

Andrew Lewis, Sanaz Mostaghim, and Marcus Randall (Eds.)

Biologically-Inspired Optimisation Methods

Studies in Computational Intelligence,Volume 210

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 190. K.R.Venugopal, K.G. Srinivasa and L.M. Patnaik
Soft Computing for Data Mining Applications, 2009
ISBN 978-3-642-00192-5

Vol. 191. Zong Woo Geem (Ed.)
Music-Inspired Harmony Search Algorithm, 2009
ISBN 978-3-642-00184-0

Vol. 192.Agus Budiyono, Bambang Riyanto and Endra
Joelianto (Eds.)
Intelligent Unmanned Systems: Theory and Applications,2009
ISBN 978-3-642-00263-2

Vol. 193. Raymond Chiong (Ed.)
Nature-Inspired Algorithms for Optimisation, 2009
ISBN 978-3-642-00266-3

Vol. 194. Ian Dempsey, Michael O’Neill and Anthony
Brabazon (Eds.)
Foundations in Grammatical Evolution for Dynamic
Environments, 2009
ISBN 978-3-642-00313-4

Vol. 195.Vivek Bannore and Leszek Swierkowski
Iterative-Interpolation Super-Resolution Image
Reconstruction:
A Computationally Efficient Technique, 2009
ISBN 978-3-642-00384-4

Vol. 196.Valentina Emilia Balas, János Fodor and
Annamária R.Várkonyi-Kóczy (Eds.)
Soft Computing Based Modeling
in Intelligent Systems, 2009
ISBN 978-3-642-00447-6

Vol. 197. Mauro Birattari
Tuning Metaheuristics, 2009
ISBN 978-3-642-00482-7

Vol. 198. Efrén Mezura-Montes (Ed.)
Constraint-Handling in Evolutionary Optimization, 2009
ISBN 978-3-642-00618-0

Vol. 199. Kazumi Nakamatsu, Gloria Phillips-Wren,
Lakhmi C. Jain, and Robert J. Howlett (Eds.)
New Advances in Intelligent Decision Technologies, 2009
ISBN 978-3-642-00908-2

Vol. 200. Dimitri Plemenos and Georgios Miaoulis Visual
Complexity and Intelligent Computer Graphics Techniques
Enhancements, 2009
ISBN 978-3-642-01258-7

Vol. 201.Aboul-Ella Hassanien,Ajith Abraham,
Athanasios V.Vasilakos, and Witold Pedrycz (Eds.)
Foundations of Computational Intelligence Volume 1, 2009
ISBN 978-3-642-01081-1

Vol. 202.Aboul-Ella Hassanien,Ajith Abraham,
and Francisco Herrera (Eds.)
Foundations of Computational Intelligence Volume 2, 2009
ISBN 978-3-642-01532-8

Vol. 203.Ajith Abraham,Aboul-Ella Hassanien,
Patrick Siarry, and Andries Engelbrecht (Eds.)
Foundations of Computational Intelligence Volume 3, 2009
ISBN 978-3-642-01084-2

Vol. 204.Ajith Abraham,Aboul-Ella Hassanien, and
André Ponce de Leon F. de Carvalho (Eds.)
Foundations of Computational Intelligence Volume 4, 2009
ISBN 978-3-642-01087-3

Vol. 205.Ajith Abraham,Aboul-Ella Hassanien, and
Václav Snášel (Eds.)
Foundations of Computational Intelligence Volume 5, 2009
ISBN 978-3-642-01535-9

Vol. 206.Ajith Abraham,Aboul-Ella Hassanien,
André Ponce de Leon F. de Carvalho, and Václav Snášel (Eds.)
Foundations of Computational Intelligence Volume 6, 2009
ISBN 978-3-642-01090-3

Vol. 207. Santo Fortunato, Giuseppe Mangioni,
Ronaldo Menezes, and Vincenzo Nicosia (Eds.)
Complex Networks, 2009
ISBN 978-3-642-01205-1

Vol. 208. Roger Lee, Gongzu Hu, and Huaikou Miao (Eds.)
Computer and Information Science 2009, 2009
ISBN 978-3-642-01208-2

Vol. 209. Roger Lee and Naohiro Ishii (Eds.)
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2009
ISBN 978-3-642-01202-0

Vol. 210.Andrew Lewis, Sanaz Mostaghim, and
Marcus Randall (Eds.)
Biologically-Inspired Optimisation Methods, 2009
ISBN 978-3-642-01261-7

Andrew Lewis, Sanaz Mostaghim,
and Marcus Randall (Eds.)

Biologically-Inspired
Optimisation Methods

Parallel Algorithms, Systems and Applications

123

Dr.Andrew Lewis
Institute for Integrated and Intelligent Systems
Griffith University
Nathan Campus
Brisbane, Queensland, 4111
Australia
Email: a.lewis@griffith.edu.au

Dr.-Ing. Sanaz Mostaghim
Institut für Angewandte Informatik und
Formale Beschreibungsverfahren - AIFB
Universität Karlsruhe
76128 Karlsruhe
Germany
Email: smo@aifb.uni-karlsruhe.de

Assoc.Prof. Marcus Randall
Faculty of Business
Technology and Sustainable Development
Bond University
Gold Coast, Queensland, 4229
Australia
Email: mrandall@bond.edu.au

ISBN 978-3-642-01261-7 e-ISBN 978-3-642-01262-4

DOI 10.1007/978-3-642-01262-4

Studies in Computational Intelligence ISSN 1860949X

Library of Congress Control Number: Applied for

c© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Throughout the evolutionary history of this planet, biological systems have
been able to adapt, survive and flourish despite the turmoils and upheavals
of the environment. This ability has long fascinated and inspired people to
emulate and adapt natural processes for application in the artificial world
of human endeavours. The realm of optimisation problems is no exception.
In fact, in recent years biological systems have been the inspiration of the
majority of meta-heuristic search algorithms including, but not limited to,
genetic algorithms, particle swarm optimisation, ant colony optimisation and
extremal optimisation.

This book presents a continuum of biologically inspired optimisation, from
the theoretical to the practical. We begin with an overview of the field
of biologically-inspired optimisation, progress to presentation of theoretical
analyses and recent extensions to a variety of meta-heuristics and finally show
application to a number of real-world problems. As such, it is anticipated the
book will provide a useful resource for reseachers and practitioners involved
in any aspect of optimisation problems.

The overview of the field is provided by two works co-authored by seminal
thinkers in the field. Deb’s “Evolution’s Niche in Multi-Criterion Problem
Solving”, presents a very comprehensive and complete overview of almost
all major issues in Evolutionary Multi-objective Optimisation (EMO). This
chapter starts with the original motivation for developing EMO algorithms
and provides an account of some successful problem domains on which EMO
has demonstrated a clear edge over their classical counterparts.

Jaimes and Coello Coello’s “Applications of Parallel Platforms and Models
in Evolutionary Multi-Objective Optimization” presents an overview of state-
of-the-art systems that exploit coarse and fine grained parallelism to solve
multi-objective optimisation problems. Standard parallelisation models are
reviewed in the context of multi-objective optimisation, and methods for the
detailed assessment of their performance are discussed. In addition, a number
of novel schemes for parallelisation of multi-objective evolutionary algorithms

VI Preface

are briefly reviewed. The discussion also includes comment on how the global
phenomenon of meta-computing can be used to solve these problems.

Global meta-computing brings a new set of problems to be overcome in the
implementation of optimisation algorithms. In particular, the heterogeneous
and dynamic nature of the computing environment require that greater con-
sideration be given to the fault tolerance of algorithms. Lewis, Mostaghim
and Scriven begin to consider these issues in “Asynchronous Multi-Objective
Optimisation in Unreliable Distributed Environments”, analysing the perfor-
mance of multi-objective particle swarm optimisation (MOPSO) algorithms
in unreliable computing environments, giving a detailed consideration of a
novel approach of asynchronous updates in parallel MOPSO algorithms that
significantly improves fault tolerance, and suggesting a variety of methods
for adapting algorithms to “churn” of computing resources.

The consideration of recent and emerging developments of metaheuristics
is continued by an exploration of dynamic optimisation problems, a class of
optimisation problems that have many real-world characteristics, yet have
received relatively little attention. These are difficult problems that change
their structure and/or problem data while the meta-heuristic attempts to
solve the problem. A comprehensive survey of genetic algorithms, particle
swarm optimisation, ant colony optimisation and extremal optimisation ap-
proaches and implementations is presented in Hendtlass, Moser and Randall’s
“Dynamic Problems and Nature Inspired Meta-heuristics”. For each of the
methods discussed, consideration is given to practical issues of application to
a variety of benchmark and real-world problems.

Artificial neural networks are another group of biologically inspired tech-
niques, well suited to pattern recognition tasks. “Relaxed Labelling using Dis-
tributed Neural Networks” by Jim Austin explores a form of neural networks,
known as correlation matrix memories, and their use in implementing the re-
laxation labelling technique for dealing with constraint satisfaction problems,
in particular graph matching. The methods are built in the Advanced Uncer-
tain Reasoning Architecture (AURA), a tool framework made available free
on the Internet. An interesting application demonstrated is the matching of
drug-like molecules against a large database of molecules that have potential
anti-cancer properties. In order to improve the speed of search, the author
also describes innovative methods for implementing the graph matcher in
computer hardware

Randall, Hendtlass and Lewis, in “Extremal Optimisation of Assignment
Type Problems”, present a theoretical and practical exposition of the ca-
pabilities of the nature-inspired Extremal Optimisation. They extend the
extremal optimisation metaphor so that it is able to handle constraints and
reduce solution infeasibility in a standard way. In addition, a partially adap-
tive population model is also presented. Results of empirical investigations
reveal that this simple meta-heuristic is very competitve with more estab-
lished optimisation techniques, for a range of assignment type problems.

Preface VII

Enhancing another meta-heuristic, ant colony optimisation, is the subject
of Angus’ “Niching for Ant Colony Optimisation”. Niching is a technique
derived from the biological notion that different species will specialise in the
exploitation of different parts of the environment. In the computational and
optimisation sense, it refers to different individuals or populations of solutions
exploring different parts of the search space, thus ensuring sufficient overall
diversity. Two alternative forms of niching, based on crowding and fitness
sharing concepts, are shown to be particularly effective for multi-modal and
multi-objective problems.

The remainder of the book is concerned with the application of biologically
inspired optimisation methods to problems that commonly occur in industry
and the sciences. These particularly demonstrate that improved and novel
solutions are capable of being generated to problems that have been tradi-
tionally exclusively the domain of human experts.

Computational optimisation found early adoption in the field of engineer-
ing design and manufacture. The design of radio antennas is an area that
has historically been dominated by the considerable use of domain expertise
and analytic solution methods. In recent years there has been an explosion
of interest in automated design by the use of optimisation meta-heuristics,
extending the ability of engineers to consider previously intractable prob-
lems. An example is the use of ant colony optimisation for the construc-
tion of compact meander line antennas for Radio Frequency IDentification
(RFID) devices. Lewis, Randall, Galehdar, Thiel and Weis, in “Using Ant
Colony Optimisation to Construct Meander-line RFID Antennas”, present a
developmental history of how the authors have solved this real-world prob-
lem - from initial application, the use of a novel local refinement technique
and finally a multi-objective version that is able to optimise both antenna
efficiency and resonant frequency. Results from computational experiments
demonstrate the significant improvements that can be achieved.

A very practical problem in the area of establishing communication in-
frastructures is the radio network design problem. Mendes, Gómez-Pulido,
Vega-Rodŕıguez, Sánchez-Pérez, Sáez and Isasi, in their chapter entitled “The
Radio Network Design Optimization Problem”, examine how a number of
different biologically inspired meta-heuristics, including GRASP, genetic al-
gorithms and memetic algorithms, perform on a large and difficult network
design problem. Radio network design, in general, is an NP-complete prob-
lem and while a number of different approaches have been used to address
it all lack a comparable measure of efficiency. Mendes et al. offer a reliable
benchmark reference, and use it to investigate different algorithms and the
reproducibility of their results.

A different form of network problem is the distribution of electricity
through power grids. In particular, the issue of the imbalance between pre-
dicted electricity use and actual consumption is of great importance when
reducing greenhouse gas emissions. Kamper and Eßer’s chapter “Strategies
for Decentralised Balancing Power” shows how a self-organising approach,

VIII Preface

based on evolutionary algorithms, can reduce this imbalance by dynamically
pooling small electrical devices (such as washing machines and combined heat
and power plants) together.

Conformational sampling, the prediction of the three-dimensional shapes
of molecules based on their composition and connectivity, is a central problem
in structural biology and drug design. There is a continuing search for general
approaches to finding the most stable molecular geometries. In “An Analy-
sis of Dynamic Mutation Operators for Conformational Sampling” Tantar,
Melab and Talbi use this problem as a case study to examine the use of an a
priori mutation operator selection and parameter tuning phase prior to ex-
ecution of an evolutionary algorithm. They conclude, in part, that dynamic
approaches, possibly including self-adaptive schemes, hold the most promise
for tackling these extremely difficult problems.

In contrast to the preceding chapters on application of optimisation al-
gorithms to problems in the physical sciences the book closes with a study
from the field of artificial intelligence (AI). While much attention has been fo-
cussed on the use of AI for playing chess, the chapter by Quek, Chan, Tan and
Tay, “Evolving Computer Chinese Chess using Guided Learning” examines
evolutionary algorithms applied to playing Chinese chess. They explore how
different heuristics, and indeed the knowledge of grandmasters of the game,
can be used and integrated with genetic algorithms in order to produce an
artificial player that can realistically challenge human opponents.

The underlying problems that the methods and techniques discussed in
this book address are typically complex and demanding. In particular, the
computational requirements can often be considerable and so efforts must be
made to provide sufficient computing capacity to meet these needs. Currently,
this generally makes parallel computing a necessity, and this is a consistent
theme of the approaches considered by the contributing authors, whether
explicitly, as in the overview of Jaimes and Coello Coello, or implicit in the
nature of the methods adopted by several others: the population-based meth-
ods of , for example, particle swarm and ant colony optimisation algorithms,
and such techniques as neural networks. Indeed, the drive for computational
performance can be seen in the implementation of algorithms in hardware
described by Austin.

The form in which parallel computing resources are provided can bring its
own set of challenges. The search for cost-effective means of accessing large
computational capacity has given rise to a trend toward grid computing and
distributed, peer-to-peer computing environments. Highly dynamic, hetero-
geneous and prone to failure, these resources demand regard for the fault
tolerance of optimisation algorithms, and efforts to address this issue such as
those of Lewis, Mostaghim and Scriven will become increasingly important
as the approaches become more widely employed.

The editors wish to acknowledge a number of groups and individuals that
helped to make this project realisable. First of all, we wish to thank Professor
Janusz Kacprzyk, Editor in Chief of the Studies in Computational Intelligence

Preface IX

series, for initially proposing the project and his continuing support. The se-
ries team at Springer-Verlag, in particular Dr Thomas Ditzinger and Heather
King, are to be thanked for all their helpful advice and support. Along with
them, we pay tribute to the work of the authors. Their outstanding ideas
will resonate with the optimisation community in years to come. Finally, we
thank the external reviewers for their astute comments and suggestions on
each of the chapters.

February 2009
Brisbane, Australia, Andrew Lewis
Karlsruhe, Germany, and Sanaz Mostaghim
Gold Coast, Australia Marcus Randall

Contents

Evolution’s Niche in Multi-Criterion Problem Solving 1
Kalyanmoy Deb

Applications of Parallel Platforms and Models in
Evolutionary Multi-Objective Optimization 23
Antonio López Jaimes, Carlos A. Coello Coello

Asynchronous Multi-Objective Optimisation in Unreliable
Distributed Environments . 51
Andrew Lewis, Sanaz Mostaghim, Ian Scriven

Dynamic Problems and Nature Inspired Meta-heuristics 79
Tim Hendtlass, Irene Moser, Marcus Randall

Relaxation Labelling Using Distributed Neural Networks 111
Jim Austin

Extremal Optimisation for Assignment Type Problems 139
Marcus Randall, Tim Hendtlass, Andrew Lewis

Niching for Ant Colony Optimisation . 165
Daniel Angus

Using Ant Colony Optimisation to Construct Meander-Line
RFID Antennas . 189
Andrew Lewis, Marcus Randall, Amir Galehdar, David Thiel,
Gerhard Weis

The Radio Network Design Optimization Problem:
Benchmarking and State-of-the-Art Solvers 219
Śılvio P. Mendes, Juan A. Gómez-Pulido, Miguel A. Vega-Rodŕıguez,
Juan M. Sánchez-Pérez, Yago Sáez, Pedro Isasi

XII Contents

Strategies for Decentralised Balancing Power 261
Andreas Kamper, Anke Eßer

An Analysis of Dynamic Mutation Operators for
Conformational Sampling . 291
Alexandru-Adrian Tantar, Nouredine Melab, El-Ghazali Talbi

Evolving Computer Chinese Chess Using Guided
Learning . 325
H.Y. Quek, H.H. Chan, K.C. Tan, A. Tay

Author Index . 355

Subject Index . 357

Evolution’s Niche in Multi-Criterion Problem
Solving

Kalyanmoy Deb

Abstract. In a short span of about 15 years, evolutionary multi-objective optimiza-
tion (EMO) has progressed on a fast track in proposing, implementing, and applying
efficient methodologies based on nature-inspired computational algorithms for opti-
mization. In this chapter, we briefly describe the original motivation for developing
EMO algorithms and provide an account of some successful problem domains on
which EMO has demonstrated a clear edge over their classical counterparts. More
success studies exist and many more problem areas are needed to be explored. Hope-
fully, this chapter provides an indication and flavor of some such problem domains
which may get benefited from a systematic application of an EMO procedure.

1 Introduction

With the rise and success of evolutionary multi-objective optimization (EMO) re-
search and application, it becomes an interesting matter to discuss the problem areas
in which EMO has reportedly demonstrated its edge over their classical counter-
parts. Such a discussion not only portrays the extent of its success, it also provides
a direction and domain of problems areas along which EMO researchers and appli-
cationists may find further grounds for success. In this paper, we attempt to discuss
a few such problem areas on which EMO has demonstrated a clear edge.

Department of Business Technology,
Helsinki School of Economics,
Runeberginkatu 22-24, FIN-00101,
Helsinki, Finland
Kalyanmoy.Deb@hse.fi
and
Department of Mechanical Engineering,
Indian Institute of Technology Kanpur,
PIN 208016, India
deb@iitk.ac.in

A. Lewis et al. (Eds.): Biologically-Inspired Optimisation Methods, SCI 210, pp. 1–21.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

2 K. Deb

EMO methodologies follow the principles of evolutionary optimization (EO)
which has its roots starting with John Holland’s conceptualization of a genetic
adaptive search as a mechanism for creating new solutions in his cellular automata
studies in 1962 [15], followed by seminal studies and adaptations of many of his
students and followers. Despite some early suggestions for the need for solving
multi-objective problem solving using an EO, the real EMO algorithms were sug-
gested in early Nineties. But the initial algorithms and studies were effective and
attractive enough for new-comers and for new ideas to make the EMO research a
field of its own. In a recent survey announced during the World Congress on Com-
putational Intelligence (WCCI) in Vancouver 2006, EMO has been judged as one of
the three fastest growing fields of research and application among all computational
intelligence topics. Among the 10 ‘Top Accessed Documents’ reported in IEEE
Transactions on Evolutionary Computation journal website, a 2002 EMO paper [9]
is listed on the top. One single fact about multi-objective optimization has elevated
EMO research and application on the top. Multi-objective problem solving ideally
gives rise to a number of optimal solutions, instead of one, and an EMO procedure
works with a population of solutions in every iteration, thereby potentially making
it capable of maintaining a set of different solutions, if needed, in an optimization
task.

The research in EMO had not been all about generating proof-of-principle al-
gorithms for finding multiple trade-off solutions; EMO researchers continuously
progressed in developing algorithms which were more and more computationally
efficient. When two objectives were solved with some reasonable success, EMO re-
searchers concentrated in solving three and more objective problems, which were
found to be exceedingly more difficult to solve than two-objective problems. An
increased attention in this direction needed EMO researchers to develop scalable
test problems and associated performance metrics which can be used to compare
and contrast different algorithms. With efficient algorithms being available both
commercially and freely through downloadable codes, EMO applications became
more and more popular in practice. With EMO’s showing their niche in handling
two, three and four-objective problems quite regularly and efficiently compared to
classical methods, EMO researchers started to address an important piece of the
multi-objective problem solving puzzle – an integrated optimization-cum-decision-
making task which would allow one to solve multi-objective optimization problems
till a single preferred solution is found. This required EMO researchers to integrate
multiple criterion decision making (MCDM) principles with EMO algorithms. In
a short span of about 15 years, the EMO has migrated itself from a mere collection
of computer algorithms implementing some basic ideas to a fast-maturing field of
research and application solving serious practical problems spanning in many fields
of science and engineering, involving researchers with mathematical, scientific, en-
gineering, and business backgrounds, and following a systematic yet a collective
collaborating effort among theoreticians, practitioners, and algorithmists.

Different niches of EMO discussed in this chapter are some representative prob-
lem domains which EMO showed its promise. There exist many other areas which

Evolution’s Niche in Multi-Criterion Problem Solving 3

can be found in the EMO literature. Hopefully, this chapter will encourage moti-
vated readers to take clues and help increase EMO’s niche in a more profound way.

2 Multi-Objective Problem Solving

A multi-objective optimization problem involves a number of objective functions
which are to be either minimized or maximized subject to a number of constraints
and variables bounds:

Minimize/Maximize fm(x), m = 1,2, . . . ,M;
subject to g j(x) ≥ 0, j = 1,2, . . . ,J;

hk(x) = 0, k = 1,2, . . . ,K;

x(L)
i ≤ xi ≤ x(U)

i , i = 1,2, . . . ,n.

⎫⎪⎪⎬
⎪⎪⎭ (1)

A solution x ∈ Rn is a vector of n decision variables: x = (x1,x2, . . . ,xn)T . The
solutions satisfying constraints and variable bounds constitute a feasible decision
variable space S.

The optimal solutions in multi-objective optimization can be defined from a
mathematical concept of partial ordering. In the parlance of multi-objective opti-
mization, the term domination is used for this purpose. The domination between
two solutions is defined as follows [4, 20]:

Definition 1. A solution x(1) is said to dominate the other solution x(2), if both the
following conditions are true:

1. The solution x(1) is no worse than x(2) in all objectives. Thus, the solutions are
compared based on their objective function values (or location of the correspond-
ing points (z(1) and z(2)) on the objective space).

2. The solution x(1) is strictly better than x(2) in at least one objective.

For a given set of solutions (or corresponding points on the objective space, for
example, those shown in Figure 1(a)), a pair-wise comparison can be made using
the above definition and whether one point dominates the other can be established.
All points which are not dominated by any other member of the set are called the
non-dominated points of class one, or simply the non-dominated points. For the set
of six solutions shown in the figure, they are points 3, 5, and 6. One property of any
two such points is that a gain in an objective from one point to the other happens only
due to a sacrifice in at least one other objective. This trade-off property between the
non-dominated points makes the practitioners interested in finding a wide variety
of them before making a final choice. These points make up a front when viewed
them together on the objective space; hence the non-dominated points are often
visualized to represent a non-dominated front. The computational effort needed to
select the points of the non-dominated front from a set of N points is O(N logN) for
2 and 3 objectives, and O(N logM−2 N) for M > 3 objectives [13].

4 K. Deb

14

2

(maximize)f1

6 102 18

1

3

5

f (minimize)2

1

4

5

3

Non−dominated
front

6

f

14

3

(maximize)f1

6 102 18

1

3

5

4

1

2

5

2

(minimize)
6

(a) (b)

Fig. 1 (a) A set of points and (b) corresponding non-dominated front are shown.

With the above concept, now it is easier to define the Pareto-optimal solutions in
a multi-objective optimization problem. If the given set of points for the above task
contain all points in the search space (assuming a countable number), the points
lying on the non-domination front, by definition, do not get dominated by any
other point in the objective space, hence are Pareto-optimal points (together they
constitute the Pareto-optimal front) and the corresponding pre-images (decision
variable vectors) are called Pareto-optimal solutions. However, more mathemat-
ically elegant definitions of Pareto-optimality (including the ones for continuous
search space problems) exist in the multi-objective optimization literature [20, 17].

2.1 Evolutionary Principles

In the context of multi-objective optimization, the extremist principle of finding
the optimum solution cannot be applied to one objective alone, when the rest of
the objectives are also important. This clearly suggests two ideal goals of multi-
objective optimization:

Convergence: Find a set of solutions which lie on the Pareto-optimal front, and
Diversity: Find a set of solutions which are diverse enough to represent the entire

range of the Pareto-optimal front.

EMO algorithms attempt to follow both the above principles, similar to the other
a posteriori MCDM (or generating) methods [20]. Figure 2 shows schematically
the principles, followed in an EMO procedure. Since EMO procedures are heuristic
based, they may not guarantee in finding Pareto-optimal points, as a theoretically
provable optimization method would do for tractable (for example, linear or con-
vex) problems. But EMO procedures have essential operators to constantly improve
the evolving non-dominated points (from the point of view of convergence and di-
versity mentioned above) similar to the way most natural and artificial evolving

Evolution’s Niche in Multi-Criterion Problem Solving 5

Multi−objective
optimizer

IDEAL

Higher−level
information

Minimize f

Minimize f

Multiple trade−off
solutions found

......
Minimize f

subject to constraints

Multi−objective
optimization problem

S
t
e
p

1

Step 2

1

2

M

Choose one
solution

Fig. 2 Schematic of a two-step multi-objective optimization procedure.

systems continuously improve their solutions. The main difference and advantage
of using an EMO compared to a posteriori MCDM procedures is that multiple trade-
off solutions can be found in a single simulation run, as most a posteriori MCDM
methodologies would require multiple applications.

In Step 1 of the EMO-based multi-objective optimization (the task shown verti-
cally downwards in Figure 2), multiple trade-off, non-dominated points are found.
Thereafter, in Step 2 (the task shown horizontally, towards the right), higher-level
information is used to choose one of the obtained trade-off points.

2.1.1 Potential Reasons for EMO’s Niche

Besides working with a population of solutions in every generation – a property
which is one of the main factors contributing to EMO’s niche in solving multi-
objective optimization problems – there exists a few other properties which give an
EMO its niche. First, an EMO uses flexible and easily updatable operators to suit
a problem. For example, EMO practically allows an user to use any representation
scheme for a solution. In many difficult problems, this flexibility allows an EMO to
use a natural representation of the problem variables. To illustrate, continuous and
discrete variables can be represented within an EMO algorithm as they are, without
the need of any artificial fix-up. Second, an EMO can be started from a biased initial
population, in the event of an availability of any problem knowledge. Third, an EMO
allows further problem information to be included in its selection, recombination
and mutation operators to help create new and improved solutions with a higher

6 K. Deb

probability. Fourth, an EMO allows any termination condition to be used, including
problem-specific, goal-oriented, or mathematical optimality conditions.

Specific to multi-objective optimization, a recent study [5] has shown that some
specific EMO algorithms, such as the elitist non-dominated sorting genetic algo-
rithm or NSGA-II [9], possesses a modular approach, thereby allowing a minor
and conceivable change to the algorithm to suit it to solve different kinds of multi-
objective problems.

In addition to these specific niches (population approach, algorithmic flexibility
and modularity), the principle of EMO algorithms give them a considerable edge
over their traditional counterparts. In the following, we describe some such advan-
tages which an EMO helps provide.

3 EMO’s Niches in Handling a Few Objectives

In this section, we demonstrate EMO’s niche in solving two or three objectives for
two different tasks: (i) while generating a representative set of Pareto-optimal front
and (ii) while generating a preferred set of Pareto-optimal front.

3.1 Generating Pareto-optimal Solutions

It is discussed above that an EMO is ideally suited for generating a representative
set of complete Pareto-optimal front. After some initial studies it has clearly come
out that EMO algorithms can be effectively used for a few objectives (arguably,
up to four) for this purpose. Here, we first discuss why an EMO may be perform
better than classical scalarized methodologies and then present some comparative
simulation results.

In the ‘a posteriori’ MCDM approaches (also known as ‘generating MCDM
methods’), the task of finding multiple Pareto-optimal solutions is achieved by exe-
cuting many independent single-objective optimizations, each time finding a single
Pareto-optimal solution. A parametric scalarizing approach (such as the weighted-
sum approach, ε-constraint approach, and others [20]) can be used to convert mul-
tiple objectives into a parametric single-objective objective function. By simply
varying the parameters (weight vector or ε-vector) and optimizing the scalarized
function, different Pareto-optimal solutions can be found. In contrast, in an EMO,
multiple Pareto-optimal solutions are attempted to be found in a single simulation
by emphasizing multiple non-dominated and isolated solutions. We discuss a little
later some EMO algorithms describing how such dual emphasis is provided, but
now discuss qualitatively the difference between a posteriori MCDM and an EMO
approach.

Consider Figure 3, in which we sketch how multiple independent parametric
single-objective optimizations may find different Pareto-optimal solutions in differ-
ent simulations. The Pareto-optimal front corresponds to global optimal solutions

Evolution’s Niche in Multi-Criterion Problem Solving 7

f2

f1

Local fronts

Infeasible
regions

Initial
points

front
Pareto−optimal

Fig. 3 Posteriori MCDM methodology employs independent single-objective optimizations.

of several scalarized objectives. However, during the course of an optimization task,
algorithms must overcome a number of difficulties, such as infeasible regions, local
optimal solutions, flat regions of objective functions, isolation of optimum, etc., to
converge to the global optimal solution. Moreover, due to practical limitations, an
optimization task must also be completed in a reasonable computational time. This
requires an algorithm to strike a good balance between the extent of these tasks its
search operators must do to overcome the above-mentioned difficulties reliably and
quickly. When multiple simulations are to performed to find a set of Pareto-optimal
solutions, the above balancing act must have to performed in every single simula-
tion. Since simulations are performed independently, no information about the suc-
cess or failure of previous simulations is used to speed up the process. In difficult
multi-objective optimization problems, such memory-less a posteriori methods may
demand a large overall computational overhead to find a set of Pareto-optimal so-
lutions. Moreover, even though the convergence can be achieved in some problems,
independent simulations can never guarantee finding a good distribution among ob-
tained points.

EMO constitutes an inherent parallel search. When a population member over-
comes certain difficulties and make a progress towards the Pareto-optimal front,
its variable values and their combination reflect this fact. When a recombination
takes place between this solution and other population members, such valuable in-
formation of variable value combinations gets shared through variable exchanges
and blending, thereby making the overall task of finding multiple trade-off solutions
a parallelly processed task. To illustrate this behavior, we show in Figure 4 the non-
dominated solutions of a NSGA-II simulation at four different generations starting
at 10th generation [25]. In the next figure (Figure 5), we show non-dominated solu-
tions at the same generations of another NSGA-II run with identical starting popu-
lation and parameter settings, except that at generation 10, one of the non-dominated

8 K. Deb

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.2 0.4 0.6 0.8 1

f
2

f1

P−O front
Gen=10
Gen=11
Gen=13
Gen=15

 0

Fig. 4 Non-dominated fronts at several
generations with the original NSGA-II in
ZDT1.

A

f
2

f1

Gen=15
Gen=13
Gen=11
Gen=10

P−O front

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0
 0

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5 Introduction of a single good point
allows an improvement of the entire non-
dominated front in ZDT1.

solutions is replaced by a new solution obtained by applying a local search (SQP)
algorithm to the solution using the achievement scalarizing method [26]. The lo-
cal searched solution is marked in the figure. It is interesting to observe how the
introduction of a single good solution at generation 10 influences the progress of
many other solutions in the population at subsequent generations. The good solu-
tion quickly gets recombined with other population members to bring them closer
to the Pareto-optimal front. Such an inherent parallel processing of a population of
points provides an EMO its success in multi-objective optimization and is absent in
classical one-at-a-time generating algorithms.

3.1.1 Comparison of an EMO with the Normal Constraint (NC) Method

Three test problems are chosen in such a way so as to systematically investigate
the performance of both NSGA-II (an EMO algorithm) and the NCM (a scalarized
generating method) [19]. For the NSGA-II, we use a standard real-parameter SBX
and polynomial mutation operator with ηc = 10 and ηm = 10, respectively [4]. For
all problems solved using NSGA-II, we use a population of size 100.

First, we consider two-objective ZDT1 test problems [4, 27]:

Minimize f1(x) = x1,

Minimize f2(x) = g(x)
(

1−
√

x1
g(x)

)
,

where g(x) = 1 + 9
n−1 ∑n

i=2 x2
i ,

(2)

where the box constraints are x1 ∈ [0,1], and xi ∈ [−1,1] for i = 2,3, . . . ,n. Here, we
choose n = 30. This ZDT1 problem has a convex Pareto-optimal front and ideally
should not provide any difficulty to an algorithm except that the number of vari-
ables is large. Pareto-optimal solutions correspond to 0 ≤ x∗1 ≤ 1 and x∗i = 0 for
i = 2,3, . . . ,n.

Evolution’s Niche in Multi-Criterion Problem Solving 9

First, we apply the NC method [19], which uses an additional inequality con-
straint to restrict the feasible objective space. Figure 6 shows the obtained front
after 20,000 function evaluations. It is clear that the NC method performs extremely
well on ZDT1, both in terms of convergence and maintenance of diversity. Next,
we apply NSGA-II for a total of 20,000 function evaluations. Figure 7 shows that a
good distribution is achieved. Based on these simulations, it can be concluded that
the ZDT1 problem is solved well by both NC method and an EMO method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

20000 evaluations

efficient front

Fig. 6 Performance of NC method on
ZDT1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

20000 evaluations
efficient front

Fig. 7 Performance of NSGA-II on ZDT1.

Next, we use the 10-variable ZDT4 test problem [4]. This problem has a total of
100 distinct local efficient fronts in the objective space. The global Pareto-optimal
solutions correspond to 0 ≤ x∗1 ≤ 1 and x∗i = 0 for i = 2,3, . . . ,n. The algorithms
face a difficulty in overcoming a large number of local fronts and converging to the
global front: f2 = 1−√

f1.
Figure 8 shows the performance of the NC method after 100,000 evaluations.

The multi-modality of the search space causes the NC method to not find the global
efficient frontier, instead gets stuck to one of the local frontiers. However, Figure 9
shows that NSGA-II with only 20,000 evaluations is able to converge to the global
efficient frontier. This problem makes a clear distinction between population-based
and point-by-point-based generating methods of solving multi-objective optimiza-
tion problems. In this problem, to converge to the efficient frontier, an optimization
algorithm must have to overcome a number of local efficient frontiers. Since in find-
ing every Pareto-optimal solution, such hurdles have to be overcome every time, it
is too demanding for a classical point-by-point approach to expect the task to be per-
formed well every time. On the other hand, a population-based approach recombines
the decision variable vectors of good solutions to create new and hopefully better
solutions. Thus, if one population member somehow reaches close to the global ef-
ficient frontier, it can pull the rest of population members close to the global frontier
by means of interactions, thereby causing a fast and implicitly parallel search. This
aspect of an EMO procedure was illustrated through an example problem in the
earlier subsection.

10 K. Deb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

f
1

f 2

100000 evaluations
efficient front

Fig. 8 Performance of NC method on
ZDT4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f
1

f 2

100000 evaluations
efficient front

Fig. 9 Performance of NSGA-II on ZDT4.

Finally, we consider the 12-variable, three-objective DTLZ2 test problem having
a spherical efficient front satisfying f 2

1 + f 2
2 + f 2

3 = 1 in the range f1, f2 ∈ [0,1]. Fig-
ure 10 shows the performance of the NC approach on this problem with a maximum
of 100,000 function evaluations. Due to the increase in dimension more function
evaluations are needed for each independent optimization task. With only 1,000
function evaluations allowed for each optimization (to find 100 solutions at the
end), the algorithm was not able to reach the Pareto-optimal front (shown with a
bounded surface) in most occasions. The solutions obtained using NSGA-II (with

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

0

0.5

1

1.5

f
1

f
2

f 3

Fig. 10 Performance of NC method on
DTLZ2.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

f
1

f
2

f 3

Fig. 11 Performance of NSGA-II on
DTLZ2.

only 20,000 evaluations) are shown in Figure 11. Although the distribution is not
quite as expected due to NSGA-II’s ‘quick-and-dirty’ crowding distance operator,
the obtained solutions spread across the entire front and are all very close to the true
Pareto-optimal front. As pointed out elsewhere [24], a better niching operator than
the crowding-distance operator, such as a clustered NSGA-II can employ a better
distribution of solutions in problems having more than two objectives, as shown in
Figure 12.

Evolution’s Niche in Multi-Criterion Problem Solving 11

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

f
1

f
2

f 3

Fig. 12 Performance of clustered NSGA-II on DTLZ2.

From all these simulation results, we observe that in handling simpler problems,
both classical scalarized generating methods and evolutionary multi-objective op-
timization methodologies perform well, but if the problem possesses complexities,
EMO methodologies show an edge over the classical generating methods. A previ-
ous study [24] reported more comparative results in support of this argument.

3.2 Generating Preferred Pareto-optimal Solutions

Now, we address another task of multi-objective optimization in which the focus is
to find a partial (and preferred) Pareto-optimal set. Although for two or three ob-
jectives such a task may not beneficial, particularly when EMO methodologies are
able to find a well-distributed set of points on such problems, such biased search
strategies may be computationally beneficial than finding the complete frontier, par-
ticularly when preference information is available.

One of the popular ways to find a preferred solution in the MCDM literature is
to use the reference point method [26]. Given a reference point z for an M-objective
optimization problem of minimizing (f1(x), . . . , fM(x)) with x ∈ S, the following
single-objective optimization problem is solved for this purpose:

Minimize maxM
i=1 [wi(fi(x)− zi)] ,

Subject to x ∈ S.
(3)

Here, wi is the i-th component of a chosen weight vector used for scalarizing the
objectives. Figure 13 illustrates the concept. For a chosen reference point, the closest
Pareto-optimal solution (in the sense of the weighted-sum of the objectives) is the
target solution to the reference point method. To make the procedure interactive
and useful in practice, Wierzbicki [26] suggested a procedure in which the obtained
solution z′ is used to create M new reference points, as follows:

12 K. Deb

zA

zB

f1

f2

w2

w1

z

z’

Fig. 13 Classical reference point approach.

z(j) = z+(z′ − z) · e(j), (4)

where e(j) is the j-th coordinate direction vector. For the two-objective problem
shown in the figure, two such new reference points (zA and zB) are also shown. New
Pareto-optimal solutions are then found by forming new achievement scalarizing
problems. If the decision-maker is not satisfied with any of these Pareto-optimal
solutions, a new reference point is suggested and the above procedure is repeated. If
viewed differently, the developer of the reference point method seem to represent a
preference information through indicating the reference point in the objective space.
The task is then to explore the Pareto-optimal region close to the supplied reference
point.

An EMO methodology can be used directly for this purpose and EMO’s popula-
tion concept can be beneficial again in this task and instead of finding one preferred
point, a number of preferred Pareto-optimal solutions can be found in a single sim-
ulation run. Deb and Sundar [11] suggested a reference point based NSGA-II ap-
proach for this purpose. EMO allows another advantage exploiting its population
approach. Instead of finding a preferred set of Pareto-optimal solutions for a sin-
gle reference point, multiple regions for different reference points can be captured
in an EMO population simultaneously. Figure 14 shows the obtained solutions for
five different reference points on test problems ZDT1. Instead of finding the com-
plete Pareto-optimal front for the ZDT1 problem, the reference point based NSGA-
II finds only a preferred set of points close to supplied reference points in a single
simulation run.

The 11-variable DTLZ2 problem has a three-dimensional, non-convex, Pareto-
optimal front. We use two reference points ((0.2,0.2,0.6)T and (0.8,0.6,1.0)T) as
shown in Figure 15. A good distribution of solutions near the two reference points
is obtained. This indicates the ability of the proposed NSGA-II procedure in solving
three-objective optimization problems as well.

Evolution’s Niche in Multi-Criterion Problem Solving 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f
2

f1

Fig. 14 Preferred solutions for five refer-
ence points on ZDT1.

Reference
point

Reference
point

Pareto
front

R−NSGA−II
solutions

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1
 0

 0.2

 0.4

 0.6

 0.8

 1

f1
f2

f3

Fig. 15 Preferred solutions for two refer-
ence points on DTLZ2.

Recall that only way to find a set of preferred Pareto-optimal points using a point-
by-point reference point approach would be to generate the points one after the
other, as suggested by Wierzbicki [26]. For handling multiple reference points, the
generating task simply has to be repeated as many times as the number of refer-
ence points. On the contrary, EMO’s inherent parallel processing and population
approach allows multiple preferred regions (not only points) to be found in a simu-
lation run effectively.

4 EMO’s Niches in Many Objectives

Since their inception, EMO methodologies have been mostly applied to two or three
objective problems. Recent systematic studies on larger objectives have clearly in-
dicated that EMO methodologies are not efficient in finding a representative set of
solutions on the complete Pareto-optimal front for five or more objectives. At the
first instance, this may sound disappointing, but there are a number of reasons for
this behavior, and importantly EMO algorithms have been found to have their edge
again in handling a large number of objectives for at least two different scenarios,
which we shall discuss in this section.

With more conflicting objectives, the trade-off Pareto-optimal front, in general,
becomes multi-dimensional and it requires exponentially more solutions to suitably
represent the Pareto-optimal frontier. With more objectives, a large proportion of the
initially random EMO population becomes non-dominated to each other, thereby
not leaving enough room for new solutions to be created for the search to proceed
towards the Pareto-optimal front. With more objectives, the Pareto-optimal front
becomes difficult to visualize and analyze for an appropriate decision-making task
to choose a single solution. Despite these difficulties in handling a large number of

14 K. Deb

objectives, an EMO procedure can still be beneficial for the following two problem
solving tasks.

4.1 Finding Preferred Solutions

EMO methodologies are found to be good candidates for finding a preferred set
of near Pareto-optimal solutions in many-objective problems. In this section, we
demonstrate their working on five or more objectives using various preference based
multi-objective optimization concepts.

First, we revisit the reference point based NSGA-II approach described in Sec-
tion 3.2. We first apply the procedure to the 14-variable, five-objective DTLZ2 prob-
lem. Two reference points are chosen as follows: (i) (0.5, 0.5, 0.5, 0.5, 0.5) and (ii)
(0.2, 0.2, 0.2, 0.2, 0.8). Figure 16 shows the value-path plot of the five-objective so-
lutions. It is clear that two distinct sets of solutions near the above reference points
are obtained by the proposed procedure. Since the Pareto-optimal solutions in the
DTLZ2 problem satisfy ∑M

i=1 f 2
i equal to one, we compute this term for all obtained

solutions and the values are found to lie within [1.000, 1.044] (at most 4.4% from
one), thereby meaning that all solutions are very close to the true Pareto-optimal
front. Solutions depicting almost identical objective values appear for the first

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5
Objective Number

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Fig. 16 Preferred solutions for two refer-
ence points with ε = 0.01 on five-objective
DTLZ2.

 0.305

 0.31

 0.315

 0.32

 0.325

 1 2 3 4 5 6 7 8 9 10
Objective Number

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Fig. 17 Preferred solutions for one refer-
ence point with ε = 0.01 on 10-objective
DTLZ2.

reference point which has identical objective values. For the second reference point,
the fifth objective has a much larger value. The reference point based NSGA-II is
able to find near Pareto-optimal solutions close to this reference point, as shown in
the figure.

To demonstrate the scalability of the proposed procedure, we then solve the 19-
variable, 10-objective DTLZ2 problem with one reference point: fi = 0.25 for all i =
1,2, . . . ,10. The obtained distribution is shown in Figure 17. Although the objective
values can vary in [0,1], the points concentrates near fi = 1/

√
10 or 0.316, which

Evolution’s Niche in Multi-Criterion Problem Solving 15

turns out to be the region closest to the chosen reference point. When we compute
∑10

i=1 f 2
i of all obtained solutions, they are found to be exactly equal to one, thereby

meaning that all reference point based NSGA-II solutions are on the true Pareto-
optimal front.

It is needless to say that if a generating classical method is used for this problem
to complete the above tasks, many independent single-objective optimizations are
needed. This study shows that despite EMO’s generic difficulties in finding a repre-
sentative set of solutions on the entire large-dimensional Pareto-optimal front, they
have a niche in finding a set of preferred Pareto-optimal solutions – downplaying
the dimensionality issue near the preferred Pareto-optimal region.

4.2 Light Beam Search Based EMO

The light beam search (LBS), as described in Jaszkiewicz and Slowinski [18],
combines the reference point idea and tools of multi-attribute decision analysis
(MADA). An aspiration and a reservation point are supplied by the DM. These
two points determines the direction of the search in an iteration. Initially a non-
dominated middle point is determined by projecting the aspiration point on to
the non-dominated front by using an augmented version of Wierzbicki’s scalariz-
ing achievement function. Thereafter, a local preference model in the form of an
out-ranking relation S is used to obtain neighboring solutions of the current non-
dominated point, or the middle point. It is said that a out-ranks b (or aSb), if a is
considered to be at least as good as b. To define out-ranking relation, DM has to
specify three preference thresholds for each objective. They are indifference thresh-
old, preference threshold and veto threshold. In the LBS procedure, they are as-
sumed to provide only local information, thus they are assumed to be constants.
Based on these values, the out-ranking relation finds a solution which is incom-
parable or indifferent to the middle point. The DM can control the search by either
modifying the aspiration and/or reservation points, or by shifting the middle point to
selected better point from its neighborhood or by modifying the preference thresh-
old values.

With the above principle of the LBS procedure, Deb and Kumar [18] proposed an
EMO methodology by which a set of Pareto-optimal solutions in the neighborhood
of the middle point can be found using the modified out-ranking relation. In the
original LBS method, the decision-maker has to specify three preference parameters
for each objective, which is quite demanding on the part of the DM. In the LBS
based EMO, authors have used only the veto preference parameter. Since the EMO
approach deals with a population of solutions, the required points satisfying the
out-ranking criterion in all the directions would be obtained in one simulation run.

Figure 18 shows the results of LBS based NSGA-II on the 14-variable, five-
objective DTLZ2 problem. Ideal point (0,0,0,0,0) and nadir point (1,1,1,1,1)
are used as aspiration and reservation points, respectively. The veto threshold of
v j = 0.05 for all objectives is used. Since the above settings constitute an equal

16 K. Deb

importance to all objectives, the obtained solutions are concentrated near f j = 1√
5

or 0.447.When the quantity ∑ f 2
j is computed for each solution, they are found to lie

between 1 and 1.016. It confirms that all the obtained solutions are very close to the
true Pareto-optimal front. A good diverse set of solutions satisfying supplied veto
threshold values are obtained.

O
bj

ec
tiv

e
V

al
ue

Objective Number

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 18 LBS Based NSGA-II on five-
objective DTLZ2 problem.

O
bj

ec
tiv

e
V

al
ue

Objective Number

0.366

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7 8 9 10

Fig. 19 LBS with NSGA-II on 10-objective
DTLZ2 problem.

Next, the 19-variable, 10-objective DTLZ2 problem is solved with the same pref-
erence information as the one used above. Here also (Figure 19) the obtained solu-
tions are concentrated near f j = 1√

10
or 0.316 and ∑ f 2

j lies between 1.006 and
1.010, thereby indicating that the obtained solutions are very close to the true Pareto-
optimal front. The obtained middle point (zc

j) is 0.316 for all j = 1, . . . ,10.

4.3 Eliminating Redundant Objectives

In many real-world multi-objective optimization problems having a large number
of objectives (say more than five), the resulting Pareto-optimal front turns out to
be low-dimensional. This happens due to the correlations associated with some
objectives for solutions close to the Pareto-optimal front. If the dimension of the
Pareto-optimal front is two to four, EMO methodologies potentially find the com-
plete front, despite the original problem having a large dimension. Recent studies
[6, 23, 2] have suggested EMO based procedures for such large-objective problem
solving tasks. Here, we reproduce one such strategy in which up to 50-objective
problems are solved.

In the PCA-based NSGA-II procedure, the original problem is attempted to be
solved using the standard NSGA-II procedure for a certain number of generations.
The population is then analyzed using the principal component analysis (PCA) pro-
cedure to determine the most important objectives. The redundant objectives are
then eliminated for further considerations. The NSGA-II procedure is continued
with the non-redundant objectives and the same procedure is repeated. For details,

Evolution’s Niche in Multi-Criterion Problem Solving 17

interested readers may refer to the original study [6] and subsequent studies [23]
involving non-linear PCA and kernel-based procedures.

On a 10-objective DTLZ5 problem [6, 10] having two-objective interactions on
the Pareto-optimal front, the PCA-based NSGA-II procedure identifies four of the
10 objectives to be important in the first iteration: f1, f5, f9 and f10. Thereafter, in
the second iteration f1 was found to be redundant. In the subsequent iteration, f5

was found redundant and no further reduction was observed with increased itera-
tions, thereby identifying that the Pareto-optimal front of the original 10-objective
DTLZ5 problem has only two-dimensional (involving objectives f9 and f10) inter-
actions to Pareto-optimality. To further demonstrate the performance of the proce-

Table 1 DTLZ5(2,10).

Iter. 1 f1 f5 f9 f10

Iter. 2 f5 f9 f10

Iter. 3 f9 f10

Iter. 4 f9 f10

Table 2 DTLZ5(2,50).

Iter. 1 f20 f45 f50
Iter. 2 f45 f50

Iter. 3 f45 f50

Table 3 DTLZ5(3,10).

Iter. 1 f1 f7 f8 f9 f10

Iter. 2 f8 f9 f10

Iter. 3 f8 f9 f10

dure, we present results on the 50-objective DTLZ5 problem having two-objective
Pareto-optimal interactions (with 48 redundant objectives) in Table 2. Similarly Ta-
ble 3 shows how the same PCA based NSGA-II approach can correctly identify
the true three-objective combination on a 10-objective DTLZ5 problem in just three
iterations.

5 Other Niches of EMO

EMO’s principle of finding multiple trade-off solutions has been found to be useful
indirectly to other problem solving tasks. The list is long, but for brevity, we discuss
two other salient problem solving tasks in which EMO methodologies have shown
a definite edge.

5.1 Knowledge Discovery

EMO’s ability to find a number of Pareto-optimal solutions simultaneously for two
to four objectives can be exploited for a bigger cause which goes beyond simply
finding the optimal solutions, often pursued in a multi-objective optimization study.
Since EMO solutions are all expected to be near-optimal or optimal, these solutions
can be analyzed for finding properties which are common to them. Such a proce-
dure can then constitute a systematic approach in deciphering important and hidden
properties which near-optimal (or high-performing) solutions must possess for a
problem. In a number of practical problem-solving tasks, the so-called innovization

18 K. Deb

procedure is shown to find important knowledge about high-performing solutions
[8]. We illustrate the importance of innovization task through an electric motor de-
sign problem having five discrete variables and two conflicting objectives of maxi-
mizing power output and minimizing the size of a brushless DC motor [7]. Figure 20
shows the obtained Pareto-optimal front, every solution of which was found to have
the identical values to four of the five variables: (i) a Y-type electric connection
from two choices, (ii) a Y-type lamination from three choices, (iii) a 16-gauge wire
from 16 different allowable gauges, and (iv) exactly 18 turns in the windings of
the armature from 10 to 80 allowable turns. An analysis of the solutions revealed

All Y−type elect. connection
All Y−type lamination
18 turns per coil
Guage 16

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

C
os

t (
$)

N
um

be
r

of
 L

am
in

at
io

ns

Peak Torque (N−m)

Fig. 20 Pareto-optimal front and innovative principles for the motor design problem.

that the only way an optimally designed motor differs from another motor having
a different power rating is through a proportionate increase in the number of lami-
nations, thereby implicating that a higher powered motor to appear longer through
the addition of more laminations than by any other means. Not only does such a
task innovate principles of designing high-performing solutions, the outcome can
be highly beneficial for efficient production and operation of a plant. For example,
the discovery of an identical gauge size for all optimally designed motors allows an
efficient inventory to be maintained with only a single wire gauge; the fact that only
18 turns must be used in all optimally designed motors, a special purpose (and cost-
effective) turning machine may be designed for a cost-efficient production system.
Such useful properties are expected to exist in practical problems, as they follow
certain scientific and engineering principles at the core, but finding them through a
systematic scientific procedure had not been paid much attention in the past. The
principle of first searching for multiple trade-off and high-performing solutions us-
ing a multi-objective optimization procedure (preferably using an EMO because of
its niches compared to classical generating methods described in section 3.1) and
then analyzing them to discover useful knowledge certainly remains a viable way

Evolution’s Niche in Multi-Criterion Problem Solving 19

forward. For this purpose, other post-optimality analyses of EMO solutions [22]
may be useful. The EMO methodologies can thus enable innovative designs and
bring out hidden principles associated with such designs which may lead to efficient
operation – a matter which most successful industries are interested today.

5.2 Multiobjectivization

Interestingly, the act of finding multiple trade-off solutions using an EMO procedure
has found its application outside the realm of solving multi-objective optimization
problems. The concept of finding near-optimal trade-off solutions is applied to solve
other kinds of optimization problems as well. For example, the EMO concept is
used to solve constrained single-objective optimization problems by converting the
task into a two-objective optimization task of additionally minimizing an aggregate
constraint violation [3]. This eliminates the need to specify a penalty parameter
while using a penalty based constraint handling procedure. If viewed this way, the
usual penalty function approach used in classical optimization studies is a special
weighted-sum approach to the bi-objective optimization problem of minimizing the
objective function and minimizing the constraint violation, for which the weight
vector is a function of the penalty parameter.

A well-known difficulty in genetic programming studies, called the ‘bloating’,
arises due to the continual increase in size of genetic programs with each itera-
tion. The reduction of bloating by minimizing the size of programs as an additional
objective helped to find high-performing solutions with a smaller size of the code
[1, 12].

Minimizing the intra-cluster distance and maximizing inter-cluster distance si-
multaneously in a bi-objective formulation of a clustering problem is found to yield
better solutions than the usual single-objective minimization of the ratio of the intra-
cluster distance to the inter-cluster distance [14].

An EMO is used to solve minimum spanning tree problem better than a single-
objective EA [21]. A recent edited book [16] describes many such interesting ap-
plications in which EMO methodologies have helped to solve problems which are
otherwise (or traditionally) not treated as multi-objective optimization problems.

6 Conclusions

The research and application in evolutionary multi-objective optimization (EMO)
has a taken a fast ride since its inception in the early Nineties. In this chapter, we
have touched upon a few interesting problem domains in which EMO has clearly
shown its edge, in some occasions, over their classical counterparts and in other oc-
casions as a natural choice. Much of their success has come from EMO’s flexibility,
population approach, and modularity which enable them to be applied in difficult
problem domains and which enable them to capture a number of trade-off solutions.

20 K. Deb

EMO has been shown to reign in solving problems having a few objectives to a large
number of objectives, in optimization tasks and in aiding decision-making tasks, and
in multi-objective to other problem solving tasks. These studies on EMO challenge
the imagination of researchers and practitioners in making them applicable and use-
ful to other similar complex problem solving tasks which are currently put aside due
to a lack of a suitable solution methodology.

Acknowledgment

The author is a Finland Distinguished Professor at the Helsinki School of Aca-
demics, supported by the Academy of Finland and the Foundation of Helsinki
School of Economics.

References

[1] Bleuler, S., Brack, M., Zitzler, E.: Multiobjective genetic programming: Reducing bloat
using spea2. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp.
536–543 (2001)

[2] Brockhoff, D., Zitzler, E.: Dimensionality reduction in multiobjective optimization: The
minimum objective subset problem. In: Operations Research Proceedings 2006, pp.
423–429 (2007)

[3] Coello, C.C.: Treating objectives as constraints for single objective optimization. Engi-
neering Optimization 32(3), 275–308 (2000)

[4] Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester
(2001)

[5] Deb, K.: A robust evolutionary framework for multi-objective optimization. In: Pro-
ceedings of Genetic and Evolutionary Computation conference (GECCO 2008), pp.
633–640 (2008)

[6] Deb, K., Saxena, D.: Searching for Pareto-optimal solutions through dimensionality re-
duction for certain large-dimensional multi-objective optimization problems. In: Pro-
ceedings of the World Congress on Computational Intelligence (WCCI 2006), pp.
3352–3360 (2006)

[7] Deb, K., Sindhya, K.: Deciphering innovative principles for optimal electric brushless
d.c. permanent magnet motor design. In: Proceedings of the World Congress on Com-
putational Intelligence (WCCI 2008), pp. 2283–2290. IEEE Press, Piscatway (2008)

[8] Deb, K., Srinivasan, A.: Innovization: Innovating design principles through opti-
mization. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2006), pp. 1629–1636. The Association of Computing Machinery (ACM),
New York (2006)

[9] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

[10] Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary
multi-objective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolution-
ary Multiobjective Optimization, pp. 105–145. Springer-Verlag, London (2005)

Evolution’s Niche in Multi-Criterion Problem Solving 21

[11] Deb, K., Sundar, J., Uday, N., Chaudhuri, S.: Reference point based multi-objective
optimization using evolutionary algorithms. International Journal of Computational In-
telligence Research (IJCIR) 2(6), 273–286 (2006)

[12] De Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing bloat and promoting diversity
using multi-objective methods. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO 2001), pp. 11–18 (2001)

[13] Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. Jour-
nal of the Association for Computing Machinery 22(4), 469–476 (1975)

[14] Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE
Transactions on Evolutionary Computation 11(1), 56–76 (2007)

[15] Holland, J.: Concerning efficient adaptive systems. In: Yovits, M., Jacobi, G., Goldstein,
G. (eds.) Self-Organizing Systems, pp. 215–230. Spartan Press (1962)

[16] Knowles, J.D., Corne, D.W., Deb, K. (eds.): Multiobjective problem solving from na-
ture. Springer Natural Computing Series. Springer, Heidelberg (2008)

[17] Jahn, J.: Vector optimization. Springer, Berlin (2004)
[18] Jaszkiewicz, A., Slowinski, R.: The light beam search approach – An overview of

methodology an applications. European Journal of Operation Research 113, 300–314
(1999)

[19] Messac, A., Mattson, C.A.: Normal constraint method with guarantee of even represen-
tation of complete pareto frontier. AIAA Journal (in press)

[20] Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
[21] Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective

optimization. In: GECCO 2005: Proceedings of the 2005 conference on genetic and
evolutionary computation, pp. 763–769. ACM, New York (2005)

[22] Pryke, A., Mostaghim, S., Nazemi, A.: Heatmap visualization of population based multi
objective algorithms. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T.
(eds.) EMO 2007. LNCS, vol. 4403, pp. 361–375. Springer, Heidelberg (2007)

[23] Saxena, D.K., Deb, K.: Non-linear dimensionality reduction procedures for certain
large-dimensional multi-objective optimization problems: Employing correntropy and
a novel maximum variance unfolding. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu,
T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 772–787. Springer, Heidelberg
(2007)

[24] Shukla, P., Deb, K.: Comparing classical generating methods with an evolutionary
multi-objective optimization method. In: Coello Coello, C.A., Hernández Aguirre, A.,
Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 311–325. Springer, Heidelberg
(2005)

[25] Sindhya, K., Deb, K., Miettinen, K.: A local search based evolutionary multi-objective
optimization technique for fast and accurate convergence. In: Rudolph, G., Jansen, T.,
Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199. Springer, Hei-
delberg (2008)

[26] Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In:
Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Applications,
pp. 468–486. Springer, Berlin (1980)

[27] Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms:
Empirical results. Evolutionary Computation Journal 8(2), 125–148 (2000)

Applications of Parallel Platforms and
Models in Evolutionary
Multi-Objective Optimization

Antonio López Jaimes and Carlos A. Coello Coello�

Abstract This chapter presents a review of modern parallel platforms and
the way in which they can be exploited to implement parallel multi-objective
evolutionary algorithms. Regarding parallel platforms, a special emphasis is
given to global metacomputing which is an emerging form of parallel com-
puting with promising applications in evolutionary (both multi- and single-
objective) optimization. In addition, we present the well-known models to
parallelize evolutionary algorithms (i.e., master-slave, island, diffusion and
hybrid models) describing some possible strategies to incorporate these mod-
els in the context of multi-objective optimization. Since an important concern
in parallel computing is performance assessment, the chapter also presents
how to apply parallel performance measures in multi-objective evolution-
ary algorithms taking into consideration their stochastic nature. Finally, we
present a selection of current parallel multi-objective evolutionary algorithms
that integrate novel strategies to address multi-objective issues.

1 Introduction

Problems having two or more (normally conflicting) objectives naturally arise
in a variety of disciplines. Such problems, which are called “multi-objective”
have not one, but a set of solutions, which are collectively known as the
“Pareto optimal set”. All the solutions contained in the Pareto optimal set

CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Computación
Av. IPN No. 2508, Col. San Pedro Zacatenco
México, D.F. 07360, México
email: tonio.jaimes@gmail.com, ccoello@cs.cinvestav.mx

� The second author is also associated to UMI-LAFMIA 3175 CNRS.

A. Lewis et al. (Eds.): Biologically-Inspired Optimisation Methods, SCI 210, pp. 23–49.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

24 A.L. Jaimes and C.A.C. Coello

are equally good, and represent the best possible trade-offs among all the
objectives.

The use of evolutionary algorithms (eas) for solving multi-objective op-
timization problems (mops) has been quite popular in the last few years.
The rising popularity of multi-objective evolutionary algorithms (moeas) is
mainly due to their flexibility and ease of use with respect to traditional
mathematical programming techniques [16, 21, 51, 58, 17]. However, a wide
variety of real-world mops are highly demanding in terms of cpu time (e.g.,
in aeronautical engineering [49]). This may limit the applicability of moeas,
since they normally require a considerably large number of objective function
evaluations to achieve reasonably good results. The use of parallelism is an
obvious choice to solve these problems in a reasonable amount of time [62].
Besides the time reduction that they can achieve, parallel moeas (pmoeas)
are attractive for many other reasons: (1) they can use more memory to cope
with more difficult problems, (2) they allow the use of larger population sizes,
(3) they tend to improve the population’s diversity, (4) they reduce the prob-
ability of finding suboptimal solutions, (5) and they can cooperate in parallel
with other search techniques (including non-evolutionary techniques).

During the last three decades, parallel Evolutionary Algorithms used for
global optimization (peas) have been widely studied [5, 15, 54, 61]. How-
ever, due to the peculiarities of multi-objective optimization there are some
issues that require the use of novel approaches. From these issues, the most
relevant is the fact that the evaluation of each particular solution to a mop
implies the evaluation of k (k ≥ 2) objective functions. This implies a much
higher computational cost and, therefore, motivates the need of parallelizing
a moea. Additionally, real-world mops tend to have high-dimensionality (i.e.,
a large number of decision variables) which also normally requires a much
higher computational cost in order to find a reasonably good approximation
of the Pareto optimal set. Finally, the use of archiving, clustering or niching
techniques (which are commonly adopted with moeas [38, 60, 22]) also adds
to the computational overhead of a moea, which is one more reason to justify
their parallelization.

The present chapter provides an overview of the models employed to imple-
ment parallel moeas and discusses some implementation issues that deserve
to be considered in the light of multi-objective optimization. Additionally, we
present a review of the parallel architectures currently available to implement
pmoeas. Special emphasis is given to global metacomputing which is a new
form of parallel computing that allows us to share computing resources in
order to build a large networked metacomputer. The chapter also presents
some of the parallel performance metrics that have been adopted to assess
pmoea’s efficiency as well as a short discussion regarding the conditions un-
der which one may find superunitary speedups. We also present the concept
of fixed-time speedup, which is an alternative measure of speedup that has
some advantages over other forms of speedup usually adopted in the current
literature.

Applications of Parallel Platforms and Models in EMO 25

The remainder structure of the chapter is the following. Some basic con-
cepts related to multi-objective optimization are provided in Section 2. Sec-
tion 3 describes a taxonomy of parallel architectures, emphasizing mimd ar-
chitectures (Multiple Instruction Stream, Multiple Data Stream), since they
are the most common parallel platform in current use. In Section 4, we present
the most commonly used pmoea parallel models. In turn, the most popular
parallel performance measures in current use are introduced in Section 5.
Finally, Section 6 describes a selection of pmoeas that incorporate novel
parallel strategies. The reader can find the description of other pmoeas in
the overview presented by Talbi et al. [57].

2 Basic Concepts

We are interested in solving problems of the type:

Find x wich optimizes f(x) = [f1(x), f2(x), . . . , fk(x)] (1)

subject to:
gi(x) ≤ 0 i = 1, 2, . . . , n (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

where x = [x1, x2, . . . , xn]T is the vector of decision variables, fi, i = 1, ..., k
are the objective functions and gi, hj , i = 1, ..., m, j = 1, ..., p are the con-
straint functions of the problem.

In multi-objective optimization problems the aim is to find good compro-
mises (trade-offs). To understand the concept of optimality, we will introduce
first a few definitions.

Definition 1. Given two vectors x,y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x 	= y.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is
nondominated with respect to X , if there does not exist another x′ ∈ X
such that f(x′) ≺ f (x).

Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F
is the feasible region) is Pareto optimal if it is nondominated with respect
to F .

26 A.L. Jaimes and C.A.C. Coello

This is a notion of optimality that was originally proposed by Francis
Ysidro Edgeworth [26] and later generalized by Vilfredo Pareto [52]. Although
some authors call this notion Edgeworth-Pareto optimality (see for example
[55]), the term Pareto optimality is the most common and widespread, and
is, therefore, the one used in this chapter.

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ F|x is Pareto optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ IRk|x ∈ P∗}

We thus wish to determine the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (2) and (3).

3 Parallel Architectures

Many schemes to classify parallel computers [28, 10, 59, 36] have been pro-
posed so far. However, none of them has become standard in the specialized
literature. The difference among these schemes lies on the characteristics of
the parallel system that are taken into account, namely: the organization of
the address space, the interconnection network, or the processors’ granular-
ity. For our purposes we will use the well-known Flynn’s taxonomy. We will
then complement the mimd classification following a similar approach as in
Johnson [36] or Bell [10].

SISD (Single Instruction Stream, Single Data Stream). This class of com-
puters represents the conventional single-processor von Neumann comput-
ers, where only one instruction is executed at the same time over a unique
data element.

SIMD (Single Instruction Stream, Multiple Data Stream). This architec-
ture consists of a central instruction unit that broadcasts a single instruc-
tion to a group of slave processors which apply the instructions in a syn-
chronized fashion on different pieces of data stored in its own memory.
Pipeline vector processors and processor array computers are considered
as specialized simd architectures.

MISD (Multiple Instruction Stream, Single Data Stream). A computer
of this class is able to apply different instructions to the same stream
of data at a time. Although some authors consider that this architec-
ture is mainly theoretical because there is no practical computer that fits
this model [31, 25, 59], other authors have considered high-level pipeline

Applications of Parallel Platforms and Models in EMO 27

computer instances of this model. Likewise, we can include fault-tolerant
computers in the misd class since in these systems several processors are
applied upon the same data using different programs in order to mask a
possible fault in one of the programs.

MIMD (Multiple Instruction Stream, Multiple Data Stream). In a mimd
architecture, a group of processors independently execute different instruc-
tion streams over different data sets. This architecture is intended to sup-
port parallel applications that require processors to operate autonomously
during most of the time.

3.1 Taxonomy of MIMD Computers

Although simd computers were very popular in the past (e.g., Connection
Machines [34], MasPar computers [12], and Cray computers [8], which were
all developed during the 1980s and early 1990s), nowadays manufacturers
have moved toward mimd architectures (clusters and constellations) (see
e.g., [11, 47]), and simd computers are only used in specialized application do-
mains such as image processing. To illustrate this it suffices to consider that
in 1993, vector computers comprised about 74% of the 500 top supercom-
puters1, while mimd computers comprised 26%. By 2008, the situation had
drastically changed inasmuch as vector computers comprise only 0.4% and
mimd computers comprise the remaining 99.6%. In the light of this trend in
parallel high-performance architectures, mimd systems are further discussed
in the following paragraphs.

According to the organization of the address space and the connection
method between memory and processors, mimd computers are classified into
two categories: shared memory mimd systems, commonly known as multipro-
cessors, and distributed memory systems, usually referred to as multicom-
puters (see Figure 3).

Multiprocessor MIMD Systems

In this class of systems all the processors read and write to a common physical
address space through an interconnection network (see Figure 1). Processors
communicate each other by writing information on the global memory so that
the other processors can read it. A drawback of this communication scheme is
that data integrity is endangered since multiple processors can concurrently
request a write operation on the same memory location. In order to avoid
1 The Top500 project maintains a worldwide classification and statistics of the most

powerful computers in accordance to the linpack benchmark (www.top500.org).

28 A.L. Jaimes and C.A.C. Coello

write conflicts the programmer has to use classic synchronization methods
such as semaphores, locks and barriers. In order to improve efficiency, each
processor is equipped with a cache memory to speedup access to frequently
used data. However, the incorporation of cache memories motivates the need
of protocols to ensure the coherence between global and cache memory. The
most common form of multiprocessors are known as Symmetric Multiproces-
sors (smp), which are computers constituted by multiple processors where
the memory access time to any region of the shared memory is approximately
the same for each processor. On the contrary, in a Non-Uniform Memory Ac-
cess (numa) system, the shared memory is partitioned in such a way that
each partition is associated to a different group of processors. As a result, the
access time depends on which memory location is accessed.

Multicomputer MIMD Systems

In these systems, each processor has its own local memory. In this case, an
interconnection network is used to allow communication among processors
by means of message passing. In this category, we can find one of the most
common parallel systems in current use, the cluster of computers. A cluster
is a system comprised of independent computers (nodes) connected by a low-
latency network. The nodes in a cluster are capable of independent operation
and communicate with one another via message passing. Clusters comprise
two classes: clusters of workstations (cows)2 and constellation systems. Both
classes of clusters use both commercial off-the-shelf networks and computing
nodes. Nevertheless, according to Dongarra et al. [24], the difference between
these systems relies on the number of nodes connected by the network and the
number of processors on each node. In a cow system, there are more nodes
than processors in any of its nodes, while a constellation system has more
processors than nodes in the clusters. Usually, each node in a constellation is
configured as a smp with hundreds of processors. Nowadays, a cluster with a
low-latency proprietary network and more than 1000 processors is considered
a massively parallel processing system (mpp)3.

Global metacomputing

This is an emerging form of mimd parallel systems that has attracted a
great interest in the last decade. The basic idea of global metacomputing is
2 Also known as Beowulf clusters or network of workstations (nows).
3 mpp is a loosely-defined term that has been used to qualify different parallel

architectures through the years. For instance, the first mpp system was a simd
computer. However the current usage is mainly intended for distributed-memory
systems.

Applications of Parallel Platforms and Models in EMO 29

employing computers geographically distributed around the world as if they
were one large parallel machine or metacomputer. Although this concept
dates back to the mid 1960’s [64, 41] the limitations both in storage capacity
and network performance in those days made the idea impractical.

The most ambitious form of metacomputing is named grid computing.
Grid computing is a group of technologies and infrastructure that coordi-
nate large-scale resource sharing among individuals or organizations around
the world [29, 30]. Although, currently, the most common shared resources
are computer power (e.g., clusters, constellations) and data (e.g., software,
databases), grid computing is not limited to computational resources. Grid
infrastructure also enables organizations to share: (1) scientific instruments
such as telescopes, particle accelerators and electron microscopes, (2) anal-
ysis procedures and computational results, and (3) human expertise in the
form of collaborative work.

Volunteer computing is another form of metacomputing mainly focused
on facilitating the sharing of computer power and data storage among indi-
viduals around the world. The idea behind volunteer computing is to pro-
vide an infrastructure that enables individuals to share the idle processing
power of their computers to build a large parallel machine which is used to
solve expensive computational problems [53]. Among the most successful vol-
unteer computing projects, we can find the distributed.net project [1] that
solved the rsa rc-56 decryption challenge, and the seti@home [2] project
that analyzes radio telescope data looking for signs of extraterrestrial in-
telligence. As of 2008, seti@home accounted with nearly 890 000 registered
volunteers supplying an average of 460Tflops4. In order to put this figure
in its proper context, it is worth considering that the fastest supercomputer
currently available operates at 1026 Tflops the second fastest operates at 478
Tflops, which is comparable with seti@home’s throughput. Although these
projects are categorized as “true volunteer” computing since users are un-
paid and unrelated to the project administrators, there are other variations
of this scheme, including private volunteer computing. That is, organiza-
tions such as companies, universities or laboratories which turn their existing
networks into virtual supercomputers that they can use for their research.
For a complete taxonomy of volunteer computing systems interested readers
are referred to [53]. Problems that can be modelled using the master-slave
paradigm are ideal to be solved with a volunteer computing system.

4 Parallelization Models of MOEAs

The parallelization schemes that have been proposed for moeas are derived
from the well-known models designed for single-objective optimization: the
4 This information was taken from the web page of boinc (http://boincstats.com),

the middleware used by seti@home and other volunteer computing projects.

30 A.L. Jaimes and C.A.C. Coello

Fig. 1 Multiprocessor mimd system (shared memory).

Fig. 2 Multicomputer mimd system (distributed memory).

master-slave model, the island model, the diffusion model and the hybrid
model. Nevertheless, currently there is no standard way to extend these mod-
els to the multi-objective field. Van Veldhuizen, Zydallis and Lamont [62]
provide a detailed discussion of the generic versions of these models when
applied to moeas. Next, we will briefly discuss each of them.

4.1 Master-Slave Model

The master-slave model is one of the simplest ways to parallelize a moea
and, hence, the most popular among practitioners. Here, a master processor
executes the moea, and the objective function evaluations are distributed
among a number of slave processors. As soon as the slaves complete the eval-
uations they return the objective function values to the master and remain
idle until the next generation.5 In addition to the evolutionary operators (se-
lection, recombination and mutation), the master processor executes other

5 A scheme where the master also evaluates some individuals is possible, though.

Applications of Parallel Platforms and Models in EMO 31

Fig. 3 mimd taxonomy.

tasks such as Pareto ranking, and archiving. This model is depicted in Fig-
ure 4. A master-slave pmoea explores the search space in the same way as
a serial moea does. Therefore, it finds the same solutions found by its serial
counterpart. However, the execution time is reduced (ideally p times with p
processors). The master-slave model is perfect to be implemented in a vol-
unteer computing system. However, as we indicate in the following lines, the
evaluation time of the objective functions should be greater compared to the
communication time.

Fig. 4 Master-slave model.

32 A.L. Jaimes and C.A.C. Coello

In multi-objective optimization, there are three schemes to distribute the
objective functions evaluations among a number of slave processors:

1. Evenly distribute the population over the slaves in such a way that each
slave evaluates all the objective functions for its share of the population.
Assuming that the master processor evaluates a portion of the individuals,
the total computation time for each generation using P processors is given
by

TP = (P − 1)tcp + tca +
ntF
P

, (4)

where tcp is the time required to send one individual, tca is the time re-
quired to send back the objective values to the master, tF is the time
required to evaluate one individual, and n is the size of the population.
If tcp = tca then we obtain the computation time presented by Cantú-
Paz [15]:

TP = Ptcp +
ntF
P

, (5)

From Equation (5) we can derive some interesting results. First, the opti-
mal number of processors, P ∗, that minimizes TP is given by

P ∗ =
√

nγ, (6)

where γ = tF

tcp
. Using the parallel execution time of Equation (5) and

the execution time of a sequential moea, TS = ntF , we can ensure that
a master-slave moea is faster than its sequential counterpart using the
following condition:

γ >
P 2

n(P − 1)
. (7)

Limited by Amdahl’s law [7], the speedup of a master-slave moea has a
maximum value. According to Cantú-Paz [15] the speedup curve is limited
by

S∗
P =

1
2
P ∗. (8)

2. Each objective function is assigned to a different even partition of slaves
(i.e., partition P1 evaluates f1, P2 evaluates f2 and so forth). Each parti-
tion of slaves then evenly distributes the population over their processors.
Here, we are assuming that the size of each partition, Pi, of slaves is P

k ,
where k is the number of objectives. If tc is the time required to broadcast
the entire population and tfmax = max1≤i≤k{tfi} is the execution time of
the most expensive objective function in the set of objective functions, the
execution time for each generation using this distribution scheme is given
by

TP = tc + (P − 1)tca +
kntfmax

P
. (9)

Applications of Parallel Platforms and Models in EMO 33

3. Each objective function is decomposed into smaller algebraic terms and
then these terms are distributed to different groups of slaves. This way,
each group of slaves evaluates a small part of a complex objective func-
tion. Let tcom be the time required to combine the decomposed objective
values and tfmax = max1≤i≤k, 1≤j≤pi{tfi,j} the execution time of the most
expensive partition of the objective function fi (pi is the number of par-
titions of function fi). Then, the execution time of one generation of this
distribution scheme is

TP = tcom + tc + (P − 1)tca +
kntfmax

P
. (10)

4.2 Diffusion Model

Like the master-slave model, the diffusion model considers a unique popu-
lation, but in this case the population is spatially distributed onto a neigh-
borhood structure. Usually, this structure is a two-dimensional rectangular
grid, and there is one individual per grid point (see Figure 5). Ideally, there
is one processor per individual, and therefore this model is sometimes called
fine-grained. This kind of pmoea is also known as a cellular pmoea because
the model is similar to a cellular automaton with stochastic transition rules.
The selection and mating is confined to a small neighborhood around each
individual. The neighborhoods are overlapped (as depicted by the dotted
lines in Figure 5) so that the good traits are spread or “diffused” through-
out the whole population. The communication costs tend to be high, since
the individuals who take part in the selection are distributed among several
processors. As a consequence, this model is appropriate for shared-memory
mimd computers such as smps. However, custom hardware implementations
on simd computers are also possible [27].

Fig. 5 Diffusion model.

34 A.L. Jaimes and C.A.C. Coello

4.3 Island Model

This model was inspired by the natural phenomenon in which a number
of spatially isolated populations are linked together by dispersal and mi-
gration. In an island pmoea, the population is divided into several small
sub-populations, called islands or demes, which evolve independently of each
other. In each of these islands a serial moea is executed for a number of
generations called an epoch. At the end of each epoch, individuals migrate
between neighboring islands. The neighbors are defined by the migration
topology, which determines the migration paths along which individuals can
move to other islands. A typical representation of the island model is shown
in Figure 6, in which a ring topology is adopted, although other migration
topologies are possible (2-D and 3-D meshes, tori, hypercubes or trees). Is-
land pmoeas are also known as distributed pmoeas, as they are usually im-
plemented on distributed memory mimd computers. In particular, due to the
low inter-processor communication frequency, this model is well-suited for
clusters of computers or for grid computing systems.

Fig. 6 Master-slave model.

This model is very popular among researchers, but it requires many pa-
rameters and design decisions. The main issues to consider with this sort of
model include the migration topology, the migration frequency, the number of
individuals to migrate, and the decision regarding the individuals which will
migrate and those which will be replaced by the immigrants. Tables 1 and 2
present a number of possible migration and replacement schemes proposed
by Coello, Lamont and Van Veldhuizen [16].

The model allows each island to have their own parameter setting. De-
pending on the homogeneity of the islands, we can recognize four variants of
the island model:

Applications of Parallel Platforms and Models in EMO 35

Scheme Description

Non-uniform schemes

Elitist (random) Migrate a random sample of individuals from the current non-
dominated front.

Elitist (niching) Migrate individuals evenly distributed from the current non-
dominated front.

Elitist (front) Migrate the entire nondominated front.

Uniform schemes

Random Migrate n individuals selected at random.

Elitist (random) Migrate n individuals selected at random from the current non-

dominated front plus some individuals randomly selected from
the ranked Pareto fronts if necessary.

Elitist (niching) Migrate n individuals evenly distributed from the current non-
dominated front plus some individuals evenly distributed from
the remainder ranked Pareto fronts if necessary.

Table 1 Migration schemes in the island model.

Scheme Description

Random Randomly replace n individuals.

None No replacement, thereby the population increases its size.

Elitist (random) Maintain the current nondominated front and randomly replace
any dominated individual.

Elitist (ranking) Rank the population into nondominated fronts and replace in-
dividuals from the worst ranked fronts with the immigrants.

Elitist (100% rank-
ing)

Combine immigrants with the current population, rank the
combined population and discard individuals from the worst
ranked fronts.

Table 2 Replacement schemes for the island model.

1. Island pMOEA with homogeneous nodes. The moeas performed
in every island have all the same parameter values (e.g., population size,
mutation, crossover and migration rate).

2. Island pMOEA with heterogeneous nodes. Each island applies a
moea which has a different parameter setting, uses its own evolutionary
operators and solution encoding technique. Even more, each island can be
constituted by a different moea.

3. Island pMOEA with different objective subsets. Each island is re-
sponsible for optimizing a different partition of the entire objective subset.

4. Island pMOEA with different regions in the search space. Each
island may be explicitly instructed to explore a particular region of decision
variable or objective function space to optimize computational resources.

There are a number of approaches [40, 63] that have successfully used
the heterogeneous scheme adopting different moeas in each island. Whereas
in León, Miranda and Segura [40] only moeas such as nsga-ii and spea2
are employed, it is possible to combine different metaheuristics as in the

36 A.L. Jaimes and C.A.C. Coello

approach proposed by Vrugt and Robinson [63]. In this approach the authors
combine four different metaheuristics, namely: a multiobjective evolutionary
algorithm, a particle swarm optimization algorithm, an adaptive Metropolis
search technique and a differential evolution algorithm. The idea behind a
heterogeneous approach is to build a robust algorithm in which some meta-
heuristics can compensate the weaknesses of other metaheuristics in a par-
ticular problem. The success of a heterogeneous approach greatly depends on
the strategy adopted to evaluate the performance of each metaheuristic in
order to favor the best metaheuristics in future generations.

In the third variant, the straightforward strategy is to assign a different
objective function to a set of islands executing, thereby, a single objective
evolutionary optimization algorithm [50]. On the other hand, if the optimiza-
tion problem has a large number of objectives, then it is possible to partition
the objective set into groups with more than one objective. In this situation,
we have to carefully decide how to group objective functions. As recent stud-
ies [14, 45] have pointed out, the conflict among objectives determines the
importance of each objective in the optimization problem. In addition, there
are different degrees of conflict among the objectives and it is possible that
one objective that is not in conflict with a certain objective might be in great
conflict with another. Therefore, we can cluster objectives according to the
degree of conflict among them. That is, the objective set should be parti-
tioned in such a way that the conflict among objectives inside each cluster is
maximum and the conflict among objectives in different clusters is minimum.

In order to avoid that two or more demes exploit the same region of the
search space it is convenient to instruct each deme to solve non-overlapping
regions of decision variable or objective function space. In a general mop it
is very hard to devise a priori a distribution such that: (1) covers the entire
search space, (2) assigns regions of equal size, and (3) aggregates a minimum
complexity to constraint demes to their assigned region.

In Coello, Lamont and Van Veldhuizen [16], three strategies to distribute
the search space among the demes are identified:

1. Constrain each deme to a particular region and force it to generate indi-
viduals until a suitable number of them is produced within its assigned
region. The drawback of this strategy is that it introduces an overhead
because of the extra number of objective function evaluations performed.

2. Constrain each deme to a particular region by migrating individuals to
the deme covering such region. This strategy introduces a communication
overhead, though.

3. Constrain each deme to a particular region of the Pareto front by intro-
ducing a bias in the search in such a way that each deme concentrates
on a specific region of the Pareto front. The drawback of this approach is
that the shape of the true Pareto front needs to be known a priori. Sec-
tion 6 presents two pmoeas proposed by Deb, Zope and Jain [23], and by
Streichert, Ulmer and Zell [56] that follow this approach.

Applications of Parallel Platforms and Models in EMO 37

4.4 Hybrid Models

Another option to parallelize a moea is combining a coarse-grained parallel
scheme at a high level (e.g., island model) with a fine-grained scheme at a
low level (e.g., diffusion model). Cantú Paz discussed three types of hybrid
schemes that use an island model at the high level:

1. Each island implements a diffusion pmoea (see Figure 7(a)),
2. Each island implements a master-slave pmoea (see Figure 7(c)) and
3. Each island implements an island pmoea (see Figure 7(b)).

The first hybrid is ideal for a constellation of computers where each smp
node can be used to implement the diffusion pmoea and the entire cluster of
smps can be configured as the island model.

(a) Island/diffusion (b) Island/island

(c) Island/master-slave

Fig. 7 Hybrid models.

38 A.L. Jaimes and C.A.C. Coello

5 Performance Assessment of Parallel MOEAs

Parallel performance indicators provide useful information that can be used
to identify the bottlenecks of the pmoea or to predict its performance on a
given parallel system. For instance, researchers can use these indicators to
improve a parallel moea and a practitioner can decide if extending a given
parallel system is cost-effective according to an analysis of the performance
results.

5.1 Speedup

The most well-known measure of performance of a parallel system is the
speedup, which is defined as the ratio of the total execution time on an unipro-
cessor to the total execution time in the parallel system. In other words, the
speedup of a parallel algorithm executed in p processors is given by

Sp =
T1

Tp
,

where T1 is the wall-clock time of the sequential algorithm and Tp is the
wall-clock time of the parallel algorithm. Usually, T1 should correspond to
the optimal sequential algorithm (this speedup is denoted as strong speedup
by Alba [4]). Nevertheless, as Helmbold and McDowell [33] point out, this
requirement is impractical since even the best known sequential algorithm
may be improved in the future and it may exhibit a different performance
depending on the data of interest.

Alba [4] suggests different approaches to compute the speedup in evolu-
tionary algorithms. First of all, given the stochastic nature of evolutionary
algorithms, the execution times of the algorithms should involve the com-
putation of average times over several runs. In fact, some authors [18] sug-
gest to measure average execution times even for deterministic algorithms,
since there are some random events in a parallel system such as the exe-
cution of system daemons or the reordenation of memory accesses, which
may produce time variations from one execution to another. Additionally, it
is recommended to compute the variance of the running times since a high
variance may be a symptom of high contention for locks, for instance. Alba
defines a type of speedup as the most appropriate for evaluating parallel
evolutionary algorithms, namely speedup with solution stop. In this type of
speedup, instead of using the number of evaluations as the stopping criterion,
the “quality of the solution” is employed. In single-objective optimization, it
is straightforward to determine if two solutions have the same quality, i.e.,
if they have the same fitness. In contrast, in multi-objective optimization,
there is no consensus regarding how to determine, in general, the quality

Applications of Parallel Platforms and Models in EMO 39

of the Pareto front generated by a moea. A practical approach is to use a
unary performance indicator that assesses both the distribution and the con-
vergence of the approximation of the Pareto front produced. Some indicators
that might be adopted to determine the quality of the solution are: hyper-
volume [66], inverted generational distance [16] or the G-metric [43]. There
are two variants to compute the speedup with solution stop: (1) compare the
pmoea against a canonical sequential moea with a global population, and
(2) compare the parallel p-processor moea on a single processor and the same
algorithm on p processors.

In addition to these types of speedup, we can use a similar approach to
that adopted by the so-called fixed-time model [32], where a predefined time
limit is used and the “work” increases as processors are added. In our case,
the work is defined as the approximation to the true Pareto front measured
with a suitable quality indicator. Thus, the fixed-time speedup is defined by

Sxp =
I(A1)
I(Ap)

,

where I is a unary quality indicator, Ap is the approximation set obtained
by the pmoea and A1 is the approximation set obtained by the sequential
moea using some fixed-time window in both algorithms. As in the previous
types of speedup, it is advised to use the p-processor moea on a single pro-
cessor as the sequential algorithm. This type of speedup has some advantages
over the speedup with solution stop. First, it is easier to incorporate the fixed-
time stopping criterion to an existing code. Second, the same output datasets
obtained in several runs can be used to compute the fixed-time speedup with
different quality indicators. In contrast with the speedup with solution stop,
we have to execute the algorithms again if we change the quality indicator
used as our stopping criterion.

Superunitary speedup

The condition when the speedup with p processors is greater than p is referred
to as superunitary speedup (also known as superlinear speedup). Although in
the past many works on parallel evolutionary algorithms have reported supe-
runitary speedup [42, 9, 6], in some cases this phenomenon is due to a com-
parison against an inefficient or ineffective sequential algorithm. Nonetheless,
many authors have identified a range of conditions that give rise to supe-
runitary speedup [32, 33, 3, 4] even if we compare against the same code
on a single processor. Some of the sources of superunitary speedup are the
following:

40 A.L. Jaimes and C.A.C. Coello

• Increase of high-speed memories. When the number of processors is in-
creased, the number of high-speed memories (e.g., cache, cpu registers)
is also increased. While a large number of individuals might not fit into
small but high-speed memories, if the population is distributed in many
processors, it is possible that the resulting subpopulations can perfectly
fit in high-speed local memories instead of the low-speed ram.

• Reduced overhead. The reason is that the time consumed on some operating
system’s kernel calls on an n processor machine is only 1/n of the time
required on a single processor.

• Shift algorithm’s profile. When a fixed-time model is used, superunitary
speedup may result if a parallel algorithm spends more time in faster
routines.

Inasmuch as these are mainly hardware sources, it is important to present
details of the parallel architecture used, specially if superunitary speedup is
reported.

In the specialized literature, we can find other conditions under which
superunitary speedup may appear. For instance, time gains obtained from
traversing the search space in parallel or improvements due to the use of
smaller abstract data structures (e.g., a list for the primary population or
the external archive). However, these conditions may produce superunitary
speedup only when the parallel moea is compared to a sequential moea with
a global population or when a subefficient sequential algorithm is employed.

5.2 Other Parallel Performance Measures

• Efficiency (E). This metric [39] measures the fraction of time that a pro-
cessor is effectively utilized. It is defined by the ratio between the speedup
and the number of processors used. This metric is defined as:

Ep =
Sp

p
, (11)

where Sp is the speedup achieved with p processors. In an ideal system,
the efficiency is equal to 1. In reality, due to the communication costs,
and the idle time caused by the synchronization, the efficiency oscillates
between 0 and 1.

• Serial Fraction (F). This metric was defined by Karp and Flatt [37] to
estimate the serial fraction6 for measuring the performance of a parallel
algorithm on a fixed-size problem. Mathematically, it is defined as:

6 The ratio of the time taken by the inherently serial component of an algorithm
to its execution time on one processor.

Applications of Parallel Platforms and Models in EMO 41

Fp =
1/Sp − 1/p

1 − 1/p
. (12)

where Sp the speedup achieved with p processors. Smaller values of F are
considered better. If F increases with the number of processors, then it is
a symptom of growing communications costs, and, therefore, an indicator of
poor scalability. Thus, if the speedup of an algorithm is small, we can still
say that it is efficient if Fp remains constant when increasing p. In this case,
the efficiency drops due to the limited parallelism of the algorithm. On the
other hand, if the value of F decreases with p, Karp and Flatt [37] consider
that the speedup tends to be superlinear.

6 Selection of Parallel MOEAs

Although several researchers have reported the use of parallel moeas [48, 16],
not many of them have actually proposed novel schemes to parallelize a moea.
Next, we will review the most representative work along these lines that we
were able to find in the specialized literature.

The Divided Range Multi-Objective Genetic Algorithm (drmoga) was
proposed by Hiroyasu et al. [35]. Here, the global population is sorted accord-
ing to one of the objective functions (which is changed after a number gen-
erations). Then, the population is divided into equally-sized sub-populations
(see Figure 8). Each of these sub-populations is allocated to a different pro-
cessor in which a serial moea is applied. At the end of a specific number
of generations, the sub-populations are gathered and the process is repeated,
but this time using some other objective function as the sorting criterion. The
main goal of this approach is to focus the search effort of the population on
different regions of the objective space. However, in this approach we cannot
guarantee that the sub-populations will remain in their assigned region. A
similar approach is followed by de Toro Negro et al. [19].

Zhu & Leung proposed the Asynchronous Self-Adjustable Island Genetic
Algorithm (asaiga) [65]. In asaiga, rather than migrating a set of individu-
als, the islands exchange information related to their current explored region.
The “exploration region” (ER) is the hypercube containing most of the in-
dividuals of the archive maintained by the sequential moea (see Figure 9).
Based on the information coming from other islands, a “self-adjusting” op-
eration modifies the fitness of the individuals in the island to prevent two
islands from exploring the same region. In a similar way to drmoga, this
approach cannot guarantee that the sub-populations move tightly together
throughout the search space, hence the information about the explored region
may be meaningless.

Another island pmoea was introduced by Deb et al. [23]. In this case,
although all processors search on the entire decision variable space, the

42 A.L. Jaimes and C.A.C. Coello

Fig. 8 Division of the population in drmoga.

The exploration region is defined by the
hypercube [L1, U1] × . . . × [LN , UN]. Let

{f1
i , f2

i , . . . , fn′
i } be the permutation with the

ascending sorted values of the i-th (i =
1, . . . , N) objective, where n′ is the size of
the archive and N the number of objectives.

