
G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 339–350, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using Enterprise Architecture Models and Bayesian
Belief Networks for Failure Impact Analysis

Oliver Holschke1, Per Närman2, Waldo Rocha Flores2,
Evelina Eriksson2, and Marten Schönherr3

1 Technische Universität Berlin, Fachgebiet Systemanalyse und EDV, FR 6-7,
Franklinstr. 28-29, 10587 Berlin, Germany

Oliver.Holschke@sysedv.tu-berlin.de
2 Dpt. of Industrial Information and Control Systems, Royal Institute of Technology (KTH),

Stockholm, Sweden
{PerN,WaldoR,EvelinaE}@ics.kth.se

3 Deutsche Telekom Laboratories, Ernst-Reuter-Platz 7, 10587 Berlin, Germany
Marten.Schoenherr@telekom.de

Abstract. The increasing complexity of enterprise information systems makes
it very difficult to prevent local failures from causing ripple effects with serious
repercussions to other systems. This paper proposes the use of Enterprise
Architecture models coupled with Bayesian Belief Networks to facilitate
Failure Impact Analysis. By extending the Enterprise Architecture models with
the Bayesian Belief Networks we are able to show not only the architectural
components and their interconnections but also the causal influence the
availabilities of the architectural elements have on each other. Furthermore, by
using the Diagnosis algorithm implemented in the Bayesian Belief Network
tool GeNIe, we are able to use the network as a Decision Support System and
rank architectural components with their respect to criticality for the
functioning of a business process. An example featuring a car rental agency
demonstrates the approach.

Keywords: Enterprise Architecture Management, Decision Support Systems,
SOA, Bayesian Belief Nets, Diagnosis, Failure Impact Analysis.

1 Introduction

Today’s businesses are increasingly dependent upon IT, not only to support their
business processes but also to automate their business processes. With the advent of
integration technologies the information systems have become more and more
interconnected. This means that the decision makers in charge of managing the
enterprise information systems have lesser possibilities of knowing how any
particular decision concerning changes to the information systems affect other
information systems or for that matter the business itself. The process of conducting
and planning preventive IT maintenance and allocating maintenance and operation
resources where they do the most good is one area where the sheer complexity of the
information system poses a problem.

340 O. Holschke et al.

Enterprise Architecture (EA) is a proposed solution to reduce complexity and
allow for better decision-making. Using EA models illustrates the architectural
components of the enterprise system and their interconnections in a way that is
comprehensible to ordinary people. There is a plethora of EA frameworks currently in
use including The Open Group Architecture Framework (TOGAF) [1], the
Department of Defense architecture framework (DoDAF) [2], and others [3].
Although many of these frameworks propose models that capture interconnections
between systems, they fail to depict causal relations between availability of various
architectural elements.

To be able to depict and model causal relations between systems, one might use
Bayesian Belief Networks [4], which feature a graphical notation to capture causal
relations in a more qualitative fashion. In addition to this, there is also a statistical
apparatus behind the graphical notation with which one can quantitatively estimate
which decision yields the most benefit. We propose a Decision Support System (DSS)
for failure impact analysis for Enterprise Architectures based precisely on the
Bayesian Belief Networks (BBN) introduced above. Our proposed management
process and underlying DSS address several concerns of enterprise architects
identified in the Enterprise Architecture Management Pattern Catalogue [5] which
has been developed at the Technische Universität München, Germany. Our method
can be regarded as an implementation of the Infrastructure Failure Impact Analysis
(M-34) pattern which addresses concerns about infrastructure failures, including
concerns about the probability of these failures being causes for process, service or
other element defects. The method of creating the DSS consists of EA models based
on the ArchiMate meta-model [6, 7] and their translation to a BBN, then using an
algorithm to simulate which architectural element is the most critical. The following
section proceeds to describe BBNs in general and diagnostic analysis. Section 3
describes how to apply BBNs and diagnostic analysis and how to create the Decision
Support System for failure impact analysis. The creation of the DSS is demonstrated
in section 4, applied to an example car rental agency. The diagnostic use of the DSS is
illustrated in section 5. Section 6 concludes the paper.

