
G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 15–27, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Design of Composable Services

George Feuerlicht1,2

1 Department of Information Technology,
University of Economics, Prague, W. Churchill Sq. 4, Prague, Czech Republic

2 Faculty of Engineering and Information Technology,
University of Technology, Sydney

P.O. Box 123 Broadway, Sydney, NSW 2007, Australia
jiri@it.uts.edu.au

Abstract. Service composition methods range from industry standard ap-
proaches based on Web Services and BPEL to Semantic Web approaches that
rely on AI techniques to automate service discovery and composition. Service
composition research mostly focuses on the dynamic (workflow) aspects of
compositions. In this paper we consider the static component of service compo-
sition and discuss the importance of compatibility of service interfaces in ensur-
ing the composability of services. Using a flight booking scenario example we
show that reducing the granularity of services by decomposition into service
operations with normalized interfaces produces compatible interfaces that fa-
cilitate service assembly. We then show how relational algebra can be used to
represent service operations and provide a framework for service assembly.

Keywords: Service composition, service assembly, service reuse.

1 Introduction

In general, the specification of service compositions consists of two parts: the static part
that involves the definition of services, including the service operations and their inter-
faces, and the dynamic part that defines the associated process workflow. It can be ad-
vantageous to treat the design of the static part of service compositions separately, as the
service operations can then be reused in the context of various process specifications [1].
We refer to this static part of service composition as service assembly in this paper. In
this context, the design of the inbound and outbound message structures is of paramount
importance as it determines the compatibility of service interfaces, and consequently the
composability of services into higher level business functions. A key determinant of
service composability and reuse is service granularity, i.e. the scope of functionality that
individual services implement. Increasing the scope of the functionality implemented by
a given service reduces the potential for reuse and therefore makes the assembly of ser-
vices more problematic. In previous publications we have described a methodological
framework for the design of services based on the data properties of interface parameters
that aims at achieving optimal level of service granularity [2, 3]. In this paper we extend
this framework and consider the problem of service assembly. Unlike some authors, for
example [4-8] who consider service composition a run-time problem and apply semantic

16 G. Feuerlicht

techniques to run-time resolution of compatibility conflicts, we regard service assembly a
design-time concern and focus on specifying compatible services interfaces. Further-
more, our analysis assumes that we are dealing with domain-wide services based on an
industry standard specification, avoiding incompatibilities arising from services designed
by individual service providers. Service assembly is a recursive process that produces
high-level (coarse-grained) services as compositions of elementary (fine-grained) ser-
vices. A key objective of service design is to ensure that services are both composable
and reusable so that higher level services can be implemented as assemblies of mutually
independent elementary services. Service compositions are typically implemented using
languages such as BPEL (Business Process Execution Language) to form complete busi-
ness processes, and we adopt the BPEL composition model as the basis for our analysis
[9]. BPEL compositions involve implementing higher level business functions using
previously defined Web Services accessible via partner links and externalizing the result-
ing functionality of the composite service via a WSDL interface. This process can be
repeated recursively, so that complex high-level business functions can be implemented
by aggregation of lower level services [10]. The BPEL model is a message-based para-
digm and the communication between Web Services involves mapping the results of
service invocations between the outbound and inbound messages of service interfaces
(i.e. the signatures of Web Service operations). Local and global BPEL variables are used
to store and manipulate the intermediate results of service invocations. It follows that
composability of services is dependent on the compatibility of interfaces of service op-
erations involved in the composition.

We have argued elsewhere that service interfaces can be treated as data parameters,
and that data engineering principles apply to the design of services [2]. In this paper
we extend this work to considerations of service composability. More specifically, we
argue that composability of services depends on compatibility of service interfaces
within the service assembly, and show that relational algebra formalism can be used
to represent the static part of service compositions. In the next section (sections 2) we
explore service composability in more detail and discuss the relationship between
service reuse and composability. We then illustrate the process of decomposing
coarse-grained services into elementary (fine-grained) services with normalized inter-
faces that facilitate service composition using a flight booking scenario (section 3). In
the next section (section 4) we show how relational algebra formalism can be used to
represent service operations and to describe service assembly. In the final section
(section 5) we summarize the main contributions of this paper, discuss related work
and outline further research.

