
G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 118–129, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Building Scientific Workflow with Taverna and BPEL:
A Comparative Study in caGrid

Wei Tan1, Paolo Missier2, Ravi Madduri3, and Ian Foster1

1 Computation Institute, University of Chicago and Argonne National Laboratory,
Chicago, IL, USA

2 School of Computer Science, University of Manchester, Manchester, UK
3 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL

wtan@mcs.anl.gov, pmissier@cs.man.ac.uk,
madduri@mcs.anl.gov, foster@mcs.anl.gov

Abstract. With the emergence of “service oriented science,” the need arises to
orchestrate various services to facilitate scientific investigation -- that is, to cre-
ate “science workflows.” In this paper we summarize our findings in providing
a workflow solution for the caGrid service-based grid infrastructure. We choose
BPEL and Taverna as candidate solutions, and compare their usability in the
full lifecycle of a scientific workflow, including service discovery, service
composition, workflow execution, and workflow result analysis. We determine
that BPEL offers a comprehensive set of primitives for modeling processes of
all flavors, while Taverna provides a more compact set of primitives and a func-
tional programming model that eases data flow modeling. We hope that our
analysis not only helps researchers choose a tool that meets their needs, but also
provides some insight on how a workflow language and tool can fulfill the re-
quirement of scientists.

1 Introduction

More and more data and computation resources used by the scientific community are
built on a service-oriented architecture (SOA) [1]. Given the proliferation of web ser-
vices, service-oriented science [2] is becoming an emerging paradigm in facilitating
scientific investigation, and scientific workflow has become an important approach to
orchestrate various services [3]. For example, caGrid [4] is the service-based grid
software infrastructure that underpins the cancer Biomedical Informatics Grid. This
infrastructure, based on the Globus Toolkit [5], enables the sharing of information and
analytical resources (via grid services). By this means it helps domain scientists to
easily contribute to and leverage caBIG resources, accelerating biomedical research in
a multi-institutional environment.

There are already many languages, tools and systems exist for scientific workflow
[6]. Through a comprehensive survey on existing workflow tools [7], the caGrid team
decided to choose Taverna [8] and BPEL [9] as candidate workflow solutions: as
Taverna is representative of many scientific workflow systems, while BPEL is an
well-accepted standard in business domain and is gaining momentum in science.

 Building Scientific Workflow with Taverna and BPEL 119

BPEL: WS-BPEL (Web Service-Business Process Execution Language, or BPEL for
short) is a meta-model and an XML-based specification for describing the behavior of
a business process that is composed of Web services and also exposed as a Web ser-
vice. Although originally designed for business workflows, BPEL has also attracted
attention from the scientific community because of its support for the SOA paradigm.
BPEL can be seen as a good representative of those languages originated from busi-
ness domain and are now been adopted by the scientific community.

Taverna: Developed in the UK by the myGrid consortium (http://www.mygrid.
org.uk), Taverna is an open-source workbench for the design and execution of scien-
tific workflows. Aimed primarily at the life sciences community, its main goal is to
make the design and execution of workflows accessible to bioinformaticians who are
not necessarily experts in web services and programming. A Taverna workflow is a
linked graph of processors, which represent Web services or other executable compo-
nents, each of which transforms a set of data inputs into a set of data outputs. These
workflows are represented in the Scufl language (using an XML syntax), and exe-
cuted according to a functional programming model [10]. The data-driven model is
briefly presented in Section 4. Taverna also provides a plug-in architecture so that ad-
ditional applications, such as secure Web Services, can be populated to it. The caGrid
plug-in recently implemented by members of our group [11] is an example.

The design and implementation of workflow systems for scientific purposes has
been a subject of considerable research [6]. The goals of this paper are to communi-
cate practical experiences based on our work in the caGrid project. In this analysis,
we consider the entire scientific workflow lifecycle, from service discovery to service
composition, workflow execution, and workflow result analysis. The analysis is based
on our understanding of caGrid’s requirements for a workflow language and tooling,
but we believe is also applicable to other areas in data intensive and exploratory sci-
ence. We hope that our work not only helps researchers choose a tool that meets their
needs, but also provides some insight on how a workflow language and tool can fulfill
the requirement of scientists.