Then: Li = f
� 1
4 n�

i , Ui = f
� 3
4 n�

i for 1 ≤ i ≤ N .

Fig. 9 Exploration region used in ASAIGA.

approach assigns each processor a different search region of the Pareto-
optimal front. In order to steer the search towards the assigned region, the
authors adopt a “guided domination” (see Figure 10) based on a concept
defined by Branke, Kaußler and Schmeck [13]. This concept uses a weighted
function of the objectives in order to achieve a larger dominated region for
each vector. Therefore, each processor using this new concept only finds a
region of the real Pareto front. The weakness of this approach is that we
must have a priori knowledge of the shape of the Pareto front in order to
define accurately the search directions. Furthermore, this technique can only
deal with convex Pareto fronts.

Streichert et al. [56] proposed an approach that partitions the overall pop-
ulation using a clustering algorithm aiming to specialize the exploration of
each island on different areas of the Pareto front. Periodically (after a specified
number of generations) the islands are gathered, clustered and redistributed
onto the available processors. The individuals are kept within their region by
considering this as their feasible zone and using the constrained dominance
principle defined by Deb et al. [20]. That is, any individual generated outside

Applications of Parallel Platforms and Models in EMO 43

Fig. 10 Dominated region with the usual Pareto domination (a); dominated region
with the concept of guided domination (b); “nondominated” region of the Pareto
front (c).

its constrained region is marked as “invalid”. The main drawback of the ap-
proach is that the repeated gathering of all sub-populations produces a high
communication overhead, which is increased with the number of processors.

López Jaimes and Coello Coello [44] proposed an approach called Multiple
Resolution Multi-Objective Genetic Algorithm (mrmoga), which consists of
a pmoea based on the island paradigm, with heterogeneous nodes. The main
idea of this approach is to encode the solutions using a different resolution
in each island. Then, variable decision space is divided into hierarchical lev-
els with well-defined overlaps. Evidently, migration is only allowed in one
direction (from low resolution to high resolution islands). mrmoga uses an
external population, and the migration strategy considers such population
as well (see Figure 11). The approach also uses a strategy to detect nominal
convergence of the islands in order to increase their initial resolution. The
rationale behind this approach is that the true Pareto front can be reached
faster using this change of resolution in the islands, because the search space
of the low resolution islands is proportionally smaller and, therefore, conver-
gence is faster. The results indicated that mrmoga outperforms a parallel
version of nsga-ii, with a more significant difference as the number of pro-
cessor increases.

7 Summary and Final Remarks

This chapter has presented an overview of parallel multi-objective evolution-
ary algorithms (pmoeas). Firstly, we described the current parallel architec-
tures available. Secondly, we reviewed the most common models to imple-
ment pmoeas. Then, we presented some performance indicators that have

44 A.L. Jaimes and C.A.C. Coello

Fig. 11 Schematic view of mrmoga.

been used to measure the efficiency of pmoeas. Finally, a selection of some
pmoeas that incorporate innovative strategies was presented.

Global metacomputing (see Section 3) is one of the most promising current
parallel architectures which is underused in evolutionary optimization. Grid
computing is starting to be explored in multi-objective evolutionary optimiza-
tion [46] and, to the best of our knowledge, no pmoea has yet been imple-
mented using volunteer computing in spite of the fact that both technologies
represent an inexpensive alternative for supercomputing using existing local
networks. Consequently, we expect that in the near future more researchers
and practitioners will exploit these new forms of parallel computing.

In this chapter, we outlined some general strategies to distribute the objec-
tive set in the master-slave model, and some migration/replacement strate-
gies. However, there is still room for new parallelization strategies.

Additionally, given the assessment methodology observed in the current
literature, it is clear that there is no standard way to compare and easily
ponder the performances reported of two different pmoeas. In sequential
moeas, we compare new algorithms against well-established moeas such as
nsga-ii or spea2. Thus, we can appraise easily the value of new moeas
reported in different works. In contrast, for pmoeas there is no standard
reference pmoea to beat. Thereby, it is required a different methodology to
assess performance and report the results produced by pmoeas.

Acknowledgements The first author acknowledges support from conacyt to
pursue graduate studies in computer science at cinvestav-ipn.

References

[1] distributed.net project home Page (1997), http://www.distributed.net
[2] SETI@home project home Page (1999), http://setiathome.berkeley.edu

http://www.distributed.net
http://setiathome.berkeley.edu

Applications of Parallel Platforms and Models in EMO 45

[3] Akl, S.G., Lindon, L.F.: Paradigms admitting superunitary behaviour in par-
allel computation. In: Buchberger, B., Volkert, J. (eds.) CONPAR 1994 and
VAPP 1994. LNCS, vol. 854, pp. 301–312. Springer, Heidelberg (1994)

[4] Alba Torres, E.: Parallel evolutionary algorithms can achieve super-linear per-
formance. Information Processing Letters 82(1), 7–13 (2002)

[5] Alba Torres, E., Troya Linero, J.M.: A survey of parallel distributed genetic
algorithms. Complexity 4(4), 31–51 (1999)

[6] Alba Torres, E., Troya Linero, J.M.: Analyzing synchronous and asynchronous
parallel distributed genetic algorithms. Future Generation Computer Sys-
tems 17(4), 451–465 (2001)

[7] Amdahl, G.M.: Validity of the single processor approach to achieving large
scale computing capabilities. In: Proceedings of the AFIPS 1967, spring joint
computer conference, April 18-20, 1967, pp. 483–485. ACM, New York (1967),
http://doi.acm.org/10.1145/1465482.1465560

[8] August, M.C., Brost, G.M., Hsiung, C.C., Schiffleger, A.J.: Cray X-MP: The
birth of a supercomputer. Computer 22(1), 45–52 (1989), http://dx.doi.org/
10.1109/2.19822

[9] Belding, T.C.: The distributed genetic algorithm revisited. In: Eshelman, L.
(ed.) Proceedings of the Sixth International Conference on Genetic Algorithms,
pp. 114–121. Morgan Kaufmann, San Francisco (1995)

[10] Bell, G.: Ultracomputers: A teraflop before its time. Communications of the
ACM 35(8), 27–47 (1992)

[11] Bell, G.: Bell’s law for the birth and death of computer classes. Commu-
nications of the ACM 51(1), 86–94 (2008), http://doi.acm.org/10.1145/

1327452.1327453

[12] Blank, T.: The MasPar MP-1 architecture. In: Compcon Spring 1990. Intel-
lectual Leverage. Digest of Papers. Thirty-Fifth IEEE Computer Society In-
ternational Conference, pp. 20–24 (1990)

[13] Branke, J., Kaußler, T., Schmeck, H.: Guidance in Evolutionary Multi-
Objective Optimization. Advances in Engineering Software 32, 499–507 (2001)

[14] Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zit-
zler, E.: Do Additional Objectives Make a Problem Harder? In: Thierens, D.
(ed.) 2007 Genetic and Evolutionary Computation Conference (GECCO 2007),
vol. 1, pp. 765–772. ACM Press, London (2007)

[15] Cantú Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer
Academic Publishers, Boston (2002)

[16] Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Al-
gorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York
(2007)

[17] Collette, Y., Siarry, P.: Multiobjective Optimization. Principles and Case Stud-
ies. Springer, Heidelberg (2003)

[18] Crowl, L.A.: How to measure, present, and compare parallel performance.
IEEE Parallel Distrib. Technol. 2(1), 9–25 (1994), http://dx.doi.org/10.

1109/88.281869

[19] de Toro Negro, F., Ortega, J., Ros, E., Mota, S., Paechter, B., Martin, J.M.:
PSFGA: Parallel Processing and Evolutionary Computation for Multiobjective
Optimisation. Parallel Computing 30(5-6), 721–739 (2004)

http://doi.acm.org/10.1145/1465482.1465560
http://dx.doi.org/10.1109/2.19822
http://dx.doi.org/10.1109/2.19822
http://doi.acm.org/10.1145/1327452.1327453
http://doi.acm.org/10.1145/1327452.1327453
http://dx.doi.org/10.1109/88.281869
http://dx.doi.org/10.1109/88.281869

46 A.L. Jaimes and C.A.C. Coello

[20] Deb, K.: Multi-objective Evolutionary Optimization: Past, Present and Future.
In: Parmee, I.C. (ed.) Proceedings of the Fourth International Conference on
Adaptive Computing in Design and Manufacture (ACDM 2000), PEDC, Uni-
versity of Plymouth, UK, pp. 225–236. Springer, London (2000)

[21] Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley & Sons, Chichester (2001)

[22] Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Op-
timization Test Problems. In: Congress on Evolutionary Computation (CEC
2002), vol. 1, pp. 825–830. IEEE Service Center, Piscataway (2002)

[23] Deb, K., Mohan, M., Mishra, S.: Towards a Quick Computation of Well-Spread
Pareto-Optimal Solutions. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb,
K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 222–236. Springer, Hei-
delberg (2003)

[24] Dongarra, J., Sterling, T., Simon, H., Strohmaier, E.: High-performance
computing: Clusters, constellations, MPPs, and future directions. Com-
puting in Science and Engineering 7(2), 51–59 (2005), http://doi.

ieeecomputersociety.org/10.1109/MCSE.2005.34

[25] Duncan, R.: A survey of parallel computer architectures. Computer 23(2), 5–16
(1990), http://dx.doi.org/10.1109/2.44904

[26] Edgeworth, F.Y.: Mathematical Physics. P. Keagan, London (1881)
[27] Eklund, S.E.: A massively parallel architecture for distributed genetic algo-

rithms. Parallel Computing 30(5-6), 647–676 (2004), http://dx.doi.org/10.
1016/j.parco.2003.12.009

[28] Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Trans-
actions on Computers 21(9), 948–960 (1972)

[29] Foster, I., Kesselman, C. (eds.): The grid: blueprint for a new computing in-
frastructure. Morgan Kaufmann Publishers Inc., San Francisco (1999)

[30] Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scal-
able virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222
(2001), http://dx.doi.org/10.1177/109434200101500302

[31] Giloi, W.K.: Towards a taxonomy of computer architecture based on the ma-
chine data type view. SIGARCH Comput. Archit. News 11(3), 6–15 (1983)

[32] Gustafson, J.L.: Fixed time, tiered memory, and superlinear speedup. In: Pro-
ceedings of the Fifth Distributed Memory Computing Conference, DMCC5
(1990)

[33] Helmbold, D.P., McDowell, C.E.: Modeling speedup (n) greater than n. IEEE
Trans. Parallel Distrib. Syst. 1(2), 250–256 (1990), http://dx.doi.org/10.

1109/71.80148

[34] Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1989)
[35] Hiroyasu, T., Miki, M., Watanabe, S.: The New Model of Parallel Genetic

Algorithm in Multi-Objective Optimization Problems—Divided Range Multi-
Objective Genetic Algorithm. In: 2000 Congress on Evolutionary Computa-
tion, vol. 1, pp. 333–340. IEEE Service Center, Piscataway (2000)

[36] Johnson, E.E.: Completing an MIMD multiprocessor taxonomy. SIGARCH
Computure Architecture News 16(3), 44–47 (1988), http://doi.acm.org/10.
1145/48675.48682

http://doi.ieeecomputersociety.org/10.1109/MCSE.2005.34
http://doi.ieeecomputersociety.org/10.1109/MCSE.2005.34
http://dx.doi.org/10.1109/2.44904
http://dx.doi.org/10.1016/j.parco.2003.12.009
http://dx.doi.org/10.1016/j.parco.2003.12.009
http://dx.doi.org/10.1177/109434200101500302
http://dx.doi.org/10.1109/71.80148
http://dx.doi.org/10.1109/71.80148
http://doi.acm.org/10.1145/48675.48682
http://doi.acm.org/10.1145/48675.48682

Applications of Parallel Platforms and Models in EMO 47

[37] Karp, A.H., Flatt, H.P.: Measuring parallel processor performance. Communi-
cations of the ACM 33(5), 539–543 (1990)

[38] Knowles, J., Corne, D.: Properties of an Adaptive Archiving Algorithm for
Storing Nondominated Vectors. IEEE Transactions on Evolutionary Compu-
tation 7(2), 100–116 (2003)

[39] Kumar, V., Ananth Grama, G.K., Gupta, A.: Introduction to Parallel Comput-
ing: design and analysis of parallel algorithms. Benjamin Cummings Publishing
Company, Redwood City (1994)

[40] León, C., Miranda, G., Segura, C.: Parallel hyperheuristic: a self-adaptive
island-based model for multi-objective optimization. In: GECCO 2008: Pro-
ceedings of the 10th annual conference on Genetic and evolutionary compu-
tation, pp. 757–758. ACM, New York (2008), http://doi.acm.org/10.1145/
1389095.1389241

[41] Licklider, J.C.R., Taylor, R.W.: The computer as a communication device.
Science and Technology 76, 21–31 (1968)

[42] Lin, S.C., Punch III, W.F., Goodman, E.D.: Coarse-grain genetic algorithms,
categorization and new approaches. In: Sixth IEEE Symposium on Parallel
and Distributed Processing, pp. 28–37. IEEE Computer Society Press, Dallas
(1994)

[43] Lizárraga Lizárraga, G., Hernández Aguirre, A., Botello Rionda, S.: G-metric:
an m-ary quality indicator for the evaluation of non-dominated sets. In:
GECCO 2008: Proceedings of the 10th annual conference on Genetic and evo-
lutionary computation, pp. 665–672. ACM, New York (2008), http://doi.

acm.org/10.1145/1389095.1389227

[44] López Jaimes, A., Coello Coello, C.A.: MRMOGA: A New Parallel Multi-
Objective Evolutionary Algorithm Based on the Use of Multiple Resolutions.
Concurrency and Computation: Practice and Experience 19(4), 397–441 (2007)

[45] López Jaimes, A., Coello Coello, C.A., Chakraborty, D.: Objective Reduction
Using a Feature Selection Technique. In: 2008 Genetic and Evolutionary Com-
putation Conference (GECCO 2008), pp. 674–680. ACM Press, Atlanta (2008)

[46] Luna, F., Nebro, A., Dorronsoro, B., Alba, E., Bouvry, P., Hogie, L.: Optimal
Broadcasting in Metropolitan MANETs Using Multiobjective Scatter Search.
In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R.,
Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G.,
Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 255–266. Springer,
Heidelberg (2006)

[47] Meuer, H.W.: The TOP500 project: Looking back over 15 years of supercom-
puting experience. Informatik-Spektrum 31(3), 203–222 (2008), http://dx.

doi.org/10.1007/s00287-008-0240-6

[48] Nebro, A., Luna, F., Talbi, E.G., Alba, E.: Parallel Multiobjective Opti-
mization. In: Alba, E. (ed.) Parallel Metaheuristics, pp. 371–394. Wiley-
Interscience, New Jersey (2005)

[49] Obayashi, S., Sasaki, D.: Multiobjective Aerodynamic Design and Visualiza-
tion of Supersonic Wings by Using Adaptive Range Multiobjective Genetic
Algorithms. In: Coello Coello, C.A., Lamont, G.B. (eds.) Applications of Multi-
Objective Evolutionary Algorithms, pp. 295–315. World Scientific, Singapore
(2004)

http://doi.acm.org/10.1145/1389095.1389241
http://doi.acm.org/10.1145/1389095.1389241
http://doi.acm.org/10.1145/1389095.1389227
http://doi.acm.org/10.1145/1389095.1389227
http://dx.doi.org/10.1007/s00287-008-0240-6
http://dx.doi.org/10.1007/s00287-008-0240-6

48 A.L. Jaimes and C.A.C. Coello

[50] Okuda, T., Hiroyasu, T., Miki, M., Watanabe, S.: DCMOGA: Distributed
cooperation model of multi-objective genetic algorithm. In: Proceedings of
the PPSN/SAB Workshop on Multiobjective Problem Solving from Nature
II (MPSN-II) (2002)

[51] Osyczka, A.: Evolutionary Algorithms for Single and Multicriteria Design Op-
timization. Physica Verlag, Germany (2002)

[52] Pareto, V.: Cours D’Economie Politique, vol. I and II. F. Rouge, Lausanne
(1896)

[53] Sarmenta, L.F.G.: Volunteer computing. PhD thesis, Massachusetts Institute
of Technology (2001)

[54] Sawai, H., Adachi, S.: Parallel distributed processing of a parameter-free GA
by using hierarchical migration methods. In: Banzhaf, W., Daida, J., Eiben,
A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 1999),
vol. 1, pp. 579–586. Morgan Kaufmann, San Francisco (1999)

[55] Stadler, W.: Fundamentals of multicriteria optimization. In: Stadler, W. (ed.)
Multicriteria Optimization in Engineering and the Sciences, pp. 1–25. Plenum
Press, New York (1988)

[56] Streichert, F., Ulmer, H., Zell, A.: Parallelization of Multi-objective Evo-
lutionary Algorithms Using Clustering Algorithms. In: Coello Coello, C.A.,
Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp.
92–107. Springer, Heidelberg (2005)

[57] Talbi, E.G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello
Coello, C.A.: Parallel Approaches for Multi-objective Optimization. In:
Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.) Multiobjective Op-
timization. Interactive and Evolutionary Approaches. LNCS, vol. 5252, pp.
349–372. Springer, Heidelberg (2008)

[58] Tan, K., Khor, E., Lee, T.: Multiobjective Evolutionary Algorithms and Ap-
plications. Springer, London (2005)

[59] Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and
Paradigms. Prentice Hall, Upper Saddle River (2002)

[60] Teich, J., Zitzler, E., Bhattacharyya, S.S.: 3D Exploration of Software
schedules for DSP Algorithms. In: 7th International Workshop on Hard-
ware/Software Codesign (CODES 1999), pp. 168–172 (1999)

[61] Tomassini, M.: Parallel and distributed evolutionary algorithms: A review. In:
Miettinen, K., Mäkelä, M., Neittaanmäki, P., Periaux, J. (eds.) Evolutionary
Algorithms in Engineering and Computer Science, pp. 113–133. John Wiley
and Sons, Chichester (1999)

[62] Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Considerations in Engi-
neering Parallel Multiobjective Evolutionary Algorithms. IEEE Transactions
on Evolutionary Computation 7(2), 144–173 (2003)

[63] Vrugt, J.A., Robinson, B.A.: Improved evolutionary optimization from genet-
ically adaptive multimethod search. Proceedings of the National Academy of
Sciences of the United States of America 104(3), 708–711 (2007)

[64] Vyssotsky, V.A., Corbató, F.J., Graham, R.M.: Structure of the Multics Super-
visor. In: Proceedings of the AFIPS, Fall Joint Computer Conference (FJCC),
Spartan Books, Las Vegas, Nevada, vol. 27, Part 1, pp. 203–212 (1965)

Applications of Parallel Platforms and Models in EMO 49

[65] Zhu, Z.Y., Leung, K.S.: An Enhanced Annealing Genetic Algorithm for Multi-
Objective Optimization Problems. In: Langdon, W., Cantú-Paz, E., Mathias,
K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G.,
Wegener, J., Bull, L., Potter, M., Schultz, A., Miller, J., Burke, E., Jonoska, N.
(eds.) Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2002), pp. 658–665. Morgan Kaufmann Publishers, San Francisco
(2002)

[66] Zitzler, E., Teich, J., Bhattacharyya, S.S.: Evolutionary Algorithm Based Ex-
ploration of Software Schedules for Digital Signal Processors. In: Banzhaf,
W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith,
R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO 1999), vol. 2, pp. 1762–1769. Morgan Kaufmann, San Francisco
(1999)

Asynchronous Multi-Objective Optimisation in
Unreliable Distributed Environments

Andrew Lewis1, Sanaz Mostaghim2, and Ian Scriven3

Abstract This chapter examines the performance characteristics of both asyn-
chronous and synchronous parallel particle swarm optimisation algorithms in het-
erogeneous, fault-prone environments. The chapter starts with a simple parallelisa-
tion paradigm, the Master-Slave model using Multi-Objective Particle Swarm Opti-
misation (MOPSO) in a heterogeneous environment. Extending the investigation to
general, distributed environments, algorithm convergence is measured as a function
of both iterations completed and time elapsed. Asynchronous particle updates are
shown to perform comparably to synchronous updates in fault-free environments.
When faults are introduced, the synchronous update method is shown to suffer sig-
nificant performance drops, suggesting that at least partly asynchronous algorithms
should be used in real-world environments. Finally, the issue of how to utilise newly
available nodes, as well as the loss of existing nodes, is considered and two methods
of generating new particles during algorithm execution are investigated.

Institute for Integrated and Intelligent Systems
Griffith University
Brisbane
Queensland
Australia
A.Lewis@griffith.edu.au
Institute AIFB
University of Karlsruhe
Germany
sanaz.mostaghim@kit.edu
School of Engineering
Griffith University
Brisbane
Queensland
Australia
Ian.Scriven@student.griffith.edu.au

A. Lewis et al. (Eds.): Biologically-Inspired Optimisation Methods, SCI 210, pp. 51–78.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

52 A. Lewis et al.

1 Introduction

Optimisation of solutions using computational models is becoming an increasingly
common practice in engineering design and scientific investigations. It has been
applied to a wide variety of problems, from biomechanics [26] to avionics [44]
and the demand is increasingly for the simultaneous optimisation of several, possi-
bly competing objectives. Such real-world problems usually require complex, time-
consuming computer simulations to solve potential solutions and so parallelisation
of optimisation algorithms is a practical necessity. Originally confined to dedicated,
parallel computing clusters or special-purpose parallel computers, the emergence
of grid computing as a common approach to the provision of computational capac-
ity [1] has dictated the development of optimisation algorithms capable of efficient
and effective performance in potentially unreliable distributed environments. Such
algorithms can also be applied effectively to utilise small-scale, ad hoc grids of net-
worked computers, bringing the benefits of computational optimisation within the
reach of small to medium enterprises.

Several Parallel Evolutionary Algorithms have been studied in the literature
(e.g., [3, 6, 43, 16, 11, 10]). From these studies three main paradigms emerge: the
Island model, Master-Slave model and Diffusion model. The focus of this chapter
is on the Master-Slave model, a straight-forward method and perhaps the simplest,
where a single processor maintains the optimisation task and uses the other proces-
sors for objective function evaluations.

We start by studying parallelisation of multi-objective optimisation (MO) algo-
rithms using the Master-Slave model. The Master-Slave model is the simplest par-
allelisation paradigm when working in a homogeneous environment, and has been
widely implemented in such. However, to our knowledge little has been done on
the combination of multi-objective optimisation, heterogeneous resources and the
Master-Slave model. Comparing multi-objective algorithm with their single objec-
tive counterparts there is a major difference. A multi-objective EA (MOEA) must
evaluate not just enough trial solutions for effective search of the parameter space,
but sufficient to allow determination of the relative fitness against the multiple ob-
jectives. In a Master-Slave model, the master processor has to wait for all of the
evaluations from the other processors. Then it can apply a ranking method to the
solutions to find the non-dominated front and continue the optimisation. In a het-
erogeneous environment, the waiting time might be very long. In some cases, the
fast processors can deliver twice the evaluations of a slow one, in a given period of
time. In this work, we study a new algorithm which utilises all of the computing
resources, from the slow to the very fast (as in a normal grid).

Solving multi-objective problems on heterogeneous systems has a number of
challenges:

• Dealing with heterogeneous resources, the aim is to use all of the computing re-
sources but at the same time to be efficient in time, i.e., the master node must
make use of all of the available function evaluations in every time step. Here, the

Asynchronous Optimisation in Unreliable Distributed Environments 53

master node encounters a trade-off between waiting for the slowest processor or
continuing the optimisation based on the available solutions.

• The output of multi-objective optimisation problems is usually a set of so-
called Pareto-optimal solutions. Most multi-objective evolutionary algorithms
(MOEAs) approximate these solutions by finding a set of non-dominated so-
lutions. In every generation, a typical MOEA method applies a ranking-based
method to the entire population to evaluate the solutions.

• Efficient and effective exploration of the search space is another important issue,
in common with most practical applications of optimisation. The Master-Slave
model is typically used to solve computationally expensive problems. The main
task would be to employ a reasonable exploration technique while minimising
the computational cost.

One drawback of the Master-Slave model is the communication overhead between
processors. Since the simulation models considered in real-world engineering de-
sign problems are typically complex and computationally expensive, the computa-
tion time will usually outweigh communication time, so this factor can safely be
ignored.

Particle Swarm Optimisation (PSO) is fast being established as an efficient, paral-
lel optimisation technique for both single and multiple objective design problems. In
Multi-Objective Particle Swarm Optimisation (MOPSO), each particle (individual)
follows its own best position and the position of a global guide. Hence, in the paral-
lelisation scheme, it is enough to find a guide for a particular particle to improve that
particle’s position. This is an advantage compared to other MOEA techniques such
as SPEA2 [48] or NSGAII [17]. In SPEA2, all of the individuals are compared to
each other and are given a strength and in NSGAII a ranking method finds different
non-dominated fronts. In these methods, the best evaluation is based on the entire
population.

In distributed systems, different kinds of failures can happen. Some typical fail-
ures among the others are: nodes may get overloaded, fail or lose their connection
to the other nodes. In this chapter, we also address optimisation using such un-
reliable environments. We name the new approach Parallel Asynchronous Particle
Swarm Optimisation (PAPSO) and we examine the effects of asynchronous updates
in PAPSO algorithms in fault-prone environments, and compare the convergence
characteristics of Parallel Synchronous Particle Swarm Optimisation (PSPSO) [37]
and PAPSO algorithms against both iteration count and wall-clock execution time.

Apart from investigating the failures in the system, we address the aspect of hav-
ing new nodes in the available system, known as churn. We use the new nodes for
improving the quality of the approximated front obtained by MOPSO.

This chapter is organised as follows. In the following we introduce the test func-
tions used throughout the chapter. In the next sections (2 and 3), we study syn-
chronous and asynchronous parallel multi-objective particle swarm optimisation.
Sections 4 and 5 are about unreliable environments and parallel MOPSO methods
working on such environments. In Section 6, we address the churn issue in our ap-
proach and propose two new methodologies for covering and extending the edges
of the obtained approximated front. Section 7 concludes the chapter.

54 A. Lewis et al.

Table 1 Test functions
Test Function Constraints
ZDT1 g(x2, · · · ,xn) = 1+9(∑n

i=2 xi)/(n−1) xi ∈ [0, 1]
h(f1,g) = 1−√

f1/g n = 30
f1(x1) = x1 i = 1,2, . . . ,n
f2(x) = g(x2, · · · ,xn) ·h(f1,g)

ZDT2 g(x2, · · · ,xn) = 1+9(∑n
i=2 xi)/(n−1) xi ∈ [0, 1]

h(f1,g) = 1− (f1/g)2 n = 30
f1(x1) = x1 i = 1,2, . . . ,n
f2(x) = g(x2, · · · ,xn) ·h(f1,g)

ZDT3 g(x2, · · · ,xn) = 1+9(∑n
i=2 xi)/(n−1) xi ∈ [0, 1]

h(f1,g) = 1−√
f1/g− (f1/g)sin(10π f1) n = 30

f1(x1) = x1 i = 1,2, . . . ,n
f2(x) = g(x2, · · · ,xn) ·h(f1,g)+1

FF f1(x) = 1−exp(−∑i (xi − 1√
n
)2) n = 10

f2(x) = 1−exp(−∑i (xi + 1√
n
)2) xi ∈ [−4, 4]

DTLZ f1(x) = (1+g(xM))cos(x1π/2)cos(x2π/2) xi ∈ [0, 1]
f2(x) = (1+g(xM))cos(x1π/2)sin(x2π/2) n = 8
f3(x) = (1+g(xM))sin(x1π/2)
g(xM) = ∑8

i=3(xi −0.5)2

1.1 Test Functions

For the experiments in this chapter, some standard test functions from the multi-
objective optimisation literature are used. These test functions are two- and three-
objective optimisation problems selected from [48, 18], as shown in Table 1.

2 Master-Slave Model of Parallelisation

The simplest parallelisation paradigm for optimisation is the Master-Slave model.
This model is aimed at distributing the (objective function) evaluation of the indi-
viduals on several slave computing resources while a master resource executes the
optimisation procedure. The master node can also be used for evaluations.

This model is of great benefit when the function evaluations are very expensive.
It is very natural to use parallel computers to solve expensive functions but care
must be taken that the algorithm searches efficiently. In addition, a key issue is that
in many situations the computing resources are heterogeneous. In the Master-Slave
model, the central computing resource (master node) has to gather information from
all of the resources and perform the optimisation steps (such as ranking etc.) based
on the solutions obtained. However, waiting for the slowest processor may take a
long time.

The main questions when solving problems on heterogeneous computing re-
sources therefore are:

Asynchronous Optimisation in Unreliable Distributed Environments 55

Algorithm 1 MOPSO
Initialise population
repeat

Find non-dominated solutions; store in the archive
Update the population and the archive
Apply turbulence factor

until Termination condition met
Return archive

1. how to efficiently search the space and
2. how to use all of the resources so that none of them remains idle.

3 Parallel Multi-Objective Particle Swarm

A typical MOPSO method is shown in Algorithm 1. It starts with a random pop-
ulation of solutions (also called particles). Every particle i has a position in the
search space and a velocity, denoted by the vectors xi and vi, respectively. The non-
dominated particles are stored in an archive and the population is updated based on
the positions of the global best particles Pglobal and their own personal memories
PBest :

xi(t + 1) = xi(t)+ vi(t) (1)

vi(t) = wvi(t −1)+ R1(PBest −xi(t −1))+ R2(Pglobal −xi(t −1)) (2)

where w, R1 and R2 denote the inertia weight and control parameters. In MOPSO,
selecting the best personal position and the global positions has a great impact on the
quality of the solutions [5, 29]. The global best is usually selected from the archive.
To avoid local optima in MOPSO, a percentage of the particles are randomly se-
lected and moved in order to explore the search space. This is implemented using
a turbulence factor. MOPSO is iteratively continued until a stopping criterion, such
as a certain number of iterations or evaluations, is met. A very good survey about
MOPSO can be found in [35].

Parallelising MOPSO based on the Master-Slave model for a set of homoge-
neous resources can be easily achieved. Algorithm 2 shows a (synchronous) Par-
allel MOPSO on an homogeneous set of resources. Since the computing resources
are homogeneous it is safe to assume the results from slave nodes will be returned
to the master node in a timely and synchronised manner, provided the computing
resources and interconnection network are dedicated to the optimisation task and
free of failures. In every iteration, the master node distributes the evaluation tasks
and waits for all of the resources to finish.

However, the main issue in dealing with heterogeneous (asynchronous) resources
is that in the worst case of having only one slow computing resource, almost all of
the computing resources remain idle while the master node waits for the slowest one.
Here, we want to make use of all of the computing resources in a way that, as soon as

56 A. Lewis et al.

Algorithm 2 Synchronous MOPSO
Initialise population
repeat

Distribute evaluations of the population members on the computing resources
Wait for all of the computing resources to finish evaluations
Find non-dominated solutions; store in the archive
Update the population and the archive
Apply turbulence factor

until Termination condition met
Return archive

a reasonable amount of resources have completed evaluations, the master resource
continues optimising without further waiting. This is not to imply the results of the
slow computers are not also of interest as they also contain information about the
search space. The information from them will be incorporated when it arrives at a
later stage.
The first step in parallelisation on a heterogeneous set of resources is to define a
good set of initial particles and send them to the slave nodes for evaluation. Usually
in MOPSO a random set is used; here we propose to use a set of random particles
defined by a recursive Gap Search (GS) Method as explained below. While use of
Gap Search is peripheral to the investigation of asynchronous update in the MOPSO
algorithm, it is a novel approach to satisfying the goal of efficient search of the
parameter space.

3.1 Exploration Using Recursive Gap Search Method

For searching the least explored regions of a search space, Gap Search (GS) algo-
rithm has been proposed which is very similar to the Binary Search [23]. GS is a
recursive search algorithm which finds the large gaps in the search space and sam-
ples solutions in those areas where the binary search employs a successive search in
most promising areas in the search space. In GS, the search is started by selecting
a random point in the search space. Then the largest empty region is found in the
space by computing the distances between the first point and the boundaries of the
search space. Figure 1 (a) shows an example for a two dimensional space. The next
point is randomly selected in that empty region (Figure 1 (b)). This is an iterative
method and can be performed for any desired number of solutions. These solutions
are usually stored in a list.

One disadvantage of GS is that selecting a point from a large list of solutions
requires a relatively high computation time, particularly for spaces of high (> 20)
dimensionality. In the cases at which this study is aimed, it is assumed the time taken
for objective function evaluations will dominate.

Asynchronous Optimisation in Unreliable Distributed Environments 57

Fig. 1 An example of the Gap Search Method in a two dimensional space. In (a) one point
is randomly selected in the search space. The next point is selected in the most empty region
defined in (b). c©2008 IEEE

3.2 Parallel MOPSO on Heterogeneous Resources

We propose a MOPSO which starts with an initial set of solutions based on the recur-
sive Gap Search method. These selected solutions are stored in a list and are sent to
the slave processors for evaluation. The master node waits for Ns (1 ≤ Ns ≤ N) pro-
cessors where N is the total number of available processors. After receiving those
evaluations, the non-dominated solutions are stored in the archive and the master
node sends new evaluation jobs to the Ns processors. Note that this differs from a
synchronous algorithm in that the master node is determining Pareto-dominance of
solutions based on incomplete information. A synchronous MOPSO waits for all
solution evaluations to be returned before processing them.

Before sending the parameter sets, the master node qualifies the evaluation of the
processors. If the solution found by a processor is:

• dominated by one of the archive members: the master processor selects a proper
global guide from the archive and updates the position of the corresponding par-
ticle based on MOPSO. Then the master processor sends the new position to the
slave processor for evaluation.

• not dominated by any other archive member: the master processor gives the task
of exploration to the corresponding processor. Based on the Gap Search Method,
a proper random position in an unexplored region in the space is selected and is
sent to the slave processor for evaluation.

The exploration task done by GS replaces the turbulence factor of the original
MOPSO. The population members are stored in the Gap List over the generations.
Algorithm 3 shows the parallel MOPSO on heterogeneous resources.

58 A. Lewis et al.

Algorithm 3 Asynchronous MOPSO
Initialise population using GS
Store the GS points in a List
Distribute evaluations of the population members on the computing resources
repeat

Wait for at least Ns of the computing resources to finish evaluations
Find non-dominated solutions; store in the archive
For all of the dominated solutions

Update using MOPSO
For all of the non-dominated solutions

Explore using GS
Update the GS List

Update the archive
Redistribute the evaluations on the resources

until Termination condition met
Return archive

3.3 Discussion

In this algorithm, the parameter Ns, the least number of processors to wait for, must
be known in advance. In fact, this parameter depends on the heterogeneous resources
and the estimated load on them. It can also change during the iterations.

In the proposed Parallel MOPSO, we do not use a turbulence factor. Instead,
we apply an intentional exploration to the non-dominated solutions using the Gap
Search method. The reason is that the non-dominated solutions cannot be signif-
icantly improved by the conventional MOPSO as they constitute the global best
particles from which guides are drawn. Therefore, their positions are stored in the
archive and we assign them a new position based on the Gap Search. On the other
hand, the position of the dominated particles can be improved by the guidance of
the non-dominated ones and therefore the MOPSO method can be used effectively.

Also, in this algorithm we not only store the non-dominated solutions in the
archive but we also store all the population members (explored by GS) in a list.
In fact, the list is very useful to obtain knowledge about the unexplored regions, in
contrast to the idea of selecting any random position in parameter space using the
turbulence factor. It must be mentioned that the size of the list has a great impact
on the computation time. Here, we assume that the function evaluations require a
relatively high computation time and that there is a limited number of solutions in
the lists so that the computation time of finding the unexplored regions in the list
can be neglected.

3.4 Experiments

The major goal of the experiments was to evaluate the quality of the solutions
when running the system for a certain time and adding waiting time (execution

Asynchronous Optimisation in Unreliable Distributed Environments 59

Fig. 2 Five different resources are illustrated in terms of speed. The resource type 1 is five
times faster than the resource type 5. Resource types are shown in the Boxes.

heterogeneity) to the resources. The system was analysed by adding waiting time to
the fast resources to wait for a certain percentage of the slow ones. The experiments
were performed on a simulation environment containing 100 resources with 5 dif-
ferent computation speeds. The simulation was based on a real scenario in a typical
grid. Figure 2 illustrates 5 different kinds of available resources. There are 3, 3, 20,
43, and 31 number of type 1 (very fast), type 2, type 3, type 4, and type 5 (very
slow) resources, respectively.

The test function FF was selected from Table 1 for these experiments. The quality
of the solutions was computed by the hypervolume metric [48] averaged over 20
runs.

The asynchronous MOPSO described, an extension of the algorithm from
Mostaghim and Teich [29], was executed on the master node using 100 particles.
The total time Ttotal was set to be 120, meaning the fast resources were able to
evaluate 120 particles.

The main archive stored in the master node was set to be empty initially (for the
first run). Parameter settings were selected so that the first runs of the 100 resources
included only a random sampling of the search space until the fast processors fin-
ished their evaluations and updated the archive.

Figure 3 shows the quality of the archive members over time. Different plots
illustrate the quality if the resources that complete wait for j other resources to
finish and update the archive (j = 0,10,20,30,40,50).

We observe that, if the resources do not wait, the results are worse than if they
wait for at least 10 to 20 percent of the resources. This result is to be expected as,
in multi-objective optimisation, the results depend on each other through the domi-
nance relation. If the resources wait (in this case) for up to 20 percent, they achieve
a better quality than if they do not wait. In fact, in every step of optimisation it is
better to have enough evaluations to find more dominated and non-dominated solu-
tions. Hence waiting for a time has the advantage of receiving more solutions. This
leads to a better direction in the optimisation than not waiting. However, waiting for

60 A. Lewis et al.

Fig. 3 The quality of the solutions obtained over time. The plots show the quality if the
computing resources wait for at least 0, 10, 20, 30, 40 and 50 other computing resources
to continue the optimisation. A long waiting time corresponds to the worst quality, whereas
waiting time of less than 20 percent is shown to increase the quality.

a large number of other resources means that the fast processors stay idle for a long
time which is, on the other hand, undesirable when allowed only a fixed time for the
entire optimisation process (such as when using the grid).

4 Unreliable Distributed Environments

The experiments described in the previous section demonstrated the improvements
achievable using asynchronous updates in an environment consisting of hetero-
geneous computing resources. Parallel MOPSO was based on the straightforward
Master-Slave parallelisation paradigm. In this section we seek to extend the algo-
rithm to use in a decentralised distributed computing environment. At the time of
writing, the only studies on asynchronous particle updates in parallel particle swarm
algorithms have focused mainly on parallel efficiency [26, 45], without thoroughly
examining the impact of parallel updates on algorithm convergence time, and with-
out looking at the impact of evaluation failure. Failure is an important factor to
consider, as it is practically unavoidable in most environments, whether caused by
inter-node communication breakdowns, node failure, or even failure of the solver
itself. Indeed, in distributed computing environments it is prudent to assume it is

Asynchronous Optimisation in Unreliable Distributed Environments 61

not a matter of if failures of computers or communications will occur, but when.
The work described in this section examines the effects of asynchronous updates in
distributed MOPSO algorithms in fault-prone environments (Parallel Asynchronous
MOPSO), and compares the convergence characteristics of Synchronous and Asyn-
chronous MOPSO against both iteration count and wall-clock execution time.

5 Distributed Particle Swarm Optimisation

As described earlier, the simplest and most common distributed particle swarm op-
timisation algorithms utilise a master-slave architecture, where a single controlling
(master) processor runs only the optimisation algorithm, and utilises external (slave)
processors to compute potential solutions [32]. Care must be taken, however, in
translating this model to an unreliable distributed computing environment, as fail-
ures may impact the master node itself.

In a synchronous MOPSO, the algorithm will wait for all particles to be solved
before updating particle velocities and positions using equations 1 and 2. This al-
lows the term iteration to be easily defined as one step of the algorithm in which all
particles are evaluated. In asynchronous MOPSO, however, the algorithm will wait
for only a certain proportion of the particle solutions to be returned before updates
are carried out, making an iteration harder to define. For the purposes of compar-
ing convergence against iterations completed, a single iteration of a asynchronous
algorithm will be defined as a period in which the number of evaluations performed
equals the number of particles in the population.

The performance of synchronous algorithms will be seriously impacted if the
computing resources are not homogeneous. If some particles take longer to compute
than others, at the end of each iteration most nodes in the cluster will be idle, reduc-
ing parallel efficiency, and increasing the execution time of the algorithm. Worse
still, if one or more particle solutions are not returned in a timely fashion (in which
case they can be said to have failed), those particles must be evaluated again, further
decreasing parallel efficiency and negatively impacting the time taken to arrive at
the optimal solution. The asynchronous algorithms will not suffer as significantly
from these issues. A 1% synchronous environment (i.e., fully asynchronous, the
algorithm does not wait for any other evaluations to be completed) asynchronous
MOPSO will theoretically obtain near 100% parallel efficiency, and the impact of
failures will be lessened, as a failed particle will not delay any others. In a 50% syn-
chronous environment, the asynchronous MOPSO will still have a somewhat higher
parallel efficiency than the synchronous one, and will only be impacted by failures
if half or more of the particles fail to evaluate.

However, it can be expected that the parallel asynchronous MOPSO will have
some disadvantages compared to the synchronous one in regards to convergence
against iterations completed. Whereas the sequential asynchronous MOPSO yielded
convergence improvements over the synchronous MOPSO, the parallel synchronous
MOPSO will have somewhat decreased performance. The cause of this becomes

62 A. Lewis et al.

obvious when examining the amount of information (previous solutions) available
when any given particle is updated. In the sequential asynchronous MOPSO, the
number of previous solutions PSsa for particle j at iteration i for a swarm of size N
is given by Equation 3.

PSsa = (i−1)×N +(j−1) (3)

For example, on the second (i = 2) iteration of a N = 100 MOPSO, particle j =
50 will have 149 previous solutions available to it. This is more than would be
available to a synchronous MOPSO, which would only have the 100 solutions from
the previous iteration available for the same example, as given by Equation 4.

PSps = (i−1)×N (4)

Calculating the amount of information available to a purely asynchronous MOPSO
is slightly more complex, being based somewhat on when the particle evaluation
is completed, but for a particle having around average evaluation time, it can be
approximated as in Equation 5.

PSpa�(i−1)×N − N
2

(5)

Unlike the sequential asynchronous and synchronous MOPSO, the Parallel asyn-
chronous MOPSO at iteration i = 2 will not usually have all the information from
the previous iteration available to it, as many particles will still be under evalua-
tion. As such, for the example used previously, a particle on the second iteration
will only have, on average, 50 previous solutions available to them. This clearly
suggests that, in terms of iterations completed, the parallel asynchronous MOPSO
should converge more slowly than the synchronous one. It is expected, however, that
this performance decrease will be countered somewhat by the increased parallel ef-
ficiency of the asynchronous MOPSO, which will allow particle evaluations (and
thus iterations) to be completed more quickly than in the synchronous one.

5.1 Simulation Setup and Testing Procedure

In order to examine the performance of the parallel asynchronous and synchronous
MOPSO in heterogeneous, fault-prone conditions, a distributed particle swarm sim-
ulation environment was constructed using both 100 particles and 100 computa-
tional nodes. A MOPSO algorithm was used, with Pglobal and Pbest being chosen at
random from the non-dominated sets of solutions found by the entire population and
by the individual particles, respectively.

Particle evaluation times were controlled so as to conform to a normal distribu-
tion, with a mean execution time of μ = 5 seconds and a standard deviation σ = 1
second. Modeling the evaluation times in this way meant that failures could be

Asynchronous Optimisation in Unreliable Distributed Environments 63

detected by monitoring the time taken by each solver. If a solution was not returned
with μ + 4σ seconds, it was assumed that the solver had failed and required that
the evaluation be repeated. This is a safe assumption, as (from the properties of the
normal distribution) 99.997% of evaluations would have completed in this allowed
time.

The solver used was the analytical ZDT1 test function described earlier. Simu-
lations were run for varying degrees of synchronous behaviour, ranging from 1%
(fully asynchronous) through to 100% (fully synchronous), and for failure rates of
0%, 5%, 10% and 20%. It should be noted that these failure rates are mean failure
rates, as the probability of an evaluation failure was based on a normal distribution.
Results were averaged over fifteen runs to ensure reliable, repeatable experimen-
tal data was obtained. A convergence factor metric was used which measured area
of the potential solution space not dominated by an approximation to the Pareto-
optimal front as a ratio of the solution space not dominated by the actual Pareto-
front. This convergence metric is given mathematically as

ConvergenceFactor =
PAapproximate

PAactual
(6)

where PAapproximate is the non-dominated area under the approximate Pareto-optimal
front, and PAactual is non-dominated area under the real Pareto-optimal front, which
can be derived mathematically for the test functions used. An approximation to the
Pareto-optimal front that is equal to the actual Pareto-front has a convergence factor
of one, and a solution set that has not converged will have a convergence factor
less than one (but greater than zero). This convergence factor was monitored as a
function of both iterations completed and time elapsed.

In addition to node failure, grid (or node) diversity will also impact the perfor-
mance of the MOPSO variants. In a more diverse grid, solution times will vary more
widely, increasing the parallel efficiency advantage of the asynchronous algorithm.
Conversely, a grid containing mostly homogeneous nodes will lead to very simi-
lar solution times, decreasing the parallel efficiency advantage of the asynchronous
method, making a more synchronous approach desirable. To test this hypothesis,
simulations were performed with varying execution time distributions for both the
fully synchronous and fully asynchronous implementations.

5.2 Results

The first test carried out involved measuring the convergence of the algorithms as
a function of iterations completed in a fault-free environment, in order to confirm
the previously stated hypothesis that the more asynchronous algorithm variations
will take more iterations to converge to the same point as the less asynchronous
algorithms. The average convergence factor for 1% synchronous, 30% synchronous,
70% synchronous and 100% synchronous MOPSOs over 100 iterations is shown in
Figure 4.

64 A. Lewis et al.

Fig. 4 Algorithm convergence for varying degrees of synchronous behaviour - 1% (fully
asynchronous), 30%, 70% and 100% (fully synchronous) - as a function of iterations com-
pleted, with 0% failure rate. c©2008 IEEE

These results support the stated hypothesis, clearly showing that the fully syn-
chronous algorithm (the parallel synchronous MOPSO) converges faster with re-
spect to iterations completed than the asynchronous MOPSO variations, with the
purely asynchronous algorithm performing the worst of all, as expected. The more
synchronous the algorithm is, the faster it converges with respect to iterations com-
pleted.

Figure 5 (a) shows the algorithm convergence as a function of time for an exe-
cution time distribution having a 5% standard deviation, representing a mostly ho-
mogeneous grid environment. In such an environment it can be seen that the syn-
chronous update mechanism outperforms the asynchronous one, due to the reduced
parallel efficiency advantage gained through the use of asynchronous updates. At
some solver execution time distribution, the performance of the different update
mechanisms can be expected to be approximately equal. When grid diversity is in-
creased passed this critical point, the parallel efficiency advantage provided by asyn-
chronous particle updates outweighs the iteration-wise convergence increase of the
synchronous algorithm. This is confirmed in Figure 5 (b), which shows the conver-
gence rate of the two algorithm variations when the distribution of solver execution
times has a standard deviation of 20%.

The introduction of faults has very little effect on the asynchronous (1%, 30%
and 70%) algorithms, whereas the performance of the synchronous algorithm drops

Asynchronous Optimisation in Unreliable Distributed Environments 65

(a) 5% standard deviation in solver execution time

(b) 20% standard deviation in solver execution time

Fig. 5 Algorithm convergence for both completely synchronous and asynchronous behaviour

markedly. Figure 6 shows the same algorithm performance measure for a proba-
bility of failure of 10%. Once the failure rate reaches 10%, the 90% synchronous
MOPSO’s performance also starts to degrade. With increasing failure rates, the syn-
chronous MOPSO degrades further. This extra drop in performance can be attributed

66 A. Lewis et al.

Fig. 6 Algorithm convergence for low degrees of asynchronous behaviour - 70%, 80%, 90%
and 100% (fully synchronous) - as a function of algorithm execution time, with 10% failure
rate. c©2008 IEEE

to particles failing multiple times in the same iteration, further increasing the time
required for each iteration.

The performance losses shown in the synchronous MOPSO and the more asyn-
chronous MOPSO algorithms would not be evident on graphs displaying algorithm
convergence as a function of completed algorithm iterations, highlighting the signif-
icance of examining the execution time of such parallel algorithms in heterogeneous,
fault-prone environments.

6 Addressing Churn

To this point, the analysis of the algorithms has focused on their performance in
the presence of failures. In a distributed computing environment, it may be the case
that additional nodes will become available for use. New nodes may appear either
by addition to the resources, particularly in instances in which the computational
resources comprise an ad hoc grid in a peer-to-peer environment [41, 39], or by
a node which previously failed returning to operation. Together with failures, the
turnover in resources is collectively known as churn. When additional resources

Asynchronous Optimisation in Unreliable Distributed Environments 67

appear, the optimisation algorithm must decide how best to use them, generating
new particles for them to evaluate.

The generation of new particle positions is a new problem which required inves-
tigation. Particle generation during the initialisation stage of evolutionary optimi-
sation algorithms has been investigated, with the general opinion tending towards
random initialisation of particles when no information on the problem space is avail-
able [47]. Some studies, however, have shown that with some prior knowledge of
the problem space, intelligent positioning of the initial population leads to faster
convergence to the optimal solutions [34, 4, 15, 33]. When generating new particles
during the optimisation process, significant information regarding both the problem
space and the current swarm location will be available, and this chapter investigates
a number of methods of utilising this information to improve convergence speeds in
unreliable distributed environments.

6.1 Proposed Approaches

Mid-execution of a particle swarm optimisation process, the algorithm has access to
the current approximate to the Pareto-optimal front (that is, the best solutions found
by the algorithm to that point in time). Using this information, new particle positions
can be generated with aim to improve the Pareto front, by either attempting to fill
gaps in it, or by extending its edges.

6.1.1 Approach 1: Filling Gaps in the Pareto Front

The governing equations of the particle swarm algorithm, neglecting the inertia
term, cause particles to search between two points in the search space - the local
and global guide solutions. Using a similar approach when generating new particles
is therefore an obvious choice. Instead of using local and global guides (the former
being unavailable as we are generating a new particle), the two locations to search
between can be taken as the two bounding solutions in the largest gap in the current
Pareto-front, for example solutions x′ and x′′ in Figure 7.

Once the bounding solutions are selected, each parameter xk is calculated for the
new particle using equation 7.

xk =
r1x′k + r2x′′k

r1 + r2
(7)

The symbols r1 and r2 in (7) represent uniformly distributed random numbers be-
tween zero and one. Given the assumption of correlation between parameter and
objective space (which is inherent in the particle swarm method), the newly gener-
ated particle should fall roughly between the two bounding solutions in the objective
space.

68 A. Lewis et al.

Fig. 7 Generating a new particle location by filling the largest gap in the pareto front

6.1.2 Approach 2: Extending the Edges of the Pareto Front

The gap-filling approach may cause the swarm to cluster towards the centre of the
Pareto front, as it will never generate new particles outside the bounds of the current
solutions on the edge of the front. In order to extend the edges of the front, a different
approach must be used. The edge points are defined by sorting on an objective and
choosing the extremes. Once the extremal solutions are selected, each parameter xk

is calculated for the new particle using equation 8.

xk =
r1x′k + r2(x′k +(x′k − x′′k))

r1 + r2
(8)

The symbols r1 and r2 in (8) again represent uniformly distributed random numbers
between zero and one. The newly generated particle will this time be positioned
past the current edges of the Pareto front in the solution space, again assuming
correlation between the parameter and objective spaces. This approach is shown in
Figure 8.

Asynchronous Optimisation in Unreliable Distributed Environments 69

Fig. 8 Generating a new particle location by extending the edges of the Pareto front

6.1.3 Approach 3: A Hybrid Method

Both of the previously discussed approaches have both advantages and disadvan-
tages. The gap filling method will promote good coverage of the global Pareto front,
but only between the currently located extremal solutions. The edge extending ap-
proach, on the other hand, will promote exploration outside the current approxima-
tion to the Pareto front, but at the expense of convergence in the centre. It makes
sense, then, to use a combination of the two approaches in order to gain the benefits
of both while limiting the disadvantages.

6.2 Testing Procedure

In order to examine the performance of each approach, a testing environment was
created utilising a thirty particle PSO algorithm, with one particle being removed
and replaced using each of the various approaches at set intervals. Four popular an-
alytical test functions were used as follows. Test functions ZDT1, ZDT2 and DTZL
were each run for 200 iterations, with a particle replacement occurring every five
iterations. The FF test function was run for 70 iterations (as it was a simpler, easier
to solve problem), with particle replacement every second iteration.

70 A. Lewis et al.

Each optimisation process was executed 200 times, with convergence and cover-
age metric data being averaged to give reliable results. The convergence and cover-
age metrics used are described later in this section. As well as the three previously
described approaches, a baseline test was included where no particles were added
or removed, as well as a random test where new particles were randomly generated.

6.3 Algorithm Performance Metrics

Up until this point, a single algorithm performance metric has been sufficient for
examining the effects of altering the implementation of a distributed particle swarm
optimisation algorithm. However, in order to comprehensively examine the effect
of an algorithmic modification such as creating new particles during execution, two
separate performance metrics are required [17]. The two metrics used are described
here.

6.3.1 Convergence Metric

The metric used to measure algorithm convergence (the closeness of a
non-dominated set to the real Pareto-optimal front) in this study does so by mea-
suring the volume/area of the objective space which is not dominated by a given
approximation to the Pareto-optimal front. This is somewhat similar to the pop-
ular hypervolume metric, which evaluates the area/volume of the objective space
which is dominated by a given set of non-dominated solutions [48]. This inverted
hypervolume metric was used as the lower bounds for all objective in each of the
test functions used are known to be zero, providing a convenient boundary for a
hypervolume-like metric. In the case of minimisation problems, such as the test
functions used for this chapter, a smaller value for this metric denotes a closer ap-
proximation to the global Pareto-optimal front.

6.3.2 Coverage Metric

The coverage metric used for this research is a new one, as no existing metrics
were deemed suitable for the purposes of this study. Existing diversity metrics [17]
measure the statistical spread or evenness of the Pareto-front, rather than quantifying
how well a given non-dominated set covers the objective space. An approximate
front may be very evenly spread (that is, the distances between adjacent particles are
relatively similar). However, it may contain very few solutions and/or not adequately
cover the entire range of possible objective values. In such cases existing diversity
metrics would give a misleading evaluation of the quality of the approximate Pareto-
optimal front.

Asynchronous Optimisation in Unreliable Distributed Environments 71

A new coverage metric is proposed whereby the objective space is divided into
sectors originating from the utopia point. The value of the diversity metric is then
given as the ratio of these sectors which contain at least one member of the non-
dominated set to the total number of sectors, or, mathematically:

Ψ =
1
N

N

∑
n=1

ψn (9)

where ψn =

{
1, if ∃S ∈ PF ,αn−1 ≤ tan f1(x)

f2(x) ≤ αn

0, otherwise

A simple example of this metric can be seen in Figure 9. In this example, the
solution space is divided into ten equal segments, with seven of these segments
containing solutions in the current approximation to the Pareto-optimal front. This
approximate Pareto front would therefore be classified as having a 0.7 or 70% cov-
erage factor. Practically, more segments are used to give a higher resolution result -
in this study, the same number of segments were used as there were particles in the
swarm.

Fig. 9 Application of the proposed coverage metric to an example pareto front

72 A. Lewis et al.

Baseline Extend Fill Hybrid75 Random
0.45

0.5

0.55

0.6

0.65

0.7

0.75

C
on

ve
rg

en
ce

 (
20

0
ite

ra
tio

ns
)

ZDT1 − Convergence (smaller = better)

Baseline Extend Fill Hybrid75 Random

0.5

0.6

0.7

0.8

0.9

1

C
ov

er
ag

e
(2

00
 it

er
at

io
ns

)

ZDT1 − Coverage (larger = better)

Fig. 10 Convergence (left) and coverage (right) of PSO algorithm on ZDT1 problem.

Baseline Extend Fill Hybrid75 Random

0.7

0.8

0.9

1

1.1

1.2

C
on

ve
rg

en
ce

 (
20

0
ite

ra
tio

ns
)

ZDT2 − Convergence (smaller = better)

Baseline Extend Fill Hybrid75 Random
0

0.2

0.4

0.6

0.8

1
C

ov
er

ag
e

(2
00

 it
er

at
io

ns
)

ZDT2 − Coverage (larger = better)

Fig. 11 Convergence (left) and coverage (right) of PSO algorithm on ZDT2 problem.

6.4 Experimental Results

Box plots of the convergence and coverage metrics for each test function and algo-
rithmic approach can be seen in Figures 10 through 13.

It can be seen that the gap filling method significantly out-performs edge extend-
ing approach in both the ZDT1 and ZDT2 test functions, in terms of both conver-
gence and coverage of the Pareto-optimal front. Both approaches appear to result
in better optimisation results than the baseline algorithm and the random generation
method.

The two approaches faired slightly differently when applied to the FF test func-
tion. The gap filling method still resulting in increased algorithm convergence when
compared to extending the edges, however the difference between the two ap-
proaches here was significantly less than for the ZDT functions. Unlike the results
for two ZDT functions, here the edge extending approach achieves, on average,
better coverage of the Pareto front than the gap filling method for generating new
particles.

Asynchronous Optimisation in Unreliable Distributed Environments 73

Baseline Extend Fill Hybrid75 Random

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

C
on

ve
rg

en
ce

 (
70

 it
er

at
io

ns
)

FF − Convergence (smaller = better)

Baseline Extend Fill Hybrid75 Random

0.5

0.6

0.7

0.8

0.9

C
ov

er
ag

e
(7

0
ite

ra
tio

ns
)

FF − Coverage (larger = better)

Fig. 12 Convergence (left) and coverage (right) of PSO algorithm on FF problem.

Baseline Extend Fill Hybrid75 Random

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

C
on

ve
rg

en
ce

 (
20

0
ite

ra
tio

ns
)

DTZL − Convergence (smaller = better)

Baseline Extend Fill Hybrid75 Random

0.4

0.5

0.6

0.7

0.8

0.9

1
C

ov
er

ag
e

(2
00

 it
er

at
io

ns
)

DTZL − Coverage (larger = better)

Fig. 13 Convergence (left) and coverage (right) of PSO algorithm on DTZL problem.

The results for the DTZL test function are comparable to those obtained using the
ZDT1 and ZDT2 functions, with the gap filling approach being the top performer.

The hybrid approach, which generated new particles using the gap filling ap-
proach 75% of the time and used the edge extending approach the other 25%, can
be seen to give the most consistent results across all four test functions. In all cases,
the results produced by the hybrid approach compare quite favourable with those of
the top performing method.

A question remains as to how well the methods described in this section scale
with increased numbers of objectives, i.e., an objective space of higher dimension-
ality. When finding gaps, it is not difficult to generalise the method to higher di-
mensions. It suffices to find the nearest neighbour for each point in the set of non-
dominated solutions by means of calculating the Euclidian distance between them
in objective space, and select the pair for which this distance is a maximum. This
operation has a computational complexity of O((N/2)2) but, given the assumption
that the evaluation of objective functions dominates computation time, this can be
ignored. Extending edges is less simple: as the dimensionality of objective space
increases, so do the number of edges to be considered and it is not clear that the
function of the algorithm will be best served by choosing only extremal points. The

74 A. Lewis et al.

effects of higher dimensionality on algorithm performance remain a subject for fu-
ture work.

With regard to the coverage metric, the metric operates essentially by taking an
N −1 dimensional “slice” through the objective space, trivially extensible to multi-
ple dimensions. As, however, this effectively collapses the distribution of the non-
dominated set into a projection onto a single dimension, care should be exercised
interpreting results for higher-dimensional problems.

7 Conclusions

In this chapter, we studied the Master-Slave model of parallelisation to solve multi-
objective optimisation problems on a heterogeneous set of resources. We proposed
a new hybrid Parallel MOPSO method called PMOPSO which uses a Gap Search
method to search unexplored regions of the parameter space. PMOPSO was tested
on a scenario containing a set of heterogeneous resources and compared with 3
other cases. The results show a good quality of solutions even when compared with
a non-parallel case which takes a longer computation time. The proposed approach
is particularly suitable for very expensive multi-objective problems of real-world
applications using a heterogeneous set of processors.

Consideration of asynchronous update in parallel MOPSO algorithms was ex-
tended from the Master-Slave model to a general, distributed computing approach.
From the results presented in this chapter it can be concluded that asynchronous
particle updates, while negatively impacting algorithm convergence with respect to
iterations completed, allow parallel distributed particle swarm algorithms to grace-
fully and efficiently handle node and solver heterogeneity as well as node, network
and solver failure. Using asynchronous particle updates has been shown to increase
parallel efficiency [26], which in turn decreases the computation time required for
each algorithm iteration. This decrease in iteration time mitigates the decrease in
algorithm convergence as a function of iterations completed which is introduced by
the asynchronous update mechanism.

Simulations performed have shown that the more likely failures are, the more
asynchronous the parallel particle swarm algorithm should be made. The degree of
grid heterogeneity will need to be considered alongside grid volatility when setting
the degree of synchronisation in particle updates. In fairly reliable environments
such as fixed, dedicated high-performance computer clusters, mostly synchronous
algorithms can be used, however if deploying into more volatile environments, such
as distributed computer grids or non-dedicated peer-to-peer systems, the algorithms
used should be made more asynchronous to counter the higher number of failures
that can be expected. The degree of synchronisation could be set dynamically, al-
lowing the performance of the algorithm to be maintained in dynamic grid environ-
ments.

Finally, we considered the issue of churn, in which compute resources may not
only disappear through failure, but appear, by a variety of mechanisms, to take on

Asynchronous Optimisation in Unreliable Distributed Environments 75

tasks. Two methods, Pareto front gap filling and edge extending, and proposed a
hybrid approach were evaluated for their ability to fully and effectively utilise avail-
able resources in decentralised, fault-prone distributed environments. The proposed
approaches were tested using a number of popular analytical optimisation test func-
tions, and performance evaluated with convergence and coverage metrics. Gener-
ating new particles by attempting to fill gaps in the Pareto-optimal front generally
performed better than extending the front’s edges. However it was shown that ex-
tending the edges of the Pareto-front can be more advantageous in certain scenarios.
From this, a hybridised method was formulated to utilise both approaches while
favouring gap filling, and this hybrid method was shown to perform consistently
well across all problems used for testing.

Results presented here have shown that asynchronous updates in parallel particle
swarm algorithms can lead to significant performance increases in diverse grid en-
vironments, where solver execution times will vary widely. Future work is desirable
to investigate dynamic methods to respond to changing computing environments,
in both the degree of synchronisation and manner in which additional compute re-
sources are utilised. In addition, further analysis of the performance of PAPSO al-
gorithms on other test problems with higher numbers of parameters and objectives
is required.

Acknowledgements The authors would like to thank Jürgen Branke for his contributions
to the early stages of this work. Some portions of the work described in this chapter are
reprinted, with permission, from Scriven, I., Ireland, D., Lewis, A., Mostaghim, S. and
Branke, J., ”Asynchronous Multiple Objective Particle Swarm Optimisation in Unreliable
Distributed Environments” and Mostaghim, S., Branke, J., Lewis, A. and Schmeck, H., ”Par-
allel Multi-objective Optimization Using Master-slave Model on Heterogeneous Resources”,
in WCCI 2008 Proceedings (2008 IEEE World Congress on Computational Intelligence)
c©2008 IEEE.

References

[1] Abramson, D., Lewis, A., Peachy, T.: Nimrod/O: A tool for automatic design optimiza-
tion. In: The 4th International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP 2000) (2000)

[2] Al-Kazemi, B., Mohan, C.: Multi-phase generalization of the particle swarm optimiza-
tion algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation,
vol 2, pp. 1057–1062 (2002)

[3] Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transactions
on Evolutionary Computation 6(5), 443–461 (2002)

[4] Angeline, P.J.: Evolutionary optimization versus particle swarm optimization: Philoso-
phy and performance differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS,
vol. 1447, pp. 601–610. Springer, Heidelberg (1998)

[5] Branke, J., Mostaghim, S.: About selecting the personal best in multi-objective particle
swarm optimization. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós,
J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 523–532. Springer,
Heidelberg (2006)

76 A. Lewis et al.

[6] Branke, J., Kamper, A., Schmeck, H.: Distribution of evolutionary algorithms in het-
erogeneous networks. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp.
923–934. Springer, Heidelberg (2004)

[7] Branke, J., Schmeck, H., Deb, K., Reddy, M.: Parallelizing Multi-Objective Evolution-
ary Algorithms: Cone Separation. In: IEEE Congress on Evolutionary Computation, pp.
1952–1957 (2004)

[8] Branke, J., Deb, K., Miettinen, K., Slowinski, R.: Multiobjective Optimization Interac-
tive and Evolutionary Approaches. Springer, Heidelberg (2008)

[9] Bui, L.T., Abbass, H.A., Essam, D.: Local models - an approach to distributed multiob-
jective optimization. Journal of Computational Optimization and Applications (2007)

[10] Cantu-Paz, E.: Designing efficient master-slave parallel genetic algorithms. IlliGAL Re-
port 97004, University of Illinois (1997)

[11] Cantu-Paz, E.: A survey of parallel genetic algorithms. IlliGAL Report 97003, Univer-
sity of Illinois (1997)

[12] Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer, Dordrecht
(2000)

[13] Carlisle, A., Dozier, G.: An off-the-shelf PSO. In: Proceedings of the 2001 Workshop
in Particle Swarm Optimisation, pp. 1–6 (2001)

[14] Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications.
Oxford University Press, Oxford (1997)

[15] Chou, C.H., Chen, J.-N.: Genetic algorithms: initialization schemes and genes extrac-
tion. In: The Ninth IEEE International Conference on Fuzzy Systems, 2000. FUZZ
IEEE 2000, vol. 2, pp. 965–968 (2000)

[16] Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solv-
ing Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

[17] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G.,
Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000.
LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

[18] Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization
test problems. In: Congress on Evolutionary Computation, pp. 825–830. IEEE, Los
Alamitos (2002)

[19] Deb, K., Zope, P., Jain, A.: Distributed computing of pareto-optimal solutions with
evolutionary algorithms. In: International Conference on Evolutionary Multi-Criterion
Optimization, pp. 534–549 (2003)

[20] Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of
stochastic multiobjective optimizers. In: Ebeling, W., Rechenberg, I., Voigt, H.-M.,
Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584–593. Springer, Heidel-
berg (1996)

[21] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Company, Inc, Reading (1989)

[22] Gupta, I., Ganesh, A.J., Kermarrec, A.M.: Efficient and adaptive epidemic-style proto-
cols for reliable and scalable multicast. IEEE Transactions on Parallel and Distributed
Systems 17(7), 593–605 (2006)

[23] Hughes, E.J.: Multi-objective binary search optimisation. In: Fonseca, C.M., Fleming,
P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 102–117.
Springer, Heidelberg (2003)

[24] Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco
(2001)

Asynchronous Optimisation in Unreliable Distributed Environments 77

[25] Knowles, J.: A summary-attainment-surface plotting method for visualizing the perfor-
mance of stochastic multiobjective optimizers. In: IEEE Intelligent Systems Design and
Applications (ISDA V) (2005)

[26] Koh, B., George, A.D., Haftka, R.T., Fregly, B.J.: Parallel asynchronous particle swarm
optimisation. International Journal for Numerical Methods in Engineering 67(4), 578–
595 (2006)

[27] Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J.: Evolvable agents, a fine grained
approach for distributed evolutionary computing: walking towards the peer-to-peer
computing frontiers. Soft Computing 12(12), 1145–1156 (2008)

[28] Laredo, J.L.J., Eiben, A.E., van Steen, M., Merelo, J.J.: On the run-time dynamics of
a peer-to-peer evolutionary algorithm. In: Rudolph, G., Jansen, T., Lucas, S., Poloni,
C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 236–245. Springer, Heidelberg
(2008)

[29] Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi-objective par-
ticle swarm optimization. In: IEEE Swarm Intelligence Symposium, pp. 26–33 (2003)

[30] Mostaghim, S., Teich, J.: A new approach on many objective diversity measurement.
In: Dagstuhl Proceedings number 04461, Dagstuhl, Germany (2004)

[31] Mostaghim, S., Teich, J.: A new approach on many objective diversity measure. In:
Proceedings of the Dagstuhl Seminar 04461 (2005)

[32] Mostaghim, S., Branke, J., Schmeck, H.: Multi-objective particle swarm optimization
on computer grids. In: The Genetic and Evolutionary Computation Conference, vol. 1,
pp. 869–875 (2007)

[33] Mostaghim, S., Branke, J., Lewis, A., Schmeck, H.: Parallel multi-objective optimiza-
tion using a master-slave model on heterogeneous resources. In: IEEE, Congress on
Evolutionary Computation (CEC) (2008)

[34] Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: A novel population initialization
method for accelerating evolutionary algorithms. Comput. Math. Appl. 53(10), 1605–
1614 (2007)

[35] Reyes-Sierra, M., Coello, C.A.C.: Multi-objective particle swarm optimizers: A sur-
vey of the state-of-the-art. International Journal of Computational Intelligence Re-
search 2(3), 287–308 (2006)

[36] Riget, J., Vesterstrøm, J.: A diversity-guided particle swarm optimizer - the ARPSO.
Technical report, University of Aarhus, Department of Computer Science (2002)

[37] Schutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka, R.T., George, A.D.: Parallel global op-
timisation with particle swarm algorithm. International Journal for Numerical Methods
in Engineering 61, 2296–2315 (2004)

[38] Scriven, I., Lewis, A., Ireland, D., Lu, J.: Distributed multiple objective particle swarm
optimisation using peer to peer networks. In: IEEE Congress on Evolutionary Compu-
tation (CEC) (2008)

[39] Scriven, I., Lewis, A., Smith, M., Friese, T.: Resource evaluation and node monitor-
ing in service oriented ad-hoc grids. In: Proc. Sixth Australasian Symposium on Grid
Computing and e-Research (AusGrid 2008), CRPIT, vol. 82, pp. 65–71 (2008)

[40] Scriven, I., Lu, J., Lewis, A.: An efficient peer-to-peer particle swarm optimiser for
EMC enclosure design. In: The 13th Biennial IEEE Conference on Electromagnetic
Field Computation, CEFC (2008)

[41] Smith, M., Friese, T., Freisleben, B.: Towards a service-oriented ad hoc grid. In: Proc.
3rd International Symposium on Parallel and Distributed Computing. IEEE Computer
Society, Los Alamitos (2004)

78 A. Lewis et al.

[42] Talbi, E.G., Mostaghim, S., Okabe, T., Ichibushi, H., Rudolph, G., Coello, C.C.: Parallel
Approaches for Multiobjective Optimization, pp. 349–372. Springer, Heidelberg (2008)

[43] Veldhuizen, D.A.V., Zydallis, J., Lamont, G.B.: Considerations in engineering parallel
multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computa-
tion 7(2), 144–173 (2003)

[44] Venter, G., Sobieszczanski, J.: Multidisciplinary optimisation of a transport aircraft
wing using particle swarm optimisation. Structural and Multidisciplinary optimisa-
tion 26(1-2), 121–131 (2004)

[45] Venter, G., Sobieszczanski-Sobieski, J.: A parallel particle swarm optimisation algo-
rithm accelerated by asynchronous evaluations. Journal of Aerospace Computing, In-
formation, and Communication 3(3), 123–137 (2006)

[46] Wickramasinghe, W.R.M.U.K., van Steen, M., Eiben, A.E.: Peer-to-peer evolutionary
algorithms with adaptive autonomous selection. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO), pp. 1460–1467 (2007)

[47] Xie, X.F., Zhang, W.J., Yang, Z.L.: Adaptive particle swarm optimization on individual
level. In: 2002 6th International Conference on Signal Processing, vol. 2, pp. 1215–1218
(2002)

[48] Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Ap-
plications. Shaker (1999)

Dynamic Problems and Nature
Inspired Meta-heuristics

Tim Hendtlass1, Irene Moser1, and Marcus Randall2

Abstract Biological systems have often been used as the inspiration for
search techniques to solve continuous and discrete combinatorial optimisa-
tion problems. One of the key aspects of biological systems is their ability to
adapt to changing environmental conditions. Yet, biologically inspired opti-
misation techniques are mostly used to solve static problems (problems that
do not change while they are being solved) rather than their dynamic coun-
terparts. This is mainly due to the fact that the incorporation of temporal
search control is a challenging task. Recently, however, a greater body of work
has been completed on enhanced versions of these biologically inspired meta-
heuristics, particularly genetic algorithms, ant colony optimisation, particle
swarm optimisation and extremal optimisation, so as to allow them to solve
dynamic optimisation problems. This survey chapter examines representa-
tive works and methodologies of these techniques on this important class of
problems.

1 Introduction

Many industrial optimisation problems are solved in environments that un-
dergo continual change. These problems are referred to as dynamic optimi-
sation problems and are characterised by an initial problem definition and
a series of ‘events’ that change it over time. An event defines some change

Centre for Information Technology Research
School of Information and Communication Technologies
Swinburne University, VIC 3001
{thendtlass, imoser}@ict.swin.edu.au
School of Information Technology
Bond University, QLD 4229
Australia
mrandall@bond.edu.au

A. Lewis et al. (Eds.): Biologically-Inspired Optimisation Methods, SCI 210, pp. 79–109.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

80 T. Hendtlass et al.

either to the data of the problem or its structural definition while the prob-
lem is being solved. In comparison to static optimisation problems, dynamic
optimisation problems often lack well defined objective functions, test data
sets, criteria for comparing solutions and standard formulations [7, 37].

Evolutionary algorithms are those based on natural and biological systems.
A very common example of these are genetic algorithms (GAs). For this class
of algorithms, extensive modifications to accommodate dynamic optimisation
problems have been made. A survey of these approaches up to the year 2000
is given by Branke [18]. However, for another group of evolutionary algo-
rithms, Ant Colony Optimisation (ACO) [35], Particle Swarm Optimisation
(PSO) [39] and Extremal Optimisation (EO) [13], suitable modifications and
applications to these difficult problems are only starting to appear.

This chapter presents a survey of representative GA, ACO, PSO and EO
works and methodologies for dynamic problems. Sections 2 (post 2000), 3, 4
and 5 describe how each of the identified meta-heuristics has been used to
solve dynamic optimisation problems. Section 6 comments on the limitations
of dynamic techniques.

2 Genetic Algorithms

Genetic Algorithms are generally regarded as the classical biologically in-
spired optimisation algorithms. Hence they are the predominant represen-
tatives of stochastic approaches in the work of researchers over the years,
and they also dominate the field of approaches to solving dynamic problems.
The concept of GAs was devised by Holland [53]. In essence, each solution
to a problem is treated as a chromosome, a population of which are used in
the system. Each solution component of the problem under consideration is
referred to as a gene. In early GAs, these were nearly exclusively composed
of sequences of bits called alleles, though real numbers and integers are now
commonly used instead. At each iteration of the algorithm, a subset of the
fittest chromosomes (i.e., those having the best objective function values) are
permitted to form the basis of the next generation. This is often done by
use of the crossover operator, in which gene segments of one individual are
replaced by segments of another thus forming a child chromosome. This can
be repeated until a new population is formed. Mutation of some gene values
also occurs to increase the genetic diversity of the population. Over time,
increasingly fitter individuals are produced, though premature convergence
may limit the extent of the optimality of the chromosome solutions.

There are numerous adaptations to dynamic optimisation problems and
the applications designed until the year 2000 have been reviewed in-depth
by Branke [18]. The GA adaptations discussed are mainly concerned with
postponing convergence to retain the ability to search the problem space
sufficiently widely after a change. The initial approaches up to around the

Dynamic Problems and Nature Inspired Meta-heuristics 81

year 2000 include memorising individuals [61, 74], adjusting the mutation
rate [1, 24, 25], redundant representation [43, 50, 69], randomisation [44],
fitness sharing [60] and multiple populations [18, 88].

2.1 Memory

Explicit memory as a GA variation was first introduced by Ramsey and
Grefenstette [74] as a knowledge base of memorised individuals, devised as
an approach to detecting and exploiting similarities between problem states.
When a problem enters a new state, the similarities with previous states
are determined and individuals which are well adapted to these states are
reintroduced into the population.

A substantial contribution on the usage of memory in connection with GAs
solving dynamic problems has been made by Branke [16]. The initial paper
explores a memory-based approach which divides the real-value encoded pop-
ulation into subpopulations. Initially, the population is subdivided into two
parts, one of which is randomised after a change. This part of the population
contributes individuals to the memory while the other part is responsible for
the search, for which it retrieves individuals from the repository. In a sec-
ond alternative, the population is split into three islands with all populations
contributing to the memory while only one of the populations retrieves in-
dividuals from this memory. The individuals in the memory are counted as
part of the population, which has a constant size. Individuals are retrieved
from memory after each detected change. Only the best individual is added
to memory from time to time (in this case, every ten generations), and sev-
eral replacement strategies are explored. The two best-performing strategies
propose to replace the most similar individual, alternatively to replace the
most similar individual only if it is of worse fitness. The experiments on the
Moving Peaks problem, using five peaks, compare the performance of the
implementations with one, two and three populations combined with mem-
ory as well as a single-population GA without memory. The results show a
superior performance of the implementation with two populations when the
peaks change their heights but do not move, whereas the three-population
variation performs best among the candidates when the peaks change their
locations as well as their heights. Branke [16] concedes that memory-based
approaches have limited application since they are only truly useful in the
case of an exact recurrence of a previous situation but also concludes that
increased diversity contributes more to the performance of a memory-based
GA than to a standard implementation.

Bendtsen and Krink [8] argue that repetitive patterns are typical for real
problems in everyday life, as various scheduling problems typically adhere
to daily or weekly patterns. The dynamic memory they employ does not
store the generation-best individual directly, but approaches it in real-valued

82 T. Hendtlass et al.

space. The memorised individual closest to the best in the main population
is moved towards this best individual by a Gaussian random number with a
mean of 0.5. At every generation, the best individual from memory replaces
the worst individual in the main population. Individuals in memory that do
not have the best individual as a closest neighbour are moved the same dis-
tance in a random direction. The authors report that their memory-enhanced
GA outperforms the implementation by Branke [16] as well as the standard
GA used as a reference. As test cases, they used the moving peaks function
developed by Morrison and De Jong [65] and a greenhouse problem.

Karaman, Uyar and Eryiǧit [57] employ a memory which characterises the
environment as it presents itself just before a change. A key figure defined as
the ratio of feasible individuals over all possible individuals identifies the en-
vironment, which is then reproduced probabilistically using a frequency array
of alleles (essentially a vector of the distributions of ones on the allele loca-
tions of all individuals). When the algorithm is notified of a change, it records
the current individuals in the distribution array before the individuals are re-
placed by the closest matching environment. To establish the closest recorded
environment, 100 random locations are specified at the beginning of the trial
and evaluated after each change according to the new objective function.
If no sufficiently close environment is available, the algorithm uses hyper-
mutation to facilitate quick adaptation. The authors explore the algorithm
(‘MIA’) by experimenting on a knapsack problem with 50 different environ-
ments (changes). Both a GA with hypermutation and a GA with memory are
used as a benchmark. The authors conclude that the devised MIA algorithm
performs better the longer the algorithms run, achieving better results after
the initial 1000 generations.

Inspired by Ramsey and Grefenstette [74] as well as Karaman et al. [57]
Yang [93] further explored the use of memorised individuals which provide
information regarding the environment they were initially stored from. The
Associative Memory GA (AMGA) algorithm updates its memory, whose size
is one tenth of the main population, by storing the best individual every 5–10
generations along with a frequency array of alleles as in Karaman et al. [57].
The individual and its distribution vector replace the closest individual in
memory. After a change, the fittest individual in memory is chosen and a
definable number of individuals are created from the distribution vector to
represent a previous environment. All new individuals are merged with the
population and the worst individuals are then discarded until the original
population size is restored. The experiments reveal that this algorithm works
best when the number of new individuals introduced equals approximately
50% of the size of the main population. Also, AMGA works best when solving
cyclic problems in which previous environments recur. It solves problems with
random changes to better quality than the standard GA and the memory-
based GA. The latter which merges all of the memorised individuals into the
main population and keeps the best.

Dynamic Problems and Nature Inspired Meta-heuristics 83

2.2 Memory and Randomisation

Trojanowski and Michalewicz [87] are the first authors cited for combining the
memory and randomisation techniques with GAs. Replacing large parts of the
population with random individuals after a change and keeping an individual
memory are methods of adaptation which are explored separately and in
combination. The individual memory is implemented as a memory buffer each
individual updates after a generation. In the case of mutation, the previous
chromosome is added to the memory buffer; in the case of crossover, the
better parent’s chromosome history is recorded in the buffer. When the buffer
is full, the oldest individual(s) are replaced. After a change, all individuals
are re-evaluated, including the chromosomes in the memory buffers. If one
of the memorised individuals has a better fitness, it replaces the currently
active individual. When randomisation is used in combination with memory,
the memory is applied first. After this, some of the active individuals are
re-randomised whereas the chromosomes in the buffers remain unaffected.

This approach was tested on a multimodal function using binary-encoded
individuals with some cyclic and some random aspects. The authors observed
that randomisation works best on small changes or a relatively easy objective
function. They conclude that the combination algorithm finds the most op-
tima in the multimodal function, with both the randomised and the memory-
based variation outperforming the benchmark GA with standard settings.

Yang [92] used a memory whose size is one tenth of the number of individ-
uals in the main population. After the initial random members populating
the memory have been replaced with the main population’s best individual
every 5–10 generations, the individual closest to the replacing is substituted.
If a change has taken place, the best individuals in memory are reintroduced
into the main population. Yang proposes to combine this type of memory
with random immigrants to be added to the main population every gener-
ation. Inspired by Bendtsen and Krink [8], Yang proposes a third variation
in which the randomisation and the memory are combined. This algorithm,
MIGA, makes random mutations to the best individual in memory instead
of introducing random individuals. It is tested on several functions and is
found to perform better than the other two variations as well as the existing
random immigrants GA introduced by Cobb and Grefenstette [25].

Simões and Costa [78] have explored the use of memory as well as replace-
ment strategies extensively. Initially, they hybridised a GA with two aspects
from Immune Systems, clonal selection and hypermutation. Clonal selection
is applied to the main population at every generation. The cloned individu-
als have a preset probability of being subjected to hypermutation, for which
gene libraries, initialised randomly and kept constant throughout the gener-
ations, are used. A memory population is kept, in which the best individuals
from different phases are recorded in combination with the average fitness
of the main population at the time they were stored. When changes are

84 T. Hendtlass et al.

detected, the individuals with the closest average fitness number are cloned
and reintroduced into the main population to replace the worst individuals.

This algorithm, named Immune System based GA (ISGA), was developed
further by Yang [94], who introduced an alignment variable for the gene seg-
ments in the library. The goal is to enforce the use of the gene segments in
a predefined location of the individual. The library has two kinds of gene
segments: A random group to be re-randomised at every generation and a
non-random one which contains copies of gene segments and their locations
from members of the main population selected by a tournament of two. For
the experiments, Yang’s [94] dynamic test functions are used. The perfor-
mance of the devised algorithm is superseded only by a version which uses
non-aligned transformation, as in the algorithm of Simões and Costa [78].
Unfortunately, the algorithm is not compared to the original ISGA [78], but
to another variation devised by the same authors.

In further work [79, 80, 81, 82], Simões and Costa devised and explored the
Variable-size Memory Evolutionary Algorithm (VMEA), which is based on
adapting the size of the main and memory populations. However, the mem-
ory and main populations only shrink when duplicates are removed. As the
populations are often at a maximum, the replacement schemes used are of
considerable importance. Two aging schemes and one generational method
are proposed. The first aging scheme ages the individuals in memory linearly
at every generation. The age is increased more considerably when the individ-
ual is reintroduced into the main population and reset to zero when a certain
age limit is reached. When a replacement takes place, the youngest individual
is removed. In the second aging scheme, devised originally by Branke [16], the
individual’s fitness contributes to its age as well as the generations. Although
the age is never reset in this model, the youngest individual is replaced. The
generational scheme prescribes that the worst individual added since the last
change is replaced. If no individual has been added, the closest individual
by Hamming distance is replaced. The authors found that the generational
scheme outperforms the age-based schemes as well as the similarity-based
replacement scheme found to be superior in Branke’s studies [16].

The second age-based scheme was observed to perform well on problems
with frequent changes. Apart from the memory updating schemes, the VMEA
algorithm also explores a genetic operator which draws its inspiration from
bacterial conjugation. It resembles two-point crossover, except that the gene
sequence is copied from the better individual (the donor) to the individual
with worse fitness (the recipient) so that the donor remains unchanged. In one
variation of the VMEA algorithm, it is used in the place of the crossover op-
erator. In most experiments, conjugation performed better than the crossover
operator.

Dynamic Problems and Nature Inspired Meta-heuristics 85

2.3 Randomisation

Motivated by the observation that completely random ‘random immigrants’
may interfere with the solution process when changes are not very severe,
Yang [95] designed a GA in which the randomisation of individuals is based
on mutations of the current elite. As expected, this algorithm outperforms a
GA with ‘random immigrants’ on a dynamic environment with minor (20%
and less) changes. Yang [95] goes on to show that if the goal is to cater for
both severe and slight dynamics, a combination of elite-based and completely
random individuals is a useful choice.

To further explore the potential of randomised elite individuals, introduced
by Yang [95], Yang and Tinós [96] devised an algorithm combining three de-
grees of randomisation. Based on the observation that elite-based individuals
are most useful only in an environment undergoing only minor changes, they
combine the elite-based individuals with completely random as well as dual
individuals. The latter describe the mirror image of existing elite individu-
als and are considered the appropriate response to the most drastic changes,
while completely random individuals are considered the ideal response to
changes of intermediate severity. All three groups of immigrant individuals
are used in combination and replace the worst individuals after a change.
The less successful of the three groups have their numbers reduced until a
given limit is reached. Success is measured as the performance of the best
individual of each group. The tests [96] demonstrate that a traditional GA
with random immigrants is indeed less successful when the changes have a
low severity of less than 20% of the environment. The hybrid algorithm per-
forms best when the severity of changes fluctuates, as it uses different types
of randomness adaptively.

2.4 Self-Organised Criticality (SOC)

Tinós and Yang [85] have devised a hybrid approach which combines both
the randomisation of chosen individuals and the maintenance of a subpopu-
lation. To introduce self-organised criticality [4], their method replaces both
neighbours of the worst individual as well as the worst individual itself with
random individuals. The neighbours are defined as adjacent entries in the
array of individuals. If the new worst individual is not within index range of
the previous subpopulation, the old subpopulation is replaced. If it is at the
edge of the previous range, the subpopulation will grow, a phenomenon the
authors call an extinction event. The new randomised individuals are kept
as a separate subpopulation to ensure that they are not eliminated for poor
performance before having been given a chance to evolve separately from the
other individuals.

86 T. Hendtlass et al.

The subpopulation is more likely to grow when the general level of fit-
ness in the population is high and the worst individual is likely to be a
random individual introduced in the previous generation. If this worst indi-
vidual has a member of the main population as a neighbour, the neighbour is
also replaced, leading to randomisation of a larger neighbourhood. This emu-
lates the SOC paradigm of inducing a critical state when the general level of
adaptedness is high. The authors compare this approach to a standard GA
and two implementations of a GA with random immigrants, the exact im-
plementations of which are not discussed. The benchmark problems used are
dynamic unitation functions, devised by the authors as ‘deceptive’ functions
with local optima. The authors use the adaptability metric introduced by De
Jong [26], and find that their hybrid approach outperforms the benchmarks.
More extensive tests on the algorithm are presented in further work [86],
where the algorithm is referred to as Self-Organising Random Immigrants
GA (SORIGA).

2.5 Recent Applications

Chaudhry and Luo [22] provide a survey of GA applications to operational
problems published in production and operations management journals in
the years 1990–2001. They found that the number of publications is gener-
ally rising over the years, with 50% of the GA implementations applied to
scheduling problems. The authors do not specify if any of these articles, 178
in total over the years, describe applications to dynamic problems.

Freight train scheduling is the optimisation problem for a two-phase GA
application devised by by Godwin, Gopalan and Narendran [42]. In most
countries, the freight train system uses the passenger rail network with pas-
senger trains dictating the framework for the possible schedules. The rail
network is subdivided into ‘blocks’, which are railway sections between pos-
sible sidings, where trains can pass each other. Locomotives and freight
rakes – a set of connected freight carriages without a locomotive – are located
within divisions or subsections of the railway network. Relocating a locomo-
tive between divisions means an ‘empty’ trip and is known as ‘deadheading’.
The problem has two conflicting objectives, the minimisation of deadheading
and the minimisation of coupling delay, effectively the time freight rakes wait
for a locomotive.

The authors propose to address the problem in two phases; the first assigns
the locomotive and does a preliminary scheduling which places the freight
train between the passenger trains; the second phase minimises the arrival
time at the destination and deals with conflicting freight train and dead-
heading schedulings. Both phases use a GA with single-point and two-point
crossover, mutation and elitism as well as a local search procedure which
explores the immediate neighbourhood of a solution by swapping genes. The

Dynamic Problems and Nature Inspired Meta-heuristics 87

performance of the algorithm is not compared with other approaches but it is
stated that, on the three hypothetical rail networks used for the experiment,
the algorithm produced acceptable schedules.

The problem of inventory management is solved as a strategy problem
with sliding time windows by Bosman and La Poutré [15]. The optimisation
focuses on strategies to adopt when reordering and determining the size of
the orders to place. These are referred to as the reorder point and order-
up-to size respectively and are applicable to each of the available suppliers.
Variations in lead and delivery times render the problem more difficult. As the
decisions prescribed by the strategies influence the succeeding time windows,
the authors chose to solve this problem on line with sliding time windows to
continuously evolve suitable strategies for different situations. The dynamics
are created by the fluctuating lead and delivery times.

The solver optimises the profit, which is a function of the sales revenue de-
creased by the holding cost and the ordering cost. The more reliable suppliers
are assumed to be more expensive. If the stocks fall below a limit, emergency
orders have to be placed with more expensive suppliers. The experiments
use four scenarios in which the algorithm learns the optimal ordering strat-
egy and clearly improves at doing this over time. In the fourth scenario, the
authors introduce the anticipation of ‘customer satisfaction’ as an increase
in the number of sales which depends on the inventory levels. Although an
interesting consideration, it may not be a very realistic assumption.

3 Ant Colony Optimisation

ACO is an optimisation paradigm encompassing a range of meta-heuristics
based on the evolutionary mechanics of natural ant colonies. Unlike many
other biologically inspired optimisation algorithms, ACO, on the whole, rep-
resents a set of constructive techniques. This means that each ant at each step
of the generalised algorithm adds a component value (such as the next city for
the travelling salesman problem (TSP)) to its solution. This decision is based
on a combination of the worth/goodness of component values and simulated
chemical markers called pheromone. The use of the latter is a collective form
of self adaptation. As a result, colonies of ants produce increasingly better
solutions over time. Generally, pheromone is used to reinforce good solutions
and their component values. However, there is also the capacity to decay
pheromone strength, so that the effect of premature convergence is lessened.
A comprehensive overview of ACO can be found in Dorigo and Di Caro [35].

As a maturing meta-heuristic, applications to dynamic problems have
started to emerge. Apart from the benchmark problem set (including the TSP,
quadratic assignment problem (QAP) and knapsack problem), industrial ori-
ented research has been mainly in networks and telecommunications [35] and
manufacturing. Scheduling, autonomous robots, continuous optimisation and

88 T. Hendtlass et al.

more generic frameworks for ACO in dynamic environments are also dis-
cussed.

3.1 Benchmark Problems

Benchmark combinatorial optimisation problems, such as TSP, QAP and the
knapsack problem, are usually presented as static problems. However, as there
has been recent interest in adapting ACO to solve dynamic problems, some
common problems have been changed so they have a dynamic (temporal)
component. In particular, this has been done for the TSP. There are two
broad ways in which a standard TSP can be transformed into a dynamic
problem. These are: dynamically varying the distances between cities; and
adding/dropping cities from the problem while it is being solved between
separate runs of the ant colony solver.

Eyckelhof and Snoek [40] solve problems in which the distances between
cities vary dynamically. They adapt the basic Ant System algorithm to avoid
the twin problems of a) certain edges becoming relatively unused because of
low pheromone values and b) some edges having too much pheromone and
hence dominating the decision process. This is achieved by effectively limiting
the lower and upper bounds on pheromone values, implicitly implementing
a form of MAX −MIN Ant System. Using two small test data sets of 25
and 100 cities, they found that the algorithm is able to quickly adapt to the
changing environment and is an effective solution method for these problems.

In contrast, Angus and Hendtlass [2] solve a problem in which cities are
added or dropped rather than dynamically changing distances. The addition
and removal of cities occurs in separate runs of the solver. This work showed
that the ant algorithm could adapt quickly to the new problem scenario.
Upon the removal or addition of a city, the pheromone levels on the problem
edges were normalised.