2 Considerations of Service Reuse and Composability

Composability of services is closely related to service reuse. Many experts believe
that reuse is inherent to SOA (Service-Oriented Architecture), and studies show that
organizations regard reuse as the top driver for SOA adoption [11]. However, in prac-
tice reuse can be difficult to achieve and involves design-time effort to identify and
design reusable services. Once services are published it becomes very difficult to
improve the level of service reuse by runtime intervention, or by modifying the exter-
nalized service interfaces. It can be argued that the perception of improved reuse can
be mainly attributed to the ability to derive business value from legacy applications by

 Design of Composable Services 17

externalizing existing functionality as Web Services [12]. Others have noted that the
relatively low levels of service reuse can be attributed to poor design [13]. For the
purposes of this analysis it is important to understand the mechanism for service reuse
and how it differs from earlier approaches to software development. The mechanism
for service reuse is service aggregation and we can define service reuse as the ability
of a service to participate in multiple service assemblies/compositions; in this sense,
service composability can be regarded as a measure of service reuse. Service compo-
sition implements complex application functionality (for example, a composite ser-
vice can implement a hotel reservation, airline booking and a car rental to form a
complete travel agency service) by means of recursively composing services [14]. In
order to facilitate composition, the constituent services need to have characteristics
which allow reuse in composing services.

Services share the basic characteristics of components such as modularization, ab-
straction and information hiding, and design strategies used in earlier software devel-
opment approaches can be adapted to service design. However, there are significant
challenges to overcome as services are typically implemented at a higher level of
abstraction than components, and reuse potential is limited by the extensive use of
coarse-grained, document-centric services. Another factor that makes achieving good
levels of service reuse particularly challenging is that service-oriented applications
tend to span organizational boundaries and the design of services frequently involves
industry domain considerations. Emerging vertical domain standards such as the Open
Travel Alliance (OTA) [15] specification of (XML) message formats for the travel
industry domain are typically developed by committees or consortia which tend to
operate on a consensus basis and pay little attention to software design. Although
industry-wide standards are an essential prerequisite for e-business interoperability,
standardization of message structures and business processes alone does not ensure
reusability of services. The resulting message structures typically include a large
number of optional elements and embedded instructions that control the processing of
the documents [16]. This results in excessively complex and redundant data structures
(i.e. overlapping message schemas) that include a large number of optional data ele-
ments introducing high levels of data and control coupling between service operations
[17]. Consequently, Web Services based on such message formats do not exhibit good
levels of reuse and composability [18]. It is often argued that standardization leads to
reuse [19], but in order to achieve high levels of service reuse and composability,
detailed consideration needs to be given to service properties at design-time. More
specifically, services should be self-contained, have clearly defined interfaces that are
compatible across the domain of interest. These requirements lead to a consideration
of cohesion (i.e. maximization of service cohesion) and coupling (i.e. minimization of
coupling between services) resulting in fine-grained services that are associated with
improved level of service composability [20].

3 Identifying Composable Services

Most vertical-domain applications are characterized by coarse-grained services that
typically encapsulate high-level business processes and rely on the exchange of com-
posite XML documents to accomplish business transactions. This mode of operation
is widely adopted by the SOA practitioners for developing Web Services applications

18 G. Feuerlicht

to improve performance and reduce the number of messages that need to transmitted
to implement a specific business function [21]. Consider, for example, travel Web
Services based on the OTA specification implement flight booking business process
for a specific itinerary using two request/response message pairs: OTA_AirAvailRQ/
OTA_AirAvailRS and OTA_AirBookRQ/OTA_AirBookRS. The OTA_AirAvailRQ/
OTA_AirAvailRS message pair includes the data elements of requests and responses
for airline flight availability and point of sale information [15]. This situation is illus-
trated in Figure 1. The Availability Request message requests flight availability for a
city pair on a specific date for a specific number and type of passengers, and can be
narrowed to request availability for a specific airline, flight or booking class on a
flight, for a specific date. The Availability Response message contains the corre-
sponding flight availability information for a city pair on a specific date. The Avail-
ability request/response interaction is (optionally) followed by the Booking
request/response message exchange. The Book Request message is a request to book
a specific itinerary for one or more passengers. The message contains origin and des-
tination city, departure date, flight number, passenger information, optional pricing
information that allows the booking class availability and pricing to be re-checked as
part of the booking process. If the booking is successful, the Book Response message
contains the itinerary, passenger and pricing information sent in the original request,
along with a booking reference number and ticketing information.