In our comparison of BPEL and Taverna we consider not only the two workflow
languages but also their associated tooling. This is because scientific workflow users
are generally scientists that have expertise in their specific domain (biology, physics,
astronomy, etc.) but understandably limited knowledge of IT technology and thus re-
quire easy-to-use tooling. In the remaining of this paper, the term Taverna is used to
refer to both the Scufl workflow language that Taverna uses and the Taverna tool,
while BPEL to both the language and the open source tools supporting it.

In the remainder of this paper we first present a caGrid use case and then examine
the lifecycle and features of scientific workflows. Then, we compare Taverna and
BPEL from three perspectives: service discovery, service composition and workflow
execution, and workflow results analysis. Finally, we draw conclusions.

2 A caGrid Use Case

We present a caGrid use case that relates to the querying of semantic data in cancer
research. The use of a standardized metamodel and semantic annotation to enable the
formal description and harmonized use of data is a primary feature that caGrid moves
beyond the basic grid infrastructure.

120 W. Tan et al.

Fig. 1. The caGrid use case used in the paper

In the use case illustrated in Fig. 1, a user wants to query description logic concepts
that relate to a particular context, namely “caCore.” First, the user queries all projects
related to context “caCore”; second, they find UML classes in each project; third, they
use project and UML class information to query the semantic metadata; and finally,
they retrieve the concept code.

3 The Lifecycle and Features of Scientific Workflows

To define the scope of the comparative study, we first discuss the lifecycle of a scien-
tific workflow. This lifecycle involves four stages: discover relevant data/analytical
services, compose these services into a workflow, execute workflow, and analyze the
results (see Fig. 2).

1. Discover relevant data/analytical services. Data/analytical services are developed,
owned and maintained by different institutions, organizations, etc. Usually the
URL of these services is not well-known. Moreover, the scientific community is
too autonomous to share a common terminology, so domain knowledge is needed
to get the exact semantics of the services whose syntax is already known.

2. Compose these services into a workflow. After the individual services are found,
the next step is to compose them into a workflow. This step involves the addition
of data and control dependencies between services; it may also involve data trans-
formations between services’ invocation.

3. Execute workflow. A workflow definition is sent to an engine for execution. The
engine invokes the services in the pre-defined order.

4. Analyze results. Scientific workflow is for the purpose of exploratory research, and
therefore, the intermediate results generated by component services, as well as the
final results yield by the workflow, are of great value and deserve to be analyzed
carefully. Scientific researches are usually undertaken in an iterative manner so the
analysis results often initiate another round of workflow modeling/execution.

 Building Scientific Workflow with Taverna and BPEL 121

Fig. 2. Lifecycle of a scientific workflow

We summarize some features of scientific workflows in caGrid, and these features
can also be seen as challenges encountered when providing a scientific workflow so-
lution in a more general sense (the number of the bullets represents their position in
the lifecycle shown in Fig. 2).

• (1) Resources are highly distributed. Compared to business domain, users in scien-
tific domain usually use services owned by other organizations, like data storage,
high-performance computing, etc.

• (2) Data-flow oriented. Data is considered to be the first-class citizen in scientific
workflows, because scientific workflows are mostly pipelines of parallel data proc-
essing. In a data flow, tasks and links represent data processing and data transport,
respectively; parallel execution of independent tasks is desired to be modeled for
free -- tasks can execute once their input are ready.

• (2&3) Large scale. Scientific workflows often contain many tasks, involve large
data sets, and require intensive computation. The modeling tool should make it
easy to model such complex workflows.

• (4) Data analysis and provenance is an important step and the workflow execution
can be in an iterative manner.

In the rest of this paper we highlight some of the differences between the BPEL
and Taverna, from the point of view of their impact on the users' experience in the
lifecycle of scientific workflows. The discussion is organized according to the lifecy-
cle model of Fig. 2.

4 Support for Service Discovery

As suggested in Fig. 2, a user’s first task involves finding appropriate services that
can be composed into a workflow. In a Grid setting, these services are virtualizations
of data storage, computation capability or other resources. Service endpoints are not
naturally known to users, either because users are not familiar with the service itself,
or because the service deployment may have changed in time. Support for service dis-
covery is therefore needed.

122 W. Tan et al.

Taverna offers two levels of support for this. Firstly, it is often the case that a web-
site is known to host one or more services. In these cases, a scavenger meta-service
can be used to locate endpoints within the site which correspond to valid WSDL ser-
vice definitions. The WSDL is automatically analyzed and a description of the service
is added to the Taverna workbench's library, ready to be used in workflows.