A more intricate approach is that by Guntsch, Middendorf and
Schmeck [48]. Groups of cities are replaced by new cities at different fre-
quencies. This differs from two of the authors’ previous work [45] which only
considered a single change to a problem instance. The approach they use
for this more complex version of the problem is twofold – using pheromone
modification mechanisms and a heuristic called KeepElite for modifying solu-
tions to be suitable for new problem definitions. In terms of the former, three
strategies were trialled which variously modified pheromone values by reset-
ting them to the initial value or adjusting them in proportion to either the
distance or existing pheromone level from the newly inserted/deleted city. It
was found that a combination of resetting the pheromone and proportional
adjustment worked best. This combined with the KeepElite heuristic had
better performance than using the pheromone adjustment strategies in their
pure form.

Dynamic Problems and Nature Inspired Meta-heuristics 89

3.2 Network and Telecommunications Problems

Solving dynamic network and telecommunication problems, which include
such diverse areas as routing telephone calls and the regulation of network
traffic flow, have been the subject of most research.

Schoonderwoerd, Holland, Bruten and Rothcrantz [77] use a highly ab-
stracted ant based system for solving problems involving the symmetric for-
ward routing of telephone calls between origin and destination nodes using a
switched network. The networks they study are not capable of connecting all
calls at a given time so the objective is to minimise the number of lost calls.
In their ant based solution, ants operate independently of the calls. Each ant
travels between an origin and a random destination node based on a function
of pheromone, distance and node congestion. Calls are routed according to
the pheromone level on each neighbouring node. The link with the maximum
pheromone is always chosen. This approach compares favourably with exist-
ing mobile agent methods of British Telecom [77]. Heusse, Snyers, Guérin
and Knutz [52] extended Schoonderwoerd et al.’s [77] work to asymmetric
networks that are capable of dealing with changing bandwidth and topology
requirements.

Saleh and Ghani [76] create a system called the For/Backward approach
which combines epochal updates (i.e., updates of routing tables only after an
ant has moved forward and backward through the network) and incremen-
tal updating (in addition, ants also update the tables as they traverse the
network). Applying this to a simulation of the Malaysian backbone network
showed that a small packet delay and a greater bandwidth throughput could
be achieved.

The problem solved in Xia, Chen and Meng [91] is one in which a composi-
tion of web services, that themselves are composed of component services, is
required. Each service has a quality of service (QoS) component and different
users have different preference weightings on each QoS. The objective is to
maximise users’ satisfaction with the supplied services. The graph that the
ants walk is formed from the services and changes as new services are added,
old ones removed and QoS values change. A multiple pheromone strategy em-
bedded in a dynamic ACO, where different pheromones tracked different QoS
attributes, was used. In comparison to a GA and a standard single pheromone
ACO, the authors’ modified algorithm provided better performance on a sin-
gle simulation problem.

AntHocNet [34] is designed specifically to route packets in mobile ad-hoc
networks and is an updated version of the work in Di Caro, Ducatelle and
Gambardella [33] and Ducatelle, Di Caro and Gambardella [38]. Two kinds
of ants known as forward and backward ants are used to construct the initial
routing tables. The former are used to locate all the practicable paths within
the network while the latter move backwards from the destination and estab-
lish the paths. Operationally, data packets are routed stochastically and link
failures may occur. In order to manage the dynamic nature of the network,

90 T. Hendtlass et al.

another set of ants, called proactive forward ants are used to maintain and
improve the proactivity of paths. The authors note that while AntHocNet
has very good performance in terms of its ability to successfully route pack-
ets, its computational overheads are more than other algorithms (such as the
simpler relative routing algorithm of Perkins and Royer [73]). This is mainly
due to the number of different ants.

Submarinian, Druschel and Chen [83] present two ant colony algorithms
to solve a network routing problem in which network topology and link cost
changes occur dynamically and unpredictably. Their first algorithm uses a
simple shortest path approach and assumes symmetric path costs. Their sec-
ond algorithm is a more robust version which is capable of multi-path plan-
ning and does not require symmetric path costs. Each algorithm uses slightly
different ants. The first is considered standard as the ants will likely follow
good non-congested routes as given by the forwarding tables. The ants of the
second algorithm effectively ignore the forwarding tables and all paths have
equal probability. In addition to having ants that move forward from source
to destination, another set of ants are sent backward from the destination
node to the source node with the aim of exploring the network as well as the
routing tables of the routers that they encounter. Both algorithms perform
better than standard approaches when there are higher network failure rates.

Di Caro and Dorigo [27, 28, 30, 29, 31] have designed an ant colony system
(ACS) to build forwarding tables for packet routing problems (such as those
that occur on the Internet). This system is known as AntNet. Like other
approaches, the algorithm consists of two types of ants, the forward ants
and the backward ants. Each forward ant constructs a path from a source
node to its destination nodes and collects information about about the time
it takes to move from node to node. The corresponding backward ant then
moves from the destination to the source node, updating the routing tables
of each of the nodes it visits. The authors have shown that AntNet compares
favourably with existing routing algorithms. Zhang, Khun and Fromherz [98]
have made substantial adaptations to the system to accommodate ad-hoc
wireless sensor networks.

Di Caro and Dorigo [32] apply two versions of AntNet to the problem
of adaptive learning in dynamic datagram networks. A datagram network
is considered as an unreliable network as the user is not notified if the de-
livery of a packet fails. The first version of AntNet is denoted AntNet-CL
and is the canonical form of the algorithm while AntNet-CO is specifically
adapted to best-effort routing in datagram networks. Using simulations of
heavy traffic networks, the results showed that AntNet-CO lead AntNet-CL
in terms of performance (i.e., throughput, packet delay and resource utilisa-
tion). Both algorithms were better able to handle these conditions compared
to five standard Internet routing algorithms.

Similar work to AntNet has also been undertaken by White, Pagurek and
Oppacher [90] except that separate ant colonies are used to determine the

Dynamic Problems and Nature Inspired Meta-heuristics 91

routes, allocate traffic to the routes and deallocate routes. Preliminary work
has also been carried out on routing with fibre optic cables [89].

3.3 Industrial Manufacturing

Some of the most common problems in industrial manufacturing are job shop
scheduling and machine sequencing.

Cicirello and Smith [23] solve a dynamic problem of routing jobs on a
shop floor using an algorithm based on ACO principles. In their approach,
each job is assigned to an ant that makes the routing decisions through the
various machines on the shop floor. Pheromone is deposited on the route that
each ant/job takes. This was shown to effectively balance the workload of the
factory machines.

Aydin and Öztemel [3] describe a system for solving dynamic job shop
sequencing problems using intelligent agents. In this paper, an agent does not
solve a complete problem, but simply reacts to the requests from a simulated
environment and develops an appropriate job priority list. There are two
stages; a learning stage and a production stage. In the learning stage, the
simulated environment gives the agent feedback about the performance which
it then uses as a part of a reinforcement learning program. Arrival times and
processing durations on particular machines for particular jobs are given by
an exponential distribution. However, machine breakdowns and other events
(such as rush orders) are not dealt with by this approach.

3.4 Scheduling

Gutjahr and Rauner [49] present an ACO algorithm to solve a regional nurse
scheduling/rostering problem for the consolidated hospital system in Vienna,
Austria. This is modelled as a constraint satisfaction problem that takes
nurse preferred working days, working patterns, employee satisfaction and
hospital costs into consideration. The hard constraints (such as the legal
number of hours a nurse can work each week) must be satisfied within the
system, whereas the soft constraints do not. The dynamic components of the
problem come about as a result of different day-to-day requirements and the
necessity of the system to discourage delaying resource-based decisions until
the last possible day. The latter is achieved by using an urgency penalty
in the problem model. Using a simulated environment, it was shown that
ACO could deliver schedules that incurred significantly less operational costs
and higher nurse satisfaction than those that could be produced by a greedy
algorithm.

92 T. Hendtlass et al.

3.5 Autonomous Robots

In many ways, this category is an extension to scheduling and network prob-
lems. Detection of targets in a dynamic environment is a problem considered
by Meng, Kazeem and Muller [64]. A hybrid ACO/PSO algorithm is devel-
oped for the control of many small scale robots (the number of which may
itself vary dynamically). In essence, robots communicate with one another us-
ing virtual pheromone, but may only do so if they are in a permissible range.
Each robot holds its own pheromone matrix that it modifies over time. The
swarm intelligence component of the hybrid is concerned with optimally or-
ganising the behaviour of the robots at a global level. These concepts working
in combination allow agents to make decisions about the direction in which
they move. The factors taken into consideration include each target’s utility
value (e.g., attractiveness and distance separation), and the agent’s inertia,
experience, and interactions with other agents. Simulation results showed
that the hybrid ACO/PSO outperformed, and was more consistent than, a
standard ACO implementation.

The work of Pekala and Schuster [72] differs from the above as a hetero-
geneous swarm of robots is controlled by the ACO algorithm. The aim of
the research is to ‘develop a method or algorithm that can control a het-
erogeneous swarm in an optimal manner to accomplish any particular task
without human intervention’ (p. 354). Each agent/ant represents a robot and
attempts to complete a set of jobs which then makes up a task. The different
types of robots in the swarm can complete only certain job types. One of the
distinguishing factors of the algorithm is its ability for robots to learn the
order in which tasks should be completed using a quality matrix metric. The
dynamic element of their Modified Dynamic ACO (MDA) allows the addition
and deletion of jobs. The simulation environment used to test MDA models
the scenario in which food must be brought to a kitchen and then stacked.
In this application, robots may scout for food, transport it to the kitchen, or
stack the food items. The simulation showed that the system’s ability to learn
appropriate job orders made it highly effective for this problem. In addition,
partially disabled robots were still able to make an effective contribution to
solving the problem.

3.6 Continuous Optimisation

Beyond discrete dynamic optimisation problems, ACO has also been applied
to continuous problems. These have generally been solved by genetic al-
gorithms and particle swarm optimisation. However, Dreo and Siarry [36]
propose the hybrid algorithm Dynamic Hybrid Continuous Interacting Ant
Colony (DHCIAC). In addition to pheromone, ants also pass messages about
search progress directly to any of the other ants in the colony. The authors

Dynamic Problems and Nature Inspired Meta-heuristics 93

implemented two versions of DHCIAC that are differentiated by the local
search algorithm. DHCIACfind uses the Nelder-Mead simplex algorithm while
DHCIACtrack uses a modified simplex algorithm known as dynamic simplex.
These effectively implement diversification and intensification strategies re-
spectively. It was found that DHCIACtrack was better for problems that had
a faster rate of change. Overall, DHCIAC generally appears to be useful for
slow changing problems with many local optima – though comparative results
with other algorithms were not provided.

3.7 General Approaches

There have only been limited attempts to modify standard ACO algorithms
to process dynamic problems more seamlessly.

Population ACO (P-ACO) [46, 47] is an ACO strategy that is capable of
processing dynamic optimisation problems. It achieves this by using a differ-
ent pheromone updating strategy. Only a set of elite solutions are used as
part of the pheromone updating rules. At each iteration, one solution leaves
the population and a new one (from the current iteration) enters. The can-
didate solution to be removed can be selected on age, quality, a probability
function or a combination of these factors. The authors argue that this ar-
rangement lends itself to dynamic optimisation, as extensive adjustments,
due to the problem change, need not be made to the pheromone matrix. In-
stead, a solution modified to suit the new problem is used to compute the
new pheromone information. This modification process works for full solu-
tions only and is tailored for particular problems. Experimental work on the
dynamic TSP and QAP showed that P-ACO could adapt to small changes
in the problem better than restarting the entire algorithm.

A set of generic modifications have been proposed to allow ACO to solve
dynamic optimisation problems [75]. This framework defines categories of
events that change the problem definition (i.e., data and/or structure) while
ACO solves it. Rather than discarding solutions and restarting the construc-
tion process, if an event occurs, the process of deconstruction begins. De-
construction removes the components from a solution that make it infeasible
to the changed problem. Results for a dynamic version of the multidimen-
sional knapsack problem showed that the modified ACO could quickly adapt
to the problem changes. Further work on the dynamic aircraft landing prob-
lem [41] (using a real-time simulator) indicates that the approach is capable
of producing good schedules in a timely fashion.

94 T. Hendtlass et al.

4 Particle Swarm Optimisation

The classical particle swarm optimisation algorithm [58] was inspired by the
swarming behaviour of birds and fish. While the metaphor is a dynamic one,
there have been few applications to dynamic problems. PSO tries to mimic
the natural behaviour and applies it to a number of particles moving through
problem space. This movement occurs under the influence of a number of
factors, some of which can be considered personal in that no other particle
is involved while others are social and involve more than one particle.

When the velocity of each particle is updated, the particle keeps a part
of its velocity at the last iteration. The fraction that is kept, referred to as
the momentum (or alternately as the inertial weight) of the particle, prevents
any drastic velocity changes and may permit the particle to pass through a
local optimum. This is clearly a personal factor. A further possible personal
influence is a tendency to return to the best position yet found by this particle
(pbest).

Apart from the personal there are also social influences. The particle is
attracted towards the best position currently experienced by other particles
that forms its local neighbourhood (lbest) and/or towards the best position
found by any particle in the swarm so far (gbest). The neighbourhood of a
particle can be defined by those other particles with some distance D of this
particle. Alternatively, since all particle must have an identifying index, a
neighbourhood can be defined as all particles whose indices are within a user
specified number of this particles index. Since the particles in a neighbour-
hood move closer together these two approaches tend to merge after a period
of time.

Each particle updates its velocity simultaneously, normally using some
combination of personal and social influences. Momentum is almost always
used and generally two others, at least one of which must be social. Using
pbest and lbest (a less greedy form) encourages the parallel exploration of
multiple local optima while using gbest and lbest (a more greedy form) en-
courages the whole swarm to converge on the best optimum encountered.
Using pbest and gbest is also a viable option as experience shows that the
number of particles that constitute a local neighbourhood is not critical and
may be reduced to one. It is the interplay of the chosen influences which
produces an efficient search mechanism.

4.1 Adapting PSO for Dynamic Problems

There are a number of non-biological adaptations that need to be made to the
classical swarm algorithm so that it suits dynamic problems. These can be
summarised as: preventing the complete convergence of the swarm, keeping
personal and social reference points up to date and maintaining or generating

Dynamic Problems and Nature Inspired Meta-heuristics 95

explorer particles far from any current point of convergence. Approaches that
achieve at least one of these aims will be considered.

4.1.1 Preventing Total Convergence

Social influences between particles, attractions to gbest and lbest, will tend
to result in total convergence. To change this it is necessary to introduce
some counter influence. One method [10] is to give at least some particles
a charge so that, by analogy with electrostatics, two particles experience a
repulsive force as they approach and the swarm would then not be able to
fully converge. The particles would in time reach some (possibly dynamic)
equilibrium between the convergence and divergence effects, but this does not
mean that they are actively exploring. A second method [19] is to divide the
swarm into sub-swarms so that not all particles converge on the same point.
A particle and its closest neighbours may form a sub-swarm if the variance
in the fitness of the particles is less than some threshold. Any particle that is
not a member of a sub-swarm belongs to the main swarm. These sub-swarms
may merge, acquire extra particles from the main swarm or collapse back into
the main swarm. Whilst developed for multi-modal functions this niching
behaviour could also be used, in principle, to limit total swarm convergence.
However the algorithm depends on a uniform distribution of particles in the
search space, a condition that may be able to be met after initialisation but
which is not met after convergence into the sub-swarms has taken place. An
alternative approach to niching is described in Bird and Li [9].

4.1.2 Refreshing the Best Positions

If an attraction to pbest is being used these best positions may be updated
by allowing particles to replace their previous best position with the cur-
rent position periodically [20]. Choosing a suitable period without detailed
knowledge of the problem being optimised can be problematic. If an attrac-
tion to gbest is being used, the fitness at this position may be periodically
re-evaluated [54]. As the fitness at that point deteriorates, the probability
that it will be replaced by another position as a result of the current fitness
at that position increases. Again a suitable re-calculation frequency has to
be chosen.

4.1.3 Forcing Explorer Particles

The simplest approach just requires that a number of particles be periodically
moved to randomly chosen points and have their fitness re-evaluated [21]. An-
other approach organises particles in a tree with each particle being influenced

96 T. Hendtlass et al.

by the particle above it (social) and itself (best position and momentum). A
particle swaps with the one above it if it out performs it. This gives a dy-
namic neighbourhood that does require extensive calculation. This has been
adapted to dynamic problems by Janson and Middendorf [55, 56]. After the
value of the best-known position (gbest) changes (it is re-evaluated every cy-
cle) a few sub-swarms are reinitialised while the rest are reset (have their
old personal best information erased and replaced with the current position).
The sub-swarms then search for the new optimum. Blackwell and Branke [11]
introduce a more elaborate approach using quantum particles. Using an anal-
ogy to quantum mechanics, a particle on measurement is placed randomly
within a given radius of its net current point of attraction. A uniform distri-
bution is used and a function chosen so that a finite probability exists of a
movement to a distance far from the point of attraction.

4.1.4 Meeting All Three Requirements

The approaches described above could, if used in combination, be used to
track dynamic problems. However, one further approach (WoSP) [51] has
the ability to meet all three requirements simultaneously by altering the
normal PSO requirement to inhibit total convergence to one that reinforces
the tendency to totally converge.

The approach was originally developed to sequentially explore an arbi-
trarily large number of optima. An extra short-range force of attraction was
added to the basic swarm equation. As a result of the discrete way in which
fitness evaluations and updates to the velocity of the particles is done, an
aliasing effect causes pairs of particles to approach, pass each other and then
continue on at very high velocities. The probability that this will happen
increases with decreasing distance between the particles. Particles are most
likely to be at close range when the swarm converges. There is no longer a
need to stop the particles fully converging. As the velocity with which the
particles leave the swarm is variable, exploration can continue both locally
and at a distance. The total swarm is automatically broken into a number of
sub-swarms called waves, each with its own gbest value. Particles that leave
a converging swarm as a result of this aliasing effect leave the wave they were
in and join the highest numbered wave (creating a new one if no higher num-
bered wave exists). A form of evolution takes place with lower performing
waves being compulsorily recruited into better performing higher numbered
waves. Waves that run out of particles (owing to promotion or recruitment)
die out. In this way there is a continual automatic updating of best position
information available to the successive waves.

The main difference between the algorithm for static and dynamic prob-
lems is that in the former each particle keeps a tabu list of places that it
has already explored and was repelled from any place on its tabu list. In this
way re-exploration of any point in problem space is largely (but not totally)

Dynamic Problems and Nature Inspired Meta-heuristics 97

eliminated. For dynamic problems this tabu list can be completely removed
on the grounds that any particular point in problem space may be a good
optimum at several disjointed times. Alternatively extending the idea from
Janson and Middendorf [56], each of these previously explored optima could
be periodically re-examined and only those points whose fitness had signifi-
cantly changed are removed from the tabu lists. It is not clear at this stage
how the evolutionary pressure that is an important part of WoSP would re-
spond to dynamic problems. Clearly if a number of waves were generated
and completed their existence (in the time it took for the dynamic problem
to change significantly), evolution would have time to make a contribution.
Should the problem change much faster than this, it is likely that the contri-
bution evolution would be able to make would be, at best, limited.

Another integrated approach, the Unified Particle Swarm Optimising
scheme (UPSO) was proposed for static environments by Parsopoulos and
Vrahatis [70]. It is based on a PSO with constriction factor which uses both
a global and a local best. The velocities for these two search directions are
unified into a single direction balanced by a factor 0 ≤ u ≤ 1. The combined
velocity is formed using a weighting u for the global best and (1 − u) for
the local best. The scheme also proposes the contribution of a Gaussian ran-
dom displacement to either the local or the global best particle as they form
the combined velocity. The authors observe a natural balance between explo-
ration and exploitation in this algorithm, suggesting it may resist premature
convergence. Parsopoulos and Vrahatis [71] therefore conducted some experi-
ments on UPSO in a dynamic environment. Five well-known function optimi-
sation problems, the Sphere, Rosenbrock, Rastrigin, Griewank and Schaffers
functions are adapted to exhibit a global optimum with Gaussian random
fluctuations. The results were measured as the mean of the best positions
over the iterations. The authors find that their approach, when used with
u = 0.2 or u = 0.5 performs significantly better than algorithms which use
the influence of either the global or the local best particles exclusively (i.e.,
when u is set to 1.0 or 0.0 respectively).

4.2 Some Industrial Applications

As is evident in the previous discussion, a relatively large amount has de-
scribed how PSO may be adapted so that it is generally suited to dynamic
optimisation problems. On the whole, far fewer works have yet been devoted
to applying PSO beyond benchmark test functions. Some novel applications
are described below.

Using PSO to optimise the performance characteristics of wireless local
area networks has been undertaken by Kókai, Christ and Frühauf [59]. Their
work showed that an adaptive PSO implementation, based on the frame-
work of Hu and Eberhart [54], could outperform a genetic algorithm and

98 T. Hendtlass et al.

neighbourhood search in a simulation environment. The simulator modelled
participants in the network shifting positions, failing transmitters and compe-
tition amongst transmitters. The system was able to adapt to these changes
in the specified time interval of 1 ms so that communications would not
break off. An additional feature of this work was that the PSO was directly
implemented in Field Programmable Gate Array (FPGA) hardware.

In a different area of communications, Zhang, Li, Zhou, Shen, Zhang,
Zhang, Wu, Yuan, Chen, Zhang, Yao and Yang [97] develop a two stage
process for adaptive compensation of polarisation mode dispersion used in
communication along fibre optic cables. The degree of polarisation in these
links changes dynamically because of factors such as environmental temper-
ature. This in turn affects the search space of the problem. Once a global
optimisation phase of the problem is complete, the extent of the change is
analysed and may invoke the tracking algorithm. This algorithm uses PSO to
search around the previously found global best solution so as to track chang-
ing optima. From this the authors found that the response time for adapting
to disturbances in the system was in the order of a few milliseconds – a good
result for this application.

Muller, Monson and Seppi [68] turn their attention to an economic problem
of pricing items in a dynamic and noisy environment, such as that which
occurs in e-commerce. The aim is to maximise product prices in the midst
of fluctuating demand. The authors propose a form of PSO, called P-Best
Decay PSO (PBDPSO). Rather than resetting particles and losing valuable
information about the search space, a decay function is used so that particles
are attracted to new areas of space, despite the noise in the system. In a
dynamic pricing simulation, this PSO compares very well to a the Kalman
Filter, an approach traditionally used for this problem.

5 Extremal Optimisation

The paradigm of self-organised criticality [4] explains a wide range of natural
dynamical systems and has been previously mentioned in relation to genetic
algorithms. EO [12, 13, 14] uses elements of SOC [4] by replacing the worst
individual (in this case a solution component) in a population by a random
one. Over a number of iterations it is expected that the overall solution quality
will increase. The original version mutated the worst component only. The
absence of noise made the solver very deterministic and vulnerable to local
minima. To counteract this, τ -EO was introduced. It assigns each solution
component a rank k based on its current fitness within the solution and
mutates it according to a probability distribution of k−τ .

Only a few attempts to apply EO to dynamic problems have been made.
These use EO’s flexible solving mechanism to adapt to underlying fluctu-
ations automatically. EO is guided only by the component fitnesses, which

Dynamic Problems and Nature Inspired Meta-heuristics 99

are associated with the objective function. Typically EO algorithms will in-
corporate subtle changes automatically, as long as they are reflected in the
amended objective function.

5.1 The Satisfiability Problem

Menai [63] investigates the use of EO on Incremental Satisfiability (ISAT)
problems. Two different types of dynamics are added to static satisfiability
problems from the SATLIB library: ISAT1 is obtained by starting from one
clause and adding the others one by one, ISAT2 divides the same standard
problems into two equal parts and solves the first half before adding the
second half of the clauses. Adding the dynamic aspect to the problem seems
to increase the challenge for the EO solver. A comparison between the results
of EO solving a problem with more dynamics (ISAT1) and its application to
a problem with a single change (ISAT2) corroborates this assumption.

The performance of EO is compared with a variation of the WalkSAT
algorithm described in detail in McAllister, Sellman and Krautz [62]. Un-
fortunately, the benchmark algorithm (called R-Novelty) is only applied to
the static case of the 29 problems used. This is somewhat surprising as the
algorithm is very similar to EO and can be adapted to dynamic problems
as easily as EO. Compared to R-Novelty, EO has a better average success
rate when solving ISAT2. Solving ISAT2, EO uses approximately as many
iterations as R-Novelty takes to solve the static problem.

5.2 A Defense Application

The Swedish Defense Research Agency investigated target recognition in
which increasing numbers of moving sensors produce reports that may or
may not contain information on the targets. Fast optimisation techniques are
necessary to cluster the incoming reports according to the objects, before the
relevant information on target objects can be processed by a tracker module.
Svenson [84] compares EO and τ -EO on this task, which requires the ability
to include bursts of incoming reports whenever they arrive.

The experiment on clustering the incoming reports using the EO algorithm
stops short of adding reports dynamically. It only observes that EO performs
better with τ = 1.5 than when setting τ = ∞, and that the pairwise com-
parison of a smaller subset of records to establish the current fitness of the
report within a cluster leads to a better result than the evaluation of a larger
subset of pairs of reports.

100 T. Hendtlass et al.

5.3 Dynamic Composition Problem

In order to test the EO solver’s capabilities at solving dynamic prob-
lems, Moser [66] especially designed the composition problem as a dynamic
knapsack-like combinatorial problem, where items of different types have to
be added to a solution until a predefined limit is reached. The item’s cost
attribute relates to the solution’s capacity limit, whereas the value or benefit
attribute contributes to the solution’s quality which is maximised.

The EO solver optimises the quality by improving an initial random solu-
tion. A uniformly random component is picked for removal from the solution
and replaced with a component not currently in the solution which is chosen
according to the power-law distribution.

The problem is made dynamic by introducing various changes, such as
changing the values of the cost and benefit attributes of some components
or by removing some of the available items from the problem space. Other
problem instances prescribe the change of the percentage of a type of item
that has to be represented.

The experiments confirm that the iterative aspect of the EO solver has
certain disadvantages – large jumps in the search space are virtually impos-
sible as the number of possible deteriorating moves is limited. However, the
EO solver is able to adapt to a change very quickly, producing good quality
solutions within few iterations. Sometimes a change of the underlying problem
helps the solver produce a better solution, as it enables a substantial change
in the composition of the solution, which could not have been achieved by
the iterative algorithm itself. Given the simplicity of the algorithm, it scales
well with the number of components. It is able to handle solutions with over
a hundred components having a thousand components available.

5.4 ‘Moving Peaks’ Dynamic Function Optimisation

Dynamic function optimisation was explored by Moser [66] using the moving
peaks benchmark function [17]. The benchmark consists of several scenarios
in which randomly placed peaks move in a multi-dimensional landscape. The
peaks change locations as well as height and width around a given average.
For the scenarios, exact specifications exist and therefore, comparable results
from different approaches are available.

Several solution representations were attempted, leading to different ways
of traversing the search space. Due to the nature of the moving peaks land-
scape, more than one EO solution was employed to keep track of the peaks
moving in the landscape. Nonetheless, the results received from the best-
performing EO implementation provided no match for some of the PSO
solvers. Further experiments showed that the canonical EO implementation
is not well suited to the moving peaks landscape. It does not make use of the

Dynamic Problems and Nature Inspired Meta-heuristics 101

exploitable features of the function. For example, it does not climb to the top
of the hill it found and thus scores suboptimally on the standard performance
measure, the offline error.

5.5 Aircraft Landing

The single-runway dynamic aircraft landing problem (ALP) consists of a slid-
ing time window with aircraft reporting to the air traffic control for landing.
According to the formulation by Beasley [6], the aircraft report target land-
ing times. The problem quality is measured according to the penalties for
aircraft landing before or after the target times. Optimising the schedule of
a sequence of aircraft is straightforward once the order of aircraft is known.
Realistically, there are not many aircraft in the active time window at any
given time. The problem instances provided as benchmarks by Beasley [5]
have window lengths between 2 and 18 aircraft.

The EO adaptation devised by Moser [67] treats the ALP as a permu-
tation problem of the aircraft in the current time window. The EO solver
produces candidates for a new solution using pairwise swaps of aircraft. All
candidates have their schedules optimised deterministically before their costs
are evaluated. The new solution is then chosen among the candidates. The
new solution is compared to the current best-known solution. Aircraft are
removed from the active time window when they are within a given distance
from their scheduled landing times.

The EO solver produced ideal schedules for each individual time window
in all cases in which the optimal schedule was known. Speeding up the arrival
of aircraft to shorten the intervals to one fifth did not change the results.

6 Tracking Frequency Limitations

The previous sections have demonstrated that all four algorithms have the
capacity to solve dynamic optimisation problems. This last part of this chap-
ter considers what determines the maximum rate at which changes can occur
before the algorithm performance essentially is reduced to that of random
search.

For population-based algorithms that use a history of previous perfor-
mance to guide future search, such as ACO, GAs and PSO, the obvious
limitation comes from how fast they can learn to disregard the now irrele-
vant part of their history. For population-based ACO this either implies a
short history list or a method of detecting and removing all historic paths
that are no longer valid. For non-population based ACO this will require care-
ful handling of the evaporation to deposition ratios in the time immediately

102 T. Hendtlass et al.

after a change has been detected. For PSO either the gbest value needs to be
periodically re-evaluated and a reset of it and all lbest (or pbest) positions
made as soon as gbest alters or, alternatively a sequence of sets of gbest and
lbest (or pbest) values have to be used (as in WoSP [51]) so that changes can
be responded to without having to be explicitly detected.

For the single individual algorithm EO there is no explicit historical infor-
mation used to guide future exploration1. Instead the algorithm will detect
a change when the current solution suddenly becomes invalid. The current
stored best solution then has to be cancelled and a special repair procedure
will then have to be performed on the current individual. This will take a
number of changes and after this enough time must be allowed so that a good
solution can be built up.

It is possible to describe the factors that will determine the time it will take
any of these algorithms to respond to a change and again have a good valid
solution. However, the stochastic nature of the algorithms (amongst other
factors) makes it impossible to quantify what this delay will be, thus allow-
ing the maximum rate of problem change to be specified. Therefore, some
limiting rate must exist, albeit it problem and algorithm dependent. Should
any of these algorithms be used on a problem changing faster that the rele-
vant limiting rate, the effect will be, that the algorithm makes too infrequent
a sampling of problem space. By analogy to the aliasing effect seen when a
digital data stream is sampled below the Nyquist-Shannon frequency when
high frequencies appear as lower frequencies, it can be predicted that the
algorithms may well present solutions to problems that, in fact, have never
been posed. Worse than getting wrong results, there may be no clear indi-
cation that this has most undesirable effect has occurred. This suggests that
either practical experimentation involving varying the frequency of known
problems, or more ideally an analytical analysis, should be undertaken so
that an estimate of the limiting rates of change the algorithms can handle
can be established.

Until this is done, since the limiting change rate for the four algorithms
discussed in this chapter are almost certain not to be the same, one prag-
matic solution may be to run two or more of the algorithms in parallel, only
accepting the solutions when they are at least similar. However, in the long
run this is hardly practicable and no substitute for a fuller understanding
of how these algorithms work and thus of their limiting features. For all the
progress made so far in applying these algorithms to dynamic problems much
yet remains to be done.
1 As a result of the fitness build up and collapse cycle inherent in the behaviour

of EO, it may be that the currently best known solution was found some time
ago and could thus be considered historic. However, since the development is
unaware of this best value and always modifies the current individual there is no
historic information used as there is with ACO, GAs and PSO.

Dynamic Problems and Nature Inspired Meta-heuristics 103

References

[1] Angeline, P.: Tracking extrema in dynamic environments. In: Angeline, P.J.,
McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS,
vol. 1213, pp. 335–345. Springer, Heidelberg (1997)

[2] Angus, D., Hendtlass, T.: Ant Colony Optimisation Applied to a Dynamically
Changing Problem. In: Hendtlass, T., Ali, M. (eds.) IEA/AIE 2002. LNCS
(LNAI), vol. 2358, pp. 618–627. Springer, Heidelberg (2002)

[3] Aydin, M., Öztemel, E.: Dynamic job shop scheduling using reinforcement
learning agents. Robotics and Autonomous Systems 33, 169–178 (2000)

[4] Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of
1/f noise. Physical Review Letters 59, 381–384 (1987)

[5] Beasley, J.: OR-Library: Distributing test problems by electronic mail. Journal
of the Operational Research Society 41(11), 1069–1072 (1990)

[6] Beasley, J., Krishnamoorthy, M., Sharaiha, Y., Abramson, D.: Scheduling air-
craft landings – the static case. Transportation Science 34, 180–197 (2000)

[7] Beasley, J., Krishnamoorthy, M., Sharaiha, Y., Abramson, D.: The displace-
ment problem and dynamically scheduling aircraft landings. Journal of the
Operational Research Society 55, 54–64 (2004)

[8] Bendtsen, C., Krink, T.: Dynamic memory model for non-stationary optimi-
sation. In: Proceedings of the Congress on Evolutionary Computation, pp.
992–997 (2002)

[9] Bird, S., Li, X.: Adaptively choosing niching parameters in a PSO. In: Pro-
ceedings of the 8th Conference on Genetic and Evolutionary Computation, pp.
3–10 (2006)

[10] Blackwell, T., Bentley, P.: Dynamic search with charged swarms. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 19–26
(2002)

[11] Blackwell, T., Branke, J.: Multi-swarms, exclusion, and anti-convergence in
dynamic environments. IEEE Transactions on Evolutionary Computation 10,
459–472 (2006)

[12] Boettcher, S., Percus, A.: Extremal optimization: Methods derived from
co-evolution. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 825–832. Morgan Kaufmann, San Francisco (1999)

[13] Boettcher, S., Percus, A.: Nature’s way of optimizing. Artificial Intelli-
gence 119, 275–286 (2000)

[14] Boettcher, S., Percus, A.: Optimization with extremal dynamics. Physical Re-
view Letters 86, 5211–5214 (2001)

[15] Bosman, P., La Poutré, H.: Inventory management and the impact of anticipa-
tion in evolutionary stochastic online dynamic optimization. In: Proceedings
of the Congress on Evolutionary Computation, pp. 268–275. IEEE Computer
Society Press, Los Alamitos (2007)

[16] Branke, J.: Memory enhanced evolutionary algorithms for changing optimiza-
tion problems. In: Proceedings of the Congress on Evolutionary Computation,
pp. 6–9. IEEE Computer Society Press, Los Alamitos (1999)

[17] Branke, J.: The moving peaks benchmark (1999),
http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/

[18] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Aca-
demic Publishers, Norwell (2001)

http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/

104 T. Hendtlass et al.

[19] Brits, R., Englebrecht, A., van der Bergh, F.: A niching particle swarm opti-
miser. In: Proceedings of the Asia Pacific Conference on Simulated Evolution
and Learning, pp. 692–696 (2002)

[20] Carlisle, A., Dozier, G.: Adapting particle swarm optimization to dynamic
environments. In: Proceedings of the International Conference on Artificial
Intelligence, pp. 429–434 (2000)

[21] Carlisle, A., Dozier, G.: Tracking changing extrema with adaptive particle
swarm optimizer. In: Proceedings of the World Automation Congress, pp. 265–
270 (2002)

[22] Chaudhry, S., Luo, W.: Application of genetic algorithms in production and
operations management: A review. International Journal of Production Re-
search 43(19), 4083–4101 (2005)

[23] Cicirello, V., Smith, S.: Ant colony control for autonomous decentralized shop
floor routing. In: Proceedings of the 5th International Symposium on Au-
tonomous Decentralized Systems, pp. 383–390. IEEE Computer Society Press,
Los Alamitos (2001)

[24] Cobb, H.: An investigation into the use of hypermutation as an adaptive op-
erator in genetic algorithms having continuous, time-dependent nonstation-
ary environments. Technical Report AIC-90-001, Naval Research Laboratory,
Washington, USA (1990)

[25] Cobb, H., Grefenstette, J.: Genetic algorithms for tracking changing environ-
ments. In: Proceedings of the 5th International Conference on Genetic Algo-
rithms, pp. 523–530. Morgan Kaufmann, San Francisco (1993)

[26] De Jong, K.: An analysis of the behaviour of a class of genetic adaptive systems.
PhD dissertation, University of Michigan (1975)

[27] Di Caro, G., Dorigo, M.: AntNet: A mobile agents approach to adaptive rout-
ing. Tech. Rep. IRIDIA/97-12, Université Libre de Bruxelles, Belgium (1997)

[28] Di Caro, G., Dorigo, M.: An adaptive multi-agent routing algorithm inspired
by ants behavior. In: Proceedings of 5th Annual Australasian Conference on
Parallel Real Time Systems, pp. 261–272 (1998)

[29] Di Caro, G., Dorigo, M.: Ant colonies for adaptive routing in packet-switched
communications networks. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 673–682. Springer, Heidelberg
(1998)

[30] Di Caro, G., Dorigo, M.: AntNet: Distributed stigmergetic control for com-
munications networks. Journal of Artificial Intelligence Research 9, 317–365
(1998)

[31] Di Caro, G., Dorigo, M.: Mobile agents for adaptive routing. In: Proceedings
of the 31st Annual Hawaii International Conference on System Sciences, pp.
74–83. IEEE Computer Society, Los Alamitos (1998)

[32] Di Caro, G., Dorigo, M.: Two ant colony algorithms for best-effort routing in
datagram networks. In: Proceedings of the 10th IASTED International Con-
ference on Parallel and Distributed Computing and Systems, pp. 541–546.
IASTED/ACTA Press (1998)

[33] Di Caro, G., Ducatalle, F., Gambardella, L.: AntHocNet: An ant-based hybrid
routing algorithm for mobile ad hoc networks. In: Yao, X., Burke, E.K., Lozano,
J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P.,
Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 461–470.
Springer, Heidelberg (2004)

Dynamic Problems and Nature Inspired Meta-heuristics 105

[34] Di Caro, G., Ducatalle, F., Gambardella, L.: AntHocNet: An adaptive nature-
inspired algorithm for routing in mobile ad hoc networks. European Trans-
action on Telecommunications - Special Issue on Self-organisation in Mobile
Networking 16, 443–455 (2005)

[35] Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In: New
Ideas in Optimization, pp. 11–32. McGraw-Hill, London (1999)

[36] Dreo, J., Siarry, P.: An ant colony algorithm aimed at dynamic continuous
optimization. Applied Mathematics and Computation 181, 457–467 (2006)

[37] Dror, M., Powell, W.: Stochastic and dynamic models in transportation. Op-
erations Research 41, 11–14 (1993)

[38] Ducatelle, F., Di Caro, G., Gambardella, L.: Ant agents for hybrid multipath
routing in mobile ad hoc networks. In: Proceedings of Wireless On-demand
Network Systems and Services, pp. 44–53 (2005)

[39] Eberhart, R., Kennedy, J.: A new optimizer using particles swarm theory. In:
Proceedings of the 6th International Symposium on Micro Machine and Human
Science, pp. 39–43 (1995)

[40] Eyckelhof, C., Snoek, M.: Ant systems for a dynamic TSP: Ants caught in a
traffic jam. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms
2002. LNCS, vol. 2463, pp. 88–99. Springer, Heidelberg (2002)

[41] Gauthier, S.: Solving the dynamic aircraft landing problem using ant colony
optimisation. Masters Thesis, School of Information Technology, Bond Univer-
sity (2006)

[42] Godwin, T., Gopalan, R., Narendran, T.: Locomotive assignment and freight
train scheduling using genetic algorithms. International Transactions in Oper-
ational Research 13(4), 299–332 (2006)

[43] Goldberg, D., Smith, R.: Nonstationary function optimization using genetic al-
gorithm with dominance and diploidy. In: Proceedings of the 2nd International
Conference on Genetic Algorithms on Genetic algorithms and their applica-
tion, pp. 59–68. Lawrence Erlbaum Associates, Inc., Mahwah (1987)

[44] Grefenstette, J.: Evolvability in dynamic fitness landscapes: A genetic algo-
rithm approach. In: Proceedings of the Congress on Evolutionary Computa-
tion, vol. 3, pp. 2031–2038. IEEE Press, Los Alamitos (1999)

[45] Guntsch, M., Middendorf, M.: Pheromone modification strategies for ant algo-
rithms applied to dynamic TSP. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L.,
Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP
2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001,
and EvoLearn 2001. LNCS, vol. 2037, pp. 213–222. Springer, Heidelberg (2001)

[46] Guntsch, M., Middendorf, M.: Applying population based ACO to dynamic
optimization problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant
Algorithms 2002. LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)

[47] Guntsch, M., Middendorf, M.: A population based approach for ACO. In:
Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.)
EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and Evo-
Plan 2002. LNCS, vol. 2279, pp. 72–81. Springer, Heidelberg (2002)

[48] Guntsch, M., Middendorf, M., Schmeck, H.: An ant colony optimization ap-
proach to dynamic TSP. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pp. 860–867. Morgan Kaufmann, San Francisco (2001)

106 T. Hendtlass et al.

[49] Gutjahr, W., Rauner, M.: An ACO algorithm for a dynamic regional nurse-
scheduling problem in Austria. Computers and Operations Research 34, 642–
666 (2007)

[50] Hadad, B., Eick, C.: Supporting polyploidy in genetic algorithms using domi-
nance vectors. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart,
R. (eds.) EP 1997. LNCS, vol. 1213, pp. 223–234. Springer, Heidelberg (1997)

[51] Hendtlass, T.: WoSP: A multi-optima particle swarm algorithm. In: Proceed-
ings of the Congress of Evolutionary Computing, pp. 727–734. IEEE Press,
Los Alamitos (2005)

[52] Heusse, M., Snyers, D., Guérin, S., Knutz, P.: Adaptive agent-driven routing
and load balancing in communication networks. Adaptive Complex Systems 2,
1–15 (1998)

[53] Holland, J.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor (1975)

[54] Hu, X., Eberhart, R.: Adaptive particle swarm optimisation: Detection and
response to dynamic systems. In: Proceedings of the Congress on Evolutionary
Computing, pp. 1666–1670. IEEE Press, Los Alamitos (2002)

[55] Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer. In: Pro-
ceedings of the Congress on Evolutionary Computing, pp. 1666–1670. IEEE
Press, Los Alamitos (2003)

[56] Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer for dy-
namic optimization problems. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne,
D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E.,
Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS,
vol. 3005, pp. 513–524. Springer, Heidelberg (2004)

[57] Karaman, A., Uyar, S., Eryigit, G.: The memory indexing evolutionary algo-
rithm for dynamic environments. In: Rothlauf, F., Branke, J., Cagnoni, S.,
Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J.,
Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp.
563–573. Springer, Heidelberg (2005)

[58] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE Conference on Neural Networks, pp. 1942–1947 (1995)

[59] Kókai, G., Christ, T., Frühauf, H.: Using hardware-based particle swarm
method for dynamic optimization of adaptive array antennas. In: Proceedings
of Adaptive Hardware and Systems, pp. 51–58 (2006)

[60] Liles, W., De Jong, K.: The usefulness of tag bits in changing environments.
In: Proceedings of the Congress on Evolutinary Computation, vol 3, pp. 2054–
2060 (1999)

[61] Louis, S., Johnson, J.: Solving similar problems using genetic algorithms and
case-based memory. In: Bäck, T. (ed.) Proceedings of the 7th International
Conference on Genetic Algorithms, pp. 283–290 (1997)

[62] McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search.
In: Proceedings of the International Joint Conference on Artificial Intelligence,
pp. 321–326 (1997)

[63] Menai, M.: An Evolutionary Local Search Method for Incremental Satisfiabil-
ity. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS, vol. 3249, pp.
143–156. Springer, Heidelberg (2004)

Dynamic Problems and Nature Inspired Meta-heuristics 107

[64] Meng, Y., Kazeem, Q., Muller, J.: A hybrid ACO/PCO control algorithm for
distributed swarm robots. In: Proceedings of the IEEE Swarm Intelligence
Symposium, pp. 273–280 (2007)

[65] Morrison, R., De Jong, K.: A test problem generator for non-stationary envi-
ronments. In: Proceedings of the Congress on Evolutionary Computation, pp.
2047–2053 (1999)

[66] Moser, I.: Applying extremal optimisation to dynamic optimisation problems.
PhD in information technology, Swinburne University of Technology. Faculty
of Information and Communication Technologies (2008)

[67] Moser, I., Hendtlass, T.: Solving dynamic single-runway aircraft landing prob-
lems with extremal optimisation. In: Proceedings of the IEEE Symposium on
Computational Intelligence in Scheduling, pp. 206–211 (2007)

[68] Mullen, P., Monson, C., Seppi, K.: Particle swarm optimization in dynamic
pricing. In: Proceedings of the IEEE Congress on Evolutionary Computation,
pp. 1232–1239 (2006)

[69] Ng, K., Wong, K.: A new diploid scheme and dominance change mechanism
for non-stationary function optimization. In: Proceedings of the 6th Interna-
tional Conference on Genetic Algorithms, pp. 159–166. Morgan Kaufmann,
San Francisco (1995)

[70] Parsopoulos, K., Vrahatis, M.: UPSO: A unified particle swarm optimization
scheme. In: Proceedings of the International Conference on Computational
Methods in Sciences and Engineering, pp. 868–873 (2004)

[71] Parsopoulos, K., Vrahatis, M.: Unified particle swarm optimization in dy-
namic environments. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W.,
Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D.,
Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 590–599.
Springer, Heidelberg (2005)

[72] Pekala, M., Schuster, E.: Dynamic optimization of a heterogeneous swarm
of robots. In: Proceedings of the 10th IASTED International Conference on
Intelligent Systems and Control, pp. 354–359 (2007)

[73] Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. In: Pro-
ceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Ap-
plications, pp. 90–100 (1999)

[74] Ramsey, C., Grefenstette, J.: Case-based initialization of genetic algorithms.
In: Forrest, S. (ed.) Proceedings of the 5th International Conference on Genetic
Algorithms, pp. 84–91 (1993)

[75] Randall, M.: A dynamic optimisation approach for ant colony optimisation us-
ing the multidimensional knapsack problem. In: Recent Advances in Artificial
Life, Advances in Natural Computation, vol. 3, pp. 215–226. World Scientific,
Singapore (2005)

[76] Saleh, M., Ghani, A.: Adaptive routing in packet-switched networks using
agents updating methods. Malaysian Journal of Computer Science 16, 1–10
(2003)

[77] Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: Ant-based load
balancing in telecommunications networks. Adaptive Behavior 2, 169–207
(1996)

[78] Simões, A., Costa, E.: An immune-system-based genetic algorithm to deal
with dyamic environments: Diversity and memory. In: Proceedings of the 6th

International Conference on Artificial Neural Networks, pp. 168–174 (2003)

108 T. Hendtlass et al.

[79] Simões, A., Costa, E.: Improving memory-based evolutionary algorithms in
changing environments. Technical Report TR2007/004, CISUC (2007)

[80] Simões, A., Costa, E.: Improving memory’s usage in evolutionary algorithms
for changing environments. In: Proceedings of the Congress on Evolutionary
Computation, pp. 276–283. IEEE Press, Los Alamitos (2007)

[81] Simões, A., Costa, E.: Variable-size memory evolutionary algorithm to deal
with dynamic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007.
LNCS, vol. 4448, pp. 617–626. Springer, Heidelberg (2007)

[82] Simões, A., Costa, E.: VMEA: Studies of the impact of different replacing
strategies in the algorithm’s performance and in the population’s diversity
when dealing with dynamic environments. Technical Report TR2007/001,
CISUC (2007)

[83] Subramanian, D., Druschel, P., Chen, J.: Ants and reinforcement learning:
A case study in routing in dynamic networks. In: Proceedings of the 15th

International Joint Conference on Artificial Intelligence, pp. 832–838 (1997)
[84] Svenson, P.: Extremal optimization for sensor report pre-processing. In: Pro-

ceedings of Signal Processing, Sensor Fusion, and Target Recognition XIII, pp.
162–171 (2004)

[85] Tinós, R., Yang, S.: Genetic algorithms with self-organized criticality for dy-
namic optimisation problems. The IEEE Congress on Evolutionary Computa-
tion 3, 2816–2823 (2005)

[86] Tinós, R., Yang, S.: A self-organizing random immigrants genetic algorithm
for dynamic optimization problems. Genetic Programming and Evolvable Ma-
chines 8(3), 255–286 (2007)

[87] Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary en-
vironments. In: Proceedings of the Congress on Evolutionary Computation,
vol. 3, pp. 1843–1850. IEEE Press, Los Alamitos (1999)

[88] Ursem, R.: Multinational GAs: Multimodal optimization techniques in dy-
namic environments. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pp. 19–26 (2000)

[89] Varela, G., Sinclair, M.: Ant colony optimisation for virtual-wavelength-path
routing and wavelength allocation. In: Proceedings of the Congress on Evolu-
tionary Computation (1999)

[90] White, T., Pagurek, B., Oppacher, F.: Connection management by ants: An
application of mobile agents in network management. In: Proceedings of Com-
binatorial Optimization (1998)

[91] Xia, Y., Chen, J., Meng, X.: On the dynamic ant colony algorithm optimization
based on multi-pheromones. In: Proceedings of the 7th IEEE/ACIS Interna-
tional Conference on Computer and Information Science, pp. 630–635 (2008)

[92] Yang, S.: Memory-based immigrants for genetic algorithms in dynamic en-
vironments. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1115–1122. ACM, New York (2005)

[93] Yang, S.: Associative memory scheme for genetic algorithms in dynamic en-
vironments. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C.,
Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D.,
Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 788–
799. Springer, Heidelberg (2006)

Dynamic Problems and Nature Inspired Meta-heuristics 109

[94] Yang, S.: A comparative study of immune system based genetic algorithms in
dynamic environments. In: Proceedings of the 8th Conference on Genetic and
Evolutionary Computation, pp. 1377–1384. ACM, New York (2006)

[95] Yang, S.: Genetic algorithms with elitism-based immigrants for changing op-
timization problems. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS,
vol. 4448, pp. 627–636. Springer, Heidelberg (2007)

[96] Yang, S., Tinós, R.: A hybrid immigrants scheme for genetic algorithms in
dynamic environments. International Journal of Automation and Computing 4,
243–254 (2007)

[97] Zhang, X., Li, X., Li, Y., Zhou, Y., Zhang, J., Zhang, N., Wu, B., Yuan, T.,
Chen, L., Zhang, H., Yao, M., Yang, B.: Two-stage adaptive PMD compensa-
tion in 40 Gb/s OTDM optical communication system using PSO algorithm.
Optical and Quantum Electronics 36, 1089–1104 (2004)

[98] Zhang, Y., Kuhn, L., Fromherz, M.: Improvements on ant routing for sen-
sor networks. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M.,
Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 154–165.
Springer, Heidelberg (2004)

A. Lewis et al. (Eds.): Biologically-Inspired Optimisation Methods, SCI 210, pp. 111–138.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Relaxation Labelling Using Distributed Neural
Networks

Jim Austin

Abstract This chapter presents the Relaxation by Elimination methods (RBE)
for searching large collections of graph data that has been implemented on a dis-
tributed platform and is in daily use for searching a database of molecules. The
core of the approach uses an ‘inverted’ relaxation labelling method that finds a
good match of the input data with stored examples. The method is shown to scale
linearly with the number of graphs, and to scale linearly under given circum-
stances to the number of nodes in the graph. Key to the idea is that the system cuts
the search time by removing a set of sub-optimal matches leaving those that could
match. The system uses arrays of biologically plausible neural networks, Correla-
tion Matrix Memories (CMMs) to store the constraints between the nodes of the
graphs being searched. This is coupled to a novel search method. The system is
highly parallel. Recently we have developed a parallel Grid enabled computer
system (Cortex II) which utilises Digital Signal Processors (DSPs) and Field Pro-
grammable Gate Arrays (FPGAs) and have implemented the method on this sys-
tem. A service for matching small molecules to a molecule database, in which the
molecules are represented as attributed graphs, is currently running online. The
methods have also been applied to searching trademark databases allowing people
to find trademarks that are geometrically similar. The chapter describes the
method in detail and its implementation and application. It also brings together
work that has appeared separately and presents a new mathematical formulation of
the mapping of RBE onto correlation matrix methods.

1 Introduction

Graph based data composed of nodes and edges are widely used data structures in
many applications [8]. For example, an image can be represented as a graph where
the nodes in the graph represent features and the relations between the nodes rep-
resent the distances between the features. Text may be represented in a graph
where the nodes are concepts and edges are the relations between the concepts.
These find application in representing 2D and 3D images of molecules, maps,
faces as well as being used in text analysis and in many other problems. Although
representing data in a graph is relatively simple, the problem of searching for

Advanced Computer Architectures Group
Department of Computer Science
University of York
York YO10 5DD
UK

112 J. Austin

graphs that match an example graph is known to be a computationally difficult
problem [8]. Even more problematic is searching on incomplete graphs against
large numbers (100,000’s) of graphs stored in databases. The task is to find the
optimal match of the query graph with those in the database.

The method described in this chapter has been developed within the Advanced
Uncertain Reasoning Architecture (AURA) project that has been running at the
University of York for over 10 years [5]. The method may be implemented on a
large number of parallel machines using grid technology, and has been targeted at
application specific hardware developed at York. The AURA graph matcher soft-
ware embodies the graph matching method and has been applied to search
trademark image databases, 3D face databases and 3D molecular databases. The
methods have been commercialised by Cybula Ltd. Demonstrations of the method,
that search large molecular databases, are available online at www.cybula.com.
Although the method described here is posed as a search problem it is a general,
fast, heuristic optimisation method.

The core of the approach originated in relaxation labelling methods, developed
in computer vision to solve image matching problems, which have their roots in
the Waltz constraint optimisation methods used in understanding 2D line images
of 3D objects [22]. The basic task is to find which of a set of constraints should
be ‘relaxed’ to allow a problem to be solved. In the graph matching problem the
constraints are supplied by the query graph, and the problem, is to find which
graph the query graph, will match to in the database. To do this it is necessary to
find the largest match between two graphs, by relaxing the smallest number of
constraints.

In developing the algorithm described in this chapter the original relaxation
methods were modified to (1) operate faster on digital hardware and (2) reduce the
computation involved in finding a solution to the constraint satisfaction problem.

Our solution aims to find the graphs that might match by quickly finding those
which have a large mismatch between the constraints. Doing this allows those that
have few mismatches to be looked at in more detail. This process has been called
relaxation by elimination (RBE), as we aim to solve the problem by finding all the
graphs that possibly could not match and eliminating them, leaving those that are
left as being the candidate matches.

The approach was motivated by considering how sets of biologically plausible
neurons could be used to match images. The method is implemented as a Correla-
tion Matrix Memory (CMM) [4] which consists of simple sum and threshold neu-
rons and may be implemented on parallel hardware. The CMM is used to store the
constraints between the nodes of the graphs being searched. This is coupled to the
RBE method to determine which graph optimally matches the input data. The sys-
tem is highly parallel.

We have developed a parallel grid enabled computer system called Cortex II [3]
which utilises Digital Signal Processors (DSPs) and soft programmable hardware
(Field Programmable Gate Arrays, FPGAs) and implemented the method on this
system.

To summarise, this chapter adds to our previous publications by giving a com-
plete implementation of a graph matching application, using a neural network

Relaxation Labelling Using Distributed Neural Networks 113

inspired approach, implemented using correlation matrix memories on specialised
hardware, across a grid to solve a molecular matching problem. In essence, it
brings together all our previous work.

The chapter starts by describing the task and the challenges involved. It then
describes its relationship to other exhaustive and heuristic methods. The develop-
ment of the AURA graph match method is then described, by first showing how a
simple binary neural network is constructed. The operation of the method on
trademark and molecules is then described. The implementation of the methods on
dedicated systems (Cortex and PRESENCE hardware) is then considered, along
with distribution of the problem over a number of machines in a grid. Finally, the
online implementation is described. The style of this chapter is designed to make
the subject matter accessible to a wide audience. For a more rigorous treatment of
the material the reader is encouraged to consult the references.

2 The Task

This section describes the task and the challenges involved in solving it. The prob-
lem investigated in this chapter is the practical application of graph matching.

A graph is made up of a set of nodes (or vertices) and edges (or arcs). Graphs
can be directed, where there is a relationship between the nodes that applies in
given directions, or they are undirected, where the node relationships exist in both
directions. The edges may or may not be directed in our approach, although here
we only consider problems using undirected graphs. The nodes in the graph may
or may not hold attributes; there may be none, one or many attributes at each
node. The more attributes on each node or vertex, the more complex the matching
task becomes. In general, the problem here is attributed relational graph matching,
where the graphs are possibly incomplete. A graph isomorphism is where the
nodes and arcs in one graph are mapped to the nodes and arcs in the other graph (a
bijective mapping). A subgraph isomorphism is where a part of one graph is
mapped onto some of the nodes and arcs of the other graph. Finally, a maximum
common subgraph is the maximum set of nodes and arcs that can be mapped be-
tween two graphs. There may be sub-optimal mappings, but the aim is usually to
find the maximum match between the two graphs [8].

In the applications given here, the problem is a search engine task which con-
tains the problem of graph matching. A database of objects is stored and the task
is to find which of these best matches an input object. In this case the input must
first be coded as a graph. An ancillary challenge is how to translate the raw input
data into graph form. This can substantially affect the quality and speed of the
search. As an example, we have implemented search engines for trademarks [1]
and molecules [17]. In basic terms the task can be framed as selecting a set of im-
age features that form the nodes of a graph. The distance between these features is
represented as the edges between the graphs. In this case the graph is undirected as
the distance relation between two nodes does not have a directional component.
Other relations could be size, where nodes represent sub objects of the image and
the relations represent if one object is larger than another. This is clearly a directed
relationship. The nodes could be unattributed. In this case the presence of a node

114 J. Austin

indicates the presence of a feature. When the node is not present, this indicates
that the feature is not present. If the nodes indicate some measure of the feature,
i.e. colour, angle, type etc., then the nodes will represent this, possibly multiple,
information.

There are many papers published on the theoretical properties of graph match-
ing (See Bunke [8] for a review), however, there are few real and large applica-
tions that have been deployed. This is possibly because the computation time on
large datasets has been a hindrance. Although it is possible to use heuristic meth-
ods, many of these return too many incorrect matches to be of any value.

The challenge in matching directed graphs is that typically the time to compute a
match increases exponentially with the number of nodes in each graph. The most
basic approach to matching one graph to another is the brute force heuristic search.
The aim is to return a score which represents how well one graph matches another.
This is simply the count of the nodes and arcs that match between the two graphs.
This score can then be used to select the graph that best matches the input graph.

Graph matching is known to be NP-complete [8], that is, it can take an expo-
nentially long time to find the optimal match between two graphs, even though it
is also possible to find such a match in less time, i.e., the worst case match time is
exponential in the number of nodes and arcs, while the best case is linear time.

Although the time to compute a graph to graph match using a brute force (ex-
haustive) approach is exponential in the number of nodes in the graph, the time to
match a query, Q, to n stored graphs is linear in n.

3 The AURA Graph Matcher

This section describes the AURA graph matcher system. The basic method was
developed in Turner and Austin [19] and subsequently extended [18]. The AURA
approach is a set of methods, based on neural networks, for searching large in-
complete and complex datasets. In general, the AURA methods allow searching of
three classes of data: graphs as outlined here; text as described in Lomas [15]; and
signals (or numbers) [11]. Together, the AURA approach forms a family of meth-
ods that can be used on a wide variety of problems. More recently, we have been
applying the methods to commercial problems through the team’s spin off com-
pany, Cybula Ltd (www.cybula.com). Initially the methods were developed to
understand image data [17]. From this an associative memory was developed
based on a simple neural network (a CMM). The memory was developed to allow
both rapid recall of associated items as well as practical implementation in scal-
able computer hardware.

The AURA graph matcher is a combination of relaxation labelling methods [12]
and CMM neural network methods. The following description starts by outlining
the concept of relaxation, and then describes how it is implemented in CMM
based neural networks. It then describes how the methods have been implemented
on parallel hardware and used in a number of practical applications. The approach
has been described in Turner and Austin [20], where it is shown how a probabilis-
tic interpretation of relaxation labelling can be implemented using a binary
method with only a small loss in accuracy. Here we bring together the methods

Relaxation Labelling Using Distributed Neural Networks 115

and applications for the first time in a single chapter. The mathematical treatment
of the mapping onto CMMs is also new.

3.1 Relaxation by Elimination

Relaxation by elimination is a method that allows a constraint space to be
searched in a reasonably effective way. The process of matching one graph to an-
other is a straight forward task, if the graphs are identical. Unfortunately in many
applications one graph will be significantly different from another. To make mat-
ters worse, the constraints on the nodes and the arcs may only be similar. Thus the
algorithm that matches one graph to another must not only find out which nodes
and arcs match between the two graphs, but also find the ones that are most simi-
lar. One way to approach this problem is to use the idea of matching through the
relaxation of constraints. In general, this approach attempts to find the minimum
set of constraints needed to be withdrawn (relaxed) to allow the two graphs to
match. These constraints can be unary i.e. single constraints such as found at a
node (a feature or colour for example) and binary between two nodes such as is
represented by an arc (a distance between nodes for example). In RBE the process
of relaxation is achieved by elimination of constraints that are unsupported. In
conventional relaxation [12] the relaxation process is achieved through a normali-
sation process that uses a probabilistic framework to filter the information. The
RBE approach has been particularly designed for rapid operation though imple-
mentation on binary neural networks.

First we present an overview of the method. Consider the following simple ex-
ample. A graph to be matched, Q, is shown in Fig. 1 and in Fig. 2 two examples in
the database of graphs that are to be matched against Q. We have three nodes to
match, labelled 1, 2 and 3. Each node has a single node constraint, n, and this may
represent a local feature such as a colour or angle of an edge. The arcs are undi-
rected and also have a single constraint, c, which could represent the distance be-
tween nodes for example.

Fig. 1. A simple example of a graph, Q, with single attributes on the nodes (circles) and arcs
(arrows) that are undirected. The nodes are numbered 1, 2 and 3. The arc constraints are given
by, c, and the node constraints by n.

n = C

1

2

3

n = A

n = A

c = 1

c = 1

c = 4

116 J. Austin

Fig. 2 shows a similar pair of graphs in a database: D1, which is the same as Q
and D2, which differs significantly from Q.

The match process aims to find a mapping between Q and each of the graphs D
and thus find the match that minimises the number of constraints that are violated.
This represents typical data from an image analysis system, where the node infor-
mation might be the type of vertex found at the node and the relations between
these nodes are the distances between the edges. Note that the graphs contain
some ambiguity in the node information meaning the relational information must
be used to achieve a correct match.

The process of matching takes the following four stages:

1. Initialisation by matching single nodes between graphs Q and Dx.
2. Computation of the relational support for the nodes.
3. The process of elimination of weakly supported nodes.
4. The termination check.
5. Repeat from 2 until termination.

Fig. 2. Two graphs to be matched to the example in Fig.1. An identical graph, D1, and a non
identical graph D2. The nodes are numbered 1, 2 and 3. The arc constraints are given by, c, and
the node constraints by n.

n = C

1

2

3

n = A

n = A

c = 1

c = 1

c = 4

1D

3

2

1

n = A

n = B

n = C

c = 1

c = 6

c = 4

2D

Relaxation Labelling Using Distributed Neural Networks 117

3.1.1 Initialisation of Matching

The first stage takes each node in Q and attempts to match this against the graphs
in the database taking into account only the node constraints. The result of this is a
table of initial support shown in Table 1.

Table 1: Initial matches using only node constraints that match.

Node Number in Q
1 2 3

Graph Node Graph Node Graph Node
D1 1 D1 2 D1 3
D1 2 D1 1 D2 2
D2 3 D2 3

Table 1 shows that nodes 1 and 2 in Q match two nodes in graph D1 and one node
in graph D2. Node 3 matches one node in both D1 and D2.

The method here has exactly matched each node constraint. This process could
use a distance measure to identify close matches. It is important that the match
process is inclusive to ensure that no plausible candidates are excluded at this
point. To avoid unnecessary computation, clearly impossible matches are removed
at this point.

The next stage aims to remove the ambiguity in which nodes in the query match
those in the database by taking into account the arc constraints between the nodes.

3.1.2 Calculation of Relational Support

The next stage uses the arc constraint information to calculate the support for each
node and remove inconsistent matches. The process is summarised in pseudocode
as:

1. For each node, X, in graph Q
2. For each graph D in the database
3. For each node Y in graph D that matches the node constraint on X
4. For each arc, A, from node X
5. Count, C, the arcs from node Y with the same arc constraint as A

To do this, the table of initialised matches (Table 1) is consulted along with the
relational information from each node in Q and Dx. The counts (support) are given
for each node X as shown in Table 2.

Note that the correct match is the first row (highlighted) in the table. The ‘sup’
field is the count C, of support for each node. This is a very simple sum operation
and, as will be shown later, has been designed to be implementable on binary neu-
ral networks. This stage of processing is the same as used by Waltz [22] on an
early implementation of this approach.

118 J. Austin

Table 2: The relational support for each node.

Node Number in Q
1 2 3

Model Node Sup Model Node Sup Model Node Sup
D1 1 2 D1 2 2 D1 3 2
D1 2 1 D1 1 1 D2 1 1
D2 3 2 D2 3 1

Note that node 1 in Q matches equally well node 1 in graph D1 and node 3 in

graph D2. Thus there is an ambiguity. This will be dealt with by the elimination
phase described next.

3.1.3 Elimination of Unsupported Nodes

As noted above, the next stage is to eliminate the weakest supported nodes from
Table 2 and attempt to remove any ambiguity. In this example, nodes with support
of 1 or less are removed, as shown in Table 3. The value at which nodes are re-
moved is reasonably critical. Too low a value and ambiguities will remain in the
match, too high a value and nodes will be removed too quickly, perhaps removing
good matches.

As shown in Table 3, nodes 2 and 3 have one match with graph D1. Thus they
are now complete. However, node 1 still has two possible matches. The next stage
removes this ambiguity.

Table 3: Result after elimination.

Node Number in Q
1 2 3

Model Node Sup Model Node Sup Model Node Sup
D1 1 2 D1 2 2 D1 3 2
D2 3 2

3.1.4 The Next Iteration

To remove the ambiguity in node 1 in Table 3, the support values are removed and
the constraint propagation process is used again. This is the process of elimination
that the RBE method refers to. Note by removing nodes, matching constraints
are also removed (i.e. the node constraint of the node being removed and the arc
constraints for the arcs from that node). Table 4 shows the nodes with the support
values removed.

Relaxation Labelling Using Distributed Neural Networks 119

Table 4: The information for the second iteration.

Node Number in Q
1 2 3

Graph Node Graph Node Graph Node
D1 1 D1 1 D1 3
D2 2

Relational support is calculated again, as done to calculate Table 2. The result is
shown in Table 5.

Table 5: The node support after the second iteration.

Node Number in Q
1 2 3

Model Node Sup Model Node Sup Model Node Sup
D1 1 2 D1 2 2 D1 3 2
D2 3 0

Because there is only one node from graph D2 in Table 5, this node cannot get any
support. Thus, it will now fall below the elimination threshold in the next step.

3.1.5 The Final Elimination Stage

The elimination stage is re-applied. Any node with a support of 1 or below will be
removed. This produces just one node matching each Q node.

Table 6: The final match of each node.

Node Number in Q
1 2 3

Graph Node Graph Node Graph Node
D1 1 D1 2 D1 3

3.1.6 Termination of the Search

The process of elimination and calculation of support continues until no more
nodes can be removed by elimination.

The following covers some of the issues when using the method in practical ap-
plications.

3.2 Selecting the Best Match

After the method terminates, identification of which molecules is the best match is
done. It’s possible that many nodes could exist in the result list with a mapping to
a number of nodes in the same model. These represent possible symmetries in the

120 J. Austin

match. For example, it is possible that the result in Table 2 was the final state of
the search if a user decided to stop at that point. In this case there are two ways
that Q matches Di, one more optimal than the other. In some applications it is use-
ful to know sub-optimal matches. Unfortunately the process of extracting the con-
sistent mappings is a search in itself using the information in the table. However,
the number of candidates is far smaller than in the original search on the database,
thus this operation can be achieved relatively quickly.

3.3 Calculating the Similarity Score

It will be clear that the final result is a list of candidate matches for each node in Q
against nodes in the database. In many applications it is desirable to have a score
that indicates how good the match is.

There are a number of methods that can be used to calculate the match strength.
We have found useful ones to be the Tanimoto [18], Bunke [9] and Simpson [16]
coefficients. These similarity scores are defined based on the number of matches
between the nodes in the database Di and input Q, represented as Di ∩Q, normal-
ised by different factors depending on the method:

• The Tanimoto coefficient is defined as
QDQD

QD

ii

i

∩−
∩

• The Bunke coefficient is defined as
i

i

DQ

QD

,max
∩

• The Simpson coefficient is defined as
i

i

DQ

QD

,min
∩

All these metrics provide a value between 0 and 1 with a higher value indicating
greater similarity between Di and Q.

Other metrics are possible, and there has been considerable discussion in the lit-
erature on which of these or other metrics provide the best coefficient. However, it
is difficult to capture the subtlety of a match in a single coefficient.

In addition, the final match may be subject to a clique detection algorithm so
that small cliques are removed. This lies outside the scope of the RBE method,
and its use may or not be appropriate depending on the data and the type of graph
comparison the user wishes to perform. The standard clique detection algorithms
are not assured to have a finite completion time, and so such algorithms need to be
used with care. In practice a limit on the time taken in clique detection is imposed
to ensure that the time taken is bounded.

3.4 Summary of RBE

The process in the previous section has shown how a method for graph matching
can be implemented. The following sections show how the method has been

Relaxation Labelling Using Distributed Neural Networks 121

implemented using neural networks. Although neural implementation is not essen-
tial for the technique to work, it illustrates a direct and effective method for im-
plementing the algorithm that allows efficient parallel operation.

4 Interesting Properties of RBE

The RBE approach has the interesting and important property that it is ‘local’ in
its computation, allowing effective parallel processing. To be able to parallelise a
method effectively, it helps if the methods can be partitioned into separate, non-
interacting segments. The approach described here has the property that each node
calculation only requires information on the constraints applied by other nodes.
The nodes only use local information during the threshold phase. Alternative ap-
proaches require a maximum to be calculated across all the nodes, which means
they need to interact.

As pointed out already, the RBE method was developed specifically to be sup-
ported by the AURA methods, which are inherently parallel. The next section de-
scribes this approach and how RBE is implemented on the AURA methods.

5 Binary Correlation Matrix Memories

The AURA methods are based on the correlation matrix memory [17]. This is
basically a single layer neural network that uses Hebbian learning [13], one of the
most basic neural network learning methods. Fig. 3 illustrates a CMM as a binary
matrix and a single layer network.

Fig. 3. Diagram of a CMM. On the left is a conventional diagram of a CMM, as a single layer
network with three inputs and three neurons. The diagram on the right shows the same network
as a matrix. The advantage of the right hand representation is that the weights can be shown
explicitly.

Inputs, x
Outputs, o
Neurons
Weights, w

122 J. Austin

A CMM can be seen as an associative memory that, given a pattern vector x,
recalls the associated pattern, o. The memory can be trained on large numbers of
patterns to associate. At some point, due to capacity limitations, the memory will
fail to recover the associated pattern correctly. The analysis of this has been cov-
ered extensively elsewhere [17].

In the following, a bold capital letter, i.e. M , represents a matrix and a lower

case letter with an arrow e.g. v
r

represents a vector. Other letters represents a sca-
lar values.

In this section, a CMM is defined as a binary matrix M . To train patterns into a
CMM, binary vector operations are used. To train (create) the matrix you define
input pattern, x

r
, output pattern, o

r
, as vectors. Here is a simple example with an

input vector of three elements and an output vector of three elements:

r
o = 0 1 0()
r
x = 1 0 1()

In our case these patterns are binary. The outer product, ⊗ , is taken of these two
vectors to create the CMM,

 M =
r
x ⊗

r
o

For this example, this produces:

M =
0 1 0

0 0 0

0 1 0

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

When more pairs of patterns are associated, the resultant matrices are OR’ed with
each other,

I
rr

i
ii xo

∀

=M

where I represents a logical OR, the superposition, of all values of the matrices

with each other. For two matrices 1M and 2M this is given as:

For all i and j

ijijij
21 MMM +=

Relaxation Labelling Using Distributed Neural Networks 123

where i is the row index into the matrix M and j is the column index and + is the
logical OR operation between two matrices M1 and M2.

If we had two patterns to train:

r
o 0 = 0 1 0()
r
x 0 = 1 0 1()

and,

r
o 1 = 1 0 0()
r
x 1 = 0 1 1()

The result of training will be:

M =
0 1 0

0 0 1

0 1 1

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

To recall data (an association) from the network, the CMM uses the basic sum-
and-threshold operation found in single layer neural networks:

ii

i
j xwO *∑

∀

=

where Oj is the output of the jth neuron. wi and xi is the ith weight connecting the ith
input to the neuron.

In matrix terms, this is defined as the product between the input vector, x
r

, and
the matrix M :

r
r =

r
x M

In typical neural networks, the product, *, is defined as the sum of the products
between x

r
and M :

∑
∀

∗=
i

ijij xr ,M
r

In binary CMMs, the product is replaced by the sum of the logical AND’s (given
as ‘ ∧ ’ here) between the terms of x

r
and M:

124 J. Austin

∑
∀

∧=
i

ijixr
j ,M

rr

To show this operating, consider the matrix created above. We present the original
pattern to the matrix:

0 2 1()= 1 0 1()
0 1 0

0 0 1

0 1 1

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

The result, r, must be thresholded to recover the original pattern, o. In this exam-
ple, we select the highest element from the result, to produce:

0 1 0()

This is the pattern previously trained into the CMM. It is also useful to have a
simple iconic representation of a matrix as shown in Fig. 4.

Fig. 4. The image shows an icon of a CMM recall resulting in the unthresholded value, r.

In the AURA methods, it is often necessary to rewrite a matrix M as a vector.
This is defined by the operator ()L as in)(ML=v

r
. To do this, the columns of

the matrix are extracted in order, transposed and concatenated with the others to
produce a single row vector. The inverse, ()L′ , can also be applied to a vector to

recover the matrix, M = ′ L (
r
v).

The weights in the CMMs we use are binary 0 and 1 weighted, as opposed to
continuous weights used in most other CMM implementations. This allows us to
implement CMMs very effectively on computer hardware at high speed, as will be
discussed later.

One of the advantages of using a binary CMM is its speed. In many neural net-
works learning is a slow, iterative process used to obtain the best classification of
the input data. Here, the aim is to store examples of the input data in the weights,
so a simple Hebbian learning rule as shown above is used. Much of our work has
been inspired by using methods that are biologically plausible. This does not mean
that they are used by the nervous system, but could plausibly be used. The idea is
that we then use methods that biology might use to solve problems that are hard to

M x
r

r
r

Relaxation Labelling Using Distributed Neural Networks 125

solve using conventional methods. It will be evident that the CMM associates an
input pattern and an output pattern with each other, so that input of one pattern can
elicit the recall of the other. Because of this CMMs are often called associative
memories.

CMMs have been implemented in the AURA software library developed at the
University of York [5]. To make the implementation particularly efficient the li-
brary uses sparse vector methods to efficiently store very large CMMs. Evaluation
of these large CMMs is particularly fast, especially where the input pattern is
sparse. The AURA library has been mapped onto dedicated hardware using
FPGAs for more effective parallelisation of the methods.

6 Binary Correlation Matrix Memories

One of the benefits of RBE is that it can use the CMMs to store the constraints in
the graph and also for the mapping of each node in the graph Q to the database
nodes. Our approach has used CMMs to implement a particularly fast version of
the graph matcher system. The following describes how the method is mapped
onto CMMs, and is described using vector and matrix operations.

The following labels are defined and used in the following:

The input graph Q
The database D
An instance of a graph in the database g
A node in the database graph i
A node in the query graph r
A node constraint n
The binary vector of constraints at a node n

r

An arc in the database graph j
An arc in the query graph s
An arc constraint c
The binary vector of constraints at an arc c

r

The matrix of node and arc constraints for all nodes, i, and all
arcs, j, in the database graph g in the input Q

Q
srC ,

The vector of node and arc constraints for all nodes, r and all arcs,
s, in the input Q

Q
srv ,

r

The matrix of node and arc constraints for all nodes, i, and all
arcs, j, in the database graph g in the database D

D
gjiC ,,

The node and arc constraints for all arcs in a node in the
database D

D
gjiv ,,

r

A vector containing all the arc and node constraints for a database
graph g.

D
giv ,

126 J. Austin

The elimination threshold T

The support of each mapping of a node in a graph in D to a node

in Q
rR

r

The following sets out the steps in the process:

Step1: Node and arc constraints
As described already, each node in the graph, Q, has a local constraint, called a
node constraint, n. Also each arc from that node has a constraint called an arc con-
straint, c.

Step 2: Binary representation of node and arc constraints in Q
As binary methods are used, the value of a node constraint is represented as one

bit set in a vector, rn
r

, where r is the node in the query graph Q. This has length

n
r

 equal to the number of values that a constraint at a node may take.

The same applies to the arc constraint information which is represented as a

vector sc
r

 for arc s at node r. This vector has a length c
r

 equal to the number of

possible values for the constraints in the system. For example, if an arc constraint
is a distance between the nodes and the value of the distance varies from 1 to 10,
then the constraint vector c

r
 would have 10 elements. A 1 in element 4 would

represent the distance 4 between the two nodes.

Step 3: Matrix of node and arc constraints
The node constraint vector, rn

r
, and the arc constraint vector, sc

r
, are combined

into a correlation matrix, Q
srC , , for the input graph Q:

s
Q

r
QQ

sr cnC
rr ⊗=,

There is one for each node and arc in the graph where ⊗ is the outer product
given in Section 5.

Step 4: Conversion of the constraint matrix to a vector

For reasons that will be shown below, all Q
srC , are re-written as vectors, Q

srv ,

r
,

using:

)(,,
Q

sr
Q

sr Cv L=r

Relaxation Labelling Using Distributed Neural Networks 127

where L() is defined in Section 5. The constraint vector, Q
srv ,

r
, represents the con-

straints for node r and arc s in the input Q each vectors has the length cn
rr × .

Step 5: Encoding the database information
Now we have the constraint information for the input graph, Q, the information in
the database graphs is also encoded in the same way by combining the database
information into a CMM.

Step 6: The database nodes and arcs
All graphs, g, in the database, D, have nodes numbered i, and arcs numbered j.
For each graph we create a constraint vector, as in the query graph.

Step 7: Binary representation of node and arc constraints in D
Again, each node and arc in a given database graph has its constraints encoded

into a vector. The arc constraints are given as D
gjc ,

r
for the arc j and graph g at any

node. The node constraints are given as D
gin ,

r
for node i in graph g.

Step 8: The matrix for the node and arc constraints of one database graph
As for the query graph, the arc and node constraints are combined into a CMM

matrix D
gjiC ,, that holds the constraint information, and is formed as:

D

gj
D

gi
D

gji cnC ,,,,

rr ⊗=

Thus D
gjiC ,, holds all constraints for node i and arc j from that node in a given

graph g in D .

Step 9: Conversion of the constraint matrix to a vector

All D
gjiC ,, are again re-written as vectors, D

gjiv ,,

r
, using:

)(,,,,
D

gji
D

gji Cv L=r

The constraint vectors, D
gjiv ,,

r
, represent the constraints for node i and arc j in the

graph g in D and each has the length cn
rr × .

Step 10: Combining all the database constraint information
To create a more efficient system, we use an optimisation. We combine all arc
constraint vectors across all nodes in a graph into one vector, by superimposing
the vectors:

128 J. Austin

For all i and g;

U
rr

j

D
gjii,g

D vv
∀

= ,,

where the operation U superimposes (logically ORs) vectors on top of each other.

There is now one vector, D
giv ,

r
, that holds all of the information for each graph in

the database. Doing this speeds up the performance of the method, with no loss in

accuracy. Note that D
giv ,

r
is a two dimensional matrix structure made up of gmax ×

imax column vectors (number of graphs × number of nodes in each graph) each of
Dv

r
size, i.e. a CMM.

We now have a single data structure that holds all the constraints in the data-

base D
giv ,

r
and one data structure that holds the input query Q

srv ,

r
. By using these two

data structures the similarity between the graphs may be computed as shown next.

Step 11: Holding the support for each node
The vectors representing the input query and the database can now be used to

build the support list, as shown in Table 1. A set of vectors, rR
r

, is needed to hold

the support scores for each node in the query graph. rR
r

is a set of rmax vectors, one

for each node in the query graph. Each vector R
r

 gives the support for each node

onto a particular node and graph in the database, D. Each R
r

 is rmax × gmax in size.

Step 12: Calculating the support
The process of support calculation follows that in Section 3.1. First there is an
initialisation stage, then there is a process of support calculation, followed by a
threshold operation and this process iterates until the process terminates.

Step 13: Initialisation of the support
The initialisation checks to see if the node constraints in the query match with any
nodes in the database.

If the node i and constraint n at that node matches any node constraint n in the

database graph, then the relevant element in tR
r

is set to 1.

Step 14: Using the arc constraints to update the support
A computation of the support values is achieved by performing a match between

the vectors D
giv ,

r
 and Q

srv ,

r
and placing the result in t

rR
r

, which is the state of tR
r

at

time t. This is done as follows:

For each node r in the query graph Q

 For each arc s from node r

Relaxation Labelling Using Distributed Neural Networks 129

For each graph g in the database D
 For each node i in g

 () 1
,, . −= t

r
Q

sr
D
gi

t
r RandvvR

rr

where t
rR

r
is the result at time t (or after initialisation given in Section 13) and

1−t
rR

r
is the result at the previous iteration after thresholding (below). The opera-

tion ()Q
sr

D
gi vv ,, .

rr
 is the dot product between the two vectors, each returning a sin-

gle value into the corresponding vector location in t
rR

r
. The and operation only

allows this value to be entered where the corresponding bit in 1−t
rR

r
is at 1.

Step 15: Thresholding the support

The result t
rR

r
is then thresholded to remove (eliminate) any value with poor sup-

port scores as described in Section 3.1.5. An elimination threshold T is set. Any

values above this are set to 1, any others are set to zero. This becomes 1−t
rR

r
in the

next iteration.

Step 16: Termination of the process

If the number of bits set in 1−t
rR

r
fails to change in two iterations, then the process

is terminated. Otherwise the process returns to step 14.

7 Calculation of the Quality of Match

After k iterations the RBE process completes and the remaining nodes with sup-

port will be given in the vector t
rR

r
. This information can be extracted for all

graphs and a list produced of the graphs that match the input with the minimum
number of relaxed constraints. Note that no information on the quality of the
match is given. As pointed out already, this has to be calculated after the RBE
process using a separate distance measure that assigns a score to each graph. In
practice this operation may not be a graph based comparison, as it can use a highly
compute intensive process due to the small list of matching items that are left.
From this, it is clear that the RBE process can be used as a pre-filter to an existing
exhaustive match process. In this way, the method can be added to existing meth-
ods to give a considerable shortened execution time from the system as a whole.

Since all plausible matches are retained, the sensitivity is always 1. Specificity
is affected by a number of factors. For example, a graph which is less than
fully connected at each node may result in false positives due to insufficient
propagation of removed implausible matches throughout the graph, with the bene-
fit being lower overall execution time (see Fig. 5). Using a threshold for support
of less than the full connectivity at each node may also result in false positives,
but will allow the system to undertake inexact matches. Given the difficulty of

130 J. Austin

determining an objective set of true positives and true negatives for a system of
graphs other than trivial cases or for very specific examples, no figures on the
specificity of the method are presented in this chapter.

8 The Performance of the Method

The time complexity of RBE is indeterminate as it depends on the exact con-
straints present in the graphs and the graph structure. In general terms the process-

ing speed is ()2nO where n is the number of nodes in the graph. For a particular

set of graphs, the number of operations will be proportional to:

() iterNN
gAll

gg ⎥
⎦

⎤
⎢
⎣

⎡
−×∑ 1

where gN is the number of nodes in a graph g in the database and iter is the num-

ber of iterations needed to complete a search.
Because the structure of the graph affects the performance of the method, per-

formance can only be calculated empirically, as has been done in Fig. 5. To calcu-
late these results we generated a number of random graphs and stored them in the
database. Each graph had the same connectivity (number of arcs from each node).

The random graphs were stored in the database. Each graph in the database has
100 nodes. One thousand randomly generated graphs were stored in the database.
Thus the set of stored graphs is a small subset of the set of possible graphs, and
assumed to be evenly distributed within the total graph space. Sparse distribution
of graphs in the set of all possible graphs is common in many real matching sce-
narios although real data often has a non-uniform distribution with the graph space
as measured by similarity scores. Each query was taken from the set of stored
graphs, either as a complete graph, or as a sub graph of a stored graph.

For each run we generated one query graph, varying the number of nodes in the
query on each run (as shown on the x-axis). In each case we ran the program to
completion. The threshold, T , was varied for each plot. The x-axis is the number
of nodes in the query and database, Ng. The y-axis shows the relative time (%) to
complete a search.

We looked at two cases of connectivity and its effect on the result. The top line
(dotted) is where the connectivity in the graph is Ng − 1, i.e. a fully connected
graphs. The bottom line (solid) shows where the connectivity is maintained at 9
for all examples.

The experimental set-up used was version 3.1.0.1 of the ‘Graphmatcher’ soft-
ware library with version 2.8.0 of the AURA library, compiled with gcc 3.4.6 with
–O2 run on a system with 2 quad core 2Ghz Xeon processors per node each with
16GB RAM running 64 bit Scientific Linux 4.5, these nodes forming Cortex II.

Relaxation Labelling Using Distributed Neural Networks 131

In Fig. 5 it can be seen that query time is linear on query size for fixed connec-
tivity of 9. As the number of nodes rise, the connectivity rises, and as this happens
the performance rises exponentially.

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Size of Query

R
e
la

tiv
e
 T

im
e

Variable Graph Connectivity
Fixed Graph Connectivity of 9

Fig. 5. Showing the relative time to compute a match against average number of nodes in the
query. Two plots are shown on this graph: the solid line gives results for a fixed connectivity, i.e.
9 in all instances, irrespective of the size of Q. The dotted line gives results for connectivity
equal to one less than the query size.

9 Applications

The AURA based RBE method has been used on a number of applications. The
first of these was for molecular matching [14] followed by trademark logo re-
trieval [1]. The reason for applying the method to these problems is that they are
computationally difficult. Details of the methods can be found in each paper cited
above. The following describes the general approach to the use of the method on
image problems and describes the molecular matcher application in more detail.

The main task in applying the method to a problem is to decide on the local and
relational constraints to use. In image recognition problems, the local constraints
(node constraints) are usually some local property of the image calculated using
feature detectors. These can be edge angle, curvature of the surface, texture prop-
erties or something similar. In the trademark system, complex image primitives
are used that relate to gestalt properties. In faces, local curvature of the face can be
used. In the molecular matcher, the curvature of a surface drawn over the mole-
cule can be used, or the Coulomb charge at that node.

The relational (arc) constraints capture some information that relates one node
to another. In many applications it is a simple measure of the distance between the
nodes. In the trademark system, the relations are more complex. For example, if
two nodes represent small edge segments of a line, and those lines are co-linear,
then the relation is ‘lines are collinear’.

132 J. Austin

There are a number of techniques which may be used to select the characteris-
tics for the nodes and constraints such as Principal Components Analysis (PCA)
or the use of genetic algorithms. This information must then be mapped onto the
system as binary vectors.

10 Mapping Data onto Binary Vector

When information is represented to the system it is in the form of binary vectors.
This allows the rapid computation. Each bit in a vector represents some value. For
example, in image recognition a node can have a set of node constraints based on

edge angle under the node. This could be any angle between o0 and o179 . This

information would be represented in a binary constraint vector N
r

,

()Nmax10 b...,b,b=N
r

where each ib is a bit with a value 1 or 0. In this case N
r

is 179, a bit for each

angle of the edge. A one in the vector location represents the presence of that
value, a zero represents ‘unknown’. This is different from other binary representa-
tions where a zero would mean 0 (i.e. the value 0). In our case, the vector can con-
tain multiple bits sets suggesting that the edge (or what ever the vector represents)
can possibly take one of the set of values. In effect, the vector contains a ‘vote’ for
the setting of that variable to that value. A 1 is one ‘vote’ and 0 is no vote. If other
nodes suggest that the element should be 0 rather than 1, then the system allows
this. This is a powerful concept used throughout AURA based CMM systems.

For some applications these vectors can become quite large. However, as they
are mostly all 0’s, they can be represented efficiently, as discussed below.

The quantisation used to encode these values which, by its nature, introduces
some level of approximation. In the above example the values for 10.0° to
10.999…° would be encoded as the same binary vector. In some cases this may be
sufficient however it means that the system will consider 9.999…° and 10.0° as
different values. Coding systems should be chosen carefully to ensure that there is
no unintended negative effect on the specificity or sensitivity of the system. The
appropriate coding scheme will depend on the relationships and the desired behav-
iour in terms of what values should be seen as similar to other values.

11 The Cybula Molecular Matcher

The RBE method has been used in many applications as pointed out already. To
give an idea of how it is applied, we consider the molecular matcher system men-
tioned above. Here we consider the general approach to the problem to allow oth-
ers use the method.

Relaxation Labelling Using Distributed Neural Networks 133

The molecular matching system was designed to support computational chem-
ists select appropriate drug like molecules for trials. When a drug is developed,
other companies often would like to copy the drug using a different molecule. To
do this, one approach is to find and trial similar molecules to the one already being
produced. There are many approaches to this. In our work we investigated the use
of the three dimensional shape to identify similarly shaped molecules that could
be trialled within GSK Ltd. and developed the RBE method during this work. The
system (see http://www.cybula.com) now runs continually on hardware (described
below) at The University of York and allows users to enter drug-like molecules
and search for similar examples against a database of over 100,000 taken from the
US National Cancer Institute open database of molecules with actual and potential
anti-cancer properties. The system has been running for over two years. A screen
shot of the system is shown in Fig. 6.

Fig. 6. The molecular matcher interface.

The system is aimed at small molecules (up to 100 atoms). The first stage is to
select a representation for the input data. In our implementation we use the Van
der Waals surface around molecules. This is then sampled at regular points over
this surface. Each point forms a point of the graph. We use the distance between
the points as the pair wise arc constraint. There is no node constraint.

This is shown in Fig. 7 in a 2D example. The graph is then presented to the
RBE method. After a number of iterations, the stopping criterion is met, with a
number of graphs representing molecules remaining. The task is then to identify
which molecules these relate to, which is a simple process of finding which mole-
cules are still supported.

An important aspect of the RBE method is that the system does not directly
show how well one graph matches another once the search is complete. The final
ranking to show how closely two graphs match is based on the maximum common
subgroup between the two graphs, and the method for ranking in AURAMol is by
Tanimoto Coefficient [18].

134 J. Austin

Fig. 7. A simple example of the molecular representation used showing a 2D slice through a 3D
shape. The nodes and the arcs on the surface are used to represent the molecule to the system.

12 Implementation on Distributed and Parallel Hardware

The implementation of CMMs on both dedicated and general purpose hardware
has always been an aim of our work. The initial work building CMMs in hardware
memory systems came from the early work on associative neural networks [2]. In
turn, that work developed out of an area called RAM based neural network or
weightless networks [4]. These systems used RAM memories to store the weights
in a neural network. With the development of the methods into binary CMMs, the
work looked at implementation using both dedicated and FPGA based hardware
[3] as well as VLSI [7]. Specialised hardware was investigated because a conven-
tional processor does not implement a binary vector add (see later). After this we
settled on the implementation using reprogrammable FPGAs and developed the
PRESENCE card [5], and an implementation of CMMs in FPGA hardware. Fig. 8
shows an image of the second version of this card, PRESENCE II (PII). Currently
we are designing PRESENCE III.

The aim of the card development was to allow the CMMs to be implemented
effectively. As well as the use of an FPGA for parallel vector operations, the im-
portant features needed from the card were high performance access to memory, a
large amount of memory (4GB on a card) and direct access to the card from the
host PC.

In addition PII contained a Digital Signal Processor to allow more efficient use
of the card for complex operations by providing a system for pre-processing tasks
directly on the card thus reducing host to card transfers over the PCI bus. The abil-
ity to reduce contention on the PCI bus allows greater scalability of the number of
cards within a single system.

The PII card was then used in a Sun server which houses up to 9 cards as shown
in Fig. 9.

Atoms

Van der Waals
surface

Arc constraints

Surface nodes

Relaxation Labelling Using Distributed Neural Networks 135

Fig. 8. The PRESENCE II Card used to run RBE.

Fig. 9. The Cortextm machine used to run many PRESENCE cards in parallel.