2 Bayesian Belief Networks and Diagnostic Analysis

2.1 Bayesian Belief Networks

A Bayesian Belief Net (BBN) is a graphical model that combines elements of graph
and probabilistic theory. A BBN describes a set of causal relations within a set of
variables, and a set of conditional independencies including joint probabilities as
depicted in Fig. 1. A directed, acyclic graph (DAG) represents the causal
dependencies between the variables (or nodes). Each node represents a variable with
corresponding conditional probability distribution, displayed in a Conditional
Probability Table (CPT). The strength of BBN manifests in the possibility of
reasoning about results given certain observations according to Bayesian rules. BBN
can answer requests of the form “what, if …” with respect to specific variables.
Applied in this way BBN are powerful probabilistic inference machines [8]. Further
explanations on the semantics of BBN can be found in e.g., [4, 9].

 Using Enterprise Architecture Models and Bayesian Belief Networks 341

While the structure of a BBN may in principle be unknown, we propose to exploit
the availability of an EA model in which nodes and relations are “known”. Doing this
relieves us of learning an expressive BBN structure, e.g., by search-and-score
procedures [8]. The exact mapping of an EA model to a BBN structure will be
explained in section 3 and 4. The parameters of a BBN can either be collected from
historical data and/or expert assessments, or learnt via estimation methods such as
Maximum-Likelihood or Bayesian Estimation [8, 9]. Fully parameterized BBN can be
used for different inferential tasks, i.e., classification (mapping a data element into a
previously defined category), prediction (the forecast of a value of a dependent
variable given a specific observation), and diagnosis (concluding a possible cause of a
changed variable given a specific observation). With respect to the concerns of
enterprise architects the use type diagnosis is of particular relevance. If the architect –
in case of EA changes – had means of identifying causes of disruptive effects, this
would benefit his architectural decision-making process in terms of efficiency and
effectiveness. For this diagnostic analysis can be conducted on a BBN. In the
following we briefly describe how diagnosis is applied.

2.2 Diagnostic Analysis

The following description of diagnosis in BBN is based upon [10], a master thesis that
specifically describes the implementation of the relevant diagnostic functions in the
Bayesian Belief Network modeling tool GeNIe [11] developed at the University of
Pittsburgh.

Diagnosis involves two types of tasks: 1) determining the (combination of) causes
of the observations, and 2) increasing the credibility of the diagnosis through the
collection of additional, initially unobserved, data. Since information seldom comes
for free, the second task by necessity involves the formulation of a strategy to gather
information as cleverly as possible, i.e., to gain the most diagnostic value at the least
cost. We now proceed to make this more precise.

Let a diagnostic probability network (DPN) be defined as a Bayesian Belief
Network where at least one random variable H is a hypothesis variable (e.g., an
infrastructure element such as a server) and at least one other random variable T is a
test variable (those variables of the model that we potentially can collect information
about, i.e., a manager’s opinion about the availability of an architectural element he is
responsible for).

Let H denote the set of all hypothesis variables, and T the set of all test variables.
Furthermore, each test T ∈ T has a cost function Cost(T): T → R, because usually an
effort has to be made to collect data about an object. If a test is free, the associated
cost is set to zero. Also, each hypothesis H has an associated value function, V(P(H)):
[0,1] → R.

Given a DPN, we have the expected value EV of performing a test T ∈ T:

∑
∈

⋅=
Tt

tPtHPVTEV)())|(()((1)

To make an informed decision, we also need to account for the expected outcome of
not performing the test T. We therefore introduce the expected benefit EB:

342 O. Holschke et al.

))(()())|(())(()()(HPVtPtHPVHPVTEVTEB
Tt

−⋅=−= ∑
∈

(2)

Still, however, no connection has been made to the cost of the test. This is remedied
by the test strength TS,

)(
))((

)(
),(TCostK

HPV

TEB
THTS ⋅−= , (3)

where we have introduced the coefficient K, reflecting the relative importance of the
expected benefit versus the cost of the test.

