
The Reverse C10K Problem for Server-Side

Mashups

Dong Liu and Ralph Deters

Department of Computer Science
University of Saskatchewan

Saskatchewan, Canada
dong.liu@usask.ca, ralph@cs.usask.ca

Abstract. The original C10K problem [1] studies how to provide rea-
sonable service to 10, 000 simultaneous clients or HTTP requests using
a normal web server. We call the following problem the reverse C10K
problem, or RC10K — how to support 10, 000 simultaneous outbound
HTTP requests running on a web server. The RC10K problem can be
found in scenarios like service orchestrations and server-side mashups. A
server-side mashup needs to send several simultaneous HTTP requests
to partner services for each inbound request. Many approaches to im-
proving the performance and scalability of HTTP servers can be applied
to tackle the original C10K problem. However, whether these approaches
can tackle the reverse C10K problem needs to be verified. In this paper,
we discuss the RC10K problem for server-side mashups, and propose a
design that takes advantage of advanced I/O, multithreading, and event-
driven programming. The results of analysis and experiments show that
our design can reduce the resource requirements by almost one order of
magnitude with the same performance provided, and it is promising to
tackle the RC10K problem.

Keywords: HTTP, Mashup, Scalability, Performance, Client, C10K,
RC10K.

1 Introduction

AJAX (Asynchronous JavaScript and XML) and mashup applications are ef-
ficient interfaces for consuming published services on the web. An AJAX or
mashup page gets data from one or more services hosted on different servers
[2]. If a mashup is generated by on-demand code on client agent (client-side
mashup), requests are typically sent out by an API like XMLHttpRequest (XHR)
of JavaScript. XHR acts as an HTTP client in such scenarios. The server host-
ing those AJAX and mashup pages is not responsible for requesting data from
partner services, and all those computations are carried out on the client by
code-on-demand. The situation is different when the HTTP request tasks of a
mashup is executed on the server (server-side mashup, SSM for short), and the
SSM server is responsible for fetching data from partner services by sending out-
bound HTTP requests through broker clients. The conceptual structure of an
SSM server is shown in Fig. 1.

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 166–177, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Reverse C10K Problem for Server-Side Mashups 167

Fig. 1. The conceptual structure of an SSM server

HTTP brings two constraints [3] to the clients running on an SSM server:

(1) The basic message exchange pattern is request-response.
(2) An established connection is required for message transportation.

The constraints means a mashup server needs to maintain at least one connec-
tion for each outbound service consumption, and perform at least one request-
response transaction on that connection. In order to reduce the service time of
an inbound request, an SSM will launch parallel outbound requests. This yields
simultaneous outbound connections and message exchanges. If there are N si-
multaneous inbound requests for an SSM server, and each request results in C
parallel outbound requests, there will be CN simultaneous outbound connec-
tions and active outbound HTTP requests in the worst case. If an SSM server
needs to handle several thousand simultaneous requests, then the server can have
about 10, 000 or more simultaneous outbound HTTP requests to deal with. How
an SSM server can support that many simultaneous outbound HTTP requests
is what we called the reverse C10K problem, or RC10K for short.

The original C10K problem [1] studies how to provide reasonable service to
10, 000 concurrent clients using a normal server. Many approaches to improving
the performance and scalability of HTTP servers can be applied to tackle the
original C10K problem [1,4,5]. However, whether and how these approaches can
tackle the RC10K problem of an SSM server are still open questions. This pa-
per proposes a client design that adapts the approaches for the original C10K
problem to this RC10K problem. The evaluation shows that our approach can
effectively improve the scalability of an SSM server, and tackle the RC10K prob-
lem. The rest of this paper is structured as following. Section 2 discusses the ap-
proaches addressing the original C10K problem. An architectural design of SSM
server’s broker client is presented in Section 3. Section 4 evaluates the design by
experiments. Related work is discussed in Section 5. Section 6 is the conclusions
and future work.

2 The C10K Problem

The essential of the C10K problem is how to support a large number of inbound
TCP connections and how to serve the concurrent inbound requests, which leads
to two key design decisions of HTTP servers: I/O and concurrency strategy.