The Taverna plug-in framework simplifies the creation of new scavengers that may
offer advanced service discovery features. As part of the caGrid project, for example,
we have developed a caGrid scavenger that supports semantic/metadata based query
to caGrid services. Users can use multiple query criteria to get the list of desired
services. For example, they can query the services that are developed by Ohio State
University, whose names are CaDSRService, and with the class Project as output.
Through this query we find the matching service for the first step in the use case
shown in Fig. 2 – use context to get related projects.

As a second, more general-purpose option, a semantic discovery facility called
Feta [12] also offered natively as part of the Taverna distribution. Feta includes a se-
mantic service registry that maintains annotated description of services, and can be
searched using terms from a publicly available ontology. The annotations describe (1)
the task performed by a service, for example bioinformatics task, (2) the type of re-
source used by the service, e.g. bioinformatics data resource, (3) the types of input
data it accepts and of output data it produces (protein structure, for example), and
more. The terms used in the annotations belong to the myGrid ontology [13], a con-
trolled ontology of terms for the bioinformatics domain.

These discovery facilities stand in contrast with the lack of analogous integrated
tools for BPEL design environments. To the best of our knowledge, no open-source
BPEL tool is available that works with a service query component in an integrated
way.

5 Service Composition and Workflow Execution

The second and third phase of the lifecycle involves composing the discovered ser-
vices into complete workflows and executing them. In this section we focus on the
modeling style, the definition of data, the iteration strategies adopted by BPEL and
Taverna, respectively, and their influence to the run-time engine.

5.1 Data-Driven vs. Control-Driven Modeling

When modeling a workflow, users are confronted with the choice among the different
modeling paradigms offered by Taverna and BPEL. While the former follows a pure
data flow approach to workflow modeling and execution, the latter exposes a funda-
mentally procedural language.

In a data flow model, the workflow is described as a graph where nodes represent
processors that can be executed on input provided along the incoming arcs, and whose
output is forwarded to other processors through outgoing arcs. In this model, the order
in which the processors are executed is determined primarily by the order in which
the data appears on the various inputs. Any processor for which the input data is
available can be scheduled for execution.

 Building Scientific Workflow with Taverna and BPEL 123

In Taverna, scheduling is simple: processors are executed as soon as possible, in a
greedy fashion as long as a new execution thread can be started (a limit on the number
of threads can be defined on the scheduler). This means, in particular, that paralleliza-
tion of processor execution is managed by the scheduler, based on the available data,
without the need for explicit user directives. Also, the order of execution of two proc-
essors that have no data dependencies amongst each other may be different for differ-
ent executions of the same workflow, even on the same input, due to the possible
variations in execution speeds of some of the other processors.

In contrast, a procedural workflow language like BPEL includes the explicit defini-
tion of the control flow that determines the order of execution of the processors. In
particular, parallel execution of independent processors must be specified explicitly.

A comprehensive analysis on the differences and relative merits of control-driven
and data-driven execution is beyond the scope of this paper. A more in-depth discus-
sion can be found in [14]. In the rest of this section we focus on the specific differ-
ences between Taverna and BPEL, summarized in Table 1.

Table 1. Comparison of BPEL and Taverna (Scufl) w.r.t. control/data-flow

 BPEL Taverna (Scufl)

Activities in
model

Basic and structure activities Processors as data
processing units with

in/output ports
Semantics of

links
Transfer of control Transfer of data

Data definition Explicitly defined (global
variables)

Implicit defined
(processor’s input/output)

Data
initialization

Complex data type need to be
explicitly initialized

Automatically

Control logic Full-fledged: sequence,
conditional, parallel, event-

triggered, etc

Limited: sequential,
parallel and conditional

Parallel
execution

Defined in <flow> or
<ForEach>

By default

5.2 Implicit vs. Explicit Definition of Data

Complementary to the control model described in the previous section is the data
specification model. In Taverna, processors have input and output ports with an asso-
ciated data type, and data travels from the output port of a processor to the input for of
one or more downstream processors. No other data structure specification is needed
besides the port types, and interaction among processors is defined entirely by the
arcs in the dataflow graph.

In contrast, BPEL requires the explicit definition of variables to hold data struc-
tures that are meant to be shared amongst activities; furthermore, each activity can be
specified as either a producer or a consumer for values associated to a variable.