The definition of the value function still remains. To optimize the test selection
with respect to multiple hypotheses, a function based on the marginal probability
between hypotheses (rather than the joint probability) called Marginal Strength 1
(MS1) is introduced [10],

F
F

Tt

n
n

f
FPMS

1

5.0

)5.0(
))((1

2

2

⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−
=
∑
∈ , (4)

where F is the set of all selected target states fi of the hypotheses that the user wishes
to pursue and nf is the total number of target states. This test selection function is
convex with a minimum at 1 – nf and maxima at 0 and 1. The value function that we
are looking for now becomes the sum of the marginal strength for all target states:

∑
∈

=
Ff

fPMSFPV))((1))((. (5)

3 Using a BBN for Decision Support in Failure Impact Analysis

3.1 Management Process for Failure Analysis Using a Decision Support System

Before we describe our Decision Support System (DSS), we briefly provide the
organizational context of failure impact analysis in Enterprise Architecture. For this
we explain a management process that generally needs to be walked through in the
case of disruptions in business processes, services or other architectural elements. The
management process consists of the following 5 main activities: 1. Observe failure
event: Before any measures can be planned or taken to resolve a failure, the failure
event has to be observed e.g., by the responsible enterprise architect. The failure can
be an actual observation or be part of a simulation in order to prepare
countermeasures for future events. Tools that support the inspection and visualization
of failure events are of great assistance to the observing person. The information
required to detect failures may be supplied by Business Activity Monitoring (BAM)
systems. 2. Set observation in DSS: The observed failure is provided to the DSS (next
section) – either manually through exporting and importing data or automatically in
case of an integrated system. 3. Conduct diagnosis: The DSS conducts a diagnosis

 Using Enterprise Architecture Models and Bayesian Belief Networks 343

based on the provided observation and delivers a ranked list of architectural elements.
The ranking is based on probabilistic information in the DSS and displays what
probable causes the observed failure may have. 4. Availability of additional
observations: The person in charge of the failure analysis checks whether additional
observations are available (that could also be to check how costly additional
observations would be and if that would add more valuable information to the
diagnosis). If positive, then this process loops back to step 2 and sets the additional
observations in the DSS. If negative, the process can proceed to step 5. 5. Initiate
repairing activities according to diagnosis: Based on the ranked architectural
elements resulting from the DSS, repairing activities or projects can be planned and
initiated by the responsible architect and/or project manager. The probabilistic
ranking shall make the sequential ordering of activities in these projects more
efficient and complete.

3.2 Creating the Decision Support System for Failure Analysis Based on BBN

In the following we describe our method of how to create a BBN on the basis of an
EA model in order to use it for decision support in EA. Starting point for the
construction is a specified EA model. The overall method consists of four main steps.
Steps 1 and 2 address the creation of the BBN’s structure based on the EA model, i.e.,
what are the variables and what relations exist between them. Steps 3 and 4 address
the parameters of the BBN: during step 3 discrete values for the variables are defined
for improved usability; in step 4, the built BBN structure is complemented with
conditional probability distributions for all variables. The method and its steps are
shown in Fig. 1. The detailed actions within all steps will be explained in the next
subsections.

Fig. 1. Method for creating a Bayesian Belief Net on the basis of an Enterprise Architecture
model in order to use it as a Decision Support System for failure impact analysis

Mapping the EA Structure to the BBN Structure (Steps 1 & 2)
For obtaining the BBN structure we exploit the fact that in EA models as well as in
BBN the central concepts elements and relations are used. Regarding the EA model as
a graph allows us to map the EA model to a BBN. We define the following general
mapping rule that constitutes step one and two of the method:

1. Map EA elements to BBN variables: Each EA element of the EA model maps to
a variable (node) in the BBN.

2. Map EA relations to BBN relations: Each EA relation between two EA elements
in the EA model maps to a causal relationship between two variables (nodes) in
the BBN.

