, 000).
Right: P>(k) (same parameter
values, inverse order from left
to right). Solid lines:
theoretical curves, points:
simulation results. (After [6])

0.001 0.01 0.1 1
x

10

100

1000

10000
k

10 100 1000
k

0.2

0.4

0.6

0.8

1
CDF

k(x) = 2

zτ 2
ln

1 + zx

1 + zτ x
+ zx − ln(1 + zx)

zτ x
(6.53)

Computing the inverse function x(k) and plugging it into Eq. (6.27) allows to obtain
the cumulative degree distribution P>(k). Both quantities are shown in Fig. 6.7, and
again the agreement between theory and simulations is excellent. For small z, k(x) is
linear, while for large z a saturation to the maximum value kmax = k(1) takes place.
As discussed in Sect. 6.3.2.3, this implies that in the sparse regime P(k) has the
same shape as ρ(x). Another difference from static networks is that here τ remains
finite even if P(k) ∝ k−γ with γ < 3 [41–43]. For large z the presence of structural
correlations introduces a sharp cut-off for P(k).

6.5 Conclusions

We have presented a brief, and by no means complete, summary of the ideas that
inspired much of the research on scale-invariance and self-similarity, from the early
discovery of fractal behaviour to the more recent study of scale-free networks. We
have highlighted the importance of understanding the emergence of the ubiquitously
observed patterns in terms of dynamical models. In particular, the framework of
Self-Organized Criticality succeeds in explaining the onset of fractal behaviour
without external fine-tuning. According to the SOC paradigm, open dissipative sys-
tems appear to evolve spontaneously to a state where the response to an infinitesimal
perturbation is characterized by avalanches of all sizes. We have emphasized the
importance of introducing similar mechanisms in the study of networks. In particu-
lar, we have argued that in many cases of interest it is not justified to decouple the
formation of a network from the dynamics taking place on it. In both cases, one
is forced to introduce ad hoc specifications for the process assumed to be slower.
Indeed, by presenting an extensive study of a self-organized network model, we
have shown that if the feedback between topology and dynamics is restored, novel
and unexpected results are found. This indicates that adaptive networks provide a
more complete explanation for the spontaneous emergence of complex topological
properties in real networks.
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Chapter 7
Self-Organization of Network Structure
in Coupled-Map Systems

Junji Ito and Kunihiko Kaneko

Abstract Coupled map models with variable connection weights between the units
are studied. A generally observed feature in this type of model is the appearance
of the units with massive outgoing connections. Such structure formation is the
consequence of the feedback between unit and connection dynamics.

7.1 Introduction

Unveiling network structure is often important in studying biological and social
systems. Universal topological properties of network structure have been found in
a variety of natural and artificial networks [1–3]. Some of those properties such
as scale-free or small-world structures have been shown to emerge from simple
construction rules or by evolution of networks to achieve some function [4, 5]. Since
the main interest in these early studies of complex networks was in the structure of
networks, the dynamics of the constituent units were largely ignored.

Recently, more and more studies on complex networks have taken into account
the activity of nodes and/or the flow through links, since they are often primary
determinants of network growth or structure formation. For example, the relation-
ship between abundances of chemicals on nodes in a chemical-reaction network has
been studied from the viewpoint of the optimization of metabolic flow through the
network [6, 7]. In these studies, each unit (i.e., chemical concentration) on a node
is in a stationary state and therefore the interplay between the dynamics of the units
and the network structure is not considered. This aspect is sought in another line of
studies where behaviors of coupled dynamical systems in a network of units with
non-trivial dynamics are extensively investigated. Some of those studies searched
for the synchronization condition for oscillatory elements in a network and exam-
ined how it depends on network topology [5, 8–10], while others focused on dynam-
ical systems of chaotic elements on a network interacting through links, which show
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synchronization, clustering, and chaotic itinerancy [11–15]. In these studies, though
the units on the network showed rich dynamics, the network structure itself was
not dynamic: once initially given, it did not change in time. Following these pre-
vious studies, the next step should be to seek common principles in systems with
an interplay between the network structure formation and dynamical systems on the
network [16–21].

Adaptive network is the term given to the types of network whose structure varies
depending on the dynamics of the units on the nodes [22]. The aim of the present
study is to discover the generic features in the dynamics and the structure of adaptive
networks. We adopt the system of coupled maps with variable connection weights
as our tool to explore a class of models for adaptive networks, as coupled map
dynamics have been thoroughly investigated for cases with various forms of fixed
regular couplings [23–27]. We mainly focus on how non-trivial dynamic structure
emerges from homogeneous populations of units and connections, and try to extract
the underlying mechanisms of such structure formation.

We review three types of coupled map models, following our earlier studies
[16–18]: the first one is coupled logistic maps, the second one is coupled circle
maps, and the last one is coupled circle maps with external input. For all these
three models, coupling strengths between nodes change according to the correla-
tion between the values on the nodes. For the first model, an exhaustive analysis of
unit and connection dynamics is given in Sect. 7.2. To avoid redundant description
on similar behaviors in different models, only the characteristic behaviors specific
to the latter two models are described in Sects. 7.3 and 7.4. The last section is a
summary and discussion on our findings.

7.2 Adaptive Network of Logistic-Map Units

Throughout the present review we discuss a system of coupled maps on a network.
Each node in the network is assigned with map dynamics which depend on the
instantaneous state of the node as well as on those of the other nodes that are
linked to it. This sort of dynamical system is known as coupled maps and has been
extensively studied over decades. In particular, coupled map lattices with nearest
neighbor couplings on a regular lattice [23, 24] and globally coupled maps (GCM)
with all-to-all coupling of equal weight [25] are two standard models. Here we adopt
the coupled map approach, but instead of fixed global or nearest-neighbor couplings
a time-varying connection weight is introduced in our models.

In this section, we consider the model of coupled logistic maps. Logistic map is
a nonlinear map from xn to xn+1 with one parameter a representing its nonlinearity,
defined as:

xn+1 = axn(1 − xn). (7.1)

Successive application of this mapping yields, depending on the value of the param-
eter a, oscillatory dynamics with arbitrary period as well as chaotic dynamics.
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Owing to this variety in dynamics, one network of logistic-map units can represent
a wide range of networks with various kinds of unit dynamics. For this reason, this
type of network is of primary and special interest in our study.

7.2.1 Model Formulation

Our coupled map model is defined as follows. Suppose we have a network of N
units, each of which has its own time-dependent internal state. Let xi

n denote the
state variable of the i-th unit (1 ≤ i ≤ N ) at the n-th time step. Connectivity
between these units is given by the connection matrix wi j

n which represents the
weight (or strength) of the connection from unit j to unit i at the n-th time step.
To introduce dynamics to the network, we install the following two functions into
our model. One is the function f that defines the mapping from xi

n to xi
n+1, in other

words, the dynamics of the units. The other is the function g that represents the rule
of connection change. For simplicity, we assume that the range of g is between 0
and 1, and g depends only on the two state variables of the units at the both ends
of the connection. With this setup, our model is described by the following set of
equations:

xi
n+1 = (1 − c) f (xi

n) + c
∑

j

wi j
n f (x j

n ), (7.2)

wi j
n+1 = [1 + δg(xi

n, x j
n )]wi j

n
∑

j [1 + δg(xi
n, x j

n )]wi j
n

, (7.3)

where c (0 ≤ c ≤ 1) is the parameter that represents the strength of the interac-
tion between units and δ (0 ≤ δ ≤ 1) is the parameter that represents the degree
of plasticity of connections. The normalization of incoming connection weights in
Eq. (7.3) is introduced in order to avoid the divergence of connection weights in the
case where the steady state of unit dynamics satisfies strengthening condition of the
connection change, which could lead to endless growing of the connection weights.
This normalization also imposes competition among incoming connections of a unit.
When δ = 0, this model reduces to the standard GCM.

By choosing appropriate functions for f and g, Eqs. (7.2) and (7.3) can model
various types of adaptive networks. This choice would depend on the purpose
of modeling. For example, connection dynamics that strengthen the connections
between units in different dynamical states would lead to global synchronization of
the whole system. This type of rewiring rule is introduced by Chen and Kurth to
a coupled phase oscillator model and described in detail in the subsequent chap-
ter. In this study, however, we focus on the opposite type of connection dynamics,
i.e., “Hebbian” type dynamics, which is characterized by the strengthening of con-
nections between units in a similar state. This type of dynamics is called Hebbian
because it can be considered as a natural extension of the Hebb rule, which is widely
used as a synaptic update rule in neural network studies and considered as the
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Fig. 7.1 The logistic map and its bifurcation diagram. (Left) The mapping function f (x) =
ax(1 − x); a = 3.97. The open circle in the graph represents the unstable fixed point of the
dynamics generated by this map. (Right) The bifurcation diagram of logistic map. Asymptotic
values of x are plotted for each value of the parameter a. This map generates chaotic dynamics for
values of a larger than about 3.57

fundamental principle of structure formation in neural networks, to systems with
continuous state variables. The function that we use in practice for the connection
dynamics in our simulations is g(xi , x j ) = 1 − 2|xi − x j |, but any other function
which monotonically decreases with the difference between its two arguments gives
essentially identical results. For unit dynamics, as mentioned above, we adopt the
logistic map: f (xi ) = axi (1 − xi ). Figure 7.1 shows the graph of this mapping
function and how the unit dynamics depend on the value of the parameter a.

To this end, our model possesses three parameters: a for the nonlinearity of unit
dynamics, c for the strength of interaction between units, and δ for the plasticity
of connection. In this section, δ is set to 0.1, though a wide range of δ values give
similar results [17].

In the following, we study the dynamics of the networks described by Eqs. (7.2)
and (7.3) using numerical simulations. In most of the simulations, we use the fol-
lowing initial condition. First, the initial value of self-connection wii

0 is set to 0 for
all i . This assures that the self-connections (besides the term (1 − c) f (xi

n)) are 0 at
any time step n. Second, all the remaining connection weights are set to be identical.
This means that, at the initial step, every unit in the system uniformly connects to
all the other units. Due to the normalization of incoming connections, the initial
connection weight is determined to be 1/(N − 1). Finally, xi

0 are randomly chosen
from the uniform distribution between 0 and 1.

7.2.2 Unit Dynamics

We start our analysis from studying the dependence of unit dynamics on the values
of the parameters a and c. It is known that the dynamics of coupled map systems
are characterized by the formation of synchronized clusters of units. In Fig. 7.2,
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Fig. 7.2 The number of
clusters plotted against the
parameters a and c, obtained
from the numerical
simulations of our model
composed of 10 units. The
number of clusters is counted
after 5,000 steps of transient
period and averaged over 100
simulations starting from
random initial conditions 1
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the number of clusters observed in our model is plotted against the parameters a
and c. Basically, the number of clusters increases as a gets larger or c gets smaller,
which is consistent with the previous studies of GCM [25] where the connection
weights are constant over elements and time. A novel dynamical feature induced by
the introduction of connection change is the appearance of a large regime of N/2-
cluster state in the (a, c)-space. In this state, every unit forms a pair with another
unit and the state variables of the units in a pair are synchronized, resulting in N/2
clusters in the system. Destabilization of this pair (by increase of a or decrease of
c) immediately results in the total absence of synchronized clusters, because all the
units in our model have the same set of parameter values, and therefore, once a pair
is destabilized, so are all the other pairs as well. This means that there is hardly any
set of parameter values that allows an intermediate number of clusters between N/2
and N .

In the following, we give a more detailed description for the three representative
states of unit dynamics observed in our model.

Synchronized state: For small a and large c values, all the units in the system are
synchronized. The dynamics of the units are either periodic or chaotic, depending
on the value of a (Fig. 7.3a). The connection weights do not change in this state,
because in our model, connection dynamics are driven by the difference between the
state variables, and all the state variables have an identical value in the synchronized
state. Due to this lack of connection dynamics, the system is essentially identical to
the standard GCM. The stability of the synchronized state in the standard GCM can
be estimated using the tangential Lyapunov exponent, or split exponent [25], defined
as follows for our model:

λspl(a, c) = ln

(
1 − N

N − 1
c

)
+ λ0(a), (7.4)

where λ0 represents the Lyapnov exponent of, in our case, the logistic map with
parameter value a. With this quantity, the stability condition for the synchronized
state is written as λspl(a, c) < 0, and hence the boundary of the region (in (a, c)-
space) where a synchronized state is allowed is given by:
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Fig. 7.3 Time series of xi
n (1 ≤ i ≤ N , N = 50). Traces for all state variables are superimposed.

(a) coherent state. a = 3.6, c = 0.3. (b) ordered state with two clusters. a = 3.6, c = 0.2. (c)
ordered state with N/2 clusters. a = 3.97, c = 0.3. (d) desynchronized state. a = 3.97, c = 0.125

ln

(
1 − N

N − 1
c

)
+ λ0(a) = 0. (7.5)

Desynchronized state: For large a and small c values, unit dynamics are not syn-
chronized between any pair of units. Each unit shows chaotic dynamics (Fig. 7.3d).
Due to the difference between the state variables, connection weights show temporal
change, which can lead to self-organization of network structure. The interaction
between unit and connection dynamics will be discussed later in detail.

Clustered state: For intermediate values of a and c, units spontaneously form
clusters, within which units oscillate synchronously. The dynamics of the units are
either periodic or chaotic, depending on the value of a (Fig. 7.3b, c). The con-
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nection weights between the units in the same cluster do not vary in time, while
the connection between units in different clusters can have temporal change. The
number of the clusters is 2 near the boundary with the synchronized state region.
As a gets larger or c gets smaller, the number increases to reach the maximum
number N/2 at the boundary against the desynchronized state. As mentioned above,
in an N/2-cluster state, every unit forms a pair and the two units in a pair synchro-
nize to each other. The stability of the N/2-cluster state can be evaluated again
with the split exponent according to the following argument. Due to the increase
in connection strength between the units forming a pair (and the normalization of
incoming connections), the connection between the units in different pairs vanishes.
In this state, a unit in a pair interacts only with its partner and therefore the system
can be regarded as a collection of GCM of 2 units. Hence, the estimation of the
stability of this state is reduced to that of a small GCM system. The split expo-
nent of GCM of 2 units is obtained by substituting 2 to N in Eq. (7.4), resulting
in λspl(a, c) = ln (1 − 2c) + λ0(a). Thus, the boundary between the region of the
N/2-cluster state and that of the desynchronized state is given by:

ln (1 − 2c) + λ0(a) = 0. (7.6)

According to Eqs. (7.5) and (7.6), we define in the (a, c)-space the following
three phases, named after those in GCM system [25]: (I) coherent phase, which is
above Eq. (7.5), (II) ordered phase, which is between Eqs. (7.5) and (7.6), and (III)
desynchronized phase, which is below Eq. (7.6).

7.2.3 Connection Dynamics

We proceed to study connection dynamics, which are largely influenced by the unit
dynamics discussed above. It is intuitively expected that connection weights would
be kept constant in the coherent and ordered phases and that they would show active
dynamics in the desynchronized phase. To confirm this in a quantitative manner, we
define a measure of the network activity, which represents the intensity of temporal
change in connection weights, as follows:

A = 1

(N − 1)2

∑

i �= j

〈|wi j
n − wi j

n−1|〉, (7.7)

where 〈·〉 stands for temporal average taken after an appropriate transient period.
This is the connection change in one time step averaged over time and over connec-
tions. Figure 7.4(top) is the plot of A against the parameters a and c. As expected,
It can be seen that A is zero in the coherent and the ordered phases and that finite
values of A are observed only within the desynchronized phase. An interesting point
is that there are regions in the desynchronized phase where A takes extremely small
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Fig. 7.4 Plot of the activity A
(top panel) and the instability
I (bottom panel) of the
network against the
parameters a and c, obtained
from the numerical
simulation of our model
composed of 10 units. The
values of A and I are
calculated from wi j

n values
during the 1,000 steps after
100,000 steps of transient
period. The network activity
A represents the intensity of
connection change and the
network instability I
represents the fragility of
network structure. See the
main text for their definitions
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values, and that the region of large A values forms a complex structure in (a,c)-
space.

Vanishing values of A reflect diminishing connection change, which means
the appearance of long-lasting structure in the network. From Fig. 7.4(top), it is
expected that such network structures are present in the coherent and the ordered
phases, and also in a part of the desynchronized phase where A shows extremely
small values. On the other hand, large values of A reflect active connection dynam-
ics. Under such situation, it seems impossible for a stable structure to survive in the
network. However, there is a possibility that the change in connection weights is due
to fluctuations around some fixed values, which are kept stable over time. In such
a case, the network activity A takes a non-zero value but some stable structure is
preserved in the network. To check for this possibility, we define a measure for the
instability of network structure using the temporal variance of connection weight
around its mean as follows:

I = 1

(N − 1)2

∑

i �= j

(
〈wi j

n
2〉 − 〈wi j

n 〉2
)

, (7.8)

where 〈·〉 is the temporal average as in Eq. (7.7). Large I values reflect that con-
nection weights have large fluctuations and are not fixed in time so that the network
structure is unstable. Figure 7.4(bottom) is the plot of I against the parameters a and
c. By definition, I = 0 in the area where A = 0, which corresponds to the trivial
fact that if there is no connection change, network structure is maximally stable. An
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Fig. 7.5 A rough phase
diagram illustrating the
regions in the desynchronized
phase. Letters in the panel
stand for static region (S),
where static networks are
observed, dynamic region I
(D1), where dynamic and
unstable networks are
observed, and dynamic region
II (D2), where dynamic and
stable networks are observed.
See the main text for the
definition of the regions
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interesting observation is that the high activity region in Fig. 7.4(top) seems to be
separated into two subregions; one with large I values and the other with moderate,
namely ∼ 0.01, I values. For example, at a = 3.8, the intervals 0.03 < c < 0.07
and 0.07 < c < 0.13 seem to belong to the moderate I and the large I subregions,
respectively. This implies the possibility that dynamic but structured networks are
allowed to exist in certain parts of the desynchronized phase.

Based on these observations, we separate the desynchronized phase into three
regions (Fig. 7.5): (i) static region, characterized by extremely small A values, (ii)
dynamic region I, characterized by large A values and large I values, and (iii)
dynamic region II, characterized by large A values and moderate I values.

7.2.4 Network Structure

As mentioned above, in the beginning of the numerical simulations, connection in
the network is uniform and all-to-all. From this initial condition, the system develops
to various kinds of structured network, depending on the type of unit dynamics. Here
we run through the phases and the regions and see what type of network structure is
formed in each of the phases (regions) by examining the connection matrix wi j .

(I) Coherent phase: A snapshot of the connection matrix in this phase is shown in
Fig. 7.6a. In this phase, all-to-all connection is preserved as in the initial state. Con-
nection weights are, however, distributed around the initial values due to the con-
nection change during the transient to the asymptotic state, i.e., synchrony among
all the units. Once the synchronization is achieved, no further connection change
occurs.

(II) Ordered phase: Snapshots of the connection matrix in this phase are shown
in Fig. 7.6b, c. In this phase, network structure depends on the clustering of units.
Once the clusters are formed, connections within a cluster are strengthened and ones
across clusters are weakened, resulting in vanishing connection weights between
clusters. In the case of a 2-cluster state, the network separates into two almost
independent sub-networks, within which units are connected in all-to-all fashion
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Fig. 7.6 Snapshots of the connection matrix wi j in different phases/regions. The value of wi j is
indicated by the size of the filled square at the i-th row and the j-th column. (a) Coherent phase.
a = 3.6, c = 0.3. (b) Ordered state with two clusters. a = 3.6, c = 0.2. (c) Ordered state with
N/2 clusters. a = 3.97, c = 0.3. (d) Static region in desynchronized state. a = 3.97, c = 0.2
(e) Dynamic region I in desynchronized state. a = 3.97, c = 0.15. (f) Dynamic region II in
desynchronized state. a = 3.97, c = 0.125

(Fig. 7.6b). As mentioned above, the maximum number of clusters is N/2. In
an N/2-cluster state, units form pairs and have connections only within the pairs
(Fig. 7.6c).

(III) Desynchronized phase: This phase is separated into three regions.
(i) Static region: A snapshot of the connection matrix in this region is shown in

Fig. 7.6d. This region is characterized by low network activity A. In this region, most
units make pairs and each unit is connected only with its partner. Although their
connection strengths hardly change over time, decomposition and recomposition of
pairs occasionally occurs. Besides those units forming pairs, a few units that do not
form pairs remain. Their connection weights show rapid changes over time. The
dynamics of units forming a pair are not synchronized, but highly correlated, while
there is almost no correlation between units that belong to different pairs.

(ii) Dynamic region I: A snapshot of the connection matrix in this region is
shown in Fig. 7.6e. This region is characterized by high network activity A and
high structural instability I . There is no synchronization between any two units,
and the correlation between units is very weak for any pair of units. Due to these
disordered unit dynamics, connection weights change intensely, and the network
structure seems to be random.
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(iii) Dynamic region II: A snapshot of the connection matrix in this region is
shown in Fig. 7.6f. This region is characterized by high network activity A and
moderate structural instability I . Similarly to the dynamic region I, there is nei-
ther synchronization nor a significant correlation between any two units. Here the
network seems to possess a certain structure which is characterized by the concen-
tration of outgoing connection weights to a small fraction of units, although the
connection weights change as intensely as in dynamic region I.

In the rest of this section, we focus on the dynamic networks observed in the
desynchronized phase and study their structure and dynamics in detail.

7.2.5 Dynamic Networks in the Desynchronized Phase

In this part, we focus on the networks observed in dynamic regions I and II, and
study the difference between the two networks in both structural and dynamical
aspects. Here, we use the parameter values (a, c) = (3.97, 0.15) for dynamic region
I and (a, c) = (3.97, 0.125) for dynamic region II.

7.2.5.1 Network Structure and Its Stability

To compare the structural properties of the networks in a quantitative manner, we
characterize their structure from the values of wi j . First, we look at the distribution
of wi j values. Figure 7.7a shows the distributions calculated for the networks from
dynamic region I and II. Though larger values are observed slightly more often in
dynamic region II, the distribution of wi j values has quite similar shape in both of
the regions, meaning that the apparent difference in the network structure seen in
Fig. 7.6d, f is not due to the difference in the connection weights but based solely on
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Fig. 7.7 Distributions of the values of connection matrix wi j and those of the total weight of outgo-
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i in dynamic region I and II. (a) Distribution of wi j in dynamic region
I and II. Values of wi j at the 500,000th step are collected from 10 simulations. (b) Distribution
of Wout
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i at the 500,000th step are collected from 100
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the manner in which they connect the units. Next, to assess how the distribution of
the connections differs across units, we look at the distribution of the sum of outgo-
ing connection weights Wout

i
n = ∑

j w ji
n . Figure 7.7b shows the distribution of Wout

i

values for the networks from dynamic region I and II. The distributions are clearly
different. In dynamic region I, the distribution is unimodal with the peak at around
0.7 and shows exponential (or even faster) decay for large values. In dynamic region
II, there are two peaks in the distribution: the main peak is at 0 and the distribution
shows exponential (or slower) decay, while the other peak is at around 6, suggesting
the existence of a small group of units that have very large Wout

i values.
As these distributions are calculated from the instantaneous values of wi j , they

tell us nothing about how the network changes its structure in time. To illustrate
the temporal evolution of network structure, time series of Wout

i for the network in
dynamic region II is plotted for all i in Fig. 7.8. In this plot, units are separated into
two groups according to the Wout

i value at the 107th step: units that have Wout
i

values larger than 2 are plotted in gray, and the others are plotted in black. By
retrospectively tracing the Wout

i values of each of the groups, it is confirmed that
the separation of units into the two groups is already evident at a very early stage of
the temporal evolution, namely at the 2.0 × 106th step or even earlier. The moderate
value of the network instability I in dynamic region II reflects this stable separation
of units into large and small Wout

i groups.
To assess this separation in a quantitative manner, we define an autocorrelation

function regarding the separation of units in the following way. First, as a prepara-
tion step, we define a membership function μ as follows:
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Fig. 7.8 Temporal evolution of Wout
i in a network observed in dynamic region II. The values of

Wout
i at each 104 steps are plotted. Traces for all units are superimposed. The colors indicate the

value of Wout
i at the 107th step: units with a Wout

i value larger than 2 are plotted in gray, and the
others in black. N = 100
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ent values of τl . See the main text for the definition of Csep(τl )

μ(Wout
i ) =

{
1 (Wout

i ≥ 1.0)

−1 (Wout
i < 1.0)

(7.9)

This function indicates whether unit i belongs to the large or small Wout
i group.

The threshold value 1.0 used here is the average of the total outgoing connection
weight of a unit. With this function, we define the temporal autocorrelation Csep

regarding the separation as follows:

Csep(τl ) = 1

N

∑

i

〈μ(Wout
i
n)μ(Wout

i
n+τl

)〉, (7.10)

where 〈·〉 is the temporal average as in Eq. (7.7). We measure the stability of the
separation by computing the decay of Csep with the increase of τl . A plot of Csep

for different values of τl is shown in Fig. 7.9. In dynamic region II, the correlation
decays very slowly and remains as large as 0.84 even for a lag of 107 steps, while in
dynamic region I, the correlation decays to almost zero within 106 steps. This shows
that the separation of the units into the high and low Wout

i groups is highly stable
in dynamic region II, while the separation is unstable, or never appears, in dynamic
region I.

7.2.5.2 Mechanism of Structure Formation

In this section, we study the relationship between unit dynamics and the change in
network structure to reveal the mechanism of the structure formation.
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In the dynamic regions, each unit is connected to many other units in a complex
manner. To gain an intuition about how the units interact with each other during the
course of structure formation, we examine the dynamics of the correlations between
a given unit and the others, by calculating the correlations during a short time period,
namely ten steps, and observing their temporal evolution.

In Fig. 7.10 (bottom), the time series of x1 in a simulation of a network in
dynamic region I and the correlations between x1 and the other xi s are shown. The
temporal dynamics of the correlations have the following characteristics: (1) strong
positive or negative correlation lasts for a certain number of steps, followed by a
short period with weak correlation; (2) after this period, the sign of the correlation
reverses in most cases. The unit dynamics in dynamic region II also show the same
characteristics, though the interval between the succeeding weak correlation periods
is much longer than in dynamic region I.

The period of weak correlation sometimes appears simultaneously for all units.
Note that this simultaneous appearance of the weak correlation period coincides
with the approach of x1 to the unstable fixed point (x = 0.748 . . . ), which is
typically accompanied by a reduced oscillation amplitude (Fig. 7.10 (top)). The
dynamics of the logistic map here is dominated by the oscillation around the unsta-
ble fixed point: the state variables take values larger or smaller than this fixed point
alternately. According to the phase of this oscillation, units are naturally separated

Fig. 7.10 Time series of x1 in a simulation (top) and temporal evolution of the instantaneous
correlations (for 10 steps) between unit 1 and the others (bottom), obtained from a simulation of
the network in dynamic region I. The correlations are plotted in a color scale, where green or red
represents positive or negative correlation, respectively, and the brightness of the colors indicates
the magnitude of correlation
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into two groups: when the units of one group take large values, the others take
small values, and vice versa. This separation is not fixed over time. Indeed, each
unit sometimes fails to jump over the fixed point, which reverses the phase of the
oscillation. As a unit moves across the groups, the sign of the correlations to the
other units changes at once, because the phase relationships to the other units are
flipped to the opposite simultaneously. The periods with weak correlation seen in
Fig. 7.10 correspond to the occurrences of this movement of units from one group
to the other. We call this motion across the groups trans-group hopping (TGH).
TGH is closely related to the temporal change in correlations between units. Hence,
the dynamics of TGH are expected to have a strong influence on the formation of
network structures.

To uncover the interaction between the dynamics of TGH and structure formation
in the network, we study how the interval between two succeeding TGHs is related
to the process of the network structure formation. The TGH interval is measured
with the following method. After a transient period of τ f steps, we fix the connection
weights and only allow for the evolution of the state variables. Then we measure the
TGH intervals for a certain time period and compute the average interval, separately
for each of the units. In this way we estimate the expected TGH interval at an arbi-
trary stage in the process of the structure formation.

In Fig. 7.11, we plot the average TGH intervals of units against Wout
i for several

different values of τ f , i.e., at several different stages of network structure formation.
Initially, TGH intervals are almost same for all units (Fig. 7.11a). Then, the intervals
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Fig. 7.11 Average TGH interval of units plotted against Wout
i values. The intervals are calculated

with connection weights fixed after τ f steps of connection dynamics. (a) τ f = 100. (b) τ f =
1, 000. (c) τ f = 5, 000. (d) τ f = 10, 000. (e) τ f = 50, 000. (f) τ f = 100, 000
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become diverse among units (Figs. 7.11b–d). During these stages, TGH intervals
are positively correlated to Wout

i , meaning that a unit with a larger Wout
i value has a

long TGH interval. Finally, at later stages, the correlation between TGH interval and
Wout

i gets weaker (Figs. 7.11e, f), but the separation of units into the large and small
Wout

i groups remains. This observation tells us that during the process of network
structure formation, variety in the values of Wout

i among units is positively reflected
in TGH interval of the units: a unit with a large Wout

i value has a long TGH interval
(or a low TGH rate).

Next, we consider the opposite relationship, i.e., the influence of unit dynamics
on the formation of the network structure. Here we study how the TGH interval is
related to the correlation between units, which is directly reflected in the strength-
ening or weakening of connections. We measure the average correlation Ci of unit
i to all the other units, defined as follows:

Ci = 1

N − 1

∑

j �=i

|〈xi
n x j

n 〉 − 〈xi
n〉〈x j

n 〉|
√

〈xi
n

2〉 − 〈xi
n〉2

√
〈x j

n
2〉 − 〈x j

n 〉2
. (7.11)

In Fig. 7.12, the average correlation Ci , calculated in the network structure at the
10,000th step, is plotted against the average interval of TGH. A simple relationship
can be recognized between Ci and TGH interval. A unit with a longer TGH interval
has a stronger average correlation. Since Ci gives a measure of the degree of the
increase in connections between unit i and the other units, this result suggests that
a unit with a longer TGH interval is more likely to strengthen its connections.

Combining the influences from unit to connection dynamics and the other way
around, the mechanism of network structure formation can now be understood as
follows. A unit with a lower TGH rate grows its connections more rapidly than the
others, and a unit with stronger outgoing connections decreases its rate of TGH. This
mutual enhancement amplifies the difference in the outgoing connection weights

Fig. 7.12 The average
correlation Ci of units plotted
against the average TGH
interval. The correlations are
calculated with connection
weights fixed after 10,000
steps of connection
dynamics. See the main text
for the definition of Ci
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among units. The consequence of this amplification is the separation of units into
the large and the small Wout

i groups observed in dynamic region II.

7.3 Adaptive Network of Bursting Units

In the dynamics of the logistic map, oscillation around the unstable fixed point is
dominant. Indeed, the mechanism of the network structure formation revealed in
the previous section is closely related to this type of oscillatory dynamics. Hence,
in order to infer the generality of such self-organization of network structure, it
is necessary to check whether a similar kind of structure formation is observed in
models with other unit dynamics. For this purpose, in this section, we consider a
coupled-map model which is composed of circle-map units.

7.3.1 Model Formulation

The circle map, which is obtained by the discretization of a nonlinear phase oscilla-
tor, is defined as follows:

xn+1 = xn + ω + K

2π
sin 2πxn mod 1, (7.12)

where ω is the characteristic angular velocity and K represents the nonlinearity of
the map. As the parameter K gets larger, this map yields more complex dynam-
ics and finally gains the property of excitability, characterized by highly nonlinear
responses to external perturbations due to the closely located stable and unstable
fixed points, as shown in Fig. 7.13. Here we use the parameter values corresponding
to Fig. 7.13, so that each unit is an excitable system from a stable fixed point. We

Fig. 7.13 The mapping
function of the circle map.
f (x) =
x + ω + K

2π
sin 2πx mod 1.

ω = 0.4, K = 2.9392. The
filled and the open circles in
the graph represent the stable
and the unstable fixed points
of the dynamics generated by
this map
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consider a network of circle-map units, defined as follows:

xi
n+1 = f (xi

n + c
∑

i �= j

wi j
n x j

n ) (7.13)

where f is the mapping function of circle map, i.e., f (x) = x +ω+ K
2π

sin 2πx mod
1 and c represents the strength of the interaction between units as in the previous
model. The dynamics of connection weights wi j

n are the same as in the previous
model (Eq. (7.3)).

Besides showing synchronization/desynchronization and clustering as in the pre-
vious model, this model exhibits a novel kind of collective dynamics, i.e. syn-
chronized intermittent bursting. In this section, we focus on the structure forma-
tion related to this type of dynamics; parameter values are set to (ω, k, c, δ) =
(0.4, 2.9392, 0.1, 0.01). The initial conditions in simulations are same as in the
previous section: uniform, all-to-all coupling and random state variables.

7.3.2 Unit Dynamics

As mentioned above, our model shows synchronized bursting for the parameter val-
ues we use here. Figure 7.14 (top) shows the temporal evolution of state variables
around the beginning of a simulation. For most of the time, units stay near the
stable fixed point, the value of which is represented by the brightest color in the
gray scale. From time to time, units simultaneously show excursions from the fixed
point, indicated by the simultaneous appearance of darker colors for all the units.
This excursion does not last so long: most of the units return to the position near the
fixed point within a few steps.

We refer to the state where most of the units stay around the fixed point as the
resting state, and the state where most of the units show excursion dynamics as
the bursting state. The transition between the resting and bursting states is captured
by computing the dynamics of the mean of the state variables, or the mean field
Xn defined as Xn = 1

N

∑
i x i

n . The time series of the mean field corresponding
to the unit dynamics shown in Fig. 7.14 (top) is plotted in Fig. 7.14 (bottom).
The resting state is represented by periods of almost constant mean field, while
the bursting state is characterized by fluctuating mean field dynamics with a large
amplitude.

This amplitude gets smaller as simulation time elapses. Figure 7.15a is the time
series of the mean field during 37,000–38,000 steps. The resting and bursting states
cannot be clearly distinguished as in the early stage. This seems to indicate that the
bursts of units get less synchronized. However, although system-wide synchronized
bursting no longer exists, synchrony within subgroups of units is still preserved.
Figure 7.15b–d are the mean fields of three subgroups of units. Transition between
the resting and bursting states can be observed in these mean fields, indicating syn-
chronous bursting of units within each of the subgroups. These subgroups show
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Fig. 7.14 Synchronized intermittent bursting of units in the model of coupled circle maps,
observed at the beginning of a simulation. (top) Time series of the state variables xi

n . Values of
xi

n are plotted in a gray scale, where the brightest color is assigned to the stable fixed point of unit
dynamics. The color gets darker as xi

n takes more distant values from the fixed point. (bottom)
Time series of the corresponding mean field

bursting with different timings, which leads to the diminished fluctuation in the
grand mean field shown in Fig. 7.15a. Such separation of units into synchronizing
subgroups is achieved via the interaction between unit and connection dynamics.
Indeed, the synchronized subgroups can easily be identified by looking at the con-
nection matrix.

7.3.3 Connection Dynamics

Figure 7.16 is the connection matrix at the 37,000-th step of the simulation shown
in Fig. 7.15. Units are clearly partitioned into three groups, each of which having
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Fig. 7.15 Time series of the mean field, observed after 37,000 steps of temporal evolution. (a) The
mean field of the whole system. (b–d) The mean fields of three subgroups in the system. These
subgroups are identified from the connection matrix shown in Fig. 7.16. The groups shown in (b),
(c) and (d) are the ones driven by the pacemakers 1, 2 and 3 shown in Fig. 7.16, respectively

a single unit with massive outgoing connections. We call such units pacemakers,
because the synchronized bursting of the units within a group is achieved in the form
that the group’s pacemaker drives the other units to burst. Note that the synchronized
bursting in the early time steps is mediated by uniform, all-to-all connection, mean-
ing that the mechanism of the synchronized bursting is different in the early and the
later stage of temporal evolution.

To illustrate the process of the formation of pacemakers, we plot the time series
of Wout

i values in Fig. 7.17. As mentioned above, there is no pacemaker at the
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Fig. 7.16 Connection matrix
at the 37,000th step of the
simulation trial shown in
Fig. 7.15. Pacemakers are
indicated by the arrows. The
range of the units driven by
each of the pacemakers are
indicated by the square. Note
that, in the group of
pacemaker 1, a new
pacemaker (the 6th unit)
which is still mutually
coupled with pacemaker 1 is
being formed

time steps

unit index
50

1
0 10000 20000 30000 40000 50000

Fig. 7.17 Time series of Wout
i . The length of vertical tics represent the values of Wout

i . This is the
same simulation trial as shown in Fig. 7.15
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beginning of the simulation. As time elapses, the distribution of Wout
i values starts

to show a bias. By the 20,000th step of the simulation shown in Fig. 7.17, a few units
have gained extremely large Wout

i values compared to the others. These units work
as the pacemakers. The separation of units into pacemakers and the rest is not stable
over time. Indeed, births and deaths of pacemakers can be seen in Fig.7.17, and
this process is accompanied by the reorganization of the groups of synchronously
bursting units.

7.3.4 Mechanism of Structure Formation

In this model, the formation of network structure is closely related to the transition
between the resting and the bursting states. Noting that connection change hardly
occurs during the resting state, where all the state variables take similar values, we
can focus our attention on the connection change during the bursting state. As seen
in Fig. 7.14, the onset of bursts is highly synchronized among units in the early time
steps. However, the timing of the burst offsets is quite diverse among units: some
units take much longer time steps to return to the resting state. It is highly likely
that such units rapidly lose their outgoing connection weights to most of the other
units, which are already in the resting state and whose state variables have quite
similar values. This can be stated in the opposite way: the units that return to the
resting state earlier than the other units are likely to grow their outgoing connection
weights.

Based on this consideration, the mechanism of structure formation in this model
can be summarized as follows. At the beginning, all units have the same amount
of outgoing connection weights. Through the temporal evolution, more and more
units lose their outgoing connection weight by failing to return quickly to the resting
state after each burst. This process leads to the concentration of outgoing connection
weights to a small fraction of units. Such units work as pacemakers and drive the
other units to burst synchronously. Once a group of synchronously bursting units is
formed, the connection between the units in different groups is weakened, because
they burst with different timings. Thus, groups are separated and gain a certain
degree of stability.

7.4 Formation of Hierarchical Network Structure Triggered by
External Input

So far, we have considered the models composed of identical units and studied
how heterogeneous network structure emerges from the homogeneous condition.
However, it would also be of general interest to study how externally induced het-
erogeneity influences the formation of network structure. Here we briefly review
the study of a model where the application of external input to a part of the system
triggers the self-organization of a nontrivial network structure [18].
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The model is formulated as follows:

xi
n+1 = xi

n + ω + K

2π
sin 2πxi

n + c

2π

∑

j

wi j
n sin 2πx j

n + I i , (7.14)

where I i is the external input to unit i . This model is essentially same as the one in
the previous section, except for the slight difference in the manner of coupling. The
dynamics of connection weights wi j

n are same as in the previous models (Eq. (7.3)).
For appropriate sets of parameter values (for example, (ω, K , c, δ)=(0,4.1,1.0,0.1),

which is used in the simulations shown below) in the desynchronized phase, this sys-
tem shows self-organization into a nontrivial network structure upon the application
of a constant external input to an arbitrary unit in the system. In this study, network
structure is examined after mapping the network to a graph using digitization of
connections, i.e. considering only the connections having a large weight, namely
larger than 1.0, and ignoring weak ones. In order to examine the network structure
using the obtained graph, a proper measure that extracts a salient network struc-
ture is necessary. By examining the connection matrix, we found that the generated
network structure is characterized by “layers” of nodes. Layers in the network are
defined as follows: first, we define the root node, which is the only node that belongs
to the first layer, and then, define the subsequent layers as the group of the units that
receives direct link from a unit in the previous layer.

In Fig. 7.18, the graph of the network generated under the application of an exter-
nal input to a single unit (unit 00 in the figure) is illustrated by using this digitization,

Fig. 7.18 The graph obtained from the connection matrix by digitalizing connections with a certain
threshold. Circles represent units and the numbers inside are the unit IDs. Only unit 00 is supplied
with external input, and this unit is the only constituent of the 1st layer. The arc of the units next
to unit 00 is the 2nd layer, and the arc next to it is the 3rd layer, . . . and so forth. The lines between
circles are the links of the graph. Thin lines are the links directed from left to right and thick lines
are bidirectional links. Dashed lines represent NLSC, i.e., the links between distant layers
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Fig. 7.19 Time series of the numbers of LSC and NLSC. The onset and the offset of external input
are indicated by the arrows in the graph. See the main text for the definitions of LSC and NLSC

where layers are organized with the input unit at the root. Five layers are recognized
in this case. A surprising finding about the networks self-organized in this model
is that the most of connections are between neighbouring layers or within a layer,
and that only little fraction of connections are between distant layers. Indeed, in
Fig. 7.18, all the connections but one, which is drawn with dashed line, are between
neighbouring layers or within a layer.

Here, we denote the connections between neighbouring layer or within a layer
as layer structural connections (LSC) and the connections between distant layers as
non-layer structural connections (NLSC). In Fig. 7.19, the numbers of LSC and
NLSC are plotted in time. Note that the external input is applied only between
10,000th and 30,000th steps. After the application of input at 10,000th step, the
number of NLSC shows a substantial decrease. Moreover, immediately after the
cut-off of the input, the number of NLSC recovers to the same level as before the
application of the input. This result clearly shows that the formation of the layered
structure is dependent on the application of external input.

Some interesting dynamical properties such as a power law distribution of the
lifetime of unit in a layer have been observed in this model, but the mechanism for
this type of structure formation has not yet been uncovered.

7.5 Summary and Discussion

To summarize, we have introduced three types of coupled map models in order
to study the self-organization of network structure in adaptive networks. First we
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have shown the result of a coupled logistic-map system with Hebbian connection
dynamics. In this system, we found spontaneous separation of units into two groups,
one consisting of units with strong outgoing connections and the other consisting of
units with weak outgoing connections. Only a small fraction of units belongs to the
former group, and the rest of the units belonging to the latter are just driven by the
dynamics of the former. Thus, the units with strong outgoing connections have more
influence on the dynamics of the other units. In this sense, the emergence of a group
of units with strong outgoing connections can be interpreted as the emergence of
leadership in a population.