168 D. Liu and R. Deters

2.1 I/O

The input/output models can be divided into two groups: basic I/O and ad-
vanced I/O. Basic I/O is synchronous and blocking. An I/O operation is syn-
chronous if the thread initializing the I/O operation cannot switch to other
operation until the I/O operation is finished. A function or method is blocking
if it does not return until its execution either successfully finishes or encounters
an error. There are three ways to make advanced I/O [6]. The first approach is
to construct a loop to keep trying an I/O option while catching I/O errors until
it succeeds. This approach is called polling and it wastes CPU time. The second
approach is I/O multiplexing uses select()-like system functions. Most operat-
ing systems support select(), and it is also supported by Java VM 1.4 and later
versions. The descriptors of connections can be registered on a selector, which
calls select() to check if there is any I/O event for each of the descriptors. So
a thread initializing an I/O operation can delegate the job to a selector and
switch to other job. Note that select() is blocking until one of the registered
descriptors has an event or timeout happens. The third approach is asynchronous
I/O (AIO), which is both asynchronous and non-blocking. Both I/O multiplex-
ing and AIO enable a server to use very few threads to handle many concurrent
connections. In practice, I/O multiplexing and AIO are applied for developing
scalable servers [1].

2.2 Concurrency

Servers can roughly be classified into two categories, single-threaded and multi-
threaded, according to their concurrency model. Multithreading is favoured in
many servers as a means to dealing with simultaneous requests, increasing the
degree of concurrent processing, and making use of multiprocessors e.g. multi-
core processors [7]. This improves the performance of the platform compared to
single-threaded implementations [8].

HTTP 1.1 [3] introduced persistent connections, which enables a client to send
multiple requests through the same connection. Persistent connections improved
the keep-alive connections in HTTP 1.0 [9]. By using persistent connections, the
time to open or close connections can be saved and the number of parallel connec-
tions needed by a fixed number of requests can be reduced [10]. A connection can
have two different behaviours — idle for a long period or busy with back to back
requests. Polling of Web 2.0 applications is a typical cause of the second situation.
It is tricky to optimize the usage of threads when allocating threads to connections
in a multithreading server.Resources will be wasted if a thread is allocated for each
connection and the connections are often idle. The strategy of allocating a thread
for each request will also waste resource if the request has to be hold waiting for
other messages or events and the thread cannot be switched to other job.

For a multithreading server programmed in Java or .Net, the number of
threads is a measure of allocated resources, since it is directly related to CPU and
memory consumption. It has been observed on .NET applications [11] and Java
EE applications [12,13] that the response time of an application will increase

The Reverse C10K Problem for Server-Side Mashups 169

with respect to the number of active threads in an application server until the
server is overloaded. Therefore, the concurrency model needs to:

(1) limit the maximum numbers of threads that can be spawned in the server,
and

(2) keep the number of active threads as few as possible.

The first requirement results in a bounded thread pool. For the second require-
ment, the threads need to be programmed in an event-driven fashion, which
yields a hybrid server architecture [14,15]. There are two different strategies for
the second requirement — one is to make the waiting thread idle until the event
for its job comes, and the other is to switch the thread to another active job and
resume the current waiting job later on the corresponding events.

3 Design for the RC10K Problem

It is straightforward to apply the I/O and concurrency strategies of the server
to the broker client. However, the client has two new problems that the server
does not have. One problem is how to reuse the available connections in order
to save connection open and close time and keep the concurrent opened connec-
tion number below the maximum number allowed on partner server. The other
problem is how to embedded the client code into a mashup application easily.

A solution of the first problem is to introduce a component for connection
management to the client. We propose a modular design shown in Fig. 2. Our
design is inspired by the design of Jetty server [16], whose details can be found in
Section 5. The client contains a connector that is responsible for connecting to a
server and transporting messages to and from it. A thread pool provides worker
threads to perform the client jobs. A connection manager creates, registers, and
reuses connections. The connector and thread pool of the server can be reused
by the client. The SSM server and the broker client can share the same thread
pool instance for easy coordination of resource allocation.

The second problem can be addressed by introducing a message exchange
object or structure, which has conceptually four components: destination, socket
connection, request message, and response message. Its major behaviours are
the state transitions during message exchanging and the actions driven by the
transition events.