BBN as graphs are directed and acyclic. When mapping the EA model to the BBN,
directedness and acyclicity must be preserved. Relations that violate this rule either

344 O. Holschke et al.

have to be removed or be modified. For preserving acyclicity see also [12]. The result
of the mapping is a DAG consisting of variables and relations representing EA
elements and EA relations. Having defined the structure of the BBN, the parameters
of all variables now have to be determined.

Discretizing Variables and Determining CPTs (Steps 3 & 4)
Variables in a BBN can, in principle, represent continuous spectra of a specific
feature [9]. We focus on discrete states of BBN variables due to successful
implementations in other domains [8] and the increased ease for users. Relating this to
our EA context, an exemplary discretization of a variable would be: the EA element
“Server” has the two discrete states “up” and “down”, or, a “Service” has three
possible states for response time, i.e., “fast”, “moderate” and “slow”. Determining the
discrete states can be done conjointly with developers and end-users. All these
activities can be summed up in step 3. Discretize variables of the BBN.

Having determined the BBN structure and discretized its variables, the conditional
probability distributions for all variables have to be obtained. This constitutes step 4.
Determine CPTs for BN variables of our method. In case of availability of some data,
existing mathematical estimation methods can be applied, such as Maximum-
Likelihood estimation (MLE) and related estimation algorithms [13]. In addition to
this there are many ways to gather empirical data, see for instance [14] or [15].

The collection of data without using any mathematical estimation methods can be
done applying one of the following general methods below:

Direct collection (of technical parameters of the actual EA elements; read out log
files, etc.);

1. Indirect collection (of data in data bases at distributed locations that allow to
draw conclusions about element dependencies);

2. User-based estimation of causal dependencies (by querying the users – via
interview or questionnaire).

The manner of data elicitation may also depend on the individual collection
strategy of a company. Methods one and two usually require additional technical
efforts beforehand because EA elements have to be enabled to provide adequate
information to the probabilistic model. Method three does not require these technical
efforts. This approach collects relevant conditional probabilities through interviews
with e.g., architecture experts, programmers, and system users as well as through
analysis of the participating EA elements. On data collection see also [14]. Having
collected all conditional probability distributions the BBN is now fully specified and
may serve as decision support for failure impact analysis in EA.

4 Scenario-Based Analysis: Creating the Decision Support System

We apply our method to an exemplary Enterprise Architecture to demonstrate the
creation of the BBN and its application as decision support for failure impact analysis
in EA. The enterprise we chose is a virtual car rental agency with a service-oriented
architecture and a real life implementation. The description of the business scenario
and the service-oriented architecture and its implementation details can be found in
[16]. The core business processes of a car rental agency are ‘car reservation’, ‘car

 Using Enterprise Architecture Models and Bayesian Belief Networks 345

pick-up’, and ‘car check-in’, i.e., returning the rental car. We analyze the business
process of returning a rental car back to the agency, i.e., “Check-in car”.

The business process “Check-in car” is initiated at the local service by the return of
a car. For this, data about the returned car has to be requested from the system. The
car is inspected in presence of the customer and claims are recorded. An invoice is
then created automatically based on the rental data and the entered claim information.
The monetary quantification of claims and retention is based on a claims list mapping
claims to amounts. If there are no claims the car is released right away. If claims are
asserted, a claim report is generated. This claim report is submitted to the claim
settlement department which is responsible for contacting the insurance company and
entering regulation information. At the final stage the case is documented and the car
is repaired and released. The corresponding EA is modeled with ArchiMate [6, 7] and
is depicted in Fig. 2. In accordance with our method defined in section 4 the following
steps are executed to create the BBN.