A similar self-organized network structure was observed in the second type of
model, i.e., a coupled circle-map system. In this model, units self-organize into some
synchronously bursting groups, and each group has a pacemaker unit which has
strong outgoing connections and drives the dynamics of the other units. Though
this model shows quite different unit dynamics from the logistic map model, its
self-organized network structure is similar to that of the logistic map model in the
point that only a small fraction of units attain the influential positions. This suggests
that the emergence of leadership may be a general phenomenon in some class of
adaptive networks.

It should be stressed that in these models all units are identical and the initial net-
work structure is uniform, all-to-all connection. This means that the leaders emerge
spontaneously from a homogeneous population, without any individual differences
among units. In the third model, where external input is applied to only one unit in
the system, units are not homogeneous. The self-organized structure in this system
is more complex than in the other models: units self-organize into a hierarchical
structure, where the unit with external input is located at the root and the other unit
form several layers with decreasing centricity from the root node. There is a rule
in the connectivity between the units in different layers, i.e. connections between
distant layers are avoided. Thus, application of input to only one unit causes global
reorganization of connection structure. This might be regarded as another example
of the emergence of a leader which has strong influence on the behavior of the whole
system.

We studied the mechanism of structure formation for the first model in detail, and
extracted the steps of the process. First, variability among units is created by unit
dynamics (the variability in the TGH interval is created by the chaotic dynamics).
Then, in the next step, this variability is imprinted in connection weights (there is
a simple relationship between TGH interval and the average correlation of units,
which is directly reflected in the connection change). Finally, the connection struc-
ture influences the unit dynamics (we confirmed that units with strong outgoing
connections have long TGH interval, resulting in the amplification of the variability
in TGH interval). Thus, a closed loop of the interaction between unit dynamics and
connection changes is formed. This results in a stable growth of network structure.

Such a feedback process is not properly at work in the second model, which
might be the reason for the weaker stability of the structure in this model. There, the
timing of returning to the resting state after bursts is distributed, and this variation
is reflected in the outgoing connection strength. Up to here, the process is quite
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similar to that in the first model. However, the last step is missing in the second
model, and hence the feedback loop is not closed. If there were a process that makes
pacemakers return quickly to the resting state, the network structure in this model
should be stable. Instead, this model has a process such that a stronger outgoing
connection enhances the burst synchrony within a group, which only weakens the
connections between units in different groups.

We expect that the mechanism of the structure formation we have found here is
rather general in adaptive networks with mutual feedback between chaotic dynam-
ics and coupling with Hebbian-type dynamics. These three steps for the structure
formation clarified above will be discovered in other class of models of adaptive
networks where the emergence of leadership (or strong heterogeneity) is observed,
or, conversely, it will be possible to design a system to form leaders spontaneously
from a homogeneous population by implementing these three steps in the system’s
dynamics.
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Chapter 8
Dynamical Optimization and Synchronization
in Adaptive Complex Networks

Maoyin Chen and Jürgen Kurths

Abstract We introduce two dynamical optimization coupling mechanisms for
achieving different kinds of synchronization in adaptive complex networks. At each
node in the network there is an oscillator, and the ensemble of oscillators can be
either identical or non-identical. For each oscillator, we adjust only one incoming
link’s strength in each time interval while the other incoming links’ strengths remain
constant. The dynamical optimization coupling mechanisms are in effect “winner-
take-all” strategies. If one incoming link for each oscillator has the maximal compet-
itive ability in different time intervals, its strength increases by a small value. This
way, we realize different kinds of synchronization in adaptive complex networks
with instantaneous or delayed couplings, as well as ensure that all oscillators have
uniform intensities during the transition to synchronization. We also enhance the
synchronizability in complex networks with identical oscillators.

8.1 Introduction

Real-world complex networks (CNs) consist of dynamical entities with an inter-
play between dynamical states and interaction patterns. While topological studies
have revealed important organization principles in the structures [1–6], a more com-
plete understanding would require characterizations beyond the topology. There are
recently several approaches in this direction. Especially, one approach is to investi-
gate the synchronization dynamics in oscillatory networks [7–21]. However, most of
these works consider networks with fixed topology. Another approach is to study the
coevolution of dynamical states and network structures [22–36]. Models of adap-
tive complex networks (ACNs) have been proposed, e.g., evolving of oscillators
due to fitness in interacting species [10], reinforcement of connection strength [11]
or rewiring of links [12] due to payoffs among agents playing games; or adaptive
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changes of coupling strength according to the state distance in globally coupled
chaotic maps [13] in a desynchronized regime.

ACNs appear in many biological applications. They combine topological evolu-
tion of the network with dynamics in the network oscillators. Recently, Gross and
Blasius provided a survey on adaptive coevolutionary networks [15]. According to
this survey, the majority of recent studies on the dynamics of networks in general
revolve around two key questions corresponding to two distinct lines of research:
(i) what are the values of important topological properties of a network that is
evolving in time and, (ii) how does the functioning of the network depend on these
properties? The first line of research is concerned with the dynamics of networks
[15]. Here the topology of the network itself is regarded as a dynamical system. It
changes in time according to specific, often local, rules. Investigations in this area
have revealed that certain evolution rules give rise to peculiar network topologies
with special properties. The second major line of network research focuses on the
dynamics on networks [15]. Here each oscillator of the network represents a dynam-
ical system. The individual systems are coupled according to the network topology.
Thus, the topology of the network remains static, while the states of the oscillators
change dynamically. Important processes that are studied within this framework
include synchronization of the individual dynamical systems [7–21, 26, 28–36], and
contact processes, such as opinion formation and epidemic spreading [37–39].

As a typical dynamical process on networks, synchronization, especially the
ability of networks to obtain synchronization (synchronizability), attracts lots of
attention [8–16, 18–21, 26, 28–36]. Complete synchronization (CS) in networks of
identical oscillators [30–33] and phase synchronization (PS) in networks of non-
identical oscillators [28, 29] can be ensured by introducing adaptive local couplings
between connected oscillators, or adaptive global couplings in the entire networks.
Since these networks combine local dynamics and topological evolution, they can
be considered as ACNs. Based on the local dynamical neighborhood information
in networks with identical oscillators, Zhou and Kurths introduced an adaptive cou-
pling scheme [30]. For simplicity, this method is called the Zhou–Kurths method.
Consequently, the adaptive self-organization by the Zhou–Kurths method drives
the network into the direction of a more homogeneous topology, ongoing with an
enhanced ability for synchronization. Hence it is possible to synchronize networks
that exceed by several orders of magnitude, the size of the largest comparable ran-
dom graph that is still synchronisable [27].

However, there are some shortcomings in these studies on ACNs, where the local
or global couplings are changed adaptively. The first one is that these works can not
ensure that all oscillators have uniform intensities during the transition to synchro-
nization. The intensity Si for oscillator is defined by the sum of the couplings for
oscillator i . From the works on synchronizability in networks with a given topol-
ogy, the synchronizability becomes optimal when the intensities become uniform in
networks. This can be verified by the load [18, 19] and degree [20] based weighted
networks. For both weighted and unweighted networks with sufficiently random
topology, the synchronizability is controlled by Smax/Smin, where Smax and Smin are
the maximum and minimum of intensities Si [15]. For scale-free (SF) networks
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[15], one gets Smax/Smin = kmax/kmin ∼ N 1/2, where kmax and kmin are the maximal
and minimal degree, respectively. For a fixed network topology, the synchroniz-
ability can be enhanced if the intensities become more homogeneous. The second
shortcoming of the approach is that these methods can not be effectively applied to
networks with delayed couplings. For example, for networks with identical chaotic
oscillators, the non-uniformity of intensities does not ensure the existence of a
synchronous manifold in networks with delayed couplings. Further, there exists
no unifying adaptive coupling scheme to get different kinds of synchronization.
The scheme for PS in the Kuramoto model can not be effectively applied to PS in
networks with non-identical chaotic oscillators and CS in networks with identical
chaotic oscillators. The scheme for CS in networks with identical chaotic oscillators
can not be effectively applied to PS in networks with non-identical oscillators.

In this chapter we develop two adaptive coupling schemes to get different kinds
of synchronization in networks, as well as to ensure that all oscillators have uni-
form intensities during the transition to synchronization. This chapter is organized
as follows. In the next section, we consider PS in the famous Kuramoto model
with delayed couplings and external noises. By adaptively adjusting the couplings
according to the dynamical gradient network (DGN) approach [29], we ensure PS
in different variants of the Kuramoto model while maintaining uniform intensities.
This approach can be also applied to networks with non-identical oscillators, pro-
vided that the “phase” is well-defined. Furthermore, this approach can be extended
to CS in networks with identical oscillators. In Sect. 8.3, we further propose another
more effective coupling mechanism, the dynamical optimization (DO) mechanism
[35, 36], for realizing CS in networks with identical oscillators. Though there exist
delayed couplings in networks, uniform intensities are maintained while CS is effec-
tively realized. We also discuss the enhanced synchronizability in scale-free (SF)
networks and small-world (SW) networks, due to the DO mechanism. This approach
is also applicable to PS in networks with non-identical oscillators. In the last section
we draw up our conclusion.

8.2 Phase Synchronization in the Kuramoto Model

Among the many models that have been proposed to address synchronization
phenomena, one of the most successful models is the Kuramoto model [7, 40,
41]. It can be used to understand the emergence of synchronization in networks
of oscillators. In particular, this model presents a second-order phase transition
from incoherence to synchronization. For synchronization in the Kuramoto model,
many works assumed that the couplings between connected oscillators are constant
[12–14]. Recently, some works introduced adaptive couplings in this model.
Maistrenko et al. introduced the mechanism of plasticity to study multistability, and
assumed that the couplings are varied in accordance with the spike timing-dependent
plasticity [42]. Ren and Zhao proposed continuous adaptive couplings rules that
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enhance the synchronization in the Kuramoto model. In this scheme, the couplings
grow stronger for pairs which have larger phase incoherence [28].

In this chapter we propose a DGN approach to achieve synchronization in the
Kuramoto model with adaptive couplings. This study is motivated in part by the
work [43, 44], where the concept of gradient networks is introduced. Gradient net-
works are directed subnetworks of an undirected “substrate” network in which each
oscillator has an associated scalar potential and one outlink that points to the oscil-
lator with the smallest (or largest) potential in the reunion of itself and its neighbors
on the substrate network. The existence of gradients has been shown to play an
important role in biological transport processes, such as cell migration: chemotaxis,
haptotaxis, and galvanotaxis. Naturally, the same mechanism will generate flows in
complex networks as well [44]. In addition, gradient networks have been already
utilized to enhance synchronization in networks [11]. A general weighted asymmet-
rical network is regarded as a superposition of a weighted symmetrical network and
a weighted gradient network. Depending on the degrees of oscillators, a weighted
coupling scheme is proposed to enhance the synchronizability in networks. How-
ever, the proposed gradient network is static, i.e., its structure is time independent.
Differing from the static gradient networks in [11], gradient networks developed
in this section are dynamical, which implies that the gradient networks in different
time intervals are different.

Here the Kuramoto model consists of a population of N coupled oscillators
where the phase θi (t) of the i-th oscillator evolves in time according to

dθi

dt
= wi +

∑

j

Wi j Ai j sin(θ j − θi ), i = 1, 2, · · · , N , (8.1)

where wi are natural frequencies distributed with a given probability density g(w),
Ai j is the binary, and potentially asymmetric connection matrix. Further, Wi j ≥ 0
is the coupling strength of the incoming link (i, j) pointing from oscillator j
to oscillator i if they are connected. Let Ki be the index set of neighbors of
oscillator i .

The Kuramoto model (8.1) can be solved in terms of the order parameter r (t) that
measures the extent of synchronization as

r (t)eζΨ (t) = 1

N

N∑

j=1

eζθ j (t), (8.2)

where ζ 2 = −1, Ψ (t) stands for an average phase, and the parameter 0 ≤ r (t) ≤ 1.
Obviously, if r (t) = 1, PS in the Kuramoto model (8.1) is realized. The parameter
r (t) given by Eq. (8.2) has been widely used [7, 13, 28, 40, 41].

We first introduce adaptive couplings into the Kuramoto model (8.1). In order to
do so, we segment the time interval [t0, +∞) into
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[t0, +∞) =
⋃

n≥1

[tn−1, tn), (8.3)

where tn = t0 + nT , t0 is the transient time, T is the suitably chosen time interval.
For the parameter r (t), we define one local order parameter for oscillator i in the
interval [tn−1, tn):

r i,n = 1

T

∫ tn

tn−1

ri (t)dt, (8.4)

with

ri (t)e
ζΨi (t) = 1

ki + 1

∑

j∈Ki ∪{i}
eζθ j (t),

where ki is the degree of oscillator i . The parameter r i,n can measure the local
synchronization extent among oscillator i and its neighbors. If r i,n0 = 1 for certain
n0, oscillator i and its neighbors are locally synchronized in the interval [tn0−1, tn0 ).

For the network of oscillators, the extent of synchronization is to choose the order
parameter r0(n):

r0(n) := 1

T

∫ tn

tn−1

r (t)dt. (8.5)

If there is a n0 such that r (n0) = 1, we conclude that synchronization in the network
is realized effectively.

Now we introduce an adaptive coupling scheme into the Kuramoto model. Our
idea to adjust the coupling Wi j in the interval [tn, tn+1) is based on the concept
of gradient networks [43, 44]. To define a gradient network at the instant t = tn ,
we consider a network denoted by Σ = (V, En), where V stands for the set of
oscillators, and En denotes the set of links at the instant t = tn . Consider a field
denoted by hn = {hn

1, · · · , hn
N } at the instant t = tn , where hn

i is the scalar assigned
to oscillator i . We define the gradient ∇hn

i
of the field hn

i in oscillator i to be the
directed link ∇hn

i
= (i, μn

i ), where μn
i ∈ Ki represents one neighbor of oscillator i .

At the instant t = tn , the network Σg = (V,∇n), where ∇n is the set of the gradients
∇hn

i
, is called a gradient network. Note that at different time instants the gradient

networks can be different. In this section, this kind of gradient networks is called
DGNs. In the gradient network Σg , the directed link (i, μn

i ) points from oscillator
μn

i , at which the scalar field has the minimum (or maximum) value in oscillator
μn

i ∈ Ki , i.e. [44]

μn
i = arg max

j∈Ki

{−hn
j } (8.6)
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to oscillator i . If several neighbors have the same scalar field, we choose only one
randomly. For oscillator i in the Kuramoto model (8.1), we choose the scalar field
hn

i as

hn
i = r i,n. (8.7)

Denote the coupling Wi j in the interval [tn−1, tn) as W n
i j . In the gradient network,

we adjust the coupling Wiμn
i

of the incoming link (i, μn
i ) pointing from oscillator μn

i
to oscillator i . In the interval [tn, tn+1), we adaptively adjust the coupling Wiμn

i
of

the incoming link (i, μn
i ) in the gradient network Σg = (V,∇n) by

W n+1
iμn

i
:= W n

iμn
i
+ ε , (8.8)

where ε > 0 is an arbitrary small incremental coupling. When the link (i, j) does
not belong to the gradient network Σg , its coupling satisfies

W n+1
i j := W n

i j . (8.9)

From Eqs. (8.6), (8.7), (8.8), and (8.9), the DGN approach is also a dynamical
optimization coupling scheme. It reflects the “winner-take-all” strategy in the sense
of scalar fields. For oscillator i , the incoming link to be adjusted is always chosen as
the one pointing from one neighborhood oscillator with the minimal (or maximal)
field to itself. Further, we only adjust one incoming link’s strength in different time
intervals while the other incoming links’ strengths remain constant. Here we define
the intensity Si for oscillator i as Si = ∑

j∈Ki
Wi j Ai j . Note that the intensities of all

oscillators in networks are uniform, since at each step the intensity of each oscillator
increases by the same amount ε.

Now we analyze the feasibility of the above coupling scheme by the linearized
dynamics of the Kuramoto model (8.1). When the Kuramoto dynamics is close to the
attractor, the phase differences are small, and then the sine coupling function can be
approximated linearly. Therefore, in the interval [tn, tn+1), the linearized dynamics
of oscillator i can be written in the form

dθi
dt = ∑

j
W n

i j Ai j (θ j − θi ) + ε(θμn
i
− θi ) . (8.10)

In the above equation the last term ε(θμn
i
− θi ) is equivalent to the term −ε(θi −

θμn
i
), which can be regarded as a negative feedback term for the unidirectional syn-

chronization from oscillator μn
i to oscillator i . This decreases the phase difference

between oscillator i and its neighbor μn
i and can therefore lead to synchronization.

The adaptive scheme (8.6), (8.7), (8.8), and (8.9) can be easily extended to
Kuramoto models with delayed couplings and external noise. One case is the
Kuramoto model described by [12, 41]
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dθi

dt
= wi +

∑

j

Wi j Ai j sin(θ j − θi ) + ξi (t), i = 1, 2, · · · , N , (8.11)

where ξi (t) is white noise due to some complicated environment with expectation
and variance

< ξi (t) >= 0, < ξi (t)ξ j (t
′) >= 2δi jδ(t − t ′).

Another case is the Kuramoto model given by [41]

dθi

dt
= wi +

∑

j

Wi j Ai j sin(θ j,τ − θi ) + ξi (t), i = 1, 2, · · · , N , (8.12)

where the term θ j,τ represents the delayed phase θ j (t − τ ), and τ is a constant time
delay.

Our simulations are based on SF and SW networks. SF networks are generated
by the Barabási-Albert model [2], where the initial network is a fully connected
network with M oscillators, labeled by i = 1, · · · , M . A new oscillator is iteratively
added to be connected to M existing oscillators. The probability that a new oscillator
is connected to oscillator i depends on the degree ki of oscillator i , namely Πi =
ki/

∑
j k j . After repeating for N − M times, a SF network has a degree distribution

P(k) ∼ k−3 and the minimal degree kmin = M . SW networks are generated by the
Newman-Watts model [45]. The initial network is a K−nearest-neighbor coupled
network consisting of N oscillators arranged in a ring, with each oscillator i being
adjacent to its neighbor oscillators i ± 1, · · · , i ± K/2, and with K being even.
Then one adds with probability p a connection between a pair of oscillators.

In our simulations in this section, the initial couplings for all incoming links
for each oscillator are zero, the natural frequencies of the oscillators are uniformly
distributed in the interval [−1, 1], the transient time is t0 = 100 s, the length of
intervals is T = 1 s, and the incremental coupling is ε = 0.01. The solution of
networks is resolved using the Euler method and the step time h = 0.02 s, and the
ending condition for our scheme is |r (n0) − 1| < 10−2 for certain n0.

We first simulate SF networks with N = 1,000 and SW networks with N =
1,000 and p = 0.03 in the absence of noise. We plot the local order parameter r0

as a function of the adjustment time n (Fig. 8.1a), and the global order parameter
r as a function of the step m (= n/h) for solving the Kuramoto model (Fig. 8.1b).
Obviously, due to our coupling scheme (8.8) and (8.9), the Kuramoto model (8.1)
reaches a synchronized regime after several hundreds of adjustment steps. In every
time interval, only one incoming link’s coupling for each oscillator is adjusted by the
same small incremental coupling, and the other incoming links’ couplings remain
constant. Hence the intensities Si for all oscillators are identical during the tran-
sition to synchronization. From Fig. 8.1a, b, the extent of synchronization in the
Kuramoto model increases with increasing of the intensity S given by S = Si = nε.
In our coupling scheme, the intensity S is a good indicator for synchronization in
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Fig. 8.1 Simulation results in the Kuramoto model (8.1) without noise. The parameter r0(n) as
a function of the adjustment step n (a), and the parameter r (t) as a function of the step m for
solving the Kuramoto models (b), in SF networks (solid line: M = 3; dotted line: M = 5) and
SW networks (dashdot line: K = 2, p = 0.03; dashed line: K = 4, p = 0.03). The adjustment
step n as a function of the size N in networks (c), and standard deviation Eav(k) as a function of
degree k in SF and SW networks with N = 1,000 (square: M = 3; diamond: M = 5; star: K = 2,
p = 0.03; circle: K = 4, p = 0.03). All estimates are the results of averaging over 50 realizations

the Kuramoto model. At about n = 300, namely S = 3, the Kuramoto model
(8.1) is practically in a synchronized state. However, equal intensities cannot be
ensured by other known adaptive coupling schemes [28, 30]. The intensities in [30]
strongly depend on heterogeneous degrees in SF networks. The larger the degree of
an oscillator is, the larger its intensity is.

We also discuss the synchronization in SF and SW networks with different size.
Under the same ending condition, we observe that the adjustment steps needed to
synchronize SF networks with the same M are almost identical (Fig. 8.1c). It further
means that the time (n0T ) needed to synchronize SF networks with the same M is
almost equal. We also obtain similar results in SW networks with the same K and
p. The steps in SW networks with the same p and a small K are almost identical
while the steps in SF networks with different M are also different. This can be in
part explained by the average degree < k >≈ 2M in SF networks and < k >≈
K + (N − 1)p/2 in SW networks. When the average degree of networks is smaller,
it requires a longer time to synchronize networks.

After the ending of our scheme (8.8) and (8.9), we also analyze the relationship
between the normalized coupling matrix G = (Gi j ) with Gi j = W n0

i j Ai j/n0ε and
the coupling matrix G0 = (W ′

i j Ai j ) with W ′
i j = 1/ki . We compute the average error
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Fig. 8.2 Simulation results in the Kuramoto model (8.1) with noise. The parameter r0(n) as a
function of n (a), and the parameter r (t) as a function of m (b), in SF networks (solid line: M = 4;
dotted line: M = 6) and SW networks (dashdot line: K = 6, p = 0.01; dashed line: K = 8,
p = 0.01). All estimates are the results of averaging over 50 realizations

Eav(k) = 1
γk

∑γk

q=1 Eq between G and G0, where γk is the number of oscillators

with the same degree k, and Eq =
√∑

j �=i (Gi j − 1/ki )2/ki if ki = k. We show

that Gi j is almost identical to the value 1/ki (or Gi j ∼ k−1
i ) (Fig. 8.1d). After

the ending of our scheme, the couplings W n0
i j for the incoming links of oscillator

i are approximately n0ε/ki . Therefore, for SF networks with the same M and SW
networks with the same K and p, the maximal coupling relies on the minimal degree
in networks. The larger the degree of oscillator i is, the smaller the coupling W n0

i j is.
Even under the influence of noise in the Kuramoto model (8.1), we can also

obtain similar results in SF networks with different M and SW networks with dif-
ferent K and p (Fig. 8.2). For the Kuramoto model (8.12) with delayed couplings,
simulation results are plotted in Fig. 8.3 (τ = 1) and Fig. 8.4 (τ = 3). Here we only
plot figures on the parameters r0 and r . From these figures, synchronization can be
realized effectively.

Note that there are two parameters T and ε in our scheme. Due to the weak
coupling for synchronization in the Kuramoto model, ε can not be large, but the
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Fig. 8.3 Simulation results in the Kuramoto model (8.12) without noise. The parameter r0(n) as a
function of n (a), and the parameter r (t) as a function of m (b), in SF network (solid line: M = 4;
dotted line: M = 7) and SW network (dashdot line: K = 6, p = 0.02; dashed line: K = 8,
p = 0.02). All estimates are the results of averaging over 50 realizations
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Fig. 8.4 Simulation results in the Kuramoto model (8.12) with noise. The parameter r0(n) as a
function of n (a), and the parameter r (t) as a function of m (b), in SF network (solid line: M = 4;
dotted line: M = 6) and SW network (dashdot line: K = 6, p = 0.01; dashed line: K = 8,
p = 0.01). All estimates are the results of averaging over 50 realizations

length T of the intervals can be arbitrarily large. In our simulations ε can be chosen
in the interval [0.0001,0.02]. For different values of T and ε, we obtain similar
results.

Remarks. Gómez-Gardeñes et al. proposed another order parameter rlink to measure
the extent of synchronization [14], where

rlink = 1

2Nlink

∑

i

∑

j∈Ki

| lim
Δt →∞

1

Δt

∫ tr +Δt

tr

eζ [θi (t)−θ j (t)]dt |, (8.13)

where Nlink is the number of links, tr is a large time. The averaging time Δt is taken
large enough to obtain good measures of the degree of coherence between each pair
of physically connected oscillators. Equations (8.4), (8.5), (8.7) in our scheme can
be replaced by

r i,n
link = 1

ki

∑

j∈Ki

| 1

T

∫ tn

tn−1

eζ [θi (t)−θ j (t)]dt |, (8.14)

r ′
link(n) = 1

2Nlink

∑

i

∑

j∈Ki

| 1

T

∫ tn

tn−1

eζ [θi (t)−θ j (t)]dt |, (8.15)

and

hn
i = r i,n

link, (8.16)

respectively. One ending condition is |r ′
link(n0) − 1| < 10−2 for certain n0. Since

numerical results are very similar to those with respect to the parameters r i,n and
r0(n) (Figs. 8.1, 8.2, 8.3 and 8.4), we omit corresponding figures.

The DGN approach can also be applied to CS in networks with identical oscilla-
tors, whose state is represented by xi . In this case, we should assign a suitable scale
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field to oscillator i . Equations (8.4), (8.5), and (8.7) in our scheme can be replaced by

r i,n
link = − 1

ki

∑

j∈Ki

1

T

∫ tn

tn−1

||xi − x j ||dt, (8.17)

r ′
link(n) = 1

2Nlink

∑

i

∑

j∈Ki

1

T

∫ tn

tn−1

||xi − x j ||dt, (8.18)

and

hn
i = r i,n

link, (8.19)

respectively. One ending condition is r ′
link(n0) < ε for certain n0, and ε is arbitrary

small.

8.3 Complete Synchronization and Enhanced Synchronizability
in Adaptive Complex Networks

In this section, inspired by the DGN approach, we develop another more effective
optimization coupling mechanism: the DO coupling mechanism. It does not only
realize different kinds of synchronization in networks but also leads to enhanced
synchronizability in SF and SW networks. In this section, we first consider CS in
networks with instantaneous or delayed couplings. Then we study how to enhance
the synchronizability in SF and SW networks.

8.3.1 Complete Synchronization in Adaptive Complex Networks

Our general model for networks consisting of N coupled identical chaotic oscillators
with a time-varying coupling matrix is given by

ẋi = F(xi ) +
N∑

j=1

Gi j H(x j , xi ), (8.20)

where xi is the state, F(xi ) is the dynamics of the individual oscillator xi , H(x j , xi ) is
the inner coupling function, G = (Gi j ) is the outer coupling matrix. Gi j = Wi j Ai j ,
where A = (Ai j ) is the binary adjacency matrix, Wi j is the coupling strength of the
incoming link (i, j) pointing from oscillator j to oscillator i if they are connected,
Gii = −∑

j∈Ki
Ai j Wi j , Ki is the neighbor set of oscillator i .

In this section we consider CS in network (8.20) in two cases. (i) One case is
the network (8.20) with instantaneous couplings, where the function H(x j , xi ) =
H0(x j ) − H0(xi ), and H0 is the output function for each oscillator. (ii) The other
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case is the network (8.20) with delayed couplings, in which the function H(x j , xi ) =
H0(x j (t − τ )) − H0(xi (t)) with a time delay τ > 0.

In the above section, we have proposed a DGN approach to realize PS in the
Kuramoto model, and this approach can be also applied to CS in networks with
identical oscillators. However, the DGN approach is very special in two aspects.
One is that it should assign a scale potential to each oscillator within any time
interval, which depends on the extent of the local synchronization among itself
and its neighbor oscillators. The other is that the incoming link to be adjusted by
the DGN approach is often not mostly effective. Inspired by the idea of the DGN
approach [29], we have further introduced a DO mechanism to SF networks [35]. It
also reflects the “winner-take-all” strategy, where the incoming link to be adjusted is
always chosen as a pair of oscillators with the weakest synchronization. This means
that the DO mechanism is much more effective than the DGN approach.

We first introduce the idea of the DO mechanism. In the interval [tn, tn+1), the
choice of the incoming link for oscillator i is based on the maximal accumulated
synchronization error in its neighborhood, rather than depending on the scalar fields
of oscillators [29]. The DO mechanism is introduced as follows:

(i) For the incoming link (i, j) of oscillator i , we accumulate the synchronization
errors by the integral function

En(i, j) =
∫ tn

tn−1

φ(xi , x j )dt, (8.21)

where φ is the error function relying on different kinds of synchronization in
networks.

(ii) By the optimization in the neighborhood of oscillator i , we identify the incom-
ing link (i, j n

max) with the index

j n
max = arg max

j∈Ki

En(i, j). (8.22)

(iii) We adjust the coupling strength Wi j adaptively by

{
W n+1

i j n
max

: = W n
i jn

max
+ ε

W n+1
i j = W n

i j , j �= j n
max

(8.23)

Compared with the incoming link generated by the optimization scheme (8.6)
and (8.7), namely the DGN approach, the incoming link generated by the DO
mechanism is much more effective. Further, there is one common point: the inten-
sities of the oscillators in the networks are also uniform, since at each step the
intensity of each oscillator increases by the same amount ε during the transition to
synchronization.

Our simulations in this section are also based on SF networks generated by
the Barabási-Albert model [2] and SW networks generated by the Newman-Watts
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model [45]. In the following, network (8.1) is a network of Rössler oscillators:
xi = (xi , yi , zi ), F(xi ) = (−0.97yi − zi , 0.97xi + 0.15yi , zi (xi − 8.5) + 0.4), the
function H0(xi ) = (xi , 0, 0), and the error function

φ(xi , x j ) = |xi − x j | + |yi − y j | + |zi − z j |.

In order to verify CS, we define the average synchronization error as

E = 1

N

N∑

i=1

||xi − x̄||,

where x̄ = (x̄, ȳ, z̄) is the mean-field of all xi . In our simulations, the initial cou-
pling strengths for all incoming links are zero, the transient time is t0 = 100 s, the
length of time intervals is T = 1 s, and ε = 0.001. Further, initial conditions for all
oscillators are randomly chosen from the chaotic attractor. The solution of network
(8.20) is solved by using the Euler method with the time step h = 0.01 s, and our
ending condition for the DO mechanism is E < 10−5.

For network (8.20) with instantaneous couplings, CS is realized effectively
(Fig. 8.5). From Eqs. (8.22) and (8.23), all oscillators have uniform intensities dur-
ing the transition to synchronization, regardless of heterogeneous degrees. But this
is totally different from adaptive networks [28, 30]. The average intensity S(k) over
oscillators with degree k increases as S(k) ∼ kβ with β ∼ 0.5 [30].

After the adaptation, network (20) with instantaneous couplings can be rewritten
as ẋi ≈ F(xi ) + S0[H0(x̄i ) − H0(xi )], where S0 = εn0 is the ultimate intensity, n0

is the ending adjustment step, and x̄i = (1/ki )
∑

j∈Ki
x j is the local mean field of

neighbors [15]. In sufficiently random networks the local mean field x̄i of oscillators
with ki � 1 can be approximated by the global mean field x̄i = x̄. Hence we get
ẋi ≈ F(xi ) + S0[H0(x̄) − H0(xi )]. Hence all oscillators are forced by a common
mean field signal H0(x̄) with the same forcing strength S0, and all oscillators syn-
chronize at a similar speed to the mean activity x̄. The speed only depends on the
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Fig. 8.5 The average synchronization error E in SF networks with instantaneous couplings as a
function of (a) time t , and (b) intensity S, by the DO mechanism. The parameters are N = 1,000,
M = 5, T = 1 s, ε = 0.001 and σ = 1.5
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Fig. 8.6 The intensities Si as a function of time t for arbitrarily 20 oscillators in SW networks with
instantaneous couplings (a), or delayed couplings (b), by the Zhou–Kurths method. The parameters
are N = 500, K = 4, p = 0.003, γ = 0.002, τ = 0.01 s

same intensity (i.e. the sum of input signals each oscillator receives), regardless of
the network size. The independence of the network size is not satisfied in [28, 30],
where the speed strongly relies on heterogeneous intensities.

For the network (8.20) with instantaneous couplings, the adaptive strategies can
realize CS both in SF networks with instantaneous couplings and in SW networks
with instantaneous couplings [36]. However, even for SW networks with homoge-
neous degrees, the adaptive strategies cannot ensure uniform intensities if all oscilla-
tors have different initial conditions. We plot the intensities Si (i.e. Si = ∑

j∈Ki
Gi j ),

for 20 arbitrarily chosen oscillators in SW networks according to the Zhou–Kurths
method (Fig. 8.6a). When the adaptation parameter is chosen as γ = 0.002, we
find that the Zhou–Kurths method can not ensure uniform intensities during or after
the adaptation. Based on the DO mechanism, synchronization in SW networks is
realized effectively (Fig. 8.7a), and the intensities are always uniform during the
transition to synchronization. From Fig. 8.7b, the intensity S = Si is also a good
indicator for synchronization in networks. As S increases to a critical value, a net-
work becomes synchronous.

0 500 1000 1500

10−5

100

10−5

100

t

(a)

0 0.5 1 1.5 2
S

(b)

Fig. 8.7 The average synchronization error E in SW networks with instantaneous couplings as a
function of (a) time t , and (b) intensity S, by the DO mechanism. The parameters are N = 500,
K = 4, p = 0.003, T = 1 s, ε = 0.001
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Fig. 8.8 The average synchronization error E in SW networks with delayed couplings as a function
of time t . (a) the Zhou–Kurths method (τ = 0.01 s). (b) the DO mechanism (τ = 2 s). The
parameters N = 500, p = 0.003, γ = 0.002, T = 1 s, ε = 0.001

For the network (8.20) with delayed couplings, even for a small time delay τ

(such as τ = 0.01 s), the Zhou–Kurths method can not realize synchronization in
SW networks (Fig. 8.8a). The synchronization error between two connected oscilla-
tors is about 10−2×500 = 5 for networks with N = 500. Due to the DO mechanism,
synchronization can be realized effectively when the time delay τ = 2 s (Fig. 8.8b).
The synchronization error is about 10−5 × 500 = 0.005. Hence the DO mechanism
is much more effective than the Zhou–Kurths method. The main reason is that the
DO mechanism ensures that the intensities are always uniform during the transition
to synchronization. But the Zhou–Kurths method can not ensure uniform intensities
even for a small time delay (Fig. 8.6b). Though the difference of intensities between
oscillators is small initially, it becomes large as time increases. The uniformity of
intensities is a necessary condition for the existence of a synchronous manifold in
NW networks with delayed couplings. After the adaptation, the synchronous man-
ifold is given by {xi (t) = x0(t), i = 1, · · · , N }, where x0(t) is the solution of the
isolated dynamics

ẋ0(t) = F(x0(t)) + S0(H0(x0(t − τ )) − H0(x0(t))).

Remarks. The DO mechanism can be also applied to PS in networks with non-
identical oscillators, provided that the phase in networks of oscillators is well-
defined [6]. For the Kuramoto model, the accumulated synchronization error (8.21)
is defined by

En(i, j) = 1

T

∫ tn

tn−1

[1 − rn(i, j)]dt (8.24)

with rn(i, j)eζΨn (i, j) = (eζθ j + eζθi )/2, where 0 ≤ rn(i, j) ≤ 1 measures the extent
of synchronization of oscillators i, j , and Ψn(i, j) stands for an average phase.

For the networks ẋi = τ j Fi (xi ) + ∑N
j=1 Gi j H(x j , xi ), where the parameter τ j is

distributed uniformly in an interval [1 −�τ, 1 +�τ ] with the parameter �τ = 0.1,
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the accumulated synchronization error (8.21) is defined by

En(i, j) = 1

T

∫ tn

tn−1

[1 − rn(i, j)]dt, (8.25)

where rn(i, j)eζΨn (i, j) = (eζϑ j +eζϑi )/2, the phase ϑi can be simply defined by ϑi =
arctan(yi/xi ) [6]. Of course, for the above two cases, we should choose suitable
ending conditions (such as Eq. (8.15) and |r ′

link(n0) − 1| < 10−2).
Note that the DGN approach can be also applied to PS in networks with much

more complex non-identical oscillators, such as the networks of Rössler oscillators.
In this case, the order parameters r (t), ri (t), rlink, r i,n

link are defined according to the
phase ϑi .

8.3.2 Enhanced Synchronizability in Adaptive Complex Networks

We first briefly review the stability of networks with time-invariant topology:

ẋi = F(xi ) + σ

N∑

j=1

G0
i j H0(x j ), 1 ≤ i ≤ N , (8.26)

where σ is the overall strength, F(xi ) is the dynamics of individual oscillator, H0(x j )
is the output function. For a generally asymmetric matrix G0 = (G0

i j ) with G0
i j =

W 0
i j Ai j , the variational equation for the synchronous state {xi = s, ∀ i} is

ξ̇i = [DF0(s) − σλl DH0(s)]ξi , (8.27)

where D is the Jacobian operator, λl are the complex eigenvalues of the Laplacian
matrix L (= −G0), satisfying Re(λ1) ≤ Re(λ2) ≤ · · · ≤ Re(λN ). The largest
Lyapunov exponent (LLE), Λ(α, β), of

η̇ = [DF0(s) − (α + iβ)DH0(s)]η (8.28)

is a function of α and β. This function is the master stability function (MSF) [8, 9].
Let R be the region in the complex plane where the MSF provides a negative LLE.
The condition for CS in network (8.26) is that the set {σλl, ∀ l} is entirely contained
in R [8]. Here we only consider the case where the region R is bounded. Then, a
better synchronizability is achieved if simultaneously the ratio Re(λN )/Re(λ2) and
max|Im(λi )| are minimized [16, 19].

For SF networks, the DO mechanism realizes CS in network (8.20) effectively.
During the transition to synchronization in network (8.20), the ratio Re(λN )/Re(λ2)
in network (8.26) with G0 = G approaches the optimal synchronizability Ropt = 3.8
(Fig. 8.9). The value Ropt is determined by the coupling matrix G ′(α) = (G ′

i j (α))
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Fig. 8.9 The ratio
Re(λN )/Re(λ2) as a function
of the adjustment step n in SF
networks. Solid line: CS in
network (8.26) with G0 = G;
dotted line: Ropt. Inset: the
stationary ratio. The
parameters are N = 1, 000,
M = 5, T = 1 s and
ε = 0.001
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with G ′
i j (α) = (ki k j )α/

∑
j∈Ki

(ki k j )α and G ′
i i (α) = −1, which extends the cou-

plings in networks [20]. When α = 0, the eigenratio of the Laplacian matrix of G ′(0)
is minimal and the synchronizability in network (8.26) with G0 = G ′(0) is optimal
[20]. From Eqs. (8.21), (8.22), and (8.23), the incoming link to be adjusted for each
oscillator is always chosen to be the pair of oscillators with the maximal synchro-
nization difference in the previous time interval, which substantially decreases the
ratio Re(λN )/Re(λ2). From Fig. 8.9, this is a dynamical process towards the optimal
synchronizability Ropt.

Here we assign the coupling matrix G0 in network (8.26) by

G0 = Gnorm = Gend/S, (8.29)

where Gend is the coupling matrix of network (8.20) after the adaptation. Since all
oscillators have uniform intensities, the Laplacian matrices of Gnorm and Gend have
equal ratios Re(λN )/Re(λ2). The ratio Re(λN )/Re(λ2) in network (8.26) with G0 =
Gnorm is shown by the stationary value (Fig. 8.9: Inset). When σ = 1.5, all nonzero
eigenvalues of the Laplacian matrix of σ Gnorm are located in a very narrow region
around the real axes in the region R, and the absolute values of imaginary parts are
sufficiently small (Fig. 8.10). Hence the ratio Re(λN )/Re(λ2) is a good indicator
for the synchronizability in network (8.26). In this section the synchronizability
in network (8.26) with G0 = Gnorm is quasi-optimal, compared with the optimal
synchronizability [20].

We discuss the effect of the parameters T and ε on the synchronizability in net-
work (8.26) with G0 = Gnorm (Fig. 8.11). The value ε can be chosen in a wide range,
and the length T can be arbitrary large. In our simulations ε is from [0.0001,0.005].
From Fig. 8.11, the ratio Re(λN )/Re(λ2) is almost independent of the values of T
and ε.

The ratio Re(λN )/Re(λ2) in network (8.26) with G0 = Gnorm increases slightly
with increasing network size N , and can be well-fitted by a power-law dependence,
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Fig. 8.10 (a, b) Distribution of eigenvalues of the Laplacian matrix of σ Gnorm in SF networks.
Circle: CS in network (8.26) with G0 = Gnorm; solid line: the region R. The parameters are
N = 1,000, M = 5, T = 1 s, ε = 0.001 and σ = 1.5

i.e. the synchronizability decreases slightly (Fig. 8.12). From the fitting, we find
that the network (8.26) is still synchronizable till N ≈ 1011. The size of the network
(8.26) that is synchronizable exceeds by several orders of magnitude the size of
unweighted networks (≈ 103) and networks with adaptive couplings (≈ 8 × 105)
[30]. Obviously, this is a great enhancement of the synchronizability in networks,
compared with unweighted networks and other adaptive coupling schemes [30]. It
should be pointed out that for different size of networks, max |Im(λi )| is sufficiently
small (the maximal value is less than 0.06).

The above result can be ensured by the Gerschgorin disk theorem [46]. For the
coupling matrix G0 = Gnorm, all eigenvalues are fully contained within the unit
circle centered at 1. So 0 ≤ Re(λl) ≤ 2, |Im(λl)| ≤ 1, and the largest Re(λN ) will
never diverge, independently of the network size N [19]. During the transition to
synchronization in network (8.20), Smax/Smin always equals to 1. In [15, 30], the syn-
chronizability decreases with the increasing of Smax/Smin, but Smax/Smin increases
with the increasing of the size N . Hence the synchronizability here is better than
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Fig. 8.11 (a, b) The ratio Re(λN )/Re(λ2) for different T (a) and ε (b), in SF networks with N =
1,000, M = 5. Solid line: CS in network (8.26) with G0 = Gnorm; dotted line: Ropt. All the
estimates are averaged over 20 realizations of networks
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Fig. 8.12 The ratio
Re(λN )/Re(λ2) for different
size of SF network (8.26)
with M = 5, τ = 1,
ε = 0.001. Diamond:
unweighted networks;
square: networks with
adaptive couplings [8]; circle:
CS; fitting: solid line; dotted
line: Rε = 40 (the maximal
ratio Re(λN )/Re(λ2) in the
region R). All the estimates
are averaged over 20
realizations of networks 108106104102
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the synchronizability in [30], whose main aim is to reduce the heterogeneity of
intensities adaptively.