This allowed up to 20GB of binary CMMs in one system, called Cortextm. The
latest Cortex machine is Cortex III which houses 8 Presence II cards in four high
performance Xeon based servers. A version of Cortex running the RBE method on
a molecular problem has been running for 2 years (as of September 2008) open to
all users on the Internet.

Our work then progressed to develop a distributed version of the system that
runs over multiple machines based on grid software. This allowed us to experi-
ment with multiple databases in different locations [11].

The software (AURA) that supports these systems allows a CMM to be imple-
mented per card, and multiple CMMs supported by many applications. We devel-
oped a software system called the AURA software library which allows the
CMMs to be distributed on the hardware. In addition, we developed a multi-
pattern matching system called the Pattern Match Controller (PMC) that allows

136 J. Austin

multiple machines to be used to undertake pattern matching, which includes
CMMs [6].

The result of this work is a fully scalable platform for associative memory
based systems based on CMMs. The next section describes the important hard-
ware mapping uses that we addressed in implementing RBE on Cortex.

12.1 Implementing CMMs in Hardware

Because CMMs are binary arrays they are particularly simple to implement in
hardware. The main issues for implementation are the efficient use of memory
(because the CMM data structures can be large) and the evaluation of the main
matrix recall operation. The AURA library that supports the implementation of
CMMs in our work includes CMMs represented in a reasonably efficient packed
binary format. In the software each set of bits in a matrix is packed into each word
in memory. A more efficient format is also used that records the occurrence of a
binary bit by storing its position in the matrix. Although this value will be larger
than storing a binary bit, when the matrix is sparse this is more efficient. This lat-
ter form is called Compact Bit Vector (CBV) representation and is basically a
sparse vector method. CBV methods are used when the vectors in the system are
particularly sparse otherwise the packed method is used. The CBV approach uses
less memory, but can be slower and/or more expensive to implement in hardware.

To be able to undertake recall quickly on CMMs we use a row based evaluation
method to evaluate the function Mxr

rr = used earlier. The input pattern, x
r

, is
typically in many applications quite sparse, i.e. has very few bits set to one. This
means that evaluating the equation is best done by taking each bit in x

r
 and, in

effect, accessing the row in M that it points to. This row in the CMM is then
summed into a vector o

r
, of real valued elements. As the CMM is binary, this is

a fast operation as only binary elements are added. This process is illustrated in
Fig. 10.

In this example, the input vector, x
r

, is applied to the CMM which contains 6 ×
4 elements. Each bit in the input vector is accessed and if a bit is set to one, the
row it points to is added into the output vector, o

r
. This is shown for the first row

in the matrix.
The PRESENCE hardware implements the complete CMM on the card. The

host just sends binary vectors to the card and receives vectors back. The system
uses arrays of counters to implement the output vector, o

r
. Ancillary functions for

converting the output vectors to binary via thresholding methods are also in-
cluded.

To implement RBE, our approach uses the CMM structures on PII as explained
above along with management functions on the host machine that prepares the
vectors to be supplied to the CMMs. Setting up the CMMs is done on the host
machine. The cards then run step 14 in the section on the complete RBE process,
which is the most compute-intensive stage.

Relaxation Labelling Using Distributed Neural Networks 137

1 1 0 0 0
1 0 0 1 1
0 0 1 0 0
0

1 1 0 0
0 0 0 0 0
1 1 1 0 0

Input
Vector

2 1 1 1

Fig. 10. The evaluation of the CMM based on row indexing.

13 Conclusions

Using the methods given here it is possible to build high performance search sys-
tems for complex relational information encoded in graphs. Although the match
process is a heuristic, it has been shown to produce reasonably good results in
many of the applications we have tried. Our current work continues to improve the
implementation. In particular, we have developed a new FPGA implementation
and we continue to develop new applications of the method. The software is avail-
able to allow users to experiment with the graph matcher [10], which is free to use
in non-commercial applications.

Acknowledgments Many people have helped in the work reported here. Aaron Turner has
worked on the optimisation and extension of the methods, Mike Weeks, John Kennedy and Mike
Freeman on the FPGA and DSP implementation, John Kennedy, Anthony Moulds and Zygmunt
Ulanowski on the PRESENCE card. Mick Turner and Stephan Klinger contributed to the basic
RBE methods and their application to molecular matching. Simon Hickinbotham implanted the
client-server system and interface for AURAMol. Simon Davidson helped check the text. The
work was funded in part by UK EPSRC research council, GSK, DTI and Cybula Ltd.

References

[1] Alwis, S., Austin, S.: A novel architecture for trade mark image retrieval systems. In:
Mira, J. (ed.) IWANN 1999. LNCS, vol. 1607, pp. 361–372. Springer, Heidelberg
(1999)

[2] Austin, J., Stonham, T.J.: Distributed associative memory for use in scene analysis.
Image Vision Computing 5(4), 251–260 (1987)

[3] Austin, J., Kennedy, J., Lees, K.: A neural architecture for fast rule matching. In: Pro-
ceedings of the Artificial Neural Networks and Expert Systems Conference, Dunedin,
New Zealand, pp. 255–260 (1995)

[4] Austin, J.: RAM-based neural networks. World Scientific, River Edge (1998)
[5] ACA group, AURA web pages (2008), http://www.cs.york.ac.uk/arch/neural-networks/

technologies/aura (accessed January 1, 2009)
[6] Austin, J., Davis, R., Fletcher, M., Jackson, T., Jessop, M., Liang, B., Pasley, A.:

DAME: Searching large data sets within a grid-enabled engineering application. Pro-
ceedings of the IEEE - Special Issue on Grid Computing 93(3), 496–509 (2005)

138 J. Austin

[7] Bermak, A., Austin, J.: VLSI implementation of a binary neural network - two case
studies. In: Proceedings of the 7th International Conference on Microelectronics (Mi-
croneuro), p. 374. IEEE Computer Society Press, Los Alamitos (1999)

[8] Bunke, H.: Graph matching: Theoretical foundations, algorithms, and applications.
In: Proceedings of the International Conference on Vision Interface, pp. 82–88 (2000)

[9] Bunke, H.: On a relation between graph edit distance and maximum common sub-
graph. Pattern Recognition Letters 18(8), 689–694 (1997)

[10] Cybula, Molecular matcher web site (2008), http://www.cs.york.ac.uk/auramol/ (ac-
cessed January 1, 2009)

[11] Fletcher, M., Jackson, T., Jessop, M., Liang, B., Austin, J.: The signal data explorer:
A high performance grid based signal search tool for use in distributed diagnostic ap-
plications. In: Proceedings of the 6th IEEE International Symposium on Cluster
Computing and the Grid, pp. 217–224. IEEE Computer Society, Los Alamitos (2006)

[12] Hancock, E., Kittler, J.: Edge-labeling using dictionary-based relaxation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 12(2), 165–181 (1990)

[13] Hebb, D.O.: The organization of behavior. Wiley, New York (1949)
[14] Klinger, S.: Chemical similarity searching with neural graph matching methods. PhD

The University of York, UK (2006)
[15] Lomas, D.: Improving automated postal address recognition using neural networks,

PhD Thesis. The University of York, UK (2002)
[16] Simpson, G.G.: Mammals and the nature of continents. American Journal of Sci-

ence 241, 1–31 (1943)
[17] Turner, M., Austin, J.: A neural relaxation technique for chemical graph matching. In:

Niranjan, M. (ed.) Proceedings of the 5th International Conference on Artificial Neu-
ral Networks, pp. 7–9 (1997)

[18] Tanimoto, T.T.: IBM Internal Report (November 1957)
[19] Turner, M., Austin, J.: Matching performance of binary correlation matrix memories.

Neural Networks 10(9), 1637–1648 (1997)
[20] Turner, M., Austin, J.: Graph matching by neural relaxation. Neural Computing and

Applications 7(3), 238–248 (1998)
[21] Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM 23(1),

31–42 (1976)
[22] Waltz, D.: Understanding line drawings of scenes with shadows. In: Winston, P.H.

(ed.) The Psychology of Computer Vision. McGraw-Hill, New York (1975)

Extremal Optimisation for Assignment
Type Problems

Marcus Randall1, Tim Hendtlass2, and Andrew Lewis3

Abstract Extremal optimisation is an emerging nature inspired meta-
heuristic search technique that allows a poorly performing solution compo-
nent to be removed at each iteration of the algorithm and replaced by a
random value. This creates opportunity for assignment type problems as it
enables a component to be moved to a more appropriate group. This may
then drive the system towards an optimal solution. In this chapter, the general
capabilities of extremal optimisation, in terms of assignment type problems,
are explored. In particular, we provide an analysis of the moves selected by
extremal optimisation and show that it does not suffer from premature con-
vergence. Following this we develop a model of extremal optimisation that
includes techniques to a) process constraints by allowing the search to move
between feasible and infeasible space, b) provide a generic partial feasibility
restoration heuristic to drive the solution towards feasible space, and c) de-
velop a population model of the meta-heuristic that adaptively removes and
introduces new members in accordance with the principles of self-organised
criticality. A range of computational experiments on prototypical assignment

School of Information Technology
Bond University
Queensland
Australia
mrandall@bond.edu.au

Faculty of Information and Communication Technology
Swinburne University of Technology
Victoria
Australia
thendtlass@swin.edu.au

Institute for Integrated and Intelligent Systems
Griffith University
Queensland
Australia
a.lewis@griffith.edu.au

A. Lewis et al. (Eds.): Biologically-Inspired Optimisation Methods, SCI 210, pp. 139–164.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

140 M. Randall et al.

problems, namely generalised assignment, bin packing, and capacitated hub
location, indicate that extremal optimisation can form the foundation for a
powerful and competitive meta-heuristic for this class of problems.

1 Introduction

Extremal Optimisation (EO) [6, 8] is a meta-heuristic search technique that
has its origins in the science of self-organised criticality (SOC). SOC has been
used to describe behaviour in systems as diverse as geophysics, economics and
biological evolution. It is only recently that these concepts have been applied
to solving optimisation problems [6].

This chapter investigates and examines the use of EO for a class of prob-
lems known as the assignment type problems (ATPs). We use these problems
as our benchmark problems as they often have difficult constraints. Initially
we look in detail at how EO selects and performs moves in search space on
the bin packing problem. We then further develop EO to show that with
suitable support heuristics it is capable of producing solutions comparable to
those of more established meta-heuristics.

The remainder of this chapter is organised as follows. Section 2 briefly ex-
plains the idea of SOC while Section 3 gives an overview of the general tenets
of EO. Section 4 describes assignment type problems. Given that there has
been little work done on the analysis of EO’s search behaviour in the litera-
ture, a detailed case study examination of EO transitions on one of the test
problems, bin packing, is undertaken in Section 5. Section 6 shows how EO
can be used more generally on ATPs. A number of topics are addressed that
EO potentially needs to help it become competitive with more established
meta-heuristics. These are, specifically, transition operators, partial feasibil-
ity restoration, and population models. Computational experiments across a
range of problem types and instances are discussed in Section 7. Finally, the
conclusions and future research directions are given in Section 8.

2 Self-organised Criticality

Self-organised critical behaviour can be observed in systems in which, over
long periods of time, seemingly only small changes take place. However, these
small changes gradually build to a critical state that can eventually trigger
large events in a domino fashion. The most commonly related example of
self-organised criticality is the sand pile model [2]. Adding a grain of sand
at a time to the pile builds it up slowly to a point where the addition of
another grain will push its downhill neighbour grains, which in turn pushes
other grains – in effect triggering a sand slide or avalanche. The pattern of
this behaviour is present in a diverse range of natural and artificial systems,

Extremal Optimisation for Assignment Type Problems 141

including the flow of rivers, and the formation of mountain landscapes and
coastlines and economic fluctuations in stock markets [4].

There are two important characteristics of self-organised critical systems.
The first is that they do not require fine tuning of parameters to exhibit com-
plex, self-organised behaviour. The second is that the avalanche magnitude
divided by the log of the time between avalanches of this size is roughly con-
stant and follows a pattern whereby larger events are exponentially less likely
than smaller events. A good illustration of this is the Guttenberg-Richter Law
for the size of earthquakes [2], an earthquake of size 4 on the (logarithmic)
Richter scale will occur ten times more frequently than an earthquake of
size 5.

Our interests in this chapter are the applications of SOC within biological
evolutionary systems that can be ultimately simulated in order to provide
models for combinatorial optimisation. Bak [2] has noted that the concept
of survival of the fittest, or conversely, the selection and elimination of the
few most poorly adapted species in a particular environment, displays the
characteristics of SOC. In other words, there is no central organising agent nor
finely tuned system in Nature that manages the survival or extinction of the
species. The latter is referred to as adverse selection [7] and is a property that
can be modelled in terms of SOC. The Bak-Sneppen model [3] represents a
simplified system of interacting species. The underlying purpose of the model
is to demonstrate emergent behaviour in evolutionary selection processes. One
key simplification is that species are represented by a single fitness value,
which is not derived from a genetic representation of the species. All species
are assigned a fitness value in the range [0, 1], where 0 indicates the least fit.
At each step of the evolutionary process, the species with the lowest fitness
value has this fitness changed to a random value. As in this simple model
there is no structure to a species, this is the biological equivalent to allowing
the original species to become extinct and a new species to take its place.

The model also recognises that species do not exist in isolation. For ex-
ample, if a species becomes extinct, the species directly above and below it
in the food chain will be affected. Therefore the neighbours (as defined by
a set of lattice or ring sites) of a species that has changed will have their
fitness values updated to random values as well. After many steps of this
process, all species will have had their fitnesses increased and the probabil-
ity increases that the species that have their fitnesses replaced have them
replaced with lower values. Again it is probable that the new worst fitness is
one of those just introduced and that the replacement process will result in
a sharp reduction in a neighbour’s fitness. Within a few steps like this the
average fitness of the species collapses, and then the process of the gradual
increase of fitness values begins again. This sequence of events is referred
to as a punctuated equilibrium [3]. That is, apparent equilibrium in the sys-
tem is punctuated by avalanches. Such events allow the species to potentially
sample all of configuration space.

142 M. Randall et al.

This process can be shown with a remarkably simple computer simulation.
Algorithm 1 shows Bak-Sneppen’s [4] ring model1 in which each species affects
its two neighbour species. Neighbours are defined in terms of position on the
ring. The values of the worst species on the ring (and its neighbours) are
replaced by other random values each iteration, and the worst fitness of all
of the current species is reported together with the best worst species fitness
found in any iteration so far. Figure 1 shows a typical run of the algorithm.
The connected line “envelope” function represents the highest value of the
worst species value found up to that particular iteration. The jumps from
a previous maximum to the next mark the occurrence of an avalanche. The
reason for this can be deduced from consideration of the distribution of values
within the population. For the Bak-Sneppen model, the population has a
uniform random distribution of fitness values between a current, lower bound,
λmin(t) and 1, as might be represented by values within the solid outline in
the histogram in Figure 2. For the lower bound to “jump” from its present
value, λmin(t) to the value at the upper end of the filled region in the figure,
λmin(t+1), all the species that currently lie in the filled region must migrate
above that bound (and the histogram will expand upward to fill the shaded
region in Figure 2.) This evidently cannot be achieved in a single iteration;
several iterations will be required as successive species “cascade” to higher
fitness levels.

Fig. 1 The output of a typical run of the SOC algorithm. The connected “line” is
the envelope function. Each point in the graph represents the worst value at that
particular step.

To apply the concepts of SOC to optimisation problems, it is necessary
to define a mapping between a fitness value and the structural components
of a species. Essentially, this puts back the details that Bak and Sneppen
1 The neighbour of the last species is the first species, and vice versa.

Extremal Optimisation for Assignment Type Problems 143

Fig. 2 Distribution of fitness values for a sample population of species in the Bak-
Sneppen model.

Algorithm 1 The SOC algorithm.
Generate a random vector species in the range [0, 1]
for each generation do

Find the species with the worst/lowest value
Find the neighbour directly below this worst species
Find the neighbour directly above this worst species
Generate new random values for these three species
Report the worst value of any species
If this worst value is higher than any worst value found in previous iterations,
update the best worst value found so far. Report the current best worst value.

end for
end

discarded in their model. One such example is extremal optimisation and is
discussed in detail next.

3 Extremal Optimisation

Extremal optimisation is one of a number of emerging Nature inspired
metaphors for solving combinatorial and continuous optimisation problems.
As it is relatively new and unexplored, compared to other techniques such
as ant colony optimisation (ACO) [13], genetic algorithms (GAs) [18] and
particle swarm optimisation (PSO) [22], there exists wide scope to test and

144 M. Randall et al.

to extend its capabilities. Unlike its counterparts, the canonical algorithm
manipulates a single solution rather than a population of solutions. Addi-
tionally, it never converges as the single solution is continually changing (see
Section 5 for a demonstration of this).

EO is loosely based on the principles of the Bak-Sneppen model and simu-
lates the notion that some species flourish while others do not [6, 8, 10]. This
form of selection is also present at the genetic level. We can use a mapping be-
tween ‘genes’ (or species structural components) and ‘solution components’ to
describe the general operation of EO to combinatorial optimisation problems.
Solution components are the building blocks of the solution, some examples
being an agent assigned to a particular job for generalised assignment, or the
inclusion of an item in a knapsack for the knapsack problem. In the original
version of the EO algorithm, at each iteration, the component whose fitness
is worst, would be replaced by another solution component generated at ran-
dom. In essence, however, this choice of always selecting the worst component
to modify leads to too greedy a search, and consequently its performance was
poor. Like other meta-heuristic algorithms, an element of randomness (in the
form of probabilistic selection) was introduced. This became known as τ−EO.
Components are ranked from worst (rank 1) to best (rank n). The parameter
τ and the rank controls the selection probability for each solution compo-
nent [8]. This is achieved using Equation 1. It is evident that lower ranks will
receive larger values than higher ranks.

Pi ∝ i−τ 1 ≤ i ≤ n (1)

Where:

i is the rank of the component,
Pi is the probability (Pi = [0, 1] when normalised) that component i is
chosen and
n is the number of components.

Values of τ close to or equal to zero produce a random search strategy.
Conversely, allowing τ = ∞ gives the original EO algorithm. Algorithm 2
shows the mechanics of a single τ−EO iteration.

Algorithm 2 A single τ−EO iteration. Note that vector P need only be
calculated once according to Equation 1.

Rank the solution components from worst to best
j = Select a ranked component using roulette wheel selection on normalised P
Assign xj a random (legal and different) value
end

This procedure is performed a fixed number of times or until a particular
solution quality is reached.

Extremal Optimisation for Assignment Type Problems 145

3.1 Existing EO Applications

Compared to other recent meta-heuristics, particularly ACO and PSO, ex-
tremal optimisation has received relatively little attention. Below is a repre-
sentative summary of existing applications of EO.

Boettcher and Percus [6, 8] have described and carried out limited exper-
imentation on the travelling salesman problem (TSP). However, more suc-
cessful application has been in graph (bi)partitioning [6] and the max-cut
(spin glass) problems [8]. For these at least, EO can locate optimal and near
optimal solutions for the investigated test cases and is comparable to other
meta-heuristics.

Randall and Lewis [31] present an extended form of EO in which it is used
as a sub-ordinate heuristic by another meta-heuristic known as Evolutionary
Population Dynamics (EPD). Experiments on small multi-dimensional knap-
sack problem instances showed that EO with EPD achieved equal or better
results than EO on almost all tests cases. The results using EO with EPD
were also compared to tests using a standard ant colony optimisation solver.
EO with EPD was been found to deliver near-optimal results faster than the
existing ant colony algorithm.

Randall [29] has performed an initial investigation of EO for the gener-
alised assignment problem (GAP). In that paper a simple population model
for EO was presented along with a heuristic that altered solutions so as to
reduce the amount of their infeasibility (a process known as partial feasi-
bility restoration). This heuristic helped EO to produce very good quality
solutions. In fact, both the canonical EO and population versions were able
to find statistically significantly better solutions than a state-of-the-art ant
colony system (ACS) implementation, a very efficient meta-heuristic for this
problem.

A variation of the bi-partitioning problem used for community detection
is solved using EO by Duch and Arenas [14]. Specifically, they use it to op-
timise the modularity and to identify the communities of complex networks.
However, as reported in Xiaodong, Cunrui, Xiandong and Yanping [33], this
implementation is sensitive to the initial solution, prone to being trapped in
local optima, and not yet competitive with particle swarm optimisation.

Middleton [25] proposes a modification to standard EO that makes it bet-
ter capable of solving the Ising spin glass problem. This is referred to as jaded
EO and increases the fitness of a spin in proportion to the number of times
it has been flipped. Empirical results, in comparison to standard EO, show
that it is significantly better.

Beyond the applications to benchmark problems, some work has been done
to adapt the standard EO algorithm to dynamic combinatorial optimisation.
As an example, Moser and Hendtlass [26, 27] apply EO to a dynamic version
of the composition problem. During the course of solving the problem with
EO, it may undergo a variety of transformations to its structure and/or data.
Despite the EO solver not being made aware of specific changes, it is able to

146 M. Randall et al.

adapt to them more readily than a standard ACS solver. This, however, was
the reverse for the static version of the problem.

Moser and Hendtlass [28] propose an EO implementation for dynamic air-
craft landing. This problem consists of two related parts, namely determining
the order/permutation of planes to land on a single runway, and assigning
landing timeslots for the planes as they enter the horizon of air traffic control
(but taking other planes into account). The latter is a deterministic problem,
so EO is used for the former. A set of K candidate solutions is generated,
where K is the number of aircraft on the horizon. Each of these is generated
by swapping the landing orders of two aircraft. These candidates are ranked
according to how close the landing times resemble the planes’ target times. A
new solution is chosen according to EO’s rules. The results showed that this
EO implementation could outperform a range of meta-heuristic applications.

Galski, de Sousa, Ramos and Muraoka [17] present an EO algorithm to
find the optimal design of a simplified configuration of a thermal control
system for a spacecraft platform. The objectives are to minimise the difference
between target and actual temperatures on radiation panels as well as to
minimise battery heater power dissipation. Using EO, two possible solutions
were found. As the authors combined both objectives into a single function,
the designs were really only able to satisfy the first objective. Future work
will optimise both objectives using a Pareto front approach.

Another novel application of the meta-heuristic is to the protein folding
problem. Shmygelska [32] implements a two stage process in which EO finds
a good starting solution, in terms of pairwise arrangements of amino acids,
from which a local Monte Carlo based search can find a refined solution. The
results compare favourably with a known random search technique specific
to this problem.

EO has also been adapted to solve continuous optimisation problems by
Zhou, Bai, Cheng and Wang [34]. This implementation concentrates on the
Lennard-Jones clustering problem. EO is used as a global optimiser, selecting
probabilistic worst components (or “atoms”) to change and then using a
gradient based local search to improve the solution. The difficulty is that
their approach does not scale well. Nevertheless, it is competitive with other
heuristic methods for smaller problems.

It is clear from the above survey that to date EO has really only been
applied to problems that are relatively unconstrained. The mechanics of the
algorithm, particularly those concerned with giving a solution component a
new random value, make it difficult for EO to naturally process more con-
strained problems. One class of such problems, the assignment type problems
(discussed next), contain a range of interesting real-world constraints (such
as capacity and group related constraints). In light of this, the extensions of
the EO paradigm proposed in this chapter will allow it to be more widely
and generally applicable.

Extremal Optimisation for Assignment Type Problems 147

4 Assignment Type Problems

“Assignment Type Problems” (ATPs) [12] are a collection of optimisation
problems for which a number of items are to be assigned to groups subject to a
set of resource/capacity constraints. They include the generalised assignment,
bin packing and capacitated hub location problems to name a few. These
three problems are broadly representative of ATPs and will form the test
problems for the experimental work within this chapter. Brief descriptions of
each follow:

• Generalised Assignment Problem – The generalised assignment prob-
lem [24] is a problem in which jobs are assigned to agents for these agents
to perform subject to capacity constraints. Each job may be performed by
one agent only. The aim is to minimise the total cost of assigning the jobs
to the set of agents.

• Bin Packing Problem (BPP) – The bin packing problem has different varia-
tions. The one considered here is the standard one-dimensional version [21].
A set of items, each of which has a particular weight, is packed into a num-
ber of bins. Each bin has the same weight capacity. Two objective functions
are possible, both of which are used in this chapter. The first is used in
Section 5 and treats bin packing as a constraint satisfaction problem in
which the total amount of excess weight for a fixed number of bins, is min-
imised. The second is used in the remainder of the chapter and explicitly
minimises the number of bins.

• Capacitated Single Allocation Hub Location Problem (CSAHLP) – The
CSAHLP belongs to a general class of hub and spoke problems for which
the aim is to efficiently transfer large quantities of commodities (such as
passengers, mail and telecommunication traffic) between each node pair of
a network. A subset of the nodes (called hubs) act as consolidation centers
for bulk transfers. The CSAHLP is a difficult variant of this problem in
which the number of hubs is not fixed, and each hub has a limited flow
capacity. The mathematical formulation of it may be found in Equations
6 – 14 of Randall [30]. Furthermore, this paper describes a number of
generic support heuristics (such as node-to-hub allocation and feasibility
restoration). These will be used in our enhanced version of EO.

5 A Detailed Examination of EO on Bin Packing

As previously mentioned, EO is a relatively new heuristic under-explored
compared to many others. Despite using a seemingly simple move mecha-
nism, the following step-by-step analysis reveals that it does not always bias
towards the most favourable solutions. An archetypal example of an assign-
ment problem, bin packing, is used to demonstrate this behaviour. This is

148 M. Randall et al.

solved as a constraint satisfaction problem, in which the amount of excess
weight in the bins is to be minimised, with zero being considered optimal.

EO changes its solution in a series of moves with the single solution moving
through problem space. At any time there are a series of legal moves available
to it. The move that is made is one that pushes away from the current position
by randomly altering a poor component of the current solution. The direction
in which the push takes the solution is random, but by always altering bad
component values. The long term trend is towards better solutions (ones with
lower constraint violation) but in a very non-monotonic way.

In terms of bin packing, EO will select one overfull bin and randomly take
one item from that bin and transfer it to another randomly chosen bin. If the
total amount of excess weight in all the overfilled bins is thus reduced this
might be referred to as a good move, if the total amount of excess weight
is increased this is a bad move (the occasional moves in which the total of
excess weight does not change may be referred to as a neutral move). For the
problem u120 00 [5, 16], checking all possible moves that could be made at
each point of a thousand step search2 through the problem space shows the
ratio of good to bad moves to be 0.51 to 1. If on the other hand the bin from
which an item is to be removed may be chosen probabilistically from the N
available bins (ranked from worst to best), then the probability of choosing
bin n is

Pn =

(
R

(
wn∑N
i=1 wi

))−τ

where wi is the weight of bin i, R is the ranking function and τ , the only user
specified parameter for EO, determines how much the algorithm concentrates
on the most overfilled bins. If τ is set to 1 then overfull bins are treated
equally. If τ is set to 1.4 as recommended in Boettcher and Percus [9] the
good to bad ratio is changed to 1.17 to 1.

Knowing the ratio of good to bad moves is only part of the picture, one
also needs to know how good and how bad these moves might be. Figure 3
shows histograms of both the good and bad moves for EO. Note that the
distributions of the two types of moves are very different. The bad moves are
worse (on average) than the good moves are good.

For comparison, consider the choices available to two other algorithms,
random hill climbing and a genetic algorithm on this same problem.

Random hill climbing also uses a single solution and creates an endless
series of random candidate solutions, and, with a certain probability, a can-
didate solution replaces the current solution if it is better (i.e., has fewer

2 All the figures in this section are based on the results from one hundred indepen-
dent repeats, each consisting of one thousand actual moves (sufficient to allow
stagnation to occur if it is going to occur). At each actual move either all possible
legal moves or one thousand random test moves are trialled but then reversed
after the data have been collected for the statistics.

Extremal Optimisation for Assignment Type Problems 149

Fig. 3 Histograms of good (left) and bad (right) moves available to EO.

constraint violations). The replacement probability should be between 0.5
and 1, the higher this figure the greedier the algorithm. For u120 00 and a
probability of 1, the ratio of good possible moves to bad possible moves is
0.08 to 1. Figure 4 shows the histograms of the good and bad moves for a
replacement probability of 1 (i.e., always replace if better). The low number
of good moves (cf. the number of bad moves) means that few changes are
kept and that the time taken to find the relatively small sequence of good
moves necessary to climb a local optimum may be high.

Fig. 4 Histograms of good (left) and bad (right) moves available to random hill
climber.

A genetic algorithm uses a population of solutions and builds new solu-
tions by combining parts of existing solutions together with some mutation.
For the results quoted here, two parents are used and selected by a simple

150 M. Randall et al.

tournament between two candidates, with a probability of 0.7 of choosing the
fittest candidate as a parent. Using single point crossover between the two
parents with a probability of 0.1 of randomly moving one item in the solution
to another bin (mutation), the ratio of good to bad moves for u120 00 is 5.7
to 1. Figure 5 shows the histograms of these good and bad moves. The high
ratio of good to bad moves means that a GA will have the least trouble of the
three algorithms considered in putting together the sequence of good moves
to find a good quality solution.

Fig. 5 Histograms of good (left) and bad (right) moves available to a genetic
algorithm.

Fig. 6 Relative availability of good, bad and neutral moves during a run of EO.

Figures 6, 7 and 8 show the relative proportion of good, bad and neutral
moves available at each of the thousand steps that make up a single run of
each algorithm. Figure 6 shows that the relative prevalence of these moves
for EO does not vary markedly during the run, while Figure 7 shows that

Extremal Optimisation for Assignment Type Problems 151

Fig. 7 Relative availability of good, bad and neutral moves during a run of random
hill climber.

Fig. 8 Relative availability of good, bad and neutral moves during a run of a
genetic algorithm.

the random hill climber initially has many good moves available but rapidly
stagnates in a local suboptimal position. Initially the GA has many good
moves available but then stagnates. There follows a cyclic series of steps. At
each step an increasing number of good moves become available as more of
the population climb a (probably) suboptimal peak. There is then a period of
stagnation ending with a sudden breakthrough as progress is made towards
a better (but probably still sub-optimal) peak after which the cycle repeats.
With each breakthrough the fitness of the local sub-optimal peak improves so
that the probability of another breakthrough decreases (i.e., the time between
breakthroughs increases).

Considering that it will take a number of good moves in succession – a
number that depends on how large each of the good moves is – it is clear
that the probability of this occurring is far higher for EO (with the good to

152 M. Randall et al.

bad ratio of 1.17:1) than with random hill climbing (0.08:1) except in the early
stages of the search. A genetic algorithm has more good moves available with
an overall average of 5.2:1, a ratio that is far higher for some short periods.
What is in favour of using EO is the fact that, unlike the other two (greedier)
algorithms, it does not reach one (or cycle round a series of) local sub-optimal
position(s) and then stagnate (forever in the case of the random hill climber
or until a fortuitous breakthrough occurs for the genetic algorithm). EO’s
single solution never stagnates but continually moves in problem space as is
evidenced by the fact that the good to bad ratio is consistent during the run.

Fig. 9 The number unique places visited by each algorithm during 1000 steps. The
histograms are built from the results of 1000 independent repeated runs.

Figure 9 shows that EO very rarely revisits previously explored positions,
unlike the other two algorithms. The low probability of EO constructing a
series of good moves means that EO should not be expected to work well
if run alone. The fact that it does not stagnate suggests that it would be a
good component of a meta algorithm that:

• contains another element that can lift the good to bad ratio so that EO
will be driven further up local peaks (as long as this does not also inhibit
EO’s ability to migrate endlessly through problem space), and

• runs other, more local, search algorithms in collaboration with EO, pri-
marily relying on EO to find regions of interest for these other techniques
to explore more fully.

An endless series of random solutions would show a very low probability
of revisiting the same place in problem space in any reasonable length run
and one must ask what advantage there is in using EO over a series of fully
random solutions. The answer lies in the average quality of the places in
solution space visited by the two. Table 1 shows that there is a clear difference
in the average quality of the start points each algorithm would provide for
other, more local, search algorithms while Figure 10 shows how the fitness
varies during a typical run. Although the ratio of the fitnesses is only a little
over 2, if fitness was to be graphed against the number of solutions with
each fitness value, an inverse bell shaped distribution would be produced.

Extremal Optimisation for Assignment Type Problems 153

If the number of solutions with this or worse fitness is considered, extremal
optimisation is ahead by orders of magnitude.

Random Moves Extremal Optimisation

Average fitness 1833.3 783.6

Table 1 Average fitness of a thousand moves. As this is a minimisation problem,
the smaller value obtained by EO is better.

Fig. 10 The fitness of the single solution during the steps of the EO algorithm
(lower trace) compared with one thousand randomly chosen solutions. Note the
upper trace is not that of a random hill climber.

The discussion above has been written using data obtained from runs
attempting to solve a bin packing problem. A similar series of runs, this time
using a graph colouring problem, exhibit similar behaviour. This indicates
that the observations made are predominantly a result of the behaviour of
the algorithms used and not so much of the problems themselves. Thus the
observations might be expected to substantially hold for a wide range of
assignment problems.

6 Applying EO to ATPs

The previous section showed the performance of canonical EO on one of the
test problems. EO was capable of exploring search space nearly without re-
visiting previous solutions. However, the results were not of an acceptable
standard. Too many of the potential moves lead to poor quality solutions.
Consequently, the level of constraint violation (for that particular version of

154 M. Randall et al.

bin packing) was such that feasible solutions could not be easily produced.
Given these results and the fact that there has been relatively little applica-
tion of EO to combinatorial problems, there exists scope to extend it while
still retaining its fundamental characteristics. This section describes modifi-
cations and enhancements to EO that make it better able to solve assignment
type problems.

There are three important elements that EO potentially needs to help it
become competitive with more established meta-heuristics. These are a) tran-
sition operators and constraint handling techniques, b) a population frame-
work and c) local search.

6.1 Transition Operators and Constraint Handling

The related topics of of transition operators and constraint handling within
meta-heuristic search algorithms have been much discussed and explored in
the literature. Three broad methods of constraint handling have often been
applied:

1. Use a penalty approach – Penalise the objective value according to the
amount of overall constraint violation.

2. Allow the solver to search across feasible and infeasible space – Report the
best feasible solution at the end of the search.

3. Restore feasibility – Using a special purpose algorithm to transform an
infeasible solution to a feasible one.

Method 1 has been used in many meta-heuristic implementations with
mixed success. The major difficulty is to determine the best form and weight-
ings of the penalties. A recent penalty based EO [19] showed that it is nearly,
but not quite, competitive with state-of-the-art heuristics.

Methods 2 and 3, however, can easily be applied to EO, with Method
2 particularly taking advantage of the natural EO algorithm (as shown in
Randall and Lewis [31] and Randall [29]). As EO only makes a small change
at each iteration – allowing many transitions to be made in a computationally
reasonable time – it may not matter that the solution is feasible at all times.
Overall, many feasible solutions will be potentially produced depending on
the difficulty of the constraints. Increasing the proportion of feasible solutions
may be accomplished by the use of the partial feasibility restoration algorithm
(discussed next). At each iteration of the algorithm, the feasibility status of
the solution is determined. The choice of solution component, using EO’s
rules, is as follows for two of the test problems:

• A feasible solution – An EO move is performed to optimise the objective
function. A move changes a poor solution component value to a random
one. For the GAP, a poor assignment of an agent to a job is replaced by

Extremal Optimisation for Assignment Type Problems 155

the assignment of that job to a random agent. However, for the BPP, the
objective is to minimise the number of groups, therefore a random item is
taken from a relatively small sized bin and reassigned to a random one.

• An infeasible solution – The focus changes to moving the solution back to
a feasible state. As such, a component value to change is chosen according
to the amount of infeasibility it contributes to the solution. This will vary
from problem to problem. The specifications for each problem are:

– GAP: This is given as the amount of resources required for a job as-
signed to an agent. Only overloaded/infeasible agents are examined. The
job assignments with resource requirements that most closely match the
the amount of agent infeasibility are more likely to be chosen.

– BPP: A light item from an overfull bin is most likely to be selected. This
is the case as it is easier to move light items to fill the spare capacity of
other bins. A number of such moves will decrease its infeasibility.

The CSAHLP is a different matter. Based on the work of Randall [30],
there exists a node allocation heuristic and feasibility restoration algorithm.
The former will best allocate non-hub nodes to hub nodes. If this fails, the
latter will restore feasibility.

6.1.1 Partial Feasibility Restoration

It may take a considerable number of EO iterations to move from infeasible
space to feasible space using the methods mentioned above. To effectively
make use of the available EO iterations, a general purpose heuristic can be
developed to reduce the amount of infeasibility of a solution (the prototype for
which is given in Randall [29]). Partial feasibility restoration is a simple, non-
degenerative, parameter-free process. In some ways, it resembles standard
local search, except it tries to minimise infeasibility rather than optimise
the problem’s objective. It is represented by Algorithm 3. Note that it is
applicable across ATPs and does not guarantee that a feasible state will
result. It is an O(MN) algorithm where M is the number of groups, and N
is the number of items. This algorithm will be used for the GAP and BPP.
As mentioned previously, CSAHLP uses its own full feasibility restoration
algorithm.

The amount of contribution of infeasibility of an item within a group is,
naturally enough, calculated differently for different problems. In the case of
BPP, it is an item whose weight most nearly matches the amount of over-
loading for a bin. For the GAP, the item is simply the one whose resource
requirement covers the amount of the agent’s infeasibility.

156 M. Randall et al.

Algorithm 3 Generalised partial feasibility restoration for assignment type
problems.

for all groups do
if this group is infeasible then

Determine the item within the group whose resource requirement most
closely matches the group’s amount of infeasibility
Find a new group that can take this item without itself becoming infeasible
if such a group exists then

Update the solution, its cost (if any) and the amount of its infeasibility
else

Do nothing
end if

end if
end for

6.2 A Population Model

A simple population extension mechanism to EO was presented by Randall [29].
In it, a fixed number of solutions/individuals form a population. At preset in-
tervals throughout the execution of the search, a population interaction would
occur. This interaction identified the worst member of the population (as mea-
sured by the objective function) and deleted it. Besides it, the two nearest
neighbours (in terms of common solution component values) were also removed
in accordance to the Bak-Sneppen model. Three new solutions were randomly
generated, added to the population, and the search resumed.

While the above approach produced statistically significantly superior re-
sults to a standard implementation on GAP instances, its main drawback was
that it required the user to specify the number of times interactions would oc-
cur throughout the search process. It would be better if the system could calcu-
late this information for itself based on dynamic information about the search.

As EO does not converge, solution similarity between the population mem-
bers would not be a natural cause to trigger an interaction. It is better to
look for a population in which solution qualities widely diverge. This indicates
that the least fit members should be eliminated. The equivalent in Nature
would be a cull of the weak of a population so as to maximise the overall
chances of a species’ survival. The probability that an interaction will oc-
cur at an iteration can be calculated according to Equation 2. Note as well
that the probability increases as the iterations pass since the last population
interaction.

p =
(

1 − cost(best)
cost(worst)

)1/l

(2)

Where:

l is the number of iterations since the last population interaction occurred.

Extremal Optimisation for Assignment Type Problems 157

In terms of the solution replacements, a small augmentation of Randall [29]
is proposed here. Instead of replacing all three solutions (i.e., the worst so-
lution and its two closest neighbours) with random solutions, one of these is
now a copy of the best found solution. This balances the need for diversity
of solutions against that of exploration around the best (known) solution.
Again, as EO does not converge, there is no danger of creating a popula-
tion of similar, stagnating solutions. Rather, it will allow EO to search more
extensively in good neighbourhoods.

6.3 Local Search

Meta-heuristic search algorithms, on the whole, are capable of coarse grain
search. In essence, they provide very good starting points for fine grained
searching known as local search. This point was demonstrated for EO in
Hendtlass and Randall [20]. As such, local search is solely driven toward op-
timising the objective function, moving only in feasible space, and making
purely greedy moves. However, it is useful for obtaining locally optimal solu-
tions, which standard EO does not guarantee. Local search can be performed
each time a feasible solution is produced.

The details of the local search implementation for each problem is given
below.

• BPP – The algorithm of Alvim, Aloise, Glover and Ribeiro [1] (as reported
in Levine and Ducatelle [23]) initially determines the two least loaded bins.
The items from these are moved to a “free list”, and the bins removed.
Three types of exchange operations are attempted. In the first, two items
from the free list are exchanged with two items from a bin (subject to the
capacity constraint being satisfied). This process is repeated for all bins
and this is attempted for combinations of two bin items for one free item
and then one bin item for one free item. After this, all free items that
can be fit into existing bins have been. A new bin is created with the left
over items. The aim of this procedure is to reduce the number of overall
bins by at least one. Even though this algorithm is designed for the BPP,
it can equally be applied to problems such as graph colouring. A more
detailed description of the algorithm (as well as an example) can be found
in Levine and Ducatelle [23].

• GAP – Two effective operators [29] will be used. “Move” moves an item
from one agent to another. The job and agent are chosen such that the
(negative) change in the objective function is the greatest. This is a variable
length search stopping when an improving move cannot be found. “Swap”
works in a similar way except that at each iteration, two items are chosen

158 M. Randall et al.

such that their swap will lead to the most improvement in the objective
function.

• CSAHLP – There are six local search operators that are appropriate for
the CSAHLP [15]. Note that some of the operators discussed below are
described in terms of ‘clusters’. A cluster refers to a group of nodes that
are all assigned to a particular hub.

1. Relocate Node – A node is reassigned to a different hub.
2. Swap Nodes – Two nodes swap the clusters to which they belong.
3. Create a New Cluster – A non-hub node is made a hub node. No nodes

(apart from itself) are assigned to this new hub.
4. Split a Cluster – Half of the nodes of a cluster are reassigned to a new

cluster. A node from the new cluster is chosen as the hub.
5. Merge Clusters – Two clusters are merged into one. The hub node of

one of the clusters becomes the hub node of the new, enlarged cluster.
6. Relocate Hub – The hub of a cluster is reassigned to another node.

According to Randall [30], the most effective way to apply these operators,
at each (EO) iteration, is to first randomly order the transition operators
in a list. Each operator is applied, attempting all possible transitions, and
all improving moves are kept. This process is continued until an improving
move cannot be produced by any of the operators.

7 Computational Experiments

In this section, the effectiveness of EO, along with its support heuristics
and population model, is evaluated on benchmark GAP, BPP and CSAHLP
problems.

The test problem instances are drawn from three benchmark sets from the
literature:

• GAP – These are the large-sized set of Chu and Beasley [11]. They have
also been used in the study by Randall [29].

• BPP – The test set of problems from the OR-Library [5] are used. These
range in size from 120 to 500 items.

• CSAHLP – These instances are from the benchmark set proposed by Ernst
and Krishnamoorthy [15]. A fuller explanation of these problems can be
found in Randall [30].

The computing platform used to perform the experiments is a 3GHz Pen-
tium 4 based PC. Each problem instance is run across ten random seeds. The
experimental programs are coded in the C language and compiled with gcc.

Each problem instance is allowed to run for 500000 iterations. Two sets
of results are generated, one for the single solution version and one for the
population variant. In terms of the population approach, the total number

Extremal Optimisation for Assignment Type Problems 159

of iterations is divided amongst the population members, rather than being
that number of generations. This helps to ensure a fairer comparison with
the single EO versions.

The two other parameters that need to be set are τ and the population
size. A value of 1.4 is used for τ as this has been found to give good quality
results in a number of previous studies [9, 20, 29, 31] and balances the need
for exploration with that of exploitation. Twenty individuals constitute a
population in these experiments. However, further investigation will explore
the effect of different values of both these parameters.

Tables 2, 3 and 4 show the results for GAP, BPP and CSAHLP respec-
tively. The results are expressed as relative percentage deviations (RPD)
from the optimal/best-known cost, i.e., RPD = cost

optimal × 100. Thus a result
of 0 corresponds to the optimal/best-known cost. “min”, “med” and “max”
denote minimum, medium and maximum respectively.

Table 2 The single and population results for the GAP. Note that the first number
in the problem name (first column) represents the number of agents while the second
is the number of jobs. For instance, ‘A5-100’ is of Type A with 5 agents and 100
jobs. The single results are reproduced from Table 2 (last set) of Randall [29].

Single Population

Name Optimal min med max min med max

A5-100 1698 0 0 0 0 0 0

A5-200 3235 0 0 0 0 0 0

A10-100 1360 0 0 0 0 0 0

A10-200 2623 0 0 0 0 0 0

A20-100 1158 0 0 0 0 0 0

A20-200 2339 0 0 0 0 0 0

B5-100 1843 0.71 1.03 1.41 0 0.3 0.33

B5-200 3553 0.42 0.48 0.56 0.06 0.07 0.2

B10-100 1407 0 0 0 0 0 0

B10-200 2831 0.6 0.76 1.02 0 0.11 0.18

B20-100 1166 0.09 0.17 0.26 0 0 0.09

B20-200 2340 0.17 0.21 0.26 0 0.11 0.21

C5-100 1931 0.36 0.6 0.78 0 0.05 0.31

C5-200 3458 0.29 0.52 0.67 0 0.04 0.14

C10-100 1403 0.71 1.1 1.28 0.07 0.14 0.29

C10-200 2814 0.46 0.82 1.03 0 0 0.21

C20-100 1244 0.72 1.05 1.13 0 0.08 0.32

C20-200 2397 0.92 1.17 1.29 0 0 0.13

D5-100 6373 1.37 1.54 1.65 0.25 0.45 0.69

D5-200 12796 1.52 1.63 1.71 0.12 0.27 0.61

D10-100 6379 2.15 2.56 2.76 0.49 0.74 1.47

D10-200 12601 1.24 1.54 1.6 0 0.04 0.13

D20-100 6269 2.14 2.47 2.58 0.33 0.45 1.36

D20-200 12452 1.55 1.69 1.81 0 0.17 0.48

160 M. Randall et al.

Table 3 The single and population results for the BPP. Note that the problem
name (first column) indicates the number of items. For instance, u120 00, is the
first problem of the set of problems that have 120 items in each.

Single Population
Name Optimal min med max min med max

u120 00 48 0 0 2.08 0 0 0
u120 01 49 0 0 0 0 0 0
u120 02 46 0 0 0 0 0 0
u120 03 49 0 2.04 4.08 1.02 2.04 2.04
u120 04 50 0 0 0 0 0 0
u120 05 48 0 0 0 0 0 2.08
u120 06 48 0 0 2.08 0 0 2.08
u120 07 49 0 0 0 0 0 0
u120 08 51 0 0 1.96 0 0 0
u120 09 46 0 1.09 2.17 0 2.17 2.17
u120 10 52 0 0 0 0 0 0
u120 11 49 0 0 2.04 0 0 0
u120 12 48 0 2.08 2.08 0 2.08 2.08
u120 13 49 0 0 0 0 0 0
u120 14 50 0 0 0 0 0 0
u120 15 48 0 0 2.08 0 0 0
u120 16 52 0 0 1.92 0 0 0
u120 17 52 0 0 5.77 0 1.92 1.92
u120 18 49 0 0 0 0 0 0
u120 19 50 0 0 2 0 0 0
u250 00 99 0 0.51 1.01 0 1.01 1.01
u250 01 100 0 0 1 0 0 1
u250 02 102 0 0.49 0.98 0 0.98 0.98
u250 03 100 0 0 0 0 0 1
u250 04 101 0 0 0.99 0 0.99 0.99
u250 05 101 0 0.99 1.98 0.99 0.99 1.98
u250 06 102 0 0 0 0 0 0
u250 07 104 0 0 3.85 0 0 0
u250 08 105 0.95 0.95 0.95 0.95 0.95 1.9
u250 09 101 0 0.99 2.97 0.99 0.99 0.99
u250 10 105 0 0 1.9 0 0.95 0.95
u250 11 101 0.99 0.99 0.99 0.99 0.99 0.99
u250 12 106 0 0 0.94 0 0 0.94
u250 13 103 0 0 0.97 0 0 0.97
u250 14 100 0 0 1 0 1 1
u250 15 105 0.95 0.95 3.81 0.95 1.9 1.9
u250 16 97 0 0 3.09 1.03 1.03 1.03
u250 17 100 0 0 1 0 0 0
u250 18 100 1 1 1 1 1 1
u250 19 102 0 0 0.98 0 0 0.98
u500 00 198 0.51 0.51 2.53 0.51 1.01 1.01
u500 01 201 0.5 0.5 0.5 0.5 1 1
u500 02 202 0 0.5 0.99 0.5 0.74 0.99
u500 03 204 0.49 0.49 1.47 0.98 0.98 0.98
u500 04 206 0 0.49 1.94 0.49 0.49 0.97
u500 05 206 0 0.97 2.91 0.49 0.73 0.97
u500 06 207 0.48 0.72 1.45 0.97 0.97 1.45
u500 07 204 0.49 1.23 3.43 0.98 1.47 1.96
u500 08 196 0 0.26 1.02 0.51 0.51 1.02
u500 09 202 0 0 0.5 0 0.5 0.99
u500 10 200 0 0.5 0.5 0.5 0.5 1
u500 11 200 0.5 0.5 3 0.5 1 1.5
u500 12 199 0.5 0.5 1.01 0.5 1.01 1.01
u500 13 196 0 0.51 1.53 0 0.51 0.51
u500 14 204 0.49 0.49 8.33 0.49 0.49 0.98
u500 15 201 0.5 0.5 0.5 0.5 0.5 1
u500 16 202 0 0 0.99 0 0.5 0.5
u500 17 198 0.51 0.51 0.51 0.51 1.01 1.01
u500 18 202 0 0.5 1.98 0.99 1.49 1.49
u500 19 196 0.51 0.51 1.02 0.51 1.02 1.53

Extremal Optimisation for Assignment Type Problems 161

Table 4 The single and population results for the CSAHLP. Note that the problem
name indicates the number of nodes in the instance. The cost of 50TT corresponds
only to the best known cost. For this problem, the single version of the algorithm
could only generate solutions in two of its runs, while the other eight could not
generate feasible solutions at all.

Single Population

Name Optimal min med max min med max

10LL 224250.1 0 0 0 0 0 0

10LT 250992.3 0 0 0 0 0 0

10TL 263399.9 0 0 0 0 0 0

10TT 263399.9 0 0 0 0 0 0

20LL 234691 0 0 0 0 0 0

20LT 253517.4 0 0 0 0 0 0

20TL 271128.2 0 0 0 0 0 0

20TT 296035.4 0 0 0 0 0 0

25LL 238978 0 0 0 0 0 0

25LT 276372.5 0 0 0 0 0 0

25TL 310317.6 0 0 0 0 0 0

25TT 348369.2 0 0 0 0 0 0

40LL 241955.7 0 0 0 0 0 0

40LT 272218.3 0 0 0 0 0 0

40TL 298919 0 0 0 0 0 0

40TT 354874.1 0 0 0 0 0 0

50LL 238520.6 0 0 0 0 0 0

50LT 272897.5 0 0 0 0 0 0

50TL 319015.8 0 0 0 0 0 0

50TT 417441 0 0 0 0 0.06 0.41

As reported in Randall [29], the single solution results in Table 2 were
statistically better than a state-of-the-art ACO implementation. In all cases,
however, the population approach for the GAP was able to find equivalent
or better quality results for all problem instances. The new population re-
sults are also superior to the previous population results [29]. This may be
attributed to the new model’s feature of allowing more concentrated search
around best found solutions. This is only practicable because EO will not
converge on these solutions again – as would be the case for other meta-
heuristics.

For both the single and population versions of EO for bin packing, the al-
gorithms could achieve very good quality results, being at most a few percent
away from the optimal results. Unlike the GAP, there is no clear distinction
between the single and population results for the minimum results. However,
the population version’s maximum is less deviant than the other as it is al-
ways at most two percent away from the optimal result. These results are
very comparable to the ACO implementation of Levine and Ducatelle [23].

The performance of EO on CSAHLP in comparison to ACO [30] was more
or less equivalent. Both methods required relatively few iterations to achieve
optimal solutions. Much of this may be attributed to the powerful local search

162 M. Randall et al.

heuristics. However, as noted in Randall [30], ACO (and therefore EO) pro-
vide a powerful coarse grain optimisation framework. This is evidenced by
the fact that a random descent heuristic could not achieve the same level
of results. Additionally, the work by Hendtlass and Randall [20] has shown,
for bin packing, that pure local search extensions to EO are necessary to
produce competitive computational results, despite the computational costs
these may incur.

8 Conclusions

EO is a relatively new and simple meta-heuristic that is based on the elimina-
tion of poorly performing solution components, rather than the explicit incor-
poration of necessarily good values. As such it does not converge on certain
solutions, giving it some advantages over more traditional meta-heuristics
such as GAs and ACO. However, application of the canonical algorithm will
often lead to relatively poor performances, this having been demonstrated in
this chapter with the bin packing problem (Section 5). In order to lift perfor-
mance so that EO becomes comparable with other algorithms requires addi-
tional support heuristics. Generalised algorithms have been proposed herein
that can handle constraints, partially restore feasibility and create and main-
tain a population of solutions. These combined with local search have indeed
shown that EO is capable of producing very good quality solutions.

An area that we are currently investigating is concerned with the man-
agement of populations. One of the key questions is that of population size.
It may be possible to allow the population to shrink or grow according the
progress of the search.

References

[1] Alvim, A., Aloise, D., Glover, F., Ribeiro, C.: Local search for the bin pack-
ing problem. In: Extended Abstracts of the 3rd Metaheuristics International
Conference, pp. 7–12 (1999)

[2] Bak, P.: How Nature Works. Springer, New York (1996)
[3] Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model

of evolution. Physical Review Letters 71, 4083–4086 (1993)
[4] Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of

1/f noise. Physical Review Letters 59, 381–384 (1987)
[5] Beasley, J.: OR-Library: Distributing test problems by electronic mail. Journal

of the Operational Research Society 41, 1069–1072 (1990)
[6] Boettcher, S., Percus, A.: Extremal optimization: Methods derived from co-

evolution. In: Proceedings of the Genetic and Evolutionary and Computation
Conference, pp. 825–832. Morgan Kaufmann, San Francisco (1999)

[7] Boettcher, S., Percus, A.: Combining local search with co-evolution in a re-
markably simple way. In: Proceedings of the Congress on Evolutionary Com-
putation, pp. 1578–1584. IEEE Service Center, Piscataway (2000)

Extremal Optimisation for Assignment Type Problems 163

[8] Boettcher, S., Percus, A.: Nature’s way of optimizing. Artificial Intelli-
gence 119, 275–286 (2000)

[9] Boettcher, S., Percus, A.: Extremal optimization for graph partitioning. Phys-
ical Review E 64 (2001)

[10] Boettcher, S., Percus, A.: Extremal optimization: An evolutionary local search
algorithm. In: Bhargava, H., Ye, N. (eds.) Computational Modeling and Prob-
lem Solving in the Networked World. Interfaces in Computer Science and Op-
erations Research, pp. 61–77. Kluwer Academic Publishers, Dordrecht (2003)

[11] Chu, P., Beasley, J.: A genetic algorithm for the generalised assignment prob-
lem. Computers and Operations Research 24, 17–23 (1997)

[12] Costa, D., Hertz, A.: Ants can colour graphs. Journal of the Operational Re-
search Society 48, 295–305 (1997)

[13] Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In:
Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32.
McGraw-Hill, London (1999)

[14] Duch, J., Arenas, A.: Community detection in complex networks using ex-
tremal optimization. Physical Review E 72 (2005)

[15] Ernst, A., Krishnamoorthy, M.: Solution algorithms for the capacitated single
allocation hub location problem. Annals of Operations Research 86, 141–159
(1999)

[16] Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Tech.
Rep. CP 106 - P4, CRIF Industrial Management and Automation, 50 Av.
F.D. Roosevelt, B-1050 Brussels, Belgium (1994)

[17] Galski, R., de Sousa, F., Ramos, F., Muraoka, I.: Spacecraft thermal design
with the generalized extremal optimization algorithm. In: Orlande, H., Colaco,
J. (eds.) Proceedings of Inverse Problems, Design and Optimization, pp. 61–75
(2004)

[18] Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison Wesley, Reading (1989)

[19] Gómez-Meneses, P., Randall, M.: Extremal optimisation with a penalty ap-
proach for the multidimensional knapsack problem. In: Li, X., et al. (eds.)
SEAL 2008. LNCS, vol. 5361, pp. 229–238. Springer, Heidelberg (2008)

[20] Hendtlass, T., Randall, M.: Extremal optimisation for bin packing. In: Li, X.,
et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 220–228. Springer, Heidelberg
(2008)

[21] Kampke, T.: Simulated annealing: Use of a new tool in bin packing. Annals of
Operations Research 16, 327–332 (1988)

[22] Kennedy, J., Eberhart, R.: The particle swam: Social adaptation in social
information-processing systems. In: New Ideas in Optimization, pp. 379–387.
McGraw-Hill, London (1999)

[23] Levine, J., Ducatelle, F.: Ant colony optimisation and local search for bin
packing and cutting stock problems. Journal of the Operational Research So-
ciety 55, 705–716 (2004)

[24] Martello, S., Toth, P.: An algorithm for the generalized assignment problem.
In: Proceedings of the 9th International Federation of Operational Research
Societies’ Conference, Hamburg, Germany, pp. 589–603 (1981)

[25] Middleton, A.: Improved extremal optimization for the ising spin glass. Phys-
ical Review E 69 (2004)

164 M. Randall et al.

[26] Moser, I., Hendtlass, T.: On the behaviour of extremal optimisation when solv-
ing problems with hidden dynamics. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE
2006. LNCS, vol. 4031, pp. 292–301. Springer, Heidelberg (2006)

[27] Moser, I., Hendtlass, T.: Solving problems with hidden dynamics - compar-
ison of extremal optimisation and ant colony system. In: Proceedings of the
Congress on Evolutionary Computation, pp. 1248–1255 (2006)

[28] Moser, I., Hendtlass, T.: Solving dynamic single-runway aircraft landing prob-
lems with extremal optimisation. In: Proceedings of the IEEE Symposium on
Computational Intelligence in Scheduling, pp. 206–211 (2007)

[29] Randall, M.: Enhancements to extremal optimisation for generalised assign-
ment. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS,
vol. 4828, pp. 369–380. Springer, Heidelberg (2007)

[30] Randall, M.: Solution approaches for the capacitated single allocation hub
location problem using ant colony optimisation. Journal of Computational
Optimization and Applications 39, 239–261 (2008)

[31] Randall, M., Lewis, A.: An extended extremal optimisation model for parallel
architectures. In: Proceedings of the 2nd IEEE International e-Science and
Grid Computing Conference (Workshop on Biologically-inspired Optimisation
Methods for Parallel and Distributed Architectures: Algorithms, Systems and
Applications). IEEE Computer Society, Los Alamitos (2006)

[32] Shmygelska, A.: An extremal optimization search method for the protein fold-
ing problem: The Go-model example. In: Proceedings of the Companion to
the Genetic and Evolutionary Computation Conference, pp. 2572–2579. ACM,
New York (2007)

[33] Xiaodong, D., Cunrui, W., Xiangdong, L., Yanping, L.: Web community detec-
tion model using particle swarm optimization. In: Proceedings of the Congress
on Evolutionary Computation, pp. 1074–1079 (2008)

[34] Zhou, T., Bai, W., Cheng, L., Wang, B.: Continuous extremal optimization for
Lennard-Jones clusters. Physical Review E 72 (2006)

Niching for Ant Colony Optimisation

Daniel Angus

Abstract Evolutionary Computation niching methods, such as Fitness Shar-
ing and Crowding, are aimed at simultaneously locating and maintaining mul-
tiple optima to increase search robustness, typically in multi-modal function
optimization. Such methods have been shown to be useful for both single
and multiple objective optimisation problems. Niching methods have been
adapted in recent years for other optimisation paradigms such as Particle
Swarm Optimisation and Ant Colony Optimisation. This paper discusses
niching techniques for Ant Colony Optimisation. Two niching Ant Colony
Optimisation algorithms are introduced and an empirical analysis and criti-
cal evaluation of these techniques presented for a suite of single and multiple
objective optimisation problems.

1 Introduction

In natural ecologies, a population of organisms is rarely spread uniformly
(within its environment), but rather is typically distributed across a wide
spatial area and divided into local or sub-groups. Resources available to in-
dividuals across a geographical distribution can differ, and sub-groups of a
species may specialise to exploit these differences. The effect of this specia-
tion (or population level natural selection) is referred to as ‘niching’ in the
field of population ecology and population genetics [18, 37].

In a computational sense, niching may permit a more effective use of avail-
able resources by a search algorithm by either implicitly or explicitly dividing

The University of Queensland
Brisbane
Queensland
Australia
d.angus@uq.edu.au

A. Lewis et al. (Eds.): Biologically-Inspired Optimisation Methods, SCI 210, pp. 165–188.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

166 D. Angus

and searching different areas of the search space in parallel [31]. Such auto-
matic resource re-allocation is useful in preserving population diversity for an
extended search time. Niching techniques have proved particularly useful for
problems that require multiple solutions to be located for a search algorithm,
such as multi-modal and multi-objective optimisation problems.

Niching as an Evolutionary Computation (EC) concept was first formally
applied to the Genetic Algorithm (GA), but has also been applied to other
EC algorithms such as Particle Swarm Optimisation (PSO) [5, 6]. Some of the
better known niching methods include Crowding [29, 30], Fitness Sharing [20,
21] and Clearing [33].

Previous work has applied Fitness Sharing and Crowding to Ant Colony
Optimisation (ACO) [1, 2, 3, 4], all with promising results. This chapter
discusses these works with a review of a variety of applications to single and
multiple objective problem domains. The chapter is organised into three main
sections which discuss, in order, the fundamentals of niching, an introduction
to ACO and how to apply niching principles to ACO, and finally an empirical
and theoretical analysis of several niching ACO algorithms.

2 Niching

Solution diversity is often mentioned as an important factor in population-
based algorithm design. For some problems diversity may not be required
to obtain optimal solutions while in others it is critical. In this section a
particular diversity preservation technique called niching is introduced. Some
historical aspects of niching in EC are introduced and examples of two specific
niching techniques are presented.

2.1 Niching in Evolutionary Computation

The canonical GA tends to focus its search in an individual area of the search
space. If multiple near optimal solutions are sought then such algorithms
may prove ineffective in achieving this goal. Niching aims to diversify the
search focus of an EC algorithm to multiple areas of the search space. In
Goldberg [20] three key features of niching algorithms are presented:

1. Stable maintenance of subpopulations. Once an optimal area of the search
space has been located a niching algorithm should maintain several pop-
ulation members in that location so as not to lose (forget) this area of
interest.

2. The size of a subpopulation decreases according to the fitness of the area
of interest. Considering the limited resources of an algorithm, exploration

Niching for Ant Colony Optimisation 167

of any area of the search space should be proportional to the potential
quality of solutions returned from a niche.

3. Subpopulations should not compete. Since resources are most likely to be
of a fixed size, a niching algorithm should not allow subpopulations to
‘fight’ for dominance of one area of the search space.

2.2 Crowding: Modifying the Replacement Mechanism

The Crowding Factor model was introduced as a diversity maintenance sche-
me by De Jong [11]. This scheme was not a niching method according to the
criteria outlined in Sec. 2.1, as it was used to increase population diversity,
not to locate and maintain multiple optimal areas of the search space [26].
However, the Crowding Factor model laid the foundation for much of the later
work on niching and was most significantly reworked as a niching strategy
by Mahfoud [29, 30].

Mahfoud’s technique, Deterministic Crowding, was designed to slow con-
vergence and maintain diversity by limiting dominant building blocks in a
population. The replacement policy in Deterministic Crowding involves a
candidate solution competing (based on solution quality) for a place in the
population with the most similar of its parent solutions. If a candidate solu-
tion is better than its most similar parent, the parent is replaced, otherwise
the candidate solution is discarded.

Another variation of Crowding is Restricted Tournament Selection(RTS)
[26]. RTS is similar to Deterministic Crowding, but instead of a candidate
solution only being compared against its parents, it is compared to a subset
of the entire population. The size of this subset in called the window size and
the most similar solution from this subset is sought and is replaced if the
candidate solution is of higher fitness.

2.3 Fitness Sharing: Modifying the Selection
Mechanism

Instead of modifying the replacement mechanism to introduce niching be-
haviour, as in Crowding, Fitness Sharing [21, 20] modifies the selection mech-
anism. Since most Genetic Algorithms use a fitness proportionate selection
mechanism to select parent solutions, Goldberg and Richardson [21] found
that modifying the selection of parents will avoid convergence to one area of
the search space thereby introducing niche formation.

168 D. Angus

Fitness Sharing derates1 solutions which occupy the same or a similar
position in the search space. For example the adjusted quality (Q′) of two
solutions which occupy the same position in the search space will be half
of their original quality (Q). The result of this adjustment is to remove the
selection bias present through a solution being represented multiple times.
The removal of this bias allows simultaneous convergence to multiple areas
of the search space.

Niche formation, specifically with regard to Fitness Sharing, was explained
by Goldberg and Richardson [21] using a variation of the k-armed bandit
problem [27, 11, 38]. The problem involves a poker machine with k handles,
each handle having set pay-out odds. There is also a population of gamblers,
who wish to maximise their individual winnings from the poker machine.
The variation introduced is that after every gambler has selected a handle
they must share their winnings with everyone else who chose their particular
handle. For example if there are two handles each having expected payouts of
$25 and $75 and 100 gamblers all pull the better handle they would each re-
ceive $75/100 = $0.75. If however the population divides across both handles
proportionate to the expected payout of those handles the expected payout
per gambler will be $75/75 = $25/25 = $1.00. From this simple experiment it
was shown that modifying the payout function in the k-armed bandit problem
can introduce a reward for niche formation.

2.4 Advantages and Disadvantages of Niching

Most search algorithms are designed (or were initially designed) to find a
single optimal solution to a difficult problem. This design trait is borne of the
problems that exist in the literature where the goal tends to be optimisation
of a single objective. Niching algorithms tend to be best applied in situations
where multiple optimal solutions are required rather than a single optimum,
such as in multi-modal and multiple objective problems.

Alternatively, niching algorithms can also be applied in situations where a
single optimum solution is desired. This may be because some search advan-
tage is gained over non-niching algorithms due to the specific search landscape
of the problem. Niching algorithms in this sense may permit a more effec-
tive use of available resources by a search algorithm by either implicitly or
explicitly dividing and searching different areas of the search space in paral-
lel [31]. Such automatic resource re-allocation is useful in preserving useful
population diversity for an extended search time.

Niching can also be advantageous if applied in a dynamic optimisation
problem. In Schoeman and Engelbrecht [39] a PSO algorithm was adapted
with a niching operator for application to a series of dynamic multi-modal
1 Derate, a commonly used term in niching literature means ‘to decrease the fitness

of’.

Niching for Ant Colony Optimisation 169

function optimisation problems. The results showed that with moderate chan-
ges to the problem under study the algorithm was able to track peaks by
maintaining stable niches around them. The algorithm was able to perform
good resource reallocation as the peaks were removed, which is good for the
long-term applicability of such a technique.

Since niching techniques spread the population across a wider search area,
they can often waste computation by continually searching areas of the search
space where no interesting optima exist. Also recombination of solution com-
ponents from different niches can lead to the introduction of ‘lethals’ [8]
which are solutions created between two optima but not located on an optima
themselves. Some niching techniques introduce extra parameters in addition
to the base algorithm. These parameters often come without good heuris-
tics to set them and thus require extra sensitivity analysis to ensure best
performance [43].

3 Niching for Ant Colony Optimisation

To be able to easily implement standard niching methods such as Crowding
and Fitness Sharing with ACO, the ability to readily measure the distance
(or difference) between solutions is required. Since most standard ACO algo-
rithms encode solution quality information into a pheromone matrix without
storing the actual solutions, access to required distance information between
multiple generations of solutions is impractical. While it may be possible to
achieve a niche-like behaviour in ACO, it is much more straightforward to
use Population-based ACO to implement standard niching techniques such as
Crowding and Fitness Sharing, since in PACO, access to a multi-generational
population in the traditional EC sense is guaranteed. In this section an in-
troduction to ACO and Population-based ACO is offered and two previously
introduced Population-based ACO algorithms (Crowding PACO and Fitness
Sharing PACO) imbued with niching behaviour [1] are discussed.

3.1 Ant Colony Optimisation

Ant Colony Optimisation (ACO) [12, 15], is an optimisation methodology
based on the foraging behaviour of Argentine ants. All ACO algorithms are
responsible for the scheduling of three processes:

• Ants generation & activity
• Pheromone trail evaporation
• Daemon actions

170 D. Angus

Each of the processes listed allow for flexibility in their implementation, as
a result many different ACO algorithms have been proposed in recent years.
Notable examples include Ant Systems [16], Ant Colony Systems [14] and
MAX − MIN Ant Systems [41]. A visual representation of the process
organisation of ACO is provided as Fig. 1.

Ants generation
& activity

Pheromone values

Extra problem
information
(heuristic)

Heuristic values

Pheromone update

Pheromone
map

Pheromone
decay

Fig. 1: Process organisation of the Ant Colony Optimisation Metaheuristic
Framework

3.1.1 Pheromone Mapping

The pheromone mapping is the means by which solution components are
able to be ranked and selected based on past usefulness. The pheromone
mapping connects pheromone values from a pheromone map (usually a matrix
structure) to specific solution components. The assumption usually being that
if a prior solution is good then at least some of its parts (solution components)
should also be good, and therefore a remixing of these components with other
good components may lead to an optimal or near-optimal solution. A first
step in defining an ACO algorithm is to define this pheromone mapping.

The problem domain will dictate how the pheromone mapping should
be defined. In applying an ACO algorithm to a combinatorial optimisation
problem such as the travelling salesman problem (TSP) it is not of inter-
est which specific components are included, as any feasible solution will in-
clude every city once (and only once), it is the order of these components
which is important in finding an optimal solution. For the TSP the transi-
tion points (edges/arcs) between the specific components can be assigned a
specific pheromone value to reflect which order of cities is best. If a solution
includes an edge connecting city a to city b and this solution is good then
this goodness should be reflected by a higher pheromone level on this specific
edge and other edges included in this solution.

Niching for Ant Colony Optimisation 171

3.1.2 Ants Generation and Activity

This process is responsible for the creation of new candidate solutions to
the optimisation problem being addressed by the ACO algorithm, as well
as the updating of pheromone values via the pheromone mapping. Through
the execution of this process pheromone information is updated (increased
or decreased depending on the implementation). A temporary population of
(artificial) ants is used to construct feasible solutions to the problem being
addressed. Each ant is evaluated upon the completion of a feasible solution
and the solution information encoded through the pheromone mapping. After
this encoding each individual ant is discarded and a new ‘empty’ ant is created
in its place. This process is repeated until some stopping criterion is met.

An ant has the following properties:

• An ant searches for a minimum (or maximum) cost solution to the opti-
misation problem being addressed.

• Each ant has a memory used to store all solution components used to
date, so that the candidate solution can be evaluated at the completion
of solution construction; the memory can be used as a tabu list such as in
the case of the TSP so that no component is reused.

• An ant can be assigned a starting position, for example an initial city in
a TSP.

• An ant can include any feasible solution component (an example of a
feasible solution component in a TSP would be a city which has not already
been included in the candidate solution) until such time that no feasible
components exist or a termination criterion is met (usually correlating to
the completion of a candidate solution).

• Ants include solution components according to a combination of a phero-
mone value and a heuristic value which are associated with every solution
component in the problem, the choice of which solution component is
usually a probabilistic one.

• When including a new solution component in the growing candidate so-
lution the pheromone value associated with the transition between these
components (arc/edge in a TSP), or the solution component itself can be
altered (online step-by-step pheromone update).

• An ant can retrace a candidate solution at the completion of a solution, up-
dating the pheromone values of all transitions and/or solution components
used in the solution (online delayed pheromone update).

• Once a candidate solution is created, and after completing online delayed
pheromone update (if required) an ant dies, freeing all allocated resources.

3.1.3 Pheromone Trail Evaporation

Like the biological ant colony, the artificial ant colony employs a pheromone
evaporation mechanism. This mechanism serves as a useful way of ‘forgetting’

172 D. Angus

older search bias [13]. As ACO algorithms use positive reinforcement, if
pheromone was allowed to accumulate without decay the system would very
quickly converge on a single solution since this solution would continue to be
reinforced. This evaporation process can be thought of as a global pheromone
update (it decreases all pheromone values by a set percentage), different to
the previously mentioned local pheromone update process that increases or
decreases specific pheromone values.

3.1.4 Daemon Actions

Daemon actions can be used to perform specialised functions which often
require more knowledge than an individual ant is allowed [13, 17]. For exam-
ple, a daemon action could inspect all solutions generated in one search cycle,
identify the best solution and increment the pheromone values of its solution
components more than the regular pheromone update (offline pheromone up-
date). An alternative daemon action could be the application of a local search
procedure.

3.2 Population-Based Ant Colony Optimisation

The Population-based Ant Colony Optimisation (PACO) [23, 24] algorithm
was first introduced as a single objective optimisation algorithm designed
for dynamic optimisation problems. PACO was later extended for a multiple
objective optimisation problem, the single machine total tardiness problem
with changeover costs [22, 25]. The defining difference between PACO and
the canonical ACO algorithm is in the area of solution storage. Whereas most
traditional ACO algorithms (e.g., Ant Systems [16], Ant Colony Systems [14],
MAX −MIN Ant Systems [41]) store solution information from an (artifi-
cial) ant in a pheromone matrix only, PACO stores solutions in a population
and then uses this population to make adjustments to the pheromone matrix.
At any time the pheromone matrix will be a direct reflection of some or all
of the stored population.

In the single objective PACO algorithm, as solutions enter the population
a positive update on the pheromone matrix is performed, and as solutions
leave the population a negative update is performed to adjust the pheromone
matrix values. This process removes the requirement for a traditional ACO
decay operation and results in a significant speed improvement over tradi-
tional pheromone maintenance operations [24]. PACO still uses the tradi-
tional ACS greedy transition rule [14] to construct new solutions. Figure 2,
taken from Angus [4], provides a visual summary of the Population-based
ACO algorithm using similar terminology to that defined in Dorigo et al. [17]
and Cordón et al. [7], this can be contrasted with ACO as presented in Fig. 1.

Niching for Ant Colony Optimisation 173

Ants generation
& activity

Pheromone values

Extra problem
information
(heuristic)

Heuristic values

Pheromone
update & decay

Pheromone
map

Solution
storage &

maintenance

Candidate
solutions

Fig. 2: Population-based ACO process organisation (reproduced from An-
gus [4])

3.3 Niching Ant Colony Optimisation Algorithms

As mentioned, at time of writing two examples of Niching ACO algorithms
can be found in the literature. These algorithms both extend the PACO
algorithm and are presented in this section.

3.3.1 Crowding PACO

In ACO algorithms the pheromone matrix tends to reflect the experience
of the entire population, and unlike the GA, PACO algorithms do not se-
lect parent solutions for new solution construction. Rather, new individuals
gain experience via the pheromone matrix as they progress towards a solu-
tion. Given this, Restricted Tournament Selection [26] is a suitable Crowding
model since it compares new solutions against a subset of the entire popu-
lation. The size of the subset selected is denoted as the Crowding window
size, thus the application of this form of niching introduces one extra pa-
rameter to the basic PACO algorithm. The Crowding window size can be set
anywhere between one and the size of the population. A general pseudocode
representation of Crowding PACO (CPACO) is outlined in Alg. 1.

3.3.2 Fitness Sharing PACO

To implement Fitness Sharing with Population-based ACO a temporary
pheromone matrix scheme is used. Rather than simply adding the best new
solution and removing the oldest solution as in PACO, all solutions from
a generation are added to the population, and the oldest population mem-
bers are removed. After this addition/removal process is complete, the Fitness

174 D. Angus

Algorithm 1 Crowding Population-based Ant Colony Optimisation:
CPACO
1: Uniformly initialise pheromone map values to τinit

2: for j = 1 to h do
3: Create and evaluate random solution
4: Insert random solution into history
5: Add random solution information into pheromone map (+Δτ)
6: end for
7: while stopping criterion not met do
8: Construct m new solutions (snew)
9: Evaluate solutions

10: Crowding history update
11: end while
12: procedure Crowding history update
13: for j = 1 to m do
14: Select random subset (size=c) of solutions (s) from population (p)
15: for k = 1 to c do
16: d = distance

(
snew

j , sk

)
17: if d < leastDistance then
18: leastDistance = d
19: sclosest = sk

20: end if
21: end for
22: if snew

j .quality > sclosest.quality then
23: Remove sclosest information from pheromone map (−Δτ)
24: Remove sclosest from population
25: Add snew

j to population
26: Add snew

j information into pheromone map (+Δτ)
27: end if
28: end for
29: end procedure

Sharing function is applied to all solutions in the current population to de-
rate their respective fitness values. These solutions are then used to construct
a pheromone matrix which is used to create the next generation of solutions
using the standard ACS pseudo-random proportional rule. A general pseu-
docode representation is provided as Alg. 2. In this pseudocode example p

represents the population, and pi the ith member of that population.

3.4 Alternatives to Niching

As indicated by Horn [28] it is prudent to discuss alternative diversity preser-
vation mechanisms alongside niching, as niching is itself a form of diversity
preservation. Focusing on ACO algorithms, the issue of diversification versus
intensification has been a driving force behind the development of ACO and

Niching for Ant Colony Optimisation 175

Algorithm 2 Fitness Sharing Population-based Ant Colony Optimisation:
FSPACO
1: while stopping criterion not met do
2: Construct temporary pheromone matrix
3: Construct Solutions
4: Update history (Replace oldest solutions)
5: De-rate quality
6: end while
7: procedure De-rate quality
8: for j = 1 to psize do
9: nicheCount = 0

10: for k = 1 to psize do
11: d = distance (pj , pk)
12: if d < σ then
13: shareValue = (1 − (d/σ)α)
14: else
15: shareValue = 0
16: end if
17: nicheCount = nicheCount + shareValue
18: end for
19: hj .quality = hj .quality/nicheCount
20: end for
21: end procedure

the balance between these factors is often cited as one of the distinguishing
features of different ACO algorithms. This is particularly evident in algo-
rithms such as Ant Colony Systems (ACS) [14] that use elite solutions to
promote intensification and localised decay to ensure diversification.

Some research specifically targets the issue of diversification by adding fea-
tures to basic ACO algorithms which introduce randomness [32, 19, 34, 35]
dependent on different criteria such as the measured diversity of the popu-
lation. For the problems addressed those techniques allow the modified algo-
rithms to overcome some of the issues associated with premature convergence
to suboptimal solutions.

While these cited approaches show improvement over the basic ACO algo-
rithms, they are very different to niching. These modifications usually delay
convergence to a single area of the search space. While niching aims at in-
creasing diversity, it does not hold off convergence or prevent it, nor does it
purposely introduce extra randomness. Niching aims at creating and main-
taining stable subpopulations. This is quite different to slowing convergence
or introducing randomness since niching algorithms can be tuned to be highly
convergent, but convergent to multiple areas of the search space.

176 D. Angus

4 Applications of Niching Ant Colony Optimisation

To date only a handful of applications of niching ACO algorithms can be
found in the literature. In this section three example applications are repro-
duced from the literature. The discussion focuses on highlighting the forma-
tion of niche behaviour and its effect on algorithm performance, including
quality of solutions obtained and algorithm complexity.

4.1 Travelling Salesman Problem

At the outset applying a niching algorithm to the TSP does not seem to be a
good idea since it has been shown that the TSP seems to benefit from greedy
search behaviour, focused on one area of the search space at a time [42]. In
their work on MAX −MIN Ant System (MMAS), Stützle and Hoos [42]
comment that Ant Systems (AS) performs poorly on the TSP in comparison
to later ACO algorithms because AS does not exploit good solutions strongly
enough. This is true since most of the best performing ACO algorithms for
the TSP include variations such as greedy transition rules or pheromone
update rules that strongly bias the reinforcement of elite solutions. Since
elitism tends to correlate strongly with an increase in search efficacy this
may indicate something about the problem: that the n-best solutions to a
TSP all contain similar elements and thus are located in a similar area of the
search space. In Angus [4] the best 100 solutions for the Burma14 problem
were shown to occupy a similar space in the overall search space having on
average 9 similar edges (out of 14) to all of the other best solutions. A baseline
random sample indicated that from a random sample of 100 solutions only 2
out of 14 edges are the same on average when selecting from across the entire
search space.

Since niching algorithms strive to maintain diversity, it is intuitive that
niching algorithms are not suited to solving problems such as the single-
objective TSP that benefit from strong convergent behaviour. However, cases
may exist where a niching algorithm would be suited to solving the TSP. In
Angus [1] a fabricated TSP, the Crown6 TSP, with two spatially separated
optima was constructed. The Crown problem is a symmetric, 2-Dimensional
Euclidean TSP containing 6 vertices which has the interesting property of
containing two distinct yet equal global optima (Fig. 3). These optima are
also a reasonable distance apart only sharing 3 out of 6 edges.

In Angus [2] the MMAS algorithm was tested2 using 50 ants per iteration,
and the number of times either of the two optima were found per iteration
was recorded. This experiment was repeated 100 times for consistency of
reported results. In every algorithm trial MMAS converged to one of the two
2 Using the standard parameters as in Stützle and Hoos [41].

Niching for Ant Colony Optimisation 177

2

1

3 4

5

6

(a) A - 1,2,3,4,5,6 length = 541

2

1

3 4

5

6

(b) B - 1,2,5,6,4,3 length = 541

Fig. 3: Optimal solutions to Crown problem

optima, while the niching PACO algorithms were shown to converge to both
optima. Three graphs indicating single experimental runs (that are indicative
of normal algorithm behaviour) of each of the algorithms are reproduced in
Fig. 4a, Fig. 4b and Fig. 4c.

This Crown problem was a trivially small although quite unique TSP, with
regard to the presence of two distinct optima. For completeness the niching
PACO algorithms were also tested on several small-medium sized TSP from
TSPLIB [36] to observe the effect of niching on the algorithm performance
(with regard to locating the optimal solution). The results obtained, while
not terrible were not as good as the MMAS algorithm with regard to the best
solution found. This result was to be expected due to the reasons provided
earlier.

The overall findings from this study were that while the standard TSP
instances of TSPLIB did not benefit from niching, the special case Crown
problem did. While this problem was entirely contrived it did demonstrate the
niching algorithms’ strength in the simultaneous location and maintenance of
multiple optima on a combinatorial problem domain. For the overwhelming
majority of single objective TSP in TSPLIB [36] this property is probably
not required, however there do exist other variations to the basic TSP that
require the location and maintenance of diverse solutions, one such variation
being the multiple objective TSP reported in Sec. 4.3.

4.2 Multimodal Function Optimisation

Multimodal function optimisation is a problem type that is useful in analysing
niching behaviour. These problems have been used in many prior niching al-
gorithm investigations mostly due to the ability to readily design challeng-
ing benchmark problems with features such as multiple diverse optima. The
problems are also easily scaled to multiple dimensions which can rapidly
increase the computational complexity, however such scaling does not neces-
sarily come at a cost to the ability to analyse and comment on algorithms

178 D. Angus

0

10

20

30

40

50

1 10 100 1000
Search Cycle

N
um

be
r o

f t
im

es
 th

e
be

st
 p

at
h

w
as

 fo
un

d
fo

r e
ac

h
se

ar
ch

 c
yc

le

A
B

(a) MMAS

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250
Search Cycle

N
um

be
r o

f t
im

es
 th

e
be

st
 p

at
h

w
as

 fo
un

d
fo

r e
ac

h
se

ar
ch

 c
yc

le

A
B

(b) FSPACO

0

2

4

6

8

10

12

0 50 100 150 200 250

Search Cycle

N
um

be
r o

f t
im

es
 th

e
be

st
 p

at
h

w
as

 fo
un

d
fo

r e
ac

h
se

ar
ch

 c
yc

le

A

B

(c) CPACO

Fig. 4: Crown problem: Occurrence of the two optimal paths over time for
a single (although indicative) experiment run (A & B are the two distinct
optimal paths). Each algorithm tested constructs 50 solutions per iteration.
Different running times are reported to better illustrate specific algorithm
behaviour, importantly though the convergence characteristics do not change
past the maximum number of iterations reported on the graphs.

Niching for Ant Colony Optimisation 179

applied to them. This is because these problems allow for easy visualisation
of their search space, while still preserving their neighbourhood relationships.

The domain of function optimisation is somewhat different to traditional
combinatorial optimisation problems like the TSP. Variations of ACO algo-
rithms have been applied to this domain with success [40]. In Angus [1] the
Population-based ACO algorithm was modified for the function optimisa-
tion problem and was imbued with each of the fitness sharing and crowding
niching techniques. Primarily this investigation was a qualitative one, aimed
at observing sustained niche formation for a prolonged period of time. The
Crowding PACO algorithm tested was successful in performing this task,
while the Fitness Sharing PACO algorithm results were less impressive, at-
tributed to high sensitivity in the parameter selection. Several figures indicat-
ing the distribution of all solutions for an entire algorithm run are reproduced
from Angus [1] as Fig. 5. These figures indicate the fitness of the function
as shaded, the dots represent all evaluated solutions (across multiple gener-
ations) for the entire algorithm run. In this example the algorithms tested
were allowed 50,000 solution evaluations and each used a population size of
100, meaning that they were iterated for a total of 500 generations. As can
be seen from these figures the sampling behaviour of the niching algorithms
are spread across all peaks of interest, which is the expected behaviour of
a niching algorithm. As a control the ACO algorithm without niching was
found to converge and thus sample only one distinct peak.

A similar experiment was performed in Angus [4] to evaluate the effect of
crowding window size on the stability of niche formation and maintenance.
The problem used was the Shekel’s foxholes problem which is comprised of
25 distinct optima of varying height. An optimal solution with a niching
algorithm would be the distribution of a population across all 25 optima.
In the study it was shown that decreasing the window size increased the
frequency of replacement errors which lead to the loss of some of the optima.
At an extreme this behaviour led to the loss of all but one optima. The
measure used to analyse this behaviour was the max-peak ratio which is a
sum of the relative distances from each optima to the nearest population
member. Figure 6 indicates the effect of decreasing the crowding window size
of CPACO for the Shekel’s foxholes problem in two dimensions.

In general, results from Angus [1, 4] suggest that the Niching PACO algo-
rithms were effective at solving a range of multi-modal function optimisation
problems. These studies also compared the Niching PACO algorithms against
state-of-the-art Niching EC algorithms and found that the results were com-
parable.

180 D. Angus

(a) Control (PACO)

(b) CPACO

Fig. 5: Diagrams indicating all of the 50,000 solutions generated in a single
run (indicative of the usual search behaviour) by each algorithm applied to
Himmelblau’s Function (white circles indicate the four distinct optima, small
white squares represent solutions).

Niching for Ant Colony Optimisation 181

(c) FSPACO

Fig. 5: (cont’d) Diagrams indicating all of the 50,000 solutions generated in
a single run (indicative of the usual search behaviour) by each algorithm
applied to Himmelblau’s Function (white circles indicate the four distinct
optima, small white squares represent solutions).

4.3 Multiple Objective Travelling Salesman Problem

Multiple Objective Optimisation (MOO) problems involve the simultaneous
optimisation of two or more objective functions and most classic single objec-
tive optimisation problems have MOO variants. These problems often require
a different approach to that of single objective optimisation due to decision
makers often requiring multiple Pareto optimal, or near-Pareto optimal solu-
tions; these Pareto optimal solutions being the best trade-off solutions. Given
that more than one solution is required these problems are often solved using
niching algorithms.

In Angus [2] the CPACO algorithm was extended for a suite of multiple
objective travelling salesman problems (MOTSPs). The resulting algorithm,
Multiple Objective CPACO (MO-CPACO) uses the key CPACO features of
crowding replacement and probabilistic step-wise solution construction. To
construct solutions MO-CPACO uses a weighted combination of heuristic
information from all objective functions, and pheromone information which
is based on the current state of the population. Due to there being more

182 D. Angus

Fig. 6: Multiple box plots indicating the effect on the max-peak performance
metric when the crowding window size of CPACO is varied from 0.1 to 1.0.
For this max-peak performance metric zero indicates best performance while
one indicates the poorest performance. Each parameter setting was repeated
100 times and allowed 50,000 solutions evaluations per individual run.

than one objective function the amount of pheromone deposited by each
ant into the pheromone matrix is determined by a Non-Dominated Sort-
ing technique [10] which ranks solutions according to their proximity to the
Pareto front. This means that there is one heuristic matrix per objective and
one pheromone matrix overall. All solutions are evaluated by each objective
function after being created. These candidate solutions are then compared
against a subset of the population. The closest solution (in terms of objective
space distance) is replaced if the candidate solution is better in all objec-
tives (crowding replacement). More specific algorithm details can be found
in Angus [2].

Niching for Ant Colony Optimisation 183

In Angus [2] the MO-CPACO algorithm was tested on several multiple ob-
jective TSPs. Among the problems tested were the two objective KroAB100,
KroAB150 and KroAB200 problems, each with 100, 150 and 200 cities re-
spectively. These problems are taken from the TSPLIB [36]. As a compari-
son an original Multiple Objective ACO algorithm without niching was also
tested with an equal number of solution evaluations and the same popula-
tion size. Summary attainment surface comparison was used to evaluate any
differences and these differences were evaluated using non-parametric statis-
tical techniques as the data were non-normally distributed. These summary
attainment surfaces show the best solutions obtained averaged over 100 inde-
pendent trials. Given that every solution in the final population contains two
objective values these solutions are plotted against both objectives simulta-
neously so as to easily visualise the trade-off between each objective. Like
many multiple-objective problems these MOTSP don’t have a single optimal
solution, instead they contain several Pareto-optimal solutions.

Figures 7, 8 and 9, reproduced from the original investigation indicates
that the MO-CPACO algorithm was able to obtain a better attainment sur-
face than its non-niching equivalent. This finding suggests that the addition
of niching to this ACO algorithm for these problems led to greater search
efficacy. Such conclusions as to the usefulness of niching in multiple objective
algorithm design are also commented on in Deb [9].

4.4 Key Findings

The problems listed in this section were so chosen for the original studies
since they are applications which best demonstrate the advantages and dis-
advantages of adding niching to an ACO algorithm. The empirical results
of these studies indicate that the use of niching benefited some problem do-
mains while offering no substantial advantage to others. Some key findings
are included here.

For the single objective TSP tested in Angus [1] there seemed to be a
marked decrease in obtained solution quality. This was explained through
a study of the neighbourhood relationship of an indicative TSP problem
instance which highlighted that the TSP may offer a natural advantage to
algorithms that tend to direct search effort in one area of the search space. A
simple TSP problem (Crown6) was constructed to demonstrate that Niching
ACO algorithms could exhibit niche formation on the TSP, but ultimately
for this problem domain there seems to be no advantage in the application
of these niching techniques.

Unlike the single objective TSP, multi-modal function optimisation prob-
lems do contain multiple spatially separated optima. For this particular prob-
lem domain Niching ACO algorithms were shown to be able to maintain sta-
ble niches [1, 4]. In these studies the Crowding PACO algorithm exhibited

184 D. Angus

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

kr
oB

10
0

kroA100

"CPACO"
"PACO"

Fig. 7: 1% (best) attainment surface for kroA100 and kroB100 using MO-
PACO (non-niching) & MO-CPACO (niching)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 50000 100000 150000 200000 250000 300000

kr
oB

15
0

kroA150

"CPACO"
"PACO"

Fig. 8: 1% (best) attainment surface for kroA150 and kroB150 using MO-
PACO (non-niching) & MO-CPACO (niching)

Niching for Ant Colony Optimisation 185

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 50000 100000 150000 200000 250000 300000 350000 400000

kr
oB

20
0

kroA200

"CPACO"
"PACO"

Fig. 9: 1% (best) attainment surface for kroA200 and kroB200 using MO-
PACO (non-niching) & MO-CPACO (niching)

the best performance, while the Fitness Sharing PACO algorithm did not
seem to perform as well, probably due to the parameter selection.

While the single objective TSP gave poor results for the Niching ACO
algorithms, the application of the Crowding PACO algorithm to the multiple
objective TSP [2, 4] saw a marked increase in algorithm efficacy and compu-
tational efficiency. For the problems tested, the Crowding PACO algorithm
was able to maintain a very good distribution of solutions through the use of
a niching population replacement operation.

5 Conclusion

This chapter has discussed current research into the application of niching to
ACO algorithms. Important findings were the difficulty of applying basic nich-
ing techniques such as Crowding and Fitness Sharing to standard ACO algo-
rithms. This difficultly was overcome through the use of the Population-based
ACO algorithm paradigm. Once applied the niching algorithms were shown
to be effective at sustaining multiple sub-populations distributed across
points of interest in a search space. The key findings suggest that like many

186 D. Angus

niching EA these niching ACO algorithms are best applied to multi-modal
or multiple objective problem domains.

Acknowledgements The author acknowledges time spent at Swinburne Univer-
sity of Technology preparing the research outlined in this publication. Specifically
the assistance provided by Prof. Tim Hendtlass and other members of the Complex
Intelligent Systems Lab, Swinburne University of Technology.