Fig. 2. EA model of the car rental scenario, showing all architectural elements involved in the
“Check-in car” process

346 O. Holschke et al.

Fig. 3. Structure and parameters of the Bayesian Belief Network mapped from the car rental
agency Enterprise Architecture model

Step 1: Map EA Elements to BBN Variables
Out of the 27 architectural elements in the EA model (Fig. 2), 24 elements are
mapped to the BBN as variables/nodes. All mapped EA elements are depicted in the
BBN in Fig. 3. For instance, the EA element “Apache Geronimo J2EE Application
Server” is mapped to node “(1) Apache Geronimo application server”, the EA
element “Data handling service” between Application and Technology Layer in the
EA model is mapped to node “(3) Data handling service” in the BBN, and so on. It
has to be noted that not all EA elements have been mapped to the BBN under the
assumption that the non-mapped EA elements do not have any causal influence on
other elements. This could be because they serve the mere purpose of structuring
(e.g., the business service “Car renting”) or are on a very deep technological layer,
such as the “Intalio|BPMS workflow engine”, whose causal relations to the hardware
would not contribute to a significant better understanding from a business process
management perspective. The latter supports the goal of maintaining a manageable
view on the BBN.

Step 2: Map EA Relations to Causal Relationships in the BBN
In the car rental EA model there are mostly directed relations. Those relations are
mapped to causal relationships in the BBN, e.g., the “Realization” relation (dotted

 Using Enterprise Architecture Models and Bayesian Belief Networks 347

line, arrowhead not filled) between the “Apache Geronimo J2EE application server”
and the application component “Task management” is mapped to a causal relationship
between node “(1) Availability Apache Geronimo application server” and node “(5)
Availability Task management application component” in the BBN (as in Fig. 3).

There are also eleven undirected relations, i.e., those relations between business
roles and business processes/services/applications (e.g., between “Process Owner”
and the “Check-in car” business process). We say that the people who adopt a specific
business role are able to assess the status of the architectural element they are
responsible for to a certain extent, e.g., a process owner can make a judgment on the
availability of a business process. This observation is based on the actual status of the
element. Therefore we can map the undirected EA relations to directed causal
relationships going from the element to the observer, indicating that the observation
of an element by a person will usually be influenced by the actual status of the
element. Having mapped the undirected relations to directed ones, we fulfill the
criterion of directedness required by BBN.

Due to the strictly maintained paradigm of service-oriented architecture in the
scenario, any cycles in the EA model are absent. Thus, the step in our method which
removes any cycles from the BBN is not required here (for cycle removal see [12]).
As opposed to the traditional top-down build-up of BBN, we model the causal
relationships and nodes upwards – like a bottom-up growing tree – to maintain the
resemblance with the EA model.

Step 3: Discretize Variables of the BBN
Each EA element that we have identified as a BBN node could be described by
various features. Depending on the value of a feature of one variable, which could in
principle stem from a continuous spectrum, the feature(s) of other variables are
influenced. An important feature of Enterprise Architecture elements that we focus
on is the availability of these elements [17]. We therefore apply the feature
„Availability“ and define two discrete, mutually exclusive values: “up” and “down”
(see also [8, 12]). We discretize the value spectrum for our single-feature variables to
keep the complexity of the network nodes manageable. Moreover, these two values
have shown to be generally comprehensible states of different system elements during
talks with system experts and users. Also, for a user it will be generally easier to give
estimations on the conditional probability distribution of two states of an element,
rather than to estimate distributions between three or even more states. The EA
model-based BBN structure is depicted in Fig. 3.

Step 4: Determine CPTs of the BBN variables
In this example we have not engaged in the elicitation of data to set the CPTs
according to the methods proposed by for instance [13], [15] or [14]. To simulate the
actual approach we randomly assigned numbers to the CPTs for the BBN in Fig. 3
above.