From the above analysis, we find that the DO mechanism results in a better syn-
chronizability in SF networks, compared with unweighted networks and adaptive
networks. Now we also discuss the synchronizability in SW networks due to the
DO mechanism.

Obviously, the synchronization in SW networks can be realized by the DO mech-
anism. Similarly, we assign the coupling matrix G0 in SW networks by Eq. (8.29),
after the adaptation. In order to enhance synchronizability in SW networks, we
compare the synchronizability in the unweighted network (8.26) (type I network:
W 0

i j = 1), the degree based weighted network (8.26) (type II network: W 0
i j = 1/ki ),

network (8.26) with adaptive couplings by the Zhou–Kurths method (type III net-
work), and network (8.26) with the coupling matrix being designed by network
(8.20) with instantaneous couplings (type IV networks).

We find that for a fixed small probability p (such as p = 0.003) for adding
long-range connections, the synchronizability in type III networks is better than that
in type I networks, but it is worse than that in type II networks, no matter how large
the size N of the networks is (Fig. 8.13a). However, we find that type IV networks
have a better synchronizability than both type II and type III networks when the
size is not too large. Of course, the smaller the probability p is, the larger is the
size of type IV networks with better synchronizability than both type II and type III
networks. For the fixed size N = 500, we observe similar results in a certain range
of the probability p (Fig. 8.13b). From Fig. 8.13, we see that the synchronizability
in type IV networks is better than those in type II networks and type III networks in
some cases. It is reasonable that type IV networks have better synchronizability than
type III networks. This is because the DO mechanism ensures uniform intensities
of all oscillators in type IV networks. Now we further analyze the reason why type
IV networks have better synchronizability than type II networks in a certain range
of the probability p.
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Fig. 8.13 For SW networks, the ratio Re(λN )/Re(λ2) as a function of the network size N for a
fixed probability p = 0.003 (a), and the probability p for a fixed size N = 500 (b). Square: type I
networks; diamond: type II networks; circle: type III networks; big triangle up: type IV networks;
dashed line: the maximal ratio Re(λN )

Re(λ2) in the region R. The parameters are K = 4, γ = 0.002,
T = 1 s, ε = 0.001. All the estimates are averaged over 20 realizations of networks

In order to do so, we slightly modify SW networks. The initial network is a
K−nearest-neighbor coupled network consisting of N oscillators arranged in a ring,
with each oscillator i being adjacent to its K neighbor oscillators i ± 1, · · · , i ±
K/2, and with K being even. Then one adds with probability p a long-range con-
nection between a pair of oscillators with indices satisfying

n1 ≤ min {|i − j |, N − |i − j |} ≤ n2, (8.30)

where 0 ≤ n1, n2 ≤ N/2 are two positive integers. This kind of networks is called
type V networks. Based on type V networks, we adjust the coupling strengths by the
DO mechanism. After the adaptation, we define the average coupling strength 〈Wv〉
over the kW links having the same v = min {|i − j |, N − |i − j |}:

〈Wv〉 = 1

kW

∑
Gi j . (8.31)

Further, for unweighted type V networks, the average load 〈Lv〉 over the kL links
having the same v is given by

〈Lv〉 = 1

kL

∑
Li j , (8.32)

where the load Li j of the link connecting oscillators i and j quantifies the traffic
of the shortest paths passing that link. Here the size of type V networks is N =
300 and the probability p = 0.2. For different n1 and n2, we plot the relationship
between 〈Wv〉 and v (Fig. 8.14a, d, g), and the relationship between 〈Lv〉 and v
(Fig. 8.14b, e, h), respectively. From these subfigures, we conclude that 〈Wv〉 has a
similar dependence on v as 〈Lv〉, which is further verified by the relationship 〈Wv〉 ∼
〈Lv〉 (Fig. 8.14c, f, i). This implies that the adaptation due to the DO mechanism may
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Fig. 8.14 The dependence of 〈Wv〉 on v in (a, d, g), of 〈Lv〉 on v in (b, e, h), and the relationship
between 〈Wv〉 and 〈Lv〉 in (c, f, i), respectively. n1 = 0, n2 = 30 (a, b, c); n1 = 60, n2 = 90 (d,
e, f); n1 = 120, n2 = 150 (g, h, i). The parameters in type V networks are N = 300, K = 4,
p = 0.2, T = 1 s, ε = 0.001

lead to a similar synchronizability as the load based weighted networks. This may
in part explain why type IV networks have a better synchronizability than type II
networks in a certain range of the probability p for adding long-range connections.

Remarks. From the above subsection, we can extend the DO mechanism to CS in
network (8.20) with the coupling function H(x j , xi ) = H(x j (t − τ0)) − H(xi ) and a
small delay time τ0 (such as τ0 ≤ 2). The DO mechanism ensures that all oscillators
have uniform intensities, which leads to the existence of a synchronous manifold
in network (8.20). However, it can not be realized by the dynamical mechanism
proposed in [30]. Due to the DO mechanism, we can also obtain a better synchro-
nizability in SF and SW networks due to CS in networks with delayed couplings.
Here we omit the corresponding results.

From the DGN approach and the DO mechanism, the two coupling schemes
are “winner-take-all” strategies. This implies that the intensity Si for oscillator i
increases to infinity as the adjustment time n tends to infinity. Hence there is one
shortcoming: we should choose suitable conditions to end the adaptation of the
above two mechanisms. In fact, this shortcoming can be overcome by slightly modi-
fying the adjustment (8.8) and (8.9) for the DGN approach and the adjustment (8.23)
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for the DO mechanism. Here the adjustment of couplings for the incoming link with
the maximal competitive ability is modified as follows:

W n+1
iμn

i
:= W n

iμn
i
+ εe−n/k0 (8.33)

for the DGN approach, and

W n+1
i j n

max
= W n

i jn
max

+ εe−n/k0 (8.34)

for the DO mechanism, where k0 is a suitable positive integer. From Eqs. (8.33) and
(8.34), the intensity Si still increases, and all oscillators have uniform intensities.
However, the intensity Si for each oscillator can not increase to infinity, and can be
bounded by the limit S̄ = limn→∞Si for all oscillators, where

S̄ = εe−1/k0/(1 − e−1/k0 ). (8.35)

Obviously, we can adjust the ultimate intensity for all oscillators by a suitable
parameter k0. When k0 is larger, the intensity S̄ is larger; when k0 is smaller, the
intensity S̄ is also smaller. It should be noted that we obtain similar results if we
choose the parameters k0 = 500, ε = 0.01 for PS in the Kuramoto models and
k0 = 1,000, ε = 0.001 for CS in networks of Rössler oscillators, respectively.

8.4 Conclusions

In this chapter, we introduce two dynamical optimization coupling mechanisms for
getting different kinds of synchronization in adaptive complex networks, whose
oscillators could be either identical or non-identical. For each oscillator, we adjust
only one incoming link’s strength in different time intervals while the other incom-
ing links’ strengths remain constant. The dynamical optimization coupling mech-
anisms are in effect “winner-take-all” strategies. If one incoming link for each
oscillator has the maximal competitive ability in its neighborhood in different time
intervals, its strength increases by a small value. We realize different kinds of syn-
chronization in adaptive complex networks with instantaneous or delayed couplings,
as well as ensure that all oscillators have uniform intensities during the transition to
synchronization. We also enhance the synchronizability in complex networks with
identical oscillators.
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Chapter 9
Contact Processes and Moment Closure
on Adaptive Networks

Anne-Ly Do and Thilo Gross

Abstract Contact processes describe the transmission of distinct properties of
nodes via the links of a network. They provide a simple framework for many phe-
nomena, such as epidemic spreading and opinion formation. Combining contact
processes with rules for topological evolution yields an adaptive network in which
the states of the nodes can interact dynamically with the topological degrees of
freedom. By moment-closure approximation it is possible to derive low-dimensional
systems of ordinary differential equations that describe the dynamics of the adaptive
network on a coarse-grained level. In this chapter we discuss the approximation
technique itself as well as its applications to adaptive networks. Thus, it can serve
both as a tutorial as well as a review of recent results.

9.1 Introduction

Contact processes are based on an elementary observation: Individuals are altered
and shaped through interaction with others. Equally basic is the observation that
individuals can often decide with whom to interact. Both of these observations can
be modeled by a single network, in which nodes correspond to individuals while
links correspond to interpersonal connections. The dynamics of this network is gov-
erned by two processes: Topology-dependent transmission of dynamical states of
individuals, and state-selective evolution of the links. Hence, the combination of the
two gives rise to an adaptive network [9].

Within the framework of contact processes on adaptive networks, attention has
focused particularly on opinion formation [2, 4, 6, 7, 12, 14–16, 24] and epidemic
spreading [8, 10, 11, 20, 21, 23, 25].

Comparing the models studied in the context of the different applications reveals
many similarities and some distinct differences. Similarities are found mainly in the
general set-up of the models. First, the transmission of states is strictly limited to
the neighborhood of a node. Second, to account for differences among individuals
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and to facilitate computation, the processes in the model are in general defined
stochastically. Third, concerning the topological evolution, the vast majority of
models allows only for rewiring of links. In contrast to other processes, rewiring
conserves the number of nodes and links, which is advantageous for numerical simu-
lation. Finally, all numerical models discussed in this chapter apply an asynchronous
update procedure, in which a randomly selected node is updated in any one step.
This is believed to yield the best approximation to a continuous time system [3].

The differences between models of epidemics and models of opinion formation
arise mainly from differences in the physics of the underlying real-world processes:
In epidemics, there is an objective difference between infected and healthy individu-
als, and the processes are inherently state-specific: The infection can be transmitted
along the links, while it is obvious that the same is not possible for the healthy state.
By contrast, in models of opinion formation the different opinions are in general
treated equally and therefore appear symmetrically in the model. One important con-
sequence of the state-dependence of epidemic processes is that additional processes
have to be introduced in the model if the number of states is increased. Indeed,
many models of epidemics extend the scenario of healthy and infected individuals
by additional states to model distinct temporal phases of the infection. If for instance
a state is introduced, which corresponds to individuals that have recovered from the
disease, new processes have to be formulated that govern transitions to and from
this state. Conversely, the symmetry of state-dependence in opinion-formation pro-
cesses enables us to increase the number of states without increasing the number
of processes in the system. On the one hand this means that a system with a small
number of opinions greater than two will behave very similarly to a system with
just two opinions [16]. On the other hand it allows to consider systems in which
infinitely many opinions compete based on a finite number of processes.

Regardless of the model, the investigation of contact processes on adaptive net-
works poses characteristic difficulties. Full agent-based simulations are fundamen-
tally inefficient. In order to determine the long-term behavior of the system we have
to simulate for a long time. During this time the simulation produces information,
namely a dynamical trajectory, which comes at a computational cost although it is
generally not used in the analysis of the system. By contrast, the theory of dynamical
systems offers many tools, such as Newton’s Method and bifurcation analysis, that
enable us to determine the long-term behavior of the system directly. In order to
apply these methods the adaptive network needs to be described in terms of emer-
gent variables, governed by differential equations or discrete time maps. For contact
processes, convenient variables are the densities of certain subgraphs called network
moments. A moment expansion of the dynamics results in an infinite cascade of
differential equations. This cascade can be truncated by a moment-closure approx-
imation which is explained below. In practice, it is often sufficient to approximate
the network by a small number of differential equations (e.g. 3), which allows for
analytical treatment of the system.

In this chapter, we aim to provide an overview of recent studies concerned with
contact processes on adaptive networks. Throughout these studies certain system
level phenomena, like the emergence of state homogeneous subpopulations, are
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found to recur. The underlying mechanisms of these phenomena are addressed and
compared. In Sect. 9.2 various papers are reviewed which treat opinion formation by
means of different models. A comparison of these models provides insights into the
topic per se and, moreover, into the relation between the microscopic rules and the
system level behavior. Section 9.3 focuses on models of epidemic spreading. The
application of a moment closure approximation is demonstrated by means of the
adaptive SIS-model. Thereafter we launch into a more general discussion of moment
closures. In particular we emphasize that the adaptivity of the network improves the
efficiency of this tool.

9.2 Opinion Formation – Theme and Variations

Models of opinion formation explore the spreading of opinions in social networks.
Current models assume that this spreading is governed by two competing processes:
social adjustment and social segregation. The former means that connected individ-
uals adjust their views, the latter that individuals maintain contacts preferentially
to like-minded individuals. In general, both processes reduce the number of links
between nodes with conflicting opinions and lead to the formation of homogeneous
social communities holding a uniform opinion. A network which is entirely com-
posed of such consensus communities is said to be in the consensus state. While
almost all models ultimately reach a consensus state, the convergence time τc and
the distribution of community sizes Ps can differ markedly depending on the relative
rate of the competing processes.

As interpersonal interactions are highly complex and difficult to capture in mod-
els, a variety of different modeling approaches have been proposed. This diversity
provides the opportunity to investigate which details of the microscopic description
affect the system level properties. Below, models of opinion formation are compared
that differ mainly in the three aspects subsequently described.

The first aspect concerns the number of opinions in the model. As we have men-
tioned above, essentially two cases have to be distinguished: Models in which only
two alternative opinions exist, and those in which individuals can choose from a
continuous spectrum of opinions. The first, so-called voter-like approach models
typical electoral decisions, where the number of choices is limited by the number of
candidates. The second approach applies to opinions such as religious belief, where
in principle an infinite number of choices exists.

The second aspect in which models differ is the treatment of social segregation.
A link that connects individuals with conflicting opinions can either be rewired or
broken entirely. In the first case the number of links is conserved, and therefore the
process is reversible. In the second case the number of links is decreased, therefore
the process is irreversible unless it is counteracted by another process in which new
links are created. So far, the creation of links has hardly been considered in models
of opinion formation as it causes numerical difficulties and introduces additional
complexities.
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Another difference between the models is how the symmetry of social inter-
actions is broken. In almost all models of opinion formation adjustment of views
is conceived as an asymmetric act. However, in the absence of a parameter that
measures the persuasive power or the social influence of an individual, the imple-
mentation of asymmetry between interacting nodes is arbitrary: If we first randomly
chose a node i and subsequently randomly chose one of its neighbors j , then i
might either adopt the opinion of j or vice versa. The first option defines a so-called
reverse, the second a so-called direct update rule. It is known that both rules result
in qualitatively different behavior [16].

In the following we discuss four major contributions to the subject of opinion
formation on adaptive networks. Section 9.2.1 focuses on a model by Holme and
Newman, which features a continuous spectrum of opinions [12]. Social segrega-
tion is modeled through rewiring and social adjustment through a reverse opinion
update. The model which will be discussed in Sect. 9.2.2 can be considered as
opposite approach: In [6] Gil and Zanette investigate a voter-like model, in which
social segregation is modeled through deletion of links. The model by Kozma and
Barrat [14], which is discussed in Sect. 9.2.3, again considers the choice between
infinitely many opinions. The main difference to [12] is that social segregation and
social adjustment are restricted by an additional parameter, which can be interpreted
as bounded tolerance. In Sect. 9.2.4 a paper of Nardini et al. is addressed that com-
pares two voter-like models, both of which use identical rewiring rules but differ
with respect to the direct/reverse implementation of the asymmetric adjustment pro-
cess [16].

9.2.1 Continuous Opinions

Holme and Newman were the first to report that the diversity of opinions sustained
in a society undergoes a phase transition if the relative rate of social adjustment and
social segregation crosses a critical threshold [12]. In their paper, they consider the
case of opinions which are in principle unlimited in number. A node n is initially
assigned an opinion gn at random. In each timestep, a node i is randomly chosen
and updated in one of two ways: With probability 1−φ, i is convinced by one of his
neighbors j and gi is set to equal g j . With probability φ, node i randomly selects
one of its links and reconnects it to a node with opinion gi .

Note that this parameterization in terms of φ is advantageous as only the relative
rate of the two processes is important. Rescaling the sum of the rates of the two
processes to one normalizes the frequency of events to one per update and thus
effects an optimization of simulation time. Although this is rarely spelled out this
parameterization is indeed an event-driven simulation of the two competing pro-
cesses following the Gillespie algorithm.

In simulations, the system ultimately approaches a consensus state, in which all
individuals in the same connected component hold the same opinion. As mentioned
above, there is no objective difference between different opinions. Thus, in analyz-



9 Contact Processes and Moment Closure on Adaptive Networks 195

Fig. 9.1 Distribution of
community sizes in the
consensus state for φ below
(a), at (b) and above the
critical point (c). Numerical
data are averaged over 104

realizations for each value of
φ. N = 3,200, k̄ = 4. Figure
extracted from [12]
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ing the consensus state it is not of interest which particular opinions survive, but
how many and how the followers are distributed. This information is captured by
the component-size distribution Ps .

Figure 9.1 summarizes the dependence of Ps on φ. For φ = 0, no connections are
rewired, so the component-size distribution of the initial random graph is conserved.
In a random graph with mean degree 〈k〉 > 1 there is one giant component of the
size O(N ) and O(N ) small components of size O(1) (see Fig. 9.1a). We therefore
find a large majority holding one opinion and many small groups holding different
opinions. For φ = 1, opinions never change, so the final cluster-size distribution
equals the initial distribution of opinions. In particular the giant component splits
into fragments of finite size (see Fig. 9.1c).

Applying a finite-size scaling analysis, Holme and Newman are able to show that
a critical parameter value φc ≈ 0.458 exists, at which a continuous phase transition
takes place. At this transition the distribution of followers Ps approaches a power-
law (Fig. 9.1b).

The convergence time τc needed to reach the consensus state is shown to scale
differently in the regimes to both sides of the phase transition. For φ = 1 τc scales
as N and for φ = 0 as log(N ). For φ ≈ φc, τc obeys a scaling relation of the form
N−γ with the critical exponent γ = 0.61 ± 0.15 based on numerical simulations.

9.2.2 Two-Valued Choice and Irreversible Discord

The scenario that Gil and Zanette discuss in [6, 24] deviates in two respects from the
one investigated above. Firstly, the regarded model is voter-like which means that
choices are two-valued. Secondly, disagreeing neighbors break contact irrevocably.
Starting from a fully connected network with randomly distributed opinions, con-
flicts are settled by convincing neighbors or cutting links. As above, rates of both
processes are subsumed under one parameter q, which is defined as the probability
of opinion transmission.
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The dependence of the community-size distribution on q described by Gil and
Zanette matches the results of Holme and Newman. Differences in the set-up are
solely mirrored by “boundary effects”: In the absence of topological evolution the
number of opinions in the final state equals the number of initially disconnected
communities, which is one in the case under consideration and greater than one in
[12]. In the opposite limit, i.e., without contact interactions, the number of discon-
nected communities in the final state equals the number of initial opinions, which is
two in the model of Gil and Zanette and greater than two in that of Holme and New-
man. For intermediate values of q (φ respectively), the mean of the distribution Ps

shifts in both models from smaller to larger s as contact interactions gain influence.
Let us now discuss the underlying mechanisms that lead to the formation of sim-

ilar community-size distributions in the two different models. In both models, the
processes of social adjustment and social segregation occur only on links between
disagreeing neighbors, which we therefore call active links. The consensus state
is reached when all of these active links have vanished. Although segregation is
modeled by rewiring in [12] and by cutting links in [6] the effect is in both cases
a reduction of active links. Social adjustment results in both models either in an
activation or a deactivation of links. Note however, that in voter-like models adjust-
ment reverses the state of all links connecting to the target node. By contrast, in
models with continuous opinions, active links connecting to the target node may
remain active. Nevertheless, we know that both models eventually reach consensus
even without segregation, therefore social adjustment has to decrease the number of
active links in average.

While the effect of both, adjustment and segregation, is in the long run a reduc-
tion of active links, both processes have a different impact on the consensus time τc.
As we have seen above, consensus through social adjustment requires a convergence
time which scales like N . Social segregation significantly accelerates consensus but
separates neighbors, whose opinions could in the long term have converged through
social adjustment. Thus, increased segregation leads to increased fragmentation,
which explains the segregation-rate dependent changes of the distribution Ps as well
as their independence of the differences between [12] and [6].

The link-deletion process in the model of Gil and Zanette reveals a phenomenon,
which is not obvious in the model of Holme and Newman. Even though the number
τc(q) of events necessary to reach consensus decreases with decreasing q, the num-
ber of segregation events (1 − q)τc(q) depends non-monotonically on q. As shown
in Fig. 9.2, a critical parameter value qmin exists, at which the fraction r of remain-
ing links in the consensus state is minimized, i.e. at which a maximum number of
deletion events occur. This can be understood intuitively: The fraction of remaining
links r is minimized if between two subsequent opinion flips the majority of active
links is deleted but no consensus communities are isolated. In such a situation an
opinion flip almost exclusively activates links, the majority of which will in turn be
deleted. If less than the critical number of active links are deleted, the opinion flip
not only activates but also inactivates links. These inactive links, unless reactivated
later, are not available for deletion, and thus r increases. If on the other hand more
than the critical number of active links are deleted, the probability increases that
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Fig. 9.2 Fraction r of remaining links as a function of the parameter q. Different symbols cor-
respond to different system sizes, N = 20 (×), 50 (◦), 100 (−) and 500 (•). The dashed line
represents the analytical approximation for large N . Inset (a): detailed view of the same data for
small q. Inset (b): Position qmin (◦) and depth rmin (•) of the minimum of r as a function of N .
Figure extracted from [6]

consensus communities are isolated. Internal links of such communities can not be
activated in subsequent adjustment events, increasing r .

Based on the similarity of the two compared models, it is arguable whether the
critical parameter φc in [12] corresponds to the same phase transition as qmin in
[6]. Encouraging in this regard are recent findings of Vazquez et al. that indicate
the existence of a generic fragmentation transition for different voter-like models
[22]. One may argue that the critical parameter φc is independent of the system size
while qmin decreases with growing N (cf. Fig. 9.2b). However, the N -dependence
of qmin is only a result of the initial conditions chosen in [6]: As the initial graph
is fully connected, an opinion-flip event affects O(N ) links, whereas a link-deletion
event affects one link regardless of the system size. The relative rate of adjustment
and segregation events, which minimizes the fraction of remaining links, therefore
approaches zero if N goes to infinity.

9.2.3 The Influence of Bounded Tolerance

The influence of tolerance on opinion formation is investigated in [14, 15]. In these
papers, Kozma and Barrat consider a scenario where opinions can take continu-
ous values. A global parameter d is introduced describing the tolerance range of
individuals. If opinions of neighbors are closer than the tolerance range, i.e., if
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∣∣gi − g j

∣∣ < d, both adopt the mean opinion with probability 1 − w. If opinions
of neighbors differ more than the tolerance range, i rewires with probability w to a
randomly chosen node k.

If defined in this way, bounded tolerance has two different effects: On the one
hand it reduces the selectivity of social segregation. On the other hand it enhances
selectivity of social adjustment. To illustrate these points let us first consider the
effect of bounded tolerance in the absence of segregation. In this case a consensus
opinion in a component is only reached if tolerance intervals of neighbors overlap.
Otherwise “tolerance patches” may form in which nodes are locally in consensus
but do not communicate with nodes outside the patch. In these tolerance patches
conflicting opinions can survive indefinitely and thus the equivalence of topological
components and consensus communities in the final state is broken. However, to
describe the final state we stick with the terminology, which was introduced above,
and only adapt the meaning of the term “consensus community” slightly: Used in
the present context, it refers to communities of like-minded individuals that are nec-
essarily connected among themselves but not necessarily isolated from individuals
of other communities. Kozma and Barrat show that, in the absence of segregation,
three parameter regimes can be identified (cf. Fig. 9.3): For large tolerance d, the
set-up matches the φ = 0 case in [12]. Consequently, the system reaches a state
where nearly all nodes belong to a single community of like-minded individuals.
Only when d falls below a critical value dc ≈ 0.256, the enhanced selectivity of
social adjustment is noticeable. Then, the final state becomes polarized, i.e. two
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Fig. 9.3 Size of the largest (open symbols) and second largest (filled symbols) homogeneous opin-
ion cluster as a function of the tolerance d. The color coding for the system size is the same for the
largest and second largest cluster. Inset: Size of the largest opinion cluster as a function of d for
different rewiring rates w. Figure extracted from [14]
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macroscopic communities are observed to coexist with a number of finite size com-
munities. Finally, for very small d, an extensive number of small communities form
a fragmented final state.

The onset of rewiring is found to have different effects in the different parameter
regimes. On the one hand, it impedes complete consensus: the larger the rewiring
rate, the larger tolerance values are necessary to reach complete consensus (cf. inset
Fig. 9.3). On the other hand, in the fragmented regime, it leads to an enlargement
of the consensus-community sizes. This can be explained as follows: For large tol-
erance, neighbors with overlapping tolerance intervals prevail. Opinions of neigh-
bors that differ more than d are altered through interaction with other neighbor-
ing nodes and eventually become closer than d. Hence, the key to the formation
of extended communities lies in the possibility of repeated contact interactions.
As in the previously studied models, rewiring disconnects communities prema-
turely and thereby impedes complete consensus. For small tolerance, the limiting
factor for the size of consensus communities is the small number of neighbors
with overlapping tolerance intervals. In this situation, rewiring allows each node
to find those nodes it can communicate with and thus facilitates the merging of
small groups.

Indeed, the two different effects of rewiring can also be seen in the model of
Holme and Newman. The initial giant component is split due to rewiring. The initial
components of finite size, which corresponds to the limit of small tolerance, gain
size (cf. Fig. 9.1).

9.2.4 Asymmetric Insertion of Influence

All models presented so far feature asymmetric interactions between a randomly
chosen node and a random neighbor. In contrast to a randomly chosen node a
random neighbor is not drawn in an unbiased way – it is reached by following a
link and therefore nodes with higher degree are preferentially selected as random
neighbors. The symmetry of node and neighbor in the rules of the model is in
some cases broken by definition of the contact process [6, 12], and in others by
the definition of the rewiring mechanism [12, 14]. The effect of the asymmetry of
the interactions is studied by Nardini et al. [16] via a mean field analysis. Nardini
et al. show that, in case of inhomogeneous networks, the implementation of the
asymmetry may decisively influence the behavior of the system. They compare two
voter-like models that differ with respect to the asymmetry of the opinion updates.
In both models each timestep begins with choosing an individual i and one of its
neighbors j at random. If i disagrees with j , it cuts the link and establishes a new
link to a randomly chosen node k with probability φ. With probability 1 − φ, one
of the two convinces the other of its opinion. The difference in the models lies in
the node that is convinced. The first alternative is a reverse voter-like model (rVM),
in which i is convinced by j . The second alternative is the direct voter-like model
(dVM), in which j is convinced by i .
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Simulations show that in both models nodes of the majority opinion have a
higher average degree than nodes of the minority opinion. Nodes with high degree,
however, are preferentially selected as random neighbors j [1, 17], and hence, the
random neighbor j is likely to hold the majority opinion. That is, of two dissenting
neighbors, a random node i and its random neighbor j , i probably holds the minority
and j the majority opinion. In the rVM the majority opinion reproduces itself as j
convinces i . Thus, once a disparity between both opinions emerges it increases. By
contrast, in the dVM the majority opinion is repressed as j is convinced by i . Any
disparity in the opinion distribution will therefore undergo damping.

In summary, adaptivity generates a positive feedback in case of the rVM impelling
the system toward an accelerated consensus. In case of the dVM the generated feed-
back is negative resulting in a dynamical state where both opinions are in average
equally represented. For the parameter values chosen in the paper no consensus is
reached in the latter case. Nevertheless, small networks fluctuations may still take
the system eventually to an absorbing state in which one opinion vanishes. The
different routes to consensus are reflected in the specific convergence time τc(N )
observed in numerical simulations (see Fig. 9.4). For the rVM, τc displays a logarith-
mic scaling behavior τc(N ) ∝ ln(N ) while for the dVM, τc(N ) grows exponentially
with the system size.

Remarkably, the qualitative differences between the dVM and the rVM are set-
tled if an additional neutral state is introduced, which is the case in the so-called
naming game. In this scenario, change of opinion is impeded in the sense that indi-
viduals have to pass a transient state before defecting to the opposite view. As long
as an individual is in this state, it is accessible for convincing attempts from rep-
resentatives of both opinions. To model the naming game Nardini et al. choose the
following implementation: The competing opinions are assigned with the values +1
and −1 and the additional neutral state is denoted by 0. Contact interactions between
disagreeing neighbors alter the state of the passive node by ±1, whereby the sign
depends on the state of the active node. If the active individual is in the neutral state,
it chooses to represent one of the opinions +1 or −1 at random. In analogy to the
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Fig. 9.4 (a) Convergence time for the reverse voter-like model as a function of the system size for
various rewiring rates. Inset: same for the direct voter-like model. (b) Convergence time for the
direct (filled symbols) and reverse naming game. For each parameter set, data are averaged over
100 realizations of the system. Figure extracted from [16]
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direct and reverse voter-like models, a distinction can be made between the direct
and reverse naming game depending on whether the random node or the random
neighbor takes the active part.

On a static network the consensus time τc in naming games is known to scale like
ln(N ). Simulations yield that in the adaptive case τc(N ) remains logarithmic irre-
spective of the chosen modality of asymmetric opinion update (cf. Fig. 9.4b). This
deviation from the behavior of voter-like models is elegantly explained by Nardini et
al.: Interactions via links between followers of the competing opinions comply with
the dynamics of the dVM (rVM respectively) and exhibit the characteristic negative
(resp. positive) dynamical feedback. However, interactions with neutral nodes exert
a positive feedback regardless of whether the direct or reverse rule is used. As links
to neutral nodes are far more common than links to nodes of the opposing opinion,
these links dominate the behavior and hence in total a positive feedback is observed.

9.2.5 Other Approaches

A slightly different setup for the contact process is explored by Benczik et al. [2],
Grabowski and Kosiński [7] and Erhardt et al. [4]. Instead of occasional interactions
between two randomly chosen neighbors, they consider situations where a node
is updated by evaluation of all influences from its entire neighborhood. All three
models capture various additional properties. Thus, besides internal state dynamics
Ehrhardt et al. include adjustable link creation and removal processes as well as
sophisticated partner selection mechanisms. Equally elaborated are the topological
evolution rules Grabowski and Kosiński use: the idea of bounded tolerance is com-
bined with a set of parameters that model individually distinct sociability. Further-
more, some links, which represent basic connections like family ties, are excluded
from the topological changes. Finally, Benczik et al. investigate a topological evo-
lution rule in which a continuous parameter captures the individuals’ tendency to
rather avoid or seek contact with dissenting individuals. For more details we refer
to the original publications.

An interesting enhancement of the concept of bounded tolerance is discussed
in [5]. In this paper, Gargiulo and Mazzoni replace the global tolerance parameter d
by state dependent tolerance. The underlying hypothesis is that in realistic systems
tolerance decreases if opinions get extreme. Regrettably, the approach is so far only
explored in simulations in which tolerance-dependent segregation and tolerance-
dependent adjustment occur in consecutive temporal phases of the evolution. So, an
exploration in the context of adaptive networks remains to be done.

9.3 Epidemic Spreading and Moment Closure

Subsequently, we focus on models of epidemic spreading, the second intensively
studied topic in the class of contact processes. Though both, models of epidemic
spreading and models of opinion formation, base on the concept of locally



202 A.-L. Do and T. Gross

transmitted properties, epidemiological models are essentially distinguished from
those discussed in Sect. 9.2. In epidemiological models, different single node states
signify different stages of a disease. This interpretation imposes far-reaching restric-
tions on the processes modeling the transitions between the states. Construing states
as stages of a disease directly attaches a meaning to the transitions between states.
Thus, transitions can only occur between appointed states, which reminds of the
naming game but differs from the scenario reviewed in Sect. 9.2.1. Moreover, the
asymmetry of the contact process is determined by the qualitative differences of
the states: Via a link between an infected and a healthy individual, only the infected
state can be spread. This is contrary to models of opinion formation where the asym-
metry of the convincing act was implemented arbitrarily. Hence, for each state in an
epidemiological model we have to formulate specific processes that govern transi-
tions to and from this state. In practice, the transmission of the disease is the only
real contact process, while all other processes describe the subsequent progression
through epidemic stages which happen only locally.

While models of opinion formation were shown to vary with respect to the
implementation of asymmetry, the number of states, and the topological evolution
rules, models of epidemic spreading do not exhibit any variations with respect to
the implementation of asymmetry. Variations in the number of single-node states
are impeded as the introduction of new states necessitates the introduction of new
processes. Variations of the topological evolution rules are discussed, however to a
minor extend.

The substantial coherence among different adaptive-network models of epidemi-
ological processes allows us to focus exemplarily on the adaptive SIS-model, which
features only two states called S, for susceptible, and I, for infected. By means of
this simple model, we illustrate the conceptual and methodical framework likewise
applying for more complicated scenarios (Sect. 9.3.1). In particular, we demonstrate
the use and handling of moment-closure approximations, a common tool in epidemi-
ology [13, 18, 19]. Section 9.3.2 launches variations and extensions of the basic SIS
model, that aim for more realism [21, 23, 25].

9.3.1 The Adaptive SIS Model

The simplest model, in which epidemic dynamics and topological evolution can be
combined is the SIS model. It describes a scenario in which each individual within a
social network is either susceptible (S) to the disease under consideration or infected
(I). Contacts between individuals are denoted as SS-links, SI-links, and II-links
according to the states of the individuals they connect. Susceptible individuals can
become infected if they are in contact with an infected individual. The transmission
of the disease along a given SI-link is assumed to occur at a rate p. Once an indi-
vidual has been infected she has a chance to recover, which happens at a rate r and
immediately returns the individual to the susceptible state. In the adaptive SIS model
proposed by Gross et al. [11] another process completes the circle of infection and
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recovery: If a susceptible individual is connected to an infected individual she may
want to break the link and instead establish a new link to another susceptible. On a
given SI-link this rewiring occurs at a rate w.

Note that the rewiring process has been introduced “optimistically”: Only sus-
ceptible nodes rewire, and they manage unerringly to rewire to a node that is also
susceptible. Under these conditions rewiring always reduces the number of links that
are accessible for epidemic spreading and therefore the prevalence of the disease,
i.e., the density of infected, is always reduced by this form of rewiring behavior.
Less optimistic rewiring rules have been explored by Zanette [23], and Zanette and
Risau-Gusmán [20, 25] and will be addressed in Sect. 9.3.2.

Let us now study the dynamics of the adaptive SIS model with the tools of nonlin-
ear dynamics. For this purpose we need to derive a low-dimensional emergent-level
description of the system. Convenient observables, so-called moments, are given
through the densities of certain subgraphs. The number of links contained in such
a subgraph is called the order of the respective moment. Dynamical properties of
the moments, averaged over many realizations of the stochastic process, can be
summarized in a system of ODEs. Due to the contact process, however, dynamics
of moments of order n essentially depend on moments of order n + 1, resulting in
an infinite cascade of differential equations. Its truncation necessitates an approx-
imation of higher order moments in terms of lower order moments, the so-called
moment closure approximation.

Below, we will derive an emergent-level description of the adaptive SIS model
using moment closure approximation. In the SIS model, the moments of zeroth order
are the densities of infected and susceptibles, [I ] and [S]. First order moments
are the per-capita densities of SS-, SI- and II-links, [SS], [SI ] and [I I ], and
second order moments the densities of triplets [ABC] with a given sequence
of states A, B, C ∈ {I, S}. Due to the conservation relations S + I = 1 and
[SS] + [SI ] + [I I ] = 〈k〉 the dynamics of the zeroth and first order moments are
entirely captured by the balance equations for [I ], [SS], and [I I ]. A further advan-
tage of the normalization relations is that we can write all subsequent equations as
if we were dealing with a number of individual nodes and links instead of densities.

Let us start by writing a balance equation for the density of infected nodes. Infec-
tion events occur at the rate p[SI ] increasing the number of infected nodes by one;
Recovery events occur at a rate r [I ] and reduce the number of infected nodes by
one. This leads to

d

dt
[I ] = p[SI ] − r [I ]. (9.1)

The equation contains the (presently unknown) variable [SI ] and therefore does not
yet constitute a closed model. One way to close the model were a mean field approx-
imation, in which the density of SI-Links is approximated by [SI ] ≈ 〈k〉[S][I ].
However, in the present case this procedure is not feasible: Rewiring does not alter
the number of infected and hence does not show up in Eq. (9.1). Thus the mean-
field approximation is not able to capture the effect of rewiring. Instead, we will
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treat [SI ], [SS], and [I I ] as dynamical variables and capture their dynamics by
additional balance equations. This approach is often called moment expansion as
the link densities can be thought of as the first moments of the network.

As stated above, it suffices to derive balance equations for the densities of SS- and
II-links. The density of SI-links can then be obtained from the conservation relation.
First the II-links: A recovery event can destroys II-links if the recovering node was
part of such links. The expected number of II-links in which a given infected node
is involved is 2[I I ]/[I ]. (Here, the two appears since a single II-link connects to
two infected nodes.) Taking the rate of recovery events into account, the total rate at
which II-links are destroyed is simply 2r [I I ].

To derive the rate at which II-links are created is only slightly more involved.
In an infection event the infection spreads across a link, converting the respective
link into an II-link. Therefore every infection event will create at least one II-link.
However, additional II-links may be created if the newly infected node has other
infected neighbors in addition to the infecting node. In this case the newly infected
node was previously the susceptible node in one or more ISI-triplets. Thus, we can
write the number of II-links that are created in an infection event as 1+ [I S I ]/[SI ].
In this expression the “1” represents the link over which the infection spreads while
the second term counts the number of ISI-triplets that run through this link. Given
this relation we can write the total rate at which II-links are created as p[SI ](1 +
[I S I ]/[SI ]) = p([SI ] + [I S I ]).

Now the SS-links: Following a similar reasoning as above we find that infection
destroys SS-links at the rate p[SSI ]. Likewise SS-links are created by recovery at
the rate r [SI ]. In addition SS-links can also be created by rewiring of SI-links. Since
rewiring events occur at a rate w[SI ] and every rewiring event gives rise to exactly
one SS-link the total rate at which rewiring creates SS-links is simply w[SI ].

Summing all the terms, the dynamics of the first moments can be described by
the balance equations

d

dt
[SS] = (r + w)[SI ] − p[SSI ] (9.2)

d

dt
[I I ] = p([SI ] + [I S I ]) − 2r [I I ]. (9.3)

Again, these equations do not yet constitute a closed model, but depend on the
unknown second moments [SSI ] and [I S I ]. However, the first order-moment
expansion captures the effect of rewiring. While we will return to the equation above
later, a feasible way of closing the system is to approximate the second moments by
a mean-field-like approximation: the pair approximation.

Let us start by approximating [I S I ]. One half of the ISI-triplet is actually an
SI-link, which we know occurs at the density [SI ]. In order to approximate the
number of ISI-triplets running through a given link we have to calculate the expec-
tation value of the number of additional infected nodes that are connected to the
susceptible node. For this purpose let us assume that the susceptible node of the
given SI-link has an expected number of 〈q〉 links in addition to the one that is
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already occupied in the SI-link. Every one of these links is an SI-link with prob-
ability [SI ]/(〈k〉S). (Here, we have neglected the fact that we have already used
up one of the total number of SI-links. This assumption is good if the number of
SI-links is reasonably large.) Taking the density of SI-links and the probability that
they connect to additional SI-links into account we obtain

[I S I ] = κ
[SI ]2

[S]
(9.4)

where κ = 〈q〉/〈k〉 remains to be determined. The quantity 〈q〉 that appears in κ is
the so-called mean excess degree. Precisely speaking it denotes the expected number
of additional links that are found by following a random link.

Subsequently we will assume that κ = 1. This assumption is substantiated in the
reasoning of [8]. Here, we only state that it allows us to approximate the density
of triplets by [I S I ] = [SI ]2/S, and following a similar argumentation [SSI ] =
2[SS][SI ]/[S]. Substituting these relations into the balance equations we obtain a
closed system of differential equations

d

dt
[I ] = p[SI ] − r [I ] (9.5)

d

dt
[SS] = (r + w)[SI ] − 2p[SI ]

[SS]

[S]
(9.6)

d

dt
[I I ] = p[SI ]

(
1 + [SI ]

[S]

)
− 2r [I I ]. (9.7)

The system of differential equations can now be studied with the tools of dynam-
ical systems theory. Gross et al. compare the analytical results thus obtained with
detailed-level simulations of the full model and find both in very good agree-
ment [11]. This indicates a high accuracy of the emergent-level description (9.5),
(9.6), and (9.7).

In contrast to the models of opinion formation, which have been discussed in
Sect. 9.2, the adaptive SIS model features three instead of two processes. Therefore
the dynamics in the SIS-model depends on two free parameters. Figure 9.5 shows
the two parameter bifurcation diagram which results from the analysis of Eqs. (9.5),
(9.6), and (9.7). In the white and light gray regions there is only a single attractor,
which is a healthy state in the white region and an endemic state in the light gray
region. In the medium gray region both of these states are stable. Another smaller
region of bistability is shown in dark gray. Here, a stable healthy state coexists with
a stable epidemic cycle. The transition lines between these regions correspond to
saddle-node (dashed), Hopf (continuous), and cycle fold (dotted) bifurcations. The
dash-dotted line marks a transcritical bifurcation that corresponds to the threshold
at which epidemics can invade the disease free system.

Although the SIS-model, at first glance, differs strongly from the models of
opinion formation, some interesting parallels appear. As in the models of opinion
formation high rewiring rates break the network into “consensus” communities in
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Fig. 9.5 Two parameter
bifurcation diagram showing
the dependence on the
rewiring rate w and the
infection probability p at
fixed recovery rate r = 0.002.
Figure extracted from [11]
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which all nodes are either susceptible or infected. In this way the contact process,
infection, is impeded. This is for instance reflected in a strong increase of the inva-
sion threshold (dash-dotted) with increasing rewiring rate. However, in contrast to
the models of opinion formation, the dynamics does not freeze in the consensus
state as recovery can still take place.

Another feature of the epidemic model that is not observed in the models of opin-
ion formation is the bistable region. In this region an established epidemic can sur-
vive at high prevalence, while epidemics cannot invade a disease-free network. This
region appears since the disease suppressing effect of segregation becomes weaker
at high prevalence: In contrast to opinion formation models in which both opinions
are treated equally, a small community of infected can be more easily isolated than
a small community of susceptibles. This asymmetry arises as the links are always
rewired into the susceptible community, which is irrelevant if the susceptibles are in
the majority, but leads to a sharp rise in the connectivity of susceptibles if they are
in the minority. However, high connectivity of susceptibles speeds up the infection
process which competes with segregation. Under certain conditions the competition
of the two effects can lead to oscillatory dynamics. Both the appearance of bistabil-
ity and oscillations can therefore be linked directly to the explicit asymmetry that is
introduced in the epidemic model.