References

[1] Angus, D.: Niching for Population-based Ant Colony Optimization. In: 2nd
International IEEE Conference on e-Science and Grid Computing, Workshop
on Biologically-inspired Optimisation Methods for Parallel and Distributed
Architectures: Algorithms, Systems and Applications (2006)

[2] Angus, D.: Crowding population-based ant colony optimisation for the multi-
objective travelling salesman problem. In: 2007 IEEE Symposium on Com-
putational Intelligence in Multi-Criteria Decision-Making (MCDM 2007), pp.
333–340. IEEE, Piscataway (2007)

[3] Angus, D.: Population-based ant colony optimisation for multi-objective func-
tion optimisation. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007.
LNCS, vol. 4828, pp. 232–244. Springer, Heidelberg (2007)

[4] Angus, D.: Niching ant colony optimisation. PhD thesis, Swinburne University
of Technology (2008)

[5] Brits, R.: Niching strategies for particle swarm optimization. Master’s thesis,
Department of Computer Science, University of Pretoria, South Africa (2002)

[6] Brits, R., Engelbrecht, A.P., van den Bergh, F.: Scalability of niche PSO. In:
Proceedings of the 2003 IEEE Swarm Intelligence Symposium (SIS 2003), pp.
228–234 (2003)

[7] Cordón, O., Herrera, F., Stützle, T.: A review of the ant colony optimiza-
tion metaheuristic: Basis, models and new trends. Mathware & Soft Comput-
ing 9(2,3) (2002)

[8] Deb, K., Spears, W.M.: C6.2: Speciation methods. In: Bäck, T., Fogel, D.B.,
Michalewicz, Z. (eds.) Handbook of Evolutionary Computation. Institute of
Physics Publishing (1997)

[9] Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. Kan-
GAL report 200001, Indian Institute of Technology, Kanpur, India (2000)

[10] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb,
K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P.,
Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg
(2000)

[11] DeJong, K.A.: An analysis of the behaviour of a class of genetic adaptive
systems. PhD thesis, University of Michigan (1975)

[12] Dorigo, M.: Optimization, learning and natural algorithms. PhD thesis, Po-
litechico di Milano, Italy (1992)

Niching for Ant Colony Optimisation 187

[13] Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In:
Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimisation, pp. 11–32.
McGraw-Hill, London (1999)

[14] Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computing 1(1), 53–66 (1997)

[15] Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge
(2004)

[16] Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man and Cy-
bernetics, Part B 26(1), 29–41 (1996)

[17] Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Fu-
ture Generation Computer Systems 16, 851–871 (2000)

[18] Eldredge, N.: Macroevolutionary Dynamics: Species, Niches and Adaptive
Peaks. McGraw-Hill, New York (1989)

[19] Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW: A multiple ant
colony system for vehicle routing problems with time windows. Tech. rep.,
IDSIA (1999)

[20] Goldberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learn-
ing. Addison-Wesley, Reading (1989)

[21] Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multi-
modal function optimization. In: Proceedings of the Second International Con-
ference on Genetic Algorithms, pp. 41–49 (1987)

[22] Guntsch, M.: Ant algorithms in stochastic and multi-criteria environments.
PhD thesis, Universität Fridericiana zu Karlsruhe (2004)

[23] Guntsch, M., Middendorf, M.: Applying population based ACO to dynamic
optimization problems. In: ANTS 2002: Proceedings of the Third International
Workshop on Ant Algorithms, pp. 111–122. Springer, London (2002)

[24] Guntsch, M., Middendorf, M.: A population based approach for ACO. In:
Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.)
EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and Evo-
Plan 2002. LNCS, vol. 2279, pp. 72–81. Springer, Heidelberg (2002)

[25] Guntsch, M., Middendorf, M.: Solving multi-criteria optimization problems
with population-based ACO. In: Fonseca, C.M., Fleming, P.J., Zitzler, E.,
Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 464–478. Springer,
Heidelberg (2003)

[26] Harik, G.R.: Finding multimodal solutions using restricted tournament selec-
tion. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference
on Genetic Algorithms, pp. 24–31. Morgan Kaufmann, San Francisco (1995)

[27] Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introduction
With Applications to Biology, Control, and Artificial Intelligence. MIT Press,
Cambridge (1975)

[28] Horn, J.: The nature of niching: Genetic algorithms and the evolution of opti-
mal, cooperative populations. PhD thesis, University of Illinois (1997)

[29] Mahfoud, S.W.: Crowding and preselection revisited. In: Männer, R., Mand-
erick, B. (eds.) Parallel Problem Solving from Nature 2 (PPSN2), pp. 27–36.
North-Holland, Amsterdam (1992)

[30] Mahfoud, S.W.: Niching methods for genetic algorithms. PhD thesis, Univer-
sity of Illinois (1995)

188 D. Angus

[31] Mahfoud, S.W.: Niching methods. In: Back, T., Fogel, D.B., Michalewicz, Z.
(eds.) Evolutionary Computation 2: Advanced Algorithms and Operators, pp.
87–92. Institute of Physics Publishing, UK (2000)

[32] Nakamichi, Y., Arita, T.: Diversity control in ant colony optimization. Artificial
Life and Robotics 7(4), 198–204 (2004)

[33] Petrowski, A.: A clearing procedure as a niching method for genetic algorithms.
In: Proceedings of IEEE International Conference on Evolutionary Computa-
tion, pp. 798–803. IEEE, Los Alamitos (1996)

[34] Randall, M.: Maintaining explicit diversity within individual ant colonies. In:
Recent Advances in Artificial Life, ch. 17. World Scientific, Singapore (2005)

[35] Randall, M., Tonkes, E.: Intensification and diversification strategies in ant
colony system. Complexity International 9 (2002)

[36] Reinelt, G.: Tsplib95 (1995),
http://www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib95

[37] Ricklefs, R.E.: Ecology. Thomas Nelson & Sons Ltd. (1973)
[38] Robbins, H.: Some aspects of the sequential design of experiments. Bulletin of

the American Mathematical Society 55, 527–535 (1952)
[39] Schoeman, I., Engelbrecht, A.: Niching for dynamic environments using par-

ticle swarm optimization. In: Wang, T.-D., Li, X.-D., Chen, S.-H., Wang, X.,
Abbass, H.A., Iba, H., Chen, G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247,
pp. 134–141. Springer, Heidelberg (2006)

[40] Socha, K.: ACO for continuous and mixed-variable optimization. In: Dorigo,
M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T.
(eds.) ANTS 2004. LNCS, vol. 3172, pp. 25–36. Springer, Heidelberg (2004)

[41] Stützle, T., Hoos, H.: Improvements on the Ant System: Introducing the
MAX −MIN Ant System. In: Third International Conference on Artificial
Neural Networks and Genetic Algorithms. Springer, Norwich (1997)

[42] Stützle, T., Hoos, H.: MAX − MIN Ant System. Future Generation Com-
puter Systems 16(8), 889–914 (2000)

[43] Watson, J.P.: A performance assessment of modern niching methods for param-
eter optimization problems. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon,
M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Genetic and Evolutionary
Computation Conference, vol. 1, pp. 702–709. Morgan Kaufmann, Orlando
(1999)

http://www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib95

Using Ant Colony Optimisation to
Construct Meander-Line RFID
Antennas

Andrew Lewis1, Marcus Randall2, Amir Galehdar3,
David Thiel3, and Gerhard Weis1

Abstract A method increasingly used to uniquely identify objects (be they
pieces of luggage, transported goods or inventory items in shops and ware-
houses), is Radio Frequency IDentification (RFID). One of the most impor-
tant components of RFID systems is the antenna and its design is critical
to the utility of such tracking systems. Design engineers have traditionally
constructed small antennas using their knowledge and intuition, as there
is no simple analytical solution relating antenna structure to performance.
This, however, does not guarantee optimal results, particularly for larger,
more complex antennas. The problem is ideally suited to automated meth-
ods of optimisation. This chapter presents an overview of the automatic de-
sign of antennas using the meta-heuristic known as Ant Colony Optimisation
(ACO). Apart from a description of the necessary mechanics ACO needs to
effectively solve this problem, a novel local search refinement operator and a
multi-objective version of the problem are also described. The latter is used
to optimise both antenna efficiency and resonant frequency. Computational
results for a range of antenna sizes show that ACO is a very effective design
tool for RFID antennas.

Institute for Integrated and Intelligent Systems
Griffith University
Queensland, Australia
{a.lewis@, gerhard.weis@student}griffith.edu.au
School of Information Technology
Bond University
Queensland, Australia
mrandall@bond.edu.au

Centre for Wireless Monitoring and Applications
Griffith University
Queensland, Australia
{s2145033@student.,d.thiel@}griffith.edu.au

A. Lewis et al. (Eds.): Biologically-Inspired Optimisation Methods, SCI 210, pp. 189–217.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

190 A. Lewis et al.

1 Introduction

The automatic identification of items is a real-world problem that appears in
a diverse range of applications, including, but not limited to, luggage tagging,
warehouse inventory tracking, vehicle identification on user-pay motorways,
and potentially products sold in shops (such as supermarkets). One technol-
ogy used for these purposes is radio frequency identification (RFID). In this
approach a receiver attached to an item (known as a tag) is exposed to an
electro-magnetic field that generates a response from which the item may be
uniquely identified. One of the problems that engineers have encountered is
the design of compact antenna structures for the tags since, for their prac-
tical application in tracking a wide range of different items, they are often
very small (possibly less than half a centimetre squared). Until recently, engi-
neers would manually derive antenna designs according to their intuition and
knowledge of the field. This practice is time consuming and may not yield the
best results but, since no analytical solutions are known to derive antenna
performance from an arbitrary structure, some form of empirical approach
to design has been necessary.

However, intelligent automated processes can be used in the design and
evaluation of such antennas. Moreover, search strategies, based on biological
paradigms, are able to efficiently and intelligently search large numbers of
configurations. One such approach, ant colony optimisation (ACO) [5] is very
good at solving similar problems to that of the design of RFID antennas.
Recent work by Randall, Lewis, Galehdar and Thiel [14] has shown that
it is indeed possible and practicable to allow an ACO meta-heuristic-based
software system to design and evaluate such antennas.

This chapter presents an overview of the use of ACO in the design of RFID
antenna structures, including a simple, initial application, the addition of
a local refinement operator and the further augmentation of the model to
handle multiple, conflicting design objectives by use of Pareto-dominance
relations (Sections 4, 5 and 6 respectively).

2 RFID Antennas

The idea of radio frequency identification (RFID) was first developed in
1948 [18]. Recently there have been many enhancements to this basic idea and
the concept has found applications in many areas. For practical reasons there
is a need for smaller tags with longer “read range”. The read range is “the
maximum distance at which an RFID reader can detect the backscattered
signal from the tag” [15]. This vital factor can be increased by designing an-
tennas with higher gain and this is directly related to the antenna efficiency.
Design engineers seek the smallest, most efficient antenna structures for their

Using ACO for Meander-Line RFID Antennas 191

RFID tags. Most antennas are screen-printed on thin plastic and so are 2D
structures.

Thus, the design of efficient antennas is an emerging and important area [7,
8]. Often, RFID antennas are designed by constructing a dipole antenna in
which each arm of the dipole is a “meander line”, that is, the conducting
element is folded upon itself in a convoluted, space-filling path, maximising
the length of the element while minimising the area it occupies. A simple
example is shown in Figure 1. One approach to achieve this is to lay out
the antenna element on a Cartesian grid, constructing the meander line by
joining points in the grid into a continuous path.

Fig. 1 A simple meander line antenna.

This process of constructing a meander line antenna has similarities to, but
is not the same as, two well known problems. The first of these is the travel-
ling salesman problem (TSP). Consider a set of cities, with known distances
between each pair of cities. The aim of the TSP is to find the shortest path
to traverse all cities exactly once and return to the starting city. The major
difference between this and the problem in this paper, is that there is a po-
tential connection between every pair of cities, whereas a meander line on the
Cartesian grid may only advance to an adjacent (non-diagonal) grid point.
Both TSP and a meander line of maximal length give rise to Hamiltonian
walks.1

The second problem is that of producing self-avoiding walks (SAWs) [9, 12,
17]. This finds application in chemistry for which linear polymer molecules in
a good solvent are required [17]. As the name suggests, a path is constructed
that moves from one point to the next without crossing itself. While this
sounds very similar to building meander lines, a SAW has an infinite grid size
(as polymers exist in continuous space) whereas meander line RFID antennas
are severely constrained in size for practical reasons.

There has been a large interest in solving TSP using the meta-heuristic
ant colony optimisation as its mechanics lend themselves naturally to this
1 It is evident the meander line problem is NP hard as it is reducible to TSP and

vice-versa.

192 A. Lewis et al.

problem. Ants are agents that iteratively construct solutions and ideally
suited to path planning problems (such as the TSP and vehicle routing prob-
lem variants). In this chapter, we outline the process and effectiveness for
using ACO on the real-world problem of designing meander line antennas for
RFID devices.

3 The Ant Colony System Algorithm

The original concept of ant colony optimisation of Dorigo [4] demonstrated
that optimisation problems could be solved using a modelling of the foraging
behaviour of Argentine ants. ACO is, in fact, a collection of meta-heuristic
techniques, one of which is the ant colony system (ACS) [6]. This version
has been shown to have good performance and is robust enough to be ap-
plied across a range of combinatorial optimisation problems, particularly path
planning problems. It is used as the basis of our search algorithm.

ACS can best be described by its application to solving TSP as this is
a well understood optimisation problem and, as previously shown, a close
relation to the problem of constructing meander line antennas. Consider a
TSP with N cities. Cities i and j are separated by distance d(i, j). To ensure
some level of solution diversity, m ants are placed randomly on these cities. m
is usually a lot smaller than N ; it is often arbitrarily set at ten (across a range
of applications.) In discrete time steps, all ants select their next city and then
simultaneously move to it. Like natural ants, they deposit a substance known
as pheromone to communicate with the colony about the utility (goodness)
of the edges they traverse. The pheromone on edge (i, j) is denoted by τ(i, j).

A combination of pheromone and problem specific heuristic information
(conventionally denoted as a function of η) is the basis on which ants con-
struct solutions. For each step of ACS, Equations 1 and 2 are used to select
the next city to visit. In the equations this is referred to as s, the current city
as r, and the ant as k. The first branch of Equation 1 is a greedy selection
technique that will choose the city that has the best combination of short dis-
tance and large pheromone level. If subsequent ants always choose previously
followed paths, the degree to which they explore the problem space will be
restricted and stagnation of the search process in local minima will be highly
likely. To avoid this there is a probability q that Equation 2 will be used to
select the next city instead. This equation generates a weighted probability
for all remaining cities. A roulette wheel selection function, R, is then used to
choose s. These two equations collectively are called the pseudo-proportional
rule.

s =
{

argmaxu∈Jk(r)

{
τ(r, u)[η(r, u)]β

}
if q ≤ q0

Equation 2 otherwise (1)

Using ACO for Meander-Line RFID Antennas 193

s = R

({
τ(r,s)[η(r,s)]β∑

u∈Jk(r) τ(r,u)[η(r,u)]β
if s ∈ Jk(r)

0 otherwise

)
(2)

Note that η(r, u) = d(r, u) and q0 is a parameter bounded between 0 and
1. Values of q0 close to 1 correspond to a greedy search, whereas values
close to 0 represent a random search. Each ant maintains a memory of its
previous steps. In the case of both TSP and meander lines, ant k can only
select available values from Jk(r) where r is the current city or grid point
respectively.

The parameter β governs the relative importance of the heuristic informa-
tion η. In the case of the TSP, this value will be a negative one so that shorter
edges are favoured. The use of the pheromone information biases the search
towards selecting edges that are well traversed (i.e., have a high pheromone
level).

As in natural ant systems, the pattern of pheromone values is constantly
evolving to reflect the collective intelligence and memory of the colony. How-
ever, unlike real ants these changes do not occur continuously. Instead, two
separate update phases are used. They are referred to as local and global
pheromone updating. For the former, the pheromone level on the selected
edge is updated according to Equation 3. This is done after all ants have
completed a single step.

τ(r, s) ← (1 − ρ) · τ(r, s) + ρ · τ0 (3)

Where:

ρ is the local pheromone decay parameter, 0 < ρ < 1 and
τ0 is the initial amount of pheromone deposited on each of the edges. This
value cannot be 0 (as the pheromone matrix could not change), but is
usually set as a positive value close to 0.

Global updating of pheromone takes place once all ants have constructed
a solution. Edges that compose the best solution (so far) are rewarded with
an increase in their pheromone level while the pheromone on the other edges
is evaporated (decreased). This is expressed in Equation 4.

τ(r, s) ← (1 − γ) · τ(r, s) + γ · Δτ(r, s) (4)

Δτ(r, s) =

⎧⎨
⎩

1
L if (r, s) is an edge within the best solution found during the

entire search process
0 otherwise.

(5)
Where:

Δτ(r, s) reinforces the pheromone on the edges of the best solution (see
Equation 5),

194 A. Lewis et al.

L is the length of the best (shortest) tour to date and
γ is the global pheromone decay parameter, 0 < γ < 1.

An in-depth pseudocode description of the ACS algorithm can be found
in Dorigo and Gambardella [6].

4 Meander Line Antennas and ACS

As stated previously, a meander line antenna may be designed by laying out
antenna elements on a finite grid of points. To form the line, each point
can be connected to points directly horizontally and vertically above and
below the point. This gives up to four neighbouring points, with boundary
points naturally having fewer than this number. Each point must form part
of the meander line. This forms half the antenna from which the dipole is
constructed using a mirror image. Figure 2 shows a 5 × 5 grid as well as a
feasible meander line half-antenna.

Fig. 2 Diagram (a) defines the grid and its numbering system on a 5× 5 grid. (b)
shows a feasible meander line half-antenna element. c©2007 IEEE

For the first design problem considered, that of a small antenna with max-
imal efficiency, the following design parameters were used. Let n be the num-
ber of grid points in one side of a square grid. By restricting the design to
dipole antennas with identical, mirrored arms it is only necessary to construct
one meander line arm, on approximately half the area of the total antenna.
The track grid separation was set at 1 mm and the antenna half-area was
set to 4× 4 mm2. Tracks were mapped to the n× n grid points (as shown in
Figure 2 for n = 5). The dipole was centre-fed along the line of symmetry. By
connecting all grid points, a meander line with an half length of n2 − 1 mm
is produced. By connecting two half areas together through a 1 mm bridge
(and feed) a dipole meander antenna is formed so the final antenna occupies
(n − 1) × (2n − 1) mm2 and has total length of (2n2 − 1) mm.

Using ACO for Meander-Line RFID Antennas 195

As in Galehdar et al. [8], some restrictions were set to limit the number
of possible structures. There are two important differences between applying
ACO to the TSP and this problem. First, the solution will be in the form of a
Hamiltonian walk, not a closed circuit. More importantly, not each antenna
point neighbours every other point (as would be the case in TSP). Instead, a
neighbour is a point that is located one millimeter north, east, south or west
on the grid. Neighbouring points on the border of the grid will number less
than four, as there is no wrap-around. An additional restriction is that the
meander line starts on one of the grid boundary points of the half-area. Such
restrictions make it difficult for ACO (an essentially blind form of search) to
construct solutions that include each point of the grid.

The algorithm proceeds as follows. Given a boundary starting point on
the grid, each ant chooses a direction in which to move one grid point at
each step. In general a move may be considered to up to four neighbours,
corresponding to the four directions, {north, east, south, west}. Neighbours
are excluded if they either take the meander line beyond an edge or have
already been used as part of the line. There are three ways that an ant is
guided in the choice of its next direction to travel:

1. Pheromone – The pheromone matrix is an n2 × 4 structure. The latter
dimension is direction. The pheromone component of the probablistic
equations is given as τ(c, d) where c is the current grid position and d
is the direction.

2. Lookahead function – In order to move each ant in such a way as to max-
imise its degrees of freedom, the number of unused neighbours of each of
the neighbours of the current point is calculated. The greater this number,
the higher the probability of choosing that direction.

3. Straight line segment function – If the path an ant chooses is allowed to
fold upon itself, the likelihood increases that the ant will become trapped
in a loop with no unused neighbouring points (and will thus be unable
to move further.) Encouraging straight line segments helps to reduce the
possibility of such premature termination, ensuring that all n2 points are
visited by the meander line. This function is easily calculated by comparing
the current candidate direction with the last direction that the ant has
taken.

Modifying equations 1 and 2 to become suitable for this problem simply
means that that the heuristic function η needs to be replaced by f(c, d)β ×
s(d, d′)β where f(c, d) is the number of free neighbours of the point reached
by traversing direction d from the current position c and s(d, d′) is 2 if d = d′

(d′ is the previous direction), 1 otherwise.
If the number of neighbours for an ant at a particular step of the algorithm

is 0, it has become stuck and cannot continue. In this case, the solution
is feasible if the length of the meander line is n − 1 segments, else it is
shorter than this required length and is hence discarded. At this point, the ant
simply “dies” and is not considered for the remainder of the iteration. Local

196 A. Lewis et al.

pheromone updating does occur for the components that these “dead” ants
have added to their solution. Fortunately, in ACS this serves to discourage
other colony members from following the ant into the same, prematurely-
terminating path. Only the best feasible ant at each iteration may globally
(and positively) update the pheromone matrix.

The aim of this first experiment is to maximise the efficiency of the antenna
design. However, the calculation of the efficiency of the antenna design is
considered as a black box computation. The structure of a complete antenna
is passed to an external program (the NEC [2] antenna analysis software)
to compute its efficiency. Therefore, ants cannot use incremental objective
information to guide their paths.

4.1 Computational Experiments

The computing platform used to perform the experiments was a Sun Mi-
crosystems v880. The ACS parameter settings were given by the set {β =
2, γ = 0.1, ρ = 0.1, m = 10, q0 = 0.9}. These values have been found to be
robust by Dorigo and Gambardella [6].

The evaluation of meander line antennas is a relatively computationally
costly exercise. The efficiency is determined at the minimum resonant fre-
quency of the antenna. In this experiment, the resonant frequency was found
by “sweeping” the operating frequency across some range of interest, and
finding the frequency at which the reactive part of the antenna’s impedance
is (positively traversing) zero. This is a very time-consuming process; while
for our computer platform each solution evaluation of this real-world prob-
lem, on the 5× 5 grid, required less than a minute, for a 10× 10 grid it took
13 minutes. Given that ants will generate solutions that they have previously
come across, it was feasible, and desirable, to implement a solution cache to
reduce the total run-time. This cache stored all of the uniquely generated
solutions within a run of the solver. If an ant generates one of the solutions
in the cache, a look-up on the objective cost value was used (rather than
a full evaluation of the antenna design). For the problem size described in
this paper, this had the effect of reducing the typical run-time to a more
manageable two hours.

As a folded antenna of increasing length is packed into a given area (by
increasing the grid density, i.e. the number of grid points used within a fixed
area) an exponential number of designs can be derived. While exhaustive
enumeration of all feasible designs is possible for smaller grid sizes [8] it is
evident that this will quickly become impractical. For example, for a grid of
10× 10 it has been estimated there are of the order of 1013 feasible solutions
and intelligent search algorithms become a practical necessity. For larger grid
sizes it is also important to use parallel resources to solve these problems in

Using ACO for Meander-Line RFID Antennas 197

a timely manner. A model to achieve this for ant colony optimisation was
outlined in Randall and Lewis [13].

In this experiment we solved for meander lines on a 5 × 5 grid, running
the ant algorithm ten times (by varying the random initialisation seed) for
each of three values of q0 (which determines the degree of “greediness”) and
with and without application of the straightline segment function, a total
of 60 independent searches. Due to resource limitations at the time of the
experiment only 6 processors were used, searches for different random seeds
being processed sequentially. Had additional computational resources been
available for this experiment, it would have been a trivial matter to reduce
the wall-clock time required by performing independent, parallel searches for
the individual random seeds. In addition, as noted above, this time could be
reduced further by implementing parallel ACO.

Whilst 5 × 5 might be considered a small problem by optimisation stan-
dards, it does in fact provide a useful and practically applicable antenna
structure. The ACS part was coded in the C language and compiled with
gcc. The evaluation of the antennas’ efficiencies were simulated by the NEC
antenna analysis software. Each search was permitted 2000 iterations.

The results of running the ten ACS searches are summarised in Table 1,
which shows the maximum and minimum efficiencies obtained, and the num-
ber of unique solutions evaluated for each search. Overall, the results showed
that the ACS search engine is a very effective way of producing good mean-
der line antennas. On all trials the ants produced good solution improvement
over time, as shown, for example, in Figure 3. Figure 3 shows the conver-
gence history of one of the ten searches performed, i.e., the best efficiency
obtained to date at each iteration. As may be seen, during some initial pe-
riod no feasible solutions are generated. Once a feasible path was found it
was significantly improved relatively rapidly. In fact, one of the ten searches
conducted found a solution within 0.4 % of the global optimum after 637 it-
erations (approximately 146 seconds of computational time). Due to caching,
only 9 unique solutions had to be evaluated for this search and the greatest
number requested by any of the searches was 29. This was achieved in a little
over 3 hours of wall-clock time for the whole experiment. Thus our implemen-
tation is capable of finding the near optimal antenna structures as verified by
results from exhaustive enumeration in other experiments [7] during which
over 1000 unique solutions were tested.

4.2 Overall Remarks

Producing efficient meander line antennas is an important design problem
for RFID devices. By using a grid-aware ACO, we were able to develop an
implementation which was able to find a near-optimal antenna design for
a 5 × 5 antenna grid. This is a notable result as the ants design antennas

198 A. Lewis et al.

Table 1 Results of the ACS solver.

q0 Unique Iterations Maximum
Solutions Required Efficiency%

Without straightline bias

0.9 9 637 83
0.5 14 10 82
0.1 17 323 82

With straightline bias

0.9 7 13 81
0.5 12 138 81
0.1 14 1904 83

Fig. 3 Convergence history of a single run of the solver. c©2007 IEEE

based purely on a black box evaluator, without having any domain specific
knowledge of antenna efficiency.

Given the proof of concept outlined in this section, investigation continued
on efficient methods for producing antennas for larger grids, and means of
improving antenna efficiencies using local refinement techniques.

5 Local Refinement Using the Backbite Operator

Local search is an integral part of ACO, and on the whole, greatly improves
solution quality [6, 19, 20]. As an example, Stützle and Hoos [19] applied
local search for a MAX −MIN Ant System to the TSP and the quadratic
assignment problem (QAP). For both problems, local search improved the

Using ACO for Meander-Line RFID Antennas 199

runtime and solution quality compared to an ant system without this local
refinement.

Refinement of meander lines cannot use the standard local search operators
that are typically applied to the benchmark problems such as TSP and QAP.
However, a well known approach to generate new Hamiltonian walks from
another Hamiltonian walk is the backbite operator [11, 16]. Figure 4 shows
how the backbite operator works.

Fig. 4 (a) shows all possible backbite moves. (b) - (c) show all resulting structures
after the backbite operation. c©2008 IEEE

Figure 4 (a) is the starting structure with the starting point in the upper
left corner and the end point in the centre. To construct a new Hamiltonian
walk we consider all neighbours at the end point. In this case there are three
possibilities to insert a new connection. A notation convention for inserted
links was adopted, as shown in the figure. Adding a new connection will create
a circuit, which means another connection has to be removed. In Figure 4 (b)
the connection shown as 1 in Figure 4 (a) has been added and the connection
indicated by the dashed line must be removed. The new endpoint is in the
lower left corner, where it is possible to perform further backbite operations.
(In Figures 4 (c) and 4 (d) the connections of 2 and 3, respectively, were
inserted).

If further backbite operations are performed, they can be described and
arranged as an n-ary tree, where n has a maximum of 3, deriving from one
particular origin structure. Figure 5 shows a portion of such a tree. The nodes
in the tree can be labelled by extending the notation indicating the possible

200 A. Lewis et al.

Fig. 5 The n-ary tree of possible structures derived using iterative backbite oper-
ations. c©2008 IEEE

inserted links at each stage. For example, a notation of 1.2 means that in
the first step possibility 1 was used and in the following step possibility 2
was used. This tree, and labelling, can obviously be extended to arbitrary
depth. In addition, it may be noted that all node structures can be fully and
independently constructed based only on the root node structure. Thus a set
of nodes to some predetermined depth can be constructed and all possibilities
tested concurrently in a single evaluation step, given availability of sufficient,
parallel computing resources. It only remains to be careful to prune the tree
of loops.

A single iteration of the ACS algorithm, including the backbite operator,
is outlined in Algorithm 1. The procedure shown will be repeated for some
specified, maximum number of iterations. As shown, the backbite operation
was applied as a hierarchical search after the ACS algorithm has produced
a final solution. The local search was restricted to a given hierarchy search
depth. All resulting structures were generated and the efficiencies calculated
for each structure concurrently. Since the performance of the refined struc-
tures are evaluated concurrently with the structure constructed by the ACS
the additional evaluations required for refinement can be performed without
adding to the time required for a single iteration of the algorithm, provided
sufficient parallel computing resources are available.

Using ACO for Meander-Line RFID Antennas 201

Algorithm 1 ACS algorithm including backbite operator
1: A population of ants begin construction of Hamiltonian walks on a Cartesian

grid of specified size
2: for each ant, from a starting node on the edge of the grid do
3: Add next node to a directed graph, according to the probabilistic selec-

tion rules outlined in Section 3, coupled with next neighbour lookahead and
straight line weighting, if appropriate

4: Update local pheromone data
5: If the ant cannot find a feasible next node, and all nodes have not been

visited, terminate the ant for this iteration
6: end for
7: for ants that have constructed a valid antenna (a complete tour) do
8: Iteratively apply the backbite operator to the antenna configuration, to a

specified depth
9: for original antenna configuration constructed by the ant and each configu-

ration in the constructed tree of possible, refined antennas do
10: Evaluate antenna gain using NEC antenna suite
11: end for
12: end for
13: Update global pheromone
14: end

5.1 Computational Experiments

We solved for meander lines on grids ranging from 5 × 5 to 10× 10, running
the ant algorithm ten times (by varying the random initial seed used for the
probabilistic operations of the algorithm). Each search was permitted 2000 it-
erations. Inspection of the results obtained showed that an iterative approach
to application of the backbite operator – applying the operator, evaluating
the resultant structures, and selecting the best for further refinement - was
not, in fact, a desirable approach because efficiency can vary unpredictably
between structures, leading to stagnation of the procedure in local optima.
Construction of an entire tree of possible, refined configurations allowed the
algorithm to search beyond intermediate structures of degraded performance.

For each grid size, the best antenna found was compared with those found
without using the backbite operator. The following figures show the best
structures found in previous work [14] on the left side and the structure
further optimised using the backbite operator on the right side. The efficiency
as a percentage is noted below each structure.

The 5×5 example in Figure 6 is quite impressive. Beginning with a search
depth of 5 it took only 3 steps to find the global optimum as determined
by Galehdar et al. [7] using exhaustive enumeration. The total number of
antennas evaluated was 13.

Figure 7 shows the results for the 6×6 antenna derived using the algorithm
without straightline bias described in earlier work [14] and Figure 8 shows

202 A. Lewis et al.

Fig. 6 (a) The original 5× 5 antenna and (b) the optimised 5× 5 antenna. c©2008
IEEE

Fig. 7 (a) The original 6× 6 antenna from the algorithm without straightline bias
and (b) the optimised 6 × 6 antenna. c©2008 IEEE

Fig. 8 (a) The original 6 × 6 antenna from the “straight” algorithm and (b) the
optimised 6 × 6 antenna. c©2008 IEEE

the results for the 6 × 6 antenna obtained with straightline bias. For both
the search depth was set to 25. For the first candidate antenna, the algo-
rithm needed to evaluate a further 270 antennas and improved the antenna
efficiency by 1.5%. For the second structure, there were an additional 395
antennas to evaluate. The efficiency was improved to 79.1%, the same as for
the structure in Figure 7 (b), a relative increase of 21.9%. From these results
it might be inferred that these both searches have now reached near-optimal

Using ACO for Meander-Line RFID Antennas 203

results for this antenna size, but that the algorithm without straightline bias
achieved a better result originally.

Fig. 9 (a) The original 7× 7 antenna and (b) one of 7 equivalent, optimised 7× 7
antennas. c©2008 IEEE

For the 7×7 case the algorithm had 891 antennas to evaluate (for a search
depth of 25) and found 7 different, equally efficient antenna structures, one
of which is shown in Figure 9. The increase in efficiency achieved was 7.8%.

To reduce computation time the search depth for 8 × 8 grids was reduced
to 20. The local search had to evaluate 3193 different antennas and improved
the efficiency 7.6%. The evaluation of this, the largest group of structures,
took about one and a half hours using 20 desktop computers (a mixture of
Athlon 64 and Pentium 4 computers in an ad hoc cluster.)

Fig. 10 (a) The original 8×8 antenna and (b) the optimised 8×8 antenna. c©2008
IEEE

For the 9 × 9 grids, the search depth was further reduced, because larger
grids take increasing compute time to evaluate. For a search depth of 15, 1371
antennas had to be evaluated. A solution was found with efficiency increased
by 16.8% compared to the original structure.

204 A. Lewis et al.

Fig. 11 (a) The original 9×9 antenna and (b) the optimised 9×9 antenna. c©2008
IEEE

For 10×10 grid, the search depth was further reduced to 15 and 1527 new
antennas were evaluated. The efficiency was improved notably by 42.7%.

Fig. 12 (a) Original 10×10 antenna and (b) the optimised 10×10 antenna. c©2008
IEEE

In summary, use of the backbite operator for local structure refinement
produced antennas with improved efficiency at all grid sizes. For smaller grids
it either obtained the globally optimal solution, as verified by exhaustive
enumeration, or can reasonably be assumed to have closely approached it
for sizes for which complete enumeration of solutions is infeasible. It may
be noted that in a number of cases, for these smaller grid sizes, the un-
augmented algorithm had already derived very efficient structures. As grid
sizes were increased, however, local refinement provided increasing degrees of
improvement, indicating both the difficulty of the optimisation problem and
the need for hybridisation with local search.

Using ACO for Meander-Line RFID Antennas 205

5.2 Overall Remarks

Overall it seems, that antennas with a simple, “serpentine” part and an-
other more folded part are more efficient than the naive spiral and zigzag (or
“plough”) structures. The results show that the backbite operator applied
in an hierarchical manner as a post-processing step is a suitable local search
strategy for meander line antennas. Due to the independence of the evaluation
function (i.e., the NEC tool), it is very easy to parallelise. Ideally, it would
be preferable to be able to direct the local search more using domain spe-
cific knowledge, instead of generating a large number of solutions and testing
them. However, no relationship between a small change in structure and the
resulting change in efficiency could be found within the testing performed.
Generally, the test runs have shown that starting with a good structure and
applying the backbite operator hierarchically leads to resultant structures of
higher efficiencies.

6 Optimising Efficiency and Resonant Frequency: A
Multiobjective Approach

In previous sections we have demonstrated that heuristic search algorithms
in general, and ACO in particular, can be used very effectively to improve
the efficiency of small, meander line RFID antennas. In most real-world ap-
plications, however, an “optimal” solution involves simultaneously satisfying
several objectives. Another issue of importance in the design of these an-
tennas is that of the resonant frequency of operation. High Frequency (HF)
RFID, which operates at 13.56 MHz, has been widely deployed for item man-
agement applications but fails where read distances of greater than 1m are
required. More recently, Ultra High Frequency (UHF) has been investigated,
providing for smaller antennas and longer read distances. UHF RFID has
been developed to operate at a number of different frequencies, specifically,
433 MHz, 860 -956 MHz and 2.45 GHz. Two separate investigations were
undertaken to design antennas for higher frequencies (3 - 5 GHz) and the
lower band (433 MHz). Separate experiments were necessary because the pa-
rameters of the physical structure of antennas to operate in these difference
frequency bands are quite different.

For the antenna design problem being considered maximising the antenna
efficiency, η, and minimising the resonant frequency, f0, were the two design
objectives. In order to attain these objectives the ACO algorithm used in the
previous investigations was modified. When optimising for a single design
objective, it is simple to determine which ant has achieved the best solution,
and should thus be allowed to globally update the pheromone matrix; it is the
ant whose solution has the best value for the objective. However, when more

206 A. Lewis et al.

than one objective is involved, the question of what is the “best” solution
can be difficult to answer, particularly if objectives conflict. What is ideally
required in this case is a method that delivers information on the trade-off
between objectives.

To determine whether one solution is more attractive than another, a dom-
ination relation may be used. For solution vectors x1 and x2, when the fol-
lowing conditions are met:

• x1 is at least as good as x2 for all the objectives, and
• x1 is strictly better than x2 for at least one objective

then x1 is said to “dominate” x2 (denoted x1 ≺ x2). In the case where x1

and x2 dominate other solution vectors but not each other they are deemed
mutually optimal solutions and referred to as Pareto-optimal. The set of
Pareto-optimal solutions reflects the trade-off surfaces between the different
objectives. This set of Pareto-optimal solutions is referred to as the Pareto-
front.

This approach to optimisation of multiple objectives delivers not just a
single solution but a set of (Pareto-optimal) solutions. Design engineers must
still make some decision as to which particular solution is best for the re-
quirements of a specific application. To do this they must choose between
Pareto-optimal solutions based on some set of preferences ranking the differ-
ent objectives. This choice can be generally be made in one of three ways [3]:

• a priori – a set of weights is determined for the different objectives and
they are aggregated, usually by a simple algebraic sum. This aggregated
objective function is then used to drive a single-objective optimisation al-
gorithm. It is well known, however, that this approach commonly experi-
ences difficulties finding solutions on Pareto-fronts of particular shapes [10]
and can thus fail to deliver adequate solutions.

• progressive – the designer interactively supplies information about design
preferences as the optimisation progresses. This is well-suited to problems
where the objectives cannot easily be expressed in simple, numerical terms
but tends to be laborious and time-consuming.

• a posteriori – the optimisation algorithm makes no attempt at ranking
Pareto-optimal solutions but delivers the whole set to the designer for
a decision to be made after the algorithm terminates. This can provide
insight into the behaviour of systems in response to design parameters in
addition to delivering particular solutions. The experiments described in
this work used this approach.

Antenna structures constructed by the ants, and refined using the backbite
operator, were now evaluated by the NEC software and two objective values
returned, for η and f0. The Pareto dominance relationships between different
solutions were determined, and Pareto-optimal solutions accumulated in a
continuously-updated archive. In the modified ACO, all ants that delivered
Pareto-optimal solutions at an iteration were allowed to contribute an up-
date to the pheromone matrix, the amount of their update being inversely

Using ACO for Meander-Line RFID Antennas 207

Algorithm 2 A single iteration of the multi-objective ACS algorithm.
1: A population of ants begin construction of the walks (antennas) on a Cartesian

grid of specified size
2: while each ant has not completed construction of an antenna do
3: for each ant, from a starting node on the edge of the grid do
4: Add next node to a directed graph, according to the probabilistic selection

rules outlined in Section 3, coupled with next neighbour lookahead and
straight line weighting, if appropriate

5: If the ant cannot find a feasible next node, terminate the ant for this
iteration

6: end for
7: Update local pheromone data for all ants
8: end while
9: Apply the backbite operator to degree three to each solution/antenna

10: Determine if any of the population of solutions should be added to the Archive
11: For those solutions entering the archive, update the global pheromone
12: end

proportional to the number of ants contributing. Algorithm 2 gives an overall
mechanical description of the multi-objective ACS implementation.

6.1 High Frequency Antenna

The first antenna structure to be investigated for both efficiency and resonant
frequency was that for a high frequency, as the experiments undertaken to this
point (on antennas of half-area 4×4 mm) yield antennas resonant between 3
and 5 GHz. Thus, the antenna design parameters mostly remain the same as
for those described in Sections 4, and 5. However, the requirement that the
antenna elements be a Hamiltonian walk on the Cartesian grid, i.e. visiting
all grid points, was relaxed to allow the antenna wire to terminate before all
grid points were included.

Computational Experiments

Once again we solved for meander lines on grids ranging from 5×5 to 10×10,
running the ACO algorithm ten times (by varying the random initial seed
used for the probabilistic operations of the algorithm). Each search was per-
mitted 1000 iterations. The structures obtained by the ants were refined using
the backbite operator, with a fixed tree depth of 3. An archive was maintained
of all Pareto-optimal solutions obtained for each run. In addition, as the re-
laxation of the requirement that antenna elements be Hamiltonian walks on
the grid (which meant every ant was able to produce a “feasible” solution
requiring evaluation be the NEC software), the cache of previously-computed

208 A. Lewis et al.

results was converted to a persistent database reusable across experimental
runs, to further reduce the computational cost of performing the experiments.

With the increase in the number of feasible solutions to be evaluated,
use of parallel computing resources became a practical necessity. An ad hoc
computational grid was formed from a pool of about 20 computers, a mix
of Intel P4 and Athlon X64 dual-core-based machines. The computers used
were not dedicated to this task; jobs were distributed to machines according to
their instantaneous ability to process them, taking into account machine load
from other sources. For some experimental runs a number of computers may
not have been available at all. The dual-core computers were always issued
two jobs, when they were used. The computational details of the experiments
are summarised in Table 2.

Table 2 Computational details of 4×4 mm experiment. (All times given in seconds.
Averages are per processor core.)

Grid q0 Average CPU Elapsed Average Total Total
Size time per time structures structures structures

structure computed computed requested

5 0.1 0.39 3795 617 16430 31390
5 0.5 0.43 1810 141 3791 17690
5 0.9 0.40 442 17 449 11295

6 0.1 0.47 5795 1457 38601 48663
6 0.5 0.54 4382 646 16410 29967
6 0.9 0.59 1451 138 2428 14551

7 0.1 0.53 7345 2416 55364 60047
7 0.5 0.67 5789 1423 28327 39920
7 0.9 0.70 3163 338 7036 20240

8 0.1 0.81 10629 4096 57921 59966
8 0.5 0.79 9540 3282 45969 52868
8 0.9 0.94 4825 894 12519 25217

9 0.1 0.93 9787 2219 65573 66256
9 0.5 1.02 9672 1971 58894 61199
9 0.9 1.23 6205 674 19953 27894

10 0.1 1.10 11115 2275 67619 68137
10 0.5 1.28 11512 2075 62435 63972
10 0.9 1.51 9579 1084 32298 38577

Experiments for different values of q0 at each grid size were processed
sequentially, due to the limited computing resources available. In Table 2 the
difference between the number of structure evaluations requested and the
actual number computed is attributable to the effect of caching the results;
it may be seen at each grid size that the number of unique solutions that
need be evaluated progressively decreases as the persistent cache fills with
each subsequent run. Very noticeable for the smaller grid sizes, this effect
diminishes as grid size increases and the total search space the algorithm
is exploring grows exponentially. It may also be noticed this effect remains

Using ACO for Meander-Line RFID Antennas 209

significant with greater values of q0: as the algorithm becomes “greedier” it
tends to attempt to reuse paths already investigated.

Table 2 also reports structure evaluation times much lower than those
reported in earlier sections. This is the result of a combination of two main
factors:

• Relaxing the requirement that antenna paths be Hamiltonian leads to a
reduction in the average length and complexity that must be simulated by
the NEC software, which reduces the computation and time required.

• With the anticipated increase in the number of evaluations to be per-
formed, the evaluation procedure was altered to reduce the computational
cost. In the earlier experiments resonant frequency was determined by
sweeping the operating frequency across a band of interest, evaluating an-
tenna performance at a large number of discrete frequencies. This was
modified to use a binary search algorithm within the same band, greatly
reducing the number of discrete frequencies tested, and the time taken.

Figure 13 shows the ηf0 Pareto-front. The resonant frequency range was
3.52 GHz < f0 < 9.55 GHz and efficiency range was 63.3% < η < 98.4%.
From the figure it may be seen that resonant frequency and efficiency are
conflicting objectives: the highest efficiencies can only be obtained at high
resonant frequencies, and vice versa. Figure 14 shows the structure of the
antenna element with lowest resonant frequency, and Figure 15 shows the
structure of the antenna element with highest resonant frequency

Figure 16 shows the ηf0 Pareto-fronts for 5 × 5 (as “×”) and 9 × 9 (as
“+”). It may be seen that the additional length possible using a 9×9 grid has
allowed the production of antenna elements with lower resonant frequency,
to a minimum of 2.41 GHz, but with a corresponding drop in efficiency, down
to 32.4%. Figure 17 shows the antenna element structure that achieves this
low resonant frequency. It may be seen that again this is a spiral structure,
similar to the low-resonant-frequency structure for the 5 × 5 case shown in
Figure 14.

Figure 18 is an expanded view of the ηf0 Pareto-fronts for 5 × 5 (as “×”)
and 9 × 9 (as “+”) showing the difference at the lower frequencies. A close
inspection shows that at a given operating frequency there is only a 3% dif-
ference in efficiency between antenna elements constructed on 5×5 and 9×9
grids or, alternatively, operating at a given, desired efficiency a difference in
resonant frequency of only 4%. The remaining difference is the lower reso-
nant frequency attainable from longer antennas produced using greater grid
densities.

210 A. Lewis et al.

Fig. 13 ηf0 Pareto-front for the 5 × 5 antenna.

Fig. 14 Structure of the 5×5 antenna element with lowest resonant frequency, f0.

6.2 “Low” Frequency Antenna

To design an UHF antenna able to operate at a resonant frequency in the
lower, 433 MHz band it is necessary to increase the antenna size. To accom-
plish this with the ACO-NEC framework the only changes necessary were
that track width be increased to 1 mm, the antenna half-area to 25×25 mm2

and the bridge for the feed-point between the dipole arms to 6mm. All other
details of antenna element specification and ACO algorithm remained the
same as in preceding sections.

Using ACO for Meander-Line RFID Antennas 211

Fig. 15 Structure of the 5×5 antenna element with highest resonant frequency, f0.

Fig. 16 ηf0 Pareto-fronts for 5 × 5 (as “×”) and 9 × 9 (as “+”).

Computational Experiments

Meander lines were constructed on grids ranging from 5 × 5 to 10 × 10. A
computational setup similar to that of the experiment described in Section 6.1
was used. Computational details are given in Table 3. As might be expected,
the behaviour of the ACO algorithm is remarkably similar between the 4 ×
4 mm2 and 25×25 mm2: the ants see the same grid and know nothing of the
scale of the antennas. There was a slight increase in the time taken for NEC

212 A. Lewis et al.

Fig. 17 Structure of the 9×9 antenna element with lowest resonant frequency, f0.

Fig. 18 ηf0 Pareto-fronts for 5 × 5 (as “×”) and 9 × 9 (as “+”) in the range 3.2
GHz < f0 < 5.5 GHz.

to evaluate the antenna elements for the 25×25 mm2 experiment, but overall
the computational times are also similar between the two experiments.

Figure 19 shows the ηf0 Pareto-front obtained for all grid densities. The
resonant frequency range was 350 MHz < f0 < 1520 MHz and efficiency range
was 70.7% < η < 99.8%. The standard operating frequency in this band is

Using ACO for Meander-Line RFID Antennas 213

Table 3 Computational details of 25 × 25 mm experiment. (All times given in
seconds. Averages are per processor core.)

Grid q0 Average CPU Elapsed Average Total Total
Size time per time structures structures structures

structure computed computed requested

5 0.1 0.58 1290 373 2394 20286
5 0.5 0.54 1296 213 2244 17248
5 0.9 0.55 498 54 534 12128

6 0.1 0.41 4673 712 13540 39420
6 0.5 0.59 3444 376 8573 25856
6 0.9 0.71 1711 183 3009 15190

7 0.1 0.86 14097 5856 44064 59522
7 0.5 0.87 5546 734 17900 38650
7 0.9 0.96 1711 202 3009 15190

8 0.1 1.06 9658 2737 56161 63620
8 0.5 1.31 7885 1566 37387 50267
8 0.9 1.48 5150 580 13223 29743

9 0.1 1.34 17533 1885 61596 64200
9 0.5 1.53 10215 1846 48966 55585
9 0.9 1.59 7313 971 23688 32497

10 0.1 1.65 13926 2535 68372 69268
10 0.5 1.76 21140 2373 64379 65925
10 0.9 2.21 7313 1350 23688 32497

433 MHz. From the figure it is evident that optimised antenna structures
have been obtained capable of operating at this frequency.

Figure 20 shows the structure of the antenna element with resonant fre-
quency closest to this desired operating frequency (f0 = 430 MHz, η =
83.6%). This antenna was constructed using a grid density of 10 × 10; in-
spection of Pareto-fronts for other grid densities showed feasible structures
could also be obtained using grid densities of 9×9 and 8×8 but that the min-
imum resonant frequency obtainable with 7× 7 was 460 MHz and lower grid
densities had correspondingly higher minimum resonant frequencies. These
results are summarised in Table 4. It should be noted that the resolution of
the resonant frequency was 10 MHz.

Table 4 Performance of antennas in the 433MHz UHF band.

Grid Resonant Maximum
Size Frequency Efficiency%

(MHz)

5 570 92.8
6 510 89.5
7 460 85.7
8 430 82.8
9 430 83.5
10 430 83.6

214 A. Lewis et al.

Fig. 19 ηf0 Pareto-front for the 25 × 25 mm2 antenna.

Fig. 20 Structure of the 10 × 10 antenna element with resonant frequency, f0 =
430 MHz.

6.3 Overall Remarks

The experiments described in this section have demonstrated that the com-
bination of ACO with the NEC antenna analysis software is a practical and
effective means of designing electrically small, meander line, RFID anten-
nas to meet real-world design criteria. Antenna structures capable of op-
erating with high efficiency at standard frequencies were found rapidly by

Using ACO for Meander-Line RFID Antennas 215

an automatic process, an engineer only being required to choose a specific
antenna design from several Pareto-optimal alternatives presented, according
to preference.

For a standard, 433 MHz antenna designed to fit on a 25×56 mm substrate,
the longest elapsed time for a single ACO run was a little under 6 hours,
despite being constrained to use of heterogeneous, commodity computing
resources of highly dynamic availability. While to complete the experiment
described took a further 17 runs (of times ranging from under 10 minutes to
a few hours) with sufficient computers available the entire investigation could
have been completed in this 6 hour period, as each ACO run was independent
of all others and could be performed concurrently.

It is possible that, given the insight gained from these experiments, it
would be possible to obtain a feasible, useful design for a particular applica-
tion by running the ACO search for only a single grid size. This would signif-
icantly reduce the computational cost of applying the design methodology in
practice.

7 Concluding Remarks

The work described has demonstrated the practical application of ACO to a
real problem of antenna design for RFID applications. The initial similarity
of the design problem to the classical Travelling Salesman Problem, and the
intuition that similar solution methods that have been successfully applied
to TSP would be useful for this problem have been rewarded. Novel, feasible
designs satisfying a number of design criteria have been efficiently and effec-
tively derived by automated techniques using parallel computing resources.
It should be noted that, to date, few or no attempts have been made to apply
computational optimisation methods to this problem.

A range of methods have been described. Initially, a single objective op-
timisation was performed to design antennas with high gain. Application of
a method for local refinement of the design proved capable of significantly
improving antenna performance charactersitics. Finally, a multi-objective op-
timisation algorithm was developed to achieve simultaneous optimisation of
multiple, competing objectives.

In addition to providing antenna designs fit for specific purposes, the in-
formation contained in the Pareto-optimal set of designs obtained has proved
a rich source of insight for antenna design engineers. Inspired by these exper-
iments, further work will investigate details of design such as wire width and
track separation to determine what impact they have on desired performance
objectives. It may also be instructive to consider alternative Multi-Objective
Ant Colony Optimisation (MOACO) algorithms, such as those surveyed in
Angus [1]. Beyond this, we wish to investigate other constructive heuristics
with which to build meander lines as a basis of comparison to ACO.

216 A. Lewis et al.

Acknowledgements Portions of the work described in this chapter are reprinted,
with permission, from Randall, M., Lewis, A., Galehdar, A. and Thiel, D., “Using
Ant Colony Optimisation to Improve the Efficiency of Small Meander Line RFID
Antennas”, Proceedings of the Third IEEE International Conference on e-Science
and Grid Computing, c©2007 IEEE, and Weis, G., Lewis, A., Randall, M., Galehdar,
A. and Thiel, D., “Local Search for Ant Colony System to Improve the Efficiency
of Small Meander Line RFID Antennas”, in WCCI 2008 Proceedings (2008 IEEE
World Congress on Computational Intelligence) c©2008 IEEE.

References

[1] Angus, D.: Multiple objective ant colony optimisation. Swarm Intelligence 3,
69–85 (2009)

[2] Burke, G., Poggio, A., Logan, J., Rockway, J.: NEC - Numerical electromag-
netics code for antennas and scattering. Antennas and Propagation Society
International Symposium 17, 147–150 (1979)

[3] Collette, Y., Siarry, P.: Multiobjective Optimization. Springer, Heidelberg
(2003)

[4] Dorigo, M.: Optimization, learning and natural algorithms. PhD. thesis, Po-
litecnico di Milano (1992)

[5] Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In:
Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32.
McGraw-Hill, London (1999)

[6] Dorigo, M., Gambardella, L.: Ant Colony System: A cooperative learning ap-
proach to the trav eling salesman problem. IEEE Transactions on Evolutionary
Computation 1, 53–66 (1997)

[7] Galehdar, A., Thiel, D., O’Keefe, S.: Antenna efficiency calculations for elec-
trically small, RFID antennas. IEEE Antenna and Wireless Propagation (in
press) (2007)

[8] Galehdar, A., Thiel, D., O’Keefe, S., Kingsley, S.: Efficiency variations in elec-
trically small, meander line RFID antennas. In: Proceedings of IEEE Antenna
Propagation Symposium (2007)

[9] Hayes, B.: How to avoid yourself. American Scientist 86, 314–319 (1998)
[10] Koski, J.: Defectiveness of weighting method in multicriterion optimization of

structures. Communications in Applied Numerical Methods 1, 333–337 (1985)
[11] Mansfield, M.: Monte Carlo studies of polymer chain dimensions in the melt.

The Journal of Chemical Physics 77(3), 1554–1559 (1982)
[12] Oberdorf, R., Ferguson, A., Jacobsen, J., Kondev, J.: Secondary structures in

long compact polymers. Physical Review E 74 (2006)
[13] Randall, M., Lewis, A.: A parallel implementation of ant colony optimization.

Journal of Parallel and Distributed Computing 62, 1421–1432 (2002)
[14] Randall, M., Lewis, A., Galehdar, A., Thiel, D.: Using ant colony optimisation

to improve the efficiency of small meander line RFID antennas. In: 3rd IEEE
International e-Science and Grid Computing Conference, pp. 345–351. IEEE
Computer Society, Washington (2007),
http://dx.doi.org/10.1109/E-SCIENCE.2007.82

http://dx.doi.org/10.1109/E-SCIENCE.2007.82

Using ACO for Meander-Line RFID Antennas 217

[15] Seshagiri Rao, K., Nikitin, P., Lam, S.: Antenna design for UHF RFID tags:
A review and a practical application. IEEE Transactions on Antennas Propa-
gation 53, 3870–3876 (2005)

[16] Sokal, A.: Monte carlo methods for the self avoiding walk. Monte Carlo and
Molecular Dynamics Simulations in Polymer Science pp. 47–124 (1994)

[17] Sokal, A.: Monte carlo methods for the self-avoiding walk. Nuclear Physics B
Proceedings Supplement 47, 172–179 (1996)

[18] Stockman, H.: Communication by means of reflected power. In: Proceedings
of the Institute of Radio Engineers, pp. 1196–1204 (1948)

[19] Stützle, T.: The Max-Min Ant System and local search for combinatorial op-
timization problems. In: Voss, S., Martello, S., Osman, I., Roucairol, C. (eds.)
Meta-heuristics: Advances and Trends in Local Search Paradigms for Opti-
mization, pp. 313–329. Kluwer, Dordrecht (1999)

[20] Stützle, T., Hoos, H.: MAX-MIN Ant System and local search for the trav-
eling salesman problem. In: IEEE International Conference on Evolutionary
Computation, pp. 309–314. IEEE Press, Los Alamitos (1997)

A. Lewis et al. (Eds.): Biologically-Inspired Optimisation Methods, SCI 210, pp. 219–260.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

The Radio Network Design Optimization
Problem

Benchmarking and State-of-the-Art Solvers

Sílvio P. Mendes1, Juan A. Gómez-Pulido2, Miguel A. Vega-Rodríguez2,
Juan M. Sánchez-Pérez2, Yago Sáez3, and Pedro Isasi3

Abstract The fast growth and merging of communication infrastructures and ser-
vices turned the planning and design of wireless networks into a very complex
subject. The Radio Network Design (RND) is a NP-hard optimization problem
which consists on the maximization of the coverage of a given area while mini-
mizing the base station (BS) deployment. Solving such problems resourcefully is
relevant for many fields of application and has direct impact in engineering, scien-
tific and industrial areas. Its significance is growing due to cost dropping or profit
increase allowance and can additionally be applied to several different business
targets. Numerous works can be found in the literature dealing with the RND
problem, although they all suffer from the same shortfall: a non-comparable effi-
ciency. Therefore, the aim of this work is threefold: first, to offer a reliable RND
benchmark reference covering a wide algorithmic spectrum, second, to offer a
grand insight of accurately comparisons of efficiency, reliability and swiftness of
the different employed algorithmic models and third, to disclose reproducibility
details of the implemented models, including simulations of a hardware co-
processing accelerator.

1 Introduction

Aimed at researchers, experts and practitioners, this chapter introduces the reader
to a summarized evolution of the Radio Network Design (RND) paradoxal
optimization research problem, and the employment and analysis of cutting-edge

School of Technology and Management
Polytechnic Institute of Leiria,
Leiria 2410 PORTUGAL
smendes@estg.ipleiria.pt
University of Extremadura
Caceres 10071 SPAIN
jangomez@unex.es
University Carlos III of Madrid
Leganés, 28911, SPAIN
yago.saez@uc3m.es

220 S.P. Mendes et al.

non-exact optimization solvers, broadly known as non-classical approaches, as
opposed to the exact methods that primarily appeared from Operations Research.

RND plays a major role in various engineering, industrial and scientific applica-
tions because of the direct outcome that usually infer cost, profit or other heavy
impact business performance metrics. This means that the quality of applied RND
approaches have a transitive but straight attachment on industry economical plans.

On the other hand, the fast growth and merging of communication infrastruc-
tures and services turned the planning and design of wireless networks into a very
complex subject. Although the attention it has deserved by the scientific commu-
nity, this optimization field of research is still considerably obscure. Yet today,
industry expertise is generally based on ad hoc or non-formal approaches. A
plethora of scientific work has been developed around the RND optimization
problem, although they all suffer from the same deficit – non-comparable effi-
ciency. Radio network technology evolution has made this scenario recurrent due
to the consecutive optimization experimental approaches that mainly consider the
technological aspects of the RND problem instead of the canonical optimization
formulations. As a direct consequence it is nevertheless impossible to identify the
most effective formal method to tackle an RND instance optimization problem.

This chapter also gives an idea about how substantial improvements were ac-
complished on this field of research but clearly points out the gap at global scope
research, i.e., the convergence on technology sustained research work weakened
by the absence of a reference benchmark in order to evaluate algorithmic effec-
tiveness, reliability, and swiftness. This problem is vindicated through a survey on
scientific production, accounting accredited research work to point out the gener-
alized growing problematic issue over the past 11 years. Although we have seen
praiseworthy development, from an algorithmic expertise point of view, little nov-
elty had been added since the development of the first RND GA parallel approach.
This field of research has clearly been addressed to direct industry applied re-
search. Subsequently the understanding and insight of the underlying problem and
the respective formal algorithmic tackling models remain somehow unclear. In an
informal manner, let’s ask ourselves - what have we effectively learned after 11
years of RND research? Well, at a glance, we can deduce that the RND problem is
being addressed, with ad-hoc technology dependent algorithmic implementations,
but we cannot tell how well it is being addressed, i.e., from an algorithmic point of
view, there are no certainties about the effectiveness of each one of the presented
RND optimization proposals, albeit they all culminate in a single common con-
cluding qualifying sentence – “…promising results…”.

If we need to tackle a well known underlying problem, based on a yet-to-come
radio technology which would be the formal proposal that fits the best, based on
the surrounding scientific knowledge? Which would be the best approach to the
reader’s particular problem, or on a more global scope, what is the best approach
on RND, period? These are difficult questions that blur future research and are
also the main reason for the continuous booms of RND papers each time a new
radio technology takes its grip on the market or industry. We’ve had it with GSM,
UMTS, and it is currently beginning (again) with the 4th generation telecom radio

The Radio Network Design Optimization Problem 221

standard. The main reason that slashes research according to mainstream techno-
logical intermissions is that in most cases, the developed optimization techniques
rely heavily on technological constraints instead of the genesis of the underlying
NP-hard problem. After 11 years of research, systematic chaos is established,
hence turning it into a paradoxal problem.

The present situation is easily understandable; when we think that most of the
developed works require talented skills turning them into state-of-the-art imple-
mentations, the undertaking of a reliable comparison among diverse state-of-the-
art approaches, raises the stakes even more turning it subsequently into a grand
challenge which has to recall and consider a wide in-depth range of algorithmic
approach.

One of the key points in this grand insight is to offer a reliable RND bench-
marking reference, with foundation-dissimilar approaches in order to cover a high
algorithmic spectrum, consequently turning it into a valuable edifying tool for
potential experimental applications regarding new or yet-to-come radio network
technology. We emphasize our ranking and characterization tables in order to as-
sist algorithmic evaluation, although further low level details are also available.
Supplementary conclusions are made linking general results to parallel approaches
and FPGA usage. Additionally the reader can delve right into the detailed imple-
mentation descriptions.

We combined our algorithms with advanced distributed and parallel computing
platforms as the Condor high throughput computing platform [1] or BOINC in
order to perform a directed, yet computationally heavy search using dedicated or
non-dedicated computing resources. Previous partial experiments had been con-
ducted [2-6], but this work scales up to a real world sized problem, in order to
evaluate the effectiveness of a set of algorithms on such extent using a discretized
representation. High throughput computing (HTC) pierces the time required to
obtain scientific evidence, in which we could actually consider the RND optimiza-
tion itself not less important, but also as a real world scientific research sidekick
case study.

2 Related Work and Generalized Flaws

This section has the purpose to explain the related work or the state-of-art tightly
associated to the main chapter subject. Additionally, hardware technological
speedup enabler related works are introduced since they were used to side-kick
our RND tackling.

2.1 RND Literature Review

Albeit some resemblances to Calégari’s [7, 8] work on genetic algorithmic ap-
proaches (GA) for radio network optimization for mobile systems, developed in
the mid 90’s, this field of research actually focuses on the principle of minimiza-
tion of resources rather than achieving the total coverage of an area. This happens
in most real world problem cases, while the later scenario is fairly uncommon.
Calégari GAs adopted the graph maximum independent set search method which

222 S.P. Mendes et al.

attempts to find the largest independent set in a graph. We consider Calégari’s
work as the ground-breaking work when on the topic of RND.

Since then, many GAs have been applied with uncertain degree of success. Ad-
ditional examples are [9-12], including several parallel and multi-objective im-
plementations [13-16]. Calégari et al. [17] become known for developing his RND
dominating set model (still supported on the maximum independent set search
method) based on a hybrid implementation that combines a greedy algorithm with
his previous GA development, presenting it in the form of a framework, formally
known as STORMS (Software Tools for the Optimization of Resources in Mobile
Systems). This approach had in mind some UMTS particularities. Several initia-
tives have been developed on the STORMS platform. Chamaret et al. [18] fol-
lowed Calégari’s work and tested seven different heuristics on the STORMS
framework, evidently employing the maximum independent set search method.

Nevertheless several dissimilar approaches have also been identified. J. He et
al. performed an unique related work [19] that consists in applying a pattern
search algorithm called DIviding RECTangles (DIRECT) proposed by Joneset et
al. [20]. The particularity of this work is that their algorithmic approach has been
connected to a parallel 3D radio propagation ray tracing modeler running on a
200-node Beowulf cluster of workstations. A high focus has been made on the 3D
ray tracing propagation model, based on geometrical optics when computing BS
site power levels.

Isolated analytical and heuristic proposals have also been detected in this do-
main. Vasquez et al. proposed a Tabu-Based heuristic approach for antenna posi-
tioning [21] using the quintuplet BS compound (site, antenna, tilt, azimuth and
power).

Elkamchouchi et al. [22] developed work based on a Particle Swarm Optimiza-
tion approach (PSO) and included morphological data in their internal representa-
tion matrix and based their generic omni-directional wave on a 56dBm antenna.

Finally, RND directed research work has been detected where a demand-based
criterion had primarily been taken into account, i.e., predicting traffic density. This
kind of work, while out-scoping our main subject, is relevant because of some
proposed novelties at algorithmic level. Tutschku proposes a Set Cover Base Sta-
tion Positioning Algorithm (SCBPA) [23] applied on the Maximal Coverage Loca-
tion Problem (MCLP) [24] with heavy restrictions on predicted traffic density.
SCBPA is a simple Greedy-based heuristic. Ibbetson et al. propose two simple
heuristics based on excess traffic re-distribution of BS [25] and Fritch et al. pro-
pose an approach on self-organizing sensory neurons implemented via Simulated
Annealing [26].

2.2 RND Related Work Concluding Notes

The large amount of related work clearly showed us that there is a cycling
research interlude each time a new radio-based technology emerges. Such research
in its turn typically endeavors to adapt previous algorithms without any overriding
consideration of research related to previous generation-technology. Each
inspected work tackles a specific RND problem lying on imperative specific

The Radio Network Design Optimization Problem 223

technology-dependent features and all use a myriad of optimization approaches.
Every work additionally concludes how well and promising their achieved results
are, but indeed it is very unlikely that all of the previous works achieve optimal
results.

Due to this fact, after each intermission many researchers are erroneously
guided and this is noticeable in Nebro’s work [27] where after comparing only
four algorithms deducts as being using the best cutting-edge algorithm that science
has to offer, which is far from true as demonstrated in Section 7.

2.3 Hardware Technological Speedup Enablers

Field Programmable Gate Arrays (FPGAs) have been used in several fields of
genetic computing. Donninger et al. presents the Brutus chess playing system [28].
Brutus combines a hardware and software engine, with the hardware part being an
FPGA. The FPGA is used to compute the time critical part of the tree-based Chess
algorithm search near the leaves. Additionally, Brutus uses the MPI library to par-
allelize processes over a small cluster of machines. According to its authors,
Brutus is one of the top performer chess computer system [29].

Eklund [30] proposed an FPGA-based for the diffusion model of genetic algo-
rithms. Specifically, the model relies on the implementation of a specially-tailored
and relatively simple CPU, adapted to the problem being tackled. The simplicity
of the CPU means that it requires a small amount of the FPGA gates and hence
many replicas of the CPU can be set in a single FPGA. This way, large scale par-
allelism can be achieved.

Although graphical processing units (GPU) are primarily devoted to graphics,
recent models boost an amazing performance, several times higher than CPUs, all
of this at affordable prices (close to the $200 barrier). Moreover, due to the inher-
ent parallelism of their internal organization, GPUs achieve higher benefits from
Moore’s law than CPUs, yielding a performance annual growth of 2, against 1.5
for CPUs. However, conversely to CPUs, the computing performance of GPUs is
not directly exploitable for general-purpose computation. Indeed, porting existing
applications is non-trivial [31], even for evolutionary computing which normally
fits the parallel paradigm. Nonetheless, successful examples exist. For instance,
Fok et al. have tackled evolutionary programming (EP) in a GPU, running EP mu-
tation, selection and fitness computation with a speedup up to 5 [32]. Langdon and
Banzhaf [33] propose a SIMD interpreter for genetic programming over a
NVIDIA GPU card, achieving a seven time speedup relatively to a CPU-based
execution. The recent advent of some frameworks, like AMD/ATI’s “Close To
Metal” (CTM) and the higher level NVIDIA’s Compute Unified Device Architec-
ture (CUDA) have eased the programmability of GPU [34]. This way, it is expect-
able that more and more developers will exploit the performance advantages of
GPUs in EA.

224 S.P. Mendes et al.

3 RND Problem Formulation Model

The RND optimization problem comprehends the maximization of the coverage of
a given geographical area while minimizing the Base Station (BS), hence, being
intrinsically multi-objective. A BS transmitter is a radio signal transmitting device
that irradiates any type of wave model and the part of the area that is covered by a
BS is called a cell. If two or more BS transmitters are close to each other, their
cells can overlap, and the locations inside these areas might have different degrees
of coverage (for example, one location can be under the influence of two BS
transmitters while another can be inside the cell of only one transmitter; in this
case the second location has a lower level of intensity of the received signal).

We propose a model that is based on a hypergraph),(EVH = (a set of graphs),
where E represents the hyperedges (edges which can contain any subset vertices of
a hypergraph) and LMV ∪= , where M is the set of all possible BS locations, and
L is the set of all potentially covered locations. Our hypergraph H is a set system
composed by directed monomial graphs '

)(Exxp = in a way that a central vertex is
achieved in each one of them. Each central vertex represents an irradiating source
(M’) and hyperedges are arcs in the form of E’=(x,y), directed from x to y (in this
case any number of vertices can belong to E’ within the (x,y) boundary). Figure 1
shows how the current model can be extracted from a discrete surface.

A fitness function f is required to evaluate the quality of a BS set H’. The fit-
ness is described by the ratio of the square of the cover rate and the amount of BS
transmitters used (1). It has also been reported as being widely adopted in the tele-
com industry [8], hence its usage in our experiences.

(a)

M1

M2

M3

(b)

(c)

Fig. 1. Three potential BS M1, M2, M3 and the associated cells (a) on a discrete
surface. A graph set, whose arcs link transmitters to the location they cover,
where the dotted lines represent directed hyperedges and vertex colouring has
been considered for the irradiation sources (b). The Hypergraph representation is
very analogous to its discretized surface counterpart (c).

The Radio Network Design Optimization Problem 225

The problem we consider recalls the Unicost Set Covering Problem (USCP),

which is a known NP-hard combinatorial optimization problem [35]. The RND
problem differs however from the USCP in that the target is to select a subset of
BS that ensures a good coverage of a given area, and not to ensure a total cover-
age. This emphasizes the principle of minimization of resources rather than
achieving the total coverage of an area, since in most real world problem cases,
these later scenarios are uncommon. On the other hand, the RND NP-Hardness is
maintained in magnitude and is as tightly related to the field of mathematical
combinatory as USCP.

4 RND Formal Assessment Specification

Prior to the introduction of our set of cutting-edge algorithms to tackle the RND
problems some theoretical considerations are taken into account on how an accu-
rate and reliable comparison can be achieved regarding the pluralism and hetero-
geneity of the implementation of such algorithms.

Our comparison methodology relies on the canonical RND problem formulation
and is governed by two main directives: technology-independency and a normal-
ized comparison criterion. The technology independency is achieved by disregard-
ing any of the additional technological constraints that would be thrown into the
problem, as for instance part of the BS quintuple properties definition (Antenna,
Power, Azimuth and Tilt), path loss models, bandwidth zone prediction, etc. In-
stead we considered a theoretical isotropic radiating model, which is mainly used
as a reference radiating model. Since RND is a well known NP-hard problem,
technological constraints would only raise the combinatorial complexity (eventu-
ally by turning the search space more rugged) while the problem’s essence would
stay untouched. The normalized comparison criterion (or benchmark) is based on
an Asymptotic Fitness Evaluation Effort Metric (AFEEM) since real-world appli-
cations will spend most of their computing effort on the evaluation of real wave
based solutions instead of the algorithm per se. This means that the problem itself,
besides being NP-hard is aggravated due to the intrinsic nature of the radio wave
propagation that requires even more intensive computation. Thus, beside having a
non-tractable rugged search space, the way it is explored (f(x)) requires even more
computing power.

The RND Formal Assessment Specification (RND/FAS) describes the accurate
formal process that is used when comparing diversified implementations that are
aspirant for RND optimization. From an algorithmic point of view, the fitness

)(

)(
)(

2

xedsmittersUsNumberTran

xCoverRate
xf =

 (1)

where

),(

),(
100)(

EMNeighbours

EMNeighbours
xCoverRate

′′
⋅= (2)

226 S.P. Mendes et al.

function (1) is redefined according to the previous mathematical notation of the
problem formulation, and therefore are equivalent. Equation (3) shows the accu-
rate definition, where M’ represents a candidate solution and MSectors represent
the total sectors of the considered surface, (previously mentioned as grid) although
our theoretical model disregards the shape of the surface.

is

MSectors

M

Mf

L

2
'

100

)'(
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅

=
(3)

where

MM ⊆'

'Mis = , i.e., solution size

{ }isMMM ,,' 1 K=

{ }nLLL MMM ,,' 1 K= , where n is Max(|L|)

{ }nLLL MMM ,,' 1 K=

4.1 Asymptotic Fitness Evaluation Effort Metric

The Asymptotic Fitness Evaluation Effort Metric (AFEEM) has been conceived to
normalize the comparison of heterogeneous RND run-time environment discrep-
ancies, including hardware and software issues (also known as benchmark rou-
tines for system clock calibration). The theoretical algorithmic RND wall clock
run-time WT is defined in (4).

∑ ∑∑ ⎟
⎠

⎞
⎜
⎝

⎛ ⋅+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

==

st is

k

GWM
k

is

j
j PwreftehtWT

11

)()((4)

''},,,{' 1 MeEeeeM n ∈∧∀=∀= K
where t represents the concrete partial WT for a given instance, h represents an
abstract algorithmic heuristic procedure, f the fitness function evaluator and st a
given stopping criterion. GWM defines an abstract generalized wave model and
Pwr defines the power of the BS (the remaining of the quintuple properties of the
BS are disregarded).

After conducting profiling experiences, the WT using an Omni-directional iso-
tropic reference radiation IRR gathers the result shown in (5).

∑⋅>=
→

cpMWTLim
CIRRM

%90)'(

With C = 1
(5)

The Radio Network Design Optimization Problem 227

Where∑cp represents the total required computing power and C denotes a prox-
imity complexity factor of the considered wave model Q and its method of em-
ployment PLM (Radial, Ray-Tracing, etc…) for each BS. Although we disregard
most of the BS quintuple properties, the power Pwr constitutes a massive restric-
tive feature on any real or theoretical wave model, hence it’s generalized consid-
eration. The definition of the complexity factor C is given in (6).

PwrPLMQC BSBS ⋅+=)((6)

When replacing IRR for a real wave model RWM, hence RWM = IRRC we obtain
the trend shown in (9).

∑⋅=
→

cpMWTLim
RWMM

%100)'((7)

In this case ∞=CRWM and the 100% ∑cp is never reached. Although no

experiences had been made in order to induce (7), J. He [19] reveal their RND
algorithmic approach connected to a parallel 3D radio propagation ray tracing
modeler running on a 200-node Beowulf cluster of workstations, providing evi-
dence about the computing power burden.

Equation (7) allows us to create a clock calibration Asymptotical Fitness
Evaluation based Effort Metric (AFEEM) that effectively replaces the WT meas-
uring, allowing the disregarding of hardware run-time platforms, mainly the proc-
essor(s) frequency or architecture (like parallelization through core replication).
Software issues are also minimized whenever using highly optimized code com-
pilers (like gcc) or intermediate compilers allowed on some interpreting enterprise
run-time platforms (like J2EE or .NET).

Since ∑cp and WT are highly correlated we can asymptotically deduce (8).

0)'(100)'(=⇒=
→→

MhLimMWTLim
RWMMRWMM

 (8)

4.2 Coarse Grained AFEEM

Population-based approaches usually rely on light heuristics, intrinsically defined
by their breeding operators. In these cases a whole M’ will be evaluated at once.
Hence the AFEEM can be defined theoretically as presented in (9):

∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅+=⋅

is

i

is

j
j

WT
hCG PwrGWMefRAFEEM

1 1

)(1 (9)

228 S.P. Mendes et al.

where WT
hR represents the approximate cp of the equivalent WT for h().

Since ∞=CRWM and ∑∑
=

⋅⋅−=
is

j
j PwrGWMefcpR

1

)(. Using (8) a simplification

can be made as shown in (10):

(10)

Taking GWM = IRR as the unitary reference value, we finally attain the ending
simplification as presented in (11).

110)(0 =+=+= ∑ efAFEEM CG (11)

Informally definition (11) means that the reference model sums 1 AFEEM

whenever computing a RWM based M’ evaluation. This is true for any RWM, be-
cause absolute measurements require the definition of the complexity factor C (6).
Since we aim at comparison, the relative performance will be proportional on het-
erogeneous execution environments where the same RWMIRR C ⇔ is employed,
yielding the result shown by (11).

4.3 Fine Grained AFEEM

Algorithms relying on heavy-based heuristics and/or incremental fitness evalua-
tions do not always compute a complete M’ at a given time. In these cases,
the elements that compose M’ are typically used to partially evaluate the solution.
Equation (12) describes the theoretical AFEEM definition for a partially evalu-
ated M’.

ne
is

PwrGWMefR

AFEEM

is

i

ts

j
j

WT
t

FG ⋅

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅+

=⋅
∑ ∑

= =1 1

)(

1

(12)

Where
TEUts −= , i.e, transformation size

{ } { }tnjni
T eeeeE ,,\,, KK=

tn represents the number of partially affected E’ and ne represents the
individual compound elements that have to be evaluated when ts = 1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅+=⋅ ∑

=

is

j
jCG PwrGWMefAFEEM

1

)(01

The Radio Network Design Optimization Problem 229

As with the coarse grained definition, the same simplifications can be made, in-
cluding the replacement of the M’ transformation size ts for a single evaluation of
a compound element of M’ (13,14).

is

ef

is

PwrGWMef
AFEEM FG

)(
1

)(0 =⋅⋅⋅+=

(13)

is
AFEEM FG

1= (14)

Informally definition (14) means that the reference model sums is

1
 AFEEM for

each RWM based compound element e evaluation, recalling that
''},,,{' 1 MeEeeeM n ∈∧∀=∀= K

A single algorithm can use both AFEEM profiling in a single run, depending on
the type of evaluations employed, which means that AFEEMFG and AFEEMCG are a
compatible additive metric that can be compared.

5 Optimization Algorithms

In this section we describe the optimization algorithms employed throughout this
work including parameter characterization, for the sake of reproducibility.

5.1 Population-Based Incremental Learning

Population-Based Incremental Learning (PBIL) is a method that combines the
genetic algorithms with competitive learning (typical in artificial neural networks)
for function optimization [36, 37]. PBIL is an extension to the EGA (Equilibrium
Genetic Algorithm) achieved through the re-examination of the performance of
the EGA in terms of competitive learning.

PBIL attempts to create a probability vector from which samples can be drawn
to produce the next generation’s population. The algorithm general process is de-
scribed in algorithm 1.

As we can see, the necessary parameters for PBIL are: the population size (NS,
number of samples/individuals to produce per generation), the probability of mu-
tation occurring in each position of the probability vector (MUT_P), the amount
for mutation to affect the probability vector (MUT_A) and the learning rate (LR).

After initializing the probability vector P (each position equal to 0.5), the NS
samples (individuals in the population) are generated. Each sample vector must be
generated according to probabilities in P. Furthermore, each sample vector is also
evaluated using the fitness function. Then, we look for the best sample max. This
max sample is used in order to update the probability vector P, position by posi-
tion, using the learning rate LR.

230 S.P. Mendes et al.

Finally, we have to mutate the probability vector P, position by position, using
the mutation probability MUT_P and the mutation amount MUT_A.

Although PBIL has been used in very diverse optimization problems ([38-41]
are some recent examples), surprisingly it has not been used in many telecommu-
nication studies (only some few cases exist [42-45]). In fact, to the best of our
knowledge, our proposal represents the first time that PBIL is employed for solv-
ing the RND problem, and this is another important contribution of our work. Pre-
liminary experiments were carried out to find the best set of parameter values
which are shown in table 1.

Algorithm 1. PBIL procedural Pseudo-Code

P ← InitProbVector(each position Pi = 0.5)
while NumGenerations do

 # Generate Samples

 while NS do

 samplei ← GenerateSampleAccordingP()
 evaluationi ← Evaluate(samplei)
 end while

 # Find Best Sample

 max ← FindSampleWithMaximumEvaluation()
 # Update Probability Vector

 while LengthProbVectorP do

 Pi ← Pi * (1.0 - LR) + maxl * (LR)
 end while

 # Mutate Probability Vector

 while LengthProbVectorP do

 if (random (0,1] < MUT_P) them

 Pi ← Pi * (1.0 – MUT_A) +
 random (0.0 or 1.0) * (MUT_A)

 end if

 end while

end while

return max

Table 1. PBIL parameter table

Parameter Value
NS 135
MUT_P 0.02
MUT_A 0.05
LR 0.10
Strategy Elitist

The Radio Network Design Optimization Problem 231

5.2 Differential Evolution

Differential Evolution (DE) is an algorithm created by Ken Price and Rainer Storn
[46]. Since 1994, DE has been used for many optimization problems with satisfac-
tory results [47-49].

DE is a very simple population-based stochastic function minimizer, which can
be categorized into a class of floating-point encoded, evolutionary algorithms. It is
currently used in a wide range of optimization problems, including multi-objective
optimization [50]. Generally, the function to be optimized, F, is done by the mean
of optimizing the values of its parameters, where X denotes a vector composed of
nparam objective function parameters. As with all population-based evolutionary
optimization algorithms, DE handles a population of solutions, instead of a single
solution for the optimization of a domain dependant problem. Population P of
generation G contains npop solution vectors, each one, usually known as an indi-
vidual of the population. Consequently, each vector represents a potential solution
for the optimization problem.

At any time, a population P of generation G’ contains npop individuals, each one
containing nparam parameters (usually referred as chromosomes). In order to estab-
lish a starting point for optimum seeking, the population P(0) (initial population)
must be initialized. This is usually done by seeding P(0) with random values that
are within a given boundary constraints

The population reproduction scheme of DE is different from other evolutionary
algorithms. From the first generation forward, the population of the following
generation P(G+1) is created in the following way on basis of the current population
P(G). First, a temporary individual (usually referred as trial) that can possibly
populate the subsequent generation, P’(G+1), is generated as shown in (15).

if Crr ji ≤,

⎪⎩

⎪
⎨
⎧ −⋅+

=+
)(
,

)(
,

)(
,

)(
,)1('

,

)(
G

jC

G
jB

G
jA

G
jCG

ji

i

iii

x

xxFx
x

Where

parampop njni ,,1,,1 KK ==

iCBAnCnBnA iiipoppoppop ≠≠≠=== ,,,1,,,1,,1 KKK

[] [] [[1,0,2,0,1,0 ∈∈∈ rFCr

(15)

A, B and C are three randomly chosen indexes referring three individuals of the
population.

 F, Cr and npop are DE control parameters that remain constant during the search
process. npop represents the population size, F is a real valued factor in range [0.0,
2.0] that controls the amplification of differential variations, and Cr is a real val-
ued crossover factor in range [0.0,1.0] controlling the probability to choose the
mutated value for x instead of its current value.

The generational scheme of DE also differs from other evolutionary algorithms.
Accordingly, each computed trial vector (generally known as a donor vector) is

232 S.P. Mendes et al.

compared with the target vector. The one with the lower value of cost function (or
maximal fitness))(cos Xf t

will remain in the population of the next generation. The

procedural pseudo-code is described in algorithm 2.

Algorithm 2. Differential Evolution procedural Pseudo-Code

Initialize population
P(0) ← Initialize(P(G))
Evaluate the fitness for each individual in the population
Evaluate(P(0)(Xi))
Repeat until stopping criterion is met

AX ← SelectRandomIndividual(P(G))

BX ← SelectRandomIndividual(P(G))

TARGETX ← SelectRandomIndividual(P(G))

 Offspring ←)()()()(

,,,

G
B

G
A

G
TARGET jijiji

XXFX −×+ if Crjir ≤,

 Evaluate(offspring)
 If offspring better than

TARGETX then

 Replace
TARGETX with offspring

End Repeat

Return bestIndividual(
iX ,P(G))

DE design issues take into account the differential evolution fast convergence,

proven in previous works [51], and its canonical self adapting differential muta-
tion operator.

Additionally, we developed a differential mutation operator called Nearest
Point Differential Mutation (NPDM) which uses DE differential mutation scheme
and enforce the RND hard constraints. Before fitness computation of the trial vec-
tor, each gene is checked to see if the location is an available BS location (since
differential mutation will create non legitimate alleles). If not, it is replaced with
the nearest available location (using the Euclidian distance) not yet in the off-
spring. Preliminary experiments were carried out to find the best set of parameter
values which are shown in table 2.

In its canonical form, the DE algorithm is only capable of handling continuous
variables. The NPDM operator needs thus to enforce both integer representation

Table 2. DE parameter table

Parameter Value
Cr 0.3
Npop 135
F 0.2

and the location constraints, al-though, the donor vector will use underlying tem-
porary floating point values. According to Lampinen and Zelinka [52], the han-
dling of integer and discrete variables in DE can be done rather easily, by truncat-
ing a real value to an integer, just before the fitness function evaluation. In-depth

The Radio Network Design Optimization Problem 233

details about DE experiences can be found in Mendes, Gómez-Pulido, Vega-
Rodríguez, Pereira and Pérez [5].

5.3 GRASP

The Greedy Randomized Adaptive Search Procedure (GRASP) is a recognized
meta-heuristic that has been used on the solving of many combinatorial optimiza-
tion problems in a successful way [53-61].

According to general literature, GRASP is an iterative process, where each it-
eration consists of two phases: construction and local search. The construction
phase builds an initial solution, while the second phase explores the search space
based on the result of the previous phase, hoping to find a better solution. The best
computed solution after all GRASP iterations is considered as the final solution.
Algorithm 3 depicts the pseudo-code for a GRASP procedure.

Algorithm 3. GRASP procedural Pseudo-Code

 for k = 1 until Max_Iterations do
 Solution ← GreedyRandomizedConstruction(Seed)
 Solution’ ← LocalSearch(Solution)

BestSolution ← UpdateBestSolution(Solution’,BestSolution)
 end for
 return BestSolution

The GRASP meta-heuristic is commonly composed of two main parameters:

the number of GRASP iterations Max_Iterations and the initial Seed for pseudo-
random numeric generation.

A solution is usually represented as a set of elements. The construction phase
starts from an empty set and iteratively adds elements to it until reaching a feasible
solution. This is achieved by means of a restricted candidate list (RCL) that inte-
grates all existing elements sorted in function of their problem specific dependant
myopic greedy evaluator. At each step of the construction phase the RCL will only
be composed of elements that haven’t been selected to be included in the initial
solution. Furthermore, each time an element is added the cost or fitness of the
evolving solution is updated. Usually the selected candidates are those that induce
the smallest increment cost, which represent the greedy component of GRASP. A
usual complement is to randomly choose, from the RCL, the next element to be
added to the solution, which in turn represents the probabilistic component of
GRASP. This allows the building of different feasible solutions, at each GRASP
iteration.

The solutions returned by the construction phase are not guaranteed to be lo-
cally optimal considering neighborhood concepts. The search phase attempts to
improve each initial construction by means of a local search algorithm that itera-
tively replaces the current solution by a better one.

Furthermore, the construction phase plays an important part, since good starting
solutions are desirable. There are two basic strategies employed on exploring a
solution’s neighborhood:

234 S.P. Mendes et al.

1. Best-improvement: all neighborhoods are evaluated and the current solution is

replaced by the best neighbor.
2. First-improvement: the current solution is replaced when finding the first bet-

ter neighbor solution.

According to Resende and Ribeiro [62], in most of the cases, when applying
both strategies, they mutually achieve the same quality in their final solution, but
generally the first-improvement strategy takes a lower computational effort. They
also observe that it is more frequent to attain premature convergence to a non-
global local optimum when using best-improvement instead of first-improvement.

Further details, formal definitions and GRASP extensions can be found in [53,
56, 61-64], which also includes extensive analysis of GRASP meta-heuristics
based on many applications.

In this work, the RND GRASP based approach was developed and is summa-
rily described as follows.

• Shrinking-RCL (GRASP SRCL) – is GRASP implementation that uses a tun-

able greedy local search algorithm. The search procedure uses a canonical RCL
greedy mechanism for selecting a new solution iteratively. Each new solution is
computed by exchanging an element for any other that fits better, if such one is
available. A RCLSize control parameter is also used to define the greediness of
the LS and is based on a regular RCL mechanism. This implementation uses a
continuously shrinking RCL, turning the search deterministic when
sizeof(RCL) = 1, and ending it when sizeof(RCL) = 0. During the iterative
search procedure the RCL shrinks when the loopsize parameter reaches zero,
ending its execution when the RCL is empty. Preliminary experiments were
carried out to find the best set of parameter values which are shown in table 3.

Table 3. GRASP Shrinking-RCL parameter table

Parameter Value
RCL (Construction Phase) 20
Greedy RCLSize 5
Loopsize (LS Phase) 30

5.4 Variable Neighborhood Search

Variable neighborhood search (VNS) is a modern meta-heuristic introduced by
Mladenovic and Hansen [65], based on systematic changes of the neighborhood
search space to solve optimization problems. Its main strategy is based on the em-
ployment of more than one neighborhood structure during the search. Its main
dynamics focus on the change of the neighborhood structure in a systematic way
as the search progresses. This is one of the most recent meta-heuristics developed
for problem solving in an easier way. It is acknowledged as being one of the very
well-known local search methods [66, 67], getting more awareness day-by-day,

The Radio Network Design Optimization Problem 235

because of its ease of use and accomplishments in solving combinatorial optimiza-
tion problems as the one currently dealing with [68-79].

VNS is a simple and effective search procedure that proceeds to a systematic
change of neighborhood. A common VNS implementation builds an initial solu-
tion, x∈S, where S is the whole set of search space, controlling it through a two-
level nested loop in which the core one alters and explores via two main functions
named shake and local search (see procedural pseudo-code in Algorithm 4). The
outer loop works as an energizer, reiterating the inner loop, while the inner loop
carries the key search. Local search looks for an enhanced solution within the lo-
cal neighborhood, whilst shake diversifies the solution by changing it randomly to
another local neighborhood. The inner loop iterates as long as the solutions keep
improving, where an integer control parameter k defines the length of the loop,
hence defining the number of shifting neighborhood structures. Once an inner loop
is completed, the outer loop re-iterates until the predetermined termination condi-
tion is satisfied. Since the set complementariness of neighborhood functions is the
key idea behind VNS, the neighborhood structure and the heuristic functions
should be carefully chosen to achieve an efficient VNS implementation.

Theoretically speaking, intensification is achieved by the local search while the
shaking of the neighborhood structure acts as a diversification mechanism, raising
its probabilities to avoid non-global optima.

In order to develop an effective VNS algorithm, two kinds of neighborhood
functions are required,)(xN s

k
 and)(xN LS

l

 each yielding a particular neighbor-

hood structure association, where)(xN s
k

 and)(xN LS

l
 denote neighborhood

functions for shake and local search functions, respectively. It is usually referred
[65-67] that multiple neighborhood structures may be used for each function
(shake and local search) consenting them to achieve different views of the search
landscape and allowing the shaking phase to generate new starting solutions that
lie near other local optima regions. For that reason, the indexes, k and l, are to be
used for shake and local search functions, respectively, in order to ease switching
from one neighborhood to another.

Algorithm 4. VNS procedural Pseudo-Code

1. Initialization: Find an initial solution x.

2. Repeat the following steps until the stopping condition is met:

(a) Shake Procedure: Generate at random a starting solution

x’ Є)(xN s
k

.

(b) Local Search: Apply a local search from the starting solu-
tion x’ using the base neighborhood structure)(xN LS

l

 until

a local minimum x” Є)(xN LS

l

is found.

(c) Improve or not: If x” is better than x, do x ← x”.
Return x

236 S.P. Mendes et al.

If the local search uses greedy strategy, then at Step 2(b) (Algorithm 4) an itera-
tive procedure tests the entire base moves returning the best neighboring solution
until a local minimum is obtained. The shake procedure selects a random solution
from the global search space.

There are many variants of variable neighborhood search such as variable
neighborhood decomposition search (VNDS) [80] and skewed variable neighbor-
hood search (SVNS) [67]. Given the flexibility of the technique, other variants of
this algorithm can be employed [66].