5 Using the Decision Support System for Failure Impact Analysis

We use the DSS as we have described in the management process in section 3.1
according to diagnostic analysis (section 2.2) to localize probable causes of an

348 O. Holschke et al.

observed failure. To demonstrate the usage of the DSS we let the “Process Owner”
observe that the business process “Check-in car” is down. This relates to the first step
in the management process: Observe failure event. The next step is to set the
observation in the DSS, i.e., the modeled Bayesian Belief Network, according to the
observation. This is done in the GeNIe-tool by setting the evidence of node “(24)
Process Owner” to “down” (see Fig. 3). During the third step, Conduct Diagnosis, the
actual diagnostic analysis based on the one observation and the BBN model is
executed (in GeNIe, the Test Diagnosis button initiates this). In our example the cost
of observing the availability status of architectural elements is still set to zero,
assuming that querying service or application managers is an effortless task. This
means that additional observations will always contribute to a better diagnosis since
the observation is for free. For a more realistic representation in the future the costs of
asking people or having people to publish their observations need to be introduced in
the model.

After the observation, diagnostic analysis calculates the a-posteriori probabilities of
all target nodes. In Fig. 4, left (screenshot taken from GeNIe [11]), the diagnostic
results are depicted as a list of ranked (ranked according to the probability of being
down) target nodes. The ranked target node list starts with nodes (11): 0.892, (13):
0.566, (14): 0.447… and so forth. This information points an enterprise architect to
architectural elements that ought to be attended to immediately – those having high
probabilities of unavailability and being the possible cause of the process failure –
compared to those elements with lower probabilities. Based on the given information
this would be the best order of activities in a repair project.

The order of activities can change when more information of the status of
architectural elements is known. In addition to the formerly observed business process
“Check-in car” being down, we let “Service Manager 3” observe the services “Car
documenting service” and “Contacting service” under his responsibility being
available, i.e., up (Fig. 4, right). The ranking of target nodes significantly changes,
after having this additional observation. For instance, node (14) Availability
contacting service: down had a probability of 0.447. Taking into account the new
observation, the probability of node (14) being down drops to 0.175. This provides
useful information to the enterprise architect who can now initiate differently ordered
activities to repair the failure.

Fig. 4. Left: Diagnostic results as a list of ranked target nodes after one observation, and Right:
Additional observation: differently ordered ranked target nodes after two observations

 Using Enterprise Architecture Models and Bayesian Belief Networks 349

6 Conclusion

We have proposed a DSS based on a Bayesian Belief Network to address one
important concern of today’s Enterprise Architects, i.e., conducting failure impact
analysis and diagnosis in EAs. The BBN was created based upon an architectural
model of an Enterprise Architecture, i.e., the knowledge about causal dependencies
between actual architectural elements was exploited to create the BBN nodes and
relationships to capture the uncertainties. Particularly for architectures with growing
complexity, those approaches which capture this uncertain knowledge and still allow
reasoning on it seem suitable. This is supported by situations in which the actual
states of system elements cannot be determined, but only observed by managers using
there experience.

We have designed a detailed method to create the Bayesian Belief Network-based
DSS consisting of the mapping of EA model elements to a BBN and eliciting all its
required structural features and probabilistic parameters. To demonstrate the general
feasibility of the approach we created a DSS for an EA of a car rental agency and
conducted an exemplary failure diagnosis in it, giving managers valuable information
about what elements could be the probable causes. Even though our exemplary
scenario is a complete service-oriented Enterprise Architecture, more complex
structures of EA models (e.g., those including loops, non- and bi-directed relations) in
other enterprises are definitely possible. In these cases additional mapping rules –
from the EA modeling language to BBN parameters – need to be introduced in order
to remove irregularities and create a formally correct Bayesian Belief Network.