9.3.2 Other Approaches

Variants of the adaptive SIS model, in which not only susceptible but also infected
individuals may rewire their links, have been explored by Zanette and Risau-
Gusmán [20, 25]. In these works, the authors prove that rewiring remains advanta-
geous for suppressing the disease even if the isolation of infected agents is modeled
to be less effective than in [11].

In [10] Gross and Kevrekidis consider an adaptive SIS model in which the effec-
tivity of rewiring increases with increasing prevalence of the disease. In this case
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oscillations can be observed in a much larger parameter range and with significantly
increased amplitude.

Models with additional epidemic states have been studied by Shaw and Schwartz
[21] and Risau-Gusmán and Zanette [20]. Moreover, Shaw and Schwartz also inves-
tigate the effect of noise on the system. This work is reviewed in the subsequent
chapter.

9.4 Summary and Outlook

In this chapter, we have reviewed a selection of recent papers concerned with opin-
ion formation and epidemic spreading on adaptive networks.

Comparing the reviewed approaches, we have focused on three major aspects
in which models differ: First the number of single-node states a model captures,
second the topological evolution rules, and third the way in which the symmetry
of interactions is broken. In models of opinion formation, differences in the most
subtle aspect, namely the direct or reverse implementation of the opinion update,
have crucial impact on the system’s behavior. By contrast differences in the two
other aspects lead only to minor changes.

In models of epidemic spreading, the asymmetry of interaction is inherent in
the modeled situation and can therefore not be modified. We have argued that this
intrinsic asymmetry is directly linked to the appearence of bistability and oscilla-
tions observed in the epidemic model.

In all reviewed models, rewiring or cutting links lead to the formation of state-
homogeneous subpopulations, providing an example for the appearance of global
structure from local rules. The subpopulations exhibit different degree distribu-
tions if the rewiring rule is sensitive to differences between states, either externally
imposed as in the epidemic model, or self-organized as in the models of opinion
formation.

The coupling of state-specific degree distributions and asymmetric exertion of
influence can stabilize the system in a state in which two states survive at finite
density. This can be observed both in the direct voter model and in the adaptive
SIS model. In the latter case the dynamics go on indefinitely as no absorbing state
can be reached at finite density of infected because of the local processes, i.e.
recovery.

A central theme of this book, which appears clearly in this chapter, is that in the
investigation of adaptive networks common themes are frequently found in models
from very different backgrounds. This shows that adaptive networks, which have
emerged from many different disciplines almost at the same time, start to grow
together. Certainly more investigations are necessary, but the goal of a unifying
theory of adaptive networks, is slowly emerging. In the future steps toward this goal,
analytical approximations such as the moment closure approximation described
here, will be of central importance, as they allow for a rigorous mathematical treat-
ment and generalization of the observed phenomena.
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Chapter 10
Noise Induced Dynamics in Adaptive Networks
with Applications to Epidemiology

Leah B. Shaw and Ira B. Schwartz

Abstract Recent work in modeling the coupling between disease dynamics and
dynamic social network geometry has led to the examination of how human interac-
tions force a rewiring of connections in a population. Rewiring of the network may
be considered an adaptive response to social forces due to disease spread, which
in turn feeds back to the disease dynamics. Such epidemic models, called adaptive
networks, have led to new dynamical instabilities along with the creation of mul-
tiple attracting states. The co-existence of several attractors is sensitive to internal
and external fluctuations, which lead to enhanced stochastic oscillatory outbreaks
and disease extinction. The aim of this chapter is to explore the bifurcations of
adaptive network models in the presence of fluctuations and to review some of the
new fluctuation phenomena induced in adaptive networks.

10.1 Introduction

In recent years, researchers have used a network approach in studying many sys-
tems, from networks of social contacts to the US power grid to the world wide
web [3], and a wide variety of mathematical tools have been developed to analyze
static networks [8, 26]. However, many natural systems are more complex than static
network models. Both the properties of individuals (e.g., neurons, humans) and the
connections between them change over time. Examples of networks where the links
evolve dynamically occur in simple two state models, such as two player game
theory [27, 30] and opinion dynamics [12, 32], as we will describe below.

Static network models fail to capture systems in which dynamical properties are
important. A new class of models, adaptive networks, has been introduced recently
to address more fully the complexity of many physical systems [18]. In an adaptive
network, the network geometry changes dynamically in response to the node char-
acteristics, and these changes in geometry then alter the subsequent dynamics of the
nodes.
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Many studies of adaptive networks have focused on steady state behavior, and
rich new phenomena have been discovered in that context. However, the key aspect
of an adaptive network is the interplay of node dynamics and network topology,
which generally means that the nodes and links are evolving in time even if a steady
state is reached. (Exceptions are cases where the network is evolved to a frozen state,
as in, for example, [4, 14].) In this chapter, we consider the role of fluctuations in
adaptive network models.

One property that frequently occurs in adaptive networks is self organized crit-
icality, a topic that is discussed in more detail in the chapters of Rohlf and Born-
holdt and of Caldarelli and Garlaschelli. Because each node in the network receives
dynamical information that depends on the connectivity of the entire network, this
can provide global information to individual nodes and cause the system to orga-
nize itself. As a result, criticality and scale free behavior are often observed. In the
first adaptive network model, that of Christensen et al., adding and removing links
to match a node’s degree to the local average connectivity led to the network self
organizing to a critical average connectivity, with a power law distribution of cluster
sizes [7]. In a model by Bornholdt and Röhl motivated by neural networks, the
network again organized to a critical average connectivity, balancing the addition
of new links when nodes are correlated and the removal of links when nodes are
uncorrelated [5]. Fan and Chen studied a growing network of chaotic maps, in which
new nodes were linked to the most active previous nodes, and obtained scale free
degree distributions [13]. Zhou and Kurths also obtained scale free distributions
of connection weights for a network of chaotic oscillators in which the weights
were evolved to increase synchrony [34]. Extensions to the latter two models are
described in the chapter by Chen and Kurths.

None of the above-mentioned studies looked at fluctuations, but scale free effects
on fluctuations have been observed previously. Bornholdt and Sneppen studied an
evolving Boolean network, representing a genetic network, in which neutral muta-
tions of the couplings, those that do not affect the network attractor, accumulate over
time [6]. The average connectivity of the network was monitored, and long periods
of stasis in connectivity were interrupted by bursts of connectivity change. The sta-
sis times followed a scale free distribution. In a model for an evolving network of
chemical species, in which species that do not multiply as quickly are replaced by
new random species, Jain and Krishna observed similar fluctuations in the number
of populated species [25]. In the long time limit, all species are usually populated,
but this value is punctuated by drop-out times due to the disruption of autocatalytic
sets. Jain and Krishna did not do a statistical analysis of this effect, but their time
series are reminiscent of punctuated equilibria.

In evolutionary game theory models with perturbations, scale free distributions
have been observed for the sizes of avalanches (number of nodes involved) as the
system moves between stationary states (e.g., [11, 28]). A model by Holme and
Ghoshal for nodes that rewire the network to maximize their social influence and
change their rewiring strategies adaptively also displayed avalanches in strategy
changes, but statistics were not collected on the scaling of the avalanche size [20].
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The degrees and cluster sizes in this model also fluctuated significantly. This model
is discussed in detail in the chapter by Holme and Ghoshal.

Another effect that is observed in adaptive network models for opinion formation
in social networks is the existence of metastable states. Ehrhardt and Marsili studied
a model in which new links were generated preferentially between nodes with a
similar “opinion” or property, and the opinions were influenced by neighbor nodes
[12]. In the limit where the nodes were at zero temperature (but links were added
and removed stochastically), the system eventually approached one large connected
component with uniform opinion, but it spent time in metastable states with multi-
ple components, each with different opinion. The lifetimes of the metastable states
could be understood analytically through an exact solution and stability analysis of
the zero temperature case.

Holme and Newman developed a model for opinion dynamics in which a param-
eter governed the relative frequencies of rewiring to new neighbors with identical
opinions versus convincing one’s neighbors to share one’s opinion [21]. The system
evolved to a frozen state containing one or more communities, where the number of
communities depended on whether the parameter favored convincing or rewiring.
The parameter controlled a continuous phase transition, and at the critical value the
system exhibited a power law distribution in community sizes and large fluctuations
in the time required to converge to the final state. The nature of the phase transition
was further explained analytically by Vazquez et al. for a simpler model with only
two opinion states [31]. A variety of models of opinion formation are described in
detail in the chapter by Do and Gross.

Other adaptive network models have considered synchrony of a network of cou-
pled oscillators while adjusting the network connections adaptively [15, 16, 23, 24,
34]. Gong and Leeuwen studied networks of coupled chaotic maps and added con-
nections between correlated oscillators [16]. They found that the system formed a
small world network with intermittent switching in the number of coherent clusters.
Ito and Kaneko studied weighted networks of coupled maps and also strengthened
the coupling between correlated oscillators [23, 24]. Here they considered in detail
the role of the feedback mechanism between node and network dynamics. The
model is also discussed in the chapter by Ito and Kaneko. They computed average
weight matrices to determine whether there were stable structures in the network
and found several phases, including a phase that was desynchronized but had a tem-
porarily stable network structure, and a desynchronized phase with a disordered,
rapidly changing network structure [24]. In the disordered network structure, the
degree of individual nodes changed almost randomly. However, in the networks
with temporarily stable structure, the nodes separated into two groups, controllers
with high outdegree and others with low outdegree. The group in which a given node
resided remained relatively stable over time. The node dynamics in the desynchro-
nized phase was characterized by hopping between two groups whose dynamics
were a half cycle out of phase from each other. In a feedback loop between the
network geometry and node dynamics, nodes that hopped more slowly between
groups tended to accumulate more connections, which led to further slowing of the
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hopping rate. This feedback loop was responsible for the splitting of the nodes into
high outdegree and low outdegree groups.

Effects such as self organized criticality, metastable states, and fluctuations in
synchrony have been observed in adaptive networks. Thus far, these effects have
mainly been quantified through simple network metrics such as time series of the
average connectivity or clustering coefficient, or the average node properties may
be tracked over time as will be discussed later in this chapter. When the network
forms distinct clusters, tracking the number of clusters is also an option. However,
higher order network structures are often difficult to track in a time-varying network,
and it is not yet clear what are the key network properties to measure for an adap-
tive network. Also, in many cases the effects that have been observed have not yet
been explained analytically. Further study of the fluctuations in adaptive networks
is needed.

In this chapter, we focus on fluctuations in a model for an epidemic spreading
on an adaptive network. Epidemics have been briefly mentioned in the previous
chapter. Some of the results in the present chapter have been published elsewhere
[29]. The layout of the paper is as follows: We describe the model and summarize
key aspects of its bifurcation structure in Sects. 10.2 and 10.3. Many properties can
be predicted from a much lower dimensional mean field model. In Sect. 10.4, we
focus particularly on fluctuations in the number of infection cases in the system,
which is a physically important quantity. We present some additional results for
phase relationships between node and link variables and for scaling of the epidemic
lifetime in Sects. 10.5 and 10.6. The dynamic network structure is more difficult to
capture, but in Sect. 10.7 we discuss fluctuations in the degree of individual nodes
in the system.

10.2 Model

Gross et al. have introduced a susceptible-infected-susceptible (SIS) model on an
adaptive network [19], and Zanette and Gusmán have also studied an SIS model
on an adaptive network [33]. We have extended this work to a susceptible-infected-
recovered-susceptible (SIRS) model [29]. Although we have not chosen parameters
corresponding to a particular real disease, tuning the average time a node spends
in the recovered class allows us to adjust the average number of infections at the
endemic steady state. Although some diseases in the past, such as plague, have elim-
inated as much as 50% of a worldwide population, many infectious viral diseases,
such as measles, mumps, and rubella, infect only 10% or less of a population at a
given time [1], depending on epidemiological and social factors. Noise effects are
expected to be especially prominent when the infection occurs at low levels. How-
ever, in this particular study, we restrict our attention to cases where the minimum
endemic steady states are on the order of 10–40% of the population.

Our model is constructed as an extension to that of Gross et al. [19] but includes
the addition of a recovered class. The rate for a susceptible node to become infected
is pNI,nbr, where NI,nbr is the number of infected neighbors the node has. The
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recovery rate for an infected node is r . We fix r = 0.002 throughout this chapter.
A recovered node becomes susceptible again with rate q, the resusceptibility rate.

Since the mean time spent in the recovered state is 1/q, there is a natural limiting
case for the SIRS model. Using the recovery rate, r , as a natural time scale, as the
ratio q/r becomes sufficiently large, nodes spend less time in the recovered state.
In the limit q/r → ∞, the model thus approaches the SIS model. The study of
the stochastic dynamics of the SIRS model may then be examined with respect to
changes in q.

Rewiring of the network occurs as the epidemic spreads. If a link connects an
infected node to a non-infected node, the link is rewired with rate w. The connection
to the infected node is broken, and the original non-infected node is now connected
to another non-infected node which is randomly selected out of all candidates in
the network (excluding self links and multiple links between nodes). This rewiring
rule is that of Gross et al. [19] (we treat the recovered nodes in the same manner
as susceptibles for rewiring purposes), in contrast to the rewiring scheme of Zanette
and Gusmán [33], which allows susceptible nodes to connect to infectives.

We performed Monte Carlo simulations of this model for a system with N nodes
and K links, where K/N was fixed at 10. Details of the simulation procedure can
be found in [29]. Random sequential updating was used, and each node and eligible
link had an opportunity to transition on average once per Monte Carlo step (MCS).

As in [19], we developed a corresponding mean field model using a moment
closure approximation to track the dynamics of nodes and links. PA denotes the
probability for a node to be in state A, and PAB denotes the probability for a link
to connect a node in state A to a node in state B. For higher order correlations, we
assume PABC ≈ PAB PBC/PB . The time evolution of the node states is described
by:

ṖS = q PR − p K
N PSI (10.1)

ṖI = p K
N PSI − r PI (10.2)

ṖR = r PI − q PR (10.3)

The time evolution of the links is described by:

ṖSS = q PSR + w PS
PS+PR

PSI − 2p K
N

PSS PSI
PS

(10.4)

ṖSI = 2p K
N

PSS PSI
PS

+ q PI R − r PSI − wPSI

−p
(

PSI + K
N

P2
SI

PS

)
(10.5)

ṖI I = p
(

PSI + K
N

P2
SI

PS

)
− 2r PI I (10.6)

ṖSR = r PSI + w PR
PS+PR

PSI + 2q PR R − q PSR

−p K
N

PSI PS R
PS

+ w PS
PS+PR

PI R (10.7)
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ṖI R = 2r PI I + p K
N

PSI PS R
PS

− q PI R − r PI R

−wPI R (10.8)

ṖR R = r PI R − 2q PR R + w PR
PS+PR

PI R (10.9)

We integrated the mean field equations numerically and tracked their steady states
using a continuation package [9]. We have also considered a stochastic mean field
system with internal fluctuations, modeled by multiplicative noise, or with exter-
nal fluctuations, modeled by additive noise. The stochastic mean field system was
studied using a fourth order Runge-Kutta solver.

10.3 Bifurcation Structure

In [29], we considered the bifurcation structure of the mean field for q small and
mapped the regions of stability for infectives as a functions of the parameters w
and p. We discovered and reported that there were regions of q in which different
bifurcation scenarios existed, as well as regions of bistability. In the first case, the
value of q = 0.0064, the disease free equilibrium became unstable as the infection
rate p was increased, and through a transcritical bifurcation was connected to the
unstable branch of endemic states. A stable branch of endemic states was then con-
nected to the unstable branch via a saddle-node bifurcation. However, in the second
case, that of q = 0.0016, there is no saddle-node bifurcation. Instead there exists a
saddle-saddle connection. In this case, the unstable endemic state emanating from
the disease free state has a one-dimensional unstable manifold. This branch is con-
nected via a turning point to an unstable endemic branch having a two-dimensional
unstable manifold, which in turn becomes stable through a Hopf bifurcation.

The bifurcation diagram for this case is reproduced here for clarity of discussion
in Fig. 10.1. For the saddle-saddle case, the lower (upper) branch has a one (two)
dimensional unstable manifold. The upper branch then undergoes a reverse Hopf
bifurcation. The connecting branch of periodic orbits (not shown) is unstable and
sub-critical. These orbits have very long periods and large swings in amplitudes of
infectives.

Recalling that q controls the resusceptibility rate and w the rewiring rate, we
examine the structure of the bifurcation onset of attracting endemic states while
holding the other parameters fixed. The onset of Hopf bifurcation points in two
parameters was computed, and is shown in Fig. 10.2, for both the mean field model
and the full system. Bifurcation points in the full system were estimated as the
largest w value for which a single run started near the probable endemic steady
state remained near that state for 105 MCS without dying out. The region below the
curve contains stable endemic branches, while the region above contains unstable
endemic states and/or stable disease free equilibria. The same trends are observed in
both the mean field and the full system. Notice that for q greater than approximately
0.3, the value of w for the Hopf bifurcation does not change much. In addition, the
infective fraction is also approximately independent of q for q sufficiently large,
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Fig. 10.1 A bifurcation diagram of the infective fraction as a function of p, with w = 0.04,
r = 0.002, q = 0.0016. The squares denote the saddle–saddle point and transcritical point.
Dashed lines are unstable branches. As p is decreased, the endemic state loses stability in a Hopf
bifurcation

signifying that the model is approaching the SIS model. One would typically expect
that as the resusceptibility rate q increases, the number of nodes that are in the
recovered state and thus protected from infection will decrease, and the infection
will spread more easily. Therefore, a faster rewiring rate (larger w) will be needed
to suppress the infection. Indeed, this is the trend observed in Fig. 10.2 for small
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Fig. 10.2 A two parameter diagram of the Hopf bifurcation points as a function of q and w. Solid
curve: mean field model; points and dashed curve: full system. Parameters used are r = 0.002,
p = 0.004
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and large q. However, the w value for the bifurcation decreases with increasing
q between about 0.1 and 0.2. This nonmonotonic shift in the bifurcation point in
Fig. 10.2 is a nonlinear effect which has not yet been explained.

In later sections we will explore the fluctuations of the SIRS model for values
of q between the values 0 and 1. Effects on the fluctuations of the nonmonotonic
bifurcation curve in Fig. 10.2 have not been observed.

We remark that a direct comparison in [29] of the infective fraction between
the mean field model and Monte Carlo simulation of the full system showed excel-
lent agreement along the attracting branches. The discrepancies occurred near the
bifurcation point where the endemic state loses stability, partly because the actual
location of the instability in the full stochastic system was difficult to detect accu-
rately in Monte Carlo simulations and partly due to inaccuracies in the mean field
approximation. However, the scaling results near the bifurcation, which we present
in the next section, are generally consistent between the mean field model and the
full system.

10.4 Effect of Recovered Class on Fluctuations

We have observed that the amplitude of fluctuations in the number of infectives is
generally larger in the SIRS model than the SIS model. In the SIS system, links
between two infectives are not broken because rewiring operates only on SI links.
Thus when an infective becomes susceptible again, the newly formed susceptible
may be connected to other infectives that it retained as neighbors while previously
infected and can immediately become reinfected. This situation tends to suppress
fluctuations, because small decreases in the total number of infectives correspond
exactly to increases in the number of susceptibles, and rapid reinfection of the sus-
ceptibles can occur, preventing the number of infectives from dropping significantly.
In the SIRS model, on the other hand, the recovered compartment introduces an
effective time delay from recovery to possible reinfection and allows infective levels
to fluctuate more.

Figure 10.3 compares the scaling of fluctuations near the bifurcation point for
two different values of the resusceptibility rate q. In the top panels q = 0.0016,
the rate used in [29]. In the bottom panels q = 1, effectively approximating the
SIS case, since individuals spend very little time in the recovered class and much
less than 1% of the population is in the recovered class at a given time. Fluctua-
tions in the infectives (measured as the standard deviation divided by mean for long
Monte Carlo simulations) are plotted as a function of p, the infection rate, as p is
swept towards the bifurcation point. Results were computed from 5×105 MCS time
series sampled every 10 MCS. The magnitude of the fluctuations is greater for the
SIRS case (Fig. 10.3a) than for the SIS case (Fig. 10.3c). Notice that the increase in
fluctuations is almost an order of magnitude.

The fluctuations exhibit power law scaling, shown in the log–log plots in
Fig. 10.3b, d. On the horizontal axis, we plot ln(p − pc), where pc is the critical
point at which the endemic state loses stability. The bifurcation points are not known
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Fig. 10.3 Fluctuations in infectives (standard deviation divided by mean) vs. infection rate p near
the bifurcation point, from Monte Carlo simulations: (a) q = 0.0016 (SIRS case), (c) q = 1
(approximately SIS case). Curves are to guide the eye. Log–log plots (data points with best fit
lines) show power law scaling for both q = 0.0016 (b) and q = 1 (d). Other parameters: w = 0.04,
r = 0.002. Parts (a) and (b) are reprinted from [29]

exactly, so we approximate pc by the value that produces the most linear plot in
each case. For the data of Fig. 10.3, the scaling exponents are similar (−0.59 versus
−0.51 for q = 0.0016 and 1 respectively), so it is not clear that the resusceptibility
rate has a significant effect on how the fluctuations scale with p.

The power law scaling of the fluctuations can be understood by considering the
scaling near a generic bifurcation point. From our mean field analysis, we expect
the bifurcation point where the endemic steady state loses stability to be either a
saddle-node bifurcation point or a Hopf point. A generic saddle-node bifurcation
exhibits power law scaling of fluctuations near the bifurcation point, as we show in
Fig. 10.4 and explain in the discussion below. A Hopf bifurcation can also appear
locally to have power law scaling of fluctuations, although the scaling may be over a
smaller range of parameters. For a given standard deviation, the probability density
function near a Hopf bifurcation is given by [2]:

phb(β, r, σ, R) = Nr
β

σ2 e− Rr2

σ2 σ−2

[
Γ

(
1 + 1/2

β

σ 2

)]−1

(10.10)
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Fig. 10.4 (a) Fluctuation size of a generic saddle-node bifurcation as a function of bifurcation
parameter a near the bifurcation point using the probability density function in Eq. (10.12). Noise
amplitude is σ = 0.005. (b) Fluctuation size of a generic Hopf bifurcation as a function of bifur-
cation parameter β near the bifurcation point using the PDF in Eq. (10.10) (squares). The line is a
best linear fit. Noise amplitude is σ = 0.05.

where the state space variable is a radial coordinate r , β is the distance from the
Hopf bifurcation point, parameter R = 0.5 is fixed, Γ is the gamma function, and
N is a normalization constant. An example of the fluctuations using Eq. (10.10),
where we have computed the first and second order moments to find the ratio of the
standard deviation to the mean, is shown in Fig. 10.4b. The data for the fluctuation
size deviates from a power law scaling, as exhibited in the figure. However, there is
a monotonic relationship in the fluctuations as measured by σ/μ as a function of the
distance to the Hopf bifurcation. Therefore, we expect the fluctuation characteristics
of the SIS and SIRS models to hold near bifurcation points regardless of whether
the statistics are measured with respect to a Hopf or saddle-node bifurcation.

Since the power law scaling is observed near either a saddle-node or Hopf bifur-
cation point, it may be understood by considering the local dynamics. For example,
near the saddle-node, a center manifold reduction would reduce the study of the
vector field to a system with a one-dimensional unstable manifold. Therefore, the
power law scaling of the fluctuations can be motivated by considering the following
simple stochastic differential equation

dxt = (a − x2
t )dt + σ ∗ dWt (10.11)

for a one dimensional saddle-node bifurcation, where a is the bifurcation parameter,
dW/dt is a white noise term, and dW is a Brownian increment. In general, noise
can cause a shift in the location of the saddle-node bifurcation, so we assume that
the noise is sufficiently small that the location is fixed.

By assuming we are always near the attracting branch of the saddle-node or
Hopf bifurcation, we are in a near equilibrium setting driven by noise. Such an
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assumption allows us to examine the stationary probability density function (PDF)
of the stochastic dynamics by employing the Fokker-Planck equation near steady
state. For the stochastic differential equation, Eq. (10.11), the PDF is well known
[22] and is given by

p(a, x, σ ) = Ne2(ax−x3/3)/σ 2
. (10.12)

Here N is a normalization constant. From Eq. (10.12), we compute the first and
second order moments to find the ratio of the standard deviation to the mean. We
examine the fluctuations in the neighborhood of a = 0, which is the location of the
saddle-node point. The results display power law scaling, as depicted in Fig. 10.4a.

To further examine the differences in fluctuations between the SIS and SIRS
adaptive network models, we perform the following experiment. As discussed
above, we can examine the fluctuation sizes as a function of resusceptibility rate
q to see how the fluctuation sizes compare between the two model classes. The
other variable which controls the recovered, as well as the infected, populations is
the rewiring rate, w. It has a significant effect on the fluctuations, since the degree
of infectives is dramatically reduced by the rewiring. We examine the interplay
between q and w and their effect on fluctuation sizes. Here we turn to a stochas-
tic version of the mean field model. We have shown previously that the scaling
behavior of the mean field model is typically similar to that of the full network
system [29].

We use additive noise to model fluctuations near the endemic equilibrium state.
Details may be found in [29]. The stochastic mean field model has the following
form:

X′ = F(X) + εη(t), (10.13)

where F(X) is the mean field system in Eqs. (10.1)–(10.9), η(t) is a noise term with
〈η(t)η(t′)〉 = δ(t − t′), and ε is the noise amplitude. Fluctuations are computed by
averaging the standard deviation over mean results for time series starting from 10
random initial conditions near steady state. The runs were computed for 5 × 107

steps using a step length of 0.001, and transients were removed after 106 steps.
A typical example of the fluctuations as w is varied is shown in Fig. 10.5b. Similar

linear log–log behavior is observed in other stochastic simulations for other values
of q. In Fig. 10.5b, wh denotes the location of the Hopf bifurcation branch. The
Hopf bifurcation occurs for all values of q considered here. A typical bifurcation
plot is shown in Fig. 10.5a for q = 0.1. Attracting states are solid curves, while
unstable states are dashed and dotted curves. The Hopf bifurcation point is on the
upper branch separating the stable and unstable steady states.

Because of the power law scaling of the fluctuations, as in Fig. 10.5b, we expect
a functional relationship of the form

σ (q)/μ(q) ∝ [wh(q) − w]m(q) (10.14)



220 L.B. Shaw and I.B. Schwartz

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

w

i
(a)

−7 −6 −5 −4 −3 −2
−7

−6

−5

−4

−3

ln(wh−w)

ln
[(

st
d)

/(
m

ea
n)

]

(b)

numerical data 
linear fit

Fig. 10.5 (a) A bifurcation plot of the mean field model without noise. Plotted is the fraction
infected as a function of w. Parameters are r = 0.002, p = 0.004, q = 0.1. (b) Plot of the
fluctuation sizes as a function of rewiring rate, w. The fixed parameters used are r = 0.002, p =
0.004, K/N = 10, q = 0.01, ε = 0.0001

where m(q) is the average slope of the log–log plots. We can now examine how
the average rate of change of fluctuations varies as a function of q. The results are
shown in Fig. 10.6. At smaller q values, the fluctuations increase more quickly with
w than they do in the large q limit. Therefore, the fluctuations are more sensitive
with respect to w in the SIRS model than in the SIS model.

We attempted to confirm this mean field result for the slopes using the full
model, but in the case of the full model, the exact locations of bifurcation points
are unknown. It is difficult to estimate where the endemic state loses stability from
time series because one cannot always distinguish a metastable state from a stable
state in the presence of fluctuations. We can approximate the bifurcation point by
the value that gives the most linear plot (largest R value) for fluctuations vs. the
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Fig. 10.6 A plot of the slope m(q) as a function of q. See text for details. Parameters used are
r = 0.002, p = 0.004, ε = 0.0001
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bifurcation parameter as in Fig. 10.3, but this approach is unreliable if the scaling
deviates from a power law, as occurs in Fig. 10.4b for a generic Hopf bifurcation.
The best fit slope depends sensitively on the estimate for the bifurcation point, so
we were not able to obtain robust results for the full system.

10.5 Delayed Outbreaks

We have also considered phase relationships between the fluctuating node and link
variables. At each time point in our simulations, we tracked the number of infected
nodes as well as the number of non-infected neighbors of infected nodes (which
corresponds to the number of SI and IR links). The rewiring causes the fluctuations
in the number of infectives to lag behind fluctuations in the number of infective
neighbors, as shown in Fig. 10.7a. This effect was observed both in the mean field
model (data not shown, see [29]) and in Monte Carlo simulations of the full system.
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Fig. 10.7 Delayed outbreaks due to rewiring. (a) Monte Carlo time series. Black: infectives; gray:
neighbors of infectives. Curves are scaled in arbitrary units for comparison of peak times. p =
0.0065, w = 0.09, q = 0.0016, r = 0.002. Reprinted from [29]. (b) Time in MCS by which
infectives lag behind infective neighbors vs. rewiring rate. Solid black: q = 0.0016; gray: q =
0.001; dashed black: q = 0.0005. Other parameters: p = 0.0065, r = 0.002
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We studied the dependence of this phase lag on both the rewiring rate w and
the resusceptibility rate q when the system was fluctuating around the endemic
steady state. Monte Carlo simulations were sampled every 1 MCS for 3 × 104

MCS after discarding transients. We computed cross correlations between the infec-
tives and the infective neighbors for varying phase shifts between the two time
series and identified the lag maximizing the cross correlation. Figure 10.7b shows
results for three different q values. (Note: Curves for smaller q terminate at lower
w values because the endemic steady state becomes unstable, as in Fig. 10.2.) In
each case, the lag increases with increasing rewiring rate. This effect does not
have a simple explanation, but since it is also observed in mean field simula-
tions, it depends on node and link dynamics primarily, rather than higher order
geometries.

Further, the lag time increases as the resusceptibility rate q decreases. This occurs
because the recovered class introduces an effective delay in the system. When a node
becomes at risk because its neighbor is infected, it cannot itself become infected
until it is susceptible. As q is lowered, the fraction of infective neighbors that are
recovered and have to wait to become susceptible again increases, and the average
wait time also increases, so it is expected that the infective fluctuations will lag
further behind.

It should be noted that when q = 1 and the system approximates the SIS model,
the number of infectives and non-infected neighbors of infectives (i.e., SI links) are
poorly correlated for any shift between time series. Therefore, the lags discussed
here are not observed in the SIS model.

10.6 Lifetime of the Endemic Steady State

Another effect we consider, which depends on fluctuations in the system, is the
lifetime of the endemic steady state. Because the system is stochastic and the disease
free state is absorbing, the disease will die out in the infinite time limit for any set
of parameters. For a generic saddle-node bifurcation in one dimension, the scaling
of the lifetime is expected to obey

ln T ∝ (p − p0)3/2, (10.15)

where T is the mean dwell time or lifetime of the steady state, p is the bifurcation
parameter, and p0 is the location of the bifurcation point [10, 17]. Using the com-
putational methods in [29], we show preliminary results for the dependence of the
lifetime on the infection rate p in Fig. 10.8. The bifurcation point p0 was estimated
by the value that gave the most linear plot for ln T vs. (p− p0)3/2. The scaling results
appear consistent with expectations, but further study is needed. In contrast to the
mean field model, because the exact location of bifurcation points is not known
for the full system, details such as slopes and scaling exponents can be very much
dependent on estimates for the bifurcation point.
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Fig. 10.8 Dependence of endemic state average lifetimes T on infection rate p. Points: Monte
Carlo simulations; line: best fit line. q = 0.0016, r = 0.002, w = 0.04, N = 4×104, K = 4×105.
(Reprinted from [29].)

10.7 Network Geometry

Defining appropriate statistics to capture a fluctuating network geometry is diffi-
cult. Here, the network does not display community structure nor is governed by
an underlying spatial structure. Links are rewired to any acceptable target nodes,
regardless of distance away. Because the mean field theory for nodes and links cap-
tures the dynamics of the system fairly well, higher order correlations involving
three or more nodes do not have a large impact on the dynamics. The network may
be fairly unstructured at the higher levels.

To demonstrate the role of fluctuations in the network geometry on the scale of
individual nodes and links, we show in Fig. 10.9 the time-varying degree of a single
arbitrarily chosen node. When the node becomes infected, its non-infected neigh-
bors quickly rewire away from it (dashed gray curves). Because infected neighbors
do not rewire away, the degree may not drop all the way to zero before pausing. If
the infected node remains infected for sufficiently long, its neighbors will recover
and then rewire away, further decreasing the degree. Once the node recovers, other
S and R nodes in the system may rewire to it, and its degree begins to climb
(black curves). When the node becomes susceptible, the degree continues increas-
ing (solid light gray curves) until the node again becomes infected, and the cycle
repeats.

It is not yet known how to predict the degree distributions from first principles
[29], but if one assumes that the degree distributions are already known for each
node class, the fluctuations in the degree of a single node can be easily understood.
Figure 10.10 shows the statistics of the local maxima and minima of the degree
time series for a single node. Results are computed for a 4 × 106 MCS time series,
which contains approximately 2,000 SIRS transition cycles (and thus approximately
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Fig. 10.9 Degree of a single node versus time. Curves indicate the node’s disease status: black:
recovered; light gray: susceptible; dashed medium gray: infected. Parameters: p = 0.002, q =
0.0016, r = 0.002, w = 0.04

2,000 maxima and minima). Frequency distributions for the maxima (Fig. 10.10a)
and minima (Fig. 10.10b) are shown.

The minima can be most easily understood. Minima occur when an infective
recovers. Recovery is governed by the rate r and is equally likely to occur for any
infective, regardless of the degree. Therefore, the distribution for the degree min-
ima is the same as the degree distribution for infectives. Figure 10.10b shows good
agreement between the observed distribution of minima and that expected from the
infective degree distribution (which was found from Monte Carlo simulations in
[29]).
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Fig. 10.10 Statistics for degree time series. Black curves: observed distributions; dashed gray
curves: expected distributions. (a) Distribution of local maximum degrees. The degree distribution
for susceptibles is shown in light gray for reference. (b) Distribution of local minimum degrees.
Parameters: p = 0.002, q = 0.0016, r = 0.002, w = 0.04
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Degree maxima occur immediately before a susceptible becomes infected. The
infection rate depends on the number of infected neighbors a susceptible node has,
which is almost directly proportional to its degree. (See [29] for details.) Letting d
represent the degree of a susceptible and Pd the degree distribution for susceptibles,
we thus expect the infection rate to be proportional to d and the distribution of
degree maxima to be proportional to d Pd . This expected distribution is shown in
Fig. 10.10a, and there is again good agreement with the observed distribution of
maxima and the expected values. The degree distribution for susceptibles is shown
for reference. The distribution of maxima is skewed to higher degrees because of
the dependence of the infection process on node degree.

To develop a complete understanding of these processes, a theory to predict the
degree distributions from first principles is needed. Such a theory must account
for correlations between the infection status of an infective and its neighbors, as
explained in [29].

10.8 Conclusions and Discussion

In this chapter, we considered a model of an adaptive network and its fluctuations.
We introduced a model based on an SIRS epidemic structure which included tran-
sition probabilities between node states as well as link dynamics. In this model,
the link dynamics are a function of the state variables, and since the state variables
depend on the links, it forms a closed feedback system between nodes and links.
The model is an extension of, and contains in the limit of large resusceptibility rate
q, the SIS model studied in [19]. The fluctuations of the model were simulated in
two ways: The full system was studied via Monte Carlo simulation on a finite popu-
lation. In addition, a low dimensional approximation was studied using a Langevin
simulation with an additive noise term to the mean field equations.

Quantifying where the system is most sensitive to fluctuations required an exam-
ination of the bifurcation structure of the deterministic mean field equations. For
the steady states of the mean field equations, we examined the locations of both
Hopf bifurcations and saddle-node points. We saw that as the resusceptibility rate q
changes, the type of bifurcation changes. In general, for large q, we have a generic
saddle-node bifurcation, while for small q we have a saddle-saddle bifurcation giv-
ing rise to a Hopf bifurcation.

Fluctuations were examined with respect to these bifurcations, and particular
attention was paid to the large and small q cases. This led us to examine the specific
role of the recovered class in the SIRS model as compared with the limiting case of
the SIS model. In the SIS case, we found that without the recovery class, newly cre-
ated susceptibles may be still connected to another infective, and thus may become
reinfected immediately. This mechanism led to a reduction in the fluctuations of
infectives. On the other hand, the inclusion of the recovery class introduced a mean
delay time prior to potential reinfection, thereby increasing infective fluctuations.

By examining the fluctuation sizes near the bifurcation points, we found the exis-
tence of scaling laws in both the mean field model and the full system. Comparing
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the stochastic dynamics of SIRS and SIS cases, we examined the effect of the
rewiring rate w and resusceptibility rate q on the fluctuations. For a large range
of q values, we showed the existence of a scaling law near the Hopf bifurcation,
which includes the fluctuations for the limiting SIS case. We found that for small
q values, the fluctuations change more rapidly with rewiring rate w than they do
for the SIS model, making fluctuations more sensitive with respect to parameters in
the SIRS case. Other effects, such as latency, or delay, between infective nodes and
non-infected neighbors occur in the SIRS model but not the SIS model.

The degree fluctuations are still difficult to predict, although some of these phe-
nomena can be understood in certain cases. However, much work still is required
to understand the fluctuations of the network geometry. Current tools for the analy-
sis of static networks are insufficient to make predictions about adaptive networks.
A complete understanding of the dynamics, fluctuations, and geometry in the future
requires tools which incorporate topology, stochastic dynamics, and time dependent
graph theory.

Because adaptive networks based on epidemiology contain many of the features
of adaptive networks in general, we expect them to continue to reveal new and
interesting dynamic phenomena as they are extended for more detailed modeling
of social situations, including and beyond those of infectious disease spread.
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Chapter 11
A Dynamic Model of Social Network Formation

Brian Skyrms and Robin Pemantle

Abstract We consider a dynamic social network model in which agents play
repeated games in pairings determined by a stochastically evolving social network.
Individual agents begin to interact at random, with the interactions modeled as
games. The game payoffs determine which interactions are reinforced, and the net-
work structure emerges as a consequence of the dynamics of the agents’ learning
behavior. We study this in a variety of game-theoretic conditions and show that the
behavior is complex and sometimes dissimilar to behavior in the absence of struc-
tural dynamics. We argue that modeling network structure as dynamic increases
realism without rendering the problem of analysis intractable.

11.1 Introduction

Pairs from among a population of ten individuals interact repeatedly. Perhaps they
are cooperating to hunt stags and rabbits, or coordinating on which concert to attend
together; perhaps they are involved in the somewhat more antagonistic situation
of bargaining to split a fixed payoff, or attempting to escape the undesirable but
compelling equilibrium of a Prisoner’s Dilemma. As time progresses, the players
adapt their strategies, perhaps incorporating randomness in their decision rules, to
suit their environment. But they may also exert control over their environment. The
players may have choice over the pairings, though not perfect information about
the other players. They may improve their lot in two different ways. A child who
is being bullied either learns to fight better, or to run away. Similarly, a player who
obtains unsatisfactory results may choose either to change strategies or to change
associates. Regardless of whether the interactions are mostly cooperative or mostly
antagonistic, it is natural and desirable to allow evolution of the social network (the
propensity for each pair to interact) as well as the individuals’ strategies.
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We build a model that incorporates both of these modes of evolution. The idea is
simple.

(*)
Individual agents begin to interact at random. The interactions are modeled as games. The
game payoffs determine which interactions are reinforced, and the social network structure
emerges as a consequence of the dynamics of the agents’ learning behavior.

As the details of the specific game and the reinforcement dynamics vary, we then
obtain a class of models. In this paper we treat some simple reinforcement dynamics,
which may serve as a base for future investigation.

The idea of simultaneous evolution of strategy and social network appears to
be almost completely unexplored. Indeed, the most thoroughly studied models of
evolutionary game theory assume mean-field interactions, where each individual is
always equally likely to interact with each other. Standard treatments of evolution-
ary game dynamics [1, 2] operate entirely in this paradigm. This is due, to a large
extent, to considerations of theoretical tractability of the model. Models have been
introduced that allow the agents some control over their choice of partner [3], but
the control is still exerted in a mean-field setting: one chooses between the present
partner and a new pick at random from the whole population.

Evolutionary biologists know that evolutionary dynamics can be affected by non-
random encounters or population structure, as in Sewall Wright’s models of assor-
tative mating [4]. Wright [5] already realized that positive correlation of encounters
could provide an account of evolution of altruism. Thus the need for social network
models has been long recognized.

When the social network is modeled, it is almost always static.1 Interactions, for
example, may be posited to occur only between players whose locations are close,
according to some given spatial data. Biological models in which encounters are
governed by spatial structure have become increasingly frequent in the 1990s; see
for example the work of Durrett, Levin and Neuhauser [7–9]. A similar hypothesis
of spatial structure, in a game theory context, arises in [10]. Here, technology from
statistical mechanics is adapted to the analysis of games whose interactions take
place between neighbors in a grid.

A number of recent investigations by game theorists, some directly inspired by
biological models, have shown that the dynamics of strategic interaction can be
strikingly different if interaction is governed by some spatial structure, or more
generally, some graph structure [11–13]. For instance, one-shot Prisoner’s Dilemma
games played with neighbors on a circle or torus allows cooperation to evolve in
a way that the random encounter model does not. The spatial or graph structure
can be important in determining which equilibria are possible, whether repeated
interactions can be expected to converge to equilibrium, and if so, how quickly
convergence takes place [14].

Since the outcome of a repeated game may vary with the choice of network
model, it is important to get the network model right. Further progress in the theory

1 An exception, perhaps, is a preprint we have recently encountered by Jackson and Watts [6]
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of games and adaptive strategies would be greatly enhanced by a theory of net-
works of social interaction. In particular, it would be desirable to have a framework
within which models may be developed that are both tractable, and plausible as a
mechanism governing interactions among a population of agents seeking to improve
their lot.