Thousands of experiments have been executed in order to access several distinct
VNS implementations, allowing the study on the upsides, downsides and pitfalls
observed through exhaustive theoretical analysis and empirical testing. The two
main representative VNS-variants that will be used in our analysis are briefly de-
scribed as follows:

• VNS – Basic canonical VNS implementation with local search using a greedy

LS (GLS) within a gn neighborhood and the shaking operator using a RCL En-
tropy Operator (RCLEO). RCLEO replaces the canonical VNS shaking proce-
dure and has the purpose of changing the direction of the search space, at
global search scope. Since a solution is represented as a set of elements, this
operator works by means of a RCL that integrates all existing elements sorted
in function of RND problem specific dependant myopic greedy evaluation S.
RCLs are the core apparatus in GRASP implementations [53-61]. Each time
the shaking operator is needed, the RCL will only be composed of elements
that haven’t been selected to be included in x’. Furthermore, each time an ele-
ment is changed, the fitness of the evolving solution is updated. The selected
candidates are those that induce the smallest increment cost, which represent
the greedy component of the RCLEO. Also when triggered, the new entropic
element is randomly chosen from the RCL, which in turn represents the prob-
abilistic component of the RCLEO. This allows the building of different fea-
sible solutions, at the end of shaking requests. The ep parameter defines the
pool size of the RCL selectable elements Ee ∈ , according to their S valua-
tion (16). The np parameter defines the minimum number of required element
changes in order to commit the shaking operation. Parameter values are shown
in table 4.

eSearchSpacxxEES jiji ∈∧= |,\| (16)

Table 4. VNS parameter table

Parameter Value
GLS Neighborhood gn 1.5*30 (max. isotropic wave radius)
RCL Size ep 5

The Radio Network Design Optimization Problem 237

• GRASP VNS – Implementation that allows dynamic changes on neighborhood

range nr when executing the local search procedure, increasing it when no bet-
ter neighborhood selections are found and decreasing it while better solutions
are continuously found. This is an implementation that uses GRASP meta-
heuristic [53-61] to power the global search, replacing the shaking operator.
The LS procedure is the GLS. Preliminary experiments were carried out to
find the best set of parameter values which are shown in table 5.

Table 5. GRASPVNS parameter table

Parameter Value
GLS Neighborhood gn 1.5*30 (max. isotropic wave radius)
RCL Size ep 5
Neighborhood Step nr 15
Initial Neighborhood 30 (max. isotropic wave radius)

5.5 Clustered Genetic Algorithm

A Genetic Algorithm is a population-based technique which uses a set of genetic
operators (selection, crossover and mutation) to evolve a solution in a problem.
The solution is represented as population of individuals, and the individuals with
higher fitness values have higher probabilities to survive the selection.

The individual representation is one of the most important issues. In the ca-
nonical GA each chromosome is usually represented by a bit string, where each
position represents a bitwise value. For this problem, we propose using data min-
ing techniques in order to determine transmitter clusters and only allow one active
transmitter in each cluster. This representation makes the search space smaller
which is extremely useful. In the reference domain, the binary search space is 21000

≈ 10301 and the new search space using 70 clusters is 1670≈1084. In this proposal,
one individual has the same number of genes than clusters. A gene is a list of
transmitters in the cluster and a number with the active transmitter. Only one BS
can be working in each cluster. If there is a BS which is inactive then it is selected
by −1.

The first step in the Clustered Genetic algorithm (CGA) is to determine the
clusters. For this purpose the WEKA implementation of the k-means algorithm
with the employment of Euclidian distance was used [81]. Once the clusters are
found, the population is randomly generated and evaluated for the first time. In
each successive generation, part of the population is selected to breed a new gen-
eration. Tournament selection is used to select which individuals evolve to the
next generation. The selection pressure has been adjusted by changing the tourna-
ment size in several experiments. Uniform crossover selects one gene of each par-
ent alternatively and each child receives 50% of genetic information of each par-
ent. Mutation occurs according to a user-definable mutation probability swapping
the gene value. Algorithm 5 depicts the pseudo-code for the CGA procedure.

238 S.P. Mendes et al.

Algorithm 5. CGA procedural Pseudo-Code

Find Clusters and generate initial solutions
Cl ← findClustersInMap(Simple_KMeans)
P0 ← generateInitialSolution(Cl);
evaluation(P0);
while not stopCondition() do
 # Evolve best individuals

 P’ ← selection(P0);
 P” ← crossover(P’);
 Pn+1 ← mutation(P”);
 evaluation(Pn+1);
end while
Find neighbor solutions

 2-OPT(Pn)

After the stop condition is met, a variant of the 2-OPT heuristic is carried out,
since it may redefine the solution at a low cost. The variant of the 2-OPT heuristic,
also known as the pairwise interchange heuristic [82], has been selected as a LS
method. Basically, the 2-OPT technique follows a procedure that searches on all
the neighbors of the solution looking for better solutions. Briefly explained, the 2-
opt consist of swapping the active antennas given by the CGA with their
neighbors and checking if the final solution improves. Those small permutations
between antennas can lead to slightly better solutions. To avoid high computa-
tional costs, the LS is limited only to the neighbors which are closer to each one of
the antennas. Preliminary experiments were carried out to find the best set of pa-
rameter values which are shown in table 6.

Table 6. Clustered GA Parameters

Parameter Value
Clusters 70%
Population Size 100
Selection Type Tournament
Tournament Size 7%
Crossover Type Uniform
Crossover Size 90%
Mutation Type Cluster
Mutation Size 0.048%
Elitism Size 1

5.6 Clustered Chromosome Appearance Probability Matrix

The Chromosome Appearance Probability Matrix method (CCPM) is a modified
GA in order to deal with micro populations. In PBIL algorithms, the recombina-
tion operator is replaced by a probability vector for each variable, and sampling
this vector implies the study of the selections made by the algorithm until that
moment. This concept, applied to Interactive Evolutionary Computation (IEC) can
be done in order to speed up the evolution in regards to the user needs. This was
the key motivation for developing this new method based on the GA. Basically, it
consists of a GA that uses a probability matrix which drives the mutation operator

The Radio Network Design Optimization Problem 239

Algorithm 6. CCPM procedural Pseudo-Code

Find Clusters and generate initial solutions
Cl ← findClustersInMap(Simple_KMeans)
P0 ← generateInitialSolution(Cl);
InitializeStatistics(Ml);
evaluation(P0);
while not stopCondition() do
 # Evolve best individuals

 P’ ← selection(P0);
 # Update Probability Matrix with the selected

 updateProbabilityMatrix(Ml, α)
 P” ← crossover(P’);
 # Mutation sampling the Probability Matrix
 P”’ ← orientedMutation(P”, Ml);
 Pn+1 ← cloneRemover(P”’);
 evaluation(Pn+1);
end while
Find neighbor solutions

 2-OPT(Pn)

towards the solution speeding up the convergence during the first generations.
Algorithm 6 depicts the pseudo-code for the CCPM procedure.

The codification is the same as the explained for the CGA and the steps of the
proposed algorithm are very similar. All steps are explained in detail in [83, 84].
The main modifications for the proposed algorithm are the evaluation, selection
and mutation operators. In addition, a new operator that removes identical indi-
viduals and a 2-OPT search has been included. Preliminary experiments were car-
ried out to find the best set of parameter values which are shown in table 7.

Table 7. CCPM Parameters

Parameter Value
Clusters 70%
Population Size 100
Selection Type Tournament
Tournament Size 20%
Crossover Type Uniform
Crossover Size 80%
Mutation Type Matrix Oriented
Mutation Size 0.4%
Elitism Size 1

5.7 Clustered Memetic Algorithm

The memetic algorithm (MA) is a combination of LS techniques and EAs. It is
based on the concept of meme introduced by Dawkins [85]. The key idea of a
meme is that an individual can change its genetic code during its live improving
the evolution process. To simulate this concept of meme it includes an LS in
the reproduction operators (crossover and mutation). For many domains the MAs

240 S.P. Mendes et al.

enhance the performance of the GAs. In contrast, LS methods are less generic and
difficult to customize.

The Clustered Memetic Algorithm (CME) representation uses the same
codification as the ones described before (GAs). The crossover operator is the
same as the one used in the GA, but an LS is done in order to find the best possi-
ble crossover.

Ideally the LS should calculate all possible crossover combinations and choose
the best, but this means too many evaluations per crossover. Therefore, the devel-
oped LS randomly selects a predefined percentage of individuals and then finds
the best crossover for those individuals. At this point, when the crossover is done,
both parents are marked in order to avoid identical crossovers within the same
iteration. The best possible crossover is guaranteed for the selected individuals and
the offspring proceeds to the next step.

The mutation operator is the same as the one used in the GA plus an LS. In this
case, LS is performed for trying to find the best possible mutation. Ideally, all
genes must be changed in order to find the best possible mutation. As there are too
many possible combinations, instead, the operator first calculates the number of
mutations for each individual and then it makes a LS limited to blocks of 2 genes.
This measure reduces computational costs of evaluating all possible mutation
combinations. Algorithm 7 depicts the pseudo-code for the CME procedure while
the best set of parameter values is shown in table 8.

Algorithm 7. CME procedural Pseudo-Code

Find Clusters and generate initial solutions
Cl ← findClustersInMap(Simple_KMeans)
P0 ← generateInitialSolution(Cl);
evaluation(P0);
while not stopCondition() do
 # Evolve best individuals

 P’ ← BestSelection&Crossover(P0,%PCT);
 Pn+1 ← BestMutation(P’,2);
 evaluation(Pn+1);
end while
Find neighbor solutions

 2-OPT(Pn)

Table 8. CME Parameters

Parameter Value
Clusters 70%
Population Size 100
Selection Type Tournament
Tournament Size 7%
Crossover Type Uniform
Crossover Size 90%
Mutation Type LS
Mutation Size 0.07%
Elitism Size 1

The Radio Network Design Optimization Problem 241

5.8 Hybrid and Multi-start Variants

5.8.1 Fixed Neighborhood Tabu (MS FNS)

MS FNS is a hybrid LS procedure based on the greedy VNS and tabu techniques,
mainly through the prevention of previously visited solutions. The global search
space is managed by a multi-start mechanism. The best set of parameter values for
MS is shown in table 9.

Table 9. Fixed Neighborhood Tabu parameter table

Parameter Value
GLS Neighborhood gn 1.5*30 (max. isotropic wave radius)
RCL Size ep 5
Tabu tenure 5
MSC re-initialization me 10,000 Fitness Evaluations

In contrast to the previous algorithm, the multi-start versions presented next are

all derived from the previously presented algorithms. Although each one of the
former search procedures have unique and extendable techniques for avoiding
local optima, several of our experiments gave us an insight that some pitfalls could
not be avoided using a single modeled technique algorithm (or even employing
multiple techniques). One of the considered options was to create multi-start ver-
sions of some of the promising algorithms that occasionally got trapped in local
optima. Good results and high deviation was the substantiation that the algorithm
could indeed be very effective but once in a while, also very deceptive (see Sec-
tion 7.2).

5.8.2 Reversed Unleashed Neighborhood Search (RUFNS)

RUFNS is a triple hybrid searcher, originally based on the GRASP meta-heuristic
combined with the VNS neighborhood operations and a tabu propagation tech-
nique, mainly through the prevention of previously visited solutions. The LS op-
erations are interleaved with tabu techniques. This GRASP version delivers heavy
based heuristics while executing the LS phase (opposing to our light weighted
SRCL_GRASP and GRASP_VNS local search procedures). Preliminary experi-
ments were carried out to find the best set of parameter values which are shown in
table 10.

Table 10. Reversed Unleashed Neighborhood Search Parameter table

Parameter Value
GLS Neighborhood gn 1.5*30 (max. isotropic wave radius)
RCL Size ep 5
Tabu propagation tenure 1

242 S.P. Mendes et al.

5.8.3 Multi Start VNS (MS_VNS)

MS VNS is a Multi-start version of VNS. This version replaces the shaking opera-
tor by a MS mechanism. Experiments were carried out to find the best set of pa-
rameter values which are shown in table 11.

Table 11. Multi Start VNS Parameter table

Parameter Value
GLS Neighborhood gn 1.5*30 (max. isotropic wave radius)
RCL Size ep 5
MSC re-initialization me 10,000 Fitness Evaluations

5.8.4 Innate Immune VNS (IIVNS)

In the IIVNS the GLS local search procedure remains unchanged while population

elements rely on a Simple Innate Acquired Immune Response System (SIAIRS)
and a multi-start mechanism has been implemented when stagnation or premature

convergence is detected during run-time. The foundation of the SIAIRS method is

the recognition that the structure-related dynamics of any system, i.e., the infer-
ence, circular, interlocking relationships among its elements are often just as im-

portant in determining its potential behavior as the evaluation of the individual

structures themselves this case the system dynamics inference has been considered
with the aim of increasing IIVNS robustness when dealing with growing con-

straint rules.

Most of the algorithmic immunology aspects have been subjugated by the idea
based on clonal selection, which accounts for the features of the adaptive immune

response. Our current proposal does not rely on the adaptive immune responsive

system. Instead we resorted to a SIAIRS which compute static innate affinity lev-
els, based on the whole search space (representing the organism).

Before creating an initial population, one has to initialize immunity affinity on

all elements that compose the search space. This requires a specific measurement
based on the dynamic capacity of each element. The dynamic capacity of an ele-

ment is the property that defines its odds in moving itself in the search space when

manipulated by the LS operator. For the RND problem we defined this range by
means of the sum of every predetermined BTS position in a IN neighborhood,

using an Euclidean distance function. Then each predetermined BTS position is

labeled according to its total value and finally an immunity amplifying factor
[[∞∈ ,1.0IF is applied on every existing immunity labels in the search space. The

The Radio Network Design Optimization Problem 243

result is called the Immunity Affinity IA and represents the immunity levels for

each element in the search space. Each element needs to accommodate its immune

base level according to (17).

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
⋅=

)),(

)),'((

INxNeighbors

INxNeighborsMax
IFx

i

iimmunity

, UxUxi ∈∀∈ ',,
(17)

For each attempt on processing such element, its immunity level decreases.
While the immunity remains above 0 the operators have no effect on it. If an im-
mune element is perturbed (by the RCLEO) or processed (by the GLS), it resets
its immunity level immediately according to (20). High immunity levels decrease
search convergence speed, hence the importance on adequate balancing of the IF
factor.

If the search space is continuous and has no constraints then this component
can be disregarded.

This approach delivers a double outer-diversity echelon: i) by its shaking op-
erator and ii) its multi-start uttermost mechanism that relies on the initialization
method. While the GRASP VNS approach emphasizes re-initialization (hence
being denoted as GRASP), this one is classified as a multi-start variant due to its
controllable initialization method. Experiments were carried out to find the best
set of parameter values which are shown in table 12.

Table 12. IIVNS Parameters

Parameter Value
GNO Neighborhood gn 1.5*30 (max. isotropic wave radius)
RCL Size ep 5
RCLEO commit size np 1
SIAIRS Affinity Neighborhood IN 2*30 (max. isotropic wave radius)
SIAIRS Amplifying Factor IF 1
MSC re-initialization me 50,000 Fitness Evaluations

6 Experimental Environment

RND experiments were tackled in a multi-perspective convergent approach.
We’ve defined a credible RND asymptotic-based benchmark (Section 4), delved
into a broad specter of solvers (including many bio-inspired), and employed ad-
vanced parallel computing techniques and hardware co-processing sustainability.
Analysis, include solver meta-optimization and a formal extension proposal of the
assessment axes usually employed in algorithmic characterization. Finally and for
the first time we present a relative performance ranking reference for RND
solvers (see Section 8), including a plethora of additional considerations regarding
the problem instance dimensioning based on real empirical normalized run-time
quality distributions.

244 S.P. Mendes et al.

Our implementations were partially built on a proprietary framework called
RND3voSDK, which was used to mingle, blend, combine and fuse many bio-
inspired techniques; starting from simple conventional local search procedures to
cutting-edge meta-heuristics. Further deviations include extreme handling through
high performance parallel and distributed implementations relying on desktop and
grid computing as well as assistance through dedicated reconfigurable hardware
co-processing based on FPGA devices.

6.1 Problem Instance

Although several distinct problem instances have been used, the results shown in
section 7.2 are the most relevant. Data was drawn from the problem instance de-
scribed as follows. Results are fully coherent with the remaining problem instance
results from previous experiments.

 A real world-sized problem instance, defined upon the geographical layout of
the city of Malaga (Spain), has been used to solidify testing and present the nu-
merical results of the algorithm performances. This instance, named Malaga1K,
represents an urban area of 27.2km2. The terrain has been modeled using a
450*300 grid, where each point represents a surface of approximately 15*15m.
This fine grained discretization enables us to achieve highly accurate results. A
dataset containing 1,000 candidate sites for the BSs, and their corresponding coor-
dinates on the grid, is used. The dataset can be found at the website [86]. The cell
model for BS coverage, as explained in Section 3, is a omni-directional isotropic
model, with a radius of approximately one half kilometer (30 grid points). In this
scenario, according to the instance parameter definition, the maximum coverage
that can be attained is 95.522%. There are two major potential uncovered areas:
the sea and the mountains.

6.2 Heterogeneous Development Environments

Although the approaches studied in this paper aim to reduce the computational
effort, the search space is still considerable, and thus we also resorted to high
throughput and grid computing. Additionally some techniques combining software
and hardware have been used in order to accelerate the computations. Besides
being computationally demanding, the algorithms can easily be divided into inde-
pendent tasks. Both these characteristics make these classes of algorithms particu-
larly suited for execution over Condor and BOINC controlled resources. Indeed,
they were instrumental for conducting our fine-tuning control parameter experi-
ments, having run over some thousands of moderately long executions, each tak-
ing between three to five hours to complete, depending on the machine’s speed.
Next some of them are briefly described.

6.2.1 CONDOR Desktop Computing

The executions of the DE, GRASP, VNS, Hybrids and MS variant experiments
described in this paper were carried out through the Condor high throughput

The Radio Network Design Optimization Problem 245

computing framework [1]. Specifically, the Condor framework permits to harvest
computing resources that would otherwise be left idle, allowing users with access
to the Condor system to submit batches of independent tasks. These tasks are then
scheduled by the Condor master over the available computing resources. If a task
does not complete in the assigned machine – for instance, the remote machine is
taken back for interactive usage or the machine is simply turned off – the execu-
tion lease times out after a given time interval and Condor automatically resched-
ules the task to another machine. All of this is practically transparent to the appli-
cation programmer, with application submitters only providing the unchanged
application binary (this needs to be a console application), a specially tailored
submit file (this is a simple text file holding instructions to the Condor system,
such as the required environments, for example, Windows or Linux, or what are
the command-line arguments to be passed for the application), and the required
input files.

Since the algorithms are computationally intensive and can easily be split into
independent tasks, an easy to use high throughput computing system like Condor
is an important tool for running such class of algorithms, and in fact was instru-
mental for conducting a huge share of our experiments.

At the academic institution where all experiments were performed, a Linux ma-
chine fulfils the role of the Condor server, while the Condor client is installed on
over 170 Windows XP machines that are distributed through 10 classrooms (each
classroom holds 17 machines). Four additional client machines (the fastest ones)
belong to an advanced laboratory. The pool of client machines ranges from
P4@2.4 GHz to Core 2 Duo 6600@2.40 GHz. Each type of machine was classi-
fied according to the NBench benchmark [87] integer and floating-point perform-
ance indexes. The NBench’s indexes are used to assess relative performance
among the monitored machines, since the same benchmark binary was used
throughout the machines. The fastest machines – Core 2 Duo 6600@2.40 – are
roughly 70% faster than the slowest ones (P4@2.4 GHz). Furthermore, the Win-
dows machines are primarily assigned for teaching activities (essentially to sup-
port classes), and are also used by students for their practical assignments and
other e-activities (e-mail, web, etc.). Therefore, the machines are primarily de-
voted to interactive usage, with Condor tasks being scheduled to a machine only
when no interactive user is logged on. Additionally, whenever an interactive login
occurs at a machine that is running a Condor task, the task is suspended, and after
10 minutes, if the interactive usage persists, the task is evicted and rescheduled to
another machine. Again, this conservative configuration was adopted to prioritize
interactive users over Condor’s tasks, although it provokes a high churn rate of
tasks, since machines are frequently used for interactive usage, resulting in a vast
percentage of interrupted executions. This is aggravated by the fact that the class-
rooms are heavily used (they are open 20 hours on weekdays, and 13 hours on
Saturdays, only closing on Sundays).

246 S.P. Mendes et al.

6.2.2 BOINC Desktop Grid Computing

BOINC (Berkeley Open Infrastructure for Network Computing) [88], [89] is
a system for “volunteer computing” and “desktop grid computing”. Volunteer
computing uses computers volunteered by the general public to do distributed
scientific computing. We have used the middleware system BOINC in order to
perform many different executions of the PBIL algorithm in parallel. In this way,
we can do a deep survey about which are the best parameters and combinations for
solving the RND problem.

Our experiences have demonstrated us the utility of using BOINC. We have
added 100 computers of our University to the volunteer computers joined to the
RND@home project [90], allowing us a very important computational power for
our purposes. The used computers were distributed along the campus, with ap-
proximately 20 PCs in each laboratory. Our BOINC clients had different charac-
teristics: different processors (Pentium IV and AMD), with various frequencies
(from 1.8 GHz up to 3.2 GHz), and under diverse operating systems (GNU/LinEx
[91], other GNU/Linux and Windows XP).

We planned a total of 25280 different experiments. We foresaw that a total of
32454 hours (3.71 years) would be necessary in order to perform all these experi-
ments. Using BOINC, we have concluded all these experiments in 6 months. Fur-
thermore, we have to highlight that during the month of August all the BOINC
clients were available 24 hours per day (in this month the University is closed to
academic activities), but this is not true for the rest of months. The computers
were used by the students in our University, reducing their availability.

Comparatively to the Condor approach, the BOINC middleware requires not
only a specifically tailored application (the application needs to use the BOINC
client API), but also a whole server-side infrastructure (used (1) to distribute tasks
and collect results and (2) to give feedback to resource donors through forums and
contribution ranks). Moreover, in order to participate in the computation, resource
donors need to be attracted to the project and explicitly register their machines to
the project. On the contrary, the Condor approach is mostly transparent, since only
rather simple submit files need to be prepared, with practically no changes re-
quired for the applications itself. However, a BOINC-based project has the poten-
tial to reach several thousands of resource donors, where all expenses (computer
acquisition and maintenance, network bandwidth, etc.), apart the server-side ones,
are supported by the volunteers, while Condor is limited to single-geographical
sites (mostly local area environments) and thus has a much lower potential for
scalability.

6.2.3 Reconfigurable Computing

Reconfiguration of circuitry at runtime to suit the application at hand has created a
promising paradigm of computing that blurs traditional frontiers between software

The Radio Network Design Optimization Problem 247

and hardware. This powerful computing paradigm, named reconfigurable comput-
ing (RC) [92], is based on the use of programmable logic devices, mainly field
programmable gate arrays (FPGAs) incorporated in board-level systems. FPGAs
have the benefits of hardware speed and software flexibility, being a good alterna-
tive for many real scientific and engineering applications [93, 94].

The interest of a hardware solution based on FPGAs is to determine if it is prof-
itable to run an evolutionary algorithm accelerating some of its calculations. Since
the biggest resource consumption comes from the arithmetic computation of
the fitness (see section III.a), we have designed and implemented an arithmetic
co-processor to relieve the main processor from this task, introducing the largest
possible degree of parallelism. This is the main advantage of the hardware exploi-
tation in order to increase the efficiency in comparison with software solutions. As
an example of the promising results, on a 724x724 terrain with the same isotropic
omni-directional coverage of radius 30, the FPGA solution (with a 13 parallel
processor architecture on a Virtex4 xc4vlx200 FPGA device running at 48 MHz)
outperformed a computer-based solution (Intel Core2Duo 2GHz PC) by 1.145%
(yielding an effective speedup of 11.45). Further details, including architecture
design and additional results can be found in Gómez-Pulido, Vega-Rodríguez,
Pérez and Mendes [95].

Although several works [4, 9-11, 27, 96, 97] have addressed the RND optimi-
zation problem, the role of EAs has not been able to fold in the telecom industry,
mainly due to the high computational efforts demanded when applying real wave
models. To cope with this technological constraint, we designed an FPGA hard-
ware device prototype that acts as a dedicated RND co-processor, enabling the
usage of real wave models on software-based RND algorithms.

Fig. 2. Prototype Architecture designed to slot in 2 wave models

248 S.P. Mendes et al.

This prototype was exclusively designed to perform the wave coverage
computing, thus assisting the software algorithm. Its design considers the same
isotropic omni-directional wave model used in all algorithms, allowing a direct
comparison. Fig. 2 shows the experimental architecture of the co-processor, iden-
tifying its main parts. The prototype uses an SRAM interface for memory access
where the terrain matrix is loaded at initialization. The controller is its main com-
ponent and computes the wave coverage related math. The floating-point arith-
metical co-processing units relieve the main controller on these operations.

 (a) (b)

Fig. 3. – 14 MHz & 36 MHz FPGA testing performance comparison

Fig. 3a depicts a big advantage (455% faster) for the software coded solution

running on a 2-GHz PCore2Duo when compared to an obsolete 14 MHz Xilinx
Virtex 800 FPGA [98] on a Xess XSV800 board [99]. A subtle detail can be ob-
served in both plots: an increase in the arithmetical operations (obtained by com-
paring the 2 radius values), decreases the software coded solution advantage, an
indicator that the FPGA-based approach is more suitable for handling complex
wave model related to arithmetic calculations.

After the increase of the FPGA clock frequency and the replication of its basic
architecture allowing parallelization, we used a synthesis and simulation tool that
allowed us to predict performance at 36 MHz clock frequency operation with 4
parallel processors on the same obsolete device. Fig. 3b depicts this comparison,
giving a clear advantage to the FPGA implementation.

Our last simulation targeted a 48 MHz Xilinx Virtex4 xc4vlx100-11ff1513 that
is able to embed 13 parallel processors. It yielded a performance outgrow of
4751% when compared to the 2 GHz Core2Duo, an irrefutable proof that this
technology is currently an enabler for real EAs software-based RND design tools
capable of managing real wave models. Further optimizations can be achieved, as
for instance, eliminating the external SRAM accesses.

7 Empirical Result Analysis

In this section we present and describe the results and the experiments performed
with the different optimization algorithms described in Section 5.

The Radio Network Design Optimization Problem 249

7.1 Report Planning Method

Our experiments promote thoughtful [100], well-planned, and algorithmic exten-
sive testing, full disclosure of experimental conditions, including the integrity and
reproducibility of reported results. The most relevant results we currently present
are based on the following measures:

• Effectiveness - Defines the fitness-based quality of the results.
• Computational Effort - Speed of computation is obviously a key factor. In this

work the computational effort is based on the FEEM definition as shown in
Section 3.1

• Algorithmic reliability - Defines a degree of confidence for a given algorithm
to yield good results, according to its average effectiveness.

Additionally all results were derived from statistical experimental design tech-
niques aiming at the reduction of variability and reliability within the results and
promoting a comprehensive report of the results.

For each of the proposed algorithms, 30 independent runs have been conducted
with a stopping criterion of 5,000,000 fitness evaluations each. All presented re-
sults rely on the statistical values yielded by each one of the 30 runs.

7.2 Algorithmic Comparison

In this problem instance the optimal value is unknown. Fig. 9 depicts the average
fitness achieved per algorithm. This measure is based on the average conver-
gence point P’ obtained through the run-time distributions. There seem to be two
comprehensible (fitness-based) subsets of algorithms denoted by the divisor in
Figure 4.

164,701

162,651 162,411 162,134 162,120 161,884 161,778 161,727 161,352

148,802
148,196

147

149

151

153

155

157

159

161

163

165

IIVNS PBIL GRASP
RUFNS

CGA MS VNS MS FNS CME CCPM GRASP
VNS

DE GRASP
SRCL

F
it

n
es

s

Fig. 4. Average effectiveness

250 S.P. Mendes et al.

The convergence point P’ is defined by the AFEEM that have elapsed until the
best result has been found. Figure 5 gives an overview of the average convergence

point P’ obtained through the AvgSeries))'((
30

1
∑

=i
iPAFEEMAvg run-time distributions. It is

16.919 28.666 34.379 57.066 127.650 130.107 153.307

947.814
846.852

573.577

53.750
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

GRASP
RUFNS

GRASP
SRCL

DE GRASP
VNS

MS FNS IIVNS MS VNS PBIL CCPM CGA CME

F
E

 C
o

n
ve

rg
e

Average
Std. Dev.

Fig. 5. Algorithmic AFEEM computational effort on convergence point P’

0,000

0,615

0,456

1,361

0,425

0,213

0,979

1,380

0,308

2,552

0,425

0

0,5

1

1,5

2

2,5

3

IIVNS PBIL GRASP
RUFNS

CGA MS VNS MS FNS CME CCPM GRASP
VNS

DE GRASP
SRCL

F
it

n
es

s
S

td
. D

ev
.

Fig. 6. Algorithmic reliability

The Radio Network Design Optimization Problem 251

possible to state that in a general manner, non population-based approaches have
better computational effort measures, with the exception of DE.

The reliability of an algorithm refers to the extent of confidence for a given al-
gorithm to achieve good results in any execution, tightly related to its average ef-
fectiveness. A commonly used measure is the standard deviation of the fitness of
the average convergence point P’.

Fig. 6 shows, for each algorithm, the standard deviation on P’. The less reli-
able of the algorithms is DE, with a standard deviation of 1.72% (2.552) of the
average fitness. We also observe that All GRASP and multi-start algorithms have
a standard deviation under the 0.5 boundary. There is another interesting detail:
the IIVNS algorithm, besides presenting itself as the most effective algorithm in
the set, has a standard deviation of 0. This algorithm thus proves to achieve the
maximal result in 100% of conducted experiences. Nothing can be deduced about
its optimality, but its standard deviation entrusts a good interval of confidence at
this matter.

Globally we can observe that the GRASP approaches are very fast but are
also very deceptive upon local optima trapping. GRASP’s Light LSs are unable
to explore the search space in an effective way, although better results are no-
ticed when the LS procedures incorporate heavier heuristics or additional flow
mechanisms (as the GRASP RUFNS). The combinatorial complexity of real-
world RND instances are not satisfactory for GRASP approaches that utterly
emphasize the optimization itself, although these approaches can be used for
interactive CAD tools since they deliver reasonable quality in a very short
amount of time.

None of our population-based approaches suffered from premature conver-
gence (except the DE stagnation phenomena [101]) since these bio-inspired mod-
els intrinsically use their control parameters to avoid such backdrops, but they
usually also get to be slower than most of the contestants. On the other hand these
approaches are easily powered-up through parallelism.

The IIVNS variant, besides delivering high quality results is a reasonably fast
optimizer, standing very near to the GRASP echelon performance.

8 Characterization and RNDBench Quick Reference

This section delivers summarized information related to the run-time environment
description, algorithmic characterization and our RND benchmark proposal. This
information targets at quick referencing, when the reader is already familiar with
the remaining subjects.

252 S.P. Mendes et al.

8.1 Heterogeneous Environments Characterization

Table 13. Heterogeneous experimental run-time environment specification table

Algo-
rithm

Lang. Run-time
Platform (a)

Hardware Execution Time
(b)

Remarks

DE C# (ECMA) Windows + .Net
Framework /
Linux + Mono
Framework

pool ranging from
PIII 800 Mhz to
Core2Duo 2.4 GHz

32m (P4 3.0GHz
ref.)

CONDOR used with a
180 machine heterogon-
ous hardware pool.

 PBIL C++ (ISO) Windows + .Net
Framework /
GNU Linux or
LinEx + KDe-
velop

pool ranging from 1.8
Ghz to 3.2 GHz

2h30m BOINC used with a 100
machine heterogeneous
hardware pool.

CGA Java Windows 2003 r2
Server X64 +
JRE 1.4

Dual Core AMD-
Opteron Processor
2212 2.00GhZ, 4.00
GB RAM

4h-8h Execution time is not
accurate because several
experiments were running
in the same machine
simultaneously.

CCPM Java Windows 2003 r2
Server X64 +
JRE 1.4

Dual Core AMD-
Opteron Processor
2212 2.00GhZ, 4.00
GB RAM

5h-9h Execution time is not
accurate because several
experiments were running
in the same machine
simultaneously.

CME Java Windows 2003 r2
Server X64 +
JRE 1.4

Dual Core AMD-
Opteron Processor
2212 2.00GhZ, 4.00
GB RAM

5h-9h Execution time is not
accurate because several
experiments were running
in the same machine
simultaneously.

GRASP
RUFNS

C# (ECMA) Windows + .Net
Framework /
Linux + Mono
Framework

pool ranging from
PIII 800 Mhz to
Core2Duo 2.4 GHz

5h (P4 3.0GHz
ref.)

CONDOR used with a
180 machine heterogon-
ous hardware pool.

GRASP
SRCL

C# (ECMA) Windows + .Net
Framework /
Linux + Mono
Framework

pool ranging from
PIII 800 Mhz to
Core2Duo 2.4 GHz

6h50m (P4 3.0GHz
ref.)

CONDOR used with a
180 machine heterogon-
ous hardware pool.

GRASP
VNS

C# (ECMA) Windows + .Net
Framework /
Linux + Mono
Framework

pool ranging from
PIII 800 Mhz to
Core2Duo 2.4 GHz

1h30m (P4 3.0GHz
ref.)

CONDOR used with a
180 machine heterogon-
ous hardware pool.

IIVNS

C# (ECMA) Windows + .Net
Framework /
Linux + Mono
Framework

pool ranging from
PIII 800 Mhz to
Core2Duo 2.4 GHz

3h30m (P4 3.0GHz
ref.)

CONDOR used with a
180 machine heterogon-
ous hardware pool.

MS FNS

C# (ECMA) Windows + .Net
Framework /
Linux + Mono
Framework

pool ranging from
PIII 800 Mhz to
Core2Duo 2.4 GHz

4h20m (P4 3.0GHz
ref.)

CONDOR used with a
180 machine heterogon-
ous hardware pool.

MS VNS

C# (ECMA) Windows + .Net
Framework /
Linux + Mono
Framework

pool ranging from
PIII 800 Mhz to
Core2Duo 2.4 GHz

3h40m (P4 3.0GHz
ref.)

CONDOR used with a
180 machine heterogon-
ous hardware pool.

a) Includes OS
b) Approximate values

The Radio Network Design Optimization Problem 253

8.2 Algorithmic Characterization

Table 14. Algorithmic characterization table

Name Trajec-
tory

Population Memory Bio-
Inspiration

Hybridization

DE - + ∃ + -

PBIL - + ∃ + -

CGA - + ∃ + +

CCPM - + - + +
CME - + - + +
GRASP
RUFNS

- - ∃ - +

GRASP
SRCL

- - ∃ - -

GRASP
VNS

∃ - ∃ - +

IIVNS ∃ - ∃ ∃ +

MS
FNS

∃ - + - -

MS
VNS

∃ - ∃ - -

+: feature present, ∃ :partially present, -: not present

8.3 RNDBench Reference

The RNDBench benchmark proposal stand upon four basic assessment axes
tightly related to the overall performance indexes previously described in Section
7. The RNDBench ranking results from the relative normalized [0,1] weighted
sum of its axes, defined as follows:

• EFFECT: normalized relative values obtained from the algorithm’s effective-

ness.
• CEFFORT/2: 50% weighted normalized relative values obtained from the al-

gorithm’s computing effort.
• REL: normalized relative values obtained from the algorithm’s reliability.
• VAR/2: 50% weighted normalized relative values obtained from the algo-

rithm’s run-time variability.

254 S.P. Mendes et al.

Table 15 shows the RNDBench results based on the previous factors.

Table 15. RNDBench ranking table

Name EFFECT CEFFORT/2 REL VAR/2 RNDBench
IIVNS 1,000 0,485 1,000 0,461 2,946
MS FNS 0,829 0,487 0,917 0,461 2,694
GRASP VNS 0,797 0,493 0,879 0,486 2,655
MS VNS 0,844 0,476 0,833 0,453 2,606
GRASP RUFNS 0,861 0,069 0,821 0,500 2,252
PBIL 0,876 0,158 0,759 0,176 1,969
CME 0,823 0,000 0,616 0,487 1,927
GRASP SRCL 0,000 0,499 0,833 0,496 1,829
CGA 0,844 0,013 0,467 0,306 1,630
CCPM 0,820 0,024 0,459 0,211 1,515
DE 0,037 0,494 0,000 0,494 1,025
i) Dashed lines delineate quartile boundaries

9 Conclusions and Future Works

In this work we have presented a multifaceted comparison of a wide range of algo-
rithms. The fourteen different algorithms applied to solve the RND problem have
followed two main principles: technology-independence and a normalized com-
parison through the definition of clock calibration routines. We have stated that
the best results are yielded by the IIVNS variant, surpassing the results of the re-
maining contestants. Through this work, the foundations for a credible RND
benchmark are proposed, although particular and specific additional problem in-
stances are required. As future development we fold our research line in two main
directions: a) the inclusion of multi-objective optimization methods in order to
enlarge our optimization approach support base and b) the creation of additional
extreme instances with landscape simulation features, including path loss models
and bandwidth demand zones.

References

[1] Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The Con-
dor experience. Concurrency and Computation Practice and Experience 17, 323–356
(2005)

[2] Mendes, S.P., Gómez-Pulido, J.A., Vega-Rodríguez, M.A., Sánchez-Pérez, J.M.: A
differential based algorithm to optimize the radio network design problem. In: Pro-
ceedings of the 2nd IEEE International Conference on e-Science and Grid Comput-
ing, p. 119 (2006)

[3] Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Alba, E., Vega-Pérez, D., Mendes, S.,
Molina, G.: Different evolutionary approaches for selecting the optimal number and
locations of omnidirectional BTS in a radio network. In: Proceedings of the 11th In-
ternational Conference on Computer Aided Systems Theory (2007)

The Radio Network Design Optimization Problem 255

[4] Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Alba, E., Vega-Pérez, D., Mendes,
S.P., Molina, G.: Using omnidirectional BTS and different evolutionary approaches
to solve the RND problem. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A.
(eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 853–860. Springer, Heidelberg
(2007)

[5] Mendes, S.P., Gómez-Pulido, J.A., Vega-Rodríguez, M.A., Pereira, A.M., Pérez,
J.M.: Fast wide area network design optimisation using differential evolution. In:
Proceedings of the International Conference on Advanced Engineering Computing
and Applications in Sciences, pp. 3–10 (2007)

[6] Mendes, S.P., Domingues, P., Pereira, D., Vale, R., Gomez-Pulido, J.A., Silva,
L.M., Vega-Rodríguez, M.A., Sánchez-Pérez, J.M.: Omni-directional RND optimi-
sation using differential evolution: In-depth analysis via high throughput computing.
In: Proceedings of EPIA (2007)

[7] Calegari, P., Guidec, F., Kuonen, P.: Combinatorial optimization algorithms for ra-
dio network planning. Journal of Theoretical Computer Science 263, 235–265
(2001)

[8] Calegari, P., Guidec, F., Kuonen, P., Kobler, D.: Parallel island-based genetic algo-
rithm for radio network design. Journal of Parallel and Distributed Computing 47,
86–90 (1997)

[9] Alba, E.: Evolutionary algorithms for optimal placement of antennae in radio net-
work design. In: Proceedings of the International Parallel and Distributed Processing
Symposium (2004)

[10] Alba, E., Almeida, F., Blesa, M., Cotta, C., Díaz, M., Dorta, I., Gabarró, J., León,
C., Luque, G., Petit, J., Rodríguez, C., Rojas, A., Xhafa, F.: Efficient parallel
LAN/WAN algorithms for optimization: The MALLBA project. Parallel Comput-
ing 32, 415–440 (2006)

[11] Alba, E., Chicano, F.: On the behaviour of parallel genetic algorithms for optimal
placement of antennae in telecommunications. International Journal of Foundations
of Computer Science 16, 86–90 (2005)

[12] Celli, G., Costamagna, E., Fanni, A.: Genetic algorithms for telecommunication net-
work optimization. In: Proceedings of the IEEE International Conference on Sys-
tems, Man and Cybernetics, pp. 1227–1232 (1995)

[13] Meunier, H., Talbi, E.G., Reininger, P.: A multiobjective genetic algorithm for radio
network optimization. In: Proceedings of the Congress on Evolutionary Computa-
tion, pp. 317–324 (2000)

[14] Watanabe, S., Hiroyasu, T., Miki, M.: Parallel evolutionary multi-criterion optimiza-
tion for mobile telecommunication networks optimization. In: Proceedings of Evolu-
tionary Methods for Design, Optimisation and Control with Applications to Indus-
trial Problems Conference, pp. 167–172 (2001)

[15] Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In: Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms, pp. 416–423 (1993)

[16] Talbi, E.G., Cahon, S., Melab, N.: Designing cellular networks using a parallel hy-
brid metaheuristic on the computational grid. Computer Communications 30, 698–
713 (2007)

[17] Calégari, P., Guidec, F., Kuonen, P., Chamaret, B., Ubéda, S., Josselin, S., Wagner,
D., Pizarosso, M.: Radio network planning with combinatorial optimization algo-
rithms. Theoretical Computer Science 263, 235–265 (2001)

256 S.P. Mendes et al.

[18] Chamaret, B., Josselin, S., Kuonen, P., Pizarroso, M., Salas-Manzanedo, B., Ubeda,
S., Wagner, D.: Radio network optimization with maximum independent set search.
In: Proceedings of the 47th IEEE Vehicular Technology Conference, pp. 770–774
(1997)

[19] He, J., Verstak, A., Watson, L., Rappaport, T., Anderson, C., Ramakrishnan, N.,
Shaffer, C., Tranter, W., Bae, K., Jiang, J.: Global optimization of transmitter place-
ment in wireless communication systems. In: Proceedings of the High Performance
Computing Symposium, pp. 328–333 (2002)

[20] Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the
Lipschitz constant. Journal of Optimization Theory and Applications 79, 157–181
(1993)

[21] Vasquez, M., Hao, J.K.: A heuristic approach for antenna positioning in cellular net-
works. Journal of Heuristics 7, 443–472 (2001)

[22] Elkamchouchi, H.M., Elragal, H.M., Makar, M.A.: Cellular radio network planning
using particle swarm optimization. In: Proceedings of the Radio Science Confer-
ence, pp. 1–8 (2007)

[23] Tutschku, K.: Demand-based radio network planning of cellular mobile communica-
tion systems. University of Wurzburg Research Report Series, 177 (1997)

[24] Church, R.L., ReVelle, C.: The maximal covering location problem. Regional Sci-
ence 30, 101–118 (1974)

[25] Ibbetson, L.J., Lopes, J.B.: An automatic base site placement algorithm. In: Proceed-
ings of the 47th IEEE Vehicular Technology Conference, pp. 760–764 (1997)

[26] Fritsch, T., Hanshans, S.: An integrated approach to cellular mobile communication
planning using traffic data prestructured by a self-organizing feature map. In: Pro-
ceedings of the EEE International Conference on Neural Networks, pp. 822D–822I
(1993)

[27] Nebro, A.J., Alba, E., Molina, G., Chicano, F., Luna, F., Durillo, J.J.: Optimal an-
tenna placement using a new multi-objective CHC algorithm. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 876–883 (2007)

[28] Mendes, S., Domingues, P., Vale, R., Pereira, D., Gomez-Pulido, J.A., Silva, L.M.,
Vega-Rodríguez, M.A., Sánchez-Pérez, J.M.: Omni-directional RND optimisation
using differential evolution: In-depth analysis via high throughput computing. In:
Proceedings of the Portuguese Conference on Artificial Intelligence (2007)

[29] Donninger, C., Kure, A., Lorenz, U.: Parallel Brutus: the first distributed, FPGA ac-
celerated chess program. In: Proceedings of the 18th International Parallel and Dis-
tributed Processing Symposium, p. 44 (2004)

[30] Eklund, S.E.: Time series forecasting using massively parallel genetic programming.
In: Proceedings of the 17th International Parallel and Distributed Processing Sympo-
sium, p. 143.1 (2003)

[31] Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Pur-
cell, T.J.: A survey of general-purpose computation on graphics hardware. Computer
Graphics Forum 26, 80–113 (2007)

[32] Fok, K., Wong, T., Man-Leung, J.: Evolutionary computing on consumer graphics
hardware. IEEE Intelligent Systems 22, 69–78 (2007)

[33] Langdon, W.B., Banzhaf, W.: A SIMD interpreter for genetic programming on GPU
graphics cards. In: Proceedings of the European Genetic Programming Conference
(2008)

[34] NVIDIA Corporation, Cuda Zone (2008),
http://www.nvidia.com/object/cuda_home.html

The Radio Network Design Optimization Problem 257

[35] Garey, M., Johnson, D.: Computers and intractability: A guide to the theory of NP-
completeness. Freeman and Co., New York (1979)

[36] Baluja, S.: Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Technical Report
CMUCS, Carnegie Mellon University, pp. 94–163 (1994)

[37] Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm.
In: Proceedings of the Twelfth International Conference on Machine Learning
(1995)

[38] Yang, S.Y., Ho, S.L., Ni, G.Z., Machado, J.M., Wong, K.F.: A new implementation
of population based incremental learning method for optimizations in electromag-
netics. IEEE Transactions on Magnetics 43, 1601–1604 (2007)

[39] Bureerat, S., Sriworamas, K.: Population-based incremental learning for multiobjec-
tive optimisation. Soft Computing in Industrial Applications, Advances in Soft
Computing 39, 223–232 (2007)

[40] Hong, Y., Kwong, S., Chang, Y., Ren, Q.: Clustering ensembles guided unsuper-
vised feature selection using population based incremental learning algorithm. Pat-
tern Recognition 41(9), 2742–2756 (2009)

[41] Jelodar, M.S., Fakhraie, S.M., Ahmadabadi, M.N.: A new approach for training of
artificial neural networks using population based incremental learning (PBIL). In:
Proceedings of the International Conference on Computational Intelligence, pp.
165–168 (2004)

[42] Chiang, F., Braun, R.: Towards a management paradigm with a constrained bench-
mark for autonomic communications. In: Wang, Y., Cheung, Y.-m., Liu, H. (eds.)
CIS 2006. LNCS, vol. 4456, pp. 250–258. Springer, Heidelberg (2007)

[43] Domínguez-González, D., Chaves-González, J.M., Vega-Rodríguez, M.A., Gómez-
Pulido, J.A., Sánchez-Pérez, J.M.: Using PBIL for solving a real-world frequency
assignment problem in GSM networks. New Trends in Artificial Intelligence, 207–
218 (2007)

[44] Papadimitriou, G.I., Obaidat, M.S., Pomportsis, A.S.: On the use of population-
based incremental learning in the medium access control of broadcast communica-
tion systems. In: Proceedings of the 10th IEEE International Conference on Elec-
tronics, Circuits and Systems, pp. 1260–1263 (2003)

[45] Kendall, R., Braun, R.: Digital communication filter design by stochastic optimiza-
tion. In: Workshop on the Applications of Radio Science (2002)

[46] Price, K., Storn, R.: Differential evolution – a simple evolution strategy for fast op-
timisation. Dr. Dobb’s Journal 22, 18–24 (1997)

[47] Price, K., Storn, R.: Web site of DE (2006),
http://www.ICSI.Berkeley.edu/~storn/code.html (accessed July 1,
2006)

[48] Joshi, R., Sanderson, A.: Minimal representation multisensor fusion using differen-
tial evolution. In: Proceedings of the IEEE International Symposium on Computa-
tional Intelligence in Robotics and Automation, p. 266 (1997)

[49] Vasan, A., Raju, K.: Optimal reservoir operation using differential evolution. In:
Proceedings of International Conference on Hydraulic Engineering: Research and
Practice (2004)

[50] Abbass, H.A., Sarker, R.: The Pareto differential evolution algorithm. International
Journal on Artificial Intelligence Tools 11, 531–552 (2002)

258 S.P. Mendes et al.

[51] Storn, R., Price, K.: A simple and efficient adaptive scheme for global optimization
over continuous spaces. Technical Report TR-95-012, International Computer Sci-
ence Institute, The University of California, Berkley (1995)

[52] Lampinen, J., Zelinka, I.: Mixed variable non-linear optimization by differential
evolution. In: Proceedings of the 2nd International Prediction Conference, pp. 45–55
(1999)

[53] Aragão, M.P., Ribeiro, C.C., Uchoa, E., Werneck, R.F.: Hybrid local search for the
Steiner problem in graphs. In: Proceedings of the 4th Metaheuristics International
Conference (2001)

[54] Festa, P., Resende, M.G.: An annotated bibliography of GRASP. Technical Report
TD-5WYSEW, AT&T Labs Research (2004)

[55] Mavridou, T., Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.: A GRASP for the bi-
quadratic assignment problem. European Journal of Operational Research 105, 613–
621 (1998)

[56] Martins, S.L., Resende, M.G., Ribeiro, C.C., Pardalos, P.M.: A parallel GRASP for
the Steiner tree problem in graphs using a hybrid local search strategy. Journal of
Global Optimization 17, 267–283 (2000)

[57] Pardalos, P.M., Qian, T., Resende, M.G.: A greedy randomized adaptive search pro-
cedure for the feedback vertex set problem. Journal of Combinatorial Optimiza-
tion 2, 399–412 (1999)

[58] Rosseti, R., Aragão, M.P., Ribeiro, C.C., Uchoa, E., Werneck, R.F.: New bench-
marck instances for the Steiner problem in graphs. In: Proceedings of the 4th Meta-
heuristics International Conference (2001)

[59] Resende, M.G.: Computing approximate solutions of the maximum covering prob-
lem using GRASP. Journal of Heuristics 4, 161–171 (1998)

[60] Resende, M.G., Ribeiro, C.C.: A GRASP for graph planarization. Journal of Heuris-
tics 4, 171–181 (1998)

[61] Ribeiro, C.C., Uchoa, E., Werneck, R.F.: A hybrid GRASP with perturbations for
the Steiner problem in graphs. INFORMS Journal on Computing 14, 228–246
(2002)

[62] Resende, M.G., Ribeiro, C.C.: Greedy randomized adaptive search procedures.
Technical Report TD-53RSJY, AT&T Labs Research (2002)

[63] Feo, T.A., Resende, M.G.: A probabilistic heuristic for a computationally difficult
set covering problem. Operation Research Letters 8, 67–71 (1989)

[64] Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. Journal
of Global Optimization 6, 109–133 (1995)

[65] Mladenovic, N., Hansen, P.: Variable neighbourhood search. Computers and Opera-
tions Research 24, 1097–1100 (1997)

[66] Hansen, P., Mladenovic, N.: Variable neighbourhood search: Principles and applica-
tions. European Journal of Operational Research 130, 449–467 (2001)

[67] Hansen, P., Mladenovic, N.: A Tutorial on variable neighborhood search. Technical
Report - GERAD and Mathematical Institute, SANU, Belgrade (2003)

[68] Fleszar, K., Hindi, K.S.: New heuristics for one-dimensional bin-packing. Com-
puters and Operations Research 29, 821–839 (2002)

[69] Hansen, P., Mladenovic, N., Dragan, U.: Variable neighborhood search for the
maximum clique. Discrete Applied Mathematics 145, 117–125 (2004)

[70] Liberti, L., Draži, M.: Variable neighbourhood search for the global optimization of
constrained NLPs. In: Proceedings of Global Optimization, pp. 1–5 (2005)

The Radio Network Design Optimization Problem 259

[71] Burke, E.K., Cowling, P., Keuthen, R.: Implementation report: Variable neighbour-
hood search. Technical Report - University of Nottingham, NG8 1BB (2000)

[72] Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph
coloring. European Journal of Operational Research 151, 379–388 (2003)

[73] Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization 3, 379–397 (1999)

[74] Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs: Three
ways to automate finding conjectures. Discrete Mathematics 276, 81–94 (2004)

[75] Pérez, J.A., Moreno-Vega, J.M., Martín, I.R.: Variable neighbourhood tabu search
and its application to the median cycle problem. European Journal of Operational
Research 151, 365–378 (2003)

[76] Fleszar, K., Hindi, K.H.: Solving the resource-constrained project scheduling prob-
lem by a variable neighbourhood search. European Journal of Operational Re-
search 155, 402–413 (2004)

[77] Burke, E.K., Causmaecker, P.D., Petrovic, S., Berghe, G.V.: Variable neighbour-
hood search for nurse rostering problems. In: Resende, M.G., Sousa, J.P. (eds.)
Metaheuristics: Computer Decision-Making, pp. 153–172. Kluwer, Norwell (2003)

[78] Pérez, J.A., Mladenovic, N., Batista, B.M., Amo, I.J.: Variable Neighbourhood
Search. Springer, New York (2006)

[79] Lusa, A., Potts, C.N.: A variable neighbourhood search algorithm for the con-
strained task allocation problem. Journal of the Operational Research Society 59(6),
812–822 (2007)

[80] Lejeune, M.A.: A variable neighborhood decomposition search method for supply
chain management planning problems. European Journal of Operational Re-
search 175(2), 959–976 (2006)

[81] Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

[82] Buffa, E.S., Armour, G.C., Vollmann, T.E.: Allocating facilities with CRAFT. Har-
vard Business Review, 136–158 (1964)

[83] Saez, Y., Isasi, P., Segovia, J., Hernandez, J.C.: Reference chromosome to overcome
user fatigue in IEC. New Generation Computing 23, 129–142 (2005)

[84] Saez, Y., Isasi, P., Segovia, J.: Interactive evolutionary computation algorithms ap-
plied to solve Rastrigin test functions. In: Proceedings of the 4th IEEE International
Workshop on Soft Computing as Transdisciplinary Science and Technology, pp.
682–691 (2005)

[85] Dawkins, R.: The Selfish Gene. Oxford University Press, New York (1976)
[86] Gómez-Pulido, J.: Web site of Net-Centric Optimization (OPLINK:UNEX) (2006),

http://oplink.unex.es/rnd (accessed April 1, 2008)
[87] Mayer, U.: NBenchProject (2007), http://www.tux.org/~mayer/linux/

(accessed December 1, 2007)
[88] Anderson, D.P.: BOINC (2007), http://boinc.berkeley.edu (accessed

June 1, 2008)
[89] Anderson, D.P.: BOINC: A system for public-Resource computing and storage. In:

Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pp.
4–10 (2004)

[90] RND@home (2008), http://arcoboinc.unex.es/rnd (accessed March 1,
2008)

[91] LinEx (2008), http://www.linex.org (accessed March 1, 2008)

260 S.P. Mendes et al.

[92] Buell, D., El-Ghazawi, T., Gaj, K., Kindratenko, V.: High-performance reconfigur-
able computting. Computer 40, 23–27 (2007)

[93] Vega-Rodríguez, M.A., Sánchez-Pérez, J.M., Gómez-Pulido, J.A.: Guest editors’ in-
troduction - special issue on FPGAs: Applications and designs. Microprocessors and
Microsystems 28, 193–196 (2004)

[94] Hsiao, J.M., Tsai, C.J.: Analysis of an SOC architecture for MPEG reconfigurable
video coding framework. In: Proceedings of the IEEE International Symposium on
Circuits and Systems, pp. 761–764 (2007)

[95] Gómez-Pulido, J.A., Vega-Rodríguez, M.A., Pérez, J.M., Mendes, S.P.: Diseño y
prototipado de un processador para el cálculo de la cobertura en el diseño de redes
de radiocomunicaciones. In: VII Jornadas de Computación Reconfigurable y Apli-
caciones (2007)

[96] Alba, E., Molina, G., Chicano, F.: Optimal placement of antennae using metaheuris-
tics. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds.) NMA 2006.
LNCS, vol. 4310, pp. 214–222. Springer, Heidelberg (2007)

[97] Alba, E., Cotta, C., Chicano, F., Nebro, A.J.: Parallel evolutionary algorithms in
telecommunications: Two case studies. In: Proceedings of Congreso Argentino de
Ciencias de la Computación (2002)

[98] Xilinx Inc., Xilinx (2008), http://www.xilinx.com (accessed March 1, 2008)
[99] Xess Corporation (200) Xess, http://www.xess.com (accessed March 1,

2008)
[100] Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G., Stewart, W.: Designing and re-

porting on computational experiments with heuristic methods. Journal of Heuris-
tics 1, 9–32 (1996)

[101] Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In:
Proceedings of the 6th International Mendel Conference on Soft Computing, pp. 76–
83 (2000)

Strategies for Decentralised Balancing Power

Andreas Kamper1 and Anke Eßer2

Abstract There are many different approaches to central load management in power
supply systems, such as direct load control or price signals to control production
and consumption. Despite these measures there will always be an imbalance be-
tween production and consumption, i.e. due to fluctuating resource availabilities and
unforeseen changes in consumption. As CO2 emissions and sustainable electricity
production have entered the focus of attention in politics and industries, ecologi-
cally advantageous concepts avoiding inefficiencies in power supply are strongly
promoted. In this article, a self-organising approach to small devices such as freez-
ers or washing machines as well as Combined Heat and Power plants (CHP) is
presented, which aims at avoiding imbalances in the power network. While each
device has its own constraints and specific task (e.g. provide heat or wash clothes),
most of them have a limited degree of freedom in their schedules. A P2P approach
with an Evolutionary Algorithm in combination with a local search is used to iden-
tify suitable partners to cover their production or consumption and thus to adjust the
load in a way to minimise network imbalances.

Karlsruher Institute of Technology
Institute AIFB
76128 Karlsruhe
Germany
aka@aifb.uni-karlsruhe.de
Karlsruher Institute of Technology
Institute IIP
76128 Karlsruhe
Germany
Anke.Esser@wiwi.uni-karlsruhe.de

A. Lewis et al. (Eds.): Biologically-Inspired Optimisation Methods, SCI 210, pp. 261–289.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

262 A. Kamper and A. Eßer

1 Introduction

Due to the increasing cost of energy carriers, new approaches to a more efficient use
of the available resources are gaining importance. In particular, strategies are sought
to efficiently manage the permanently occurring imbalances between production and
consumption. These imbalances are, for instance, caused by inevitable differences
between the expected energy usage and the actual consumption, or through fluctu-
ating resource availabilities. They cause malfunctions on or damages to electrical
appliances.

To balance consumption and production, an effective but expensive system of so-
called balancing power markets has been installed. Imbalances occurring at lower
voltage levels (i.e. in balancing groups) are summed up and balanced on the highest
voltage level. The balancing group on lower voltage levels is charged the incurring
costs. The amount of balancing power needed is provided by special power plants.
The capacity restrictions for power plants participating in balancing power mar-
kets are rather high. They can only be met for larger power plants. In the last few
years several balancing power pools were created, in which smaller power plants and
larger responsive loads pool to jointly reach the critical size in order to participate
in balancing power provision. Smaller loads like home appliances cannot be pooled
efficiently. However, even these small devices can be used to reduce imbalances and
the balancing costs on lower voltage levels resulting from this.

In the following sections a decentralised P2P approach to pool small home appli-
ances and privately owned Combined Heat and Power (CHP) plants is introduced.
Thus, they can be used to reduce the amount of balancing power needed in balancing
groups. The devices and CHP plants belong to private households and have to meet
their owners demands. Only the remaining degree of freedom is used to balance the
consumption and production. For the optimisation, an Evolutionary Algorithm in
combination with a local search is used to group the devices so that existing imbal-
ances are reduced. This decentralised approach has to be integrated into the existing
system of balancing power, and the corresponding restrictions must be met.

Therefore, sections 2 and 3 will first give a brief introduction of the German
power supply system, balancing power as well as the German power markets and
balancing power markets. In section 4, existing approaches to decentralised balanc-
ing pools on a larger scale are shown. In section 5, a new pooling approach with the
Evolutionary Algorithm is introduced. The chapter closes with a conclusion.

2 The German Power Supply System

Today, electricity is used in almost all processes of industrial production as well as
for most household appliances. With about 20% it is the third most important final
energy carrier in Germany [12]. To supply end consumers with electricity, complex
network structures have been built. These so-called electricity supply systems con-
sist of power sources (power plants) and power sinks (consumers) as well as power

Strategies for Decentralised Balancing Power 263

lines to transport the electricity from power plants to consumers. In the following,
the German power supply system is described.

2.1 Power Generation in Germany

The driving force in power supply systems is power demand. In 2005, the total
power demand to be met in Germany amounted to 518 GWh. It is characterised by
cyclical variations1 and short-term stochastic fluctuations. Since it is not econom-
ically justifiable to store large amounts of electricity, power has to be produced at
the time it is consumed. This characteristic of power supply affects the structure
of power generation capacities as well as the organisation of the power markets on
wholesale level.

Traditionally, power generation in Germany is based on fossil fuels and uranium.
In 2005, a net electrical capacity of 124 GW was installed. Thereof 76 GW were
conventional thermal power plants, 20 GW nuclear stations, 18 GW windmills, and
8 GW hydro power stations [10]. Due to the nuclear phase out as well as the replace-
ment of old conventional thermal plants, 40-50 GW of electrical capacity have to be
built until 2020 [15]. Assuming a continuousness of today’s energy and climate pol-
icy, it is most likely that the share of RES fuelled plants as well as Combined Heat
and Power (CHP) plants will increase. Regarding large conventional power stations,
gas power plants are most likely to be built [21].

2.2 Power Markets

On wholesale level, power supply companies arrange schedules to the satisfaction
of the anticipated power demand of their customers up to one day in advance. The
required power is obtained via bilateral trading 2 or on power exchanges. In bilateral
trades, the design characteristics of the contracts, such as price, volume, or place and
time of delivery, are negotiated between the two contracting parties. By contrast, at
power exchanges standardised contracts are traded, guaranteeing a higher degree of
transparency. In Germany, just under 20% of the daily demand is traded on power
exchanges [25], while 80% are traded bilaterally. In addition, power trading is used
for speculation or to hedge against the risks of energy supply, such as price fluctu-
ations or unforeseen changes in the demand structure. Based on the time lags be-
tween closing day and delivery, principally three markets for scheduled energy can
be distinguished. On spot markets, power contracts with (physical) fulfilment on the
subsequent day are traded. Contracts whose fulfilments lie weeks or months ahead
are traded future markets. Power markets for short-dated power trading are called

1 Power demand follows seasonal, weekly, and daily patterns [28].
2 Bilateral trading is also called Over-The-Counter (OTC) trading.

264 A. Kamper and A. Eßer

intra-day markets. In Germany they are realized on the European Energy Exchange
(EEX).

In 2008, there were more than 900 energy suppliers supplying end-customers
with electricity in Germany. They comprise distribution companies of power pro-
ducers, pure redistributors, and niche players, such as green electricity suppliers.

2.3 Power Transmission and Distribution in Germany

2.3.1 Organisation of Power System Networks

Power transmission and distribution networks conduce to transfer electric energy
from power plants to the end consumer. The German transmission network, which
comprises the voltage levels of 220 kV and 380 kV, is part of the UCTE3-network
that links up the national networks in continental Europe. It is divided into four con-
trol areas operated by E.ON Netz GmbH, Vattenfall Europe Transmission GmbH,
RWE Transportnetz Strom GmbH, and EnBW Transportnetze AG. The distribution
networks, which comprise the voltage levels of 110 kV to 230 V, are operated by
so-called distribution system operators. In contrast to only four TSO, there are more
than 900 distribution system operators in Germany.

The TSO are responsible for the construction, maintenance, and operation of the
transmission system infrastructure. In particular, both the system reliability and the
quality of supply have to be guaranteed. Concerning system reliability, the num-
ber of outages has to be minimised. Regarding quality of supply, above all, a con-
stant network frequency is required. The nominal value of network frequency in
the UCTE network is 50 Hz. Deviations of the network frequency from the nominal
value cause malfunctions or damages on electrical appliances. Frequency deviations
are mainly caused by variations in power production and consumption. If less elec-
trical energy is fed into the grid than withdrawn on the consumer side, the frequency
drops below the nominal value of 50 Hz. If more electricity is supplied than with-
drawn, the network frequency rises above the nominal value.

2.3.2 Balancing of Power System Networks

Due to demand variations, forecasting errors or unforeseen events, demand and sup-
ply are virtually always in disequilibrium. Therefore, extra generating capacity for
balancing power production and consumption on very short notice is needed. Extra
generation capacity, which is made available by increasing the load of already op-
erating power plants, is called spinning reserve. By contrast, power plants, such as
pumped storage plants which have to be brought online to supply balancing power,
are called non-spinning reserve. Germany distinguishes between three types of

3 Union for the Co-ordination and Transmission of Electricity.

Strategies for Decentralised Balancing Power 265

balancing (or control) power (cp. Figure 1: primary control, secondary control, and
minutes reserve. Primary control arises from the self-adjusting reaction of power
plants (active contribution) and frequency dependent loads (passive contributions)
to frequency deviations. In the UCTE network the Transmission System Operators
(TSO) are collectively responsible for the provision of primary control. In total, a
spinning reserve of 3000 MW has to be held back, which is distributed among the
TSO proportionately to their share in total power production. The UCTE defines
secondary control as the “instructed action of particular generating sets linked to
a control loop in a control area, to move the overall system (frequency and inter-
change) deviation of the control area toward zero following the delivery of primary
control in response to a sudden variation in production or consumption.” [9] Like
primary control, it is activated automatically. Minutes reserve (or tertiary control) is
activated after 15 minutes at the latest in case of plant losses or major forecasting
errors. Unlike primary and secondary control, it is not automatically delivered but
instructed by the TSO.

The amounts of secondary control and minutes reserve to be held in a control area
are determined by the TSO. The sum of secondary control and minutes reserve must
be at least equal to the capacity of the largest power plant in the control area. After
one hour, secondary control and minute reserve are replaced by the hour (or replace-
ment) reserve. It is not held ready by the TSO but by the various balancing groups
(BG). The term balancing group relates to groups of power suppliers and consumers
in liberalised markets which are pooled, in particular, for accounting purposes.

Primary
Control

Secondary Control

Minutes Reserve

Hour
Reserve

5 s 30 s 15 min 1 h

TSO BG

t

p

Primary
Control

Secondary Control

Minutes Reserve

Hour
Reserve

5 s 30 s 15 min 1 h

Primary
Control

Secondary Control

Minutes Reserve

Hour
Reserve

5 s 30 s 15 min 1 h

TSO BG

t

p

Fig. 1 Types of balancing power in Germany

The TSO procure their balancing power by tendering. In Germany, there is a
separate tendering procedure for each type of balancing power. However, since
1.12.2007 the four German TSOs have to maintain a common tendering platform
for primary control and secondary control. For minutes reserve, it has already been

266 A. Kamper and A. Eßer

in operation since 1.12.2006 (www.regelleistung.net). To participate in the tender-
ing procedures, power plant operators have to pre-qualify. In particular, technical
requirements regarding the activation speed and availability of the units have to be
fulfilled. The billing of balancing power is regulated in para. 8 StromNZV4 [26].
While the balancing power is provided by the TSO, it is needed to countervail bal-
ance variations of balancing groups. Hence, it is cleared at the expenses of the bal-
ancing groups. Within a control area, excesses and deficits of the balancing groups
occur at the same time and even, to some extent, outside the control area. The re-
maining difference is balanced by the TSO. For settling, a uniform price for positive
(or negative) balancing power is determined for each quarter of an hour. Balanc-
ing groups with a power surplus are paid this price for variations, while balancing
groups with a power deficit are charged this price [26]. Hence, deviations from the
announced schedule can be very costly for the balancing groups. Thus, reducing
those variations by means of decentralised balancing seems a promising way of re-
ducing the costs of power supply.

2.4 Future Developments

The increasing use of RES and CHP will lead to a further decentralisation of the
power supply system in Germany. If the national targets for power generation from
RES are to be met, the RES-based power production will have to exceed 240 TWh
per year in 2020. Therefore, 67 GW of renewable capacity would have to be in-
stalled. In particular, wind energy would have to contribute with 25 GW of onshore
and 16 GW of offshore capacity to reach the target. In addition to wind energy, the
whole potential of biogenic energy carriers and geothermal energy would need to
be realised [23].

Today, the share of CHP in total power production amounts to approximately
10%. Until 2020, the federal government wants to increase that share to 25%. Con-
sidering an economic electrical potential of more than 350 TWh/a this seems ac-
complishable [32] [7]. The realisation of this potential would lead to a further de-
centralisation of the energy systems. For even though almost 70% of the potential
relates to district heating CHP, compared to large central power stations they can
still be regarded as local units.

The ongoing decentralisation of energy systems will influence the development
of transmission as well as the development of distribution networks. On the trans-
mission level, especially the concentration of wind power in the north, far away
from large consumption centres, will necessitate an extension of transmission capac-
ity, in particular in north-south direction [5].5 Regarding distribution networks, the
connection of a multitude of distributed generation capacities demands a more ac-
tive distribution grid management. Currently distribution networks in decentralised

4 Stromnetzzugangsverordnung - Power Network Access Ordinance.
5 A further reason necessitating the reinforcement of the German transmission system are

the increasing inter-regional power transfers [10].

Strategies for Decentralised Balancing Power 267

energy systems are semi-active networks, in which Decentralised Energy Manage-
ment (DEM), load shedding and the disconnection of RES units is possible to some
extent. In the future more and more so-called microgrids are most likely to emerge.
These active network systems allow a more efficient, secure, and reliable regional
energy supply. In addition, they are to enable bi-directional power exchanges as well
as islanding and autonomous operation [6]. In addition, assuming that innovative In-
formation and Communication Technologies (ICT) will be installed, the integration
of consumers into power markets is possible. To establish such microgrids, the net
infrastructure of distribution grids has to be significantly reinforced. Above all, con-
trol and protection technology has to be added. In addition, qualifications to allow
for the collection and analysis of network data and thus, to allow for an efficient
decentralised energy management, have to be set up. That way, the preconditions
for the decentralised provision of balancing power would also be set.

3 Approaches to Decentralised Balancing

It is often claimed that responsive loads and distributed generation units should be
enabled to provide balancing power. The model used mainly for the decentralised
provision of balancing power are balancing power pools. In general, such power
pools consist of small power plants and responsive loads. By pooling, they reach the
critical size to participate in the balancing power market.6 Distributed generation fa-
cilities and loads are particularly suitable to provide secondary control and minutes
reserve [30].

The main precondition for the formation of a balancing power pool is that all
participating units are information-technologically integrated. In particular, a bi-
directional communication should be possible. Participating power plants have to
guarantee short start-up times. In addition, no further restrictions such as heat de-
mands should apply. With regard to responsive loads, only (industrial) processes
allowing interruptions of up to 60 minutes are deployable. Therefore, particularly
devices with storage possibilities, such as cooling devices, seem most suitable.

In addition, Virtual Power Plants (VPP) are discussed in relation to decentralised
balancing of power system networks. They can be defined as an interactive, centrally
controlled network of distributed generation units [3]. In its composition they are
adapted to the load profile. By means of continuous optimisation and control, its
production can be adapted to the aims of the operator of the VPP. For example, peak
load demands or schedule variations can be reduced. Thus, the VPP can be used to
reduce the balancing power demand of balancing groups. In contrast to balancing
pools, the aim of the integration of the units is not to reach the critical size to act on
balancing power markets but to attain the means that reduce the amount of balancing
power which is needed by the balancing group.

6 The pooling of the capacities is necessary due to the capacity requirements of 15 MW in
Germany.

268 A. Kamper and A. Eßer

All distributed generation units forming a VPP have to be information- techno-
logical integrated. In addition, they should at least be installed in the same control
area, best, in the area of the same balancing group. Regarding the ownership, ei-
ther ownership of an energy supply company or private ownership is possible. If the
generation unit(s) are privately owned, but controlled by the power supply company
(or balancing group manager), incentive or remuneration schemes for the participa-
tion in the VPP have to be developed. Among others, profit sharing approaches or
incentives like more beneficial conditions for gas supply seem promising.

3.1 Existing Balancing Power Pools and Virtual Power Plants

To date, there are only few examples of balancing power pools in Europe. The most
prominent German power pool is the “Virtuelle Regelkraftwerk” of Steag7. The
Steag balancing power pool is open for power plants and responsive loads that fulfill
the following requirements [24]:

• the capacity made available has to be at least 1 MW,
• hourly availability,
• the temporal availability has to be at least 95%,
• the response time has to be less than 7 minutes, and
• the reserve power has to be available for at least 4 hours.

In 2008, the Steag balancing power pool had a size of 400 MW. A similar balanc-
ing pool is to be realised by a German engineering consultancy. It will be designed
to operate in the control area of E.ON. In this power pool, units of a size of more
than 100 kW will be able to participate [17].

Moreover, the Norwegian TSO Statnett8 runs a market for balancing energy,
called Regulation Capacity Option Markte (RCOM)9. Its main purpose is to guar-
antee sufficient operating reserve in winter peak load times [3].

Concerning VPPs, so far, a varying number of research projects have been un-
dertaken in Germany [1]. In most of the projects, the main research focus is the
optimisation of power generation and network utilisation. However, most of these
VPP merely work on laboratory scale. The only economically operating VPP is the
VK Unna, which is operated by the utilities of Unna [13]. It integrates five CHP
plants, one wind park, one gas turbine, and one run-on-river hydro power station.
In total, it covers 14% of the power demand within the balancing group of the util-
ities of Unna. It is controlled by a central control station, in which the operation
modes of the power plants participating in the VPP are optimised every quarter of
an hour. So far, principally positive results have been achieved. Most notably, sched-
ule variations could be reduced to 2%. In addition, the purchasing portfolio could

7 Since September 2007, Steag belongs to Evonik Industries.
8 www.statnett.no
9 Norwegian: Regulerkraftopsjonsmarkedet (RKOM).

Strategies for Decentralised Balancing Power 269

be optimised, in particular the share of proprietary generation was increased. More-
over, the maximum peak load could be reduced by 5 MW and transmission losses
were minimised.

3.2 Available Potential for Decentralised System Balancing in
Germany

The available potential for decentralised balancing power provision depends on the
availability of responsive loads as well as of small or micro generation units, such
as CHP plants. However, due to data availability problems, only rough estimations
for some industries and households can be made.

For some industries, the provision of positive secondary control and minutes re-
serve can be economically beneficial. In particular, cooling technologies as well as
air conditioning systems can be deployed. In addition, industrial CHP plants can be
used. According to Auer et al. [2], the total demand of minutes reserve could be met
with only 60% of all air conditioning systems in German trades and industries.10 At
the University of Karlsruhe, the potential for selected sectors to provide secondary
control and minutes reserve has been determined. The results are summarised in ta-
ble 3.2. According to this, especially in the food industry, a high potential for the
provision of balancing power exist. This is above all due to the high number of
cooling or heating devices.

Table 1 Potentials for the provision of balancing power in selected industries [20]

Secondary control Minutes reserve
Metalworking industry 1011 MW (-)
Plastics industry (-) 2,358 MW
Food industry 2,739 MW 10,600 MW

Like industries, households and small businesses can provide balancing power
by means of responsive loads. Condition precedent is that the operation of the cor-
responding household appliances and electrical devices is either dispensable or re-
locatable. This applies to the household appliances listed in table 2. In total, these
appliances account for 54% of the total power demand of German households. Con-
sidering those appliances, Auer et al. calculated an average load shifting potential
of 15,000 MW in summer and of 20,000 in winter [2] [18]. Similar results can be
deduced from the results obtained in a simulation study conducted at the University
of Karlsruhe [8].

In addition, micro power generation units installed in households could partic-
ipate in decentralised balancing. Concerning conventional units, only combustion
engines (CHP units and emergency generators), steam engines, micro gas turbines,

10 It was assumed a realistic availability of 90% [2] [18].

270 A. Kamper and A. Eßer

Table 2 Power demand of German household appliances in 2000 [29]

Appliance Yearly Consumption Proportion
[bn kWh] [%]

Hot water generation 15.0 13
Refrigerator 11.6 11
Freezer 11.2 10
Illumination 7.7 8
Washing machine 3.6 4
Dish washer 3.5 3
Dryer 3.2 3
Electric heating devices 2.0 2
Total 57.8 54

and Polymerelektroytmembran Fuel Cells (PEFC) fulfil the technical requirements
of balancing power provision. However, due to the small size of the units, a large
number of units has to be pooled to meet the prequalification criteria.

Today, only about 60 MW of micro-CHPs [31] and only about 30 MW of micro
gas turbines [14] are installed in Germany. Stirling engines as well as fuel cells are
available only on laboratory scale. Thus, at most one balancing power pool could be
created with the existing units. Considering future potentials, EWI et al. estimated
that until 2030, the total potential for micro fuel cells in households’ power and heat
supply will add up to between 3 GW and 15 GW [11]. However, they assume that
the capacity actually constructed will be in the range of 3 GW.

To subsume a pooling of distributed generation and/or household units to act
on the German balancing power market does not seem very promising. Therefore,
other approaches, such as virtual power plants for decentralised balancing, should
be considered.

One problem of virtual power plants is that a central control unit is needed, and
the controlled power plants have to reserve at least a fraction of their maximum
power for the VPP. Operating a central control unit can be very expensive, espe-
cially if there are many small power plants or sheddable loads. Private CHP plants
and home appliances cannot be controlled efficiently by a central unit because these
devices have to fulfil specific tasks for their owners and consume and produce en-
ergy at will. In section 4 a decentralised approach to these devices is shown which
does not need a central control unit.

4 Decentralised Balancing Power Pools

In this chapter, a new strategy is introduced to show how pools of combined heat and
power plants and home appliances like washing machines and refrigerators can be
used to reduce the amount of balancing power. In comparison to the balancing power
pools, consisting of larger power plants presented in section 3.1, the devices and
CHP plants in this pool cannot be used to form a new balancing power pool. First,

Strategies for Decentralised Balancing Power 271

the number of appliances needed to meet the requirements of 30MW to provide
secondary balancing power or 1 MW by one appliance to take part in a balancing
pool is much too large. Furthermore, the appliances cannot be used exclusively to
provide balancing power because they have different restrictions (i.e. temperature
for a refrigerator) which are more important. Whereas a balancing power pool will
only be used if there is an imbalance in the power grid, these small devices will
consume or produce energy according to their restrictions. Nevertheless, even these
small appliances and CHP plants can help to increase the efficiency by reducing the
need for balancing power.

In order to use a pool of devices in a similar way as one big power plant, the
restrictions of the devices have to be hidden inside the pool. The device pool has to
act as one big unit which can produce or consume energy as needed. If a device has
to produce or consume energy because of its restrictions, the other devices should
consume or produce the equivalent so that the energy usage of the whole pool is in
balance. The devices in the pool have to find suitable partners to cover their energy
needs. The remaining degree of freedom can then be used to reduce imbalances in
the network.

The main idea is to group some devices in the pool so that their resulting load
curve matches the energy usage of other devices. This can be done by rescheduling
the devices or by adjusting their load. The resulting optimisation problem is a vari-
ation of the NP-complete knapsack problem [16] [19] [4]. The knapsack problem
has been studied for a long time in operations research, management science and
computer science. In the classical 0/1 knapsack problem a set of items has to be
chosen to get the highest profit. Every item has a profit pi j and a weight wi j. All
chosen items have to be put in a knapsack with capacity c. The problem is to select
a subset of items whose total weight does not exceed the knapsack capacity c and
whose total profit is the maximum. The formal description of the problem is shown
in the following formula.

P = max
n

∑
i=1

pi ∗ xi (1)

subject to
n

∑
i=1

wi ∗ xi ≤ c,xi ∈ [0,1], i ∈ 1, ...,n (2)

xi =
{

1 item i has been chosen
0 else

(3)

xi item i
wi weight of item i
pi profit of item i
n number of items

To cover the energy usage of devices in the pool, a set of devices is needed that
is able to produce or consume the energy. Normally the energy usage will last for
several minutes so the devices must cover it for the same time. In contrast to the

272 A. Kamper and A. Eßer

items in the classical knapsack problem, the devices have 2 dimensions (load and
runtime) and the capacity of the knapsack is the needed energy over time. The goal is
to fill the knapsack as good as possible so that the remaining deviation is minimised.
In the classical knapsack problem, this would mean that the profit of an item is the
same as the weight. The maximum profit is then the same as the capacity of the
knapsack. Another difference to the classical problem is that the pieces do not have
a fixed size. This means the load of all devices is not fixed but start time, runtime
and energy usage can be adjusted. It is even possible to overload the knapsack by
scheduling more devices than necessary. In literature, there are different approaches
on how to deal with overloading. In many papers a penalty is added to the profit in
order to avoid overloading [27] [22]. In this scenario, it does not matter whethter
the deviation is positive or negative. Therefore overloading means that the resulting
deviation increases again and because of this no extra penalty is needed.

The formal description of the problem is shown in the next equation.

I = min|
te

∑
t=ts

{
Pc(t)+ ∑

i∈A

Pi(t)

}
| (4)

c device c that needs cover
Pc(t) energy usage of device c in time slot t
Pi(t) consumption or production of device i in time slot t
ts start time of the imbalance
te end time of the imbalance
I remaining Imbalance

In equation 4, the sum of all covering devices in every time slot is added to the
energy usage of the load of device c. The energy usage of device c and of all other
devices can change in every time slot. As described above, it does not matter if the
cover is too small or too large. Only if I is 0, the cover fits perfectly and production
and consumption are in balance. In contrast to many synthetic knapsack problems,
most of the time there is not only one optimal solution. The possibility to resize the
schedules leads to many possible optimal solutions. Because of this the optimisation
problem gets much easier and this reduces the resources needed to find an optimal
solution.

All devices in the pool are responsible for finding suitable partners to cover their
energy usage. In this decentralised approach all devices form a Peer-To-Peer (P2P)
network where every node can communicate with all other nodes. The details of the
P2P network are not shown here, but it is implied that a P2P network is available.
Due to privacy reasons, it is not possible to send the characteristics of all devices to
a central server, which can identify suitable partners for all appliances. Furthermore,
much computational resource would be needed to solve the resulting problem with
all the constraints of all devices and power plants.

In this approach the identification and the optimisation are done by the house-
holds using the existing infrastructure. This can be done by each device or by a
central unit inside each household. One of the main objectives of this approach is to
keep the technical requirements so low that it is inexpensive enough to equip every

Strategies for Decentralised Balancing Power 273

device with a very small control unit or that programmable routers can be used for
this task. Routers are advantageous in that they already have access to the internet.
It would also be possible to use a normal computer (2GHz single core) but it would
not be efficient to run a computer whose energy use is higher than the consumption
or production of the controlled devices and power plants. To take part in such a pool
the devices must be able to express their energy needs and to describe their degree
of freedom regarding their energy usage.

This appliance pool is not designed to completely replace the normal balancing
power plants but to reduce the amount of energy needed by balancing groups. As
stated in section 2.3, balancing groups have to pay for all imbalances between their
forecast and the actual consumption. The balancing groups are therefore interested
in a fast adjustment of production and consumption.

Not all home appliances can be used for this pool because they do not have a
degree of freedom in their energy usage. Only devices which are able to shift their
energy usage at least for a couple of minutes can be used. For instance, multimedia
appliances cannot be rescheduled because the impact on the household would be too
large. The following list enumerates the devices which can be used in this approach:

• Air conditioner
• Refrigerator
• Freezer
• Elec. Heating
• Dishwasher
• Washing machine
• Dryer

The energy usage of these appliances can normally be shifted for a couple of
minutes without any problems.

The households that own the devices are neither at a disadvantage nor at an ad-
vantage if their appliances are influenced by external signals. Furthermore, to inte-
grate appliances into such an appliance pool the household has to pay for the internet
connection and the control units. Therefore, the household must be paid a small par-
ticipation fee. If the pool is managed by the balancing group manager, it can be used
to reduce the cost of balancing power. The balancing group manger divides a frac-
tion of these savings between all participating households and keeps the rest. If the
pool is managed by someone else, this manger has to provide an incentive. Without
an incentive, households will not take part in such a system. In contrast to secondary
balancing power, no kW hour rate is needed because the appliances and CHP plants
must run to fulfil their restrictions. Only the activation time has changed and not
the overall energy usage so that usually no additional charge has to be paid. In the
proceeding subsections the data format used to describe the degree of freedom of
the appliance, the optimisation inside the pool to hide the restrictions and the usage
of the pool to reduce imbalances is presented.

274 A. Kamper and A. Eßer

4.1 Data Modelling

One of the main problems is how the appliances and CHP plants can exchange
information on their energy usage. This includes the energy needed or produced,
the exact time and the duration. Based on these values it is possible to modify the
load curve considering the restrictions and constraints. Note that for CHP plants the
production is only a negative consumption and vice versa. In the following, it will
only be distinguished between devices that consume electricity and power plants
that produce electrical energy if the difference is important. Below, refrigerators are
the main example used to explain the data modelling. The usage of the data model
is identical for all other appliances.

The energy usage of the appliances depends on the internal status (i.e. temper-
atures for refrigerators) and the tasks it has to perform (i.e. dry clothes). The task
is normally specified by the owner with certain restrictions (i.e. finish drying until
6pm). To determine the status value of an appliance or a plant it needs the ability
to measure some parameters and check its restrictions. Based on these values it is
possible to predict the status in the future. For a refrigerator this means that it must
know the actual temperature, the minimum or maximum temperature specified by
the owner and the temperature change per minute if turned on or off. If this data is
not known in advance by the manufacturer or depends on the current situation, it
can be easily measured automatically. With this data, the time the refrigerator has
to be turned on again can be calculated easily. The specified data like temperature
changes and the prediction can be influenced by external effects. These effects could
be, for instance, that the refrigerator is opened by the owner, weather conditions or
the filling of the fridge. Due to this, the prediction has to be adjusted, if necessary.

Figure 2 shows the condition of a refrigerator. The solid line marks the temper-
ature over time and the dashed lines mark the limits (right scale). The blocks show
the time, length and energy usage of a device (left scale). At the top, all relevant
parameters are shown. As you can see, the refrigerator is always turned on and of
when reaching the limits.

Fig. 2 Parameters of a refrigerator

Strategies for Decentralised Balancing Power 275

With this data, a control unit is able to predict the point of time when the re-
frigerator must be turned on at the latest. Regarding the maximum and minimum
temperature, a refrigerator is rather free in its energy usage. Normally a refrigera-
tor starts when the temperature reaches the maximum temperature and stops at the
minimum temperature. The energy consumption is fixed by the manufacturer and
depends only on the refrigerator itself, so to change the temperature permanently a
refrigerator can only increase its activated time. Other, more complex devices have
many more constraints like

• minimum and maximum runtime
• minimum and maximum rest period
• minimum and maximum power consumption
• minimum and maximum power production (for CHP plants).
• latest time to finish a job
• earliest start time
• heat profile of a household (for CHP plants).

The degree of freedom in the energy usage is limited by these constraints. In
figure 3 the status of a refrigerator is shown again. This time the schedules are not
automatically created when the temperature reaches the limits but rather free, but
with respect to the constraints.

As can be seen with the schedule shown in figure 3, a) the refrigerator will exceed
the maximum temperature. In order to keep the limits it is necessary to activate the
refrigerator again before reaching the limit. With regard to the rest of the schedule
there are several points of time where the refrigerator can be activated. Figure b)
shows a new schedule. The new activation time starts at t1 and must at least last until
t2 and at the most until t3. A shorter or longer activation time will exceed the limits,
as shown in the figure. These values show the degree of freedom of an appliance
regarding a fixed start time. For other start times it is necessary to calculate all values
again. This works as well for CHP plants which produce heat for the household and
electricity. Not only the activation of a device or a CHP plant can be used in the pool
but also the deactivation. If a device stops consuming energy, it is the same as if a
power plant produces this amount. This means that a refrigerator can produce energy
by going into stand-by mode, and a CHP plant can consume energy by lowering its
production.

The calculation of all possible and correct schedules is rather complex concern-
ing all the constraints mentioned above. Another problem is the privacy of the data.
With the specification and the constraints of an appliance it is possible to get confi-
dential information on the household (e.g., is anybody home during the day, which
devices are available and other private information). To cope with this problem, the
transferred data to describe the degree of freedom of every appliance is restricted to
non-confidential information which cannot be used to gather private information on
the household.

Only the following values are considered to express the degree of freedom of an
appliance for a specific time:

• maximum activation time

276 A. Kamper and A. Eßer

• minimum activation time
• minimum energy consumption/production
• maximum energy consumption/production

With this simple representation it is possible to express many possible sched-
ule changes. Due to the complex constraints, it is not possible to express all valid
schedule changes in this format.Note that this format can also be used by a house-
hold to represent not only one appliance but the data of all controllable devices in
a household combined. This reduces the communication overhead and hides appli-
ance details from the outside.

To express the degree of freedom for a certain period, these values have to be
computed for every possible start time. Within a timeframe of 60 minutes and
a minute-based slot size there are 60 possible start times and, for this reason,
60x4=240 values for each production and consumption. This data format is much
smaller than the complete description of the device including the complete schedule
for the next couple of hours. Because of the restrictions, which must be complied
with, the complete schedule, instead of only parts, would be necessary (cf. figure
3). With this simple data format all appliances and CHP plants can exchange their
data without violating the privacy of the households. The calculation of the needed
values is rather simple and does not require much computational power. The calcu-
lation can be done by control units like intelligent routers inside the households. In
the next subsection this data is used to optimise the appliance pool.

Fig. 3 Possible schedules for a refrigerator

Strategies for Decentralised Balancing Power 277

4.2 Optimisation

The main objective is to create a decentralised appliance pool similar to the balanc-
ing pools in section 3.1. Due to the restrictions, the appliances and CHP plants will
consume and produce power at will. Production and consumption must be in bal-
ance in order to use the pool to reduce the amount of balancing power in a balancing
group. To create a balance between consumption and production in the device pool,
all appliances and CHP plants must find suitable partners to cover their energy us-
age. This means that energy consumers must find one or more CHP plants that can
produce the necessary amount or other appliances that can be turned off. In a first
step a pool is created which is able to satisfy its power demands without external
power plants and loads. In the following subsection, this pool is used to reduce the
amount of balancing power needed.

With the data format introduced in the last paragraph, all devices are able to ex-
press their degree of freedom regarding the energy usage. Furthermore, a device is
able to predict its own energy usage in the future. If a device foresees that it has
to be turned on in the next couple of minutes, it has to ask its neighbours to cover
the energy consumption or production. The device contacts its P2P neighbours over
the internet and asks for their description of the degree of freedom for the period in
which it wants to consume or produce power. The number of neighbours needed
depends on the ratio between the own energy needs and the possible consump-
tion/production of the neighbours. If the neighbourhood is too small, there might
not be enough other devices to find suitable partners, and this will lead to an im-
balance in the pool. If the neighbourhood is too large, the communication overhead
will increase, just like the needed computation time to identify and select the best
set of partners. Due to this fact, every device has to adjust the size of the P2P neigh-
bourhood regarding the quality of the solution and the time needed to find a good
solution. If the quality of the optimisation is not sufficient, the neighbourhood can be
increased. If it takes too much time for the optimisation, the number of neighbours
can be decreased.

Fig. 4 General structure of Evolutionary Algorithms

278 A. Kamper and A. Eßer

When asking other devices for cover, the stated period has to be slightly bigger
than the activation time. This allows covering devices to start a little bit earlier or
run longer in order to be used for cover at all. An early start time or a longer runtime
will lead to an imbalance but this might be the only possibility to get an acceptable
cover. To cover the energy use, CHP plants can either increase the production or
other devices can reduce their load. If a CHP plant needs to produce power because
the heat is needed by the household, it is possible to decrease the production or
to increase the consumption in the pool. How many appliances or CHP plants are
needed depends on the amount of power needed and the consumption/production of
the neighbours.

As described before the resulting optimisation problem is a variation of the well-
known knapsack problem. Normally the problem size is small enough to be solved
even by full enumeration on today’s standard computers. Since it is not efficient to
run a computer with a power consumption of more than 200 Watts for load balanc-
ing purposes in every household, an Evolutionary Algorithm is used to speed up
the calculation of good solutions. Evolutionary Algorithms have proven to be able
to solve such problems and there is a lot of research in this field. The Evolutionary
Algorithm is used to select suitable partners and to create the corresponding sched-
ules. In an Evolutionary Algorithm, different possible solutions are recombined and
slightly changed in order to find better solutions.

In an Evolutionary Algorithm, different solutions are called individuals and an
individual normally consists of several parts, the so-called genes. For example, the
genes could be different parameters in a function. The individuals are rated with
regard to the fitness function, which represents the problem and allows the compar-
ison of individuals. The general structure of Evolutionary Algorithms is shown in
figure 4.

In the first step a population of random individuals is created and all individuals
are evaluated with regard to the given fitness function. Then several parents are
selected and used to create new individuals from the genes of the parents. The genes
of the children are mutated randomly to create new genes in the population. After
the mutation step the children are evaluated and the new population is selected with
regard to the fitness. If the resulting fitness is not good enough, the algorithm starts
again for a new generation. Besides fitness, other conditions (e.g. computing power
or time) may limit the number of generations.

Here the Evolutionary Algorithm should select the partner and create the sched-
ules with minimum resources. Based on the format from the last paragraph, the
Evolutionary Algorithm has all the information from the neighbours that is needed
to find a good cover.

Because every device has to calculate its degree of freedom for itself, and it can
do this in advance, the resulting problem is much smaller than when one device has
to compute the degree of freedom regarding the restrictions for all neighbours and
then select suitable partners. The Evolutionary Algorithm has only to decide if a
neighbouring device should be used at all. It has to find the best start time, runtime,
and consumption/production of electricity for all those devices. Every device can
only be used once, otherwise it could exceed the restrictions of the appliance (cf.

Strategies for Decentralised Balancing Power 279

subsection 4.1). The genes of an individual in the Evolutionary Algorithm contain
the schedule for one device, which consists of start time, runtime and energy usage.