124 W. Tan et al.

Although BPEL’s requirement for explicit data definition takes additional effort, it
also brings about flexibility. For example, in BPEL you can easily define a data that
controls the overall flow but is not the input/output of any activities, but in Taverna
you have to add a processor to hold this data (as either input or output).

In BPEL, variables of complex type, must also be initialized prior to their first use
(i.e., by means of the <copy>syntactic construct – see Section 8.4.2 of the WS-BPEL
Specification in [9]). In contrast, Taverna provides a special built-in processor, called
an XML splitter, which automatically pulls apart a complex XML message defined in
a WSDL interface so that its components can be easily accessed by other user-defined
processors. An example of its use is provided in the next sub-section.

5.3 Implicit vs. Explicit Iteration on Data

Each port in a Taverna processor has a type, which is either a simple type value (i.e., a
string, a number) or a list, possibly nested, of simple type values. As part of normal
processing, it may be the case that an input port receives a value of a type that does
not correspond exactly to its declared type. A processor that outputs a value of type
“list of strings,” for example, can legally be connected to a processor with an input
port of type “string.” Taverna interprets this type mismatch as an indication that the
destination processor must be invoked repeatedly, once for each element of the input
list. This behavior is consistent with Taverna's functional programming model,
whereby the application of a function f with a formal argument of type t, to an actual
parameter x of type list(t), is interpreted as (map f x).

Fig. 3. Implicit iteration

 Building Scientific Workflow with Taverna and BPEL 125

In general, when mismatches appear simultaneously on multiple input ports, Tav-
erna performs either a cross-product (i.e., a Cartesian product) or a dot product (if the
cardinalities of the two lists are the same) involving the elements of each of the unex-
pected lists. Users may explicitly choose which of these two iteration strategies is
appropriate for each processor. The implicit iteration feature is commonly used in
Taverna scientific workflows. The implication, from the user's perspective, is that the
design of a service can be simplified by assuming that it will manage individual data
items, while the execution engine takes care of managing input collections.

In Fig. 3, see an example from the caDSR (Cancer Data Standards Repository) ser-
vice that access and generate the information related to caGrid standard metadata.
caDSR has two operations: findProjects and findClassesInProject. Operation findPro-
jects returns a set of projects (i.e., an array Project []); findClassesInProject receives
an instance of data type Project and find all the UML classes in this project. Fig. 3 il-
lustrates the Taverna and BPEL presentation of how to connect them into a workflow.
The left and right parts are Taverna and BPEL representation, respectively. In the left
part, the output of findProjects is put to an xml-splitter which extracts out the project
array, and sends it to findClassesInProject. In the right part, since BPEL does not
have an implicit iteration mechanism, a <ForEach> construct is added and configured
to iterate on project array. After each invocation of findClassesInProject, result data
need to be collected and merged into the final results set.

From this example one can see that, BPEL handles the iteration like an imperative
programming language, a <ForEach> construct and the iteration method (a counter,
an array or an expression) is to be configured. It is verbose and exposes too many im-
plementation details to the end users (and thus error-prone). Taverna deals with this
issue in a straightforward way -- its implicit iteration framework requires (in the sim-
plest cases) no additional configuration, and the user simply connects an output con-
taining a collection of items into an input that consumes a single item of the same
type. This leaves the complexity to the workflow engine instead of the users.

Again, as an imperative language, BPEL offers more flexibility in handling ad-
vanced iteration strategies. For an example, BPEL can handle this issue: an activity
receives two lists of inputs, needs a special kind of dot-product iteration over them,
with a special “correlation” mechanism (like, classes and projects with the same de-
veloper should be combined.)

For space limitation, in Fig. 4 we only show the completed Taverna workflow for
the caGrid use case in Fig. 1. There are four caGrid processors (findProject, find-
ClassesInProject, findSemanticMetadataForClass, and searchDescLogicConcept)
that represent caGrid services, and more “shim” processors for data transformation
between caGrid processors.

6 Workflow Result Analysis

The final phase of the workflow lifecycle, namely analysis of the results, is increasingly
perceived as of great importance within the e-science community [15]. The provenance
of a piece of data produced by an arbitrary process is a complete account of how that
piece of data was computed, starting from user input and taking into account intermedi-
ate results produced by the processors involved in the computation. Business and scien-
tific workflows may differ in both their requirements and their ability to track data
provenance, in particular with regards to the precision of provenance information.