The use of such complex (coarse-grained) data structures as payloads of Web Services
SOAP message improves performance, but significantly reduces reuse potential [22].

Fig. 1. OTA flight availability and booking message sequence

Decomposition of coarse-grained services into fine-grained (elementary) service
operations improves the opportunity for reuse and is a necessary precondition for
composability of services. In order to facilitate service composition, detailed consid-
eration needs to be given to service interfaces at design-time to ensure that individual
services are mutually compatible across a collection of related services. This leads to
the requirement for matching of interface parameters, so that for example, the Book-
ingReference (output) parameter of the BookFlight operation matches the Bookin-
gReference (input) parameter of the MakePayment operation. We explore this aspect
of service composition in the following sections, using an airline flight booking sce-
nario introduced in this section.

 Design of Composable Services 19

3.1 Decomposition of the Travel Booking Service

We make a number of simplifying assumptions including that the flights are one-way
with no stopovers and that flights for a given FlightNumber depart every day of the
week at the same time (DepartureTime). These simplifications make the example eas-
ier to follow while maintaining good correspondence to the real-world situation.
Unlike the coarse-grained message interchange pattern used by the OTA specification
(illustrated in Figure 1) this scenario breaks down the business function into fine-
grained service operations that closely match the requirements of the flight booking
dialogue. As argued elsewhere [13, 23], the benefits of this fine-grained design include
improved cohesion, reduction in coupling and better clarity. But, also importantly,
reducing granularity leads to improved flexibility, reusability and composability of
services, so that for example, the payment operation (MakePayment) is now separate
from the booking operation (BookFlight). As a result, it is possible to hold the booking
without a payment, furthermore, the MakePayment operation can be reused in a differ-
ent context, e.g. in a hotel booking service. In order to identify candidate service opera-
tions, we first model the flight booking dialogue using a sequence diagram (Figure 2),
and then define the corresponding service interfaces using simplified OTA data ele-
ments. Similar to the OTA message sequence shown in Figure 1, the sequence diagram
in Figure 2 describes the interaction between a travel agent and an airline. Each mes-
sage pair consists of a request (RQ) message and a response (RS) message that to-
gether form the interface of the corresponding candidate service operation. We can
now describe the flight booking function in more detail using a composition of 4 ser-
vice operations: FlightsSchedule, CheckAvailability, BookFlights, and MakePayment
as identified in the sequence diagram in Figure 2. The flight booking dialogue proceeds
as shown in Figure 3. The traveler supplies the values for DepartureCity, Destination-
City, and DepartureDate as input parameters for the FlightsSchedule operation. The

Fig. 2. Modified flight availability and booking message sequence

20 G. Feuerlicht

Fig. 3. Flight booking dialogue using fine granularity services

output of the FlightsSchedule operation produces a list of scheduled flights, i.e. corre-
sponding values of FlightNumber, DepartureTime, and ArrivalTime. The traveler then
selects a suitable flight (i.e. FlightNumber and DepartureDate) supplies the value of
Class (e.g. economy); the values of FlightNumber, DepartureDate and Class then form
the input for the CheckAvailability operation.

The output of the CheckAvailability operation includes information about flight
availability (SeatAvailable) and pricing information (Airfare and AirportTax).

Assuming that seats are available for the selected flight the traveler proceeds to
book the flight using the BookFlight operation that takes the values of FlightNumber,
DepartureDate, Class, and TravelerName as the input, and produces BookingRefer-
ence as the output. Finally, the traveler makes a payment using the MakePayment
operation supplying, credit card information (CreditCardNumber, CreditCardExpiry,
CreditCardName). The MakePayment operation accepts the input parameters Bookin-
gReference and TotalAmount (sum of Airfare and AirportTax) generated by the

 Design of Composable Services 21

BookFlight and SelectFlight operations, respectively, and produces ReceiptNo and
PaymentDate as the output parameters.

Table 1 describes the service interfaces for the operations FlightsSchedule,
CheckAvailability, BookFlights, and MakePayment showing the input and output
parameters.