The state transitions of an HTTP client are shown in Fig. 3. A socket con-
nection is initially closed when created by a client, and the connection will be
established when a SYN+ACK from the server side is received. The client may
retry connecting for several times before giving up if the connection attempts
are either rejected or timeout. HTTP requests then can be sent through the
established connection. The client will wait for the response when the request
is completely sent. When the response comes, the client will first parse out the
header then the message body. When the whole response is completed, the con-
nection will become idle and ready for another request to be sent. Timeout may
happen when the client is waiting for or getting a response. The client may try
to resend the request several times before giving up.

170 D. Liu and R. Deters

Fig. 2. The architecture of the proposed HTTP client

ConnectionEstablishedConnectionClosed
newConnection

Connecting

connect

ConnectiongFailed

reject/timeout retry

giveup

SYN+ACK

close

(a) State transitions of transportation.

Idle

Sending WaitingForResponse

ParsingHeader

ParsingBody

Expired

dispatch

sent

reponseArrival

headersCompletedbodyCompleted

timeout

timeout

timeout

giveup

retry

(b) Detailed state transitions of the composite
state ConnectionEstabished.

Fig. 3. A state transition diagram of an HTTP client

The important events and corresponding potential actions described in Fig. 3
are listed in Table 1. Some events happen on socket I/O level, and therefore the
responsibility of capturing them can be allocated to the connector. These events
can be programmed as the methods of exchange object. So a mashup application
just needs to create an exchange object that implements the required methods.
The major purpose of combining event-driven programming with multithreading
is to enable asynchronous processing. Asynchronous processing means that, the
processing of a request can be suspended when waiting for responses of outbound
requests, and it can be resumed when those responses come or timeout happens.
Asynchronous processing can save computation resource effectively.

The Reverse C10K Problem for Server-Side Mashups 171

Table 1. The important events and associated potential actions for an HTTP exchange

Event Potential actions

On connection established update the connections for the current IP socket address, pre-
pare request message to be sent

On connection failed handle the failure

On connection idle update the connections for the current IP socket address

On waiting for response switch the thread to other job

On headers completed process the headers or wait for the body

On body completed locate a thread for current request and process the message

On expired handle the expiration

4 Evaluation

We want to verify if the design described in Section 3 can lower resource demand
for the same workload compared with other design options. The number of active
threads is used as the indicator of resource consumption. First we derive an
analytic result and then use experiments to verify the analysis.

4.1 Analysis

How many threads are required in an SSM server for N concurrent requests?
The number will be a linear function of N , the number of concurrent inbound
requests, as the following equation.

n = N × (1 + c) , (1)

where 1 represents the demand by the thread allocated for the inbound request,
and c is the number of threads required by outbound HTTP requests. Further-
more, c can be calculated by

c =
∑C

i=1 Di

S
,

where C is the number of outbound service consumptions for each inbound
request, Di is the time demand for ith outbound service consumption, and S is
the average service time of an inbound service request. From Equation 1, there
are two ways to decrease n — reducing either Di or 1. Di will become smaller by
switching the threads to other jobs while it is waiting for outbound responses.
Similarly, if a thread initially allocated to an inbound request can be switched
to another job by asynchronous processing, the 1 can become smaller, and the
average thread number will be

n = N × (
D

S
+ c) , (2)

where D is the time demand for inbound service request. In order to have an
inbound or outbound service request suspended and resumed later, the platform
needs to support continuation-like mechanism [17,18].

172 D. Liu and R. Deters

4.2 Experiments and Results

In order to evaluate the design presented in Section 3, we carried out a se-
ries of experiments. The mashup server in the experiments are programmed in
Java based on Jetty 7.01. Note that implementation details are not the focus of
this paper and implementations vary for various programming paradigms and
languages.

The first aspect to be evaluated is how event-driven programming and asyn-
chronous processing can optimize the usage of computation resources. We use
two machines in this experiment, machine A is running Window XP SP3 and
Java SE runtime environment 1.6 on 3.2GHz P4 CPU with Hyper-threading2

and 2GB RAM, and machine B is running Window XP SP3 and Java SE run-
time environment 1.6 on dual 3.2GHz Xeon CPU’s with Hyper-threading and
2GB RAM. Both of them have the TcpIP parameter TcpTimedWaitDelay3 set
as 60 seconds. The two machines are connected with a router, and the connec-
tion speed is 100Mbps. JMeter4 is running on machine A to simulate end users.
The think time of simulated users is set to zero in order to make the number of
concurrent requests in the intermediary service as close to the number of simu-
lated users as possible. We chose JMeter for load generation because JMeter can
control the exact number of concurrent running clients. A server-side mashup is
running on machine B, and it consumes two other partner services to generate
responses. The broker client uses select() type I/O. The two partner services
are hosted by Jetty running on machine B as well. One partner service spends
about 0.5 seconds for each request, and the other about one second. Both of them
reply with tiny payloads. The resource requirements for running the two part-
ner services are low enough for not interfering the mashup’s performance. Fig. 4
shows the active thread number and throughput as functions of the number of
simulated users in synchronous and asynchronous processing modes.