When the network changes much more slowly than do the strategies of individu-
als, it is reasonable to model the social network by a structure which is fixed, though
possibly random. The question of realistically modeling the randomness in such a
case is taken up in a number of papers, of which a recent and well known example
is the “small world” model [15]. In the other extreme [16–18] evolution of social
structure is modeled by agents moving on a fixed graph in the absence of strategy
dynamics.

In the general case, however, interaction structures are fluid and evolve in tan-
dem with strategy. What is required here is a dynamics of interaction structure to
model how social networks are formed and modified. We distinguish this structure
dynamics from the strategic dynamics by which individuals change their individual
behaviors or strategies.

In this paper we introduce a simple, additive model for structure dynamics, and
explore the resulting system under several conditions: with or without discounting
of the past, with or without added noise, and in the presence or absence of strategic
dynamics. Common to all our models is a stochastic evolution from a (usually sym-
metric) initial state. Individuals in a population start out choosing whom to interact
with at random, then modify their choices according to how their choice is rein-
forced, and the process is repeated. An infinite variety of such models is possible.
We will consider only a few basic models, meant to illustrate that rigorous results on
structure dynamics are not out of reach, and that further inquiry will be profitable.

We first consider a baseline case of uniform reinforcement. Here, any choice of
partner is reinforced as strongly as any alternative choice would have been. In other
words, the interaction game between any pair of players always produces a constant
reward or punishment. One might expect that such cases would not lead to interest-
ing dynamics, but that is far from the truth. We show both by computer simulation
and analytically how structure emerges spontaneously even in these cases. Since the
strategic dynamics here are trivial, the baseline case is intended mostly as a build-
ing block on which more interesting strategic dynamics are to be grafted. We note,
however, that the constant reward game is not completely unreasonable. Studies
have shown that in the absence of other environmental attributes, sheer familiarity
brings about positive attitudinal change [19]. In fact, an abstract model of network
evolution under uniform positive re-weighting has appeared before under the name
of “Reinforced Random Walk” [20].

Next, we move to the case where players of different types play a non-trivial
game and are reinforced by the payoffs of the game. Here, we examine the co-
evolution of behavior and structure when the structural dynamics and strategic
dynamics are both operative. The relative speeds of structural dynamics and strate-
gic dynamics affect which equilibrium is selected in the game. In particular, this can
determine whether the risk-dominant or payoff-dominant equilibrium is selected.
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11.2 Making Friends: A Baseline Model of Uniform
Reinforcement

11.2.1 Friends I: Asymmetric Weights

Each morning, each agent goes out to visit some other agent. The choice of whom to
visit is made by chance, with the chances being determined by the relative weights
each agent has assigned to the others. For this purpose, agent number i has a vector
of weights 〈wi1, . . . , win〉 that she assigns to other players (assume wi i = 0). Then
she visits agent j with probability

Prob(agent i visits j) = wi j∑
k wik

. (11.1)

Here we are interested in a symmetric baseline model, so we will assume that all
initial weights are 1. Initially, for all agents, all possible visits are equiprobable.

Every agent is treated nicely on her visit and all are treated equally nicely. They
each get a reinforcement of 1. Each agent then updates her weight vector by adding
1 to the weight associated with the agent that she visited. Her probabilities for the
next round of visits are modified accordingly. At each stage we have a matrix pi j of
probabilities for i to visit j . Do these probabilities converge, and if so to what?

Given all the symmetry built into the starting point and the reinforcement, it
is perhaps surprising that all sorts of structure emerge. Here is a description of a
simulated sample run of length 1,000. The probabilities, to two decimal places, seem
to converge after a few hundred rounds of visits, to a matrix that is anything but
uniform (and to a different matrix each time the process is run from the initial,
symmetric weights). There is one agent, A, who visits another agent, B, more than
half the time. There is no reciprocation, so this has no bearing on how often B visits
A, and in fact most agents will not visit any one agent more than a third of the time.

In the analysis section, we show that this outcome is typical.

Theorem 1. The probability matrix for Friends I with n players will converge to a
random limit p as time goes to infinity. The distribution of the limit is that the rows
of p are independent, each having Dirichlet distribution (ignoring the zero entry on
the diagonal) whose parameters are n − 1 ones.

Thus we see spontaneous emergence of structure. This type of simple model has
been used before in the economics literature to explain the stabilization of market
shares at seemingly random equilibria, due to random reinforcement in the early
phases of growth of an industry [21]. We remark that the choices made by each
agent are independent of the choices made by each other agent, so the social aspect
of the model is somewhat degenerate and the model may be viewed as a model of
individual choice. Nevertheless, it fits our definition of social network model in that
it gives a probabilistic structure to interactions; one may then extend the model so
the interactions are nontrivial games.
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11.2.2 Friends II: Symmetrized Reinforcement

Suppose now that the interaction is as pleasant to the host as the visitor. Thus when
agent i visits agent j , we add 1 to both wi j and w ji . A typical outcome for 10
agents after 1,000 rounds of visits looks similar to the table for Friends I, except
that the entries are nearly symmetric. There are, however, subtle differences that may
cause the two models to act very differently when strategic dynamics are introduced.
To see these differences, we describe what is typically observed after 10 runs of
a simulation of Friends II to time 1,000 for a set of three agents, this being the
minimum population size for which structural dynamics are interesting. What we
see typically is one or two runs in which each players visits are split evenly (to two
decimal places) between the others. We see another several runs that are close to this.
We see one run or so in which two agents nearly always visit the third agent, which
splits its time among the other two. The remaining runs give something between
these extreme outcomes.

What may not be apparent from such data is that the limiting weights for
Friends II are always 1/2. Only a small fraction of sample outcomes decisively
exhibit the proven limiting behavior. The data, in other words, show that after 1,000
iterations, the weights may still be far from their limiting values; when this is the
case, one of the three agents is largely ignored by the other two, and visits each
of the other two herself equally often. Since the lifetime of many adaptive games
is 1,000 rounds or fewer, we see that limiting behavior may not be a good guide
to behavior of the system on time scales we are interested in. The analysis section
discusses both limiting results for this model and finite time behavior. When the
population size is more than 3, the weights will always converge, but the limit is
random and restricted to the subspace of symmetric matrices. Again, convergence
of the weights to their limiting values is slower than in the non-reciprocal game of
Friends I.

Theorem 2. The probability matrix pi j for Friends II with n players converges to
random limit p as time goes to infinity. If n = 3, the limit is the matrix all of whose
off-diagonal entries are 1/2. In general, the limit may be any symmetric matrix
whose rows sum to 1; that is, the closed support of the random limit is the entire
subspace of symmetric stochastic matrices.

11.2.3 Analysis of Friends I and II

To fit this in the framework of (∗), construct the following degenerate games. Each
of the two players has only one strategy, and the payoff matrix is as follows.

Friends I Host
Visitor (1, 0)

Friends II Host
Visitor (1, 1)

The weights wi j are initialized to 1 for i �= j , and are then updated according to

wi j (t + 1) = wi j (t) + u(i, j ; t) (11.2)
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where wi j (t) is the weight agent i gives to agent j at time t and u(i, j ; t) is the payoff
of the game played at time t between visitor i and host j (and zero if this visit did
not occur at time t). This, together with specification of the visitation probabilities
in Eq. (11.1), defines the model. Changing the initial weights does not affect the
qualitative behavior of any model, so there is no need to vary the initialization.

For Friends I, the updating of the weights for any one agent is the same as a
Pólya urn process [22]. Each agent can be thought of as having an urn with balls of
n − 1 colors, one color representing each other agent. Initially there is one ball of
each color in the urn. The agent picks a ball at random, indicating whom she should
visit, then returns it to the urn along with an extra ball of the same color. The urns
belonging to different agents are statistically independent.

The analysis of this process is well known ([23], Chap. 4). It is easy to show that
the sequence of draws for each agent is exchangeable, that is, permuting a sequence
does not change its probability. Hence by the de Finetti representation theorem, the
random sequence of draws from an urn is equivalent to a mixture of multinomial
processes, that is, of sequences of independent draws. The mixing measure is easily
seen to be Dirichlet. Consequently, the visiting probabilities converge with probabil-
ity one, but they can converge to anything. That they converge to the uniform vector,
where each agent has equal probability to visit each other, has prior probability zero.

Furthermore, convergence to the limiting probability matrix is quite rapid. Let
p(t) denote the matrix whose (i, j)-entry is pi j (t). Then exchangeability implies
that, conditional on the limit matrix p = limt→∞ p(t), the sequence of visits is a
sequence of independent, identically distributed draws from the limit distribution.
Thus at time t , the central limit theorem implies that p(t) − p is t−1/2 times a
multivariate normal.

For Friends II, exchangeability fails. This is not surprising, since the property of
exchangeability is not very robust. More surprising, however, is that the sequence of
probability matrices p(t) does not form a martingale. To explain this terminology, let
Et denote the expectation conditioned on the values at time t . A simple computation
shows that for Friends I, the expected value of pi j (t + 1) conditioned on the time t
value is equal to pi j (t): since wi j increases only when i visits j , we have

Et pi j (t + 1) = Et

n∑

k=1

pik(t)
wi j + δ jk

1 + ∑n
l=1 wil (t)

= wi j (t) + pi j (t)

1 + ∑n
l=1 wil(t)

= pi j (t).

Even without exchangeability, the martingale convergence theorem ([24], Sect. 4.2)
implies convergence of the quantities pi j , though it says very little about the limit.

For Friends II the complete analysis may be found in [25]. Here is an outline of
what is found there. A computation similar to the one for Friends I shows that

Et p(t + 1) = p(t) + 1

t
F(p(t))
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where F is a certain function on symmetric n by n matrices. In other words, the
random sequence of matrices {p(t) : t = 1, 2, . . .} is a stochastic approximation in
the sense of Robbins and Monro [26], driven by the vector field F . General results
of [27] and [28] now imply that p(t) converges to the set where F vanishes. To show
that p(t) always converges to a single point, Pemantle and Skyrms [25] compute a
Lyapunov function for F, that is, a function V for which ∇V · F < 0 with equality
only when F = 0. This, together with an efficiency inequality (bounding the angle
between f and ∇V away from ninety degrees), establish convergence of p. The
remainder of Theorem 2 is then established by showing the only stable zeros of
the vector field F are the symmetric matrices with row sums all equal to 1, and
that the possible limit points of p(t) are exactly the stable equilibria of the flow
determined by F.

Determination of the rate of convergence of p(t) to its limit is somewhat different
in this case. Due to the presence of unstable equilibria from the flow determined by
F, there is a possibility of being stuck near one of these equilibria for a long time
before eventually following the flow to one of the stable equilibria. For the three
player game, the unstable equilibria are the following three matrices:

⎛

⎝
0 1

2
1
2

0 0 1
0 1 0

⎞

⎠

⎛

⎝
0 0 1
1
2 0 1

2
1 0 0

⎞

⎠

⎛

⎝
0 1 0
1 0 0
1
2

1
2 0

⎞

⎠ .

These correspond to cases where one of the three agents is entirely ignored, and
splits her visits equally between the other two. The probability that p(t) is within ε

of one of these traps is roughly 3εt−1/3, so with t = 1, 000 we find a reasonably high
probability that p(1000) is not near the uniform probability matrix but is instead
still near one of the unstable equilibria. This persists with reasonable probability
well beyond t = 106. For greater population sizes similar phenomena apply. Con-
vergence to the invariant set is relatively slow. However, for large populations, say
20 or more, another phenomenon takes place. The portion of the space of possible
p matrices that are within ε of the possible limits goes to 1; this is known as the
concentration of measure phenomenon [29]. Thus it becomes very unlikely to get
stuck initially far away from the limit, simply because the initial randomness will
very likely lead to a point very near a possible limit. Thus for large populations, the
dynamics appear very similar to the dynamics for Friends I.

11.3 Making Enemies

Let us change the “Making Friends” model in just one way. Instead of being
rewarded, agents are punished; instead of uniformly positive interactions, we have
uniformly negative ones:

Enemies I Host
Visitor (−1, 0)

Enemies II Host
Visitor (−1,−1)
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Instead of interactions being reinforcing, we take them as inhibiting. The dynam-
ics of inhibition might be modeled in a number of ways. Continuing to use the
update Eq. (11.2) will not work because the weights will end up becoming negative
and the visitation probabilities in Eq. (11.1) will be meaningless. In this section
we explore two other possible rules for updating the weights so as to inhibit past
behavior. With negative reinforcement, it is easy to predict what will happen: the
social network always becomes uniform, and the dynamics are not sensitive to the
particular updating mechanism. Indeed this is what happens. Since there are no sur-
prises, and since this model is just a building block for a model with both structural
and strategic dynamics, we keep the discussion brief.

11.3.1 The Transfer Model

Consider a three player model with the following update rule on the weights. Initial
weights are all positive integers. When i visits j , the weight wi j is diminished by 1
and the weight wik , k �= i, j , is increased by 1. This is equivalent to the Ehrenfest
model of heat exchange between two bodies [30]. In the original Ehrenfest model
there are two urns. A ball is drawn at random from among all balls in both urns and
transferred to the other urn. The distribution of balls tends to the binomial distribu-
tion, where each ball is independently equally likely to be in either urn. In Making
Enemies, with transfer dynamics and three players, each player may be thought of
as having such a pair of urns. The urns are independent.

Since the number of balls is fixed, an Ehrenfest urn is a Markov chain with a
finite number of states, where the states consist of distributions over the two urns.
For example, if there are only two balls, then there are three states, S1, S2 and S3,
corresponding to urn cardinalities of (2, 0), (1, 1) and (0, 2). The transition matrix
for this Markov chain is

⎛

⎝
0 1 0
1
2 0 1

2
0 1 0

⎞

⎠

and the unique stationary vector is (1/4, 1/2, 1/4). In contrast to the Pólya urn, we
do not have convergence of the conditional probabilities of visits at each stage given
the present: at any time, given the present composition, the probability of a given
visit may be 0, 1/2 or 1, depending on the composition of the urns belonging to
the visitor. However, if the number of balls, N is large, approximately equal visit-
ing probabilities are very likely in the following sense. The invariant distribution is
binomial, which is concentrated around nearly even distributions when the number
of balls is large. Thus with high probability, no matter what the initial state, after
roughly N log N/2 steps [31], the composition of an urn with N balls will be close
to a draw from a binomial distribution. The conditional probability of either of the
two possible visits, will therefore be close to 1/2, and will tend to remain there with
high probability. Kac [32] uses these properties to resolve the apparent paradoxes
that beset Bolzmann’s discussion of irreversibility in statistical mechanics.
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11.3.2 The Resistance Model

The transfer model allows for a finite cumulative amount of negative reinforcement,
and indeed yields a finite Markov chain. Let us explore a rather different model,
termed the resistance model, in which negative payoffs generate resistance. Initially
every choice has resistance 1. The magnitude of a negative payoff is added to its
associated resistance, so the Eq. (11.2) becomes

wi j (t + 1) = wi j (t) + |u(i, j ; t)|.

In the case at hand, when all payoffs are negative, the probability of i visiting j
is proportional to the reciprocal of the resistance:

pi j = Prob(agent i visits j) = 1/wi j∑n
k=1 1/wik

with 1/wii = 0 by convention. The dynamics of Enemies I and Enemies II under
resistance dynamics are easy to describe.

Theorem 3. For Enemies I or Enemies II, from any initial conditions, the probability
matrix p(t) converges to the uniform probability matrix p where pi j = 1/(n−1) for
any i �= j . The of convergence is rapid: of order N log N if the initial resistances
are of order N. The deviations from uniform obey a central limit theorem:

t1/2(p − p) → X

where X is a multivariate normal with covariance matrix of rank n(n − 1) in Ene-
mies I and n(n − 1)/2 in Enemies II. In other words, deviations from uniformity
are independent normals, subject to the constraints of adding up to zero for each
individual and, in the case of Enemies II, the constraints of symmetry.

The central limit theorem may be derived from a stronger, functional central limit
theorem, linearizing the system near the uniform probability to see that the paths

t �→ N−1/2(p(Nt) − p)

converge in distribution as N → ∞ to a multivariate Ornstein-Uhlenbeck process.
The rate of convergence follows from standard coupling arguments.

While uniform positive reinforcement breeds structure from unstructured initial
conditions, uniform negative reinforcement evidently breeds uniformity even from
structured initial conditions. It would appear, therefore, that the customary random
encounter (mean-field) model is more suitable for Making Enemies than Making
Friends.
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11.3.3 A Better Model?

We would like a model that allows for both positive and negative reinforcement. A
natural choice is to let wi j keep track of the log-likelihood for i to visit j , so that
probability of i visiting j is given by

pi j = Prob(agent i visits j) = exp(wi j )∑n
k=1 exp(wik)

. (11.3)

In the next section we will see a property this rule has in common with rules that
discount the past, namely that it leads to being trapped in a deterministic state where
i always visits the same j .

Question 1. Is there a model incorporating both positive and negative reinforcement,
that is realistic, tractable, and non-trapping?

11.4 Perturbations of the Models

In this section we add two features, noise and discounting, commonly used to create
more realistic models. We examine the effects on social structure. In particular, these
lead to varying degrees of subgroup formation.

11.4.1 Discounting the Past

In the foregoing models, a positive (or negative) payoff in the distant past contributes
equally to the weight (or resistance) assigned to an edge as does a like payoff in the
immediate past. This is implausible, both psychologically and methodologically. As
a matter of psychology, memories fade. From the standpoint of inductive logic, it
is not at all certain that the learner is dealing with stationary probabilities – indeed,
in cases of prime interest she is not. For this reason, recent experience may have a
better chance of being a relevant guide to future action than the remote past.

A simple and standard way to modify the models to reflect this concern is to
introduce discounting of the past. We will concentrate here on the models of Making
Friends. After each interaction we will now multiply the weights of the previous
stage by a discount factor, d, between 0 and 1. The we add the undiscounted payoffs
from the present interaction to get new weights. The modification of the dynamics
has a dramatic effect on the Making Friends models.

For Friends I, it is immediately evident from simulations with d = 0.9, say,
and ten players, that the probabilities pi j converge to 0 or 1. In other words, each
individual ends up always visiting the same other individual.

In Friends II, simulations show the group breaking into pairs, with each member
of a pair always visiting his or her “partner”. Which pairs form depends on the ran-
domness in the early rounds of visits, but pairs always form. In fact there are other
possible limit states, but their frequency is low except at more extreme discount
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rates. The set of possible limit states may be described as follows. Some agents are
grouped in pairs, each member of a pair always visiting the other. Other agents are
grouped in stars. These are clusters of size at least three, in which one agent, called
the center, visits each of the others with positive frequency, while the others always
visit the center.

11.4.2 Analysis of Discounting the Past

It is worth giving a rigorous derivation of the above behavior, since it will shed some
light on a defect in the most obvious log-likelihood model to incorporate positive
and negative reinforcement. Our derivation highlights this, although the results for
discounted Friends I may also be derived from a theorem of H. Rubin ([33], p. 227).

Theorem 4. In Friends II with discount rate d < 1, there is always a partition into
pairs and stars and a random time after which each member of a pair visits only
the other member of the pair and each non-central member of a star visits only the
center. In Friends I, there is a random function f and a random time after which
each player i always visits f (i).

Sketch of Proof : The analysis for Friends I is similar but easier, so we prove the
statement only for Friends II. With each probability matrix p we associate a graph
G(p) as follows. The edge (i, j) is in the graph G if the probability pi j > ε, where
ε < 1/(2n) is some fixed positive number. Among those graphs having at least one
edge incident to each vertex, let S denote the minimal such graphs, that is, ones for
which deleting any edge results in an isolated vertex. It is easy to see that S is the
set G(p) for all p satisfying the conclusion of the theorem.

The principle behind the analysis of discounted Friends is that the future behavior
of p is largely determined by the present G(p). In particular, we find a δ > 0 such
that from any state p, for each subgraph H of G(p) such that H ∈ S, there is a
probability at least δ2 that for all sufficiently large t , G(p(t)) = H . We show this in
two steps: (1) with probability at least δ, there is some t for which G(p(t)) = H ;
(2) from any state p such that G(p) = H , there is probability at least δ that G(p(t))
is equal to H for all later times, t .

To see why (1) is true, for H ∈ S, let fH be any function on vertices of H for
which each value f (i) is a neighbor if i . Observe that there is a number k such that
from any state p with H ⊆ G(p), if each vertex i visits f (i) for the next k rounds,
then G(p(k)) = H . For each round of visits, this probability is at least εn , where
n is the number of vertices, so taking δ ≤ εkn establishes (1). For (2), it suffices to
show that with probability δ each agent visits a neighbor in H at all later times. For
each agent i , the sum over j not neighboring i in H of pi j is at most nε < 1/2 by
the definition of G(p) = H . After k rounds of visits where agents only visit their
neighbors in H , this must decrease to at most (1/2)dk . Thus the probability of N
rounds of visits only to neighbors in H is at least
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N−1∏

k=0

(
1 − 1

2
dk

)n

.

Sending N to infinity yields a convergent infinite product, since (1/2)dk is
summable. Taking δ to be less than the infinite product proves (2).

With (1) and (2), the rest is a standard tail argument. The constraints on evolution
are such that G(p(t)) always contains at least one graph in S. As long as it contains
more than one graph in S, there is always a probability of at least δ of permanently
settling into each one. Thus, with probability 1, eventually G(p(t)) is equal to some
H ∈ S for all future times. This is equivalent to the conclusion of the theorem. QED

Remark 1. It is actually shown that in (2), if we choose ε sufficiently small, we can
choose δ arbitrarily close to 1.

We now also see why the log-likelihood rule (3) leads to fixation of a degenerate
structure. Under these dynamics, an equivalent phenomenon occurs to (1) in the
proof of Theorem 4. For a pair (i, j) whose interaction has a positive mean, if the
pair plays repeatedly, we will see wi j (t)/t → μ > 0. The probability the i will
ever switch partners, once having tried j a few times is at most on the order of∑∞

k=0 B exp(−kμ), where B = exp(
∑

l �= j wil). From here it is easy to construct an
argument parallel to the proof of Theorem 4, to show that in presence of a game
with positive mean payoff, discounted structural dynamics lead with probability 1
to fixation at a pairing.

11.4.3 Introduction of Noise

A common feature in models of adaptation is the introduction of noise: a small
chance of a behavior other than the one chosen by the dynamical equation for
the model. This may stem from an agent’s uncertainty, from agent error, or from
circumstances beyond an agent’s control. Alternatively, an agent may purposefully
add noise to her strategy in order to avoid becoming wedded to a less than optimally
efficient strategy or structure.

From a methodological point of view, noise that does not go to zero with time
transforms the model into an ergodic Markov chain. No state is then trapping. To
the extent that the trapping states produced by discounting or linear log-likelihood
are unrealistic, we may hope to mitigate the problem by adding a noise component.
Since dynamics with a noise term do not lead to a single state, the outcome is usually
phrased in terms of stochastically stable states [34]. A state is termed stochastically
stable if the chance of finding the system near that state does not go to zero as the
magnitude of the noise term goes to zero.

Neither discounting nor noise will affect the limiting behavior of Making Ene-
mies. For Making Friends, let us modify the probability rule (1) so that in the
n-player game, the probability of i visiting j is now some fixed positive number
ε/(n − 1), plus (1 − ε) times what it was before:
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pi j = ε

n − 1
+ (1 − ε)

wi j∑
k wik

.

The effect of this is to push the system by ε toward the uniform point p. Neither
Friends I nor Friends II is now a martingale, and the stable set of each is reduced
to the single point p. Since this is true at any noise level ε > 0, we see that there
is only one asymptotically stable point. Since the qualitative outcome is sensitive to
the existence of a noise term, it is incumbent to ask with regard to specific models
whether a noise term is natural and realistic.

11.4.4 Noise and Discounting

In the presence of a discount d < 1 and a noise term ε > 0, if 1−d is much smaller
than ε then the discount is so low that the noise term wipes out any effect the dis-
counting might have had. In the other case, where d is held fixed and ε tends to zero,
we may ask about the asymptotically stable states of system with past discounting
dynamics. For Friends I, nothing much interesting happens: discounting causes the
limiting state to be degenerate; with noise, the system may jump from one such state
to the other, which does not change which states are stochastically stable.

For Friends II, as long as the number of players n is at least 4, the introduction of
noise does indeed change the set of stochastically stable states: it gets rid of stars.
Simulations show that pairings are by far the most prevalent states in discounted
Friends II, with a star of size 3 forming when necessitated by an odd number of
players. We now show that states with more than one star, or a star of size greater
than 3, are not stochastically stable.

Theorem 5. In Friends II, with discounting, with n players, and with noise tending
to zero, the stochastically stable states are those that are either unions of pairs (if n
is even) or pairs plus a single star of size 3 (if n is odd).

Sketch of Proof : Let S denote the graphs corresponding to possible limit states as in
the proof of Theorem 4, and let S0 ⊆ S denote those graphs with no stars (perfect
pairings) or with a single star of size 3. The important features of the relation of S to
S0 are as follows. (1) if G is the result of adding a single edge to a graph in S0, then G
contains no graph in S \ S0. (2) for any G ∈ S there is a chain G = G1, G2, . . . , Gk

leading to S0, where each G j+1 may be obtained from G j be adding an edge and
then deleting two edges. Property (1) is apparent. To verify (2), note that if H ∈ S
and i and j are non-central vertices in stars of H , and they are not both in the same
star of size 3, then adding the edge between i and j and removing the two edges
previously incident to i and j produces a new graph in S. Iterating this procedure
starting from H = G1 leads in finite time (since the number of edges decreases each
time) to an element of S0.

We now follow the usual method for determining stochastic stability [35]. Let the
probability ρ of disobeying the structural dynamics equation (11.1) be very small.
If ε (in the definition of S) is very small, then a state p with G(p) = G ∈ S
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will have G(p(t)) = G for all later times with high probability, until there is a
disobeying move. After a single disobedience, the graph G(p) will be the union of
G with one extra edge. By the remark after the proof of Theorem 4, we see that after
a disobedience, the graph will then relax to some subgraph in S. By property (1),
if G ∈ S0 then this subgraph is again in S0. Thus a single disobedience followed
by relaxation back to S will never escape S0. Hence the probability of jumping to
S \ S0 is of order ρ2, which implies that states in S0 stay in S0 for time at least
ρ−2. On the other hand, by property (2), from any state in S \ S0, there is a chain
of single disobediences, such that allowing the system to relax after each may with
positive probability land you back in S0. Thus the expected time spent in S\S0 before
returning to S0 is at most of order ρ. Thus the process spends (1 − ρ) portion of the
time in S0, and sending ρ to zero, we see that only states in S0 are stochastically
stable. It is easy to see that all of these are indeed stochastically stable. QED

11.5 Reinforcement by Games of Nontrivial Strategy

So far we have only considered a baseline model of uniform reinforcement, which
turned out still to have nontrivial structural behavior. Now we examine a reinforce-
ment scheme resulting from the payoff of a nontrivial game. We will consider the
case where evolution of strategy is slower than evolution of structure. Thus, we
will consider the agents as divided into types, each type always playing a fixed
strategy, and see what sort of interaction structure emerges. We then extend this by
allowing strategic switching of types. We find that coordination of strategy occurs,
though whether players coordinate on the risk-dominant or payoff-dominant strat-
egy depends on parameters of the model such as the rate of strategic evolution.
Depending on conditions of the model, the social network may or may not split up
into pairs.

11.5.1 Rousseau’s Stag Hunt

Consider a two-player version of Rousseau’s Stag Hunt [36]. The choices are either
to hunt stag or to hunt rabbit (hare, in the original). It takes two person cooperating
to effectively hunt a stag, while one person acting independently can hunt a rabbit.
Bagging a stag brings a greater payoff.

Hunt Stag Hunt Rabbit
Hunt Stag (1, 1) (0, 0.75)
Hunt Rabbit (0.75, 0) (0.75, 0.75)

There are two equilibria in this game: both hunt stag, and both hunt rabbit. The
first carries the higher payoff and is said to be payoff dominant; the second carries
the least risk and is said to be risk dominant [37]. In models without structural
dynamics, Kandori et al. [38] have shown that only the risk dominant equilibrium of
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a two player coordination game is stochastically stable. In the presence of structural
dynamics, we will describe a more optimistic conclusion.

Theorem 6. Suppose Stag Hunt is played by 2n players, with structural dynamics
given by equation (2) and cumulative weighting dynamics (1) with no noise or dis-
counting. Then in the limit, stag hunters always visit stag hunters and rabbit hunters
visit rabbit hunters.

Sketch of Proof : First note that no visit of a stag hunter to a rabbit hunter is ever
reinforced. Thus wi j (t) = 1 for all t if i is a stag hunter and j is a rabbit hunter.
Observing that the weights wi j (t) go to infinity when i and j are both stag hunters,
we see that the probability of a stag hunter visiting a rabbit hunter goes to zero.

Next consider the subpopulation of rabbit hunters, call it A. For i ∈ A, let

Z (i, t) =
∑

j /∈A wi j∑n
j=1 wi j

denote the probability of visiting a given rabbit hunter visiting a stag hunter on the
next turn. The expected value of Z (i, t + 1) changes according to the formula

E(Z (i, t + 1)|Z (i, t)) = Z (i, t) + t−1Y (i, t)

where Y (i, t) is the proportion of increase in expected weight wi j due to j /∈ A:

Y (i, t) =
∑

j /∈A pi j + p ji∑n
j=1 pi j + p ji

.

Ignoring the terms p ji in both the numerator and denominator of the above expres-
sion would lead to exactly Z (i, t). The terms p ji for j /∈ A are known to be
small, while the total from the terms p ji for j ∈ A cannot be small. Consequently,
Y (i, t) < (1 − ε)Z (i, t) for some ε > 0, whence

E(Z (i, t + 1) − Z (i, t)|Z (i, t)) ≤ −εZ (i, t)

t
.

Since the increments in Z (i, t) are bounded by C/t , there are a λ,μ > 0 for which
exp(λZ (i, t) + μ log t) is a supermartingale, which implies that Z (i, t) converges to
zero exponentially fast in log t . QED.

Introduction of a discount rate changes this outcome. Stag hunters still end up
visiting stag hunters, since even discounted reinforcement beats a reinforcement of
zero, but now rabbit hunters will get locked either into pairs and stars as in Making
Friends, or into repeated visits to a single stag hunter. These limit states are all
invariant under introduction of noise. When a rabbit hunter visits a stag hunter the
loss to society is the 0.75 that another rabbit hunter would have profited from the
visit. The model is evidently weak here, since it allows only one visit by each agent
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but any number of visits to each agent in a round of visits. That is, a more realistic
loss would be the stag hunter’s wasted time when visited by the rabbit hunter.

It should be noted that although the stochastically stable states include ones that
are not optimally efficient, the optimally efficient states (those states where rabbit
hunters visit rabbit hunters) will have an edge. Due to the possibility of reciprocal
reinforcement, it will be easier for a rabbit hunter to switch from visiting a stag
hunter to visiting a rabbit hunter, than vice versa. Secondly, when the discount rate
is near 1, the model behaves like the undiscounted model for a long enough time
that it is very unlikely for a rabbit hunter to get locked into visiting a stag hunter
in the first place. Simulations of Stag Hunting with ten players and d = 0.9, seem
to show that rabbit hunters “always” visit rabbit hunters. Due to both of the effects
mentioned above, the system is nearly always found in an optimally efficient state,
even though there are stochastically stable states that are not optimally efficient.

11.5.2 Co-evolution of Structure and Strategy

To the previous model, we now add the possibility of an agent switching states: a
stag hunter may decide to become a rabbit hunter, or a rabbit hunter may become
bold and hunt stag. When this kind of strategic evolution is faster than the structural
evolution, we know from studies of random encounter models that the risk dominant
equilibrium of everyone hunting rabbits will be arrived at while the network is still
near its initial state of uniform visitation probabilities.

Whether strategic dynamics are faster or slower than structural dynamics depends,
of course, on the activity being modeled; sometimes interaction structure is exter-
nally imposed, while sometimes it is more easily modified than strategy or character.
Let us suppose that the investment in re-training as a different kind of hunter is
great, so between each round of visits there is only a small chance that one of the
hunters will change types. Then we have seen that hunters always (with no noise or
discounting) or nearly always (in discounted models) hunt with others of like type.
This eliminates the risk inherent in random encounters, and allows hunters to profit
from switching to stag hunting after an initial period where they find another stag
hunter. Slow strategic adaptation gradually converts rabbit hunters to stag hunters
and the payoff dominant strategy dominates.

We describe here the results of simulations of Stag Hunting for 1,000 time steps,
where with some probability q at any given time, an individual changes type to
whichever type was most successful in the previous round. When q = 0.1, we found
that in 22% of the cases all hunters ended up hunting stag, while in 78% of the cases,
all hunters hunted rabbit. Thus there was perfect coordination, but usually not to the
most efficient equilibrium. On the other hand, when q = 0.01, the majority (71%)
of the cases ended in the optimal state of all hunting stag, while 29% ended up all
hunting rabbit. Increasing the initial edge weights made it far less likely to reach
the stag hunting equilibrium, since stag hunters took a long time to perfectly align,
and without alignment, the previous round’s best strategy was almost always rabbit
hunting. For instance, if the initial weights were 1,000 for each visit, under 1% of
the cases ended up all stag hunting, whether q was 0.1 or 0.01.
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Once hunters largely cease to visit hunters of opposite type, the structural evolu-
tion within each of the two subpopulations is a version of Friends II. The resulting
social structure will not be a perfect pairing, but will have each rabbit (stag) hunter
visiting each other rabbit (stag) hunter, but with varying probabilities.

11.6 Conclusion

We have taken some basic steps in exploring dynamics of evolution of interaction
structures and co-evolution of structure and strategy. The ultimate goals are to create
models that are more true to life, and to find theoretical bases for observed behaviors
of systems, including prediction of selection between multiple equilibria.

The particular dynamics we use here are only examples, but it turns out that the
simplest of these may deliver interesting and surprising results. Even in baseline
models where the game being played is degenerate, we find spontaneous emer-
gence of structure from uniformity and spontaneous emergence of uniformity from
structure. We find processes with extremely long transient modes, where limiting
behavior is not a good guide for predicting behavior after thousands of trials.

The social interaction structures that emerge tend to separate the population into
small interaction groups within which there is coordination of strategy. This separa-
tion may be complete, as in discounted Friends II, or may be only a tendency, as in
the non-discounted versions of Friends and Stag Hunting.

When we combine structure and strategy dynamics for a non-trivial game, the
Stag Hunt, we find that the probable outcomes depend on the timing. Where
structure is frozen in a random encounter configuration we get the expected risk-
dominant equilibrium outcome. But when structure is fluid relative to strategy, struc-
tural adaptation neutralizes the risk and we get the socially efficient payoff dominant
equilibrium. Varying between these extremes can give one or the other result with
different probabilities – or may leave the group in a state where both strategies are
used. We expect to see structure dynamics making a difference in other games as
well. Indeed, we have some preliminary simulation evidence showing this to be true
for a bargaining game (“split the dollar”), and for a simple coordination game.

There are many more avenues to pursue. As mentioned in Sect. 11.3, it would be
desirable to find a model in which positive and negative reinforcement are present,
but trapping does not occur. We have not modeled any interaction among three or
more players. We also have yet to model any explicit interaction between strategy
and structure: the choice of a partner to play with and a strategy to play against that
partner need not be independent.

One could continue adding complexity so as to allow information to affect struc-
tural evolution, to include communication between players, and so forth. Our main
point is this. Structural change is a common feature of the real world. A theory
of strategic interaction must take account of it. There is a mathematically rich the-
ory which develops relevant tools. We believe that explicit modeling of structural
dynamics, and the interaction of structure and strategy, will generate new insights
for the theory of adaptive behavior.
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Postscript to: A Dynamic Model of Social Network Formation

At about the same time as our paper was originally published, several economists
initiated a somewhat different account of network formation. [3, 8, 20.] They view
network links as all-or-none, whereas we view them as stochastic. Thus, for them
a network is a graph or a directed graph, while for us it is a random graph. They
imbed the network in a game – a game, where the players acts are choosing to make
or break links, and the graph structure determines the players payoffs. We embed
the games in an evolving network, with the games being played across links. The
network dynamics considered in these three papers is one of best-response with
inertia. At a random time, a player looks at the network structure and chooses a best
response, which may consist of making or breaking links or both. Updating times
are independent across players, so updating is asynchronous, which avoids cycles.
This line of research can be thought of as complementary to that which we and
others to be discussed here have pursued.

We emphasized stochastic networks that evolve as low-rationality agents update
their probabilities by reinforcement learning or imitation or both. Deterministic
networks might or might not crystallize out, depending of the learning dynamics
used and the kind of interaction being modeled. Our point of view is thus close
to that expressed by Kirman [9]. Bonacich and Liggett [4] and Liggett and Rolles,
[10] work in a closely related model. Our baseline interactions, Friends I and II
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always reinforced the visitor, or both the visitor and the host respectively. These
papers consider the case where the host alone is reinforced as a model of gift-
giving – the visitor takes a gift to the host. They also use reinforcement learning
as a dynamics, but the kind of reinforcement learning is different. It derives from
Bush and Mosteller rather than from Herrnstein, Roth and Erev, and it generates a
Markov chain rather than a reinforcement process. [See Pemantle [13], for a survey
of reinforcement processes. See Argiento et al. [2] for application of our kind of
reinforcement learning to a signaling game.] As Bonacich and Liggett remark, their
dynamics tends to freeze into the same sort of structures as our Friends II model
where reinforcement is modified by discounting the past. From the viewpoint of
stochastic approximation theory, such discounting converts a process with dimin-
ishing step size of order (1/time) to one of constant step size. Individuals then have
a tendency to “freeze” into deterministic relationships.

In Pemantle and Skyrms [14, 15] we analyze clique formation in a 3-person
“friends” game, Three’s Company, and in a 3-person version of the Stag Hunt, where
the learning is Herrnstein-Roth-Erev reinforcement with discounting the past. It is
proved that cliques always form in the limit. However, extensive simulations only
show reliable clique formation when the discounting is substantial. It is shown that
for small discounting, long-run limiting results are a poor guide to medium-run
behavior. Rather the medium run should be expected to approximate the limiting
behavior of undiscounted learning. In the 3-person Stag Hunt, in contrast with this
slow clique formation, Stag Hunters learn to visit each other rapidly, and thus the
positive results for social cooperation of our original paper are preserved.

The structure dynamics, the strategy revision dynamics, and the embedded game
may be varied. Skyrms [17, 18] and Skyrms and Pemantle [19] consider various
combinations of structure and strategy dynamics. In double reinforcement dynamics
both network structure and strategy played evolve by reinforcement, but at differ-
ent rates Double reinforcement dynamics in the Stag Hunt agrees with the general
principle that fast evolution of network structure favors cooperation. But if strategy
revision dynamics is changed to best response in the Stag Hunt, individuals may
freeze into two social classes – cooperators and loners.

Coevolution of network structure and strategy is also studied by Zimmerman
et al. [21], and by Santos et al. [16], who also find a positive effect on evolution of
cooperative behavior. Goyal and Vega-Redondo [5] study a model of co-evolution
of structure and strategy where link formation is costly. In their model, high costs of
link formation favor cooperation in the Stag Hunt game. A model with imitate-the-
best strategy revision and with deterministic costly links that require mutual consent,
and are driven by cost-benefit analysis, is analyzed in Hanaki et al. [7]. Pacheco
et al. [11] and Pacheco et al. [12] interpret fast evolution of network structure as a
way of transforming the payoffs of the embedded game. In this way, a Prisoner’s
Dilemma can be transformed into a Stag Hunt. This is quite consonant with view
taken in Skyrms [17]. In both these papers relative rates of network and strategy
revision dynamics again play a key role in evolution of cooperation.

Alexander’s [1] book systematically compares coevolution of structure and strat-
egy with evolution on fixed structures across a range of games. In addition to the
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usual social dilemmas, he also examines bargaining games. There is a comprehen-
sive review across fields of adaptive social networks in Gross and Blasius [6].

Acknowledgements Research supported in part by National Science Foundation grant # DMS
9803249. This chapter is based on B. Skyrms and R. Pemantle, “A Dynamic Model of Social
Network Formation,” PNAS 97 (16), 9340-9346 (2000).

References

1. Alexander, J. McKenzie (2007) The Structural Evolution of Morality. Cambridge: Cambridge
University Press.

2. Argiento, R., Pemantle, R., Skyrms, B. and Volkov, S. (forthcoming) Learning to Signal: Anal-
ysis of a Micro-Level Reinforcement Model. Stochastic Processes and their Applications.

3. Bala, V. and Goyal, S. (2000) A Non-Cooperative Model of Network Formation. Economet-
rica 68: 1181–1229.

4. Bonacich. P. and Liggett, T. (2003) Asymptotics of a Matrix-Valued Markov Chain Arising in
Sociology. Stochastic Processes and their Applications 104: 155–171.

5. Goyal, S. and Vega-Redondo, F. (2005) Network Formation and Social Co-ordination. Games
and Economic Behavior 50: 178–207.

6. Gross, T. and Blasius, B. (2008) Adaptive Coevolutionary Networks: A Review. Journal of the
Royal Society Interface 5: 259–271.

7. Hanaki, N., Peterhansl, A., Dodds, P. S., and Watts, D. (2007) Cooperation in Evolving Social
Networks. Management Science 53: 1036–1050.

8. Jackson, M. and Watts, A. (2002) On the Formation of Interaction Networks in Social Coor-
dination Games. Games and Economic Behavior 41: 265–291.

9. Kirman, A, (1997) The Economy as an Evolving Network. Journal of Evolutionary Economics
7: 339–353.

10. Liggett, T. M. and Rolles, S. (2004) An Infinite Stochastic Model of Social Network Forma-
tion. Stochastic Processes and their Applications 113: 65–80.

11. Pacheco, J. M., Traulsen, A. and Nowak, M. A. (2006) Coevolution of Structure and Strategy
in Complex Networks with Dynamic Linking. Physical Review Letters 97: 258103.

12. Pacheco, J. M., Traulsen, A., Ohtsuki, H. and Nowak, M. A. (2008) Repeated Games and
Direct Reciprocity Under Active Linking. Journal of Theoretical Biology 250: 723–731.

13. Pemantle, R. (2007) A Survey of Random Processes with Reinforcement. Probability Surveys
4: 1–79.

14. Pemantle, R. and Skyrms, B. (2004a) Time to Absorption in Discounted Reinforcement Mod-
els. Stochastic Processes and their Applications 109: 1–12.