In the first tests a standard Evolutionary Algorithm is used. The population size is
15, and a (15 + 2) reproduction scheme is used, i.e. in every generation, 2 offspring
are generated and compete for survival with the individuals from the old popula-
tion. Crossover type is a simple one-point crossover. Every schedule (consisting of
start time, runtime and load) for a device is one gene. The crossover takes a random
number of genes from one parent and the rest from the other. During the mutation
step the start time, runtime and the load can be changed. The start time is randomly
shifted and the runtime randomly increased or decreased. Since start time and run-
time are integer values the range of possible values is rather small. The load is a real
value with a much wider range. The mutation of the load is Gaussian and the step
size is fixed with respect to the minimum and maximum load of the device.

The quality of the solution depends on the neighbours in the P2P network, the
distribution of energy consumers and producers in the district and their energy needs
during the day.

As main test scenario, a virtual district based on real data and various statistics
[8] with more than 1000 households is used. This model has been used before to
test the impact of price signals on the load management of households and small
businesses. There are 1960 refrigerators or freezers and 84 combined heat and power
plants in the district which are now used to form a decentralised balancing power
pool. The energy consumption of the refrigerators and freezers is almost the same
as the production of all combined heat and power plants. Because of this difference,
there will always remain an imbalance in the pool. The district is simulated for 1440
minutes (1 day). Every device has to find cover for its energy demand over the course
of the day. This leads to more than 20,000 runs of the Evolutionary Algorithm per
simulation.

In the first test without any optimisation the resulting imbalance in the pool is al-
most 11% of the complete production and consumption. This imbalance is not only
caused by the uncoordinated energy usage of the devices but also by the difference
between overall consumption and production mentioned before. This difference be-
tween production and consumption cannot be avoided and is responsible for about
one sixth of the resulting imbalance. The minimal possible imbalance is therefore
greater than about 2%. Regarding the different constraints of the devices and the
overall energy demand, the minimal imbalance has to be even greater. The goal is
to get as close as possible to this minimal imbalance.

Table 3 Remaining imbalance in the device pool (EA only)

Size of neighbourhood
10 40 70 100 130 160 190 220

Remaining imbalance (%) 10.75 9.52 8.47 8.15 7.91 7.84 7.41 7.27
Average cover (%) 21.69 37.64 40.94 45.50 49.07 51.89 54.2 56.31

280 A. Kamper and A. Eßer

Using the Evolutionary Algorithm to select suitable Partners and to create the
needed schedules reduces the overall imbalance to 7.22%. Every entry in the fol-
lowing table is the average of at least 10 simulation runs. Every simulation configu-
ration was tested with different parameter settings and the best results are shown in
table 3. The size of the neighbourhood is fixed but normally not all neighbours are
able to provide cover. Therefore, the resulting number of possible schedules can be
much smaller.

It can be seen that the resulting imbalance can be reduced by increasing the size
of the neighbourhood. The second row shows the average cover a device gets when
looking for suitable partners. Depending on the size of the neighbourhood and the
restrictions of the devices in the neighbourhood, it often happens that there is not
one suitable partner and the resulting cover is 0%. This problem reduces the overall
performance in the simulation but is not a direct problem of the Evolutionary Algo-
rithm. Additionally, devices and combined heat and power plants sometimes ask for
a relatively small amount of energy. If, for example the minimum production of a
CHP is much greater than the needed cover the CHP plant cannot be scheduled and
the resulting cover is again 0%.

The analysis of the data showed that the Evolutionary Algorithm performs well
if it must not adjust the load of the devices. The algorithm finds the integer val-
ues for start time and runtime quickly but is not able to adjust the real values for
the load that fast. There are two problems adjusting the load of devices. The load
has a bigger range (e.g. a CHP plant can produce between 1000 and 5500 Watts)
and the range is not steady (0 and from minimum production to maximum pro-
duction). Increasing the number of generations does not work as well as increasing
the neighbourhood. In a bigger neighbourhood there are more devices with differ-
ent load profiles form which the algorithm can select the best subset. Even if the
neighbourhood contains more than 100 devices, not more than 30 are normally used
in the best solution. A bigger neighbourhood increases the resources (computation
power, memory, bandwidth) needed to find a good solution and therefore cannot be
done by small control units. Because of that, a local search is integrated into the
Evolutionary Algorithm that should help the algorithm find the local optimum for
every individual. The changed structure of the Evolutionary Algorithm is shown in
figure 5.

The local search is very simple but also very efficient with regard to this prob-
lem. For every planned device, the local search tries to find a better position just by
adjusting the load and moving the schedule. After the recombination and the muta-
tion step of the Evolutionary Algorithm, the local search is started and the resulting
local optimum is inserted into the population as the new child. The population then
consists only of local optima and that speeds up the convergence to a global optima.
The local search performs the following tests for each device in an individual and
accepts the solution if the cover improves:

• increasing or decreasing the energy usage
• earlier or later start point
• longer or shorter runtime
• later start point and a reduced runtime

Strategies for Decentralised Balancing Power 281

• earlier start point and increased runtime

As long as there is a significant improvement all tests start again. The third and
fourth tests look very similar to the first two but they cover a situation which the first
two cannot detect. Figure 6 shows the first 4 situations. In the figures, the dashed
rectangle symbolises the energy usage that is needed to cover a device, and the grey
rectangle represents the schedule of a neighbouring device. In figure a) and b) it is
obvious that the cover can be improved by simply moving to an earlier start point
or to a later one. In figure b) and c) the cover improves by increasing or decreasing
the runtime of the device. In figure e) none of the first two tests will lead to an
improvement. Only the combination of a later start point and a reduced runtime
leads to optimal improvement. In the last case, e) a combination of earlier start point
and increased runtime is needed for an optimal cover. Because of this all five tests
are necessary to find a local optimum based on an individual of the Evolutionary
Algorithm.

It would be possible to skip tests c) and d) by changing the data format from start
point, runtime, and consumption/production to start point, end point, and consump-
tion/production. The resulting tests would then be:

• earlier or later start point
• earlier or later end time
• increasing or decreasing the energy usage

The selected format has some programming-related advantages and was there-
fore selected for implementation. All these tests are performed with respect to the
constraints specified by the devices. If the power usage exceeds the lower limit spec-
ified by the device, that device is removed from the list. In the next generation, the
Evolutionary Algorithm can schedule this device again, if needed.

Fig. 5 Structure of the Evolutionary Algorithm with local search

282 A. Kamper and A. Eßer

In a last optimisation step, the number of devices is reduced. CHP plants and
some appliances have the highest efficiency if used with full load. The efficiency
decreases if they run blow their maximum load. Due to this fact, most of the devices
should run with full load. The local search removes randomly single devices from
the best solution of the Evolutionary Algorithm and tries, by employing the tests
described above, to fill the gap. This optimisation step could also be included in the
normal local search or it could be added to the Evolutionary Algorithm to assure that
all solutions in the population have the minimal devices needed. The results prove
that it is sufficient to run this optimisation step only once at the end and, by doing
so, save the computational resources.

Table 4 Remaining imbalance in the device pool (EA with local search)

Size of neighbourhood
10 40 70 100 130 160 190 220

Remaining imbalance (%) 9.89 7.92 6.19 5.22 4.84 4.83 5.06 5.59
Average cover (%) 42.52 67.1 75.38 79.27 80.36 80.58 80.58 80.44

In table 4 the results of the combined algorithm are shown. The performance of
the Evolutionary Algorithm in combination with a local search is significantly bet-
ter than the results shown in table 3. The local search is very expensive regarding
the computational cost for one generation of the Evolutionary Algorithm. The cal-
culation of the fitness, which is the most expensive part, has to be done much more
often than in the standard algorithm. Nevertheless, the combined algorithm is much
faster because the size of the neighbourhood can be reduced. The reduced num-
ber of neighbours accelerates the optimisation again. Furthermore, the number of

Fig. 6 Tests of the local search

Strategies for Decentralised Balancing Power 283

generations can be decreased from more than 1200 to about 160, saving additional
resources.

The Evolutionary Algorithm is now used for the exploration of the search space,
and the local search is used for the exploitation in a specific region. The Evolution-
ary Algorithm selects the set of devices that should be used and the local search is
responsible for moving and resizing the schedule so that the given set of devices fits
best. Although the performance of the local search in finding a local optima is much
higher than the performance of the Evolutionary Algorithm, the local search is not
able to move to a new search space or to select a new set of devices. For example,
only the Evolutionary Algorithm is able to switch the start time of devices or to
adjust the runtime of more than one device at the same time.

With this combination, the imbalance in the pool can be significantly reduced
without the need for any central control. The resulting pool is able to hide its re-
strictions to the outside and the remaining imbalance could be reduced by more
than 55%. The remaining degree of freedom in the pool can now be used to reduce
imbalances from outside the pool. In the next subsection, this pool is used to reduce
the necessary balancing power.

Figure 7 depicts a screenshot of the Graphical User Interface of the simulation
tool. The diagram contains the load curve and the status of a CHP plant which needs
cover for its energy production. The production of the CHP plant is shown above the
x-axis and below are the appliances which cover the energy usage. As can be seen,
the production of the CHP plant is perfectly covered. Every small block symbolises
a different appliance or CHP plant. To cover a CHP plant, many different appliances
are needed which can satisfy their energy demand by covering the CHP plant.

The results show that the algorithm does not need many resources and can be im-
plemented on much smaller devices with only a fraction of the computational power.
The decentralised approach, where all devices determine their degree of freedom for
themselves, and then these descriptions are used for the optimisation, speeds up the
algorithm. Therefore, with a forecast time of 2 to 5 minutes and a small DSL inter-
net connection there is enough time to communicate with the neighbours and to find
a good solution.

In table 4 the results are shown if the algorithm does not stop after a number of
generations but after a specific time (here 100 and 1000 ms). The results show that
even in this short period the algorithm can find a good cover. The best size for the
neighbourhood is between 70 and 130.

Table 5 Remaining external imbalance in percent (EA with local search)

Size of neighbourhood
Optimisation time 10 40 70 100 130 160
100ms 9.95 7.73 6.25 5.63 5.48 6.02
1000ms 9.88 6.39 5.12 5.52 5.90 6.58

If the cover is not good and there is enough time, the device can increase or
change the neighbourhood and start the optimisation process once more or just take

284 A. Kamper and A. Eßer

the best solution. The missing cover will result in an imbalance which must be dealt
with by obtaining balancing power.

4.3 Providing Balancing Power

The last section introduces a method to create an appliance pool which causes only
small imbalances in the power grid and tries to satisfy its own energy needs. This
pool can now be used in the same way as the balancing power pools in section 3.1.

The remaining degree of freedom of the devices in the pool can be used to provide
balancing power. The method is similar to the search of cover of a single device
shown in the last paragraph. Every time imbalance of a specific size occurs in a
balancing group, the balancing group manager can simply submit a request to the
pool to cover a specific amount of the imbalance for a fixed period. If the pool is

Fig. 7 Cover of a Combined Heat and Power plant

Strategies for Decentralised Balancing Power 285

able to cover this amount, it is not necessary to obtain balancing power from other
expensive power plants.

The balancing group manager is able to control the power output in the grid with-
out controlling all appliances and CHP plants and without knowing details about the
devices in the pool. This allows the balancing group manager to adjust to new situa-
tions caused by renewable energy sources and reduces the expensive imbalances in
his balancing group.

Another advantage of the decentralised pool is that it is not necessary for the bal-
ancing group manager to provide a central computer which handles all imbalances;
rather, it is possible to use as many control units as needed. At every connection
between different balancing groups, the current flow is measured to determine the
schedule in the balancing group. Because the current flow is known in advance for
every connection, it is possible to determine which balancing group is responsi-
ble for the imbalance, and react accordingly. Every connection point that is able to
measure the current flow can be amended with a control unit similar to those in the
households.

The balancing group manager can even feign an imbalance to control the power
usage in the area. This can be used to either balance the unforeseen output of renew-
able energy sources or to cope with a mismatch of current consumers and combined
heat and power plants. If the pool only consists of energy consumers, it is not pos-
sible for the pool to produce its own power consumption. Due to this fact, the pool
will always produce a loss of energy in the balancing group. To solve this problem
the balancing group manager can feign a power surplus in the grid so that the pool
has enough imbalance to satisfy the energy needs of the pool. To do so, the manager
has to make a higher forecast for the balancing group and make sure that normal
power plants provide the required energy. The fake imbalances work as additional
CHP plants for the devices in the pool, which they try to cover as described above.
This strategy also works in pools consisting only of CHP plants. In such a situation,
the balancing group manger has to lower its forecast so that the CHP plants can be
turned on to produce heat for the households whenever necessary.

The distributed balancing power pool has been tested with an external synthetic
imbalance.The results of the tests are shown in table 6. After a fixed period, an
imbalance was created with a fixed load and duration. The pool was then asked
to cover the imbalance as good as possible. After that imbalance, the pool had a

Fig. 8 Imbalances in a virtual district

286 A. Kamper and A. Eßer

Table 6 Remaining external imbalance in percent with and without optimisation (values in
brackets)

load of imbalance in kW
duration 10 20 30 40 50 60
30 min 5,29 (12,70) 6,07 (15,48) 9,24 (19,80) 14,75 (27,08) 20,18 (33,68) 25,93 (41,66)
60 min 5,25 (12,85) 6,15 (14,04) 8,39 (17,94) 11,86 (23,14) 16,16 (28,35) 20,72 (32,96)
90 min 5,35 (12,70) 5,92 (14,02) 7,69 (16,08) 10,09 (20,68) 14,15 (24,46) 17,77 (27,81)

couple of minutes to organise again until the next imbalance (now with the negative
load) was created. The size of the neighbourhood for the optimisation of the external
imbalance was set to 160 and the size of the neighbourhood for the devices was set
to 100. The results show that the overall imbalance can be reduced by 40 to 60%.

Figure 8 shows an example of random imbalances in the simulation. The imbal-
ance changes over time and can be positive and negative. The scale on the left shows
the deviation in Watts. The balancing group manager has to pay for the imbalances
because he has to obtain balancing power from outside to balance his group. By
installing the decentralised appliance pool, the deviation can be reduced. The first
diagram of figure 9 indicates the resulting imbalances. The reduction of deviations
is significant. Whereas in the example in figure 8 the largest external imbalance
is almost 12,000 Watts, the largest deviation in figure 9 is 55 Watts at most. The
imbalance inside the pool is not shown in the figure.

Fig. 9 Reaction of the decentralised balancing pool

Strategies for Decentralised Balancing Power 287

The second and third diagram of figure 9 show the resulting schedule for the
home appliances and CHP plants. Many home appliances and CHP plants are
needed to cover the imbalance.

With the new approach and the combination of the Evolutionary Algorithm with
the local search the remaining imbalance could be reduced by up to 60%. These
results show that even small devices with many restrictions can be used to provide
balancing power.

5 Conclusion

In this chapter, a new approach was presented that shows how small home appli-
ances like washing machines or refrigerators and privately owned combined heat
and power plants can be used to reduce the balancing power. Like existing balanc-
ing power pools and Virtual Power Plants, where smaller power plants and larger
sheddable loads are pooled to meet the requirements to provide balancing power or
act as one big power plant, these home appliances are also pooled together. Although
these self-organising appliance pools are not large enough to meet the requirements
to provide balancing power, they can still be used by balancing groups to reduce the
amount of balancing power needed.

Due to restrictions of the home appliances, these devices cannot be used exclu-
sively due to restrictions and specific tasks from the owner. A self-organising ap-
proach concerning how the pool can hide the restrictions of the appliances from the
outside was presented in this chapter. The devices in the pool have to find suitable
partners inside the pool which replace them if they have to fulfil specific tasks and
other partners to cover their energy demands so that consumption and production
are always in balance.

Because it is not efficient to run a computer in every household, the resources
necessary to find these partners must be kept very low so that small control units or
even DSL Routers are able to perform the optimisation. A data model for all devices
to express their energy needs, their restrictions and degree of freedom was outlined.
For the optimisation an Evolutionary Algorithm in combination with a local search
is used to find partners and create the corresponding schedules. The resulting pool
acts as though it has no restrictions at all, and the remaining degree of freedom can
be used to reduce imbalances in a balancing group. Therefore, the balancing group
manager can use the pool as though he needed cover for one of his devices to reduce
the deviation in the balancing group.

References

[1] Arndt, U., Roon, S.V., Wagner, U.: Virtuelle Kraftwerke: Theorie oder Realität?
BWK 58(6), 52–57 (2006)

[2] Auer, H., Huber, C., Stadler, M., Obersteiner, C., Ragwitz, M., Klobasa, M.: Model-
lierung von Kraftwerksbetrieb und Regelenergiebedarf bei verstärkter Einspeisung von
Windenergie in verschiedene Energiesysteme unter Berücksichtigung des Lastmanage-
ments, endbericht edn. TU Wien (2005)

288 A. Kamper and A. Eßer

[3] Auer, H., Haas, R., Faber, T., Weißensteiner, L., Obersteiner, C., Fuchs, E., Heher,
A., Höhne, U., Molnar, P., Kastner, S.: Faire Wettbewerbsbedingungen für Virtuelle
Kraftwerke - Projektbericht im Rahmen der Programmlinie Energiesysteme der
Zukunft. Bundesministerium für Verkehr, Innovation und Technologie, Wien (2006)

[4] Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack prob-
lem. Journal of Heuristics 4(1), 63–86 (1998),
http://dx.doi.org/10.1023/A:1009642405419

[5] dena: Zusammenfassung der wesentlichen Ergebnisse der Studie, En-
ergiewirtschaftliche Planung für die Netzintegration von Windenergie in Deutschland
an Land und Offshore bis zum Jahr 2020 (dena-Netzstudie) durch die Projektsteuer-
gruppe (2005)

[6] Driesen, J., Katiraei, F.: Design for Distributed Energy Sources. IEEE power & energy
magazine, 30–40 (May/June 2008)

[7] Eikmeier, B., Schulz, W., Krewitt, W., Nast, M.: Nationales Potential für hocheffiziente
Kraft-Wärme-Kopplung. Euro Heat & Power 35(6), 2–10 (2006)

[8] Eßer, A., Kamper, A., Franke, M., Möst, D., Rentz, O.: Scheduling of electrical house-
hold appliances with price signals. In: Waldmann, K.H., Stocker, U.M. (eds.) Operations
Research Proceedings 2006. Springer, Heidelberg (2006)

[9] ETSO, Current State of Trading Tertiary Reserves Across Borders in Europe. ETSO
(2005)

[10] EUROSTAT Energy - yearly statistics 2005 (2007)
[11] EWI, Progno, Die Entwicklung der Energiemärkte bis zum Jahr 2030 - Energiereport

IVB (2005)
[12] EWI, Prognos, Energiereport IV - Die Entwicklung der Energiemärkte bis zum Jahr,

Oldenbourg Industrieverlag (2005)
[13] Forster, J.: Mehr als nur Regelenergie - Ein Jahr virtuelles Kraftwerk der Stadtwerke

Unna. Energie Spektrum 20(4), 16–17 (2005)
[14] hessenEnergie, Mikrogasturbinen im Markt der Kraft-Wärme-Kopplung (2004)
[15] Hille, M., Pfaffenberger, W.: Power Generation in Germany: How to Close the Gap in

Gemeration Capacity in the Context of a Liberalized Energy Market. In: 3rd Conference
on Applied Infrastructure Research Network Economics: Financing, Regulation and
Capacity Allocation in Infrastructure Sectors, pp. 953–972 (2004)

[16] Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer, Heidelberg
(2004)

[17] Ingenierubüro, H.K.: Das virtuelle Regelkraftwerk (2008)
[18] Kirby, B.: Spinning Reserve From Responsive Loads. Oak Ridge National Laboratory,

Oak Ridge (2003)
[19] Kumar, R., Banerjee, N.: Analysis of a multiobjective evolutionary algorithm on the 0-1

knapsack problem. Theor. Comput. Sci. 358(1), 104–120 (2006)
[20] Marquardt, F.: Analyse industrieller Bereitstellungspotentiale an Netzregelenergie

(Diplomarbeit). Universität Karlsruhe, Karlsruhe (2007)
[21] Möst, D., Genoese, M., Eßer, A., Rentz, O.: European electricity and emission market

modeling - the design of emission allocation plans and its effects on investment plan-
ning. In: IEEE Proceedings of the 5th Conference on the Euroepean electricity market
(EEM) (2008)

[22] Olsen, A.: Penalty functions and the knapsack problem. In: Proceedings of the First
IEEE Conference on Evolutionary Computation, 1994 IEEE World Congress on Com-
putational Intelligence, vol. 2, pp. 554–558 (1994)

http://dx.doi.org/10.1023/A:1009642405419

Strategies for Decentralised Balancing Power 289

[23] Rosen, J.: The future role of renewable energy sources in European electricity supply:
A model-based analysis for the EU-15. Universitätverlag Karlsruhe, Karlsruhe (2007)

[24] Rothweiler, H.: Marktgesetz oder Manipulation. Energiespektrum (11), 24–25 (2005)
[25] der Markttransparenz in Stromhandel”’ SBLAV, Verbesserung der Markttransparenz

auch auf europäischer Ebene / Strompreisbildung an der EEX. In: Wirtschaftsminis-
terkonferenz am 19./20, Darmstadt (November 2007)

[26] StromNZV, Verordung über den Zugang zu Elektrizitätsversorgungsnetzen (Stromnetz-
zugangsverordnung) vom 25. Juli (BGBL Teil I, S. 2243) (2005)

[27] Uyar, S., Eryiğit, G.: Improvements to penalty-based evolutionary algorithms for the
multi-dimensional knapsack problem using a gene-based adaptive mutation approach.
In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary
computation, pp. 1257–1264. ACM, New York (2005)

[28] VDEW, Repräsentative VDEW-Lastprofile (1999)
[29] VDEW, Energie im Haushalt, Berlin (2002)
[30] Roon, S.V., Arndt, U., Wagner, U.: Simulation von Mikro-KWK-Anlagen zur Bew-

ertung von Netzintegrationskonzepten. In: 5th International Energiewirtschaftstagungs
2007 an der TU Wien (2007)

[31] Wacker, J., Schulz, C., Kurrat, M.: Virtuelle Kraftwerke mit Mini-Blockheizkraftwerken
- eine wirtschaftliche Utopie? EW 104(17/18), 20–23 (2005)

[32] Ziesing, H.J.: KWK-Potentiale in Deutschland und deren Erschließung. En-
ergiewirtschaftliche Tagesfragen (ET) 58(3), 50–59 (2008)

An Analysis of Dynamic Mutation Operators for
Conformational Sampling

Alexandru-Adrian Tantar, Nouredine Melab, and El-Ghazali Talbi

Abstract A comparison analysis of dynamic mutation operators is proposed, hav-
ing the conformational sampling problem as a case study. The analysis is sustained
by a parallel Optimal Computing Budget Allocation (OCBA) selection procedure,
employed in order to attain computational speedup. A Pearson system distribution
based mutation operator is proposed, allowing for a highly flexible construction. As
defined by a set of four parameters, the mean, variance, skewness and kurtosis, a
large number of distributions can be simulated. As determined by the analysis out-
comes, the class of operators exhibiting significant energy minimization or Root
Mean Square Deviation (RMSD) bias is identified. Experiments are carried out on
a large number of computational resources, allowing for the outline of an automatic
a priori operator tuning and selection methodology. Although not presented in this
chapter, similar complementary studies have been conducted on intensification op-
erators and local search algorithms.

1 Introduction

In the early 1960’s the Nobel prize laureate Christian Anfinsen [3] postulated on
the thermodynamic equilibrium of proteins, the exposed principles setting the ba-
sis for future conformational sampling computational approaches. Direct conse-
quences of his work lead to the hypothesis on which proteins attain a thermodynamic
equilibrium determined by a kinetically accessible singular conformational state.

INRIA Lille - Nord Europe, DOLPHIN Project Team,
LIFL UMR USTL/CNRS 8022,
Parc Scientifique de la Haute Borne,
40, avenue Halley, Bât. A, Park Plaza,
59650 Villeneuve d’Ascq Cedex, France
Alexandru-Adrian.Tantar@inria.fr
Nouredine.Melab@lifl.fr
El-Ghazali.Talbi@lifl.fr

A. Lewis et al. (Eds.): Biologically-Inspired Optimisation Methods, SCI 210, pp. 291–323.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

292 A.-A. Tantar et al.

Furthermore, the aforementioned postulate lead to the conclusion that a unique con-
nection exists between the constituent chain of amino-acids of a specified protein
and its corresponding native structure conformation.

The importance of the conformational sampling problem is determined by the
ubiquitousness of proteins in the living organisms – proteins intervene in intra-
cellular signaling modulation mechanisms, interactions between antibodies and
antigens, inhibitor design, etc. Computational modeling and prediction offer an al-
ternative to laboratory in vitro experimentation, infeasible for large domain analy-
sis study. Furthermore, with the arrival and development of high performance and
high throughput computing, being on the edge of entering the petascale comput-
ing era, complex conformational sampling problems can be addressed. Introduc-
tory notions on conformational sampling, protein structure and large scale high per-
formance computing for biology-related problems may be found in Neumaier[35],
Cozzone[15] and Stewart[42].

Nowadays, of significant impact and importance, conformational sampling,
mainly addressed through the protein structure prediction (PSP) and molecular
docking problems, is one of the current intensive study topics of computational bi-
ology. In the following the protein structure prediction problem is to be considered,
which, relying on the previous considerations, consists in determining the ground-
state conformation of a specified protein, given its amino-acids sequence – the pri-
mary structure. The ground-state conformation term designates the associated tridi-
mensional native form, also referred to as zero energy tertiary structure.

The conformational sampling problem is computationally difficult, as the num-
ber of possible conformations to explore exponentially increases in correlation with
the magnitude of the involved molecular complexes. No further details are included
here, more in-depth discussions, addressing complexity matters, being exposed in
previous works [44, 36, 45]. Considering the aforementioned aspects, evolutionary
algorithms , enclosing landscape adapted operators, stand as highly efficient ap-
proaches in order to address the high complexity of the problem and the afferent
multi-modal landscape characteristics. Allowing for complex hybridization patterns
and relying on the intrinsic parallel nature of the paradigm, evolutionary algorithms
(EAs) represent the solution adopted for AutoDock [39, 32], ArgusLab [29], etc. A
more detailed discussion on the principles of EAs is to be presented in a following
section. Nevertheless, no extensive study exists on adaptive and dynamic techniques
specifically designed for the afferent classes of problems, namely protein structure
prediction and molecular docking.

Consequently, adaptive and dynamic aspects are considered in the following,
with a focus on mutation operators. Relying on a parallel design selection proce-
dure, the behavior of multiple operators is analyzed at the different stages of an
evolutionary exploration strategy. Selection procedures are employed as a powerful
alternative to classical statistical tests, allowing for efficient designs in conjunction
with evolutionary algorithms. An introductory review on selection procedures may
be found in the works of Branke, Chick and Schmidt [5, 6]. A first sequential ex-
ample of combining an EA with a selection procedure is given in Schmidt, Branke
and Chick [40]. An extension of this hybrid model and a wide range of designs can

An Analysis of Dynamic Mutation Operators for Conformational Sampling 293

Fig. 1: Free energy surface cross-section (tryptophan-cage - 1L2Y) around a deep
optimum point, exposing a large number of local optima. The equivalent mirrored
map representation is offered on the right side of the figure. Lighter areas on the
surface correspond to high energy points while low energy regions are depicted in
darker colors.

be envisaged by introducing parallelism. Different designs can be put in place for
parameter selection and during execution adaptive behavior, selection of the most
appropriate algorithm at a given phase, etc. While being computationally expensive
in a sequential design, a parallel integration of different metaheuristics and selection
procedures can provide a powerful adaptive solution to difficult problems.

The analysis presented herein is part of a larger study on diversification, intensi-
fication operators, i.e., crossover operators and local search algorithms, the afferent
work being under publishing process at the time being. While relying on analogous
experimentation and statistical mechanisms, for brevity only mutation operators are
included in the this study.

The following sections, including the contribution of this chapter, analysis, etc.,
can be resumed as follows:

Formalization and notational basis. A minimal notational formalization is de-
fined. Exhaustive to no extent, the proposed definitions set the foundation for
later modeling and presenting in a unified manner the considered operators, sta-
tistical components, etc.

Evolutionary Algorithm Analysis Context. Encoding of the conformations, evalu-
ation function and general principles of an evolutionary algorithms are exposed.
Different diversification operators are presented as well and employed for the
conformational sampling problem. Dynamic mechanisms are considered, deter-
mining and influencing the intrinsic characteristics of the embedding exploration
algorithm, specific distributions, etc. Pearson system based mutation operators
are introduced and analyzed.

294 A.-A. Tantar et al.

Statistical Selection Procedures. The formal fundamental support of a specific
statistical selection procedure is exposed, as to sustain and justify the selection
criteria employed in later setting the basis of the envisaged adaptive approaches.

Analysis of Mutation Operators. A statistical analysis of the defined operators is
performed, identifying the components which, at different exploration stages,
exhibit a superior energy or RMSD minimization tendency. A ParadisEO1 based
parallel implementation of the previously presented selection procedure is em-
ployed for testing, further, the implementation aspects, setup of parameters, etc.,
of the operators being detailed. Following the results provided by the statistical
analysis procedure, the basis for later constructing adaptive and dynamic ap-
proaches is set.

The extracted analysis results further offer information on convergence and bias,
in terms of energy and Root Mean Square Deviation (RMSD) minimization. Anal-
ysis conclusions are hence employed for defining and setting the basis of dynamic
and adaptive resolution approaches. The underlying basis sustaining the aforemen-
tioned class of landscape adapted approaches relates to particularities of the fitness
function which may potentially exhibit significant differences near the global op-
timum as compared to distant, far from optimum points. Finally, conclusions are
made, laying the path for future study directions.

All experimentations were carried using an MPICH2 [18, 19] based version of
ParadisEO [8, 9], a framework dedicated to the reusable design of parallel hybrid
meta-heuristics and which provides a broad range of features, including EA support,
local search methods, parallel and distributed models, hybridization mechanisms,
etc. The algorithms were executed on Grid50002, a French nation-wide experimen-
tal grid [11], connecting several sites which host clusters of PCs interconnected
by RENATER3 (the French academic network). At this time Grid5000 is gathering
more than 4000 processors with more than 100 TB of non-volatile storage capac-
ity. For the hereafter analysis experiments, up to 500 computing cores per test were
employed, execution times ranging from 15 minutes to several hours. Given the
concepts on which the selection procedure is constructed, the time required for each
analysis test is highly dependent on the statistical evidence attained after analyz-
ing the execution results. If no significant statistical evidence is attained after a first
run, additional samplings are requested so as to set a distinct difference between the
compared operators, resulting in an increase of the execution time.

1 http://paradiseo.gforge.inria.fr
2 https://www.grid5000.fr
3 http://www.renater.fr

An Analysis of Dynamic Mutation Operators for Conformational Sampling 295

2 Definitions and Formal Aspects

Considering the nature of the different exposed notions, relating to evolutionary
algorithms, statistical analysis and selection, etc., the definitions herein are set on a
generality basis in order to enclose terms derived from different areas and domains.
Consequently, de facto notational standards are not closely followed due to an effort
of unifying the different presented aspects.

Let Γ , Λ and Ξ be the set of solutions, operators and algorithms, respectively
(e.g., replications and systems as for statistical selection procedures). With no gen-
erality restriction there can be assumed that the operators set, Λ , is a particular
subset of Ξ :

Γ = {γ | γ = (γ1 ,γ2 , · · · , γN), αi ≺ γi ≺ βi}, Γ̂ = {S | S =def ∪γ⊂Γ γ} (1)

Λ = {λ | λ : Γ̂ × χ̂ → Γ̂ }, Λ̂ = {L | L =def ∪λ⊂Λ λ} (2)

Ξ = {X | X : Γ̂ × Λ̂ → Γ̂ } (3)

As a general assumption it may be considered that γ ∈RN
≺ , αi ,βi ,γi ∈R≺ , where

RN
≺ represents an arbitrary solution space, with an associated arbitrary partial or-

der relationship. An abstraction is made for now as for the type of the γi encoding
values (discrete, continuous, etc.), to be later considered as notions are introduced.
A solution γ ∈ Γ is here defined as an encoding ensemble of bounded parameters
with cardinality N = |γ|. Further, αi and βi denote the lower and upper limits of the
γi encoding value, respectively, for 1 ≤ i ≤ N. As a particular example, this notion
relates to the genotype definition in the case of evolutionary algorithms where each
γi value corresponds to a locus in the genotype. Γ̂ denotes the set of all solution
sets. χ̂ corresponds to the set of control parameter sets associated with a specific
operator while Λ̂ stands for the set of all the operator sets. As operator selection and
parameter tuning are later discussed, the operators are presented as distinct entities
in order to support the formal modeling of the two phases, selection and tuning.

Following the previous notations, an evaluation function E can be associated
with the given solution space (e.g., a fitness function in the case of evolutionary
algorithms) as well as an extension Ê acting on solution sets:

E : Γ → F, Ê : Γ̂ → F, Ê(S) = min
γ∈S

E(γ), S ∈ Γ̂ (4)

For the general case consider the minγ∈Γ E(γ) minimization problem, further
assuming, with no strong restrictions for the following presented topics, that E is
nonlinear and F⊆ R. Based on the nature of the E function, optimal solution points
can be defined by employing neighborhood, norm or derivative notions. In the dis-
crete case, γ+ is said to be a local optimum solution if, for a given arbitrary T (·)
neighborhood topology, T : Γ → Γ̂ , or, for an arbitrary norm ‖ · ‖, defined on the
solution space, the following stand, respectively:

296 A.-A. Tantar et al.

E(γ+) ≤ E(γ), γ ∈ T (γ+) (5)

E(γ+) ≤ E(γ), ‖γ − γ+‖ < τε , τε > 0 (6)

If E is continuous and double differentiable, γ+ is considered to be a local opti-
mum point if, for all γ+

i
∈ γ+:

∂E
∂γ+

i

= 0,
∂ 2E
∂ 2γ+

i

> 0. (7)

The global optima solution set, further denoted as Γ ∗, can be defined as a subset
of Γ :

Γ ∗ = {γ∗ | E(γ∗) ≤ E(γ), γ∗ ∈ Γ ,∀γ ∈ Γ }, Γ ∗ ∈ Γ̂ (8)

As finding the global optimum represents almost exclusively a desideratum at-
tainable for theoretical cases only, it is generally accepted as sufficient a result
identifying the near global optimum solution set which can be defined by setting
a threshold ε,ε > 0:

Γ ∗
ε = {γ∗ε | E(γ∗ε) ≤ E(γ)+ ε, ε > 0,γ∗ε ∈ Γ ,∀γ ∈ Γ }, Γ ∗

ε ∈ Γ̂ (9)

Note that, while not directly addressed in the concepts modeled here, parameter
tuning and operator selection can be defined by considering analogous formulations
in definitions 8 and 9. In this context, the problem of selecting a particular opera-
tor out of a specified set can be indirectly seen as a parameter tuning or selection
mechanism.

For the following sections, given the different aspects involved by each algorithm,
notations may be introduced on a per requirement basis.

3 Evolutionary Algorithm Analysis Context

3.1 Encoding and Evaluation of the Conformations

The algorithmic resolution of the protein structure prediction problem, in heuristic
context, is directed through the exploration of the molecular energy surface. The
sampling process is performed by altering the sustaining structure of the consid-
ered molecule, i.e., backbone structure, associated torsional angles, etc., in order to
obtain structural variations.

Different encoding approaches have been mentioned in the literature, includ-
ing direct coding of atomic Cartesian coordinates [38], all-heavy-atom, Cα , back-
bone and residues , hydrophobic/hydrophilic lattice models relying on amino-acid
based codings [17], etc. Amino-acids sequences derived representations are further

An Analysis of Dynamic Mutation Operators for Conformational Sampling 297

employed in homology and threading based modeling [4], secondary structures be-
ing isolated by analogy with already known folds or structure databases, out of
which the tertiary structure is determined.

For the case herein, an indirect, less error-prone, torsional angle based represen-
tation has been preferred. More specifically, each individual is coded as a vector of
torsion angle values. The defined number of torsion angles represents the degree
of flexibility. Apart from torsion angles which move less than a specified parame-
ter value, e.g., within a specified interval, all torsion angles are flexible. Rotations
are performed in integer increments, the intra-molecular atomic interactions being
quantified by employing a Consistent Valence Force Field (CVFF) [16]. The result-
ing energy value is employed as a fitness evaluation, high values denoting atomic
clashes and conformational inconsistencies while structural coherence is attained
for low energy levels. Interactions are modeled as harmonic forces, the molecular
conformation being regarded as a ball-and-spring elastic ensemble.

An extensive discussion on force fields designed for protein simulations, with
in-depth details, is offered in Ponder and Case [37]. The first part of the men-
tioned work covers the evolution of the force fields, starting from the 1980s, and
discusses various formulations which include the AMBER (Assisted Model Build-
ing and Energy Refinement), CHARMM (Chemistry at HARvard Macromolecular
Mechanics) and OPLS (Optimized Potentials for Liquid Simulations) force fields.
Another important referential work, Neumaier [35], encompasses a variate range of
protein-related aspects, from the structure of proteins to algorithmic approaches and
mathematical modeling.

3.2 Evolutionary Algorithms

Evolutionary algorithms are stochastic, iterative search techniques, inspired from
Darwinian evolutionary theory, having a large area of appliance – epistatic, multi-
modal, multicriterion and highly constrained problems [9]. Stochastic operators are
applied for evolving in an iterative manner an initial randomly generated population,
i.e., following a generational concept. Each of the individuals composing the popu-
lation contains genotype information encoding its defining features - the phenotype.
Each generation undergoes a selection process, the individuals being evaluated by
employing a problem specific fitness function.

The pseudo-code in Algorithm 1 exposes the generic components of an EA. The
main subclasses of EAs are the genetic algorithms, evolutionary programming and
evolution strategies.

Due to the nontrivial addressed problems, requiring extensive processing time,
different approaches were designed in order to reduce the computational costs.
Complexity is also addressed by developing specialized operators or hybrid and
parallel algorithms. We have to note that the parallel affinity of the EAs represents
a feature determined by their intrinsic population-based nature. In Cahon, Melab,
and Talbi [8] three main parallel models are identified – the island synchronous

298 A.-A. Tantar et al.

cooperative model, the parallel evaluation of the population and the distributed eval-
uation of a single solution.

Algorithm 1 EA pseudocode.

t ← 0
Generate(P(0))
while ¬Termination Criterion(P(t)) do

Evaluate(P(t))
P′(t) ← Selection(P(t))
P′(t) ← Apply Reproduction Ops(P′(t))
P(t +1) ← Replace(P(t), P′(t))
t ← t +1

end while

Genetic algorithms (GAs) are population-based metaheuristics that allow a pow-
erful exploration of the conformational space. However, they have limited search in-
tensification capabilities, which are essential for neighborhood-based improvement
(the neighborhood of a solution refers to part of the problem’s landscape). Therefore,
different approaches combine GAs with local search methods, in order to improve
both the exploration and the intensification capabilities of the two techniques.

As the focus of this chapter mainly considers mutation operators, no further de-
tails are included – please refer to the work of Michalewicz [31] for references and
further details. Additionally, for a comprehensive overview on parallel and grid spe-
cific metaheuristcs, refer to Cantu-Paz [10], Alba and Tomassini [1], Cahon, Melab
and Talbi [9], Talbi [43], Alba, Luque and Melab [2] and Cahon et al. [8].

3.3 Mutation Operators

As the diversification characteristics of evolutionary algorithms are significantly de-
termined by mutation, important information can be derived by analyzing the be-
havior of EAs as determined by these components. To the extent of our knowledge,
no analogous large scale analysis and experimentation has been previously carried
on the conformational sampling problem, although similar studies exist on artificial
academic problems. Namely, refer to the surveys of Herrara, Lozano and Verde-
gay [21, 22, 23, 24] and Yao, Liu and Lin [48], addressing intensification crossover
operators.

A general mutation operator acting on a solution γ ∈R
N induces a perturbation as

determined by an a priori specified or implicit distribution. Further, the particulari-
ties of each distribution determine the behavior of the operator. The most common
example is the Cauch based mutation operator which, as compared to the Gaussian
based one, should ensure for a lower probability of getting the exploration algorithm
trapped in local optima due to larger generated deviates. AutoDock, in addition to
relying on simple mutation operators (uniform, binary representation bit flip, etc.),
also includes a Cauchy based operator; refer to the articles of Morris, Goodsell,

An Analysis of Dynamic Mutation Operators for Conformational Sampling 299

Halliday, Huey, Hart, Belew and Olson [32] and Thomsen [47] for further details. A
study on annealing schemes incorporated into mutation operators is also conducted
in the latter.

Following a study conducted by Taveres, Tantar, Melab and Talbi [46], in a joint
work, focused on mutation locality analysis, it seems sensible to introduce a distri-
bution scaling factor as it reflects in the exploration-exploitation balance properties
of the operator. Thus, a large scaling factor can result in highly perturbed solutions
with a bias on exploration while reduced scaling factors may result in a tendency
towards exploitation. A balance of the two aspects is required as the global explo-
ration properties are derived from the exploration-exploitation tendency. An explo-
ration inclined algorithm does not comport fast convergence characteristics whilst,
at the opposite extreme, an exploitation biased algorithm is more prone in getting
trapped in local optima.

Furthermore, annealing schemes may dynamically influence the behavior of the
operators by acting on the impact of the generated deviates [47]. Note that annealing
schemes can be applied on different control parameters, dynamically modifying the
magnitude of the deviates, the standard deviation of the considered distribution,
etc. Thus, the influence of the operator can be reduced as the exploration advances,
resulting in less disrupting mutations near the final phases of the algorithm and
focusing the search on a reduced region. Alternatively, an inverse annealing scheme
can be employed where, instead of alleviating the operator’s impact, the generated
deviates are amplified, allowing for larger magnitude mutations. In the latter case,
the mutation operator should ensure that the exploration algorithm, near the final
stages of the search, is not allowed to block in local optima. Note that the amplified
deviates may require to be counterbalanced by a more reduced mutation probability
in order to allow the algorithm to converge.

Considering the previously stated, for γ a given solution, as a general formulation,
a mutation operator can be defined as follows:

γ̃ = γ + η D(μ ,σ2
t)

where η represents a pre-specified fixed scaling factor, D(μ ,σ2
t) stands for a

generic distribution with mean μ and σ2
t variance. In this context, the variance factor

σ2
t is defined as a t generation-index dependent annealing scheme. As an example,

in the work of [47], the following annealing schemes were employed (see Fig. 2 A):

σ2
t =

1
1 + t

σ2
t =

1√
1 + t

In order to offer an improved control over the annealing scheme, the following
designed formulation is employed for the following operators:

σ2
t = e

log(ω)cos
[

π
2

(
1− 4st(t−G)−t(2t−3G)

G2

)]
, 0 ≤ t ≤ G, 0 ≤ s ≤ 1

In the above expression, G denotes the maximum number of generations executed
by the global exploration algorithm. Furthermore, ω stands for the target value to be

300 A.-A. Tantar et al.

A
σ2

t = 1√
1+t

σ2
t = 1

1+t

B

s = 0.25,ω = 1.99

s = 0.5, ω = 1.99
s = 0.75,ω = 1.99

s = 0.00,ω = 1.00

s = 0.75,ω = 0.01

s = 0.5, ω = 0.01
s = 0.25,ω = 0.01

Fig. 2: A - Thomsen’s annealing schemes for the mutation operator. B - A more
flexible annealing scheme determined by s, a shape control parameter, and by ω , a
final target value.

attained by σ2
t , when t = G. Note that it is assumed that the σ2

t term is updated at
each iteration, the generated values evolving from 1.0, for t = 0, to the specified ω
value, for t = G. In addition, s offers control over the shape of the annealing scheme.
A balance between a high rate of change and a more smooth transition is obtained
when varying the s parameter in the [0,1] interval. Depending on the value of ω , a
more smooth annealing scheme is obtained when 0.5 ≤ s ≤ 0.75. Refer to Fig. 2 for
a graphical example depicting the annealing schedules.

Under the specifications, the following operators are considered for the designed
approach – refer to the work of Michalewicz [31] and Thomsen [47] for further
references and details:

Swap. For a solution γ , the γi ,γ j loci are interchanged, with 1 ≤ i, j ≤ N, i 	= j
randomly (uniform) chosen indexes. Note that, while not being the case for PSP,
restrictions may be imposed, as for molecular docking, due to the genotype’s
representation, e.g., it may not be allowed to interchange a translation locus with
a torsional angle one.

Uniform. A uniform perturbation is applied to each locus γi (or to a randomly
chosen set of loci), the resulting genotype γ̃ being defined as γ̃ = γ + η U [0,1].

Gaussian. The resulting solution is constructed as γ̃ = γ + η N(μ ,σ2
t), where

μ ,σ2
t respectively denote the mean and the generation dependent variance of the

distribution. For the most common employed cases the constant μ = 0.0 and
σ2

t = 1.0 values are specified for 0 ≤ t ≤ G.

Cauchy. The Cauchy mutation operator relies on similar design principles, the
perturbed solution being defined as γ̃ = γ + η C(μ ,σ2

t).

An Analysis of Dynamic Mutation Operators for Conformational Sampling 301

In addition to the above operators a Pearson-distribution system based mutation
is proposed. Naming in fact a class of distributions with various skewness and kur-
tosis, the Pearson system includes the Gamma, Beta, t-distribution, etc. In addition,
the Normal distribution is also modeled as a special case of the Pearson system.
Therefore, the Pearson distribution system represents a complex, highly flexible,
parameter controllable mean of generating random deviates. References and an in
depth discussion may be found in the article of Nagahara [34]. The four parameters
which model the included distributions are the mean, the variance, the skewness
and the kurtosis, further denoted as μ , σ2, ς and κ , respectively. The type of the
distribution is determined by the last two parameters, the skewness and the kurtosis,
resulting in seven different classes denoted as Pearson I through Pearson VII. All the
modeled classes, except the Pearson IV distribution, can be expressed by employing
the Normal and the Gamma distributions. Transformation formulae for generating
the Pearson I-III, V-VII distributions are presented in the article of Nagahara, ad-
ditionally, an iterative rejection algorithm for the Pearson IV type distribution is
proposed. Considering the complexity of the involved formalism standing as the ba-
sis for constructing the Pearson system, details and synthesis are not offered here.
Additional information is provided in the previously mentioned article Nagahara
[34], as well as in Nagahara [33] and Heinrich [20]. Following the specifications of
Nagahara, a custom implementation of the sampling methods and the probability
density functions has been constructed for the herein analyzed operators.

Noting a Pearson distribution system as P(μ , σ2
t , ς , κ), where, as previously

defined, σ2
t represents a generation-index dependent variance, the modeled mutation

operator can be defined as γ̃ = γ + η P(μ , σ2
t , ς , κ), with η a scaling factor.

For all the here presented operators, three variants are considered, including a
descending annealing scheme (s = 0.25, ω = 0.01), an inverse annealing (s = 0.25,
ω = 15.0) and no annealing scheme (s = 0.0, ω = 1.0). Furthermore, for the Pearson
system all seven types are analyzed, hence there are 21 different operators. Adding
the previously presented operators, with identical annealing schemes for the Gaus-
sian and Cauchy based operators, 29 operators are studied overall. For the analysis
details refer to Section 5.2.

4 Statistical Selection Procedures

As an important set of operators and parameters are considered for this study, the
construction of a hybrid global exploration approach relies on non-negligible de-
sign decisions. A first problem consists of identifying the operators which comport
superior minimization characteristics at the different stages of the search. A sec-
ond question to answer relates to operators which induce a bias in the exploration
process. Furthermore, multiple scenarios can be envisaged leading to dynamic or
adaptive hybrid models for which operators are a priori or selected online, in an
automatic manner. As a consequence it becomes of extreme importance to have the
means for discriminating between the different envisaged models.

302 A.-A. Tantar et al.

Selection procedures aim at identifying the best system, e.g., for this case, opera-
tors, local search algorithms, etc., out of a finite set of alternatives [6]. In this con-
text, best is inferred in terms of minimum mean output4 for a series of replications,
i.e. independent samplings of the compared systems. The main formulations of se-
lection procedures, according to Branke et al. [5], Chick and Inoue [14] and Branke
et al. [6], are: Indifference Zone (IZ) approaches, the expected Value of Informa-
tion Procedures (VIP) and the Optimal Computing Budget Allocation (OCBA). The
mentioned approaches are differentiated based on the assumptions employed when
judging the evidence of correct selection. A comparison study [6] confronts several
selection procedures. The OCBA procedure, initially developed by Chen [13] and
Chen and Chick [12] has been here adopted for sustaining the analysis of operators
and local search algorithms. An example of a hybrid model, combining an evolu-
tionary algorithm with the OCBA selection procedure is presented by Schmidt et al.
[40].

Note that, throughout the following, minimization problems (as for the mean out-
put of the algorithms) are considered. The initial formalism has been hence adapted
to reflect this consideration. Furthermore, it is assumed that the outcomes of the
simulation process, derived out of independent executions, follow a normal distri-
bution. Refer to Branke at al. [6] for details regarding the underlying assumptions
which set the basis of the selection OCBA procedure.

A set of algorithms X1,X2, · · · , Xm, m ≥ 2, 1 ≤ i ≤ m, Xi ∈ Ξ is considered,
subject to undergo a selection process to identify the best algorithm. For an algo-
rithm Xi ∈ Ξ , given a series of simulations, i.e., independent executions, the out-
come results are further denoted as Xi j, j ≥ 1. For the case addressed herein, as
a notational assumption, it is considered that Xi j ≡ Ê(ΓX(S ,L)), where S , L re-
spectively identify the input and the parameterization of the algorithm. Otherwise
stated, for S a given input and for L a specific set of parameters, Xi j designates the
fitness value of the best solution provided by the algorithm. Refer to Section 2 for
notational details. Denoting μi,σ2

i as the mean and variance respectively of the Xi

algorithm, based on the previous specifications, an ordering μ[1] ≥ μ[2] ≥ ·· · ≥ μ[m]
can be constructed. Here, the [·] permutation operator corresponds to an unknown
ordering for which the algorithm X[m] has the lowest output mean. Otherwise stated,
the algorithm X[m] offers, in average, the lowest output values which, given the
minimization context, represent the desired result. Furthermore, for ni consecutive
executions of the Xi algorithm, the recorded mean and variance respectively are
defined as follows:

μ̃i =
1
ni

ni

∑
j=1

Xi j, σ̃2
i =

1
ni −1

ni

∑
j=1

(Xi j − μ̃i)2 (10)

The μ̃i, σ̃i descriptive measures stand as estimates of the “true”, unknown, μi,σi.
Thus, the μ̃(1) ≥ μ̃(2) ≥ ·· · ≥ μ̃(m) ordering can be constructed, which, for

4 Maximization problems were addressed in the original specifications; without any gener-
ality restrictions, by inversion, the same constructions can be employed by considering the
minimum mean output.

An Analysis of Dynamic Mutation Operators for Conformational Sampling 303

ni → ∞,1 ≤ i ≤ m, should result in the μ[1] ≥ μ[2] ≥ ·· · ≥ μ[m] ordering. From
this point, assuming that independent executions are performed, at consecutive iter-
ations, a measure quantifying the Probability of Correct Selection (PCS) has to be
defined. In basic terms, for μ̃(1) ≥ μ̃(2) ≥ ·· · ≥ μ̃(m) one has to estimate the ex-
tent of the (·) ordering “maps” on the [·] permutation. Thus, based on the performed
simulations, the probability of having μ(i) > μ(m), for 1 ≤ i < m is estimated, i.e.,
the probability that the predicted algorithm X(m) is indeed better (has a better mean)
than all the other algorithms included in the test. The overall probability can be
approximated by Slepian’s inequality, shown below – refer to Branke et al. [6] for
details. If (explicitly) no difference is made between two algorithms Xi,X j for which
|μi −μ j| < δ , i.e., a near optimal comparison is sufficient, a measure of Probability
of Good Selection (PGSSlep,δ) can be defined as:

∏
1≤i<m

P
{

μ(i) > μ(m)
} ≈ PGSSlep,δ = ∏

1≤i<m

Φν(i)(m) (ε
1/2
(i)(m)(δ + μ̃(i)− μ̃(m))), δ ≥ 0

εa,b =
1

σ̃2
a /na + σ̃2

b /nb
, νa,b =

(σ̃2
a /na + σ̃2

b /nb)2

(σ̃2
a /na)2/(na −1)+ (σ̃2

b/nb)2/(nb −1)

Note: In the previous expression, Φνa,b denotes the cumulative distribution func-
tion of the standard t-Student distribution with νa,b degrees of freedom. The PCS
measure is obtained by setting δ = 0 (PCSSlep ≡ PGSSlep,0).

Hence, for a given ordering of the output means, based on the posterior distribu-
tions, the probability of correct selection can be estimated. Another desideratum to
attain at this stage consists of minimizing the number of samplings required to ob-
tain a significant PCS/PGS level. The OCBA selection procedure initially performs
a number of τinit simulations for all the algorithms to compare. If a high enough
PCS/PGS level is not obtained, a number of τadt additional samplings are heuris-
tically allocated, in iterative manner, to a number of τsys algorithms. The τsys algo-
rithms are selected by computing an Estimated Approximate Probability of Correct
Selection (EAPCS), for each algorithm Xi, 1 ≤ i ≤ m:

EAPCSs = ∏
1≤i<m

Φν̃(i)(m) (ε̃
1/2
(i)(m)(μ̃(i)− μ̃(m))), ε̃−1

a,b =
σ̃2

a

na + τadtζa,s
+

σ̃2
b

nb + τadtζb,s

ν̃a,b =
(σ̃2

a /na + σ̃2
b /nb)2

(σ̃2
a /na)2/(na −1)+ (σ̃2

b/nb)2/(nb −1)
, ζa,b =

{
1, a = b

0, a 	= b

It follows that it suffices to iteratively allocate samplings for the algorithms which
maximize the EAPCSs −PGSSlep,δ measure, until a satisfactory confidence level is
attained for the determined ordering of algorithms.

A parallel construction of the algorithm has been developed and employed here,
relying on the ParadisEO framework, the basic OCBA pseudocode of the parallel
implementation that was shown in Algorithm 2.

The algorithm is executed by first setting a δ indifference threshold and the
desired confidence level τcon f . In a second step the sampling parameters are set:

304 A.-A. Tantar et al.

Algorithm 2 OCBA algorithm pseudocode.

1: Set δ , τcon f (indifference threshold and confidence level to be attained, respectively)
2: Set τinit , τsys , τadt (number of initial samples, number of algorithms to re-sample, number of additional samples)

3: Execute in parallel m∗τinit independent simulations. A number of τinit samples are obtained for each of the Xi, 1 ≤
i ≤ m algorithms.

4: For all Xi, 1 ≤ i ≤ m set ni ← τinit and compute μ̃i , σ̃i .
5: Construct the initial ordering μ̃(1) ≥ μ̃(2) ≥ ··· ≥ μ̃(m) .

6: while stopping criterion not met do

7: Compute EAPCSi 1 ≤ i ≤ m and construct a set X of τsys algorithms maximizing the EAPCSi −PGSSlep,δ
difference. For each algorithm Xs ∈ X allocate τadt additional samplings.

8: Execute in parallel τsys ∗ τadt independent executions for the algorithms Xs ∈ X . A number of τsys ∗ τadt

additional samples are obtained.

9: For all Xs ∈ X set ns ← ns + τadt and update μ̃s , σ̃s .

10: end while

τinit ,τsys and τadt for the initial number of samplings (to be performed for each al-
gorithm), respectively the number of algorithms to be additionally sampled and the
number of samples to request at each iteration. A first independent parallel sam-
pling is performed, following a multi-start model (line 3), the descriptive measures
μ̃i, σ̃2

i , 1 ≤ i ≤ m are computed (line 4) based on the retrieved data. An initial order-
ing is constructed and the algorithm ends the execution if the associated PCS/PGS
value reaches, at least, the specified confidence level. In case the obtained order-
ing is not significant, additional samples are allocated in an iterative manner (lines
6-10).

At each iteration the EAPCSi −PGSSlep,δ , (1 ≤ i ≤ m) difference is computed,
a number of τadt additional samples being requested for the τsys most promising
algorithms (maximizing the difference). Subsequently, for the selected algorithms,
a parallel sampling is performed (line 8), the ni, μ̃i, σ̃2

i , 1 ≤ i ≤ m measures being
updated accordingly.

The algorithm finishes when a maximum number of iterations is reached (which
is equivalent to a budget allocation analogy, considering ∑1≤i≤m ni < B as the con-
straint, where B represents a maximum affordable budget) or when a high enough
confidence level is reached (PGSSlep,δ > 1− τcon f).

5 Analysis of Mutation Operators

Depending on multiple factors, as the considered instances, the nature and quality
of the initial solutions, the exploration stage, etc., the landscape to be addressed
may comport significantly different particularities. Hence, it may prove to be of
interest to employ multiple specific and adapted operators, capable of exploiting
the characteristics of the explored local landscape. Furthermore, the analysis of the

An Analysis of Dynamic Mutation Operators for Conformational Sampling 305

previously presented operators may provide important information, allowing to later
define dynamic and adaptive exploration systems. Incipient directions as conclu-
sions following the analysis study, to be detailed in a following work.

As a large number of mutation operators is considered, a critical analysis study
is required in order to identify the operators which comport significant energy or
RMSD bias and minimization characteristics. A ranking of the employed operators
can be constructed using the previously presented statistical selection procedure,
possibly isolating the best operator(s). In this context, the term best is employed
under statistical confidence assumptions and as determined by the considered par-
ticular benchmarks and parameters setup – no absolute best is provided as a result.
The conformational sampling process is conducted on energy minimization criteria,
aiming to find the conformational structure with the lowest RMSD. Hence, best can
be used to nominate the operator with significant energy minimization characteris-
tics and a strong RMSD bias, leading towards the crystallographic native structure.

As mentioned in the introduction of this chapter, a previous study has been con-
ducted by Tavares et al. [46], as a joint work, with a focus on the locality analysis of
mutation operators. For that study, an independent, stand-alone component perspec-
tive was followed, the operators being analyzed in a disconnected, offline manner,
i.e., no evolutionary algorithm was employed. In contrsast, the aspects addressed
herein do not aim to describe, in an independent manner, the constructed opera-
tors. Instead, a simplified EA is employed as an embedding environment for the
operators, in order to construct a heuristic based analysis context. The details of the
evolutionary algorithm, on a per case basis, are described in the following experi-
mentation sections, the parameters setup being also discussed.

Assuming the aforementioned considerations, the analysis accounts for the ef-
fects induced by the operators when placed inside a heuristic context. First the out-
put energy values are used as the criterion and, in a second phase, the RMSD of the
resulting conformations is employed. Note that none of the analyzed components
include RMSD information or minimization mechanisms, relying exclusively on en-
ergy evaluations as the guiding criterion. Furthermore, for the later analysis case, the
less destructive instead of the best RMSD operator is identified. Hence, the second
case is only applicable for the considered benchmark conformations (1L2Y, 1LE1,
α-cyclodextrin – refer to Section 5.1), for which the crystallographic structure is
known. As no a priori information on the native structure is provided for the gen-
eral case, the results extracted in the RMSD analysis phase only serve as a second
criterion for the energy-minimization ranking. For example, it may be preferable to
use a (energy) second rank component with low RMSD destructive features than a
(energy) first rank component with high RMSD destructive characteristics.

For each analysis phase, energy and RMSD, three distinct sections are consid-
ered, the embedding evolutionary algorithm having first as input, random confor-
mations, secondly, optimized conformations and final, near-global conformations.
Each of the three studied sections corresponds to a different stage of the exploration
process: random conformations for the early execution phases of the algorithm, op-
timized conformations for the intermediary steps of the exploration strategy and

306 A.-A. Tantar et al.

near-global conformations, assuming convergence, addressed in the final execution
stages. For each stage, solutions are generated as follows:

Random solutions. For each torsional angle locus γi ∈ γ, 1 ≤ i ≤N a uniform ran-
dom value out of the [0,360] interval is assigned.

Optimized solutions. A random solution γ is initially uniformly generated; in a
second phase, the obtained solution undergoes several optimization steps, mul-
tiple local search methods (ASA [27, 28], L-BFGS [7, 49], conjugate gradient
[26, 25], etc.) being sequentially applied on the initial γ encoding. A set of 3000
solutions is thus constructed. Elements of the set are then uniformly drawn, as
required for the analysis.
As a consequence of undergoing multiple minimization steps, an optimized solu-
tion can be described as a strong local optimum, with no quality assumptions as
compared to the crystallographic conformation.

Near-global solutions. By convention of implementation, the reference crystallo-
graphic conformation is represented as a solution γ having all loci γi ∈ γ, 1 ≤ i ≤
N set to 0. Consequently, a near-global solution (from the RMSD perspective)
can be generated by considering the surrounding region. Thus, for this particular
case, solutions are uniformly generated out of the [−10,10] interval. Afterwards
the obtained angle values are mapped onto the [350, 360)∪ [0, 10] domain.

As the crystallographic conformation encoding is represented as a vector of null
values, γ = ((0)), one particular aspect has to be addressed. Depending on the na-
ture of each operator, e.g., type of calculations, numerical instability, a bias towards
generating a null vector may exist. Having a null vector bias, for the problem stud-
ied herein, can be considered as an equivalent of a priori inserted knowledge. In
order to not account for the null vector bias effect in the selection procedure, a
penalizing factor is introduced for the energy evaluation function. Thus, for all so-
lutions γ with an Euclidean distance dγ = ‖γ − γ∗‖ < 30.0, where γ∗ represents
the encoding of the crystallographic conformation, the energy evaluation is set to
E(γ) + (1.0e + 15)× exp(−d2

γ). The penalizing effect is hence progressively re-
duced with the increase of the Euclidean distance – the impact is significant only in
the close vicinity of the γ∗ solution. Consequently, a greater penalty is applied for
the operators or algorithms which have an express tendency of converging towards
a null vector solution.

Note that the encoding of the crystallographic conformation does not necessarily
have associated the global minimum energy. High energy – low RMSD conforma-
tions may exist while, at the opposite end, low energy conformations (below ref-
erence conformation energy) may have a high RMSD. This particularity represents
the main reason sustaining the RMSD bias analysis, besides the energy minimiza-
tion characteristics study. Thus, for the energy and RMSD analysis and for the three
different phases addressing different quality solutions, a total of six distinct cate-
gories to be analyzed result.

An Analysis of Dynamic Mutation Operators for Conformational Sampling 307

The rest of this section is organized as follows: first the benchmarks employed
for the analysis section are briefly presented; secondly analysis results and discus-
sions are provided. The analysis setup is detailed, numerical results and graphical
equivalent representations being included for each analysis stage.

5.1 Conformational Sampling Benchmarks

The molecular complexes for the conformational sampling algorithms assessment
are tryptophan-cage (trp-cage - Protein Data Bank ID: 1L2Y), tryptophan-zipper
(trp-zipper - Protein Data Bank ID: 1LE1) and α-cyclodextrin. The trp-cage, trp-
zipper belong to the class of mini-proteins presenting particularly fast folding char-
acteristics. Cyclodextrins, in α , β or γ conformations (containing 6, 7, 8 glucose
units, respectively), due to their toroidal structure, are important for drug-stability
applications, being used as protectors against micro-environment interactions or as
homogeneous distribution stabilizers etc.

The selected benchmark conformations can be considered, to a certain extent,
as being significant and representative as they comport different structural patterns.
Hence they require a flexible enough algorithm to predict the different enclosed sec-
ondary structures. Refer to Fig. 3 for a graphical representation of the three molec-
ular conformations. A schematic equivalent representation is also exposed in order
to better exemplify the structural characteristics of each molecule (as the cyclic
structure of α-cyclodextrin). The tryptophan-cage protein can be structurally char-
acterized as having an α-helical N-terminal region, a short helix and a polyproline
helix enclosing a Trp residue inside a hydrophobic core [30].

The tryptophan-zipper belongs to the class of so called β -hairpins, for which, op-
posing Trp residues form a non-hydrogen-bonded zipper [41]. Cyclodextrins, non-
reducing macrocyclic oligosaccharides, build toroidal structures with a hydrophobic
interior. The α-cyclodextrin molecule, while not being a protein, has been included
due to its particular cyclic structure.

In addition, the addressed conformations, given the number of defined torsional
angles, namely 64, 54, 73 angles for α-cyclodextrin, 1LE1, 1L2Y, respectively, offer
the advantage of not requiring an extremely expensive energy evaluation computa-
tional time. Thus, with the support of parallel and distributed computing, multiple
analysis studies, with varying parameters, can be performed in an acceptable time
frame.

5.2 Experimentation and Analysis Results

As a first remark, no previous optimization, of any nature, has been carried out
on the parameters of the operators. Secondly, accounting for the large number of
operators, resulting in an even larger number of parameters, no extensive study is

308 A.-A. Tantar et al.

Fig. 3: Conformational sampling considered benchmarks: α-cyclodextrin, trp-cage
(1L2Y) and trp-zipper (1LE1). A β -sheet and an α-helix (schematically depicted
on the bottom row of the figure) can be distinguished in the graphical representation
of the 1LE1 and 1L2Y proteins respectively.

possible. Nevertheless, the analysis performed may offer important information on
the classes of operators which potentially exhibit interesting characteristics. In the
following, addressing the experimental setup, either the classically recommended
parameter values are set or extreme opposing values are specified, so as to evaluate
the behavior of the operators under different scenarios.

Evolutionary Algorithm Setup. A basic EA is used as an embedding environment
for testing the mutation operators. The algorithm is set to evolve an initial popu-
lation of 150 solutions for 150 generations. At each iteration of the algorithm, the
current population undergoes a stochastic tournament selection process, 150 indi-
viduals being chosen out of the population. At each selection step, the stochas-
tic tournament component is set to return, out of two (uniform) randomly chosen

An Analysis of Dynamic Mutation Operators for Conformational Sampling 309

solutions, the best individual, with a probability of 0.75. The resulting solutions
become further subject to mutation, no crossover operator being employed. The
embedded mutation operator is applied with a probability of 0.1, resulting in 2250
mutations for a complete execution (on average). Further, generational replacement
is used, the entire population being replaced by the individuals resulting out of the
mutation phase. A weak elitism scheme ensures that the best individual in the pop-
ulation to be replaced survives the replacement phase.

In order to offer a more consistent comparison basis, a null mutation operator has
been introduced, designated in the following as NullM. This particular component
in no way affects the solutions subjected to the mutation phase, solely standing as
a reference for the analysis study. Note that, the resulting embedding EA conducts
the exploration on the selection and the replacement schemes alone – no selection
pressure is directly determined by the mutation operators.

The following labeling is used to designate the operators: SM for the Swap mu-
tation, UM Uniform mutation, G for the Gaussian and C for the Cauchy based oper-
ators. Pearson system based mutations are nominated as P1 through P7 correspond-
ing to Pearson type I to Pearson type VII distribution based operators. In addition, a
prefix is added for the Gaussian, Cauchy and Pearson operators, indicating the type
of annealing scheme employed: NA for no annealing, 01 for an annealing scheme
with a 0.01 target value, and 15 for an inverse annealing, with a final value of 15.0 –
refer to Section 3.3 for details. Consequently, the obtained code names are formed
by the operator’s designation and the annealing scheme label. As an example, for
the Gaussian operator, the G-NA, G-01 and G-15 labels are used to refer to a Gaus-
sian operator with no annealing scheme, an operator with a 0.01 final value for the
annealing scheme and an operator with an inverse annealing having a target value
of 15.0. In addition to employing annealing schemes, a fixed scaling factor of 30.0
has been specified for all operators. Therefore, for random deviates ranging in the
[0,1] interval, angle steps of at most 30.0 degrees are generated. As determined by
the employed distribution and the annealing factor, which in this case acts on the
operator’s distribution variance, larger magnitude deviates may be generated.

The Gaussian, Cauchy, as well as all the Pearson based operators are defined
as having the mean μ = 0. In concordance with the Pearson distribution type, the
following skewness and kurtosis values are set: ς = 1.0, κ = 4.0 - P1; ς = 0.0,
κ = 2.5 - P2; ς = 1.0, κ = 4.5 - P3; ς = 1.0, κ = 5.5 - P4; ς = 1.0, κ = 4.97 - P5;
ς = 1.0, κ = 4.8 - P6; ς = 0.0, κ = 4.0 - P7.

Note that, while all the presented operators are ranked and analyzed, due to tran-
sience reasons, part of the operators had to be discarded from the numerical results
and histograms. Namely, most of the 01 annealing scheme operators are not listed in
the numerical results tables, given the poor fitness values and the afferent rankings.
An exception is the P5-01 operator, scored second for one of the tests. The gen-
eral failure of this particular class of operators can be partially explained by a too
reduced magnitude of the generated deviates, rendering the EA algorithm unable
to evolve the initial population more than determined by the selection and replace-
ment schemes. Nevertheless, as previously stated, the constructed rankings, with the
corresponding PGS values, are valid for the entire ensemble of operators.

310 A.-A. Tantar et al.

Statistical Selection Procedure – OCBA. The parameters of the selection procedure
can be regrouped as τ = (τinit ,τadt ,τsys,τcon f) where τinit defines the number of
initial simulations to be performed, τadt represents the number of additional sam-
plings allocated for the τsys heuristically selected systems. The desired confidence
level to be attained is specified by the τcon f factor. Additionally, a δ indifference
threshold and a maximum number of iterations are specified. The Probability of
Correct Selection (PCS) is estimated for δ = 0 while, for delta > 0 the Probability
of Good Selection is returned. Refer to Section 4 for details. For the analysis herein,
30 initial simulations (τinit) were executed for each of the resulting EAs, in case of
non-convergence, 25 additional replications (τadt) being requested for the 5 most
promising mutation operators (τsys), based on the results of the afferent EAs. In ad-
dition a 1.0 indifference threshold (δ) has been set, i.e., no difference is considered
for two mutation operators which offer results comparable within a maximum ab-
solute difference of 1.0. The confidence level (τcon f) has been set to 0.1 – a ranking
of the operators is considered significant if a PGS value equal or superior to 0.9 is
obtained. For details of the algorithm refer to Section 4. Furthermore, a maximum
of 30 iterations has been specified.

As for each launched algorithm an array of conformations is returned after exe-
cution, the resulting replication value to be provided for the selection procedure is
derived out of the lowest energy or RMSD encoding. As a consequence, the statis-
tical measures presented in the numerical results tables and further exposed in the
histogram, describe the energy or RMSD distribution of the best conformations pro-
vided by the EAs. As an example, the Max column does not refer to the maximum
value obtained in the population after executing a specific EA but to the maximum
value of the best provided solutions for the specific analysis case, e.g., 1L2Y Energy
- Random analysis for P5-01.

For each analysis case (1L2Y Energy - Random, 1L2Y Energy - Optimized, etc.)
at least three independent tests were performed. As for the three considered bench-
marks a total of 18 analysis cases are analyzed, it follows that more than 54 inde-
pendent tests were launched. Considering that each algorithm performs on average
2400 conformation energy evaluations (̃ 2250 mutated solutions + 150 initial solu-
tions) and that at least 48600 EAs are independently launched (30 initial samplings
for each of the 30 operators, for each of the 54 tests), it follows that a total of more
than 1.1e+8 conformation energy evaluations were computed. For the mutation anal-
ysis alone, the amount of generated raw data cumulated to almost 350MB of data.

Analysis of the Selection Results. Following the execution of the selection proce-
dure, including both energy and RMSD studies, numerical statistical data has been
synthesized in Tables 1, 2 and 3 for 1L2Y, 1LE1 and α-Cyclodextrin, respectively.
Corresponding histograms, depicting the obtained results for the best three ranked
mutation operators and constructed out of the (for comparison) sampled conforma-
tions, are given in Fig. 4, Fig. 5 and Fig. 6. Abscissae axis stands for normalized
energy levels while the ordinates axis denotes the number of conformations.

Each table is vertically divided into two sections, afferent to energy and RMSD
analysis respectively, superposed on three horizontal sections – random, optimized

An Analysis of Dynamic Mutation Operators for Conformational Sampling 311

and near-global initial solutions. Thus, the six distinct cases under study are delim-
ited, for each case and for each mutation operator, the minimum, maximum, average
and standard deviation obtained values being listed. As an example of reading the
tables, for the 1L2Y protein (Table 1), the best ranked operator on random con-
formations for the energy analysis test may be found under the Tryptophan-Cage
(1L2Y) - Energy vertical section, in the first horizontal section of the table. P3-15 is
ranked first, P4-15 second and P6-15 third. Note that, for most of the cases, no clear
distinction can be made between the operators by following the histograms alone,
hence, requiring at times to rely on the numerical results.

As previously mentioned, multiple tests were performed for each case. While
only the highest obtained PGS is marked on the histograms, the operators desig-
nated by the afferent ranking being depicted, the numerical results and the equiva-
lent graphical representations account for all the tests performed for the considered
case. Thus, the listed average values may not follow the highest ranking, as influ-
enced by tests terminated with a lower PGS.

As a reminder, the computed PGS value is valid and stands only for the desig-
nated best system and not for the entire resulting ranks array. Consequently, for two
independent tests, the second and the third ranked methods may not be identical.
Nevertheless, relating to the two criteria to be analyzed, more than one operator can
be selected. As previously discussed, only the energy minimization ranking is to be
considered – the RMSD results are included as to sustain or to reject the selection of
the designated energy best operator. Hence, for each analysis case, only the energy
best three mutation operators are marked in the presented tables, according with the
corresponding rank; the afferent row is listed in boldface.

312 A.-A. Tantar et al.

Table 1: 1L2Y - Numerical results for the mutation operator. For each stage (ran-
dom, optimized and near-global solutions), energy and RMSD values are shown, the
best three ranked operators (energy criterion), being marked in boldface with their
rank.

Tryptophan-Cage (1L2Y) - Energy Tryptophan-Cage (1L2Y) - RMSD

Min Max Avg StD Min Max Avg StD

R
an

do
m

C
on

fs

NullM 1625.76 7252.17 4100.34 102.83 8.23 24.34 13.70 0.25
SM 280.35 517.46 358.66 1.64 6.73 11.68 8.76 0.08
UM 280.94 926.80 452.26 5.21 7.19 21.24 11.91 0.21
G-NA 408.83 4579.33 801.08 15.75 6.07 20.10 12.17 0.24
G15 279.04 697.04 399.19 3.00 6.44 13.52 8.93 0.11
C-NA 402.38 1562.63 730.56 11.26 6.91 19.93 12.56 0.20
C15 277.44 689.11 399.69 2.95 6.85 11.32 8.85 0.08
P1-NA 302.07 1260.82 524.11 8.31 7.17 18.16 11.96 0.20
P1-15 252.95 568.12 369.54 2.23 7.03 11.54 8.85 0.08
P2-NA 373.16 1330.24 618.02 9.48 6.96 21.22 12.38 0.25
P2-15 284.81 639.45 370.21 2.41 6.20 11.98 8.82 0.09
P3-NA 272.75 774.24 415.18 4.46 7.28 17.33 11.66 0.19
P3-151 242.66 499.97 321.05 1.31 6.80 17.31 10.24 0.17
P4-NA 266.31 954.46 419.38 4.51 6.18 17.53 11.25 0.20
P4-152 240.36 555.21 333.72 1.53 6.43 16.85 9.78 0.14
P5-01 859.31 5458.39 2704.33 41.19 7.41 24.29 13.52 0.25
P6-NA 261.16 966.90 422.28 4.10 7.38 20.69 11.88 0.21
P6-153 251.65 550.02 338.02 1.49 7.11 14.61 9.54 0.12

O
pt

im
iz

ed
C

on
fs

NullM 65.79 93.51 81.34 0.38 6.12 16.49 10.12 0.23
SM 65.78 94.30 81.85 0.20 5.78 11.11 8.01 0.09
UM1 65.66 94.95 79.84 0.22 5.70 15.12 9.02 0.19
G-NA 65.77 94.26 80.26 0.21 5.47 15.54 9.86 0.21
G15 65.78 94.26 80.98 0.22 5.97 12.26 8.02 0.10
C-NA 65.79 94.26 81.10 0.21 5.98 15.46 9.45 0.20
C15 65.76 94.87 80.75 0.21 5.93 11.02 7.97 0.09
P1-NA 65.79 95.54 81.33 0.22 5.49 15.88 8.85 0.19
P1-15 65.75 94.00 80.99 0.22 5.89 10.92 8.01 0.10
P2-NA 65.79 92.19 81.05 0.22 5.95 14.59 9.31 0.20
P2-15 65.74 95.67 81.40 0.23 5.46 10.68 7.70 0.08
P3-NA 65.79 93.21 81.24 0.22 5.98 14.30 8.72 0.16
P3-15 65.73 94.52 80.92 0.22 5.51 13.91 8.31 0.15
P4-NA 65.79 95.00 81.78 0.25 5.84 14.50 8.79 0.17
P4-153 65.72 92.98 80.24 0.24 5.88 12.98 8.46 0.14
P5-012 65.37 94.79 79.89 0.25 5.78 15.96 9.58 0.20
P6-NA 65.79 95.54 81.33 0.25 5.98 13.98 9.01 0.17
P6-15 65.79 94.04 81.08 0.22 5.61 12.86 8.02 0.11

N
ea

r-
G

lo
ba

lC
on

fs

NullM 1.93e+14 2.67e+14 2.40e+14 9.55e+11 0.78 3.96 1.89 0.06
SM 2.03e+14 2.68e+14 2.40e+14 6.88e+11 0.52 1.28 0.85 0.01
UM 166.64 979.49 286.04 3.83 2.14 13.34 7.13 0.17
G-NA 2.35e+05 2.23e+09 3.36e+08 1.50e+07 1.39 10.52 4.95 0.16
G15 209.22 484.10 290.11 1.83 4.51 11.31 7.89 0.10
C-NA 320.06 2.17e+08 2.16e+07 1.24e+06 1.16 11.46 5.35 0.17
C15 201.40 524.89 292.21 2.15 4.29 10.61 7.76 0.09
P1-NA 212.44 3.39e+04 716.02 103.73 2.76 12.94 7.06 0.17
P1-15 212.76 423.64 283.72 2.00 5.12 11.16 7.93 0.10
P2-NA 806.87 3.46e+05 5.77e+04 3247.46 2.62 11.55 6.02 0.17
P2-15 195.26 421.58 287.24 1.62 3.72 10.96 7.87 0.10
P3-NA3 188.01 835.77 253.24 1.98 2.87 12.26 7.09 0.17
P3-151 176.79 330.44 243.71 1.01 3.19 12.87 8.70 0.16
P4-NA 177.66 670.44 264.06 2.30 2.54 12.91 6.92 0.18
P4-152 186.77 344.45 251.43 1.32 4.11 13.55 8.32 0.14
P5-01 2.18e+13 1.61e+14 1.38e+14 8.89e+11 4.54 10.54 7.65 0.11
P6-NA 189.97 939.27 269.06 2.97 3.27 15.02 7.05 0.19
P6-15 186.73 379.94 258.72 1.42 2.46 12.77 8.39 0.13

332

An Analysis of Dynamic Mutation Operators for Conformational Sampling 313

A first element to notice is that, as compared to the null mutation EA (NullM),
addressing energy minimization, the defined operators have a significant improve-
ment contribution. Large differences of the average obtained values can be observed
for all the three considered phases – random, optimized and near-global conforma-
tions. An important exception is represented by the class of operators relying on
the 01 annealing scheme, as previously mentioned, only one operator of this class
is listed in the numerical results tables, namely the P5-01 operator. In addition, the
SM operator determined a degradation of the exploration process, scoring bellow or
close to the null mutation operator for the final section, for all the three considered
benchmarks.

A similar, less noticeable, improvement effect is obtained when having RMSD as
criterion - statement valid for the first two phases, employing random and optimized
solutions. Nevertheless, no important RMSD minimization is obtained, the large
majority of the operators comporting a highly destructive effect - distinctively visi-
ble for the last phase. A particular exception is the SM operator which not only did
not result in a degradation, as compared to the null mutation, but constantly offered
an improvement. This is distinctly visible for the last section, relying on near-global
solutions.

An analogous behavior can be associated also with the P5-01 operator, for both
mutations, P5-01 and SM, the antagonism relies in the rank obtained for the energy
section as compared to the RMSD one. In fact, at a more attentive examination of the
extracted data, neither SM nor P5-10 is able to delocalize the search from the initial
specified region. Hence, the EA is not able to escape the initial range of [−10,10]
employed for generating the near-global solutions, consequently remaining in the
close vicinity of the crystallographic conformation. Thus, instead of observing a
bias, an operator’s non-effectiveness is described by the numerical results. As a
conclusion, for this case, it can be stated that the selection procedure offers a correct
result but with erroneous semantics.

A second remark has to be made on the Pearson system based mutation oper-
ators. The obtained rankings are dominated by the Pearson based operators, espe-
cially when considering the energy minimization criterion. This comes to sustain the
choice of using the Pearson system of distributions and also to reinforce the idea of
employing the correspondingly defined operator as part of the adaptive schemes. As
the Pearson system can mimic a large number of distributions, the resulting operator
represents an ideal candidate for this specific type of approach. As the operator can
be completely controlled by affecting the four afferent parameters (mean, variance,
skewness and kurtosis), minimal mechanisms have to be designed in order to build
dynamic operators.

Note that, as compared to the desired confidence level, significant PGS levels
were attained, for all the analyzed cases, with one exception. Recall that a minimal
PGS level of 0.9 has been specified so as to retain and consider the provided ranking
as being significant. The exception is given by the 1L2Y benchmark, optimized
solutions case, for which a PGS of only 0.342456 has been reached – see Fig. 4.

314 A.-A. Tantar et al.

Table 2: 1LE1 - Numerical results for the mutation operator. For each stage (random,
optimized and near-global solutions), energy and RMSD values are shown, the best
three ranked operators (energy criterion), being marked in boldface with their rank.

Tryptophan-Zipper (1LE1) - Energy Tryptophan-Zipper (1LE1) - RMSD

Min Max Avg StD Min Max Avg StD

R
an

do
m

C
on

fs

NullM 792.34 6548.79 2564.11 121.01 7.97 19.75 12.93 0.23
SM 176.54 313.18 229.93 2.73 5.91 11.47 8.89 0.10
UM 152.28 349.86 241.59 4.37 7.22 17.25 11.50 0.17
G-NA 245.65 711.80 377.73 8.90 6.02 16.25 11.97 0.18
G15 187.85 312.81 228.81 2.49 6.05 12.84 9.30 0.11
C-NA 216.39 701.92 348.53 8.80 7.17 20.13 12.20 0.20
C15 171.21 319.58 239.09 3.14 6.14 12.15 8.91 0.12
P1-NA 166.96 405.68 252.17 4.85 7.22 15.83 11.62 0.16
P1-15 175.14 328.68 231.98 3.11 6.25 11.67 8.94 0.10
P2-NA 218.92 492.52 311.33 6.92 6.38 15.35 11.34 0.19
P2-153 170.06 282.96 221.45 2.71 4.99 11.57 8.88 0.11
P3-NA 138.38 303.01 223.98 3.28 6.93 14.92 11.00 0.17
P3-151 147.03 256.81 193.04 2.21 6.73 15.23 10.13 0.16
P4-NA 167.85 355.14 229.11 4.36 7.06 15.49 11.09 0.16
P4-152 159.55 270.66 206.76 2.67 6.85 13.25 9.93 0.13
P5-01 616.74 1.50e+06 1.80e+04 1.66e+04 6.99 17.67 12.65 0.21
P6-NA 166.04 344.83 234.16 4.36 6.62 16.15 11.01 0.17
P6-15 162.98 267.62 211.77 2.70 6.01 13.68 9.54 0.14

O
pt

im
iz

ed
C

on
fs

NullM 484.07 3317.61 1140.38 54.88 7.49 18.77 13.07 0.24
SM1 114.14 202.42 157.47 1.83 5.38 13.36 9.03 0.13
UM 142.02 242.66 185.24 2.15 6.16 17.71 11.41 0.19
G-NA 180.17 328.76 246.40 3.96 7.61 18.32 12.12 0.20
G15 155.50 279.64 195.27 2.64 6.83 11.78 9.24 0.11
C-NA 181.01 371.31 237.48 3.73 7.69 16.73 11.92 0.19
C15 152.32 235.31 193.00 2.08 5.95 12.08 8.93 0.12
P1-NA 149.16 256.44 196.03 2.63 6.81 16.36 11.46 0.18
P1-15 144.77 272.31 194.54 2.54 5.91 12.25 8.74 0.12
P2-NA 158.07 294.70 218.65 3.27 7.13 21.13 11.64 0.22
P2-15 147.45 242.74 190.62 2.05 6.11 11.77 8.91 0.10
P3-NA 135.35 221.82 178.63 2.29 7.04 16.28 11.18 0.17
P3-152 135.99 222.63 174.09 1.74 6.03 14.43 10.29 0.18
P4-NA 140.58 232.76 176.87 2.31 7.20 16.51 11.50 0.17
P4-15 148.79 246.41 184.49 2.06 6.62 14.01 9.99 0.16
P5-01 333.74 1606.79 780.57 28.87 7.70 18.02 12.83 0.21
P6-NA3 138.78 230.10 177.18 2.35 6.73 16.11 11.34 0.18
P6-15 139.83 215.79 178.52 1.87 5.78 12.83 9.42 0.13

N
ea

r-
G

lo
ba

lC
on

fs

NullM 1.89e+14 2.53e+14 2.29e+14 9.57e+11 0.66 3.80 1.38 0.05
SM 1.84e+14 2.55e+14 2.28e+14 4.91e+11 0.40 1.00 0.68 0.01
UM 85.13 281.57 130.96 0.63 1.93 17.84 7.33 0.29
G-NA 177.64 2.97e+06 3.59e+05 1.65e+04 1.04 14.02 4.77 0.24
G15 114.42 207.27 158.81 0.65 4.19 12.25 8.45 0.14
C-NA 92.37 2.80e+05 2.73e+04 1463.37 1.08 15.86 5.34 0.25
C15 100.47 215.27 156.58 0.70 3.32 11.15 8.05 0.16
P1-NA 99.05 478.92 161.76 1.60 2.10 16.40 8.04 0.28
P1-15 106.52 218.88 155.79 0.67 5.17 11.49 8.34 0.13
P2-NA 117.17 4.72e+04 1084.74 114.12 2.28 14.85 6.52 0.26
P2-15 115.09 217.40 157.59 0.66 4.31 11.81 8.25 0.14
P3-NA1 75.07 184.25 125.53 0.47 2.22 15.16 7.62 0.28
P3-15 93.14 181.98 135.38 0.43 3.90 16.02 9.62 0.23
P4-NA3 83.26 230.34 127.49 0.52 2.96 17.15 8.15 0.29
P4-15 105.70 186.75 140.18 0.52 2.84 13.73 8.91 0.22
P5-01 9.08e+12 1.40e+14 1.06e+14 5.51e+11 0.59 6.07 1.94 0.08
P6-NA2 79.90 224.49 127.67 0.55 2.86 17.02 7.33 0.26
P6-15 108.04 191.77 144.40 0.54 3.37 13.70 8.61 0.21

334

An Analysis of Dynamic Mutation Operators for Conformational Sampling 315

Table 3: α-cyclodextrin - Numerical results for the mutation operator. For each stage
(random, optimized and near-global solutions), energy and RMSD values are shown,
the best three ranked operators (energy criterion), being marked in boldface with
their rank.

α-cyclodextrin - Energy α-cyclodextrin - RMSD

Min Max Avg StD Min Max Avg StD

R
an

do
m

C
on

fs

NullM 2.44e+04 5.16e+04 3.85e+04 481.47 3.58 11.32 6.78 0.16
SM 3532.26 1.65e+04 9256.60 131.55 2.83 7.36 4.19 0.08
UM 4671.56 2.30e+04 1.08e+04 222.20 2.62 8.80 5.37 0.16
G-NA 9169.77 3.01e+04 1.70e+04 255.84 3.03 9.03 5.59 0.15
G15 3847.41 1.68e+04 1.06e+04 166.40 2.69 7.33 4.26 0.09
C-NA 9028.46 2.46e+04 1.68e+04 258.17 3.13 8.60 5.73 0.14
C15 4800.02 1.63e+04 9746.97 150.13 3.02 6.81 4.33 0.08
P1-NA 5776.05 2.04e+04 1.25e+04 212.82 2.81 8.29 5.27 0.15
P1-15 4142.86 1.77e+04 1.10e+04 170.23 2.77 7.67 4.44 0.09
P2-NA 5818.68 2.43e+04 1.42e+04 224.97 2.69 8.56 5.54 0.15
P2-15 5051.90 1.73e+04 1.07e+04 162.48 2.66 6.93 4.28 0.07
P3-NA 4351.93 1.94e+04 9391.93 173.83 2.79 8.45 5.11 0.14
P3-151 3334.07 1.50e+04 7567.77 128.33 2.63 7.88 4.70 0.14
P4-NA 3323.74 1.68e+04 9924.91 210.49 2.55 8.48 5.35 0.16
P4-153 3629.05 1.40e+04 8125.95 120.62 2.30 7.82 4.55 0.12
P5-01 2.32e+04 4.85e+04 3.43e+04 342.89 3.72 14.37 6.83 0.15
P6-NA 4080.37 1.96e+04 9773.16 166.46 2.61 8.12 5.11 0.15
P6-152 4544.29 1.44e+04 8966.39 129.75 2.53 8.04 4.44 0.12

O
pt

im
iz

ed
C

on
fs

NullM 2.68e+04 5.49e+04 3.59e+04 685.01 3.83 10.50 6.89 0.15
SM1 1952.11 1.09e+04 5981.14 160.10 2.26 6.95 4.16 0.10
UM 3203.01 1.53e+04 8770.11 268.55 2.14 8.55 5.24 0.15
G-NA 6523.79 2.37e+04 1.46e+04 325.08 3.29 8.70 5.95 0.14
G15 3967.96 1.49e+04 8839.00 223.87 2.88 7.49 4.75 0.10
C-NA 4486.20 2.25e+04 1.32e+04 361.20 2.60 8.27 5.71 0.15
C15 4005.52 1.48e+04 8684.44 216.31 2.44 7.77 4.51 0.10
P1-NA 3517.32 1.71e+04 9981.99 299.95 2.71 8.37 5.45 0.15
P1-15 4675.13 1.59e+04 9939.46 203.76 2.68 7.32 4.39 0.08
P2-NA 3801.12 2.02e+04 1.18e+04 328.44 3.17 8.40 5.74 0.15
P2-15 3425.52 1.53e+04 9443.50 211.43 2.61 6.88 4.25 0.08
P3-NA 3208.31 1.39e+04 8105.34 231.76 2.70 8.58 5.57 0.15
P3-152 2648.83 1.12e+04 6622.94 153.01 2.49 8.25 4.99 0.14
P4-NA 2335.74 1.41e+04 7781.31 224.13 2.39 8.47 5.30 0.17
P4-153 3282.53 1.39e+04 7470.86 165.15 2.69 8.13 4.95 0.13
P5-01 2.18e+04 4.74e+04 3.21e+04 507.61 3.74 10.64 6.82 0.15
P6-NA 3627.75 1.37e+04 8581.58 224.06 2.42 8.59 5.31 0.16
P6-15 3225.20 1.41e+04 7896.56 188.64 2.59 7.78 4.67 0.13

N
ea

r-
G

lo
ba

lC
on

fs

NullM 2.09e+14 2.59e+14 2.37e+14 5.85e+11 0.36 2.26 1.06 0.03
SM 2.07e+14 5.24e+15 2.38e+14 3.67e+12 0.38 0.66 0.51 0.01
UM3 404.53 8584.35 1788.03 16.93 0.92 4.88 1.96 0.06
G-NA 1.25e+04 2.61e+08 2.37e+07 5.32e+05 0.97 8.74 3.11 0.16
G15 963.61 7932.57 3244.76 26.82 1.39 4.12 2.40 0.05
C-NA 778.64 1.08e+07 9.54e+05 2.65e+04 0.89 10.15 3.15 0.18
C15 1083.76 3.77e+13 2.74e+10 2.74e+10 1.36 4.62 2.43 0.05
P1-NA 439.03 1.80e+04 3019.91 47.07 0.86 6.77 2.11 0.09
P1-15 1004.52 8425.18 3815.86 30.88 1.53 5.24 2.48 0.06
P2-NA 999.39 9.54e+04 1.45e+04 228.14 0.92 8.56 3.24 0.18
P2-15 697.72 8272.48 3586.77 29.05 1.02 4.19 2.37 0.05
P3-NA1 477.05 7558.03 1562.08 12.67 0.86 5.19 1.83 0.05
P3-15 711.49 6676.50 2330.09 20.46 1.07 5.76 2.16 0.05
P4-NA 404.43 6649.77 1611.17 13.19 1.02 6.13 1.96 0.07
P4-15 837.97 6729.36 2683.48 23.55 1.12 3.95 2.25 0.04
P5-01 1.03e+13 1.54e+14 1.26e+14 2.96e+11 0.52 3.03 1.26 0.05
P6-NA2 427.66 7311.48 1661.02 13.92 0.93 6.65 2.02 0.08
P6-15 799.63 7908.68 3014.23 25.29 1.20 7.14 2.35 0.06

335

316 A.-A. Tantar et al.

Studying the obtained numerical results, it follows that, while still standing as a
diversification factor, none of the defined mutation operators were able to introduce
significant perturbations to enable the embedding EA to attain improvement. As
in the presence of strong local minima, the selection and the replacement schemes
gain a more significant role, combined mechanisms have to be employed in order
to advance the search. Thus, more complex exploration strategies may be required
as to counterbalance redundancy in the search and to avoid continuously focusing
on a limited region of the exploration space. Whilst part of the issues are addressed
by the crossover operators, a stronger impact may be introduced by the local search
mechanism.