Table 1. Flight availability and booking service operations

Operation Input Parameters Output Parameters
FlightsSchedule DepartureCity, DestinationCity, DepartureDate FlightNumber,

DepartureTime,
ArrivalTime

CheckAvailability FlightNumber, DepartureDate, Class DepartureCity,
DestinationCity,
DepartureTime,
ArrivalTime,
SeatAvailable,
AirFare, AirportTax

BookFlight FlightNumber,TravelerName,
DepartureDate,Class

BookingReference

MakePayment BookingReference, CreditCardNumber,
CreditCardExpiry,CreditCardName,
TotalAmount

ReceiptNo, PaymentDate

3.2 Data Analysis of Service Interfaces

Although the data used by the flight booking scenario is typically stored in different
databases belonging to different participants in the business process (i.e. travel agent,
airline, etc.), for the purposes of this analysis we assume that this data can be de-
scribed by a common (global) database schema. Although not explicitly defined, this
common schema is implicit in the industry-wide message specifications (i.e. OTA
message schema specification, in this instance). We note here that we do not make
any assumptions about how and where the data is stored; we simply use the underly-
ing data structures to reason about the composability of services. We also do not con-
sider issues related to state maintenance, as these are orthogonal to the considerations
of service composability. OTA specification also assumes that the data transmitted in
XML messages is stored persistently in the target databases and provides a number
of messages to synchronize the data across the various participants (e.g. OTA_
UpdateRQ/RS, OTA_DeleteRQ, etc.).

We can now proceed to analyze the underlying data structures as represented by
the data elements in the interfaces of the service operations. Data analysis of the con-
tent of the interfaces of service operations in Table 1 produces a set of 5 normalized
relations that constitute the database schema associated with the flight booking busi-
ness function:

Flights (FlightNumber,DepartureCity,DestinationCity, DepartureTime,ArrivalTime)

Schedule (FlightNumber,DepartureDate,AircraftType)

Availability (FlightNumber,DepartureDate,Class,SeatAvailable,AirFare,AirportTax)

22 G. Feuerlicht

Bookings (BookingReference,TravelerName,FlightNumber, DepartureDate,Class,Seat)

Payments (ReceiptNo,PaymentDate,CreditCardNumber,CreditCardExpiry,CreditCardName,
BookingReference)

Given the above normalized relations, we can observe by inspecting Figure 3 that
the assembly of the flight booking service takes place by passing the values of the key
attributes between the service operations. For example, the composite key of the
Availability relation (FlightNumber, DepartureDate, Class) forms the data flow be-
tween CheckAvailability and BookFlight operations, and the BookingReference (i.e.
the primary key of the Bookings relation) constitutes the data flow between Book-
Flight and MakePayment operations. This indicates that data coupling between the
service operations is minimized as the elimination of any of the parameters would
inhibit composition, e.g. removing Class from the dataflow between CheckAvailabil-
ity and BookFlight operations would prevent the composition of the flight booking
business function. Furthermore, the interface parameters are mutually compatible as
they share common data parameters. In summary, it can be argued that the normaliza-
tion of service interfaces results in service operations with high levels of cohesion,
low levels of coupling and mutually compatible interfaces; properties that signifi-
cantly improve service reusability and composability.

4 Describing Service Assembly Using Relational Algebra
Operations

In the previous section we have described the process of decomposition of services
into elementary service operation; service assembly involves reversing this process
and combining services based on interfaces data parameters. We have noted that cou-
pling between service operations involves data parameters that correspond to the keys
of the underlying relations. We can use this observation to express services using
relational algebra expressions or operator trees over the underlying schema [24]. For
example, the FlightSchedule operation can be expressed as:

PJFlightNumber,DepartureDate,ArrivalTime SLP1JNFlightNumber=FlightNumber(Schedule, Flights),

where PJ, SL, and JN represent projection, selection, and join operations respectively,
and P1 is a selection predicate (e.g. DepartureCity = “Sydney“ and DestinationCity =
“Melbourne“ and DepartureDate= “31-May-2007“).