15. Pemantle, R. and Skyrms, B. (2004b) Network Formation by Reinforcement Learning: The
Long and the Medium Run. Mathematical Social Sciences 48: 315–327.

16. Santos, F. C., J. M. Pacheco and T. Lenaerts (2006) Cooperation Prevails when Individual
Adjust their Social Ties. PloS Computational Biology 2: 1284–1291.

17. Skyrms, B. (2004) The Stag Hunt and the Evolution of Social Structure. Cambridge: Cam-
bridge University Press.

18. Skyrms, B. (2009) Groups and Networks: Their Role in the Evolution of Cooperation. In
Groups, Games and the Global Good. Ed. Simon Levin. Berlin: Springer Verlag.

19. Skyrms, B. and R. Pemantle (forthcoming) Learning to Network. In Probability in Science.
Ed. E. Eells and J. Fetzer. Open Court Publishing.

20. Watts, A. (2001) A Dynamic Model of Network Formation. Games and Economic Behavior
34: 331–341.

21. Zimmerman, M. G., Eguiluz, V. M., San Miguel, M. (2004) Coevolution of Dynamical States
and Interactions in Dynamic Networks. Physical Review E 69: 065102.



Chapter 12
Evolutionary Games in Self-Organizing
Populations

Arne Traulsen, Francisco C. Santos, and Jorge M. Pacheco

Abstract Social networks are dynamic: We make new friends and lose touch with
old ones, depending on the interactions with them. Most analytic studies of social
networks assume that links remain unchanged at all times. In this case, individuals
have no control over the number, frequency or duration of their interactions with
others. Here, we discuss analytical and numerical models in which individuals can
break links and create new ones. Interactions are modeled as general symmetric two-
player games. Once a link between two individuals has formed, the productivity of
that link is evaluated. Links can be broken off at different rates. In the limiting cases
where linking dynamics is much faster than evolutionary dynamics or vice-versa, the
system can be tackled analytically for non-local linking dynamics. We show how the
individual capacity of forming new links or severing inconvenient ones can change
the nature of the game. If the linking rules are local, numerical simulations show
that the resulting networks capture some of the features characteristic of real-world
social networks.

12.1 Evolutionary Game Dynamics

Game theory describes systems in which the success of an individual depends on the
actions of others. The classical approach focused on the determination of optimal
strategic behavior of rational individuals in such a static setting [1]. Evolutionary
game theory places this framework into a dynamical context by looking at the evo-
lutionary dynamics in a population of players [2]. Successful behaviors spread in
such a population. The expected payoff from the game is a function of the frequen-
cies of all strategies. There are two interpretations of evolutionary game theory: In
the conventional setting, the payoff is interpreted as biological fitness. Individuals
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reproduce proportional to their fitness and successful strategies spread by genetical
reproduction. A second interpretation is the basis for cultural evolution in social
systems: Successful behaviors are imitated with a higher probability. They spread
by social learning instead of genetical reproduction. Both frameworks are captured
by the same mathematical approach: The generic mathematical description of evo-
lutionary game dynamics is the replicator equation [3–5]. This system of nonlinear
ordinary differential equations describes how the relative abundances (frequencies)
of strategies change over time. The assumption underlying the replicator equation
is that individuals meet each other at random in infinitely large, well-mixed popula-
tions. But it also emerges in other cases, e.g. if the interaction rates between individ-
uals are not random [6] or from a large-population approximation of evolutionary
game dynamics in finite populations [7].

However, in reality the probability to interact with someone else is not the
same across a population or social community. Interactions occur on social net-
works which define the underlying topology of such cultural dynamics. Initially,
this line of research has focused on regular lattices [8–12]. More recently, more
complex topologies derived from lattices [13, 14] and general networks have been
considered in great detail [15–20]. While the theoretical advances in this field are
tremendous, there is so far a lack of experimental data. Designing and implement-
ing such experiments has proven difficult and, so far, only general statements as
“the probability to be generous is correlated with the number of social links of an
individual” can be made [21]. This statement corresponds perfectly with observa-
tions of the evolutionary dynamics in theoretical models of social network dynamics
[18, 20].

Observing such data from real-world systems is also problematic. One impor-
tant property of social networks that is seldom addressed in theoretical studies is
that real world social networks are not static. Instead, we make new friends and
lose touch with old ones, depending on the kind of interaction we have with them.
This makes social networks an example of an adaptive network. The basic idea is
that interactions which benefit both partners last longer than interactions where one
partner is exploited by the other. Here, we discuss such an approach, which leads
to analytical results in certain limits. These serve as important starting points for
further developments.

12.2 Active Linking

We break down the model into two parts: Evolutionary dynamics of strategies (or
behaviors) of the agents associated with nodes in a network whose links describe
social interactions. The adaptive nature of the social interactions leads to a net-
work linking dynamics. We consider a game between two strategies, A and B. The
network is of constant size with N nodes. The number of links, however, is not
constant and changes over time. There are NA individuals who use strategy A and
NB individuals who use strategy B. We have N = NA + NB .
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12.2.1 Linking Dynamics

An interaction between two players occurs if there is a link between these players.
Links are formed at certain rates and have specific life-times. We denote by X (t)
the number of AA links at time t . Similarly, Y (t) and Z (t) are the number of AB
and B B links at time t . The maximum possible number of AA, AB and B B links is
respectively given by

Xm = NA(NA − 1)/2

Ym = NA NB

Zm = NB(NB − 1)/2.

Suppose A players form new links at rate αA and B players form new links at rate
αB . Thus, AA links are formed at a rate α2

A, AB links are formed at a rate αAαB

and B B links are formed at a rate α2
B . The death rates of AA, AB and B B links are

given by γAA, γAB and γB B , respectively. If the number of nodes and links is large,
we can model the dynamics of links by differential equations. We obtain a system
of three ordinary differential equations for the number of links

Ẋ = α2
A(Xm − X ) − γAA X

Ẏ = αAαB(Ym − Y ) − γABY

Ż = α2
B(Zm − Z ) − γB B Z .

For α2 � γ , the network is almost complete, which recovers the results for well-
mixed populations. For α2 � γ , the network is sparse with few links. The most
interesting case we discuss below is α2 ≈ γ , where the system has fixed points with
intermediate ranges of X , Y and Z . Rescaling α and γ in an appropriate way (note
that the equation contains squares of α and linear terms of γ ) does not change the
fixed points of the system, but affects the overall timescale of active linking. When
this process is coupled with strategy dynamics, such changes can be crucial.

While the above is probably the simplest possibility to model linking dynamics,
more sophisticated choices are possible, for example taking the number of existing
links of a node into account. However, to address some general properties of the
coevolution between links and strategies, we concentrate on the simplest choice
first. In the steady state, the number of links of the three different types is given by

X∗ = Xm
α2

A

α2
A + γAA

= XmφAA

Y ∗ = Ym
αAαB

αAαB + γAB
= YmφAB

Z∗ = Zm
α2

B

α2
B + γB B

= ZmφB B .
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NA= 5 NA= 10

NA= 15 NA= 20

Fig. 12.1 Frequency dependent steady state dynamics. Results of active linking dynamics for a
population size of N = 30 individuals. A-players are located in the “inner-rim”, and are rep-
resented by blue circles, whereas B-players are located in the “outer-rim”, and are represented
by red circles. In this way, AA-links (solid cyan lines) live only within the “inner-rim”, whereas
AB-links (solid red lines) occupy the space between the rims while B B-links (solid grey lines)
cross the entire region of the figure. Each panel depicts a snapshot in the steady state of the
active-linking dynamics, associated with a different (and fixed) frequency of A and B players. The
parameters determining the active linking dynamics are: αA =αB = 0.5, γAA = 0.5, γAB = 0.25 and
γB B = 0.5

Here, φAA, φAB , and φB B are the fractions of active AA, AB and B B links in the
steady states. Examples of population structures attained under steady-state dynam-
ics for three different combinations of (NA, NB) are shown in Fig. 12.1.

12.2.2 Strategy Dynamics

Next, we address the dynamics of the strategies at the nodes. We consider the
stochastic dynamics of a finite population, i.e. we restrict ourselves to finite net-
works. We consider a game between A and B given by the payoff matrix



12 Evolutionary Games in Self-Organizing Populations 257

( A B

A a b
B c d

)
. (12.1)

Thus, an A individual interacting with another A obtains the payoff a. A against
B obtains b, whereas the B individual obtains c in such an interaction. Finally, B
individuals obtain d from interactions with other B individuals.

We have to distinguish three generic cases of 2 × 2 games:

• Dominance. If a > c and b > d, strategy B is dominated by strategy A. Thus,
strategy A always obtains a higher payoff. The outcome does not have to be a
social optimum: For a < d, the individuals playing strategy A end up with a
non-optimum payoff. Similarly, B dominates A for c > a and d > b.

• Coordination games: a > c and b < d leads to coordination games, in which
it is always good to follow the strategy of the majority in the population. In the
generic case, one strategy has a larger basin of attraction. This strategy is called
risk dominant strategy. For a + b > c + d, strategy A is risk dominant.

• Coexistence games: In the case of a < c and b > d, a small minority is favored.
This means that the ultimate outcome in a population of players is a mixture of
strategies A and B.

From the payoff matrix, we can calculate the payoffs of the individuals, depending
on the number of interactions they have with the different types. On a complete
network, the payoffs are

πA = a(NA − 1) + bNB (12.2)

and

πB = cNA + d(NB − 1). (12.3)

Often, the payoffs are scaled by 1/(N −1), such that the payoffs do not increase with
the population size. For the strategy update process defined below, this corresponds
simply to a rescaling of the intensity of selection, i.e. changing the noise intensity, if
all individuals have the same number of interactions. If the number of interactions
is not the same for all players, the heterogeneity between players can lead to new
effects [20, 22].

Reproduction can be interpreted as genetic or cultural. We adopt the pairwise
comparison rule [11, 23], which has been recently shown to provide a convenient
framework of game dynamics at all intensities of selection [24, 25]. According to
this rule, two individuals from the population, A and B are randomly selected for
update (only the selection of mixed pairs can change the composition of the popula-
tion). The strategy of A will replace that of B with a probability given by the Fermi
function
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p = 1

1 + e−β(πA−πB )
. (12.4)

The reverse will happen with probability 1−p. The quantity β, which in physics cor-
responds to an inverse temperature, controls the intensity of selection. For β � 1,
we recover the weak selection limit of the frequency dependent Moran process,
which can be viewed as a high temperature expansion of the dynamics [24, 26]. For
β � 1, we recover imitation dynamics, which corresponds to a low temperature
limit [24, 25]: In the limit β → ∞, the individual with the lower payoff will always
adopt the strategy of the other individual.

The quantity of interest in finite population dynamics is the fixation probability
ρ, which is the probability that a single mutant individual of type A takes over a
resident population with N − 1 individuals of type B.

12.2.3 Separation of Timescales

The system of coevolving strategies and links is characterized by two timescales:
One describing the linking dynamics (τa), the second one describing strategy
dynamics (τe). We can obtain analytical results in two limits, where both timescales
are separated. Defining the ratio W = τe/τa , separation of time scales will occur for
W � 1 and W � 1.

12.2.3.1 Fast Strategy Dynamics

In this case, active linking does not affect strategy dynamics. Thus, the dynamics is
identical to the evolutionary game dynamics on a fixed network. Such systems have
been tackled by many authors for a long time [8–20]. The difficulty of an analytical
solution for such systems is determined by the topology of the network, which cor-
responds to an initial condition in our case. Analytical solutions are feasible only
for few topologies. One important limiting case leading to analytical solutions is
given by complete networks corresponding to well-mixed systems. In this case, the
fixation probability can be approximated by

ρA = erf [ξ1] − erf [ξ0]

erf [ξN ] − erf [ξ0]
, (12.5)

where erf(x) is the error function and ξk =
√

β

u (ku + v) [25]. We have 2u = a −
b − c + d and 2v = −a + bN − cN + c. For u = 0, this simplifies to

ρA = 1 − e−2βv

1 − e−2βvN
. (12.6)

A second example are Cayleigh trees. In this case, analytical solutions are only
possible for weak selection, β � 1. For example, the fixation probability of a single
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A individual under death-birth update can be calculated. For this update process, one
individual selected at random is removed (death) and one of its neighbors is selected
proportional to payoff to fill the empty space (birth). The fixation probability then
reads [19]

ρA = 1

N
+ η

N − 1

N

[ μ

N
+ μ + 3η

]
, (12.7)

where the parameters are μ = (k + 1) (k − 1) (a − b − c + d), η = (k + 1) a + (k2 −
k − 1) b − c − (k2 − 1) d and k is the degree of the homogeneous graph.

Consequently, whenever W � 1 the linking dynamics only becomes relevant
in states where the system can no longer evolve from strategy dynamics alone, but
changing the topology allows to escape from these states.

12.2.3.2 Fast Linking Dynamics

Whenever W � 1, linking dynamics is fast enough to ensure that the network will
reach a steady state before the next strategy update takes place. At the steady state
of the linking dynamics, the average payoffs of A and B individuals are given by

πA = aφAA(NA − 1) + bφAB NB (12.8)

and

πB = cφAB NA + dφB B(NB − 1). (12.9)

Note that the effective number of interactions of an A player and a B player
can become very different if φAA � φB B or vice versa. Comparing Eqs. (12.8)
and (12.9) to Eqs. (12.2) and (12.3) suggests that the linking dynamics introduces
a simple transformation of the payoff matrix. We can study standard evolutionary
game dynamics using the modified payoff matrix

( A B

A aφAA bφAB

B cφAB dφB B

)
=

( A B

A a′ b′

B c′ d ′

)
. (12.10)

This is an important observation: Linking dynamics can change the nature of the
game [27]. So far, we have only shown this in the limit where linking dynamics is
much faster than strategy dynamics (W � 1). However, the result is expected to
hold even when the two time scales are comparable (see below and also [27, 28]. In
general, all generic transformations are possible:

• A dominance game with a > c and b > d can change into a coordination game
with a′ > c′ and b′ < d ′ or into a coexistence game with a′ < c′ and b′ > d ′.
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• A coordination game with a > c and b < d can be transformed into a dominance
game with a′ < c′ and b′ < d ′ (or a′ > c′ and b′ > d ′) or into a coexistence
game with a′ < c′ and b′ > d ′.

• A coexistence game with a < c and b > d can be transformed into a dominance
game with a′ < c′ and b′ < d ′ (or a′ > c′ and b′ > d ′) or into a coordination
game with a′ > c′ and b′ < d ′.

The transition points can be determined as follows: Strategy A is a Nash equilibrium
for a > c. This property changes to a′ < c′ when

a

c
<

φAB

φAA
= αB

αA

α2
A + γAA

αAαB + γAB
. (12.11)

For example, φAB can be increased by reducing the death rate of AB links, γAB .
With increasing φAB , the condition is fulfilled at some point. At the transition point,
A is either transformed into a Nash equilibrium or loses this property. An equivalent
transition for B is given by the condition

d

b
<

φAB

φB B
= αA

αB

α2
B + γB B

αAαB + γAB
. (12.12)

However, the conditions are not entirely independent, since at least two parame-
ters have to be varied. Usually, it is enough to vary the three link-death rates γ and
fix the link-birth rates α to observe these transitions. It is also worth mentioning that,
in coordination games, the transformation can change the risk-dominant strategy,
that is, the strategy with the larger basin of attraction.

12.2.4 Effects of Active Linking

As we have shown, active linking can lead to a wide range of scenarios that effec-
tively change the character of the game. However, the analytical results have been
obtained assuming time scale separation. Figure 12.2 shows the results of numerical
simulations for a gradual change of the time scale ratio. Deviations from the analyt-
ical predictions are limited to a single order of magnitude. In other words, the time
scale separation is not a very strong assumption and remains valid for a much wider
range of parameters than expected. Even for moderate active linking, our analytical
results are recovered. Thus, self-organising network structures and the evolutionary
game dynamics on the network are intimately entangled. Having identified the rel-
evance of time scale separation in a minimal model of linking dynamics, we now
turn to more complex linking dynamics based on local rules.
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Fig. 12.2 Active linking effectively changes the payoff matrix and the nature of the game. (a)
We start from a complete network without structure dynamics (W = 0) and a game in which
strategy B dominates A. In this case, the fixation probability of A (full line) is essentially zero
for all initial numbers of A. With active linking (dashed line), the game turns into a coordination
game. In this case, A becomes risk dominant and the fixation probability of A exceeds 0.5 if
the initial number of A individuals is larger than 36. (b) Numerical simulations reveal the range
of validity of our analytical approximations. We start from 50% A individuals. For small W , A
individuals never reach fixation. But already for W = 0.1, their fixation probability is close to
one. Thus, moderate active linking is sufficient to make A the dominant strategy here (averages
over 100 realizations, population size N = 100, intensity of selection β = 0.05, αA = αB = 0.4,
γAA = 0.16, γAB = 0.80 and γB B = 0.32. )

12.3 Individual Based Linking Dynamics

In the model discussed in Sect. 12.2, we have a fluctuating number of links and
analytical results in the two limits where the time scale of linking dynamics and
strategy dynamics are well separated, allowing for the mean-field treatment con-
sidered. We now introduce an alternative description in which the number of links
is conserved, but in which decision to maintain or rewire a link results both from
individual preference in the choice of partners and negotiation between individuals
linked [29]. Such an individual based decision making cannot be dealt with at a
mean-field level and calls for a numerical implementation.

12.3.1 Specification of the Linking Dynamics

To reduce the number of parameters, let us start by restricting the space of possible
games by fixing a = 1 and d = 0, while −1 ≤ b ≤ 1 and 0 ≤ c ≤ 2.

( A B

A 1 b
B c 0

)
. (12.13)

This spans the four dynamical outcomes introduced before: (a) dominance of A
over B (b > 0 and c < 1); (b) coexistence game (b > 0 and c > 1); (c) coordination
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game (b < 0 and c < 1) and (d) dominance of B over A (b < 0 and c > 1) (see
Sect. 12.2.2).

Because b ≤ 1 and c ≥ 0, the payoff against an A individual is always higher
than the payoff against a B individual, cf. Eq. (12.13). Thus, interacting with an
A-player is always the best possible option. Consequently, every individual will be
satisfied when connected to a A and dissatisfied otherwise. Keeping the total number
of links constant, all individuals are now able to decide, on an equal footing, those
ties that they want to maintain and those they want to change. The co-evolution
between strategy and network structure is therefore shaped by individual prefer-
ences towards interacting with one of the two strategies [29]. Figure 12.3 illustrates
the process. If Q is satisfied, she will decide to maintain the link. If dissatisfied,
then she may compete with R to rewire the link (see Fig. 12.3), rewiring being
attempted to a random neighbor of R. The intuition behind this reasoning relies on
the fact that agents, equipped with limited knowledge and scope, look for new social
ties by proxy [30]. Such a procedure can only be treated numerically and does no
longer lead to a simple rescaling of a payoff matrix as the mechanism discussed in
Sect. 12.2. On the other hand, it introduces some features characteristic of realistic
social networks.

The fact that all individuals naturally seek to establish links with individuals
with strategy A, creates possible conflicts of interests as illustrated in Fig. 12.3. For
instance, R is satisfied, because it can profit from Q. Obviously, Q is not satisfied
and would prefer to seek for a individual A. Decision is contingent on the payoff
πQ and πR of Q and R, respectively. With the probability p = [1 + e−β[πQ−πR ]]−1

1-p

Q,    (Q)

R,    (R)

p

A

B

Fig. 12.3 Readjusting social ties. A and B individuals interact via the links of a network. R (B) is
satisfied, since Q has strategy A (c > 0). On the other hand, Q is unsatisfied with this situation
(b < 1). Therefore, Q wants to change the link whereas R does not. The action taken is contingent
on the fitness πQ and πR of Q and R, respectively. With probability p (see Eq. (12.4)), Q redirects
the link to a random neighbor of R. With probability 1 − p, Q stays linked to R. Finally, if both
players are dissatisfied, the same methodology is used to decide who keeps the connection
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(also used in the strategy update, cf. Eq. (12.4)), Q redirects the link to a random
neighbor of R. With probability 1 − p, Q stays linked to R. Whenever both Q and
R are satisfied nothing happens. When both Q and R are unsatisfied, rewiring takes
place such that the new link keeps attached to Q with probability p and attached to
R with probability 1 − p. Thus, the more successful individual keeps the link with
higher probability.

12.3.2 Numerical Results

As previously, this model establishes a coupling between individual strategy dynam-
ics and population structure dynamics. This leads necessarily to a time scale asso-
ciated with strategy evolution, τe and a second associated with structure evolution,
τa . When the ratio W = τe/τa equals 0 we recover the fast strategy dynamics of
Sect. 12.2.3.1. On the other hand, with increasing W , individuals become apt to
adapt their ties with increasing efficiency.

The contour plots in Fig. 12.4 illustrate the final fraction of individuals which
adopt strategy A for different values of the ratio W in networks with average con-
nectivity z = 30 (this value reflects the mean value of the average connectivities
reported in [31] for socials networks). We plot the fraction of A individuals who
survive evolution, averaged over 100 independent realizations for the same values
of the game payoff entries (b, c) and the time scale ratio W. For W = 0 the results
reproduce, as expected [20], the predictions for finite, well-mixed populations. Yet,
with increasing W , A individuals gain an advantage, as they can terminate their
undesireable interactions with B individuals. Rewiring changes the strategy dynam-
ics and paves the way for a radically distinct evolutionary outcome in which A
players are now able to dominate for the entire range of games. Under structural
dynamics, A individuals can cut their links to B individuals, which gives them an
advantage compared to the situation on a static network. The swifter the response
of individuals to the nature of their ties, the easier it gets for A players to wipe out
B players. Note further that A already dominates B for W = 4, corresponding to a
situation far from the time-scale separation conditions defined in Sect. 12.2.3.

Additional insight is provided in Fig. 12.5 (left panel), where we show how A
dominates B as a function of W when c = 2 and b = −1 (lower right corner
of the panels in Fig. 12.4), which represents the most challenging case for the A
individuals. Different values of the average connectivity z are shown. For small W ,
A individuals have no chance. Their fate changes as W approaches a critical value
Wcritical – which increases monotonically with connectivity z – A players wiping
out B players above Wcritical (the increase of Wcritical with z is expected, since
there are more links to be rewired; in practice, Wcritical is determined as the value of
W at which the frequency of As crosses 50%). Thus, the evolutionary outcome and
effective game at stake relies on the capacity of individuals to adjust to adverse ties.

Figure 12.5 also provides evidence of the detailed interplay between strategy and
structure. On one hand, strategy updating promotes a local assortment of strategies,
since A individuals breed A individuals and B individuals breed B individuals.
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Fig. 12.4 Final frequency of strategy A in all games for different time-scale ratios between strategy
and structure dynamics. Results for the fraction of successful evolutionary runs ending in 100% of
individuals with strategy A for different values of the time scale ratio W , starting from 50% of each
strategy. We study the four different games in the area 2 ≥ c ≥ 0 and 1 ≥ b ≥ −1: (1) A dominates
B; (2) coexistence game; (3) coordination game; (4) B dominates A (see Sect. 12.2.2). For W = 0
(N = 103, z = 30 and β = 0.005), the results fit the predictions from well-mixed populations,
although individuals only interact with a small subset of the population. With increasing W (faster
structure dynamics), the rate at which individuals readjust their ties increases, and so does the
viability of strategy A. Above a critical value Wcritical ∼ 4.0 (see also Fig. 12.5), individuals with
a strategy A efficiently wipe out Bs. For the strategy evolution dynamics adopted here (pairwise
comparison, see Sect. 12.2.2), and according to [19], A would never be favored in static networks

On the other hand, under structural updating, one is promoting local assortative
interactions between A-players (that is, AA-links) and disassortative interactions
between B and A-players (that is, AB-links), which constitute favorable steps from
an individual point of view. Clearly, when simultaneously active, strategy update
will reinforce assortativity among As, but will inhibit disassortativity between B
and A-players, which overall will promote the dominance of A over B.

12.3.3 Graph Structures Under Individual Based
Linking Dynamics

For any W > 0, individual choices lead to heterogeneous graphs in which some indi-
viduals interact more, and more often than, others. The overall onset of increase of
heterogeneity qualitatively follows the wave of A dominance shown in Fig. 12.4 [29].
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Fig. 12.5 Co-evolution of strategies and links in the game region in which B should dominate
for different time-scales. Left panel: Final frequency of A strategy at end as a function of W for
different average connectivity z. For each average connectivity z, there is a critical value of the time
scale ratio W – Wcritical – above which A-players wipe out B-players. Right panel: Connectivity
kmax of the largest hub in the network, as a function of the time scale ratio W . With increasing
z, Wcritical increases. In all cases, the heterogeneity of the associated network becomes maximal
at Wcritical . For higher values of W , the heterogeneity decreases again when type B decreases in
frequency. For high values of W , type B is wiped out and only the heterogeneity generated by the
rewiring mechanism in a neutral system prevails (Payoffs: a = 1, c = 2, b = −1 and d = 0;
Intensity of selection β = 0.005.)

In fact, the overall heterogeneity of the graph increases as W increases reaching a
maximum at Wcritical , above which heterogeneity decreases again down to a station-
ary value determined by neutral dynamics in a system with one strategy only [29].
The results shown suggest that the adaptive dynamics of social ties introduced here
coupled with social dilemmas accounts for the heterogeneities observed in realistic
social networks [32].

12.4 Discussion

Our analysis has been limited to one-shot games. In other words, individuals interact
once during the lifetime of a link as if they have never met before. But in repeated
interactions, more possibilities exist. If I only take into account your behavior in the
last interaction, there are already 22 = 4 strategies. Since the number of strategies
grows rapidly with memory [33, 34], one often considers so called trigger strategies
in which individuals keep their behavior unchanged until they are faced with an
unsatisfactory partner for the first time. Such strategies can be implemented into our
active linking framework, assuming that individuals act repeatedly as long as a link
between them is present. This procedure leads to analytical results for evolutionary
stability under active linking even in the context of repeated games [35].

Other studies have shown numerically that network dynamics can significantly
help dominated strategies. Even if only the dominant strategy can locally affect
the network structure, this can help the dominated strategy under certain linking
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rules that put restrictions on mutual interactions of the dominant strategy [36, 37].
A recent study for growing networks has shown that the dominant strategy has an
advantage as long as a network is growing by preferential attachment. Once network
growth is stopped, the dominated strategy increases in frequency [38].

A different approach for self organizating population structures determined by
game theoretic interactions has been proposed in computer science [39, 40]. There,
agents aim to minimize their linking costs in a network by establishing links that
minimize the path to all other nodes. This selfish optimization leads to networks
distinct from the social optimum. The performance of such systems is measured in
terms of the ratio of the optimal cost for links divided by the linking cost in the
worst case Nash equilibrium. This ratio has been referred to as “price of anarchy”.
Since this quantity is not independent of the cost function and the parameters, it is
problematic to transfer it to evolutionary games on networks.

To sum up, by equipping individuals with the capacity to control the number,
nature and duration of their interactions with others, we introduce an adaptive
network dynamics. This leads to surprising and diverse new game dynamics and
realistic social structures. We have presented two approaches how to implement
this network dynamics. The first one, active linking, allows to define differential
equations for the numbers of links, which leads to analytical results. The second
approach, individual based linking dynamics, is implemented numerically and leads
to network features of empirical social networks.

The consideration of adaptive social networks is an important step towards
more realistic models of social interactions in structured populations. Coupling the
dynamics on networks with the dynamics of networks leads to emergent new phe-
nomena outside the classical considerations of social dynamics on static networks.
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Chapter 13
The Diplomat’s Dilemma: Maximal Power
for Minimal Effort in Social Networks

Petter Holme and Gourab Ghoshal

Abstract Closeness is a global measure of centrality in networks, and a proxy for
how influential actors are in social networks. In most network models, and many
empirical networks, closeness is strongly correlated with degree. However, in social
networks there is a cost of maintaining social ties. This leads to a situation (that can
occur in the professional social networks of executives, lobbyists, diplomats and
so on) where agents have the conflicting objectives of aiming for centrality while
simultaneously keeping the degree low. We investigate this situation in an adaptive
network-evolution model where agents optimize their positions in the network fol-
lowing individual strategies, and using only local information. The strategies are
also optimized, based on the success of the agent and its neighbors. We measure
and describe the time evolution of the network and the agents’ strategies.

13.1 Introduction

To increase or maintain power, or position of influence, is a goal of many profes-
sionals. Many definitions of power recognize that it is not an inherent attribute of an
actor,1 but a result of the interaction between agents. One well-known definition by
Max Weber reads [27]:

‘Power’ is the probability that one actor within a social relationship will be in position to
carry out his own will despite resistance, regardless of the basis on which this probability
rests.

Definitions like this suggest that there is a link between the power of an actor
and its position in the network of social relationships. Thus, by examining a social
network, one should be able to say something about the power of the agents. A
major theme in social network studies has been to infer the power structures in
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1 A person, or other well-defined social unit, in the context of our model; we will use the term
agent.
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organizations based on the contact patterns of their members [16]. In undirected
networks of actors, coupled pairwise by their social ties, one idea of measuring, or
defining power, is to say that an actor that is close to others has more power, than a
more peripheral actor does [24]. This can be turned into a network measure called
closeness centrality (which will be defined explicitly in the next section). Naively, a
way to achieve power would then be to position oneself as close to everyone else in
the network as possible, i.e. to have a social tie to each one of the network’s actors.
In practice, to make, and maintain, a social tie requires the actor to invest time and
other resources. To have a direct tie to a significant fraction of the network is thus
neither feasible, nor desirable. We call this situation of two contrasting interests –
to maximize power (in terms of being central), while at the same time keeping the
number of social ties to a minimum – the diplomat’s dilemma. Economists have
studied similar trade-off games under other names (e.g. [3, 14]), typically investi-
gating Nash equilibria in small networks rather than emergent patterns in large scale
systems as the focus of this paper.

The diplomat’s dilemma can also be motivated from a more academic perspec-
tive. Fueled by the increased availability of large-scale network datasets, there is a
wave of interest in analyzing and modeling systems as graphs. One theme within
this field of complex-network theory [1, 5, 19] has been to study systems where the
network is formed by strategic decisions by the agents (i.e., situations where the
success of the agents depend on the choice of other agents). This problem has been
traditionally been analyzed from a game theory perspective. Some of the most inter-
esting game-theoretical problems have been inspired by situations where the agents
have conflicting objectives. In, for example, the iterated prisoner’s dilemma [2],
agents have to choose between trying to achieve short-time benefits by exploiting
other agents, and trying to optimize their long-term profit by building a relationship
of mutual trust, but at the same time making them vulnerable to exploitation. In most
real complex networks, and network models, there is a strong positive correlation
between different centrality measures [18] such as the local degree centrality (the
number of neighbors of a vertex), and closeness centrality. However, one must note
that the correlation between these quantities, though mathematically possible – high
centrality and low degree (and vice versa) – is not strictly necessary. A potentially
interesting question in the interface between complex networks and game theory
would then be “How can agents simultaneously maximize their centrality and min-
imize their degree?”. Another interesting aspect of this problem, in a more model-
theoretic sense, is that the success of the agents can be estimated from their network
positions alone. In most models of adaptive, coevolutionary networks [9], the score
of the agents is related to some additional traits of the agents themselves and their
interaction. Our model differs from this approach in the sense that the success of
agents can be measured from the topological features of the graph itself, rather than
some extremal attribute artificially ascribed to the agents.

In this chapter, we will discuss how this problem, the diplomat’s dilemma, can
be phrased in more mathematical terms. We will analyze a model of adaptive agents
that try to solve this problem as the network evolves [11]. We will also, discuss
the output of this model, both the evolution of the network and the evolution of
strategies of the agents.
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13.2 Definition of the Model

13.2.1 Preliminaries

The framework of our study is a graph G(t) = {V (t), E(t)} of N vertices V and
M(t) edges E(t). The vertex set V is fixed, but the edge set E(t) varies (both its
content and size) with time. A vertex marks the position of an agent in a social net-
work of edges representing social ties. We will henceforth also assume the graph to
be simple, i.e. no multiple- or self-edges are allowed. Let d(i, j) denote the distance
between i and j . Technically we define d(i, j) as the smallest number of edges in
any path (sequence of adjacent edges) connecting i and j . Then, for a connected
graph G, the closeness centrality [24] is defined as:

cC (i) = N − 1∑
j∈G\{i} d(i, j)

. (13.1)

The score function, that the agents seek to optimize, should increase with close-
ness centrality and decrease with degree. A simple choice for such a function is
cC (i)/ki (where ki is the degree of i). However, we do not want to restrict ourselves
to connected networks. If the network is disconnected, we make the assumption that
being a part of a large component should contribute to a larger centrality. One way
of modifying closeness centrality to incorporate both these aspects (short distances
and being a part of a large component implies centrality), is to define the centrality
c(i) as

c(i) =
∑

j∈H (i)\{i}

1

d(i, j)
, (13.2)

where H (i) is the connected subgraph i belongs to and d(i, j) is the graph dis-
tance between i and j . The number of elements in the sum of Eq. (13.2) is pro-
portional to the number of vertices of i’s connected component which gives a
positive contribution from large components. To obtain this property, we use the
average reciprocal distance, rather than the reciprocal average distance (as in the
original definition of closeness centrality). This adjusted definition gives a higher
weight on the count of closer vertices, but captures similar features as closeness
does.

With the definitions established above, we are now ready to state the score func-
tion:

s(i) =
{

c(i)/ki if ki > 0
0 if ki = 0

. (13.3)

For the purpose of our simulations, the networks we consider will have a initial
configuration similar to Erdős-Rényi networks [7] with M0 number of edges. In
other words, the network is generated by adding M0 edges one-by-one to N (iso-
lated) vertices such that no multiple- or self-edge is formed.
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13.2.2 Moves

We have outlined so far the basic setup for the game – the underlying graph
representing the actors and their social network, and the score function that the
agents want to optimize. However, to go from this point to a sensible simulation
scheme, we need to determine how an agent can update its connections. A first,
very common assumption, is that the agents are myopic – that they can receive
information from, and affect others in the network only within a certain radius
from itself. This assumption lies behind so much of social network studies that
one may argue that in situations where the myopic assumption is not needed, so
agents can see, and manipulate the network at large distances, the representation
of the social network as a simple graph is not appropriate. In our case, we assume
that an agent i can change its connections (affect the network) within the second
neighborhood Γ2 = { j ∈ V : d(i, j) ≤ 2}, and that i can see the score s( j),
centrality c( j) and degree k j of vertices in Γ2. (Since s and c are global quanti-
ties, some global information reach i indirectly. Nevertheless, since the actual con-
tact network cannot be inferred from this information, we still consider the agents
myopic.)

The simulations proceed iteratively where, each time step, every vertex can
update its network position by adding an edge to a vertex in Γ2 and delete an edge
to a neighbor. An illustration of the possible moves can be found in Fig. 13.1.

Γ2

Fig. 13.1 An illustration of the myopia (the restricted knowledge about the network). The agents
are assumed to have knowledge of, and be able to affect the second neighborhood Γ2 (shaded in
the figure). The agent knows the centrality and degree of the neighbors and their accumulated score
the last tstrat time steps. Based on this information the agents can, during a time step, based on their
strategies, decide to delete the edge to a neighbor, and reconnect to a vertex two steps away

13.2.3 Strategies

Ideally one would provide the agents with some intelligence and use no further
restrictions for how they update their positions to increase their scores. This is not as
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easy one can imagine and, for simplification, one would like to reduce the capability
of the agents further. To do this, we assume that an agent i updates its position
(either by deleting or attaching an edge), by applying a sequence of tie-breaking
actions.

• MAXD Choose vertices with maximal degree.
• MIND Choose vertices with minimal degree.
• MAXC Choose vertices with maximal centrality in the sense of Eq. (13.2).
• MINC Choose vertices with minimal centrality.
• RND Pick a vertex at random.
• NO Do not add (or remove) any edge.

The sequences of actions define the strategies of the agents. The strategy of an
agent i can be stored in two six-tuples sadd = (sadd

1 , · · · , sadd
6 ) and sdel representing

a priority ordering of the addition and deletion actions respectively. If sadd(i) =
(MAXD, MINC, NO, RND, MIND, MAXC) then i tries at first to attach an edge
to the vertex in Γ2(i) with highest degree. If more than one vertex has the highest
degree, then one of these is selected by the MINC strategy. If still no unique vertex
is found, nothing is done (by application of the NO strategy). Note that such a vertex
is always found after strategies NO or RND are applied. If X = ∅ no edge is added
(or deleted). An illustration of the strategies can be found in Fig. 13.2

1

32

4

delete:

add: RND MIND MAXC MINC

MIND

NO

MINC MAXC MAXD RND

MAXD

NO

c = 0.23

c = 0.11c = 0.41

c = 0.55

Fig. 13.2 An illustration of the strategies of the agents. At a time step, the agent can delete one
edge and add another in order to improve its score. The way to select a neighbor to delete an edge to
(or a next-nearest neighbor to attach an edge to) is to consecutively omit possibilities by applying
“actions” in a “strategy vector”. This agent’s leading deletion strategy is MIND, meaning it looks
for neighbors with as low degree as possible in the first place, to delete the edge to. In this example
there are three neighbors with degree three (marked with black). To further eliminate neighbors
the agent applies the MINC strategy (ranking the neighbors in order of minimum centrality c). In
this case vertex 1 is the unanimously least central neighbor. So, at this time step, the agent will
delete the edge to 1. As for addition of edges the leading action is NO, meaning no edge will be
added
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13.2.4 Strategy Updates and Stochastic Rewiring

The strategy vectors are initialized to random permutations of the six actions. Every
tstrat’th time step an agent i updates its strategy vectors by finding the vertex in
Γi = { j : d(i, j) ≤ 1} with highest accumulated score since the last strategy update.
This practice of letting the agent mimic the best-performing neighbor is common in
spatial games [21], and is closely related to the bounded rationality paradigm of
economics [15]. When updating the strategy, i copies the parts of sadd( j) and sdel( j)
that j used the last time step, and let the remaining actions come in the same order
as the strategy vectors prior to the update. For the purposes of making the set of
strategy vectors ergodic, driving the strategy optimization [17, 20], and modeling
irrational moves by the agents [15]; we swap, with probability ps , two random ele-
ments of sadd( j) and sdel( j) every strategy vector update. In addition to the strategy
space we also would like to impose ergodicity in the network space (i.e. the game
can generate all N -vertex graphs from any initial configuration). In order to ensure
this, disconnected clusters should have the ability to reconnect to the graph. We
allow this by letting a vertex i attach to any random vertex of V with probability
pr every trnd’th time step. This is not unreasonable as even in real social systems,
edges may form between agents out of sight from each other in the social network.
In fact some authors have pointed out, that in addition to information spreading
processes, there are other factors that lead to the evolution of the social networks
(cf. [26]).

13.2.5 The Entire Algorithm

To summarize, the algorithm works as follows:

1. Initialize the network to a Erdős-Rényi network with N vertices and M0 edges.
2. For all agents, start with random permutations of the six actions as strategy vec-

tors sadd and sdel.
3. Calculate the score for all agents.
4. Update the agents synchronously by adding and deleting edges as selected by the

strategy vectors. With probability pr , add an edge to a random vertex instead of
a neighbor’s neighbor.

5. Every tstrat’th time step, update the strategy vectors. For each agent, with proba-
bility ps , swap two elements in it’s strategy vector.

6. Increment the simulation time t . If t < ttot, go to step 3.

The parameter navg, averages over different realizations of the algorithm are per-
formed. We will primarily use the parameter values M0 = 3N/2, ps = 0.005,
tstrat = 10, ttot = 105 and navg = 100.
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13.3 Numerical Results

13.3.1 Time Evolution

To get a feeling for the time evolution, we start by plotting quantities characterizing
the strategies of the agents and the network structure. The most important parts of
the strategy vectors are the first positions sadd

1 and sdel
1 . In practice, ∼ 90% of the

decisions whether or not to add (or delete) a specific edge do not pass this first
tiebreaker. In Fig. 13.3a, b we can see how complex the time-evolution of sadd

1 and
sdel

1 can be. Each sector of the plot corresponds to a leading addition (or deletion)
action, and they have a size in the y-direction proportional to the fraction of vertices
having that leading action value. The time evolution is complex, having sudden
cascades of strategy changes and quasi-stable periods. Cascades in the leading addi-
tion action seem to be accompanied by cascades in the leading deletion action. The
particular time-window shown in Fig. 13.3 was chosen to highlight such cascades.
For the parameter values of Fig. 13.3, cascades involving more than 75% of the
vertices happens about once every 105 time steps.

In Fig. 13.3c we measure the average score function 〈s〉. Being a non-zero-sum
game, the value of 〈s〉 can vary significantly, a fact which can be seen upon exam-
ining the figure. Most of the time, the system is close to the observed maximum
〈s〉 ≈ 80. One reason for lower scores can be seen in Fig. 13.3d where we plot the
average degree 〈k〉. For some time steps, the network becomes very dense with an
average degree of almost 20. As high degree is not desirable, the average score is
low during this period. This rise in degree has, naturally, a corresponding peak in
the leading deletion action NO. Another reason of the occasional dips in the average
score can be seen in Fig. 13.3e where we plot the fraction n1 that belongs to the
largest connected component. This quantity is usually close to one, meaning that all
agents are connected (directly or indirectly), but sometimes this fraction becomes
very low. It is harder (than for the high-degree peaks) to see the corresponding strate-
gic cause for these fragmented states. There are usually peaks corresponding to NO
as the leading addition action, but these are also accompanied by peaks correspond-
ing to NO as the leading deletion action. As we will see, this feature becomes less
pronounced as the system size increases.