Analyzing the complete set of results it follows that the Pearson types III, IV
and VI based operators attain the best (energy) rank in most of the studied cases.
Notwithstanding, none of these operators ranked in the first three mutations for the
RMSD section. Instead the Pearson types I, II and VII (exclusively a histogram
illustration is enclosed for Pearson type VII due to the poor results on the energy
criterion) based operators were classed among the firsts in all the RMSD analysis
tests. Consequently, no coherent inference can be made for accepting or rejecting a
specific operator, as designated in the energy analysis section. Nevertheless, relying
on the heuristic nature of the hybrid approach to be constructed, a straightforward
design would consist of using a combined mutation operator.

For example, the P{3, 4, 6}-{NA, 15} set of operators may be employed, with a
higher incidence of the P3 operator and with a higher probability of using the inverse
annealing scheme. As the Pearson operators not relying on annealing schemes had a
tendency of better scoring in the final phases, it would seem accurate to dynamically
modify the annealing scheme. Hence, for the early stages of the search a factor of
15.0 can be used as a target value for the annealing scheme, to be gradually reduced
to 1.0 (no annealing scheme) as the algorithm advances.

In addition to relying on dynamic resolution schemes, adaptive approaches can
be addressed. Note that all the three considered operators, P3, P4 and P6, result by
modifying the mean, variance, skewness and kurtosis factors of a unique system.
Thus, a polymorphic mutation would seem of interest, capable of standing as a
substitute for the defined operators – the Gaussian and the Cauchy distributions
can be seen as particular cases, depending on the specified parameters. Moreover,
highly flexible exploration strategies can be designed, allowing, for example, for a
smooth transition from a Pearson type III based mutation, in the early stages of the
search, to a Pearson type VI derived operator for the final part of the exploration.

6 Conclusions and Future Directions

Analysis results come to sustain dynamic approaches – most of the considered op-
erators rely on a generation index dependent variance. Furthermore, significant dif-
ferences exist when comparing the results obtained for the considered annealing
schemes.

An Analysis of Dynamic Mutation Operators for Conformational Sampling 317

Fig. 4: 1L2Y - Analysis and selection of mutation operators. Energy and RMSD
histograms for the results obtained when launching the embedding evolutionary al-
gorithms with random, optimized and near-global solutions, respectively. Only the
best three ranked operators are depicted with the corresponding PGS value.

318 A.-A. Tantar et al.

Fig. 5: 1LE1 - Analysis and selection of mutation operators. Energy and RMSD
histograms for the results obtained when launching the embedding evolutionary al-
gorithms with random, optimized and near-global solutions, respectively. Only the
best three ranked operators are depicted with the corresponding PGS value.

An Analysis of Dynamic Mutation Operators for Conformational Sampling 319

Fig. 6: α-Cyclodextrin - Analysis and selection of mutation operators. Energy and
RMSD histograms for the results obtained when launching the embedding evolu-
tionary algorithms with random, optimized and near-global solutions, respectively.
Only the best three ranked operators are depicted with the corresponding PGS value.

As most of the analyzed operators can be simulated by employing the Pearson
system based mutation, it would seem sufficient to act on the four parameters de-
termining the Pearson distribution type. Consequently, an a priori operator selection

320 A.-A. Tantar et al.

phase can be considered, preceding the execution of the evolutionary algorithm. Ad-
dressing the different parameters of the operators, this results in a parameter tuning
process – in this case an ensemble of parameters is to be selected from a specified
set. Nevertheless, to a certain extent, the analysis results may stand only for a re-
duced set of conformations, hence, requiring the introduction of adaptive schemes.

A straightforward automatic tuning and operator selection approach consists in
using the parallel selection procedure as a first phase of the conformational sam-
pling algorithm. As previously mentioned, similar studies, not included here, were
conducted on intensification operators and local search algorithms. Thus, by con-
sidering distinct configuration phases for each class of components embedded by
the evolutionary exploration approach, multiple designs can be constructed by com-
bining the obtained results. This is equivalent to reusing the analysis architecture
developed here, in conjunction with an evolutionary approach.

As differences exist between the operators that scored in the first three at differ-
ent stages, as an incipient design, the parameters of the Pearson system based op-
erator can be integrated in the coding information of the individuals. Consequently,
the evolution process can act not only on the resulting individuals but also on the
parameters to be adapted. Having a large percentage of the individuals as output
of a particular parameter setup can hence introduce a bias, discarding individuals
generated as a result of lower quality setups. The main inconvenience of this par-
ticular approach resides in the fact that an individual’s encoding has to be modi-
fied, along with the way operators act on the constructed encoding. Thus, a less
intrusive approach, relying on the parallel environment setup consists of having a
distinct algorithm exploring the parameter space, concurrently with the main ex-
ploration algorithm. While imposing higher design and implementation difficulties,
a separate parameter – the solution exploration paradigm introduces important ad-
vantages, allowing for different experimental designs. A decoupling construction,
including a parameter optimization process, executed in parallel with the evolution-
ary algorithm, is the subject of a distinct study, following the results.

References

[1] Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evolu-
tionary Computation 6(5), 443–462 (2002)

[2] Alba, E., GLuque, E.G.T., Melab, N.: Metaheuristics and parallelism. In: Alba, E. (ed.)
Parallel Metaheuristics. Wiley Series on Parallel and Distributed Computing. Wiley,
Chichester (2005)

[3] Anfinsen, C.B., Haber, E., Sela, M., White, F.H.: The Kinetics of Formation of Na-
tive Ribonuclease During Oxidation of the Reduced Polypeptide Chain. Proceedings of
the National Academy of Sciences of the United States of America 47(9), 1309–1314
(1961)

[4] Blundell, T.L., Sibanda, B.L., Sternberg, M.J., Thornton, J.M.: Knowledge-based pre-
diction of protein structures and the design of novel molecules. Nature 326(6111), 347–
352 (1987)

An Analysis of Dynamic Mutation Operators for Conformational Sampling 321

[5] Branke, J., Chick, S.E., Schmidt, C.: New developments in ranking and selection: an
empirical comparison of the three main approaches. In: WSC 2005: Proceedings of the
37th Conference on Winter Simulation, pp. 708–717. ACM, New York (2005)

[6] Branke, J., Chick, S.E., Schmidt, C.: Selecting a selection procedure. Management Sci-
ence 53(12), 1916–1932 (2007)

[7] Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.Y.: A limited memory algorithm for bound con-
strained optimization. SIAM Journal on Scientific Computing 16(6), 1190–1208 (1995)

[8] Cahon, S., Melab, N., Talbi, E.G.: Paradiseo: A framework for the reusable design of
parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)

[9] Cahon, S., Melab, N., Talbi, E.G.: An enabling framework for parallel optimization on
the computational grid. In: CCGRID, pp. 702–709 (2005)

[10] Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic
Publishers, Norwell (2000)

[11] Cappello, F., Caron, E., Dayde, M., Desprez, F., Jegou, Y., Primet, P., Jeannot, E.,
Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Quetier, B., Richard, O.:
Grid’5000: a large scale and highly reconfigurable grid experimental testbed. In: The
6th IEEE/ACM International Workshop on Grid Computing, pp. 99–106 (2005)

[12] Chen, C., Lin, J., Yücesan, E., Chick, S.E.: Simulation budget allocation for further
enhancing the efficiency of ordinal optimization. Journal of Discrete Event Dynamic
Systems: Theory and Applications 10, 251–270 (2000)

[13] Chen, C.H.: A lower bound for the correct subset-selection probability and its appli-
cation to discrete event system simulations. IEEE Transactions on Automatic Con-
trol 41(8), 1227–1231 (1996)

[14] Chick, S.E., Inoue, K.: New results on procedures that select the best system using crn.
In: Simulation Conference Proceedings, vol. 1, pp. 554–561 (2000)

[15] Cozzone, A.J.: Proteins: Fundamental chemical properties. Encyclopedia of Life
Sciences, pp. 1–10. Macmillan Publishers Ltd, Nature Publishing Group (2002),
www.els.net

[16] Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M., Hagler,
A.T.: Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofo-
late reductase-trimethoprim, a drug-receptor system. Proteins: Structure, Function, and
Genetics 4(1), 31–47 (1988)

[17] Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24(6),
1501–1509 (1985)

[18] Gropp, W.: Mpich2: A new start for mpi implementations. In: Proceedings of the 9th
European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface, p. 7. Springer, London (2002)

[19] Gropp, W., Lederman, S.H., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., Snir, M.:
MPI: The Complete Reference, The MPI-2 Extensions, vol. 2. MIT Press, Cambridge
(1998)

[20] Heinrich, J.: A guide to the Pearson Type IV distribution (2004)
[21] Herrera, F., Lozano, M., Verdegay, J.L.: Fuzzy connective based crossover operators to

model genetic algorithms population diversity. Tech. Rep. DECSAI-95110, University
of Granada (1995)

[22] Herrera, F., Lozano, M., Verdegay, J.: Dynamic and heuristic fuzzy connectives-based
crossover operators for controlling the diversity and convengence of real-coded genetic
algorithms (1996)

[23] Herrera, F., Lozano, M., Verdegay, J.L.: Fuzzy connectives based crossover operators
to model genetic algorithms population diversity. Fuzzy Sets Syst. 92(1), 21–30 (1997)

www.els.net

322 A.-A. Tantar et al.

[24] Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator for real-
coded genetic algorithms: An experimental study. International Journal of Intelligent
Systems 18(3), 309–338 (2003)

[25] Hestenes, M.R.: Iterative methods for solving linear equations. Report 52-9, NAML
(1951); Reprinted in the Journal of Optimization Theory and Applications 11, 323–334
(1973)

[26] Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards 49(6), 409–436 (1952)

[27] Ingber, L.: Adaptive simulated annealing (ASA): Lessons learned. Control and Cyber-
netics 25, 33–54 (1996)

[28] Ingber, L.: Adaptive simulated annealing (asa) and path-integral (pathint) algorithms:
Generic tools for complex systems. Tech. rep., Lester Ingber Research, Chicago, IL
(2001)

[29] Joy, S., Nair, P.S., Hariharan, R., Pillai, M.R.: Detailed comparison of the protein-ligand
docking efficiencies of gold, a commercial package and arguslab, a licensable freeware.
Silico Biology 6(6), 601–605 (2006)

[30] Linlin Qiu, S.J.H.: Internal friction in the ultrafast folding of the tryptophan cage. Chem-
ical Physics 1(312), 327–333 (2005)

[31] Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 2nd edn.
Springer, New York (1994)

[32] Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson,
A.J.: Automated docking using a lamarckian genetic algorithm and an empirical binding
free energy function. Journal of Computational Chemistry 19(14), 1639–1662 (1999)

[33] Nagahara, Y.: The PDF and CF of Pearson type IV distributions and the ML estimation
of the parameters. Statistics & Probability Letters 43(3), 251–264 (1999)

[34] Nagahara, Y.: A method of simulating multivariate nonnormal distributions by the pear-
son distribution system and estimation. Computational Statistics & Data Analysis 47(1),
1–29 (2004)

[35] Neumaier, A.: Molecular modeling of proteins and mathematical prediction of protein
structure. SIAM Review 39(3), 407–460 (1997)

[36] Parent, B., Tantar, A., Melab, N., Talbi, E.G., Horvath, D.: Grid-based evolutionary
strategies applied to the conformational sampling problem. In: IEEE Congress on Evo-
lutionary Computation pp. 291–296 (2007)

[37] Ponder, J.W., Case, D.A.: Force fields for protein simulations. Advances in Protein
Chemistry 66, 27–85 (2003)

[38] Rabow, A.A., Scheraga, H.A.: Improved genetic algorithm for the protein folding prob-
lem by use of a Cartesian combination operator. Protein Sci. 5(9), 1800–1815 (1996)

[39] Rosin, C.D., Halliday, R.S., Hart, W.E., Belew, R.K.: A comparison of global and lo-
cal search methods in drug docking. In: Bäck, T. (ed.) Proceedings of the Seventh In-
ternational Conference on Genetic Algorithms (ICGA 1997). Morgan Kaufmann, San
Francisco (1997)

[40] Schmidt, C., Branke, J., Chick, S.E.: Integrating techniques from statistical ranking into
evolutionary algorithms. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C.,
Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero,
G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 752–763. Springer,
Heidelberg (2006)

[41] Snow, C.D., Qiu, L., Du, D., Gai, F., Hagen, S.J., Pande, V.S.: Trp zipper folding kinetics
by molecular dynamics and temperature-jump spectroscopy. Proc. Natl. Acad. Sci. U S
A 101(12), 4077–4082 (2004)

An Analysis of Dynamic Mutation Operators for Conformational Sampling 323

[42] Stewart, C.A., Müller, M.S., Lingwall, M.: Progress towards petascale applications in
biology: Status in 2006. In: Euro-Par Workshops, pp. 289–303 (2006)

[43] Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–564
(2002)

[44] Tantar, A.A., Melab, N., Talbi, E.G.: A grid-based genetic algorithm combined with an
adaptive simulated annealing for protein structure prediction. Soft Computing 12(12),
1185–1198 (2008)

[45] Tantar, A.A., Melab, N., Talbi, E.G., Parent, B., Horvath, D.: A parallel hybrid genetic
algorithm for protein structure prediction on the computational grid. Future Generation
Computer Systems (in press)

[46] Tavares, J., Tantar, A.A., Melab, N., Talbi, E.G.: The influence of mutation on protein-
ligand docking optimization: a locality analysis. In: Rudolph, G., Jansen, T., Lucas,
S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 589–598. Springer,
Heidelberg (2008)

[47] Thomsen, R.: Flexible ligand docking using evolutionary algorithms: investigating the
effects of variation operators and local search hybrids. Biosystems 72(1-2), 57–73
(2003)

[48] Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transactions on
Evolutionary Computation 3(2), 82–102 (1999)

[49] Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines
for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–
560 (1997)

A. Lewis et al. (Eds.): Biologically-Inspired Optimisation Methods, SCI 210, pp. 325–354.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Evolving Computer Chinese Chess Using
Guided Learning

H.Y. Quek, H.H. Chan, K.C. Tan, and A. Tay1

Abstract This chapter explores the feasibility of using genetic algorithms to im-
prove the evaluation of Chinese chess programs. A game engine that uses the ne-
gascout search algorithm in combination with internal iterative deepening search
is developed. As a means to enhance the search process, techniques such as null-
move-pruning, futility pruning, razoring and selective search extensions are used.
Unnecessary expensive re-searches for the negascout are avoided through move
ordering techniques, which are governed by the Most Valuable Victim (MVV) /
Least Valuable Attacker (LVA), killer and history heuristics. To evaluate the
game positions at any point of time, a static evaluation function (using hand-tuned
weights) is utilized in conjunction with quiescent search, whose weights are tuned
by a genetic algorithm using a population of chromosomes. Moves taken from
grandmasters’ games are used as training data to evaluate the fitness of chromo-
somes during evolution. This is determined based on the number of ‘correct’
moves made by the program. The evolved programs are benchmarked against the
un-evolved version and random online human players. Results show that evolution
with guided learning does improve the playing strength of the Chinese chess pro-
gram significantly.

1 Introduction

Chess has always been an important area of research in artificial intelligence (AI).
Its perfect information nature provides a relatively simple platform to test out new
theories in AI. In particular, pitting chess-playing AIs against human grandmas-
ters allows researchers to better understand the strengths and shortcomings of AI
[1], unlike many real-life problems where no reliable human experts are available.
Over past decades, AI has made tremendous progress in several chess variants. In
checkers, Schaffer’s Chinook defeated the human world champion, Don Lafferty
in 1994 [2]. In international chess, IBM’s Deep Blue also defeated the human
world champion, Gary Kasparov in 1997 [3]. Since then, the performance of AI in

Department of Electrical and Computer Engineering,
National University of Singapore,
4 Engineering Drive 3, 117576, Singapore

326 H.Y. Quek et al.

international chess has improved further. Today, the strongest program, Hydra,
which is estimated to have an Elo playing strength of 3000, has not lost a game to
an unaided human opponent.

In contrast, the performance of AI in Chinese chess has lagged behind substan-
tially. The best performance attained thus far was Neuchess’s narrow victory over
five masters and grandmasters in 2006 [4]. However, the human grandmasters
were essentially playing at a disadvantage [5] since the games were not played
using tournament time control. In the strict sense, AI is yet to defeat a world
champion under tournament time control. Grandmaster Liu Da Hua commented
on the strategic weakness of Neuchess – although it possesses superior speed, its
judgment is weak especially near the endgame [5]; suggesting that there is still
ample room for improvement in the quality of AI in Chinese chess.

The performance of a Chinese chess program is largely determined by two fac-
tors, speed of its search and accuracy of its evaluation. The speed of search is de-
termined by the number of nodes that can be traversed in a fixed amount of time.
As verified by an experiment conducted years ago, Thompson [6] showed that,
with all things being equal, a program that can perform a deeper search will al-
ways beat one that only searches at a shallow level. Since a faster speed denotes
the ability to search at a larger depth, this will likewise also translate to better per-
formance. The search speed of chess programs has improved tremendously in the
last few decades, mainly due to improvement in computer hardware. When Deep
Blue defeated Kasparov in 1997, it was using specialized hardware such as VLSI
chess chips, and was able to search 200 million positions per second [7]. In con-
trast, the strongest chess machine in the early 1980s, Belle, was only able to
search 180,000 positions per second [8]. Despite this, raw brute-force search speed
alone is not enough. Though a human grandmaster can at best only evaluate a
handful of positions per second, his extensive chess knowledge allows him to
conduct selective search on only a few moves at each search ply. This implies a
search tree with a notably smaller branching factor than a chess machine’s, which
makes it possible for a human grandmaster to reach approximately the same
search depth as a chess machine.

As the speed of the Chinese chess machine is already faster than that of a hu-
man grandmaster, the performance bottleneck is actually the accuracy of its
evaluation. The need for an evaluation function was first proposed by Shannon [9]
in 1949. In chess, this is usually made up of a mathematical function. Score
weights are assigned to reward and penalize the AI, based on the material balance,
King’s safety, mobility and relative positions of the pieces. The conventional ap-
proach to improve the evaluation function is via “hand-tuning” [10] – where a
programmer is tasked to adjust the weights manually, according to the perform-
ance of the program. This is a slow and tedious process. As expert knowledge is
required, accuracy of evaluation is ultimately limited by the skill of the “tuner”.
Besides, it is difficult, even for a grandmaster, to quantify weights accurately. Ge-
netic algorithms (GAs) offer an elegant solution to the problem as they do not
require expert human chess knowledge to perform the modification of the weights.
Moreover, it also possesses the potential to discover new Chinese chess strategies,
which might allow the AI to evaluate even better than any human grandmaster.

Evolving Computer Chinese Chess Using Guided Learning 327

For example, Blondie24, a checkers program which uses evolutionary algorithms,
was able to make moves that were complimented by opponents as being “strange”
and “very tough” [11].

To evolve an effective chess solution using GAs, one important aspect is the
fitness evaluation of chromosomes e.g., descriptive of different instances of the
chess program’s encoding operational parameters. As the ultimate objective is to
win games, a popular and most direct method is to base the fitness on the number
of games won against its peers or a “control” player as in the case of Blondie24
[11]. However, there are several problems associated with this method. Firstly,
when playing strengths of chromosomes become very close, most of the games
will probably end in a draw. In such situations, resolution of fitness evaluation
might be too low and it becomes difficult to determine whether one chromosome
is stronger than the other at a reasonable confidence level. To improve the resolu-
tion of the fitness evaluation, the number of games played during the selection
process might have to be increased substantially and this will result in a long
simulation time. Suppose 100 games are played on average between two chromo-
somes to decide the stronger of the two. If each is given one second to move and a
game terminates in 100 moves1 on average, an evolution process which uses tour-
nament selection and a small population of 10, will take an unrealistic 231 days
for a mere 200 generations.

Secondly, there is also a likely problem of intra-sensitivity. Suppose there are
three chromosomes A, B and C. If A beats B; B beats C and C beats A, it will be
difficult, if not impossible, to determine the fittest chromosomes among the three.
This is because playing games amongst chromosomes only measures the differ-
ences in their subjective playing strengths. Albeit chromosome A has stronger
overall playing strength than B, chromosome B can still win most of its games
against A if it is able to exploit a particular weakness in A’s evaluation function
consistently. Even if a “control” chromosome which all others are pitted against is
present, the number of wins against the “control” chromosome still very much
depends on how well a chromosome is able to exploit the weakness of the “con-
trol” chromosome. In general, it is difficult to assess the objective playing strength
of a chromosome if it does not play against a large number of random opponents.

Thirdly, it is extremely difficult to teach a program to play chess by using only
the end results of the game [12]. The chromosome might make 100 moves, of
which just one bad move is enough to cause the program to lose a game. In such
cases, informing the chromosome simply that it has lost the game does not aid in
finding the erroneous move. This succinctly explains the inherent difficulty of
using games between chromosomes as the basis for fitness evaluation.

Aimed at addressing the above issues, the proposal in this chapter uses moves of
past grandmasters’ games as the basis of fitness evaluation. The fitness score of a
chromosome is determined and will change in accordance to the number of “correct”
moves it has made. “Correct” is defined as making the move that the grandmaster
made in that identical game situation. Usage of training data allows for objective

1 The number of steps will increase as playing strengths of the chromosomes get closer.

328 H.Y. Quek et al.

measurement of fitness, and could potentially avoid the afore-mentioned problems.
Compared to playing games between chromosomes, this “guided learning” approach
to training takes a relatively indirect route. However, by evolving the chess evaluation
function towards that of the grandmaster, the accuracy of the program’s evaluation and
hence its playing strength could potentially be improved over time.

This chapter is organized as follows. Section 2 presents a brief introduction of
the rules in Chinese chess and how its elements tend to differ from those in con-
ventional chess. Section 3 describes the proposed Chinese chess engine while Sec-
tion 4 illustrates the application of the GA. Section 5 discusses the requirements of
the training data and the process of selecting it. Section 6 gives the results of simu-
lations using the chosen dataset and Section 7 assesses the performance of the
evolved program against the un-evolved one as well as random online human
players, with a brief analysis of results. Section 8 concludes with a broad summary
of the discussion on the overall findings and Section 9 discusses some possible
works that can be embarked upon in future.

2 Chinese Chess Rules

The rules of Chinese chess are similar to that of chess where each player controls
a set of pieces and tries to capture the opponent’s King. Taking turns to move the
pieces one at a time, the objective of the game is to checkmate the opponent i.e.,
by attacking his King (placed it in check) in a way that no further move is able to
eliminate that check. Unlike chess, however, the Chinese chess board is a grid of

Fig 1. Initial position in a game of Chinese chess.

Evolving Computer Chinese Chess Using Guided Learning 329

Table 1. Movement rules and mobility constraints of each Chinese chess piece.

Chess pieces Piece symbols Movement/Mobility constraints

Rook

The Rook moves exactly the same way as in
chess – in a straight horizontal or vertical
line across any number of empty spaces. It
can stop on empty spaces or on the first
space it comes to that is occupied by an op-
ponent piece. Passing over occupied spaces
is prohibited.

Horse

The Horse is able to reach the same spaces
that chess Knights can reach, with the excep-
tion of leaping over pieces. Its movement is
characterized by an orthogonal move of one
space followed by one that is diagonally
outward. However, movement in a direction
is blocked if the first space it would move
over is occupied.

Elephant

The Elephant moves two spaces in the same
diagonal direction. Like the Horse, it is not
allowed to leap over occupied spaces. Its
movement is blocked if the first step of its
move is over an occupied space. Unlike the
Horse, they are confined to their own side of
the river (interruption/gap in the middle of
the board).

Advisor

The Advisor moves one space along the di-
agonal lines in the palace (marked by x-
shaped cross connecting its four corner points)
that connects points it may reach. The piece is
not allowed to move out of the palace.

King

The King moves one space orthogonally
within the palace’s confines. Like the Advi-
sor, it cannot leave the palace. Two Kings
are also not allowed to face each other on an
open file e.g., a red King on c1 and a black
King on c10, with no piece on the c-file be-
tween them. If either King sits exposed on an
open file, the other is prohibited from mov-
ing to occupy that file.

330 H.Y. Quek et al.

Table 1. (continued)

Cannon

The Cannon moves differently when it cap-
tures than if it moves passively. It moves
similarly as a Rook when not capturing a
piece but moves in the same direction when
capturing except that it must hop over a sin-
gle intervening piece e.g., Cannons capture
by hopping over a second piece to capture a
third piece. They can never hop over more
than one piece in a given move.

Pawn

The Pawn moves one space vertically for-
ward but gets the added ability to move one
space sideways after it crosses the river.
Unlike the Pawn in chess, it moves and cap-
tures in the same manner, never gets a double
move, and does not promote on the last rank.

ten horizontal lines and nine vertical lines where pieces are placed on intersections
called points instead of squares. The setup of the various pieces in their respective
initial positions at the beginning of a game is shown in Figure 1.

Similar to chess, each board piece has its own unique style of movement as
well as mobility constraints. These are described and presented in Table 1. Other
miscellaneous game rules include the conventions that Red moves first and
perpetual check is prohibited e.g., a player is not allowed to check his opponent
more than three times in a row using the same piece and board positions.

3 Chinese Chess Engine

Before a GA can actually be applied, a Chinese chess engine must first be created.
For a chess program to compete effectively against a human grandmaster it has to
be able to search 10 plies deep for each move [5]. Given that the average branch-
ing factor of Chinese chess is 38 [13], it becomes unviable to implement search on
the classical mini-max algorithm, since the Chinese chess program will need to

evaluate approximately 15106× nodes per move by traversing through every node
in the game tree. Though Alpha-beta pruning can achieve an effective branching

factor of b , where b is the branching factor for plain mini-max [14], its per-
formance is largely dependent on move-ordering e.g., pruning is efficient provided
that better moves are tried before bad ones. Even if this inconsistency is ignored,
the algorithm will still have to traverse 3×108 nodes, which is still not quite fast
enough to play a game of Chinese chess under tournament time control. A search
strategy that is more efficient is required.

Evolving Computer Chinese Chess Using Guided Learning 331

3.1 Principal Variation Search

Negascout, also called the Principal Variation Search, is used as the basis of
search in the proposed Chinese chess engine. It is employed in combination with
iterative deepening, internal iterative deepening and quiescent search to ensure the
presence of a correct principal variation move, whenever possible. Proposed by
Reinefeld in 1989, negascout dominates alpha-beta and never examines a node
that can be pruned [15]. It assumes that the first move found is usually the best
one. For subsequent moves, a minimal window search is carried out to prove that
other moves’ scores cannot improve upon the score on the first move. The main
advantage is that such searches fail quickly and hence greatly increase the search
speed. However, if a better score is found, a full-window search is repeated again
for that move. If there are too many re-searches, performance of negascout will,
however, deteriorate. The crucial performance factor of the algorithm is to ensure
that the first move considered is the best move, at least for most of the time. How-
ever, if the best move is known, then there is no need to do a search in the first
place. There is thus a need for the AI to make a calculated guess of what the best
move is likely to be. This is done via the storage of principal variation moves,
where each refers to the best move found for a particular position in earlier, shal-
lower searches. Principal variation moves are stored in a hash table and are always
searched before other moves. In the event that the search tree is traversed in an
ordinary depth-first fashion, it is highly unlikely that a principal variation move
can be found within the hash table. For negascout to work effectively, an iterative
deepening search must be used in combination with it.

3.2 Iterative Deepening

In the ordinary depth first search, each branch is explored up to the target search
depth (barring any pruning). With iterative deepening, the target search depth is
gradually increased until the maximum search depth is reached or when the time
limit is reached. It seems that iterative deepening wastes plenty of valuable time
by searching repeated nodes over and over again, but due to the fact that previous
search results are stored in the hash table, the increase in the time spent on re-
searching is minimal. Also, because negascout is used, the time-savings offered by
the principal variation of previous searches more than compensate for the addi-
tional overheads. In this work, iterative deepening is also taken to a much higher
level and used within the negascout algorithm itself. Such internal iterative deep-
ening is used when the remaining search depth is more than three and no best
move is found in the hash table as yet. In such situations, a shallower search is
first executed for depth = remaining depth – 2. The best move found via this in-
ternal iterative deepening is then used as the first move for the full depth negas-
cout search.

3.3 Hash Table

Two hash tables are used in this program to store the principal variation moves
and the evaluation scores of the previously searched positions. The key and lock

332 H.Y. Quek et al.

of each game position are created by Zorbist Hashing using two arrays, one for the
key and one for the lock. By using both the key and lock, the state of the game
board can be represented with a 64-bit number. This removes the need to traverse
through the entire board to check if the positions of all the pieces are identical for
the game position and the hash table entry that is used to probe the hash tables. A
simple check to ensure that both keys and locks are identical will suffice.

In addition, the program also reduces search redundancy via the use of scores
and principal variation moves that were stored in the hash tables. For instance, if
the program is currently searching a game position with remaining search depth of
two, the result in the hash table is returned directly if the table already contains a
result that corresponds to a search depth of more than or equal to two. In this case,
the need to traverse through the remaining depth is thus avoided. Such reduction
in search effort is extremely useful for Chinese chess programs since different
orders of moves frequently transpose onto each other. In the event that the result
stored in the hash table is shallower than the current remaining depth, the principal
variation move from the shallower search can still be used as an “educated guess”
of what the best move is. This is usually made the first move to be searched by
negascout even when the score in the hash table is not directly used. As the size of
the hash table is finite, there is a need to determine when to replace the original
entry. Two main replacement strategies are employed in the Chinese chess engine.

(a) Always replace
Under this strategy, the original hash table entry is always overwritten, regardless
of the useful search results which it might contain. For example, if the original
entry is from a search of depth 10 and the new entry is from a search of depth
three, the older entry, which is likely to be more important, is overwritten.

(b) Overwrite shallower entry
Evaluation scores, at higher depths, are more accurate than those which are de-
rived from shallower searches. Hence it makes sense to replace the original hash
table entry, if the new evaluation score is from a deeper search. However, as the
AI makes more and more moves, the hash table is bound to be filled up with older
and irrelevant entries. If these entries are results from deeper searches, they will
never be replaced, and this reduces the number of useful entries in the hash table.
A possible solution is to use a stale flag. Every time the AI makes a move, the
stale flags of all the hash table entries are set. Each time a hash table entry is suc-
cessfully probed for the best move or evaluation score, its stale flag is reset. When
deciding whether or not to overwrite an entry, its corresponding stale flag is
checked first. If the stale flag is set, it is always overwritten. Otherwise, the entry
is only overwritten when the new search result is from a deeper search.

In this work, both strategies are used in unison. This is taken from the concept
used by Tu’s Chinese chess program [16]. Instead of using only one hash table,
two hash tables are used. The first uses the “overwrite shallower entry strategy”,
while the second uses the “always replace” strategy. When an entry of the first

Evolving Computer Chinese Chess Using Guided Learning 333

hash table is overwritten, and its stale flag is not set, the entry is copied into the
second hash table. This way, it is possible to have the best of both worlds.

3.4 Move Ordering

As mentioned earlier, the performance of negascout is dependent on the quality of
its move-ordering, which refers to the order in which the moves are generated and
searched. To avoid unnecessary, expensive re-searches, the Most Valuable Victim
(MVV) / Least Valuable Attacker (LVA), killer and history heuristics are used to
order moves. The order in which the moves are searched is as follows:

(1) Principal variation move
This is the best move that is stored in the hash table as obtained from the previous,
shallower searches. If no best move is found, an internal iterative deepening
search is carried out.

(2) Killer Moves
After trying the principal variation move, four killer moves are tried. These are
moves which produced a beta-cutoff at the same depth in another branch of the
search tree and are used only if the move is legal in the current position. The idea
is that there is usually a move that we want to prevent the opponent from making
and/or a move that we’ll always want to make, whenever possible. Using such
moves removes the need to go through the time-consuming process of move gen-
eration.

(3) Capture moves, governed by the MVV/ LVA heuristic
Capture moves are moves which capture an opponent piece. They are sorted in a
most-valuable-victim and least-valuable-attacker order. This means that the moves
that capture the opponent King are tried first, and those that capture the opponent
Pawns are tried last. Also, among the moves that capture the same piece, for ex-
ample a Rook, the Pawn captures Rook moves are tried before the Rook captures
Rook move. This is used because capturing a major piece (such as a Rook) is usu-
ally better than capturing a minor piece (such as a Pawn) in chess. Due to the pos-
sibility of the opponent recapturing the very next turn, it is also better to capture
with a less valuable attacker. All capture moves in this work are generated in a
piecemeal fashion. The King-captures are generated and searched before generat-
ing any Rook-captures. This search procedure improves the speed of the program
as there is no need to generate the other capture moves if a King-capture has cre-
ated a beta-cutoff.

(4) Remaining moves, sorted according to history heuristic
Finally, the non-capture moves are generated. The ordering of the non-capture
moves is governed by a history heuristic which is represented by a 14 by 256 by
256 array. The first index indicates the color and type of the piece, the second in-
dex the source square on the game board, and the third index the destination

334 H.Y. Quek et al.

square. Each time a non-capture move creates a beta-cutoff in the search tree, the
corresponding element in the array is increased by the square of the remaining
search depth. All the non-capture moves are sorted in a descending order, based
on their respective scores in the history array. The moves with higher scores are
tried first as a move which creates an earlier beta-cutoff is likely to be a better
move. On the whole, the history heuristic allows the AI to learn the moves which
are likely to be better. It is similar in concept to the killer heuristic, just that the
killer heuristic is more of a “short-term” memory, whereas the history heuristic is
a “long-term” memory.

3.5 Quiescent Search

The strength of a Chinese chess program depends heavily on the accuracy of the
evaluation function. As evaluation depends on the number of pieces on the chess
board, it is impossible to give an accurate evaluation if one of the major pieces is
going to be captured in the next turn. To improve the evaluation accuracy, quies-
cent search is used. The idea of quiescent search is to increase the search depth
until a “quiet” position is reached e.g., where there is no more capture or recapture
of pieces. Instead of calling a static evaluation, quiescent search is called if the
remaining search depth reaches zero.

If the King is currently in check, a full negascout search will be called to search
for possible moves to escape the check. In addition, if the previous move is a cap-
ture move; and the current capture move has the same destination as the previous,
with the difference in value of pieces captured in both moves falling within a pre-
defined recapture window, the Chinese chess engine will realize that a recapture
has occurred and that there is an exchange of pieces. When this happens, a full
negascout is also called, instead of relying on quiescent search alone. This im-
proves the tactical strength of the AI. If the above conditions fail, all possible good
capture moves are considered and quiescent search is called recursively until a
quiet position (with no possible good capture moves, and the King not in check) is
reached. The evaluation score for that position is then returned.

The performance of the quiescent search depends heavily on the definition of
good capture moves. When good capture moves are defined too loosely, a quies-
cent search tree explosion results as too many unnecessary quiescent search nodes
will be evaluated. This slows down the performance of the AI. However, if good
capture moves are defined too strictly, the AI might miss out some important
moves, which will affect the tactical strength of the AI negatively. In this work,
two different types of good capture moves will be searched in the quiescent search
function.

(1) Capturing undefended pieces.
Moves which capture undefended pieces are considered to be good capture moves,
since they win material.

Evolving Computer Chinese Chess Using Guided Learning 335

(2) Capturing valuable pieces with an attacker of lower or equivalent value.
Valuable pieces refer to those whose score in the position value table exceeds a
pre-defined cut-off value. Generally, this refers to the King, Rook, Horse and
Cannon.

A futility clause is also added into the quiescent search. If the sum of the static
evaluation score of the current condition and the material value that will be won
by the next capture move is still lower than the alpha, then it is likely that it is a
bad line of play. Such moves are not searched and the static evaluation score of
the current position is returned instead.

3.6 Pruning

Additional pruning techniques, such as the null move pruning [17], futility margin
and razoring [18] are also used to further decrease the average branching factor of
the search tree. These, unlike alpha-beta pruning, are “imperfect”, in that they
might affect the final outcome of the search. In other words, the search speed and
depth can be improved at the expense of more inaccurate evaluation. For instance,
too many unnecessary prunings that result from the use of very large pruning mar-
gins might cause potential tactical weakness to the AI and compromise its playing
strength. On the other hand, margins that are too low might also result in too few
prunings and limit the improvement in search efficiency. To obtain programs that
are fairly good in playing strength and speed, there is a need to find a balance be-
tween efficiency and accuracy via fine-tuning these margin values.

3.7 Extensions

As a counter to the potential detrimental effects of pruning, selective search exten-
sions during checks, re-captures or mate-threats are used. These, on the contrary,
increase the tactical strength of the program at the cost of slowing down the search
speed and can thus balance out the tactical weakness of imperfect pruning.

3.8 Evaluation

Evaluation of a position is divided into two parts: simple evaluation and adjust-
ment score.

3.8.1 Simple Evaluation

Simple evaluation is based on the number of pieces and their individual positions
on the game board. Specifically, seven position value tables are used in the pro-
gram to compute the simple evaluation score. These tables are adapted from an
open-source Chinese chess program, “Elephant-eye” [19]. Each type of Chinese
chess piece, such as a Rook or a Horse, has its own position table. The position
value table is indexed by the position of the piece. Thus each piece is assigned a
position value score based on its position on the game board.

336 H.Y. Quek et al.

(1) If it is Black’s turn to move
Simple evaluation score = ∑ ∑ values position pieces' red-values position pieces' black

(2) If it is Red’s turn to move
Simple evaluation score = ∑ ∑ values position pieces' black-values position pieces' red

The simple evaluation score is used to assess the relative material strengths of
both sides. However, in Chinese chess, which is also true for other forms of chess,
material strength is not everything. The key to winning is through attacking and
capturing the enemy King. While having more material helps, the side with the
higher material strength might not necessarily win the game. This is where the
adjustment score comes into play.

3.8.2 Adjustment Score

The adjustment score is a form of evaluation heuristics which is based on the rela-
tive positions and mobility of all pieces, and the King’s safety. A list of adjust-
ment scores that is used in the proposed Chinese chess engine is as follows:

(1) Mobility of Rooks and Horses.
The side which has more mobile Rooks and Horses is awarded a bonus score.

(2) Proximity of “bridges” for Cannons.
The Cannon can only maximize its effectiveness when there are bridges nearby.
The side that has closer Cannon “bridges” is awarded a bonus score.

(3) Pinned pieces.
These refer to the opponent’s pieces that are pinned by one’s Rooks and Cannons.
The side that pins more of the opponent pieces is awarded a bonus score.

(4) Cannons, with no Elephants.
If a side has no Elephants left, the opponent is given a bonus score for each of its
Cannon.

(5) Rooks and Pawns, with no Advisors.
If a side has no Advisors left, the opponent is given a bonus score for each of its
Rooks and Pawns.

(6) End game bonus for defensive pieces, Pawns and Horses.
In the end game, values of all the defensive pieces, Pawns and Horses are in-
creased.

Evolving Computer Chinese Chess Using Guided Learning 337

(7) Type of major piece.
At the start of game, players have three types of major piece: Rook, Horse and
Cannon. However, these pieces decrease as the game progresses. A bonus score is
thus awarded to the side which can preserve more types of major piece.

(8) King’s safety.
The side that has a greater number of pieces threatening the opponent’s King and
the King’s adjacent squares is given a bonus score.

(9) Quadrant score.
The board is divided into four quadrants. The net number of pieces in each quad-
rant is computed. For every quadrant, a bonus score is awarded to the offensive
side, based on the number of its offensive pieces, relative to the opponent’s defen-
sive pieces in that quadrant. This helps the AI to recognize the importance of con-
centrating the attack on one flank, rather than dividing up its troops.

(10) Mean square distance.
For each player, the mean square distance between his major pieces is computed.
A lower value for mean square distance means that the pieces are closer together,
which will thus imply a tighter formation. A bonus score is awarded for the side
which has a lower mean square difference.

(11) Mean distance from the opponent’s King.
The mean position of major pieces for each side is computed. A bonus score is
awarded to the side whose mean position is closer to his opponent’s King.

The final evaluation score is computed as the sum of the simple evaluation score
and the adjustment score.

3.9 Expansion of Databases

3.9.1 Opening Database

Originally, the opening book from Elephant Eye is used. It contains 20,618 moves,
which were taken from past grandmasters’ games and this roughly ensures that the
opening book consists of high quality moves. However, the opening book also has
its drawbacks – since common “opening traps” are seldom used in grandmasters’
games, the opening database will not contain the correct reply moves for some of
the common “opening traps”. In order to incorporate such replies, moves from
Yan’s and Zhang’s “The Formats and Principles of Chess Openings” [20] were
added to increase the database to a total of 26,454 moves.

338 H.Y. Quek et al.

3.9.2 Endgame Database

An endgame database is a common feature in any successful chess program since
it is difficult to derive an accurate heuristic to evaluate the game position during
the endgame. When the checkers program, Chinook, defeated the human world
champion, it had one to eight piece-databases. This means that when eight or
fewer pieces were left on board, Chinook could always determine with 100% ac-
curacy if it was going to win, lose or draw and it would always make the best
move [2]. Large databases typically contain exact information on the optimal
moves, the outcome of the game (win/lose/draw) and remaining moves to the end
of the game. However, due to its sheer size and the complexity involved in creat-
ing and verifying the correctness of one, a simple, compressed endgame database
based on Tu’s “Examples of Chinese Chess Endgame” [21] is used instead to store
a win, lose or unknown result based on the material balance on the board e.g., re-
sults of two red Pawns, one black Elephant and one black Advisor is unknown
whereas two red Pawns and two black Advisors will generate a win. In the latter,
the database does not return a value that represents a win but adds the value of
three Rooks to the side about to win.

In a way, the database provides a heuristic to guide the program towards attain-
ing a favorable material balance during the endgame. This is not without draw-
backs. For one, the database does not account for piece positions e.g., Red might
win if both Pawns are in the middle of board, but the end result will be a draw if
they are at the bottom. However, since position value tables are used, the program
will know that Pawns at the bottom are worth notably less and will thus avoid ad-
vancing the Pawns too fast. Another drawback is that the database does not con-
tain the optimal move. This can, however, be alleviated by incorporating a good
negascout search algorithm in the Chinese chess engine.

4 Genetic Algorithm

A GA is a search technique that is used in optimization problems and was first
proposed by Holland [22]. It is based on the Darwinian model of survival of the
fittest. Candidate solutions for the search problem are encoded as chromosomes
and are evaluated by a fitness evaluation function. The fitter chromosomes are
selected for reproduction. Search operators, such as crossover and mutation, are
then applied to the new chromosomes.

4.1 Chromosomal Representation

Weights encoded in each chromosome for the evolution process are shown in
Table 2:

Evolving Computer Chinese Chess Using Guided Learning 339

Table 2. List of weights encoded in each chromosome.

Variable Number of
bits

Range of
values

Remarks

dK 5 0 to 31

dP 4 0 to 15

Used to compute the bonus score for mean
square distance, x between the friendly ma-
jor pieces, as denoted by

)16/exp(xPK dd ⋅ .

kK 5 0 to 31

kP 4 0 to 15

Used to compute the bonus score for prox-
imity of friendly major pieces to the posi-
tion of the opponent’s King, as denoted by

)16/exp(xPK kk ⋅ , where x is the dis-

tance between the mean position of friendly
major pieces and the opponent’s King.

rK 5 0 to 31

rP 4 0 to 15

Used to compute the bonus score for the
Rook’s mobility, as denoted by

)16/exp(xPK rr ⋅ , where x is the num-

ber of possible Rook moves.

mP 4 0 to 15

Used to compute the safety margin used in
the razoring function

)]16/exp(1[52080 dPm−−+ during

pruning, where d is the depth of the current
search ply.

3K 5 0 to 31

3P 4 0 to 15

Used to compute the Quadrant score

)]5(16/exp[33 +⋅ xPK that awards

additional bonus points when the program
is able to obtain numerical superiority on a
particular flank on the opponent’s half of
board. x is the material balance between the
offensive and defensive pieces that are in-
volved in the flank.

rV 4 0 to 15
Bonus score awarded for having friendly
major pieces around the river-region on the
chess board.

pV 4 0 to 15
Bonus score awarded based on number of
enemy pieces pinned by friendly Rooks or
Cannons.

hV 3 0 to 7
Penalty-score imposed for each “blocked”
Horse leg i.e., immobile Horse.

dC 5 -15 to 15
Change in the position value table scores
for all defensive pieces.

cC 5 -15 to 15
Change in the position value table scores
for all Cannon pieces.

340 H.Y. Quek et al.

Table 2. (continued)

hC 5 -15 to 15
Change in the position value table scores
for all Horse pieces.

rC 5 -15 to 15
Change in the position value table scores
for all Rook pieces.

For the razoring function, the upper and lower bounds of this function is fixed

such that it will always return a value between 80 (the value of a minor piece) and
600 (three times the value of a Rook), which adequately covers the generally ac-
cepted range of values for razoring. By imposing such bounds, the bit length of the
chromosomes can be lowered, without affecting the accuracy of the result. The
value of a Pawn is kept constant throughout the evolution process and used as a
reference for the values of other pieces. For example, the value of a Rook is usu-
ally estimated to be nine times that of a Pawn. If the value of a Pawn is 10, the
value of Rook will be 90. The value of the King is not encoded within the chro-
mosome, as capturing the enemy King is equivalent to winning the game. Its value
is kept constant at 1000, which is significantly higher than the value of other Chi-
nese chess pieces.

The encoded chromosome is represented as a 71 bit string. To improve the effi-
ciency of GAs, gray coding is used to encode the binary strings so that small
changes in the integer values can be achieved by a minimal number of mutations
and crossovers. At the start, 11 chromosomes are randomly generated and are used
as the initial population.

4.2 Selection

Stochastic universal sampling is used as the selection algorithm. A spinning wheel
is first constructed, with each chromosome represented by its own individual sec-
tor. The width of the sector is proportional to the fitness score of the chromosome.
10 equally spaced pointers are then randomly generated. A single spin of the
wheel will be used to select the 10 individuals for the next generation of evolution,
based on intersection points between the pointers and the sectors. This selection
algorithm has zero bias [23], and thus helps to reduce the probability of premature
convergence. The best individual from the previous generation is kept as an ar-
chive and left unchanged in the next generation.

4.3 Crossover

Recombination of chromosomes is done using two-point crossovers. This scheme
has an advantage over single point operators in the sense that it allows for a com-
bination of certain schemas, which are not possible under single point crossover.

4.4 Mutation

A mutation operator is used to flip the chromosomal bits based on a mutation
probability. This allows for the exploration of the search space. For all offspring,

Evolving Computer Chinese Chess Using Guided Learning 341

each of their bits is inverted with a probability of mutateP . In the initial phase of

search, a higher mutateP is required to explore a larger region of the search space.

However, towards the end of the search, where the chromosomes are close to the
optimal solution, a smaller mutateP is used to prevent unnecessary disruption of

good schemas. Overall, mutateP is defined [24] as:

]/)2(2/[1 TtLPmutate −+=

Where:
L is the length of the chromosome,
t is the number of generation elapsed and
T is the maximum number of generations.

Under this scheme, mutateP decreases with the number of generations elapsed, al-

lowing for a high mutation probability in the beginning e.g., 0.5 and a lower muta-
tion probability towards the end (approximately 1 / L).

4.5 Fitness Evaluation

As past games by Chinese chess grandmasters are used as the training data to
guide the evaluation process, the fitness score of a chromosome is determined by
the number of “correct” moves made, when benchmarked against the moves made
by the grandmasters in an identical game position. When evaluating the fitness of
chromosomes, Niching and sigma truncation [23] are used in combination to pre-
vent any highly-fit individual from dominating the population too quickly. This
helps to avoid the scenario where the search process converges prematurely on a
local maximum.

4.5.1 Niching

Niching increases the population diversity and helps to prevent premature conver-
gence by penalizing the fitness scores of chromosomes that are too similar to oth-
ers, using the adjusted fitness score:

xLnxfxf /)()(' ⋅⋅=

Where:
)(' xf is the adjusted fitness score,

)(xf is the original fitness score,

n is the population size,
L is the length of chromosome and
x is the total number of bits that are identical to other chromosomes.

342 H.Y. Quek et al.

4.5.2 Sigma Truncation

Sigma truncation helps to keep the selection pressure relatively constant and pre-
vents a single highly fit chromosome from taking over the population too quickly.
It is used to scale the fitness scores of chromosomes based on the mean fitness and
standard deviation of their fitness scores via the following expression [25]:

⎩
⎨
⎧ −>+−

=
otherwise. ,0

2)(if ,2)(
)('

σσ mxfmxf
xf

Where:

)(' xf is the scaled fitness score,

)(xf is the fitness score, before scaling,

m is the mean of the fitness scores and
σ is the standard deviation of the fitness scores.

4.6 Local Search

Due to the complexity involved in evaluating a Chinese chess game, it is likely
that the fitness might not adequately converge within 200 generations. Nonethe-
less, it is also not feasible to increase the number of generations excessively due to
time constraints. To solve this problem, a local search algorithm is executed every
10 generations with the aim of improving the fitness of chromosomes.

A description of the local search algorithm is:

1) Make five copies of the fittest chromosome in the original population.
2) Select the three fittest chromosomes from the current population.
3) For all the set of genes which encode a particular variable, (macrogene), check

the degree of similarity in the three fittest chromosomes.
4) If the macrogene is highly similar between the three (maximum difference is

less than 20% of the value of the macrogene in the fittest chromosome), do
nothing. Otherwise, mutate the particular macrogene for the five new copies
with a probability 1/L, where L is the bit length of the macrogene.

5) Repeat steps 3 and 4 until all macrogenes are evaluated.
6) Evaluate the fitness scores of the five new chromosomes.
7) If the fittest of the five chromosomes (newBest) has a higher fitness score than that

of the fittest chromosome in the original population (originalBest), replace

originalBest with newBest , and use newBest as the archive for the next generation.

Evolving Computer Chinese Chess Using Guided Learning 343

The local search algorithm assumes that if the three fittest chromosomes exhibit a
similar value for a particular macrogene, then that value must be reasonably good
and should be kept. Otherwise, mutation is applied to enable exploration in the
vicinity of the fittest chromosome. If a fitter chromosome is found in the process
of exploration, it can be used to improve the archive without affecting the genetic
diversity of the population adversely.

5 Training Data

Before any simulation can be performed, the training data which consists of past
games of grandmasters has to be selected for use.

5.1 Requirements for the Training Data

As each grandmaster is likely to be unique in his playing style and individual pref-
erences, using moves from more than one grandmaster in the same training dataset
might lead to potential conflicts in the eventual playing style of the evolved Chi-
nese chess program. As such, only moves made by a single grandmaster are in-
cluded in the training set. To ensure the quality of moves in the training dataset,
some intrinsic requirements must be met:

(1) Games must be played against high caliber opponents in a competitive set-

ting. All games are taken from past Five Rams Cup (五羊杯) tournaments
where participation is by invitation only. As all players are past national
champions, it is considered one of the most prestigious titles in the Chinese
chess arena.

(2) Games chosen must reflect an even strategy mix e.g., the red side usually

plays in a more offensive style while black takes up a more defensive stance.
To prevent the evolved program from becoming overly aggressive or defen-
sive, half of the training games will involve the grandmaster playing as Red,
while the other half Black.

(3) There must not be any poor or sub-standard move in the training dataset. It is

difficult to guarantee the fulfillment of this requirement since the identifica-
tion of relatively bad moves requires a high degree of expertise which the au-
thors do not possess. Moreover, the objective of using a GA instead of hand-
tuning is to eliminate the need for such knowledge. To address this issue, the
end-result of a game is used as a gauge. Only games in which the grandmaster
has achieved good results were used. Intuitively, only games won by the
grandmaster should be included. Nonetheless, the winning side typically pos-
sesses the upper hand throughout the game and is hence playing in a more ag-
gressive and dominant style. To ensure a good mix of playing styles, drawn
games are also used so as to allow the chromosomes to learn the means to
play defensively in even or disadvantaged positions. As Red has an advantage

344 H.Y. Quek et al.

over Black, by virtue of its initial move, drawing as Red can also be consid-
ered as bad performance and games drawn as Red are not included. In sum-
mary, only games won as Red, games won as black and games drawn as black
are included as part of the training dataset.

(4) The three grandmasters from whom the training data are extracted are:

• GM Hu Rong Hua – who won his first national Chinese chess title at 15
(youngest title holder); national Chinese chess title for a record 10 con-
secutive times; and is the record holder for the most number of national
titles won (14 in total).

• GM Lu Qin – who won the prestigious Five Rams Cup a total of nine
times.

• GM Xu Yin Chuan – who is a dominant player in recent years and has
won the latest Five Rams Cup in 2007.

5.2 Building and Selecting the Training Data

As programs can rely on databases for the opening and ending phases of the
game, the focus of the evolution process will thus be on the late-opening to mid-
game phase. As such, only moves from round 15 (inclusive) to round 30 (exclu-
sive) are used for training. To keep the simulation time within reasonable limits,
only 14 games were chosen in total. Due to the relatively small number of games,
a large random element is involved such that the chosen games might not be the
most suitable for evolving an optimal program using the GA. To counter this
problem, a 14-game dataset was built for each of the short-listed grandmasters
according to the requirements in Section 5.1. The un-evolved program was
benchmarked against the three datasets – one from each grandmaster, using 5s of
computation time per move on a Pentium 4 PC with 512 megabytes RAM. Three
GA simulation runs were performed for each dataset and the results are shown in
Table 3.

Table 3. Performance of un-evolved program, when benchmarked against the three training
datasets extracted from grandmasters.

Training Data Correct moves
Hu 72 / 210
Lu 100 / 210
Xu 103/ 210

A 50 generation preliminary evolution was then carried out to investigate the most
appropriate training dataset to employ, marked by the largest improvement over
the performance of the un-evolved program. The general settings that were used
for all the GA simulations are given in Table 4.

Evolving Computer Chinese Chess Using Guided Learning 345

Table 4. Settings for GA simulation.

Attribute Value
Population Size 10 + 1 archive
Crossover 2-point crossover with a crossover probability of 0.7
Mutation rate]/)2(2/[1 TtL −+ , where L is the length of chromosome,

t is the current generation and T is the maximum generation
Selection Stochastic universal sampling
Move time Each chromosome is given 5s of computation time per

move

5.3 Results of Preliminary Experiment

Results of the preliminary experiment showed that the training dataset from Hu
produced a best evolved fitness score that revealed the highest percentage of im-
provement (Table 5) from the corresponding fitness score of the un-evolved player
(Table 3), and was used for the final GA simulations. However, this does not im-
ply the superiority of Hu’s games for training all Chinese chess programs in gen-
eral. It merely suggests that this particular training dataset demonstrates the high-
est potential of improvement for the un-evolved Chinese chess program, relative
to the datasets that are extracted from the other two grandmasters.

Table 5. Best fitness score obtained (out of three runs and 50 generations).

 Best Fitness Score Percentage Improvement (%)
Hu 101 40.3%
Lu 118 18.0
Xu 116 12.6

6 Results Simulation

After finalizing the training data, the GA is applied to improve the performance of
the existing Chinese chess program.

6.1 Changing the Fitness Evaluation

Based on the 72 out of 210 (34%) correct moves that are obtained when bench-
marking against Hu’s training dataset, the un-evolved program is able to get 27
out of 38 (71%) of the capture moves correct, but only 45 out of 172 (26%) cor-
rect for the non-capture moves. The significantly higher percentage of correct cap-
ture moves than non-capture ones is due to the fact that computer chess programs
are typically strong in the tactical aspect, which allowed them to find the correct
capture moves without much difficulty. With regards to the 29% error percentage

346 H.Y. Quek et al.

for capture moves, a large part is attributed to the fact that the program uses a dif-
ferent piece to execute the capture move e.g., given the option of using either a
Horse or Cannon to capture an undefended Pawn, Hu might have chosen to use
the Horse while the computer the Cannon instead.

On the other hand, making the correct non-capture moves is much more diffi-
cult as the program will have to pick from a much larger array of seemingly
equally good moves most of the time. To address this problem, five points were
awarded for correct non-capture moves and four for correct capture moves during
the final simulation. This higher weighting on the former steered the program to
place a greater emphasis on learning correct non-capture moves, instead of correct
capture moves which it is already fairly good at identifying. The reason for not
reducing the weight value of capture moves further is to maintain the tactical
strength of the Chinese chess program and avoid situations where it might over-
emphasize positional advantage and sacrifice pieces unnecessarily. Under the new
weights, the fitness score of the un-evolved Chinese chess program was 357.

6.2 Evolving the Chinese Chess Program

The GA was applied using the same settings as before for 200 generations using
the new weights for capture and non-capture moves. Five simulation runs were
performed and the fitness scores of the evolved players are listed in Table 6.

Table 6. Results of evolution – fitness scores of evolved players (200 generations).

Player Fitness Score
Evolved Player 1 480
Evolved Player 2 463
Evolved Player 3 479
Evolved Player 4 451
Evolved Player 5 467

It is observed that the highest fitness score among the five evolved players is

480, which is a 34.5% improvement over the fitness score of 357 for the un-
evolved player. Even the evolved player with the lowest fitness score of 451 pro-
duced a 26.3% improvement. This indicates that effective evolution is indeed tak-
ing place. However, it is observed that the maximum fitness achievable is 1012,
but the highest evolved player score was only 480, which is comparatively much
lower. This is attributed to three causes.

Firstly, grandmasters usually make their moves after thinking 10 moves in ad-
vance [13]. By limiting the program to 5s of move time, its search depth is limited
to only six or seven. This relatively shallow search is likely to cause the program
to make moves that are different from those of the grandmaster. Secondly, the
grandmaster might have also chosen different styles against different opponents.
Since the training data was selected to reflect a blend of dissimilar playing styles,
offensive and defensive, the resultant conflict in styles increases the difficulty for

Evolving Computer Chinese Chess Using Guided Learning 347

the program to play all 210 moves correctly. Thirdly, only a small number of vari-
ables are evolved throughout the evolution process. On the contrary, the grand-
master’s evaluation process probably uses more evaluation functions which might
be different from what was used in the proposed Chinese chess engine. As such, it
becomes almost impossible to make the exact same moves as the grandmaster.
However, as the objective of evolution is not to predict the grandmaster moves,
but rather to increase the overall playing strength of the Chinese chess program;
the fact that the program is unable to get most of the moves correct should not
pose a problem, so long as the evolved program can exhibit an increased playing
strength eventually.

7 Evaluating the Results

Unlike the conventional means of improving fitness via playing games, using the
training dataset of moves from past grandmasters’ games as a benchmark for
evaluation takes an indirect approach to improve the playing strength of the Chi-
nese chess program. There is a need to verify if its playing strength has really been
improved.

7.1 Subjective Measurement

The playing strength of the evolved players could be subjectively measured by
pitting the evolved and un-evolved players against each other. Each would play
200 games (100 as red, 100 as black) against every other player. To prevent games
from dragging on for too long, those that lasted more than 200 moves were termi-
nated and a draw recorded. Each player was allowed 5s per move. As games could
be deterministic, an opening database was used to ensure that games would start
from random positions. In positions, especially those that can be reached in the
initial rounds of the game, the opening database typically contained more than one
possible move for each position and will return a move with a probability based on
the win/loss record of the move in the grandmasters’ games. Usage of the database
thus allows the players to play each game with a random opening line.

The probability that a player would probe the opening database was defined as
)30/1(t− , where t was the number of turns elapsed in the game. The minimum

value of the probability was bounded at 0.5 i.e., if 5.0)30/1(<− t , the probabil-

ity would be set as 0.5. The probability was higher in the initial phase as moves
made then would directly determine the choice of opening line. A higher probabil-
ity was used for the first few turns to prevent the games from being too determi-
nistic. However, as more moves were made, the probability of probing the data-
base was lowered gradually so as to allow the program to rely more on its internal
evaluation function.

Using the above settings, simulated results were obtained. The overall perform-
ance of all players, both evolved and un-evolved, as they play against one another,

348 H.Y. Quek et al.

Table 7. Overall performance after all players play 1000 games each.

Player Wins Draws Loss Wins - Loss
Un-evolved 321 311 368 -47

Evolved Player 1 395 330 317 36
Evolved Player 2 306 342 352 -46
Evolved Player 3 353 317 288 107
Evolved Player 4 357 339 304 53
Evolved Player 5 295 307 398 -103

Table 8. Performance against the un-evolved player.

Player Fitness Wins Draws Loss Z-Value
Evolved Player 1 480 77 63 60 1.45
Evolved Player 2 463 76 59 65 0.93
Evolved Player 3 479 78 63 59 1.62
Evolved Player 4 451 73 59 68 0.42
Evolved Player 5 467 64 67 69 -0.43

is shown in Table 7 while the performance of the evolved players against the un-
evolved one is given in Table 8.

Although the evolved players generally had much larger fitness scores than the
un-evolved player, results showed that evolved Player 5 was unable to beat the un-
evolved one (Tables 7 and 8). In addition, even the strongest player, evolved
Player 3, could only beat the un-evolved player at the 94% confidence level.
Closer inspection of the evolved players seemed to reveal problems with the val-
ues of the razoring function. In the Chinese chess engine, razoring was defined
such that when the sum of the current simple evaluation score and razoring margin
at the current depth was smaller than the alpha cut-off, the position was probably
so bad that it would not be reached in the actual game; and hence, the remaining
depth for the current line of search could be safely reduced by one.

For the five evolved players, the value of mP in the razoring function ranged

from 10 to 15. At a search depth of five, the safety margin for players would range
from 577 to 595, which was close to three times the value of the most powerful
piece – the Rook. As it was extremely rare for a side to obtain an advantage that
was three Rooks above the alpha-cut-off, the evolved players would probably not
receive great time savings from the razoring-prunings. In contrast, the razoring
margin for the un-evolved player at the same depth is 200, which is much lower
than that of the evolved players. While this meant that the tactical strength of the
un-evolved player might be weakened, this disadvantage could be overcome by its
deeper searches. As such, the un-evolved player was able to perform well against
the evolved players despite its weaker evaluation function.

The poorly evolved razoring function that might have arisen as the training
dataset did not provide adequate selection pressure for the macrogene which en-
coded mutateP . This is because any additional ply of search depth that the razoring

Evolving Computer Chinese Chess Using Guided Learning 349

provided might not actually affect the total number of correct moves that were
made by the Chinese chess program eventually. For instance, suppose the program
could reach a depth of five in 5s with a bad razoring function and was able to find
the correct move in five ply-search as a result of its good evaluation function. In
this case, the program would still find the same correct move even when the ra-
zoring function was improved such that the program could subsequently reach a
search depth of six in 5s. On the contrary, if the evaluation function was inherently
bad and caused the program to move H0-G2 in a particular position, as opposed to
the correct move C3-C4; the program might still be unable to locate the correct
move despite the use of an improved razoring function and search depth.

Thus, it could be understand that the correctness of the evaluation function
dominated the razoring function during the GA simulation. However, once the
programs were pitted against each other, the advantages of a good razoring func-
tion would come through. The player with a weaker evaluation function could
have a better razoring function that would enable it to search one ply deeper; and
in turn allow it to find a winning line of play or a combination of moves that led to
the capture of an opponent piece. Following the same line of reasoning, the
evolved players that had somewhat random razoring functions were thus placed in
an unfavorable position when playing against the un-evolved player.

To verify the validity of the hypothesis (which states that the razoring function
was poorly evolved) and evaluate the playing strengths of the evolved and un-
evolved players, all players would be adjusted to use the same razoring function
(e.g., the one used by the unevolved player) for all the move decisions during the
actual game play. The results of the simulation are presented in Tables 9 and 10.

Table 9. Overall performance after all players play 1000 games each (with revised razoring
margin).

Player Wins Draws Loss Wins - Loss
Un-evolved 287 317 396 -109

Evolved Player 1 382 298 320 62
Evolved Player 2 292 363 345 -53
Evolved Player 3 409 306 285 124
Evolved Player 4 360 292 348 12
Evolved Player 5 320 324 356 -36

Table 10. Performance against the un-evolved player (with revised razoring margin).

Player Fitness Wins Draws Loss Z-Value
Evolved Player 1 480 83 58 59 2.01
Evolved Player 2 463 74 65 61 1.12
Evolved Player 3 479 94 62 44 4.26
Evolved Player 4 451 76 57 67 0.75
Evolved Player 5 467 69 75 56 1.16

350 H.Y. Quek et al.

After the adjustments were made, all the evolved players were able to beat the
un-evolved player as observed in Tables 9 and 10. In particular, the strongest
player, evolved Player 3, was able to defeat the un-evolved player at the 99.99%
confidence level, winning 47.5% of the games. The above simulated results not
only demonstrated that the playing strength of the program was significantly im-
proved by the GA, but also ascertained that the razoring function was not ade-
quately trained by the dataset.

To achieve sufficient training for the razoring function, one possible alternative
was to evolve it using co-evolutionary approaches [26] and evaluating the fitness
of the chromosomes by playing games between them. However, such schemes
might be plagued by associated problems of low selection pressure and intra-
sensitivity etc, as stated in the introductory section. Even if the above could some-
how be resolved, one additional problem remained – razoring was dependent on
the current depth of search. In tournament time control, the Chinese chess program
might make a move every few minutes and hence, be searching at a depth of 10 or
more plies per move. If the Chinese chess program was only allowed 5s to make a
move during the evolutionary phase, it might only reach a search depth of five or
six plies, with no selection pressure for the higher plies. This would likely entail
an inaccurate razoring function for plies seven and above. To overcome this prob-
lem, the program must be given at least a minute (or an amount of time required to
reach 10 plies) per move, which would unrealistically increase the amount of time
required for evolution. Taking all factors into consideration, the original razoring
function from the un-evolved player was thus retained and used in the final Chi-
nese chess program.

Simulated results in this setup also showed that the evolved players with
slightly lower fitness scores were able to outperform those with higher scores e.g.,
evolved Player 3 – with a fitness score of 479, was able to outperform evolved
Player 1 – which had a higher fitness score of 480. The fitness score was thus not
an absolutely accurate indicator of playing strength, especially when the scores
were close to one another. However, if the difference in fitness scores was signifi-
cant (as in the case of the score disparities between the evolved and un-evolved
players), the fitter player could indeed outperform the less fit one. This suggested
the crucial need to conduct multiple instances of the simulations in order to evolve
the best Chinese chess program. This problem might also be alleviated by increas-
ing the size of the training data, which would in turn improve the resolution of the
fitness evaluation function.

7.2 Objective Measurement

Playing games among a small pool of players only provides a subjective meas-
urement of playing strength. Although random moves from the opening book are
used, a player will still be able to win a large proportion of the games against an-
other, so long as it is able to exploit a particular vulnerability of his opponent’s
evaluation function consistently. Thus, such a measurement might not be indica-
tive of the difference between the players’ overall playing strengths. An objective
measurement is required for more accurate assessment.

Evolving Computer Chinese Chess Using Guided Learning 351

To obtain an objective measurement, performance of the evolved and un-
evolved players needs to be benchmarked against a large number of random play-
ers, each with its own unique blend of strengths, weaknesses and playing
style. This is done by having the evolved and un-evolved players setup to play
against human players online at a website named Club Xiangqi (http://www.
clubxiangqi.com), which uses the Elo scoring system – a statistical rating system
where the points lost/won by players are determined by their relative
scores/ratings. For instance, defeating an opponent who has a higher rating will
earn a player more points than when he plays with one of only mediocre rating.
Similarly, losing to an opponent of lower rating will also cost the player more
points. As the playing histories of players are considered, it is possible to obtain a
reasonably accurate objective estimation of one’s playing strength by sampling a
small number of games.

Since Club Xiangqi operates through java applets, there is no convenient way
of automating the game-playing process between the Chinese chess program and
the human opponents. As such, the author acts as the “go-between” during the
course of the games e.g., when the human opponent makes a move on the Club
Xiangqi window, the author will translate the same move into an equivalent move
in the window of the Chinese chess program, as though the human opponent is
playing directly with the program. Once the program makes its reply, the author
will execute that reply on the Club Xiangqi window, on its behalf. This process
will continue until an entire game is completed. Owing to the long playing time
involved, only the strongest evolved player (evolved player 3) and the un-evolved
player are tested online over a span of 50 games.

Whenever possible, games are played in public tables e.g., those that operate on
the principle of “winner stays, and loser cannot play”, to ensure a steady stream of
random opponents instead of constant rematches against the same opponent. Each
opponent has between one to five minutes per move, depending on the settings of
the public table, of which the author has no control. Similarly, the total time allo-
cated to each player varies from 10 to 25 minutes. Regardless of these settings, the
program is configured to make a move in five seconds with pondering enabled for
both the evolved and un-evolved players. Instead of idling, the pondering mode
allows the Chinese chess program to evaluate the board position actively during its
opponent’s move time.

Results of the simulation are shown in Table 11. Although evolved player 3
only won four games more than the un-evolved player, its score was nonetheless
93 points higher. This notable win suggested that most of the victories came when
evolved player 3 was playing against higher-calibre opponents. In addition,
evolved player 3 was also able to secure a winning streak for all its initial 21
games. To put the scores into perspective, the average score of a human Chinese
chess player is only 1500, which implied that the evolved player 3’s score of 1877
actually placed it at a much higher level than most human Chinese chess players.
The fact that the evolved Chinese chess program was still able to obtain such re-
spectable score despite a move time of only 5s suggested that it had acquired a
reasonably high level of playing strength through the evolutionary process.

352 H.Y. Quek et al.

Table 11. Performance at Club Xiangqi.

Player Win Draw Loss Score *
Un-evolved 38 2 10 1784

Evolved Player 3 42 2 6 1877
* Score of an average player in the website is 1500.

8 Conclusions

In conclusion, the chapter explores the feasibility of using past grandmasters’
games as training data to improve the playing strength of a Chinese chess pro-
gram. Although the razoring margin failed to be adequately tuned during experi-
mentation, evolved players do demonstrate superior playing strength over the un-
evolved one. Significant improvements are obtained despite the fact that only a
small number of parameters were evolved. Overall simulation results highlight the
tremendous potential of using GAs to increase a program’s playing strength by
evolving its evaluation function closer to that of the grandmasters. In addition, the
subjective and objective fitness tests also indicated that grandmaster games can be
effectively used to increase the playing strength of Chinese chess programs.

A drawback that is associated with the usage of training datasets in such guided
learning approaches pertains to the fact that the accuracy of the evaluation func-
tion is essentially limited by the skill of the grandmaster e.g., the evaluation of
Chinese chess programs can only become as good as that of the grandmaster but
cannot improve beyond what was achieved by the grandmaster himself. The cur-
rent performance bottleneck of the Chinese chess programs is thus the evaluation
function. Once the program is capable of evaluating accurately, it will be in a bet-
ter position to compete with human grandmasters through its superior search
speed and infallibility (i.e., no human fatigue).

9 Future Work

One limitation of the current work pertains to its relatively small scale. In a bid to
keep the evolution time within reasonable limits, the population size, number of
generations, chromosome length (which directly affects the number of macro-
genes) and size of the training dataset were kept minimal. To build a Chinese
chess program that truly plays at the grandmaster level, a GA evolutionary process
of much larger scale is required. While the population size, number of generations
and size of training data can be expanded directly, it might not be worthwhile to
increase the chromosome length simply by increasing the number of evaluation
function variables which are encoded within it. This is because it is extremely
difficult, if not impossible to know the exact evaluation rules or functions that are
used by grandmasters, much less the appropriate types of mathematical functions
to model them. For example, modelling rules as exponential functions are likely
to be too simplistic.

A better and possible improvement to the existing work is to use neural net-
works as part of the evaluation function in the Chinese chess program. A neural

Evolving Computer Chinese Chess Using Guided Learning 353

network models the human brain and has the potential to encode complex evalua-
tion functions that might be impossible to model otherwise. By building neural
networks over important areas of the chess board, such as the river and palace
regions, GAs will be able to better approximate the grandmaster’s evaluation func-
tion. However, due to the increase in simulation time, distributed computing
should be used instead as it will no longer be feasible to use only a single com-
puter per evolution. In the distributed framework, each computer in the network
will be tasked to evaluate the fitness of a single chromosome and a master com-
puter will then collect all the fitness scores from these auxiliary computers and
evolve the next generation of chromosomes. Such increase in the speed of evalua-
tion will allow the GA to be employed on a much larger scale, and this will hope-
fully entail an increase in the potential playing strength of the evolved Chinese
chess programs.

References

[1] Bierman, A.: Theoretical issues related to computer game playing programs. Personal
Computing, 86–88 (1978)

[2] Schaffer, J.: One Jump Ahead. Springer, New York (1997)
[3] Newborn, M.: Kasparov versus Deep Blue. Springer, New York (1997)
[4] Yan, A. (ed.): Chinese-chess computer crushes grandmasters. China Daily,

http://en.chinabroadcast.cn/2946/2006/08/10/167124918.htm
(accessed October 1, 2006)

[5] Chen, X.: First human vs computer Chinese chess challenge: Neuchess wins by a nar-

row margin of 11-9. 首届中国象棋人机大战见分晓浪潮天梭11比9 险胜 (2006),
http://www.ciw.com.cn/News/hotnews/2006-08-16/7478.shtml
(accessed October 1, 2006)

[6] Thompson, K.: Computer chess strength. In: Clarke, M. (ed.) Advances in computer
chess 3. Pergamon Press, Oxford (1982)

[7] Hamilton, S., Garber, L.: Deep Blue’s hardware-software synergy. IEEE Com-
puter 30, 29–35 (1997)

[8] Duran, F.: Advance and be mechanized (2003),
http://www.fduran.com/wordpress/?p=10 (accessed October 10, 2006)

[9] Shannon, C.: Programming a computer for playing chess. Philosophical Magazine,
256–275 (1950)

[10] Hsu, F., Anantharaman, T., Campbell, M., Nowatzyk, A.: A grandmaster chess ma-
chine. Scientific American 263, 44–50 (1990)

[11] Fogel, D.: Blondie24: Playing at the edge of AI. Morgan Kaufmann, San Francisco
(2002)

[12] Fogel, D.: Evolutionary computation: Toward a new philosophy of machine intelli-
gence. IEEE Press, New York (2005)

[13] Hsu, S.: Introduction to computer chess and computer Chinese chess. Journal of
Computer 2, 1–8 (1990)

[14] Moreland, B.: Alpha-beta search (2002),
http://www.seanet.com/~brucemo/topics/alphabeta.htm
(accessed October 3, 2006)

[15] Reinefeld, A.: Spielbaum-Suchverfahren. Informatik-Fachbericht 200. Springer, Ber-
lin (1989)

[16] Tu, Z., Zong, L.: (2003) (accessed October 5, 2006)

354 H.Y. Quek et al.

[17] Donniger, C.: Null Move Forward Pruning (1993)
[18] Heinz, E.: Scalable search in computer chess: Algorithmic enhancements and experi-

ments at high search depths. Viewag-Verlag, Wiesbaden (2000)
[19] Anon, Source code for open-source Chinese chess program: Elephant Eye (2006),

http://www.elephantbase.net/download/xqwizard_source.7z
(accessed October 2, 2006)

[20] Yan, W., Zhang, Q.: The formats and principles of chess openings. 布局定式与战理.
Beijing University of Physical Education (2004)

[21] Tu, J.: Examples of Chinese chess endgame. 象棋残局例典. Shanghai (1990)
[22] Holland, J.: Outline for a logical theory of adaptive systems. Journal of the Associa-

tion for Computing Machinery 3, 197–217 (1962)
[23] Baker, J.: Reducing bias and inefficiency in the selection algorithm. In: Proceedings

of the second international conference on genetic algorithms and their applications.
Lawrence Erlbaum Associates, New Jersey (1987)

[24] Bäck, T., Schütz, M.: Intelligent mutation rate control in canonical genetic algo-
rithms. In: Ras, Z., Michalewicz, M. (eds.). Lecture notes in artificial intelligence.
Springer, Berlin (1996)

[25] Goldberg, D.: Genetic algorithms in search, optimization, and machine learning. Ad-
dison-Wesley, Massachusetts (1989)

[26] Ong, C., Quek, H., Tan, K., Tay, A.: Discovering Chinese chess strategies through
coevolutionary approaches. In: Proceedings of the IEEE symposium series on compu-
tational intelligence: Computational intelligence and games. IEEE Press, Piscataway
(2007)

Author Index

Angus, Daniel 165
Austin, Jim 111

Chan, H.H. 325
Coello, Carlos A. Coello 23

Deb, Kalyanmoy 1

Eßer, Anke 261

Galehdar, Amir 189
Gómez-Pulido, Juan A. 219

Hendtlass, Tim 79, 139

Isasi, Pedro 219

Jaimes, Antonio López 23

Kamper, Andreas 261

Lewis, Andrew 51, 139, 189

Melab, Nouredine 291
Mendes, Śılvio P. 219
Moser, Irene 79
Mostaghim, Sanaz 51

Quek, H.Y. 325

Randall, Marcus 79, 139, 189

Sáez, Yago 219
Sánchez-Pérez, Juan M. 219
Scriven, Ian 51

Talbi, El-Ghazali 291
Tan, K.C. 325
Tantar, Alexandru-Adrian 291
Tay, A. 325
Thiel, David 189

Vega-Rodŕıguez, Miguel A. 219

Weis, Gerhard 189

Subject Index

achievement scalarizing approach 8
additive metric 229
algorithmic characterization 243, 251
algorithmic expertise point of view

220
algorithmic reliability 249, 250
analytical and heuristic proposals

222
annealing schemes 299
ant colony optimisation 87, 161, 169
ant colony system 145, 192

local refinement 198
multi-objective 207

antenna
high frequency case study 207
lower frequency case study 210
maximum efficiency 194
meander line 191
multi-objective optimisation 205
RFID 190

asynchronous self-adjustable island
genetic algorithm 41

atom coordinates representations 296
AURA 112–114
AURAMol 133
AURA software library 125

backbite operator 198
Bak-Sneppen model 141, 156
binary 124

binary neural networks 124
binary correlation matrix memories

121

binary vectors 132
bin packing problem 147, 148, 155,

157, 158, 160, 161
bloating 19
BS 224
BS quintuple properties 227
Bunke coefficient 120

CAD tools 251
Cauchy based mutation 298
Chinese chess 325, 326, 328–332,

334–336, 338, 340–352
churn 66

edge extending 68
gap filling 67
hybrid method 69

clock calibration 226
CMM 114
combinatorial complexity 225, 251
competitive learning 229
computational effort 249
computational intelligence 2
conformational sampling 292
convergence 4
convergence metric 70
convergence point 249–251
convergence speed 243
correlation matrix memory

see CMM, 114
Cortextm 135
coverage metric 70
crowding 167
crystallographic conformation 306

358 Subject Index

dataset 244
dedicated RND co-processor 247
diversity 4, 174
divided range multi-objective genetic

algorithm 41
donor vector 231
DTLZ functions 10
dynamic 168
dynamic and adaptive exploration

schemes 305
dynamic optimisation problems 79

e-commerce 98
effectiveness 249
elitism scheme 309
EMO 1

innovization, 18
knowledge discovery, 17
light beam based method, 15
many objectives, 13
multiobjectivization, 19
preference based approaches, 14
redundant objective handling, 16
reference point approach, 12

energy usage, data modelling 274
evolutionary algorithms 277, 292

with local search 280
evolutionary multi-objective

optimisation
see EMO, 1

evolutionary programming 223
extremal optimisation 98, 140, 143,

162

field programmable gate array 98
fitness function 224
fitness sharing 167
FPGAs 112, 247
function optimisation 177

GAs 80, 149, 222, 298, 326
generalised assignment problem 145,

147, 154, 157, 158, 161
generational replacement 308
genetic algorithms

see GAs, 80, 149, 222, 298, 326
German power supply system 262
global metacomputing 28
GLS 236

graph 111
graph matching 111

graph colouring 157
graph colouring problem 153
graphical processing units 223
graph isomorphism 113
graph matching 112–114, 120
GRASP SRCL 234
greedy randomized adaptive search

procedure 233
Grid 112
guided domination 42

hardware 136
heavy-based heuristics 228
Hebbian 124
Hebbian learning 121
heterogeneous systems 52
high performance computing 292
high throughput computing 245
hybrid LS 241
hyperedges 224
hypergraph 224

immunity affinity 243
industry applied research 220
innate acquired immune response

system 242
innovization 18
isotropic 225, 226

J2EE 227
job shop scheduling 91

knapsack problem 145

light heuristics 227
Linux 130
local optima 235
local optima trapping 251
local search 157, 235

Malaga1K 244
Master-Slave model 30, 54
MCDM 2

difficulties, 9
epsilon-constraint method, 6
generating method, 6
light beam search, 15

Subject Index 359

referene point approach, 12
meander line antenna 191
MIMD computers 27
MISD computers 27
molecular matching 131
molecules 113

molecular match 113
MOPSO 55
multi-objective particle swarm

optimisation
see MOPSO, 55
distributed 61

multi-criterion decision making
see MCDM, 2

multi-objective evolutionary algorithms
24

multi-objective optimisation
ideal procedure, 4
problem, 3

multi-start versions 241
multicomputer MIMD systems 28
multimodal 177
multiple objective optimisation 181
multiple resolution multi-objective

genetic algorithm 43
multiprocessor MIMD systems 27
mutation operators 293

nearest point differential mutation
232

neural networks 111, 114, 115, 117,
121, 123, 124, 134

neurons 112
.NET 227
niching 165, 166
non-dominated front 3
non-dominated sorting GA

see NSGA-II, 6
non-global optima 235
normal constraint method 8
normalized comparison criterion 225
NP-complete 114
NSGA-II 6

light beam approach, 15
PCA based approach, 16
reference point based approach, 12

paradoxal problem 221
parallel algorithm 303

parallel asynchronous MOPSO 57, 61
convergence 63

parallel evolutionary algorithms 24
parallel MOPSO 55

asynchronous 57, 61
synchronous 55

parallel multi-objective evolutionary
algorithms 24

diffusion model, 33
hybrid models, 37
island model, 34
master-slave model, 30
performance assessment, 38

parallel synchronous MOPSO 55
convergence 63

Pareto-optimal solutions 4
Pareto optimality 26
partial ordering 3
particle swarm optimisation 94
PCA 132
performance metric, convergence 70
performance metric, coverage 70
pheromone 170
population-based ant colony

optimisation 172
power

balancing 265
decentralised balancing 267
demand 263
distribution 264
markets 263

power balance
appliance pool 284
improvement achieved 279, 282
optimisation 277

PRESENCE 134
principal components analysis

see PCA, 132
probability vector 229
proteins 291

quadratic assignment problem 88, 93

RCL 233
RCLEO 236
recursive gap search 56
related work 221
relational support 117

360 Subject Index

relative performance 228
relative performance ranking reference

243
relaxation by elimination 112, 115

research problem 219

resource donors 246
RFID antennas 190

run-time environment discrepancies
226

self-organised criticality 85, 98, 140

shake 235
SIAIRS 242

SIMD computers 26

Simpson coefficient 120
SISD computers 26

small molecules 133
software issues 227

speedup 38

fixed-time, 39
strong, 38

superunitary, 39

with solution stop, 38
stochastic function minimiser 231

stochastic search 297
stochastic tournament 308

superposition 122

tabu 241
Tanimoto coefficient 120
technology-independency 225
tertiary structure 292
time complexity 130
torsional angle 297
trade-off solutions 3
trade marks 113, 131
transformation size 229
travelling salesman problem 88, 93,

145, 176, 191
trial 231
trial vector 231
TSP

see travelling salesman problem, 88,
93, 145, 176, 191

uncovered areas 244
US National Cancer Institute open

database 133

Virtex4 247
VNS 234
volunteer computing 246

Xess 248
Xilinx 248

ZDT functions 8

	Title Page
	Preface
	Contents
	Evolution’s Niche in Multi-Criterion Problem Solving
	Introduction
	Multi-Objective Problem Solving
	{\it Evolutionary Principles}

	EMO’s Niches in Handling a Few Objectives
	{\it Generating Pareto-optimal Solutions}
	{\it Generating Preferred Pareto-optimal Solutions}

	EMO’s Niches in Many Objectives
	{\it Finding Preferred Solutions}
	{\it Light Beam Search Based EMO}
	{\it Eliminating Redundant Objectives}

	Other Niches of EMO
	{\it Knowledge Discovery}
	{\it Multiobjectivization}

	Conclusions
	References

	Applications of Parallel Platforms and Models in Evolutionary Multi-Objective Optimization
	Introduction
	Basic Concepts
	Parallel Architectures
	{\it Taxonomy of MIMD Computers}

	Parallelization Models of MOEAs
	{\it Master-Slave Model}
	{\it Diffusion Model}
	{\it Island Model}
	{\it Hybrid Models}

	Performance Assessment of Parallel MOEAs
	{\it Speedup}
	{\it Other Parallel Performance Measures}

	Selection of Parallel MOEAs
	Summary and Final Remarks
	References

	Asynchronous Multi-Objective Optimisation in Unreliable Distributed Environments
	Introduction
	{\it Test Functions}

	Master-Slave Model of Parallelisation
	Parallel Multi-Objective Particle Swarm
	{\it Exploration Using Recursive Gap Search Method}
	{\it Parallel MOPSO on Heterogeneous Resources}
	{\it Discussion}
	{\it Experiments}

	Unreliable Distributed Environments
	Distributed Particle Swarm Optimisation
	{\it Simulation Setup and Testing Procedure}
	{\it Results}

	Addressing Churn
	{\it Proposed Approaches}
	{\it Testing Procedure}
	{\it Algorithm Performance Metrics}
	{\it Experimental Results}

	Conclusions
	References

	Dynamic Problems and Nature Inspired Meta-heuristics
	Introduction
	Genetic Algorithms
	{\it Memory}
	{\it Memory and Randomisation}
	{\it Randomisation}
	{\it Self-Organised Criticality (SOC)}
	{\it Recent Applications}

	Ant Colony Optimisation
	{\it Benchmark Problems}
	{\it Network and Telecommunications Problems}
	{\it Industrial Manufacturing}
	{\it Scheduling}
	{\it Autonomous Robots}
	{\it Continuous Optimisation}
	{\it General Approaches}

	Particle Swarm Optimisation
	{\it Adapting PSO for Dynamic Problems}
	{\it Some Industrial Applications}

	Extremal Optimisation
	{\it The Satisfiability Problem}
	{\it A Defense Application}
	{\it Dynamic Composition Problem}
	{\it ‘Moving Peaks’ Dynamic Function Optimisation}
	{\it Aircraft Landing}

	Tracking Frequency Limitations
	References

	Relaxation Labelling Using Distributed Neural Networks
	Introduction
	The Task
	The AURA Graph Matcher
	{\it Relaxation by Elimination}
	{\it Selecting the Best Match}
	{\it Calculating the Similarity Score}
	{\it Summary of RBE}

	Interesting Properties of RBE
	Binary Correlation Matrix Memories
	Binary Correlation Matrix Memories
	Calculation of the Quality of Match
	The Performance of the Method
	Applications
	Mapping Data onto Binary Vector
	The Cybula Molecular Matcher
	Implementation on Distributed and Parallel Hardware
	Implementing CMMs in Hardware

	Conclusions
	References

	Extremal Optimisation for Assignment Type Problems
	Introduction
	Self-organised Criticality
	Extremal Optimisation
	{\it Existing EO Applications}

	Assignment Type Problems
	A Detailed Examination of EO on Bin Packing
	Applying EO to ATPs
	{\it Transition Operators and Constraint Handling}
	{\it A Population Model}
	{\it Local Search}

	Computational Experiments
	Conclusions
	References

	Niching for Ant Colony Optimisation
	Introduction
	Niching
	{\it Niching in Evolutionary Computation}
	{\it Crowding: Modifying the Replacement Mechanism}
	{\it Fitness Sharing: Modifying the Selection Mechanism}
	{\it Advantages and Disadvantages of Niching}

	Niching for Ant Colony Optimisation
	{\it Ant Colony Optimisation}
	{\it Population-Based Ant Colony Optimisation}
	{\it Niching Ant Colony Optimisation Algorithms}
	{\it Alternatives to Niching}

	Applications of Niching Ant Colony Optimisation
	{\it Travelling Salesman Problem}
	{\it Multimodal Function Optimisation}
	{\it Multiple Objective Travelling Salesman Problem}
	{\it Key Findings}

	Conclusion
	References

	Using Ant Colony Optimisation to Construct Meander-Line RFID Antennas
	Introduction
	RFID Antennas
	The Ant Colony System Algorithm
	Meander Line Antennas and ACS
	{\it Computational Experiments}
	{\it Overall Remarks}

	Local Refinement Using the Backbite Operator
	{\it Computational Experiments}
	{\it Overall Remarks}

	Optimising Efficiency and Resonant Frequency: A Multiobjective Approach
	{\it High Frequency Antenna}
	{\it “Low” Frequency Antenna}
	{\it Overall Remarks}

	Concluding Remarks
	References

	The Radio Network Design Optimization Problem
	Introduction
	Related Work and Generalized Flaws
	{\it RND Literature Review}
	{\it RND Related Work Concluding Notes}
	{\it Hardware Technological Speedup Enablers}

	RND Problem Formulation Model
	RND Formal Assessment Specification
	{\it Asymptotic Fitness Evaluation Effort Metric}
	{\it Coarse Grained AFEEM}
	{\it Fine Grained AFEEM}

	Optimization Algorithms
	{\it Population-Based Incremental Learning}
	{\it Differential Evolution}
	{\it GRASP}
	{\it Variable Neighborhood Search}
	{\it Clustered Genetic Algorithm}
	{\it Clustered Chromosome Appearance Probability Matrix}
	{\it Clustered Memetic Algorithm}
	{\it Hybrid and Multi-start Variants}

	Experimental Environment
	{\it Problem Instance}
	{\it Heterogeneous Development Environments}

	Empirical Result Analysis
	{\it Report Planning Method}
	{\it Algorithmic Comparison}

	Characterization and RNDBench Quick Reference
	{\it Heterogeneous Environments Characterization}
	{\it Algorithmic Characterization}
	{\it RNDBench Reference}

	Conclusions and Future Works
	References

	Strategies for Decentralised Balancing Power
	Introduction
	The German Power Supply System
	{\it Power Generation in Germany}
	{\it Power Markets}
	{\it Power Transmission and Distribution in Germany}
	{\it Future Developments}

	Approaches to Decentralised Balancing
	{\it Existing Balancing Power Pools and Virtual Power Plants}
	{\it Available Potential for Decentralised System Balancing in Germany}

	Decentralised Balancing Power Pools
	{\it Data Modelling}
	{\it Optimisation}
	{\it Providing Balancing Power}

	Conclusion
	References

	An Analysis of Dynamic Mutation Operators for Conformational Sampling
	Introduction
	Definitions and Formal Aspects
	Evolutionary Algorithm Analysis Context
	{\it Encoding and Evaluation of the Conformations}
	{\it Evolutionary Algorithms}
	{\it Mutation Operators}

	Statistical Selection Procedures
	Analysis of Mutation Operators
	{\it Conformational Sampling Benchmarks}
	{\it Experimentation and Analysis Results}

	Conclusions and Future Directions
	References

	Evolving Computer Chinese Chess Using Guided Learning
	Introduction
	Chinese Chess Rules
	Chinese Chess Engine
	{\it Principal Variation Search}
	{\it Iterative Deepening}
	{\it Hash Table}
	{\it Move Ordering}
	{\it Quiescent Search}
	{\it Pruning}
	{\it Extensions}
	{\it Evaluation}
	{\it Expansion of Databases}

	Genetic Algorithm
	{\it Chromosomal Representation}
	{\it Selection}
	{\it Crossover}
	{\it Mutation}
	{\it Fitness Evaluation}
	{\it Local Search}

	Training Data
	{\it Requirements for the Training Data}
	{\it Building and Selecting the Training Data}
	{\it Results of Preliminary Experiment}

	Results Simulation
	{\it Changing the Fitness Evaluation}
	{\it Evolving the Chinese Chess Program}

	Evaluating the Results
	{\it Subjective Measurement}
	{\it Objective Measurement}

	Conclusions
	Future Work
	References

	Author Index
	Subject Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