126 W. Tan et al.

Fig. 4. Completed Taverna workflow for the caGrid use case in Fig. 1

Precision, in this case, denotes the levels of detail at which provenance can be
traced, and depends on the unit of information that the workflow engine can observe
during execution. When dealing with Web Services, both in BPEL and Taverna, the
atomic unit of information that flows through a processor is an XML document, for
instance “purchase order” for a business process, or an XML-formatted description of
a protein in the case of a scientific process. The black-box nature of the Web Services

 Building Scientific Workflow with Taverna and BPEL 127

that produce and consume these documents limits the ability to track its individual
elements. For instance, consider a service that takes a purchase requisition request
document as input, and returns a purchase order document. While it is likely that spe-
cific elements within the purchase order depend on only some of the input document
elements, this fine-grained dependency is hidden within the service logic: from the
point of view of provenance, the service is a black box, because the nature of the data
transformation they implement is not exposed through the WSDL interface. Thus, the
only data dependency that can be safely used in provenance tracking is that the entire
purchase order depends on the entire purchase requisition request. The black-box na-
ture of the service limits the degree of precision with which provenance of the output
can be tracked: the granularity of traceable provenance is that of entire XML docu-
ments, rather than that of their composing elements.

As we mentioned, this problem affects both BPEL and Taverna. Unlike BPEL, how-
ever, Taverna is not limited to using processors that are implemented as Web Services;
processors types include local Java classes, as well as beanshells, or small interpreted
Java programs. This makes it quite natural for Taverna workflows to handle simple
types, such as strings, as well as collections of elements of these types that often repre-
sent sets of scientific data products. In this case it is important to be able to track the
provenance of each of these products individually. Our caGrid use case, for example,
involves a one-to-many association between Projects and their UML classes, which is
then used to retrieve semantic concepts associated to project classes. For provenance in-
formation to be useful, here we cannot simply state that “the collection of the concepts
depends on the collection of input projects,” because this is as trivially true as it is unin-
teresting. Instead, we must be able to determine that the presence of a specific concept
in the output is due to a specific project being present in the original input.

An important example of this fine-grained data manipulation is the “packing” and
“unpacking” of complex XML data, something that can be achieved automatically us-
ing XML splitters, as mentioned in Sec.5.2 and 5.3. In some cases, this may enable
provenance tracking through the internal element of XML documents, for instance it
may be possible to trace the originator element of a purchase order back to some spe-
cific workflow input, at a stage in the process prior to its use as part of the order.

In our preliminary experiments on provenance tracking in Taverna, performed
within the myGrid team, we have been able to achieve high precision in many practi-
cal cases, namely when simple values are composed into collections or into complex
XML messages in a way that is visible to the engine, i.e., by means of dedicated pack-
ing and unpacking processors.

As a corollary to this investigation, we have also been arguing that processors that
map entire collections to new collections (i.e., without any iteration being exposed to
the workflow engine) should be annotated, where possible, with an indication of
properties of the mapping that help provenance tracking. A detailed discussion of the
promises and limitations of this idea can be found in [16].

Other approaches to tracking provenance through Web Services involve the ex-
plicit semantic annotation of the involved services. This semantic provenance over-
lays approach is really complementary to the problem discussed in this section, and
early experiment done on Taverna show promising results [17].

128 W. Tan et al.

7 Conclusion and Future Work

From our experience in using both Taverna and BPEL as the candidate solutions for
caGrid workflow, we have the following conclusions:

1. Taverna provides a compact set of primitives that eases the modeling of data flow.
This functional-programming manner allows users to tell “what to do” instead of
“how to achieve it.”

2. BPEL offers a comprehensive set of primitives to model processes of all flavors
(control-flow oriented, data-flow oriented, event driven, etc), with full feature
(process logic, data manipulation, event and message processing, fault handling,
etc). BPEL is also flexible enough to handle complex processing logic, although a
little bit verbose in modeling basic data flow.

3. As a tool-suite, Taverna provides better support in the whole lifecycle of scientific
workflows, including service discovery and results analysis, than the existing open-
source BPEL tools do.

We do not mean to indicate that Taverna is better than BPEL, or vice versa. We
would rather say that Taverna better fits the requirement of modeling a data flow, and
the open source community has provided a handy workbench that consists of the
modeling and the execution tools. We also acknowledge nice features of BPEL en-
gines. For example, BPEL engines typically run inside application servers and are
with persistent state storage, which offer more reliability and scalability. This is im-
portant for those long-running and computation-intensive workflows. For now the
Taverna engine does not provide these capabilities.