13.3.2 Example Networks

In light of the complex time evolution of the system, it is not surprising that the
system attains a great variety of network topologies as time progresses. In Fig. 13.4
we show four snapshots of the system for a run with the same parameter values
as in Fig. 13.3. In Fig. 13.4a the network comes from the most common strategy
configuration where both the leading deletion and addition actions are MAXC for
a majority of the agents (in this situation, we call the actions dominating). In this
configuration the network is centered around two indirectly connected hubs. The
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Fig. 13.3 Output from an example run of a N = 200 system with pr = 0.012. (a) and (b) show
the fraction of vertices having a certain leading action for addition σ add

1 (a) and deletion σ add
1 (b)

respectively. (c) shows the average score 〈s〉, (d) the average degree k and (e) the fraction of vertices
in the largest connected component n1

vertices between these two hubs have the highest centrality, and since they are
within the second neighborhood of most vertices in the network, and most agents
have σ add

1 = MAXC, these vertices will get an edge from the majority of agents
(thus becoming hubs in the next time-step). There are 18 isolates with σ add

1 = NO.
These will stay isolates until their strategy vectors are mutated, which occurs (on
average) every tstrat/ps = 2, 000’th time step. Figure 13.4b shows a rather similar
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(c) (d)

(a) (b)

MAXC RND NOMINDMAXDMINC

Fig. 13.4 Four different example networks from a run with the same parameter values as in
Fig. 13.3. The symbols indicate the leading addition action. (a) shows the common situation where
MAXC is the leading addition action. σ del

1 is MAXC for almost all agents. (b) shows a transi-
tion stage between σ add

1 being mostly MAXD to σ add
1 being primarily MAXC. (c) shows another

transient configuration where a large number of different addition strategies coexist. (d) shows the
addition strategies in a fragmented state

network topology with the difference that a majority of the vertices have MAXD
as their leading addition action (almost all vertices have σ del

1 = MAXC). For this
configuration, the MAXC vertices will move their edges to the most central vertices
whereas the MAXD vertices will not move their edge. In Fig. 13.4c we show a
more rare, high-〈k〉 configuration (t ≈ 273, 545 in Fig. 13.3). Here the leading
deletion action is NO for about one fourth of the vertices, and the system is rapidly
accumulating edges. In Fig. 13.3d we show a fragmented state, where a number of
vertices have the leading addition action NO. The vertices with σ add

1 = NO that are
not isolates have σ del

1 = NO so they will not fragment the network further. On the
other hand, the vertices with σ

add,del
1 = MAXC and σ

add,del
1 = MAXD can fragment

the network.

13.3.3 Effects of Strategies on the Network Topology

We are now in a position to examine in detail the network topologies that arise
from different dominating addition and deletion actions. First, we plot histograms
(rescaled to show the probability density functions) of the network structural
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Fig. 13.5 The probability density function of average scores (a), (b), average degrees (c), (d), and
relative sizes of the largest connected component (e), (f). The different fields represent different
leading addition actions (a), (c), (e), and different leading deletion actions (b), (d), (f). The vertical
size of a field gives the probability density function conditioned to that leading action. The curves
are averages over ten runs of 105 timesteps with the same parameter values as in Fig. 13.3. The
color codes of the actions are the same as in Fig. 13.3

quantities shown in Figs. 13.3c–e and 13.5. These diagrams all have two peaks –
one with low 〈s〉, 〈k〉 and 〈n1〉 values (where the network is fragmented, the number
of edges small and the scores low), and another broader peak corresponding to a
connected network with higher scores and more edges. Interestingly, the differ-
ent leading actions are not completely localized to different peaks but spread out
over the whole range. Another counter-intuitive observation is that there seems to
be more agents with σ add

1 = NO in the more dense peaks. These vertices (with
σ add

1 = NO) seem to be primarily isolated and do not affect the majority of vertices
(connected in the largest component). They will therefore stay isolated until their
strategies have changed or they have been connected to the rest of the network by
random connections. We also observe that there is a larger variety of leading addi-
tion actions than leading deletion actions. A possible interpretation of this is that
the fitness of agents is more dependent on the leading addition action. This seems
natural in a situation where it is disadvantageous to connect to a majority of agents
(so the choice of neighbor to disconnect is not important), however it is beneficial
to connect to to a minority of well established agents.
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Fig. 13.6 The degree distribution for systems with the same parameter values as in Fig. 13.3. Panel
(a) shows the averaged degree distribution when more than half of the agents have MAXC as their
leading addition actions. Panel (b) displays the corresponding plot for the leading addition action
NO

One of the most widely studied and revealing metrics of network structure, is
the degree distribution – the probability mass function of the degrees of vertices. In
Fig. 13.6 we plot the degree distribution for dominating actions σ add

1 = MAXC (a)
and σ add

1 = NO (b). The σ add
1 = MAXC graph has two high-k peaks, corresponding

to the hubs in the network. The existence of two broad peaks as opposed to only
one is strange, and the reasons for this is not immediately apparent. The σ add

1 = NO
graphs (whose degree distribution are shown in (b)) are more dense, as expected.
However, they also have a large-k peak, which is probably related to, either the
strategies of other agents, or a residue from the preceding period (remember that the
periods of dominating σ add

1 = NO is very short compared with the σ add
1 = MAXC

periods). This implies that one can separate system-wide effects of some strategy
driving the decisions of the majority, but there will also be other effects present in
the network. Note that, while many studies have focused on the emergent properties
of degree distributions as N → ∞, the interesting features of our model occurs for
smaller system sizes, consequently we believe this limit is not interesting or relevant
to our study and we do not consider it.

We now proceed to look at four other measures of different network structures
and how they depend on the dominating addition and deletion actions. The first two
measures we consider are the degree k and score s. In Fig. 13.7a, b we plot the aver-
age values of these quantities (averaged over all vertices, regardless of strategy, and
averaged over all samples with a particular dominating strategy). This plot is based
on ten runs for 105 time steps, with network quantities measured every tenth time
step. During these runs, the two leading actions – σ add

1 = MINC and σ del
1 = MIND

were never employed. We note that the most common leading actions (for both addi-
tion and deletion) MAXC and MAXD gives the highest average score. This does not
mean that all agents have a high score in these situations – from Figs. 13.4a, b we
know that the score can differ much from one agent to another. The degrees are
low for these strategies, which is a necessary (but not sufficient) condition for a
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Fig. 13.7 Average values of four different network structural quantities for different dominating
addition and deletion actions (i.e. that more than half of the agents have a specific σ add

1 , or σ del
1 ). (a)

shows the average score as a function of degree for different dominating σ add
1 . (b) is the correspond-

ing plot for σ del
1 . (c) displays the clustering coefficient as a function of assortativity for different

dominating σ add
1 . (d) is the corresponding plot for different σ del

1 . The bars indicate standard errors.
The data comes from simulation of ten runs (different random number generator seeds) of 105 time
steps. Two actions were never attained during these runs: σ add

1 = MINC and σ del
1 = MIND

low score. For σ add
1 = NO the average degree is also low, but the score is much

lower than for σ add
1 = MAXC and MAXD. The reason, as pointed out above, is

that the network can become heavily fragmented for this leading addition action.
The σ add

1 corresponding to the highest degree is RND, this might seem strange, but
during these runs (which is also visible in Fig. 13.3) σ add

1 = RND is correlated with
σ del

1 = NO which is a state naturally leading to a comparatively dense network. The
other leading actions σ add

1 = MIND and σ del
1 = MINC result in low scores and

sparse networks.
The other two measures we examine are the assortativity and clustering coeffi-

cient. Before discussing our results, let us first define these quantities in detail. The
average degree tells us if the network is sparse or dense. The degree distribution
gives a more nuanced picture of how homogeneous the set of vertices are with
respect to the number of neighbors. The next level of complexity in describing the
network with respect to the agents’ degree, is to measure the correlations between
the degrees of vertices at either side of an edge. In particular, one can determine
if high-degree vertices are primarily connected to similar high degree vertices, or
instead are linked to low-degree vertices. The assortativity r is a measure of ver-
tices’ tendency to connect to other vertices of similar type, in this case those with



13 The Diplomat’s Dilemma 281

similar degree [19]. In technical terms, r is the Pearson correlation coefficient of
the degrees at either side of an edge. There is an additional caveat that we need
to consider; since the edges in our networks are undirected, r has to be symmetric
with respect to edge-reversal (i.e. replacing (i, j) by ( j, i)). However the standard
definition of the Pearson correlation coefficient does not account for this symmetry.
The way to fix this problem is to let one edge contribute twice to r , i.e. to represent
an undirected edge by two directed edges pointing in opposite directions. If one
employs an edge list representation internally (i.e., if edges are stored in an array of
ordered pairs (i1, j1), · · · , (iM , jM )) then we can write the adjusted r as,

r = 4〈k1 k2〉 − 〈k1 + k2〉2

2〈k2
1 + k2

2〉 − 〈k1 + k2〉2
, (13.4)

where, for a given edge (i, j), k1 is the degree of the first argument (i.e., the degree
of i), k2 is the degree of the second argument and the brackets 〈· · · 〉 denote averag-
ing. The range of r is [−1, 1] where negative values indicate a preference for highly
connected vertices to attach to low-degree vertices, and positive values imply that
vertices tend to be attached to other vertices with degrees of similar magnitudes.

The clustering coefficient, on the other hand, is a measure of transitivity in the
network. In other words it checks whether neighbors of a node are also connected
to each other (thus forming triangles). It is a well known empirical fact that social
acquaintance networks have a strong tendency to form triangles [10] and it is there-
fore a worthwhile exercise to examine whether the networks generated by our model
display this feature. There is in principle, more than one way to define the clustering
coefficient. Here we employ the most commonly used one [4],

C = 3ntriangle
/

ntriple, (13.5)

where ntriangle is the number of triangles and ntriple is the number of connected triples
(subgraphs consisting of three vertices and two or three edges). The factor of three
is included to normalize the quantity to the interval [0, 1].

Now that we have defined these quantities we refer back to Fig. 13.7. We note that
the most common leading actions σ

add,del
1 = MAXC and MAXD have the lowest

〈C〉 and 〈r〉 values. A possible explanation for this could be the following. Consider
a triangle, a subgraph of three vertices connected by three edges. The graph will be
connected even if one of these edges is deleted. In a situation where edges are expen-
sive, this kind of redundancy is not desired. For this reason, it seems natural that,
on average, the most successful strategies MAXC and MAXD have few triangles.
The negative assortativity of these situations are also conspicuous features of the
examples shown in Figs. 13.4a, b (most vertices there are only connected to the two
hubs, but the hubs are not connected to each other). For networks with a broad spec-
trum of degrees, it is known that 〈C〉 and 〈r〉 are relatively strongly correlated [13].
This is also true in Figs. 13.7c, d where the relationship between 〈C〉 and 〈r〉 is
monotonically increasing. The network configurations with highest 〈C〉 and 〈r〉 are
the ones with σ add

1 = MIND and σ del
1 = MINC. Since these networks are both
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sparse and fragmented, some components must have a large number of triangles
(probably close to being fully connected). The denser states, with σ add

1 = RND and
σ del

1 = NO, have intermediate 〈C〉- and 〈r〉-values, meaning that the edges are more
homogeneously spread out, similar to the network in Fig. 13.4c.

13.3.4 Transition Probabilities

From Fig. 13.3 it seems likely that the ability of one leading action to grow in the
population depends on the other predominant strategies in the system. For example,
σ add

1 = RND dominates after a period of many agents employing σ add
1 = MIND

as the leading strategy. Consequently, it is worth asking the question: How does the
probability of one leading action depend on the configuration at earlier time steps?

We investigate this qualitatively by calculating the “transition matrix” T′ with
elements T ′(s1, s ′

1) giving the probability of a vertex with the leading action s1 to
have the leading action s ′

1 at the next time step. However, note that the dynamics
is not fully determined by T′, and is thus not a transition matrix in the sense of
other physical models. If that were the case (i.e. the current strategy is independent
of the strategy adopted in the previous time step) we would have the relation T ′

i j =√
T ′

i T ′
j . To study the deviation from this null-model, we assume the diagonal (i.e. the

frequencies of the strategies) given, and calculate T defined by,

Ti j = T ′
i j/

√
T ′

i T ′
j . (13.6)

The values of T for the parameters defined in Fig. 13.3 are displayed in
Tables 13.1 and 13.2. The off-diagonal elements have much lower values than 1 (the
average off-diagonal Θ values are 0.014 for addition strategies and 0.010 for dele-
tion). This reflects the contiguous periods of one dominating action. Note that tran-
sitions between MAXC and RND are over-represented: T ′del

MAXC,RND ≈ T ′del
RND,MAXC ≈

0.027, which is more than twice the value of any other off-diagonal element involv-
ing MAXC or RND. As another token of the problem’s complexity, the matrix is
not completely symmetric T ′del

RND,NO is twice (∼ 3 s.d.) as large as T ′del
NO,RND meaning

Table 13.1 Values for the T matrices for addition. (Ti j is the deviation from the expected value
in a model of random transitions given the diagonal values.) The values are averaged over 100
realizations of the algorithm. All digits are significant to one s.d. The parameter values are the
same as in Fig. 13.3. Numbers in parentheses are the standard errors in units of the last decimal

MAXC MINC MAXD MIND RND NO

MAXC 1 0.0164(3) 0.0088(2) 0.0107(4) 0.0151(5) 0.0010(0)
MINC 0.0169(3) 1 0.0113(6) 0.036(2) 0.025(2) 0.0017(3)
MAXD 0.0093(3) 0.0104(7) 1 0.0103(6) 0.0206(9) 0.0003(0)
MIND 0.0115(4) 0.030(2) 0.0130(7) 1 0.059(5) 0.0020(2)
RND 0.0157(5) 0.024(2) 0.020(1) 0.064(5) 1 0.0023(5)
NO 0.0007(0) 0.0031(2) 0.0009(0) 0.0036(2) 0.0042(4) 1



13 The Diplomat’s Dilemma 283

Table 13.2 Same as in Table 13.1 but for deletion, instead of addition, strategies

MAXC MINC MAXD MIND RND NO

MAXC 1 0.0100(2) 0.0131(4) 0.0094(2) 0.0266(3) 0.0126(3)
MINC 0.0098(2) 1 0.0070(3) 0.010(1) 0.0105(4) 0.0050(3)
MAXD 0.0133(4) 0.0067(3) 1 0.0055(2) 0.0124(3) 0.0062(2)
MIND 0.0087(2) 0.011(1) 0.0054(2) 1 0.0101(2) 0.0055(3)
RND 0.0269(3) 0.0094(4) 0.0128(3) 0.0083(2) 1 0.0072(3)
NO 0.0097(3) 0.0076(3) 0.0053(2) 0.0078(3) 0.0131(3) 1

that it is easier for RND to invade a population with NO as a leading deletion action,
than vice versa.

13.3.5 Dependence on System Size and Noise

So far we have focused on one set of parameter values. In this section we investigate
how the system behavior depends on the number of agents and the noise level in the
deletion and attachment mechanism. In Fig. 13.8, we tune the noise level (fraction of
random attachments) pr for three system sizes. In panels (a)–(c) we show the frac-
tion of leading addition actions among the agents 〈Σadd

1 〉 (averaged over ∼ 100 runs
and 105 time steps). The quantities Σ

add,del
1 denotes the fraction of agents having a

specific σ
add,del
1 . As observed in Fig. 13.3a the leading action is MAXC followed by

MAXD and RND. The leading deletion actions, as seen in panels (d)–(f), are ranked
similarly except that MAXD has a larger (and increasing) presence. If pr = 1, then
all actions are equally likely (they do not have any meaning – all strategies will
result in random moves equal to sadd

1 = sdel
1 = RND). There are trends in the

pr -dependences of 〈σ add
1 〉, but apparently no emerging discontinuity. This observa-

tion, (which also seems to hold for the ps-scaling), that there is no phase transition
for any parameter value governing the probability of random permutations in the
strategy vectors, is an indication that the results above can be generalized to a large
parameter range. We also note that, although the system has the opportunity to be
passive (i.e. agents having sadd

1 = sdel
1 = NO), this does not happen. This situation

is reminiscent of the “Red Queen hypothesis” of evolution [25] – organisms need to
keep evolving to maintain their fitness.

Next we look at the dependence of the network structure on the number of agents
and the noise level. The average degree, plotted in Fig. 13.3g is monotonously
increasing with pr . There is, however, a qualitative difference in the size scaling –
for pr � 0.12 the average degree increases with N , for pr � 0.12 this situation is
reversed. In Fig. 13.3h we plot the average largest-component size as a function of
pr for different system sizes. The behavior is monotonous in both pr and N – larger
pr , or a larger system size, means higher 〈n1〉. In all network models we are aware
of (allowing fragmented networks), a decreasing average degree implies a smaller
giant component. For pr � 0.12, in our model the picture is the opposite – as the
system grows the giant component spans an increasing fraction of the network. This
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Fig. 13.8 The system’s dependence on the topological noise level (via the fraction of random
rewirings pr ) for different system sizes N . Panels (a), (b) and (c) show the fraction 〈Σadd

1 〉 of
leading addition actions σ add

1 for systems of N = 200, 400 and 800. Panels (d), (e) and (f) show
the fraction of preferred deletion actions for the same three system sizes, while (g) shows the
average degree and (h) the average size of the largest connected component 〈n1〉

also means that the agents, on average, reach the twin goals of keeping the degree
low and the graph connected.

13.4 Discussion

We have presented a general game theoretic network problem, the diplomat’s
dilemma – how can an agent in a network simultaneously maximize closeness cen-
trality and minimize degree. The motivation for this problem comes in part from
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a type of social optimization situation where agents seek to gain power (via close-
ness centrality) and keep the cost (degree) low. It can also be motivated from a
more academic point of view – interesting dynamics often comes from when agents
simultaneously try to optimize conflicting objectives. The diplomat’s dilemma is one
of the simplest such situations in a networked system, because the score function
does not depend on any additional variable, or trait, of the vertices, only the vertex’
position in the network.

We devise an iterative simulation where at every time step, an agent can delete
its connection to a neighbor and add an edge to a second neighbor, based on the
information it possesses about the network characteristics of vertices within its
local neighborhood (upto second neighbors). The agents use strategies that they
update by imitating the best performing neighbor within this information horizon.
The dynamics are driven by occasional random moves and random permutations
of the vectors encoding the strategies of the agents. For the sake of flexibility, the
definition of the problem as stated in this chapter, is deliberately vague. To turn
it into a mathematically well-defined problem, one has to specify how the agents
can affect their position in the network and what information they can use for this
objective. There are of course many choices for how to do this. Although we believe
our formulation is natural, it would be very interesting to rephrase these assump-
tions. A future enhancement would be to equip the agents with methods from the
machine learning community to optimize their position, and to tune the amount of
information accessible to the agents. A mathematical simplification of the problem
would be to let all agents know the precise network topology at all times (this may
however lead to some conceptual problems – if the information about the network
is obtained via the network, it would be strange if the picture of the network close to
an agent would not be more accurate than the picture of more remote sections of the
network). Another interesting version of the problem would be to require an edge to
represent an agreement between both vertices, so that an agent i cannot add an edge
(i, j) unless j finds this profitable.

Nevertheless, despite the simplicity of our model, the time evolution of the sim-
ulation is strikingly complex, with quasi-stable states, trends, spikes and cascades
of strategies among the agents. This complex dynamics is also captured in various
metrics measuring different levels of network structure. Furthermore, the network
structure and the agents’ strategies directly influence one another. If the agents stop
deleting edges, the average degree of the network will grow rapidly, which may
benefit a strategy aiming to lower the degree of the agents. This feedback from net-
work structure, to the agents and their decisions about how to update their networks
is a central theme in the field of adaptive, coevolutionary networks [9]. We believe
that all forms of social optimization involve such feedback loops, which is a strong
motivation for studying adaptive networks. The complexity of the time-evolution,
especially in the network structural dynamics is more striking for intermediate sys-
tem sizes. Indeed, many interesting features of our simulation are not emergent in
the large-system limit, but rather present only for small sizes. Models in theoreti-
cal physics have traditionally focused on properties of the system as N → ∞. In
models of social systems however, extrapolating to infinite size is not necessarily a
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natural limit in the same way (it will of course be interesting to examine the limiting
behavior of such models). We believe this is a good example of the dangers of taking
the large-size limit by routine – the most interesting relevant features of the model
may be neglected.

In a majority of the cases in our simulations, most of the agents use a strategy
where they both delete, and attach to vertices according to the MAXC action. This
implies that the agent first deletes the edge to the most central vertex in the second
neighborhood (in the sense of a modified closeness centrality), and then reattaches to
the most central vertex two steps away (before the deletion). In practice this means
that an agent typically transfers an edge from its most central immediate neighbor
to its most central neighbor two steps away. This strategy makes the agent move
towards the center without increasing its degree, which clearly seems like a reason-
able procedure in the diplomat’s dilemma. However, this strategy is not evolutionary
stable in the presence of noise (hence the complex time evolution). This strategy cre-
ates networks with low clustering coefficients, i.e., there are a comparatively small
number of triangles. Since forming a triangle introduces an extra edge, which is
expensive, without changing the size of connected component, one can understand
why agents are reluctant to form these triangles per se in our formulation of the
problem.

Different strategies have different ability to invade one another. To test this
we measure the deviation from random transitions from one dominating action to
another (given the frequency of particular strategies), concluding for example that it
is about twice as easy for RND to invade NO as a leading deletion action. Another
interesting aspect is that (for some noise levels), as the system size increases, the
network becomes both more connected (the relative fraction of vertices in the largest
connected component increases), and more sparse (the average degree decreases).
This is in sharp contrast to all other generative network models that we are aware
of, but definitely consistent with the objectives of the general problem (where large
connected components and low degrees are desired).

What does this result tell us about the real professional life of diplomats? Maybe
that they can, by selfishly optimizing their positions in the network, self-organize to
a connected business network where they need only a few business contacts, without
knowing more about the network than the second neighborhood. However to make
a stronger and more conclusive statement about the optimal strategy, more results
are needed. This is something we hope to gather from future studies.

One of the problems facing this type of mechanistic modeling of social informa-
tion processes [6, 8, 12, 22, 23], is that they are very hard to validate. Information
spreading in social systems is neither routed from agent to agent like the information
packets in the Internet, nor do they spread in the same fashion as epidemics. Instead
the spreading dynamics is content dependent. Different types of information may be
spreading over different social networks, following different dynamic rules. There
are some promising datasets for studying social information spreading. For example,
networks of blogs, Internet communities, or social networking sites generate large
amounts of potentially valuable data, although these data sets are not necessarily
conducive to the questions that adaptive models such as the one described in this
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chapter seek to address. In the near future, we hope mechanistic modeling of social
information processes will be more data driven, asking questions that can actually
be validated through empirical study.
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Graph-Rewriting-Based Approaches



Chapter 14
Graph-Rewriting Automata as a Natural
Extension of Cellular Automata

Kohji Tomita, Haruhisa Kurokawa, and Satoshi Murata

Abstract We introduce a framework called graph-rewriting automata to model evo-
lution processes of networks. It is a natural extension of cellular automata in the
sense that a fixed lattice space of cellular automata is extended to a dynamic graph
structure by introducing local graph-rewriting rules. We consider three different
constructions of rule sets to show that various network evolution is possible: hand-
coding, evolutionary generation, and exhaustive search. Graph-rewriting automata
provide a new tool to describe various complex systems and to approach many sci-
entific problems.

14.1 Introduction

In modeling, analyzing or designing systems comprising many elements in full
detail, it is important to clarify the dynamics of each element and the relations
among elements. In most cases, structures and states are coupled critically in the
sense that the global structure constrains the behavior of each element and is gen-
erated as a result of behavior of the elements. From such interaction, unpredicted
behavior called emergence arises, which is difficult to describe at the level of ele-
ments. Recently, co-evolution of topology (network) and states has been studied in
various contexts such as complex networks [3].

Graph rewriting, a method to model such a dynamic structure, has been stud-
ied in computer science as graph grammar [13]. Many studies specifically examine
general properties or computational aspects such as termination of the processes or
recognition of the configuration, and dynamic behavior of rewriting processes is not
emphasized. We are instead interested in dynamic behavior of graph development
by interplay between structure and states.

The L-system [9, 12] is an early study of structurally varying dynamical sys-
tems. Recent studies of this kind are aimed at a general representation of such
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graph evolution. Salzberg et al. considers graph constructing graphs [14]; graphs are
treated as active objects that manipulate other graphs and also as passive objects that
are manipulated. Smith et al. proposed network automata, where graph evolution
is studied based on adjacency matrices [17]. Sayama proposed generative network
automata [15], using local graph replacement in a general framework. Other studies
include those using blob machines by Gruau et al. [4], and MGS by Giavitto and
Spicher [2] for spatial computing.

In this chapter, we specifically examine a particular class of graph dynamics
called graph-rewriting automata, keeping a close relation with cellular automata
[6, 24]. Cellular automata is a simple model of discrete symbol dynamics on a fixed
topology. Because of its simple framework, with only the state transition of cells on
a fixed lattice, it has been applied in various fields. Extension of cellular automata
for varying topologies has been studied in, for example, structurally dynamic cellu-
lar automata [7]. In this system, the connection change among cells is particularly
emphasized; the number of cells is unchanged.

We try to extend cellular automata more naturally to graph structures. As in
cellular automata, the number of neighbors of each cell is unchanged. In our
framework, we treat three-regular graphs. Local graph-rewriting rules are intro-
duced for structural change. Graphs are rewritten locally according to a given
rule set. In spite of this regularity, our framework is sufficiently general to rep-
resent various behaviors of network evolution such as self-organization or self-
reconfiguration including self-replication. Network evolution using similar rewrit-
ing rules is discussed by Wolfram in connection with fundamental physics [25]. In
his system, nodes have no states; global or rather arbitrary rule application is treated.
We concentrate mainly on deterministic processes using internal states of the
nodes.

In the following, we introduce the framework and show simple examples in the
next section. Three different constructions of rule sets are in sequence to show
that various network evolution is possible: hand-coding, evolutionary generation,
and exhaustive search. Each includes self-replicating graphs with different features.
Finally, the conclusion follows.

14.2 Formulation

In cellular automata, cells with discrete states are arranged to form a lattice; the tran-
sition of each cell’s state is determined by the states of its neighbors. For this state
transition, a globally homogeneous lattice structure is unnecessary: a locally regular
structure is sufficient such that each cell has a certain constant number of neighbors.
In our graph-rewriting automata, all cells (hereinafter nodes) have three neighbors.
Multiple links between the same two nodes and self-links (loops) are allowed. We
consider only a class of graphs that can be projected onto a plane. These constraints
of three-regularity and planarity can be satisfied by, e.g., an endless planar hon-
eycomb, a tetrahedron, a cube, a dodecahedron, and a Fullerene. Three-neighbor
connectivity is the minimum that can generate non-trivial graphs; more importantly,
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it is invariant under the following graph rewriting operations. (A modified system
with four links and simple rewriting rules is presented by Kataoka [8].)

We define finite states on nodes that are taken from an arbitrary finite set of
symbols. Three links of each node have a cyclic order. Rotation directions of all
nodes are identical when the graph is embedded in a plane. The graph rewriting
rules are designed so that the graph is always kept planar and the directions of the
cyclic orders are conserved.

The constant number of neighbors enables us to write rules in a regular form:
each rule is described by a rule name and at most five symbols as its argu-
ments, which is greatly advantageous when we design a large complex system. For
instance, the same rule can be reused in different situations. A rule can trigger a
cascade of other rules by stacking rules as a subroutine.

Formally, it is definable as follows.

Definition 1. Let S be a finite set of states. Base graph GS is a quadruple 〈V, E, ξ, η〉,
where V is a (possibly empty) set of nodes, E is a set of links, ξ : V → S is a
function that assigns a state to each node, and η : V × {0, 1, 2} → E is a function
that specifies three incident links of each node with cyclic order. More precisely, η

satisfies |{〈v, d〉 : η(v, d) = e, where v ∈ V and d ∈ {0, 1, 2}}| = 2 for every
e ∈ E .

Hereinafter, base graphs are called graphs for simplicity if no confusion exists.

14.2.1 Rules of Graph-Rewriting Automata

We first give rules of graph-rewriting automata and describe the effect when each
rule is applied. There are four rules: one state transition rule and three structural
rewriting rules (Fig. 14.1). The state transition rule changes the state of nodes; the
structural rewriting rules change the structure of the graph in a local manner. These
rules are represented as follows.

State transition rule:

trans m0(n1, n2, n3) → m1, (state transition),

Structural rewriting rules:

div m0(n1, n2, n3) → m1, (division),
com (n1, n2), (commutation),
anh (n1, n2), (annihilation).

In the first two rules (trans and div), classified as node rules hereinafter, m0

denotes the current state of the node, and n1, n2, n3 are states of its neighbor nodes
in this order. States of the neighbors are matched with the condition part by shift-
ing them in the cyclic order. Therefore, (n1, n2, n3), (n2, n3, n1), and (n3, n1, n2)
describe the same condition, but (n3, n2, n1) is not the same. In the latter two rules
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n1

n1

m0

m1

n1 n2

n3 n2

m0
m1 n1 n2

n1

n2
n2n3

com

(c) commutation rule

(d) annihilation rule

anh

(a) state transition rule

(b) division rule

div

trans

Fig. 14.1 Four rules of graph-rewriting automata: (a) state transition, (b) division, (c) commuta-
tion, and (d) annihilation. Symbols denote states of the nodes, not the identifiers

(com and anh), classified as link rules hereinafter, n1 and n2 are the states of its
incident nodes. Exchange of the states is allowed in matching.

The state transition rule simply changes the state of the node when the condition
is satisfied (Fig. 14.1a). The division rule divides a node into three nodes with the
identical state and generates three new links (Fig. 14.1b). The cyclic orders at the
new nodes inherit the previous order.

The commutation rule rearranges the local connective situation including two
adjacent nodes (Fig. 14.1c). It can be regarded as a quarter rotation of a pair of adja-
cent nodes. The commutation direction is defined as the same direction of the cyclic
link order. This commutation is realized by reconnection of links. The node states
are unchanged. The annihilation rule removes a pair of nodes and a link between
them (Fig. 14.1d).

These rules were introduced so that they are universal in the sense that they can
rewrite any planar three-regular graph with at least four nodes of different states to
any such graph, according to the following update scheme.

14.2.2 Update Procedure

This section presents a description of how the rules are applied to the whole system
and updates the graphs. We assume the time step of integers. An initial base graph
and a rule set are given. The rule set is a list of rules; the graph is updated at each
time step.

To update the graphs, we apply only node rules (trans and div) at even time steps,
and link rules (com and anh) at odd time steps. Rules are executed synchronously for
all nodes or links. We assume that all conditions of the rules in a rule set are different,
and that no ambiguity of rule choice exists. Applying either commutation or anni-
hilation to adjacent links engenders inconsistency. Therefore, all such applications
are suppressed. This lateral inhibition is realized in several ways in a local manner.
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One is to see a wider area covering the second nearest neighbors to confirm that
neighboring links do not satisfy the condition of any rule. Another is to execute the
process in two steps. First, each link raises a flag if a rule condition is satisfied; then,
if any of the four neighboring links does not raise a flag, the link actually executes
the rule. Because of these restrictions, the updating process becomes completely
deterministic.

A development process of an initial graph based on a rule set, i.e., a set of
instances of the four kinds of graph-rewriting rules, is defined in the following.

Definition 2. Let G and R respectively represent a graph and a rule set. A graph
obtained from G by node rules in R, denoted by RN(G), is a graph that is obtained
by application of node rules of R to all matching nodes in G. A graph obtained from
G by link rules in R, denoted by RL(G), is a graph that is obtained by application
of link rules of R to every matching link whose neighbor links match no link rules
in R.

Definition 3. Let G0 and R respectively represent a graph and a rule set. A rewriting
sequence of graph G0 by R is the sequence G0, G1, G2, ..., where G2i+1 = RN(G2i )
and G2(i+1) = RL(G2i+1) for each i .

Figure 14.2 portrays the rewriting steps beginning with a four-node graph. At
time 0, rule A is applied: the node with state 1 is divided into three nodes with the
same state. Then, at time 1, rules B and C are applied. No rule is applied at time 2.
At time 3, rule C is applied, but rule B is not applied because of lateral inhibition.

0 0

1

2

time: 0 

Fig. 14.2 Example of simple rewriting steps: (a) rule set, (b) development steps

14.2.3 Simulation of Graph-Rewriting Automata

Some interface to visualize the development processes is necessary when we are
to design or verify the elaborate graph structures and rule sets. It is also useful to
see the development processes when rule sets are generated mechanically. For this
purpose, we developed a visual simulator.

In this simulator, the graphs are embedded in three-dimensional Euclidean space
and are drawn as wire frames. For simplicity, a link is assumed to be a spring with
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a damping characteristic. By applying appropriate force, natural wire frame shapes
can be generated according to the development process, as shown later, for example
in Fig. 14.4a.

14.2.4 Examples

Here, simple examples are presented to explain the potential of graph-rewriting
automata.

14.2.4.1 Flexible Resolution

A uniform honeycomb lattice with arbitrary resolution is obtained when division
and commutation are alternately applied using two states and three rules (Fig. 14.3).

10

div 0 (1, 1, 1)       0
div 1 (0, 0, 0)       1

com
com

com

com (0, 1)

Fig. 14.3 Flexible resolution

14.2.4.2 Generation of a Repetitive Structure

From a heterogeneous tetrahedron (in which all the nodes have different states: 0,
1, 2, and 3), a globular graph is generated using a rule set similar to that described
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(a) (b)

div 0 (1, 2, 3) → 0
div 1 (2, 0, 3) → 1
div 2 (3, 0, 1) → 2
div 3 (2, 1, 0) → 3
div 0 (1, 1, 2) → 0
div 1 (0, 0, 3) → 1
div 2 (0, 0, 1) → 2
div 3 (0, 0, 2) → 3
div 0 (2, 2, 3) → 0
div 0 (3, 3, 1) → 0
div 1 (3, 3, 2) → 1
div 1 (2, 2, 0) → 1
div 2 (1, 1, 3) → 2
div 2 (3, 3, 0) → 2
div 3 (2, 2, 1) → 3
div 3 (1, 1, 0) → 3
com (0, 1)
com (0, 2)
com (0, 3)
com (1, 2)
com (1, 3)
com (2, 3)

Fig. 14.4 Generation of repetitive structure: (a) structure, (b) rule set

in Sect. 14.2.4.1. Then it continues to extend four arms with a repetitive structure
(Fig. 14.4a). The process is described by 22 rules (Fig. 14.4b).

14.2.4.3 Simple Self-replication

A rule set for self-replication of a heterogeneous tetrahedron (in which all nodes
have different states) is designed (Fig. 14.5a). It requires two additional intermediate
states and 19 rules (Fig. 14.5b). The whole structure and internal states of the nodes
are replicated after the eighth step. (No rule was applied at time steps 0, 3, or 5.)
This replication process is repeated arbitrarily many times.

14.3 Rule Design by Hand-Coding

In this section, we show how a larger rule set can be designed on this framework.
As an example, we design self-replication of graphs. Self-replication has been
studied after von Neumann’s seminal work [23]. Most such studies are based on
two-dimensional cellular automata, as reviewed in [16], but it is realized naturally
and simply using graph-rewriting automata. For instance, a self-replicating Turing
machine that requires complicated steps in cellular automata can be represented con-
cisely using graph-rewriting automata. (Another self-replication of von Neumann
style based on translation/transcription is explained in the literature [20] using an
additional graph rewriting rule.)
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(a)

=

1

2 3

0

com

4

5

ex

anh
=

=

div

trans

1
2

3
0

time 0, 1 time 2

time 3, 4 time 5, 6

time 7

0

1
2

3

com=

(time 7) time 8 (b)

com (2, 3)
div 0 (1, 3, 3) → 0
div 1 (0, 2, 2) → 1
div 3 (0, 0, 2) → 4
div 2 (1, 1, 3) → 2
trans 0 (0, 0, 1) → 1
trans 1 (1, 1, 0) → 0
trans 4 (4, 4, 2) → 2
trans 2 (2, 2, 4) → 4
trans 4 (4, 0, 2) → 3
trans 4 (4, 2, 0) → 1
trans 0 (0, 1, 4) → 2
trans 2 (4, 4, 4) → 5
trans 4 (2, 2, 2) → 5
trans 1 (0, 0, 0) → 5
trans 0 (1, 1, 1) → 5
trans 2 (2, 1, 4) → 0
trans 1 (1, 2, 0) → 3
anh (5, 5)

Fig. 14.5 Simple self-replication: (a) replication steps, where “ex” denotes exchange of states by
simultaneous execution of state transition by two nodes; (b) rule set

14.3.1 Design of Self-replicating Turing Machine

A Turing machine is a mathematical model of computation [22] that comprises a
one-dimensional tape of infinite length and a moving head. The tape is divided
into squares and each square contains a symbol from a finite set. At any time, the
head is located at one of the squares; it can read/write only on the square. The
Turing machine has an internal state chosen from a finite set. From its internal
state and a symbol on the head location, it decides its operation to write a new
symbol, move the head to the left or right for one square, and change its inter-
nal state. This rewriting process corresponds to computation. It is an extremely
simple model, but it can compute any computable function according to Church’s
thesis [1].

In graph-rewriting automata, the Turing machine can be modeled by a simple
ladder structure (Fig. 14.6a). The upper nodes of the ladder correspond to squares
of the tape, and one node in the lower row plays the role of the head. Both ends of the
ladder (called Ends of Tape (EOTs)) are connected to form a ring to satisfy the three-
neighbor constraint. Although the tape is finite, the structure can be extended to
arbitrary length by division of EOT if necessary. Each operation of a Turing machine
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Fig. 14.6 Self-replicating steps of a Turing machine

is realized by several rules in graph-rewriting automata. Writing operation of a new
symbol on the tape is realized simply by the state transition because the node is
adjacent to the head node. The head moving operation requires two consecutive
steps, as described below, because the node at the new location cannot refer to the
symbol on the head: First, the head node becomes a state that represents the new
internal state and the moving direction. Then, one adjacent node changes its state to
the new internal state. Precise steps and rule construction are presented in [18].

The self-replicating process of the Turing machine can be expressed naturally
within the framework of graph-rewriting automata (Fig. 14.6). Activation of the
replication process begins at the location of the head, which causes a chain reaction
of activation, and the activated region is controlled to be only part of the system.
After the propagation of the activated region from the head position to both EOTs,
the structure is duplicated and separated into two ladders. In the replication process
design, we assume that the process begins when the head becomes a special internal
state. The outline is as follows.

Step (1) The entire self-replication process is triggered when the head becomes
a special state. First, the head node and the corresponding tape node are divided
(Fig. 14.6a,14.6b).
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Step (2) The nodes are also divided if a neighboring head node or tape node is
divided (Fig. 14.6b,14.6c).

Step (3) By commuting the links, a new ladder structure is constructed
(Fig. 14.6c,14.6d).

Step (4) By exchanging the information, tape and node information is placed in
appropriate positions. Then, unnecessary nodes and links are annihilated to separate
the two ladders (Fig. 14.6c,14.6f).

Step (5) Steps (2–4) above are repeated from the head position to both EOTs.
Some rules are provided to cope with the special conditions around the EOTs
(Fig. 14.6e,14.6j).

Step (6) The EOTs are commuted and then annihilated when the processes in
both directions are finished. This produces two identical ladder structures
(Fig. 14.6j,14.6k).

Step (7) The original state is restored (Fig. 14.6k,14.6l).
The whole replication process can be repeated. The detailed set of rules are given

in [18]. Both the necessary number of states and rules depend on the type of Turing
machine. For two symbol Turing machines, the process requires 20 states (including
five in the initial state) and 257 rules. No restrictions apply to the tape length: the
same rule set is applicable for any sequence of symbols.

It is also possible to realize self-replication of a universal Turing machine. For
instance, we can embed Minsky’s “small” universal Turing machine [11]. In this
case, 30 states and 955 rules are necessary for the replication process. In addition,
23 states and 745 rules are required for computation as a universal Turing machine.

14.4 Rule Search by Evolutionary Computation

This section shows that evolutionary computation is applicable to automatic rule
generation of graph-rewriting automata. We conducted an evolutionary search to
identify self-replicating behavior as a preliminary trial. This suggests that generating
various self-replications is possible in this framework.

14.4.1 Evolutionary Computation

Evolutionary computation is a search method inspired by the evolution of living
things [5]. In this method, the goal is to determine a set of parameters with the
highest fitness in a search space. A search is performed using a population of indi-
viduals: each represents one point in the search space. Updating the generations of
population according to the fitness, usually by mutation and crossover, gradually
improves the fitness of the population.

We seek a self-replicating system, i.e., a pair of a graph and a rule set. Finding
them together simultaneously requires complicated coding. Therefore, we instead
fix an initial graph as a four-node complete graph with different states (initial graph
in Fig. 14.5) and search only for a rule set such that the development process of
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the initial graph by the rule set includes self-replicating behavior. This development
process stops when the number of nodes or steps exceeds some predetermined limit.

As described in Sect. 14.2, the rules of graph-rewriting automata are uniform.
Therefore, it is easy to encode a rule set into an individual.

14.4.1.1 Representation

One individual corresponds to one rule set, which comprises node rules and link
rules. Here we use a fixed number of rules: 80 node rules and 20 link rules. These
are represented as

n-rule n0 n1 n2 n3 n4, and l-rule n0 n1,

respectively, where n-rule ∈ {trans, div}, l-rule ∈ {com, anh}, and ni ∈ [0..9].

14.4.1.2 Structural Development Diagram

In graph-rewriting automata, processes of development (and separation) of graphs
begin from one connected graph. At some time, it might be divided into graphs by
appropriate application of the annihilation rule. Then, this process is repeated for
each. A diagram characterizes this process – a structural development diagram – in
Fig. 14.7. In the figure, each dot represents one (connected) graph. Arrows indicate
rewriting between these graphs. Each rectangle shows that graphs in it are changed,
but they remain connected. We connect graphs with an upstream arrow when a new
graph coincides with one already generated elsewhere in its ancestor. By examining
this diagram, we can determine whether this process includes self-replication as
follows.

Fig. 14.7 Structural development diagram

Self-replicating systems have several types. A simple one was described in
Sect. 14.2.4.3, in which a graph is separated into two identical children. In gen-
eral, self-replication can be characterized by two (or more) upstream arrows over
a rectangle in a structural development diagram. For example, Fig. 14.7 presents
self-replication of graphs in the double-squared rectangle. In this process, some
structures that are unrelated to self-replication are cut off.

14.4.1.3 Fitness Function

In using the evolutionary computation, defining the fitness function is important
but difficult in many cases. As described above, we fix an initial graph and search
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for a rule set that realizes self-replication. Based on this line, a fitness function is
chosen so that the following three criteria are met: (1) existence of self-replicating
systems according to the examination of structural development diagrams, as in
Sect. 14.4.1.2; (2) the distance measure from a dead-end graph (where no more rule
is applied) to the graphs of its ancestor; and (3) breadth of the search. Of them, (1)
is the most important, but we must guide the search to obtain such systems. Details
of the condition are found in [19].