We can now express the operation FlightSchedule and CheckAvailability in rela-
tional algebra, for clarity substituting values into the predicates using selection speci-
fication as shown below:

FlightSchedule:
PJFlightNumber,DepartureDate,ArrivalTimeSLDepartureCity=“Sydney“ and DestinationCity=“Melbourne“ and

DepartureDate=“31-May-2007“JNFlightNumber=FlightNumber(Schedule,Flights)

CheckAvailability:
PJDepartureCity,DestinationCity,DepatureTime,ArrivalTime,SeatAvailable,Airfare,AirportTax
SLFighNumber=“QF459“ and DepartureDate=“31-May-2007“ and Class=“Economy“
JNFlightNumber=FlightNumber(Flights,Availability)

 Design of Composable Services 23

Alternatively, the operations FlightSchedule and CheckAvailability can be ex-
pressed in the form of operator trees as shown in Figure 4. Figure 4(a) shows the
operator tree for the FlightSchedule operation. The output parameters of the Flight-
Schedule operation (FlightNumber, DepartureDate, Arrival-Time) appear at the top of
the operator tree, and the input parameters (DepartureCity=“Sydney” and Destina-
tionCity=”Melbourne” and DepartureDate =”31-May-2007”) form the predicate of
the SL (select) operation. Now, assuming that the traveler selects FlightNumber =
“QF459”, DepartureDate =”31-May-2007” and Class = “Economy”, this triplet of
values forms the input for the CheckAvailability operation shown in Figure 4(b).

 (a) (b)

Fig. 4. Operator tree representing the FlightSchedule (a) and CheckAvailability operation (b)

The output parameters of the CheckAvailability operation (DepartureCity, Destina-
tionCity, DepartureTime, ArrivalTime, SeatAvailable, AirFare, AirportTax) appear at
the top of the operator tree in Figure 4(b).

Having expressed service operations using relational algebra formalism we can
now proceed and express service assemblies as an algebraic expression [24]. So that,
for example we can combine the operations CheckAvailability and FlightSchedule to
produce a composite AirAvailability operation:

AirAvailability:PJDepartureCity,DestinationCity,DepatureTime,ArrivalTime,SeatAvailable,Airfare,AirportTax
SLFighNumber=“QF459“ and DepartureDate=“31-May-2007“ and Class=“Economy“
JNFlightNumber=FlightNumber(Flights,Availability,Schedule)

The expression for the AirAvailability operation uses the equivalence: R:P1 JNF
S:P2 = R JN S: P1 AND P2 AND F , where R and S are relations, P1 and P2 are selection
predicates, and F is the join expression. Figure 5 show the resulting AirAvailability
operation expressed as an operator tree. We now show the composite operation AirA-
vailability in the usual form that includes input and output data parameters, and can be
mapped into a WSDL specification:

24 G. Feuerlicht

Fig. 5. Operator tree of a composite operation AirAvailability

AirAvailability:
(IN: FlightNumber, DepartureDate, Class,
OUT: DepartureCity, DestinationCity, DepatureTime, ArrivalTime,

SeatAvailable, Airfare, AirportTax)

Using this approach provides a formal framework for static service composition
that allows decisions about the level of service aggregation to be based on considera-
tions of tradeoffs between complexity of run-time dialogue (i.e. chattiness of services)
on one hand, and software engineering properties of services such reusability, on the
other hand. The designer may, for example, decide to implement the CheckAvailabil-
ity and FlightSchedule service operations internally (i.e. within the service provider
system) and externalize the composite operation AirAvailability, gaining the benefits
of reuse (and composability) for internal applications, and at the same time reducing
the number of messages needed to implement the flight booking dialogue. This solu-
tion is similar to the remote façade design pattern use to implement coarse-grained
interfaces in object-oriented applications [25].

4 Conclusions and Related Work

Service composition methods range from industry standard approaches based on Web
Services and BPEL [26] that focus on defining the workflow of Web Services execu-
tion, to Semantic Web approaches that employ AI techniques to automate service
discovery and composition [27-28]. Service composition can be regarded as a special
category of the software composition problem that has been investigated in the con-
text of object-oriented software [29] and in the general area of software composition
[30]. Many researchers have applied formal methods and developed specialized com-
position languages to address the problem of composition [31-32]. As noted in the
introduction, service composition research mostly focuses on the dynamic (workflow)
aspects of compositions. We have argued in this paper that from the viewpoint of
service reuse and composability, the static part that involves the definition service
operations and their interfaces is of key importance. The design of the inbound and
outbound message structures determines the compatibility of service interfaces, and

 Design of Composable Services 25

consequently the composability of services into higher level business functions. The
main contribution of this paper is to show that composability (and reuse) of services
can be facilitated by designing services with compatible service interfaces and that
service assembly can then be achieved by service aggregation over the key attributes
of the underlying schema. We have also shown that relational algebra formalism can
be applied to the problem of representing service operations, and defining service
assemblies. Service decomposition and assembly framework based on data normaliza-
tion and relational algebra operations can provide a theoretical framework for com-
bining service operations to achieve desired business functionality and at the same
time maintaining high levels of service reuse.