As shown in Fig. 4(b), the throughputs for synchronous and asynchronous
processing are almost the same because most of the response time is spent on
getting response from the partner services. There is a distinction of active thread
number between two processing models shown in Fig. 4(a) The thread number for
synchronous processing is about linear with respect to the number of simulated
users. Note that the number of simulated users is very close to the number of si-
multaneous active requests due to zero think time and low network latency. This
fits Equation (1) very well. On the contrary, the thread number for asynchronous
processing is likely constant, which does not seem to accord to Equation (2) at
first glance. In fact, the thread demand is still increasing with the user number
in this case, but it is very slow because D

S +c in Equation (2) is very small. Table
2 lists the values of D, S, and D

S in the experiments. Asynchronous processing

1 See http://www.mortbay.org/jetty/
2 See http://www.intel.com/technology/platform-technology/hyper-threading/
index.htm

3 See http://support.microsoft.com/kb/314053
4 See http://jakarta.apache.org/jmeter/index.html

http://www.mortbay.org/jetty/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
http://support.microsoft.com/kb/314053
http://jakarta.apache.org/jmeter/index.html

The Reverse C10K Problem for Server-Side Mashups 173

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Simulated user number

A
ct

iv
e

th
re

ad
 n

um
be

r

synchronous
asynchronous

(a) Active thread number

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

Simulated user number

T
hr

ou
gh

pu
t (

/s
ec

on
d)

synchronous
asynchronous

(b) Throughput

Fig. 4. Active thread number and throughput as functions of the number of simulated
users in synchronous and asynchronous processing modes

Table 2. The average time demand and service time for intermediary service request

Users number 10 30 50 70 90

D (millisecond) 0 1 1 1 2

S (millisecond) 1014 1012 1012 1015 1014

D/S 0 0.0010 0.0010 0.0010 0.0020

can drop the resource requirements of intermediary services dramatically when
D
S is far less than 1.

The second aspect to be evaluated is whether our design is sufficient for the
RC10K problem, or how close it can be pushed to the target. In this experi-
ment, the mashup server is running on machine B. The tested mashup consumes
3 partner services 2 times for each inbound request. The partner services are
hosted by YAWS5 on three other machines running Linux 2.6.24-19-server, and
their hardware is exactly the same as machine B. Tsung6 running on machine
A is used to generate the load. All the machines are connected through 100
Mbps LAN. Tsung is choosed in this scenario because it can generate workload
of high arrival rate, and therefore is able to simulate an open network environ-
ment. Machine B is specially tuned for the large number of inbound and out-
bound TCP connections. The TcpIP parameter MaxUserPort is set as 65534,
MaxFreeTcbs as 10000, and MaxHashTableSize as 8192. The JVM is tuned
for heap size and thread stack size, specially -Xss64k -Xms1024M -Xmx1024M
-XX:PermSize=256M -XX:MaxPermSize=256M is used in this experiments.

Each consumption of a partner service takes averagely 5 seconds. This time is
deliberately set to be large compared to normal services in order to obtain a large
number of concurrent outbound connections for a certain arrival rate. Each test

5 See http://yaws.hyber.org/
6 See http://tsung.erlang-projects.org/

http://yaws.hyber.org/
http://tsung.erlang-projects.org/

174 D. Liu and R. Deters

is composed of several phases back to back, and each phase takes one minute.
Fig. 5 shows the throughput and concurrent users of the mashup server in one
of the tests. The inter-arrival time (seconds) changes along different phases from
0.04 to 0.02, 0.01, 0.005, 0.004, and 0.003. The inter-arrival time is decreased
gradually in order to warm up the SSM server and reach its maximum capacity
gracefully.

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

time(sec)

ra
te

(/
se

c)

request
connection

(a) Throughput.