At the same time, we suggest a promising multi-stage modeling approach in adapt-
ing BPEL to scientific workflow, leveraging its capability and retaining the simplic-
ity. That is, the scientists use a model which is intuitive to them, and transform this
model into a standard BPEL model automatically, through a macro-expansion proce-
dure. This BPEL model can be orchestrated by a BPEL-compliant engine. Actually
this approach has already been adopted by existing research efforts [18]. In future, we
also plan to investigate the possibility to provide a BPEL-centric tool set where dis-
covery and result analysis tools are included.

Acknowledgement

We thank Taverna team, especially Mr. Stian Soiland-Reyes at University of Man-
chester, for the great help in using Taverna and developing plug-ins for it. We also
thank the constructive comments from anonymous reviewers. This project has been
funded in part with Federal funds from the National Cancer Institute, National Insti-
tutes of Health, under Contract No. N01-CO-12400.

References

1. Krishnan, S., Bhatia, K.: SOAs for Scientific Applications: Experiences and Challenges.
In: Proc. IEEE International Conference on e-Science and Grid Computing (2007)

2. Foster, I.: Service-Oriented Science. Science 308(5723), 814–817 (2005)

 Building Scientific Workflow with Taverna and BPEL 129

3. Tan, W., et al.: Workflow in a Service Oriented Cyberinfrastructure Environment. In: Cao,
J. (ed.) Cyberinfrastructure Technologies and Applications. Nova Science Publishers
(2008)

4. Saltz, J., et al.: caGrid: design and implementation of the core architecture of the cancer
biomedical informatics grid. Bioinformatics 22(15), 1910–1916 (2006)

5. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. Journal of
Computer Science and Technology, 2006 21(4), 513–520 (2006)

6. Taylor, I.J., et al.: Workflows for e-Science: Scientific Workflows for Grids. Springer,
Heidelberg (2007)

7. ICR Workflow Working Group, Tool Reviews (2007), http://gforge.nci.nih.
gov/docman/view.php/332/7509/icr_workflow_tool_review_2007.doc

8. Oinn, T., et al.: Taverna/myGrid: aligning a workflow system with the life sciences com-
munity. In: Taylor, I.J., et al. (eds.) Workflows for E-science: Scientific Workflows for
Grids, pp. 300–319. Springer, Guildford (2007)

9. OASIS, Web Services Business Process Execution Language Version 2.0 (2007), http://
docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html

10. Turi, D., et al.: Taverna Workflows: Syntax and Semantics. In: Proc. 3rd e-Science Con-
ference, Bangalore, India (2007)

11. Tan, W., et al.: Orchestrating caGrid Services in Taverna. In: Proc. IEEE International
Conference on Web Services (ICWS 2008), Beijing, China (2008)

12. Lord, P., et al.: Feta: A light-weight architecture for user oriented semantic service discov-
ery. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 17–31.
Springer, Heidelberg (2005)

13. Wolstencroft, K., et al.: The myGrid ontology: bioinformatics service discovery. Interna-
tional Journal of Bioinformatics Resesearch and Applications 3(3), 303–325 (2007)

14. Shields, M.: Control- Versus Data-Driven Workflows in Workflows for E-science: Scien-
tific Workflows for Grids. In: Taylor, I.J., et al. (eds.), pp. 167–173. Springer, Heidelberg
(2007)

15. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD
Record 34(3), 31–36 (2005)

16. Missier, P., et al.: Data lineage model for Taverna workflows with lightweight annotation
requirements. In: Proc. Second International Provenance and Annotation Workshop, Uni-
versity of Utah, Salt Lake City, Utah (2008)

17. Zhao, J., et al.: Using semantic web technologies for representing E-science provenance.
In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 92–106. Springer, Heidelberg (2004)

18. Tan, W., Fong, L., Bobroff, N.: BPEL4Job: A fault-handling design for job flow manage-
ment. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 27–42. Springer, Heidelberg (2007)

	Building Scientific Workflow with Taverna and BPEL: A Comparative Study in caGrid
	Introduction
	A caGrid Use Case
	The Lifecycle and Features of Scientific Workflows
	Support for Service Discovery
	Service Composition and Workflow Execution
	Data-Driven vs. Control-Driven Modeling
	Implicit vs. Explicit Definition of Data
	Implicit vs. Explicit Iteration on Data

	Workflow Result Analysis
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