A number of aspects of this approach deserve further investigation. Firstly, the po-
tential of using algebraic equivalence transformations for identifying alternative com-
position strategies and for optimizing the level of service granularity needs further
study [24]. Another potential use of the relational algebra formalism is in the area of
verification of the correctness of compositions, i.e. using algebra to prove the correct-
ness of static compositions. Finally, the examples used in the previous section (sec-
tion 3) involve services that represent query operations, i.e. operations that return data
values given a set of input parameters. Service operations that result in state change,
i.e. functions that generate new data values (e.g. Bookings and Payments) cannot be
directly represented by algebraic expressions and require further analysis to enable
their incorporation into this framework.

Acknowledgements

We acknowledge the support of MŠMT ČR in the context of grant GAČR 201-06-
0175 “Modification of the model for information management”.

References

1. Thöne, S., Depke, R., Engels, G.: Process-oriented, flexible composition of web services
with UML. In: Olivé, À., Yoshikawa, M., Yu, E.S.K. (eds.) ER 2003. LNCS, vol. 2784,
pp. 390–401. Springer, Heidelberg (2003)

2. Feuerlicht, G.: Design of Service Interfaces for e-Business Applications using Data Nor-
malization Techniques. Journal of Information Systems and e-Business Management, 1–14
(2005) ISSN 1617-98

3. Feuerlicht, G., Meesathit, S.: Design framework for interoperable service interfaces. In:
The Proceedings of 2nd International Conference on Service Oriented Computing, New
York, NY, USA, November 15 - 19, 2004, pp. 299–307 (2004) ISBN 1-58113-871-7

4. Wen-Li Dong, H.Y., Zhang, Y.-B.: Testing BPEL-based Web Service Composition Using
High-level Petri Nets. In: 10th IEEE International Enterprise Distributed Object Comput-
ing Conference (EDOC 2006), Hong Kong, pp. 441–444 (2006)

5. San-Yih Hwang, E.-P.L., Lee, C.-H., Chen, C.-H.: On Composing a Reliable Composite
Web Service: A Study of Dynamic Web Service Selection. In: IEEE International Confer-
ence on Web Services (ICWS 2007), pp. 184–191 (2007)

26 G. Feuerlicht

6. Keita, F., Tatsuya, S.: Dynamic service composition using santic information. In: Proceed-
ings of the 2nd international conference on Service oriented computing. ACM, New York
(2004)

7. Freddy, L., et al.: Towards the composition of stateful and independent semantic web ser-
vices. In: Proceedings of the 2008 ACM symposium on Applied computing. ACM, For-
taleza (2008)

8. Meng, X., et al.: A Dynamic Semantic Association-Based Web Service Composition
Method. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web
Intelligence. IEEE Computer Society, Los Alamitos (2006)

9. Arkin, A., et al.: Web Services Business Process Execution Language (WS-BPEL). OA-
SIS 2, Version, http://www.oasis.org

10. Yang, J.: Service-oriented computing: Web service componentization. Communications of
the ACM 46(10), 35–40 (2003)

11. Hurwitz, J., Bloor, R., Baroudi, C.: Thinking from Reuse - SOA for Renewable Business
(2006) (cited December 13, 2007),

 http://www.hurwitz.com/PDFs/IBMThinkingfromReuse.pdf
12. Feuerlicht, G., Wijayaweera, A.: Determinants of Service Resuability. In: The Proceedings

of 6th International Conference on Software Methodologies, Tools and Techniques, SoMet
2006, Rome, Italy, November 7-9 (2007) ISBN 0922-6389

13. Sillitti, A., Vernazza, T., Succi, G.: Service oriented programming: A new paradigm of
software reuse. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 268–280. Springer,
Heidelberg (2002)