0 50 100 150 200 250 300 350 400 450
0

500

1000

1500

time(sec)

nu
m

be
r

users
connections

(b) Concurrent users.

Fig. 5. The throughput and concurrent users along different phases of a test

The largest number of concurrent users that has been reached is about 1400
when the server still operates normally. When the inter-arrival time decreases to
0.002 seconds, the server becomes unstable. The largest number of concurrent
outbound connections is about 8400 (1400× 6). Although it is less than 10, 000,
it is very close to the target. The same tests were performed on WSO2 mashup
server 1.5.1 on which a mashup with the same logic was deployed. The WSO2
mashup server is overloaded when the inter-arrival time reached 0.1 seconds,
that is, the server cannot even support 50 concurrent inbound requests and 300
concurrent outbound requests. The details about WSO2 mashup server can be
found in Section 5.

5 Related Work

As discussed in Section 2, there have been many research and development ac-
tivities related to the original C10K problem or the scalability issues of HTTP
servers. There are few research literature addressing the scalability issues of
HTTP client that can be seen in the RC10K problem. We expect there will
be more and more research work related to this topic with the development of
mashup and web service applications.

XMLHttpRequest (XHR) is probably the most popular HTTP client interface
currently used for Web-based service consumption. XHR’s interface was special-
ized by W3C [19] and its implementations vary a lot in different Web browsers.

The Reverse C10K Problem for Server-Side Mashups 175

Each XHR object requires an event listener that is normally a callback func-
tion describing the actions to be triggered on certain events. The function is
called every time the readyState changes. readyState can be in one of the five
states, namely request unsent, open() success, response header received, load-
ing response body, and response done. The XHR also provides accesses of re-
quest header, request body, response status, response header and response body.
XHR is a perfect example for high-level message exchange interface design. How-
ever, XHR specification does not address the aspects of connection and thread
management.

HTTPCLIENT7 is a Java-basedopen-sourceproject atApache.HTTPCLIENT
depends on HttpCore NIO extensions8 to support non-blocking I/O (NIO) and
event-drivenprogramming.HTTPCLIENT isused in someSSMservers likeWSO2
Mashup Server9. HTTPCLIENT has a component for connection management,
but does not provide thread pool. Without a thread pool, it will be difficult to reuse
the available idle threads.

WSO2 Mashup Server is a platform that uses JavaScript as the language of
representing and programming mashups. In other words, it exposes JavaScript
functions as services. WSO2 Mashup server provides several hosted objects that
ease common mashup operations like fetching feeds, scrapping web pages, and
sending either HTTP or SOAP requests to other services. The WSRequest ob-
ject10 mimics the XHR interface, and is able to perform both synchronous and
asynchronous requests. Due to the limitation of JavaScript and the underlying
Mozilla Rhino JavaScript engine, the response of an asynchronous request can
only be caught by using a wait() to hold the requesting thread, which make the
asynchronous request consume more resources and run slow.

The tested SSM server of proposed architecture is developed on the basis of
Jetty 7.0 and especially its Servlet 3.0 features11. Jetty is an open-source web
server implemented in Java. Jetty provides dynamic content support through
Servlet and JSP technologies. We leverage the client code base of Jetty with
shared thread pool and asynchronous processing for the evaluation. Note that
the official Jetty project focuses on HTTP server, and the client is just an ‘extra’
part. More efforts are needed to improve the client code base, and make an SSM
server out of it.

6 Conclusions

The scalability and performance of the broker client in an SSM server directly
affect server scalability and performance. To date, the scalability issues of HTTP
clients have been overlooked in research. Although many approaches have been
studied for improving HTTP servers’ scalability like the C10K problem, whether
7 See http://hc.apache.org/httpclient-3.x/
8 See http://hc.apache.org/httpcomponents-core/index.html
9 See http://wso2.org/projects/mashup

10 See http://wso2.org/project/mashup/1.5.1/docs/wsrequesthostobject.html
11 See http://jcp.org/en/jsr/detail?id=315

http://hc.apache.org/httpclient-3.x/
http://hc.apache.org/httpcomponents-core/index.html
http://wso2.org/projects/mashup
http://wso2.org/project/mashup/1.5.1/docs/wsrequesthostobject.html
http://jcp.org/en/jsr/detail?id=315

176 D. Liu and R. Deters

those approaches are effective for HTTP clients is still an open question. We
formulate the reverse C10K problem in this paper, and propose an architectural
design of the client that uses advanced I/O, multithreading, and asynchronous
processing in order to tackle the RC10K problem.