In further work we will concentrate on the elicitation of probabilities to populate
the CPTs of the Bayesian Belief Network. The spectrum of possibilities, e.g.,
leveraging expert opinions on system element behavior in contrast to exploring
automatic ways of using monitoring information about system availability and other
qualities, needs to be analyzed considering the trade-off between expressiveness and
cost of elicitation.

References

1. The Open Group: The Open Group Architecture Framework (TOGAF), version 8
Enterprise Edition. The Open Group (2005)

2. Department of Defense Architecture Framework Working Group: DoD Architecture
Framework Version 1.0 Department of Defense, USA (2004)

3. Schekkerman, J.: How to survive in the jungle of Enterprise Architecture Frameworks.
Trafford, Victoria, Canada (2004)

4. Friedman, N., Linial, M., Nachman, I.: Using Bayesian Networks to Analyze Expression
Data. Journal of Computational Biology 7, 601–620 (2000)

5. Buckl, S., Ernst, A.M., Lankes, J., Matthes, F.: Enterprise Architecture Management
Pattern Catalogue, Version 1.0. Technische Universität München, München (2008)

6. Buuren, R.v., Hoppenbrouwers, S., Jonkers, H., Lankhorst, M., Zanten, G.V.v.:
Architecture Language Reference Manual. Telematica Instituut, Radboud Universiteit
Nijmegen (2006)

350 O. Holschke et al.

7. Jonkers, H., Lankhorst, M.M., Buuren, R.v., Hoppenbrouwers, S., Bonsangue, M.M.,
Torre, L.W.N.v.d.: Concepts For Modeling Enterprise Architectures. Int. J. Cooperative
Inf. Syst. 13, 257–287 (2004)

8. Lauría, E.J.M., Duchessi, P.: A Bayesian Belief Network for IT implementation decision
support. Decision Support Systems 42, 1573–1588 (2006)

9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley Interscience, Hoboken
(2000)

10. Jagt, R.M.: Support for Multiple Cause Diagnosis with Bayesian Networks. Vol. M. Sc.
Delft University of Technology, the Netherlands and Information Sciences Department,
University of Pittsburgh, PA, USA, Pittsburgh (2002)

11. Decision Systems Laboratory: GeNIe (Graphical Network Interface). vol. 2008, University
of Pittsburgh (2008)

12. Tang, A., Nicholson, A.E., Jin, Y., Han, J.: Using Bayesian belief networks for change
impact analysis in architecture design. Journal of Systems and Software 80, 127–148
(2007)

13. Neapolitan, R.: Learning Bayesian networks. Prentice-Hall, Inc., Upper Saddle River
(2003)

14. Keeney, R.L., Winterfeldt, D.v.: Eliciting Probabilities from Experts in Complex
Technical Problems. IEEE Transactions On Engineering Management 38 (1991)

15. Woodberry, O., Nicholson, A.E., Korb, K.B., Pollino, C.: Parameterising Bayesian
Networks Australian Conference on Artificial Intelligence. Springer, Heidelberg (2004)

16. Holschke, O., Gelpke, P., Offermann, P., Schröpfer, C.: Business Process Improvement by
Applying Reference Process Models in SOA - a Scenario-based Analysis. Multikonferenz
Wirtschaftsinformatik. GITO-Verlag, Berlin, München, Germany (2008)

17. International Standardization Organization and the International Electrotechnical
Committee: ISO/IEC 13236 - Information technology — Quality of service: Framework.
ISO/IEC (1998)

	Using Enterprise Architecture Models and Bayesian Belief Networks for Failure Impact Analysis
	Introduction
	Bayesian Belief Networks and Diagnostic Analysis
	Bayesian Belief Networks
	Diagnostic Analysis

	Using a BBN for Decision Support in Failure Impact Analysis
	Management Process for Failure Analysis Using a Decision Support System
	Creating the Decision Support System for Failure Analysis Based on BBN

	Scenario-Based Analysis: Creating the Decision Support System
	Using the Decision Support System for Failure Impact Analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