14. Dustdar, S., Schreiner, W.A.: A survey on web services composition. International Journal
of Web and Grid Services 1(1), 1–30 (2005)

15. OTA, OTA Specifications (2008) (cited May 6, 2008),
 http://www.opentravel.org/Specifications/Default.aspx

16. Feuerlicht, G.: Implementing Service Interfaces for e-Business Applications. In: The Pro-
ceedings of Second Workshop on e-Business (WeB 2003), Seattle, USA (December 2003)

17. Eder, J., Kappel, G., Schrefl, M.: Coupling and Cohesion in Object-Oriented Systems. In:
Finin, T.W., Yesha, Y., Nicholas, C. (eds.) CIKM 1992. LNCS, vol. 752. Springer, Hei-
delberg (1993)

18. Feuerlicht, G., Lozina, J.: Understanding Service Reusability. In: The Proceedings of 15th
International Conference Systems Integration 2007, Prague, Czech Republic, June 10-12,
2007, pp. 144–150 (2007) ISBN 978-80-245-1196-2

19. Vogel, T., Schmidt, A., Lemm, A., Österle, H.: Service and Document Based Interopera-
bility for European eCustoms Solutions. Journal of Theoretical and Applied Electronic
Commerce Research 3(3) (2008) ISSN 0718–1876

20. Papazoglou, M.P., Heuvel, W.V.D.: Service-oriented design and development methodol-
ogy. International Journal of Web Engineering and Technology 2(4), 412–442 (2006)

21. Baker, S., Dobson, S.: Comparing service-oriented and distributed object architectures. In:
Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 631–645. Springer, Hei-
delberg (2005)

22. Feuerlicht, G.: Service aggregation using relational operations on interface parameters. In:
Georgakopoulos, D., Ritter, N., Benatallah, B., Zirpins, C., Feuerlicht, G., Schoenherr, M.,
Motahari-Nezhad, H.R. (eds.) ICSOC 2006. LNCS, vol. 4652, pp. 95–103. Springer, Hei-
delberg (2007)

23. Papazoglou, M., Yang, J.: Design Methodology for Web Services and Business Processes.
In: Proceedings of the 3rd VLDB-TES Workshop, Hong Kong, pp. 54–64 (August 2002)

 Design of Composable Services 27

24. Ceri, S., Pelagatti, G.: Distributed databases principles and systems. McGraw-Hill Com-
puter Science Series. McGraw-Hill, New York (1984)

25. Fowler, M.: Patterns of Enterprise Application Architecture. The Addison-Wesley Signa-
ture Series. Addison-Wesley, Reading (2002); Pearson Education, p. 533, ISBN 13:
9780321127426

26. Kloppmann, M., et al.: Business process choreography in WebSphere: Combining the
power of BPEL and J2EE. IBM Systems Journal 43(2), 270 (2004)

27. Bleul, S., Weise, T., Geihs, K.: Making a Fast Semantic Service Composition System
Faster. In: The Proceedings of The 9th IEEE International Conference on E-Commerce
Technology and the 4th IEEE International Conference on Enterprise Computing, E-
Commerce, and E-Services, 2007 CEC/EEE 2007, Tokyo, pp. 517–520 (2007) ISBN 0-
7695-2913-5

28. Chen, L., et al.: Towards a Knowledge-Based Approach to Semantic Service Composition.
LNCS, pp. 319–334. Springer, Heidelberg (2003)

29. Nierstrasz, O., Meijler, T.D.: Research directions in software composition. ACM Comput-
ing Surveys (CSUR) 27(2), 262–264 (1995)

30. Nierstrasz, O.M., et al.: Object-oriented software composition. Prentice Hall, Englewood
Cliffs (1995)

31. Kane, K., Browne, J.C.: CoorSet: A Development Environment for Associatively Coordi-
nated Components. LNCS, pp. 216–231. Springer, Heidelberg (2004)

32. Scheben, U.: Hierarchical composition of industrial components. Science of Computer
Programming 56(1-2), 117–139 (2005)

	Design of Composable Services
	Introduction
	Considerations of Service Reuse and Composability
	Identifying Composable Services
	Decomposition of the Travel Booking Service
	Data Analysis of Service Interfaces

	Describing Service Assembly Using Relational Algebra Operations
	Conclusions and Related Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