The evaluation shows that our design can reduce resource requirements by al-
most one order of magnitude in order to achieve the same performance compared
with other designs using synchronous processing. The evaluation also shows that
the 10, 000 simultaneous outbound connections is feasible in a normal web server
setup and virtual machine environment like JVM. Currently, we are investigat-
ing how much better other languages like Erlang12 can perform in the RC10K
problem due to its features like light-weight process, no memory-sharing, and
built-in message-passing.

References

1. Kegel, D.: The c10k problem. Web (September 2006),
http://www.kegel.com/c10k.html

2. Ort, E., Brydon, S., Basler, M.: Mashup styles, part 1: Server-side mashups. Web
(May 2007),
http://java.sun.com/developer/technicalArticles/J2EE/mashup_1/

3. The Internet Society: Hypertext transfer protocol – http/1.1. Web (June 1999),
http://tools.ietf.org/html/rfc2616

4. Darcy, J.: High-performance server architecture. Web (August 2002),
http://pl.atyp.us/content/tech/servers.html

5. Barish, G.: Building scalable and high-performance Java Web applications using
J2EE technology: Using J2EE Technology. Addison-Wesley, Reading (2002)

6. Stevens, W.R.: Advanced Programming in the UNIX Environment. Addison-
Wesley Professional, Reading (1992)

7. Dollimore, J., Kindberg, T., Coulouris, G.: Distributed Systems: Concepts and
Design, 4th edn. Addison-Wesley, Reading (2005)

8. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts, 7th edn.
John Wiley & Sons, Chichester (2004)

9. The Internet Society: Hypertext transfer protocol – http/1.0. Web (May 1996),
http://tools.ietf.org/html/rfc1945

10. Gourley, D., Totty, B., Sayer, M., Reddy, S., Aggarwal, A.: HTTP: The Definitive
Guide. O’Reilly, Sebastopol (2002)

11. Hasan, J., Tu, K.: Performance Tuning and Optimizing ASP .NET Applications.
Apress (2003)

12. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An analytical
model for multi-tier internet services and its applications. In: SIGMETRICS 2005:
Proceedings of the 2005 ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems, pp. 291–302. ACM Press, New York
(2005)

13. Haines, S.: Pro Java EE 5 Performance Management and Optimization. Apress
(2006)

12 See http://www.erlang.org/

http://www.kegel.com/c10k.html
http://java.sun.com/developer/technicalArticles/J2EE/mashup_1/
http://tools.ietf.org/html/rfc2616
http://pl.atyp.us/content/tech/servers.html
http://tools.ietf.org/html/rfc1945
http://www.erlang.org/

The Reverse C10K Problem for Server-Side Mashups 177

14. Beloglavec, S., Heričko, M., Jurič, M.B., Rozman, I.: Analysis of the limitations of
multiple client handling in a java server environment. SIGPLAN Not. 40(4), 20–28
(2005)

15. Li, P., Zdancewic, S.: Combining events and threads for scalable network services
implementation and evaluation of monadic, application-level concurrency primi-
tives. SIGPLAN Not. 42(6), 189–199 (2007)

16. Wilkins, G.: Jetty 6 architecture. Web (November 2006),
http://docs.codehaus.org/display/JETTY/Architecture

17. Queinnec, C.: Inverting back the inversion of control or, continuations versus page-
centric programming. SIGPLAN Not. 38(2), 57–64 (2003)

18. Gomez, J.C., Ramos, J.R., Rego, V.: Signals, timers, and continuations for multi-
threaded user-level protocols. Softw. Pract. Exper. 36(5), 449–471 (2006)

19. W3C: The xmlhttprequest object. Web (April 2008),
http://www.w3.org/TR/XMLHttpRequest/

http://docs.codehaus.org/display/JETTY/Architecture
http://www.w3.org/TR/XMLHttpRequest/

	The Reverse C10K Problem for Server-Side Mashups
	Introduction
	The C10K Problem
	I/O
	Concurrency

	Design for the RC10K Problem
	Evaluation
	Analysis
	Experiments and Results

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