14.4.2 Simulation Results

We conducted simulations. The execution is aborted if the number of nodes in one
of the connected graphs becomes greater than 1,000 during this process.

First, 100 runs were conducted with 100 individuals and for 1,000 generations.
Among them, 83 runs revealed some self-replicating systems. We conducted random
searches for the same number (10,000,000 individuals) and found no self-replicating
system. Taking after Lohn and Reggia [10], according to Fisher’s Exact Test, if we
obtain more than five trials, it is a statistically significant result. We infer that ours
is significant.

Subsequently, we specifically examined direct self-replicating systems in which
a structure generates multiple identical structures as its (direct) children. Among the
83 runs mentioned above, 82 runs generated 99 direct self-replicating systems.

We classify them by the number of nodes and the number of states used in the
structure, as shown in Fig. 14.8. This figure shows that, as the number of states
increases, it becomes difficult to find self-replicating graphs with a small number of
nodes as long as one assumes this simple fitness function. In particular, no graph
with more than four states was found.
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Fig. 14.8 Relationship between the number of states and nodes of the resultant self-replicating
graphs. White circles denote the four most frequent graphs
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Fig. 14.9 Five typical self-replicating graphs obtained through evolutionary computation

(a)

div

div

anh

div

anh

(initial graph) (generator)

(generator)(initial
graph)

(initial
graph) (b)

div 0 → 1
div 0 (0, 1, 1) → 2
div 2 (1, 2, 2) → 0
div 2 (2, 2, 2) → 2
anh (0, 1)

(0, 0, 2)

Fig. 14.10 An example of the obtained self-replicating system. (a) replication steps, (b) rule set

Many obtained graphs are symmetric and include multiple links or loops. No
restrictions pertain to our fitness function. Therefore, easily replicated graphs, which
have a self-similar nature, are generated. Figure 14.9 exhibits the five most fre-
quently found self-replicating graphs. An example of a self-replication process with
different features is displayed in Fig. 14.10. The upper right graph acts as a generator
of two initial graphs; the initial graph grows to the generator itself.

14.5 Exhaustive Trial

In the previous section, we saw that various self-replicating systems are gener-
ated by graph-rewriting automata based on a particular search method. The space
of the possible rule sets was explored only in part. This space is too huge to
explore for all rule sets when the number of states is large. In this section, we
instead limit the space of rule sets by restricting the states to be in {0, 1}. Then
we investigate the behavior of graph developments for several simple initial graphs
by application of all the rules. This is important for evaluating qualitatively how
likely self-replication and other behaviors happen in this framework. Although this
investigation remains in a preliminary stage, some results are described in this
section.
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14.5.1 Rule Representation

We conduct a simulation for all possible rules with two states to examine the result-
ing development processes. We denote each rule as an 11-digit number. The initial
eight digits are for the node rules and remaining three are for the link rules. The
value of each digit represents a rule for specific conditions determined according
to the digit position. For node rules, values 0 and 1 mean that the rule is a state
transition rule resulting in states 0 and 1, respectively; values 2 and 3 mean that
the rule is a division rule and the resulting states are, respectively, 0 and 1. For link
rules, 0, 1, and 2 represent that the corresponding rule is none, com, and anh. This is
summarized in Fig. 14.11. Consequently, the total number of possible rules for two
states are 48 × 33 = 1, 769, 472. For instance “01223110201” represents a rule set
“trans 0 (0, 0, 0) → 0, tans 0 (0, 0, 1) → 1, div 0 (0, 1, 1) → 0, div 0 (1, 1, 1) →
0, div 1 (0, 0, 0) → 1, div 1 (0, 0, 1) → 1, trans 1 (0, 1, 1)→ 1, trans 1(1, 1, 1) →
0, anh (0, 0), com (1, 1)”. Among 27 possible cases for link rules, 17 are the same
because of the lateral inhibition.

Corresponding rule condition to each digit: 8 digits for node rules and 3 digits for link rules
0(0,0,0) 0(0,0,1) 0(0,1,1) 0(1,1,1) 1(0,0,0) 1(0,0,1) 1(0,1,1) 1(1,1,1) 0,0 0,1 1,1

Value of digits for node rules
value rule
0 trans ( ) → 0
1 trans ( ) → 1
2 div ( ) → 0
3 div ( ) → 1

Value of digits for link rules
value rule
0 none
1 com
2 anh

Fig. 14.11 Rule representation

14.5.2 Results

We chose five initial graphs in Fig. 14.12, and conducted a simulation for 80 steps,
until the 1,000 node limit was reached. The results are roughly classifiable as shown
in Fig. 14.13, which shows the following characteristic: S0 is the simplest initial
structure. That result can be analyzed: 9/16 cases grow to the node limit, 3/8 cases
halt, and 1/16 cases reach the limit cycle. Other cases are not so simple. Cases
of about 90% grow until the node limit or halt when no rule is applicable. Some
examples are presented respectively in Figs. 14.14 and 14.15. Some cases of limit
cycles (about 3–10%), and cases in which the graphs are separated (about 0.2–2%
except S0) exist.

Fig. 14.12 Five initial graphs for the exhaustive trial
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Fig. 14.13 Rough classification of graph development with two states

(a) (c)(b)

Fig. 14.14 Examples of graph evolution that reach the node limit

Fig. 14.15 An example of graph evolution halted at 612 nodes. Rule is 00230302 010 S2

Cases of separation are further investigated. The results are portrayed in
Fig. 14.16. Again, about 70% cases grow up to the node limit. In some cases (about
3–15%) the processes include self-replication, many of which have nearly linear
structures. Figure 14.17 presents typical examples of such self-replication processes.



306 K. Tomita et al.

400003000020000100000

S0

S1

S2

S6

S8

self-replication
halt
limit cycle
node limit
step limit

Fig. 14.16 Classification of behavior for separated cases

(a) 01100202 201 S2 (b) 03002310 201 S1 (c)  01110200 201 S2

Fig. 14.17 Self-replication steps with two states, and corresponding rule sets

These graphs were generated in the course of graph evolution when large graphs
were separated into many graphs.

Because the rules with two states described above do not break (some of the)
symmetry of the initial graphs, many resultant graphs are symmetric when the graph
is connected. However, each component of this symmetry can contain rich struc-
tures. Especially, as described above, when a graph is divided into sub-graphs, the
components might be capable of self-replication.

In cellular automata, classification of behavior into four classes was proposed by
Wolfram [24]. Among them, class 4 involves a mixture of order and randomness
exhibiting complex behavior. Although we expect that the class 4 behavior will be
found also in graph-rewriting automata, it is not yet found. One reason would be that
simulation time steps are too small. Class 4 behavior can be characterized some-
times by interaction among locally stable structures. To examine such interaction,
observation for a longer time is appropriate, and further analysis is required.
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14.6 Conclusions

We proposed a framework called graph-rewriting automata for generating and mod-
eling complex adaptive networks. It has the following advantages:

• It can express processes that include dynamic changes in the number of the ele-
ments and topology.

• It can deal naturally with processes in the closed space.

For rule description, it has the following features:

• Graph-rewriting is restricted as local.
• The rules are described uniformly.

Graph-rewriting automata’s strong power of expression will provide a new tool to
describe various complex processes. It is especially suitable to describe a develop-
ment process in a closed space, where the process itself determines its boundary
conditions. Thereby, the global structure and local states are coupled effectively.
Self-replication is a typical example of such processes.

We have demonstrated that this framework can generate network evolution of
various types by considering hand-coded rule sets, mechanically searched rule sets,
and exhaustive trials. Using hand-coded rule sets, we can easily embed various
logical structures. On the other hand, the space of the rule sets is too huge to
explore. An evolutionary computation method was applied to generate rule sets
for graph-rewriting automata automatically. In particular, self-replication has been
addressed and many self-replicating systems (graphs and corresponding rule sets)
were obtained. Many obtained graphs are symmetric and differ from hand-coded
graphs. The replication processes differ from those of cellular automata in the sense
that they use node division effectively, thereby simplifying the replication processes.
We did not need to guide the search using a complicated fitness function; a sim-
ple one generated various self-replicating systems, suggesting the expressiveness
of graph-rewriting automata for self-replication processes. In addition, an exhaus-
tive trial was performed for simple cases with two states. A variety of development
processes were found even with the limited states and simple analysis.

Our system has two restrictions for simplification as follows, which were intro-
duced to make the structure and development process simple.

One restriction is the structural restriction. In this paper, we considered planar
graphs with three link nodes. Planar restriction is relaxed by permitting non-planar
initial states or by introducing new rewriting rules. The structure can be extended in
many ways depending on the objects to be modeled in the graph-rewriting automata.
For example, an additional rewriting rule for non-planar graphs was introduced in
[20] to model von Neumann style self-replication.

The other restriction is in the updating process. Lateral inhibition of link rules and
separate updating steps for node and link rules were assumed. These come mainly
from the requirement to make the update process deterministic. We can exclude
such exceptions by, e.g., asynchronous application of rules instead of synchronous
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application to the whole system if we permit the stochastic development. Such
extension is examined in [21].

The following are subjects for future work. First, more precise analysis of graph
development is necessary to evaluate the properties of graphs quantitatively. For this
purpose, we must develop a more elaborate visualization method because it is not
easy to qualify the properties of an interesting development. Although our simulator
is effective when the graph size is less than a few hundred, it is difficult to grasp the
time series of overall graph development when the graph is much larger. Further-
more, there is room for improvement on our framework in two ways: refinement
by further simplification, and enhancement by introducing, e.g., physical properties
such as the distance between nodes or the physical environment. Finally, we are
interested in examination of a subset (or a variant) of this framework that permits a
reversible development processes.

Inheriting accumulated knowledge in cellular automata and complex networks,
graph-rewriting automata will open a new dimension of study by introducing topo-
logical freedom to system description. It will cast new light on various subjects in
science and technology, such as complex morphogenesis of living systems, self-
assembling molecular systems, innovative nanoscale production methods, and fun-
damental physics.
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Chapter 15
Generative Network Automata: A Generalized
Framework for Modeling Adaptive Network
Dynamics Using Graph Rewritings

Hiroki Sayama and Craig Laramee

Abstract A variety of modeling frameworks have been proposed and utilized in
complex systems studies, including dynamical systems models that describe state
transitions on a system of fixed topology, and self-organizing network models
that describe topological transformations of a network with little attention paid to
dynamical state changes. Earlier network models typically assumed that topological
transformations are caused by exogenous factors, such as preferential attachment
of new nodes and stochastic or targeted removal of existing nodes. However, many
real-world complex systems exhibit both state transition and topology transforma-
tion simultaneously, and they evolve largely autonomously based on the system’s
own states and topologies. Here we show that, by using the concept of graph rewrit-
ing, both state transitions and autonomous topology transformations of complex
systems can be seamlessly integrated and represented in a unified computational
framework. We call this novel modeling framework “Generative Network Automata
(GNA)”. In this chapter, we introduce basic concepts of GNA, its working defini-
tion, its generality to represent other dynamical systems models, and some of our
latest results of extensive computational experiments that exhaustively swept over
possible rewriting rules of simple binary-state GNA. The results revealed several
distinct types of the GNA dynamics.

15.1 Introduction

A variety of modeling frameworks have been proposed and utilized for research on
the dynamics of complex systems [1–3]. A major class of modeling frameworks is
that of dynamical systems models, including ordinary or partial differential equa-
tions and iterative maps [4], artificial neural networks [5, 6], random Boolean net-
works [7–9], and cellular automata [10, 11]. While they are capable of producing
strikingly complex and even biological-like behaviors [12–16], these tools generally
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assume a network made of a fixed number of components organized in a fixed topol-
ogy. Their dynamics are considered as trajectories of system states in a confined
phase space with time-invariant dimensions.

The recent surge of network theory in statistical physics has demonstrated
yet another graph-theoretic approach to complex systems modeling [17–19]. It
addresses the self-organization of network structure via local topological transfor-
mations such as random or preferential addition, modification and removal of com-
ponents and their interactions (i.e., nodes and links). Among the most actively inves-
tigated issues in this field is how statistical properties of the entire network topology
will be affected by additions (growth or augmentation) and removals (failures or
attacks) of nodes and links, and in particular, how networks can be more robust
against the latter [20–24]. Those additions and removals are typically assumed as
perturbations coming from external sources, not incorporated into the dynamics of
the network itself. They are also limited in that not much attention has been paid to
dynamical state changes on the network. Researchers recently started investigating
dynamical state changes on complex networks [25–30]. They are still largely focus-
ing on fixed network topologies or topologies varied by exogenous perturbations.

When looking into real-world complex networks, however, one can find many
instances of networks whose states and topologies “coevolve”, i.e., they keep chang-
ing over the same time scales due to the system’s own dynamics (Table 15.1). In
these networks, state transitions of each component and topological transformations
of networks are deeply coupled with each other. Understanding and describing the
coevolution of states and topologies of networks is now recognized as one of the
most important problems to address [21, 31]. Several theoretical models of coevo-

Table 15.1 Real-world examples of complex networks whose states and topologies change over
the same time scales due to the network’s own dynamics

Network Nodes Links Example of
node states

Example of
node addition
or removal

Example of
topological
changes

Organism Cells Cell adhesions,
intercellular
communica-
tions

Gene/protein
activities

Cell division,
cell death

Cell migration

Ecological
community

Species Ecological
relationships
(predation,
symbiosis,
etc.)

Population,
intraspecific
diversities

Speciation,
invasion,
extinction

Changes in
ecological
relationships
via adaptation

Epidemio-
logical
network

Individuals Physical
contacts

Pathologic
states

Death,
quarantine

Reduction of
physical
contacts

Social
network

Individuals Social
relationships,
conversations,
collaborations

Sociocultural
states,
political
opinions,
wealth

Entry to or
withdrawal
from
community

Establishment or
renouncement
of
relationships
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lutionary networks have been proposed and studied most recently [32–36], yet each
of these studies used different model formulations for different phenomena, with
limited implications given for how these coevolutionary network models could be
linked to other existing complex systems models.

Here we aim to address the above-mentioned lack of linkages between coevolu-
tionary network models and other existing complex systems models by developing
a more comprehensive formulation. Specifically, we show that, by using the concept
of graph rewriting, both state transitions and autonomous topology transformations
of complex systems can be seamlessly integrated and represented in a unified com-
putational framework. We call this novel modeling framework “Generative Network
Automata (GNA)” [37]. The name indicates the integration of knowledge accumu-
lated in dynamical systems theory, network theory, and graph grammar theory.

In the following sections, we will introduce basic concept of graph rewriting,
a working definition of GNA, its generality to represent other dynamical systems
models, and some of our latest results of extensive computational experiments that
exhaustively swept over possible rewriting rules of simple binary-state GNA. The
results revealed several distinct types of the GNA dynamics.

15.2 About Graph Rewriting

The key characteristic of GNA is that it should have mechanisms for transformations
of local network topologies as well as transitions of local states. Topological trans-
formations may be modeled as a rewriting process of local network configurations.
We will therefore adopt methods and techniques developed in graph grammar theory
[38] to construct general formulations of GNA.

Graph grammars, studied since late 1960s in theoretical computer science
[39–42], are an extension of formal generative grammars in computational linguis-
tics to discuss similar rule-based generative processes of graphs, or networks. They
recursively define a set of “valid” graph topologies that can be generated through
repetitive applications of a given set of node and/or link replacement rules. A com-
putational implementation of such processes is called a graph rewriting system,
often used to simulate particular generative processes of network topology. Here
the word “generative” means that the replacements are triggered by local topological
features of the network itself, and not by external sources of perturbation as typically
assumed in modern network theory.

A classic, and probably most widely known, example of graph rewriting systems
is the Lindenmayer system, or L-system [43]. It is a simple rewriting system that
can produce self-similar recursive structures in a sequential string (in this sense, the
L-system remains within the range of classic formal grammars). What makes this
system outstanding is that it comes with an interpretation that converts a resultant
string into a tree-like topological structure, which may appear just like a natural tree
if parameters are appropriately chosen. This example shows the capability of graph
rewriting systems to describe the emergence of natural complex structures using a
set of small local rules.
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Although their relevance to biology was initially recognized [39, 44], appli-
cations of graph grammars have so far remained within computer science, such
as pattern recognition, compiler design, and data type and process specification
[38, 40–42], and their use has been not so common even within computer science
due to unintuitive, complicated formulation and lack of software tools for modeling
[45]. Moreover, most applications were primarily focused on context-free rewriting
rules, and they rarely considered dynamical state transitions on networks. Recently,
context-dependent graph grammars have been applied to describe reaction rules in
artificial life/artificial chemistry, including models of self-replication [46–48], self-
assembly [49], morphogenesis [50, 51] and dynamic state changes [51] of artifacts.
However, none of them integrated graph grammars into complex systems modeling
in a flexible, generalizable way so as to be readily applicable to networks studied in
other domains.

To the best of our knowledge, our GNA framework is among the first to sys-
tematically integrate graph rewritings in the representation and computation of the
dynamics of complex networks that involve both state transition and autonomous
topological transformation. Our long-term goal is to develop a comprehensive the-
ory of GNA and a set of analytical/computational tools that can be broadly applied
to the modeling of various complex systems.

15.3 Definition of GNA

A working definition of GNA is a network made of dynamical nodes and directed
links between them. Undirected links can also be represented by a pair of directed
links symmetrically placed between nodes. Each node takes one of the (finitely or
infinitely many) possible states defined by a node state set S. The links describe
referential relationships between the nodes, specifying how the nodes affect each
other in state transition and topological transformation. Each link may also take one
of the possible states in a link state set S′. A configuration of GNA at a specific time
t is a combination of states and topologies of the network, which is formally given
by the following:

• Vt : A finite set of nodes of the network at time t . While usually assumed as
time-invariant in conventional dynamical systems theory, this set can dynami-
cally change in the GNA framework due to additions and removals of nodes.

• Ct : Vt → S: A map from the node set to the node state set S. This describes the
global state assignment on the network at time t . If local states are scalar num-
bers, this can be represented as a simple vector with its size potentially varying
over time.

• Lt : Vt → {Vt ×S′}∗: A map from the node set to a list of destinations of outgoing
links and the states of these links, where S′ is a link state set. This represents the
global topology of the network at time t , which is also potentially varying over
time.
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States and topologies of GNA are updated through repetitive graph rewriting
events, each of which consists of the following three steps:

1. Extraction of part of the GNA (subGNA) that will be subject to change.
2. Production of a new subGNA that will replace the subGNA selected above.
3. Embedding of the new subGNA into the rest of the whole GNA.

The temporal dynamics of GNA can therefore be formally defined by the following
triplet 〈E, R, I 〉:
• E : An extraction mechanism that determines which part of the GNA is selected

for the updating. It is defined as a function that takes the whole GNA configura-
tion and returns a specific subGNA in it to be replaced. It may be deterministic
or stochastic.

• R: A replacement mechanism that produces a new subGNA from the subGNA
selected by E and also specifies the correspondence of nodes between the old
and new subGNAs. It is defined as a function that takes a subGNA configuration
and returns a pair of a new subGNA configuration and a mapping between nodes
in the old subGNA and nodes in the new subGNA. It may be deterministic or
stochastic.

• I : An initial configuration of GNA.

There are a couple of other commonly used procedures needed to simulate GNA
dynamics, such as the removal of the selected subGNA from the whole GNA and
the re-connection of “bridge” links (i.e., links that were between the old subGNA
and the rest of the GNA) when embedding the new subGNA. Because the workings
of these procedures are fairly obvious, we omit detailed explanations for them. The
above E, R, I are sufficient to uniquely define specific GNA models. The entire
picture of a rewriting event is illustrated in Fig. 15.1, which visually shows how
these mechanisms work together.

This rewriting process, in general, may not be applied synchronously to all nodes
or subGNAs in a network, because simultaneous modifications of local network
topologies at more than one places may cause conflicting results that are inconsistent
with each other. This limitation will not apply though when there is no possibility
of topological conflicts, e.g., when the rewriting rules are all context-free, or when
GNA is used to simulate conventional dynamical networks that involve no topolog-
ical changes.

We note that it is a unique feature of GNA that the mechanism of subgraph
extraction is explicitly described in the formalism as an algorithm E , not implic-
itly assumed outside the grammatical rules like what other graph rewriting systems
typically adopt (e.g. [51]). Such algorithmic specification allows more flexibility
in representing diverse network evolution and less computational complexity in
implementing their simulations, significantly broadening the areas of application.
For example, the preferential attachment mechanism widely used in modern net-
work theory to construct scale-free networks is hard to describe with pure graph
grammars but can be easily written in algorithmic form in GNA, as demonstrated in
the next section.
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Fig. 15.1 GNA rewriting process. (a) The extraction mechanism E selects part of the GNA.
(b) The replacement mechanism R produces a new subGNA as a replacement of the old subGNA
and also specifies the correspondence of nodes between old and new subGNAs (dashed line).
This process may involve both state transition of nodes and transformation of local topologies.
The “bridge” links that used to exist between the old subGNA and the rest of the GNA remain
unconnected and open. (c) The new subGNA produced by R is embedded into the rest of the GNA
according to the node correspondence also specified by R. In this particular example, the top gray
node in the old subGNA has no corresponding node in the new subGNA, so the bridge links that
were connected to that node will be removed. (d) The updated configuration after this rewriting
event

While the definition given above is one of the simplest possible formulations of
GNA, it already has considerable complexity compared to conventional dynami-
cal systems models. The possibility of temporal changes of Vt and Lt particularly
makes it difficult to investigate its dynamical properties analytically. However, the
updating process of GNA is algorithmically described and hence their dynamics
can be experimented through computer simulation relatively easily. We have devel-
oped a package in Wolfram Research Mathematica for small-scale simulation and
visualization of GNA with node states.1 The results presented in this chapter were
obtained using this package.

1 The Mathematica package is still under active development but may be available upon request.
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15.4 Generality of GNA

The GNA framework is highly general and flexible so that many existing dynamical
network models can be represented and simulated within this framework.

For example, if R always conserves local network topologies and modifies states
of nodes only, then the resulting GNA is a conventional dynamical network model,
including cellular automata, artificial neural networks, and random Boolean net-
works (Fig. 15.2 a, b). A straightforward application of GNA typically comes with
asynchronous updating schemes, as introduced in the previous section. Since asyn-
chronous automata networks can emulate any synchronous automata networks [52],
the GNA framework covers the whole class of dynamics that can be produced
by conventional dynamical network models. Moreover, as mentioned earlier, syn-
chronous updating schemes could also be implemented in GNA for this particular
class of models because they involve no topological transformation.

On the other hand, many network growth models developed in modern network
theory can also be represented as GNA if appropriate assumptions are implemented
in the subGNA extraction mechanism E and if the replacement mechanism R causes
no change in local states of nodes (Fig. 15.2 c).

15.5 Computational Exploration of Possible Dynamics
of Simple Binary-State GNA

In this section we report our latest results of extensive computational experiments
that exhaustively swept over possible rewriting rules of simple binary-state GNA.
The results shown here were obtained with much less restricted rule sets than those
assumed in our previous work [37].

15.5.1 Assumptions

There are infinitely many possible mechanisms for E and R because there are no
theoretical upper bounds in terms of the size of the old subGNA selected by E (it
could be infinitely large as the GNA grows) and the new subGNA produced by R
(it could be arbitrarily large by the design of R). Making reasonable assumptions
to restrict the possibility of mechanisms for E and R is critical to facilitate sys-
tematic study on the dynamics of GNA. Here we make the following assumptions
(Fig. 15.3):

1. Node states are binary (0 or 1).
2. No link state is considered (i.e., links homogeneously take only one state and it

will never change).
3. Links are undirected (i.e., every connection between nodes is represented by a

pair of symmetrically placed directed links).
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Fig. 15.2 Various dynamical network models simulated using GNA. These examples were repre-
sented in the same format of 〈E, R, I 〉 (see text) and simulated using the same simulator package
implemented in Mathematica. (a) Simulation of asynchronous 2-D binary cellular automata with
von Neumann neighborhoods and local majority rules. Space size: 100 × 100. (b) Simulation of
an asynchronous random Boolean network with N = 30 and K = 2. Time flows from left to
right. Nodes of random Boolean networks are non-homogeneous, i.e., they obey different state-
transition rules. Here each node’s own state-transition rule is embedded as part of its state, and the
replacement mechanism R refers to that information when calculating the next state of a node. (c)
Simulation of a network growth model with the Barabási-Albert preferential attachment scheme.
Time flows from left to right. Each new node is attached to the network with one link. The extrac-
tion mechanism E is implemented so that it determines the place of attachment preferentially based
on the node degrees, which causes the formation of a scale-free network in the long run

4. The extraction mechanism E always selects a subGNA by

a randomly picking one node u from the entire GNA (Fig. 15.3a),
b taking all the destination nodes of its outgoing links Lt (u) (Fig. 15.3b), and
c producing a subGNA “induced” by these nodes {u} ∪ Lt (u), i.e., a subGNA

that includes all these nodes as well as all the links present between them
(Fig. 15.3c).
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Fig. 15.3 Simplified GNA rewriting process used for the exhaustive sweep experiments. The
extraction mechanism E (a) randomly picks one node u, (b) takes all the destination nodes of
its outgoing links Lt (u), and (c) produces a subGNA induced by those nodes {u} ∪ Lt (u). The
replacement mechanism R (d) refers to the state of the central node u in the selected subGNA and
the local majority state within it to determine what happens to the local configuration, (e) produces
a new subGNA as well as the correspondence of nodes between the old and new subGNAs based
on the choice made in (d), and then (f) embeds the new subGNA into the rest of the GNA

5. The replacement mechanism R only refers to the state of the central node u and
the local majority state within the induced subGNA. If there are equal numbers
of 0’s and 1’s within the subGNA, one of the two states is randomly chosen.
This two-bit information will be used to determine what will happen to the local
configuration (Fig. 15.3d). The following ten possible rewriting outcomes are
made available (which are extended from [37]):

(0) The central node u disappears.
(1) Everything remains in the same condition.
(2) The state of the central node u is inverted.
(3) The central node u divides into two with the state preserved in both nodes.
(4) The central node u divides into two with the state inverted in both nodes.
(5) The central node u divides into two with the state inverted in one node.
(6) The central node u divides into three with the state preserved in all three

nodes.
(7) The central node u divides into three with the state inverted in all of three

nodes.
(8) The central node u divides into three with the state inverted in two of three

nodes.
(9) The central node u divides into three with the state inverted in one of three

nodes.
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In cases where node division occurs, the links that were connected to the central
node u is distributed as evenly as possible to its daughter nodes (Fig. 15.3e).

6. The initial condition I consists of a single node with state 0.

Note that the above model assumptions will always generate planar graphs in
which the node degrees are bounded up to three when initiated with a single node.
Therefore all the results shown in this chapter are topologically planar.

15.5.2 Methods

We carried out an exhaustive sweep of all the possible rewriting rules that satisfy
the assumptions discussed above. Since the extraction mechanism E is uniquely
defined, it is only the replacement mechanism R that can be varied. Here R is
defined as a function that maps each of the four possible two-bit inputs to one of the
ten possible actions. Therefore the number of all the possible R’s is 1022 = 10,000.
To indicate a specific R, we will use its “rule number” rn(R) that is defined by

rn(R) = a11 × 103 + a10 × 102 + a01 × 101 + a00 × 100, (15.1)

where ai j is a numerical representation (numbers associated with each of the ten
possible actions shown above) of the choice that R will make when the state of the
central node u is i and the local majority state is j .

It should be noted that there are two different ways of counting time steps in
asynchronous simulations. One is simply to count one rewriting event as one time
step, which we call computational time. The other is to measure the progress of vir-
tual time in a simulated world between discrete events by considering one rewriting
event as taking 1/Nt of the unit of time, where Nt is the number of nodes at time t .
This is based on the assumption that every node is updated once on average per unit
of time, which is a reasonable and useful assumption especially when one wants to
compare results of asynchronous simulations with those of synchronous ones. We
call the latter notion of time simulated time. All the t’s in this chapter represent
simulated time.

We simulated the GNA dynamics for rn ranging from 0 to 9,999. For each rn five
independent simulation runs were conducted and the average of their results were
used. Each run continued until 500 rewriting events were simulated, or Nt exceeded
1,000, or Nt became 0, whichever was sooner.

During each run, we recorded time series of Nt by sampling its value in every half
unit of simulated time. We then calculated its growth characteristics, estimated order
of polynomial growth k and estimated rate of exponential growth r , by conducting
nonlinear fitting of a hypothetical growth model to the time series data (explained
later). In addition, after each simulation run, we measured the following quantities
of the final GNA configuration:

• Number of nodes
• Number of links
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• Average node degree
• Number of connected components
• Size of the largest connected component
• Average node state

If all the nodes disappear during the simulation run, the average node degree and
the average node state are indeterminate.

15.5.3 Results

We first studied the growth characteristics of GNA and their differences between
different rules. Figure 15.4 presents sample growth curves superposed in a single
plot, showing temporal changes in number of nodes over simulated time. Several
distinct types of growth patterns are already visible in this plot. Curves that go nearly
flat along the t axis indicate that the GNA for these cases did not grow at all. Many
other rules showed rapid exponential growth processes (dense bundle of sharply
rising curves on the left). Between these two, there are relatively fewer intermediate
cases that exhibit either slow, fluctuating growth, or even linear growth, which are
qualitatively different from other growth curves.

We extracted the growth characteristics of each rule from its time series data by
fitting to them a hypothetical growth model Nt ∼ (t + 1)kert using the least squares
method, where k and r are the estimated order of polynomial growth and the esti-
mated rate of exponential growth, respectively. For each rule, these values were
calculated with five independent simulation runs and then their averages were used
for the analysis. We excluded rules in the form of “***0” or “0**2” (where “*” can
be any single-digit number) that caused immediate node extinction and hence failure
of nonlinear fitting. This filtering excluded 1,100 rules, leaving a total of 8,900 (out
of 10,000) rules that were used in the following plots.

t

# 
of

 n
od

es

Fig. 15.4 Growth curves of randomly selected 10% of the 50,000 independent simulation runs
(5 runs × 10,000 rules)
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Fig. 15.5 Left: Distribution of growth characteristics, estimated order of polynomial growth k and
estimated rate of exponential growth r, of the 8,900 GNA rules (excluding rules in the form of
“***0” or “0**2” that caused immediate node extinction and hence failure of nonlinear fitting).
Sample cases shown in Fig. 15.6 are indicated with large black dots, accompanied with the cor-
responding rule numbers. Right: 3-D histogram of growth characteristics in the parameter area
−3 < k < 3 and 0 < r < 3. It is clearly seen that there are three distinct peaks, which correspond
to non-growers, exponential growers by binary node divisions, and exponential growers by tertiary
node divisions

Figure 15.5 (left) shows the distribution of the growth characteristics (k and r ) of
the 8,900 GNA rules. The distribution is continuously spread mostly in the first and
second quadrants, in which there are a couple of visually identifiable dense clusters.
The slightly slanted linear cluster near the top of the second quadrant corresponds to
rules that make GNA grow exponentially through continuous tertiary node divisions.
The other slanted linear cluster located around (k, r ) = (0, 1) corresponds to rules
that make GNA grow exponentially through continuous binary divisions. Between
and around these two clusters there are many other rules that show intermediate
exponential growth rates. A relatively thin linear cluster at k > 0 and r ∼ 0 is
considered of non-growing or polynomially growing GNA rules. Most of the GNA
rules belong to one of these three clusters, as seen in the histogram on the right.
Finally, the sparse distribution of rules in the fourth quadrant are the ones that lead
to node extinction.

Figure 15.6 shows actual growth patterns of several rule samples (indicated by
large black dots in Fig. 15.5), which confirms topological diversity generated even
within this restricted set of binary-state GNA rules. The first five rows (rn = 6,929,
8,955, 1,756, 4,683 and 8,414) are the samples of exponentially growing rules.
For rn = 1,756 and 4,683, every rewriting event exclusively causes tertiary and
binary node divisions and forms planar and linear structures, respectively, where
node states remain homogeneous and do not change at all. On the other hand,
for rn = 6,929, 8,955 and 8,414, state-1 nodes appear at the beginning of simu-
lation and the node states influence the network growth processes. Such interaction
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between node states and network topology results in a final GNA configuration with
non-homogeneous node state distribution and a growth rate that is different from
those of homogeneous network growth. The rest are the examples that do not show
exponential growth, among which rn = 4,212 uniquely demonstrates a very slow
growth of a linear structure driven by a complicated interaction between state-0 and
state-1 nodes on it.

We also investigated the topological characteristics of the final GNA configura-
tions obtained at the end of each simulation run. For this purpose, we additionally
excluded rules that always ended up with node extinction, because average node
degrees or states cannot be defined for such rules. As a result, we used 8,617 rules
for the following analyses. Figure 15.7 shows the histograms of rule frequencies
arranged in terms of six topological characteristics (described earlier) of the final

(a) number of nodes

(c) average node degree (d) number of connected components

(b) number of links

(f) average node state(e) size of largest connected component

0 200 400 600 800 1000

0

500

1000

1500

F
re

qu
en

cy
F

re
qu

en
cy

F
re

qu
en

cy

F
re

qu
en

cy
F

re
qu

en
cy

0 500 1000 1500

0

500

1000

1500

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

500

1000

1500

2000

2500

3000

0 20 40 60 80

0

2000

4000

6000

8000

0 200 400 600 800 1000

0

500

1000

1500

2000

0.0 0.2 0.4 0.6 0.8 1.0

0

500

1000

1500

2000

2500

3000

Fig. 15.7 Histograms of rule frequencies over six topological characteristics of the final GNA
configurations. Each characteristic was calculated by averaging measurements obtained from five
independent simulation runs for each rule. 8,617 GNA rules after filtering (see text) were used to
produce these plots
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GNA configuration. Three distinct peaks are commonly seen in (a), (b), (c) and (e)
of these plots. These three peaks correspond to two types of exponential growers
(by tertiary and binary node divisions) and non-growers. Between these peaks other
cases distribute with relatively lower frequencies. Plot (d) indicates that most rules
produce connected network structures only. In terms of the node state distribution,
plot (f) shows that many GNA rules produce networks which are homogeneous
regarding node states (represented by two peaks at 0.0 and 1.0) but other rules pro-
duce heterogeneous state distributions as well (represented by a gentle peak around
0.5). The distribution in (f) is asymmetric because we used a single node of state 0
as an initial condition for all the simulations.

Figure 15.8 is a scatter plot matrix made of 7×7 = 49 scatter plots, each of which
visually shows correlation between two of the seven characteristics described above:
number of nodes, number of links, average node degree, number of connected

Fig. 15.8 Scatter plot matrix showing 7 × 7 = 49 scatter plots, each of which visually shows
correlation between two of the following seven characteristics of GNA. From left (bottom) to right
(top): number of nodes, number of links, average node degree, number of connected components,
average node state, estimated order of polynomial growth k, and estimated rate of exponential
growth r
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components, average node state, estimated order of polynomial growth k, and esti-
mated rate of exponential growth r . The size of largest connected components was
not included because it is strongly correlated with the number of nodes as most
of the networks were well connected (see Fig. 15.7d, as well as (a) and (e)). This
matrix gives several interesting observations. There is a simple correlation between
number of nodes, number of links and average node degree for obvious reasons, as
already reported in our previous work [37]. More importantly, average node states
have significant impacts on other properties of GNA, as seen in the fifth column/row
of the matrix. For networks whose node states are homogeneous (i.e., average node
state ∼ 0 or 1), there is always only one local situation possible: a node of state
0 (or 1) surrounded by nodes of the same state. For such a network to remain in
homogeneous states while staying away from node extinction, there are only three
possible outcomes (tertiary division with state preserved, binary division with state
preserved, or absolutely no change). This necessarily results in only three values
possible for number of nodes, number of links and estimated rate of exponential
growth, for average node state ∼ 0 or 1. It is also notable that the largest numbers of
connected components are achieved when the average node states take intermediate
values. This suggests that node states play a critical role in determining when and
where a node should disappear to cut the network and increase the number of con-
nected components. Without such state-driven control of node disappearance, the
nodes would easily become extinct.

Finally, we conducted principal component analysis (PCA) on the distribution of
results in a seven-dimensional vector space created by the seven characteristics used
in Fig. 15.8. Data were rescaled before the analysis so that the standard deviation
was one in each dimension. As a result, we extracted four important dimensions
in the data distribution (Table 15.2). The primary dimension is strongly correlated
with number of nodes, number of links, average node degree, and estimated rate
of exponential growth r , which may be understood as a factor relevant to gen-
eral topological growth. The secondary dimension is strongly correlated to number
of connected components, average node state, and estimated order of polynomial
growth k, which may be understood as a factor related to node disappearances
caused by state changes. Note that the basis vector of this dimension happened to

Table 15.2 Results of principal component analysis (PCA) applied to the same data shown in
Fig. 15.8. Components and eigenvalues in bold face indicate four important dimensions

Eigenvector

# of # of Av. node # of Av. node k r
Component Eigenvalue nodes links degree CCs state

1 4.014 0.490 0.485 0.441 −0.087 0.082 −0.265 0.495
2 1.203 −0.021 0.005 −0.269 −0.642 −0.603 −0.388 0.034
3 0.895 0.122 0.108 0.028 0.584 −0.763 0.204 0.085
4 0.718 0.105 0.121 0.192 −0.484 −0.109 0.831 −0.018
5 0.151 −0.234 −0.383 0.828 −0.071 −0.186 −0.177 −0.207
6 0.019 0.490 −0.768 −0.101 −0.018 0.015 0.073 0.392
7 0.001 −0.662 −0.034 0.004 −0.002 −0.002 0.102 0.741



328 H. Sayama and C. Laramee

r

k

C
om

po
ne

nt
 2

Component 1

Fig. 15.9 Results of hierarchical clustering of the data distribution conducted in a dimension-
reduced vector space. Top: Clusters projected to a two-dimensional space using the primary and
secondary dimensions detected by PCA. Bottom: Same results mapped in the k-r space in the
same way as in Fig. 15.5. Numbers of rules in these clusters are as follows: Filled circle 1,103,
filled triangle 1,000, filled square 1,000, open circle 412, open triangle 1,812, open square 2,529,
and star 761
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be taken in opposite direction to its correlated characteristics, so the lower value
in this dimension means greater number of connected components, higher average
node state, and higher order of polynomial growth.

We further applied Ward’s minimum-variance hierarchical clustering algorithm
to the data distribution in a vector space whose dimensions were reduced from seven
to four according to the results of PCA. The clustering results were split into seven
clusters as shown in Fig. 15.9, where the top plot presents the results in a two-
dimensional space using the primary and secondary dimensions detected by PCA,
whereas the bottom plot maps the same results in the k-r space in the same way as
in Fig. 15.5.

Rules in each cluster were manually sampled and inspected in further detail to
see what kind of common dynamics exist within each type, which revealed the fol-
lowing: The first three clusters, filled circles (1,103 rules), filled triangles (1,000
rules) and filled squares (1,000 rules), share exactly the same growth characteris-
tics within each cluster so that they appear as a point in the k-r plot (Fig. 15.9,
bottom). Specifically, the filled circles are non-growers without state changes or
with regular state alterations between 0 and 1 (e.g., rn =2,971), while the filled
triangles and the filled squares are exponential growers without state changes,
growing solely by binary (e.g., rn =4,683) and tertiary (e.g., rn =1,756) node
divisions, respectively. The other three clusters denoted by open markers involve
active node state changes that influence their growth patterns. Specifically, the
open circles (412 rules) show very slow or even no growth (e.g., rn = 4,212),
while the open triangles (1,812 rules) and the open squares (2,529 rules) show
exponential-like growth predominantly by binary (e.g., rn = 8,414) and tertiary
(e.g., rn = 6,929 and 8,955) node divisions, respectively. Finally, the cluster
denoted by light gray stars (761 rules) involve active node state changes and frequent
node disappearances, typically producing more than one connected components
(e.g., rn = 179).

These results altogether demonstrate the diversities of potential dynamics of
simple GNAs, in both topology and temporal evolution. Of particular importance
compared to other network growth models is the possibility of interaction between
network topology and node state distribution, which is key to nontrivial dynamics
observed in the types that involve active node state changes.

15.6 Conclusion

We proposed Generative Network Automata as a new generalized framework for the
modeling of complex dynamical networks, with which one can uniformly describe
both state transitions and autonomous topological transformations using repetitive
graph rewritings. We explored possible dynamics of simple binary-state GNA and
observed several distinct types of topologies and growth patterns that emerged from
local rewriting rules, where dynamic state changes were coupled with topological
changes in some types.
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The work presented here had a couple of limitations that must be noted. One was
that we employed several restrictions on possible rule sets to keep the search space
small. For example, we assumed that the extraction mechanism E randomly picks a
node from the network, which avoided the computationally inefficient subgraph-
isomorphism problem that would need to be solved for other types of extrac-
tion mechanisms that look for particular topological features. The other limitation
was the small network size. We experimented with GNAs whose size was up to
1,000 nodes, which is significantly smaller than many real-world complex networks
being investigated today. We realize that, to enable unrestricted GNA modeling and
simulation at a significantly larger scale, several technical issues will need to be
addressed in a computationally efficient way, including:

1. How to represent and rewrite large GNA configurations
2. How to extract subGNAs that match given patterns from a large GNA configura-

tion
3. How to keep track of statistical/dynamical properties of GNAs during simulation

with minimum computational overheads
4. How to embed complex GNAs in a 2-D or 3-D visualization space in a visually

meaningful manner
5. How to derive the optimal rule set that best explains the network evolution given

by experimental data

Some of these problems apparently involve intractable computational complexity
if exact solutions are sought.2 We are therefore working to develop computation-
ally practical solutions to these problems by using appropriate approximations and
heuristics.

We hope that GNA will help formulate many distinct complex systems in the
same “format”, enabling one to compare those systems systematically, to identify
their commonness and uniqueness, and to actively exchange knowledge between
different fields beyond disciplinary boundaries. We anticipate several areas of imme-
diate applications, including (a) ecology and epidemiology modeling where organ-
isms and pathogens actively reshape their habitat structure (e.g., niche construc-
tion, effects of host survivability in epidemiological networks), (b) social network
modeling where individual states and behaviors modify the network topology (e.g.,
evolution of social ties, self-organization of collective knowledge among people),
and (c) biologically inspired engineering design where local rewriting rules can be
exploited as a means to indirectly control the emergent dynamics of artifacts that
develop and self-organize over time.
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