

Lecture Notes in Computer Science 5472
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

George Feuerlicht
Winfried Lamersdorf (Eds.)

Service-Oriented
Computing –
ICSOC 2008 Workshops

ICSOC 2008 International Workshops
Sydney, Australia, December 1, 2008
Revised Selected Papers

13

Volume Editors

George Feuerlicht
Department of Information Technology
University of Economics Prague, Czech Republic
E-mail: jirif@vse.cz

and

Faculty of Engineering and Information Technology
University of Technology
Sydney, NSW 2007, Australia
E-mail: jiri@it.uts.edu.au

Winfried Lamersdorf
Department of Informatics
Distributed and Information Systems
University of Hamburg
22527 Hamburg, Germany
E-mail: lamersdorf@informatik.uni-hamburg.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): C.2, D.2, D.4, H.4, H.3, K.4.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-01246-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-01246-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12653959 06/3180 5 4 3 2 1 0

Preface

The International Conference on Service-Oriented Computing (ICSOC) has been
tracking the developments in service-oriented computing since its early stages
with the first conference held in Trento, Italy in 2003. Today, service-oriented
computing has become a mainstream computing paradigm with an increasing
number of organizations adopting service-oriented architecture (SOA). While the
main ICSOC conference focuses on the core issues in service-oriented computing,
ICSOC workshops have played a major role in providing a forum for the discus-
sion of emergent research topics. Starting in 2005 at the Amsterdam conference,
workshops have been an integral component of the ICSOC conferences. While
the number of workshops and the topics covered change from year to year, the
quality of the workshop publications has steadily increased with the most recent
workshop proceedings published in the LNCS series by Springer.

Reflecting the growing interest in the area of service-oriented computing and
the expanding field of application of software services, the ICSOC 2008 con-
ference in Sydney, Australia was accompanied by five workshops focusing on
specific research areas:

• Forth International Workshop on Engineering Service-Oriented Applications
(WESOA 2008)

• Second International Workshop on Web APIs and Services Mashups
(Mashups 2008)

• First International workshop on Quality-of-Service Concerns in Service
Oriented Architectures (QoSCSOA 2008)

• First International Workshop on Enabling Service Business Ecosystems
(ESBE 2008)

• Third Workshop on Trends in Enterprise Architecture Research (TEAR 2008)

The 2008 workshops covered well-established areas of research such as the
engineering of service-oriented applications (WESOA 2008), as well as emerg-
ing topics that include Web APIs and services mashups (Mashups 2008) and
quality-of-service concerns (QoSCSOA 2008), and provided a forum for the ex-
change of ideas between researchers and practitioners in the specific research
areas.

The WESOA 2008 workshop in its fourth year addressed the challenges that
arise from the unique characteristics of service-oriented applications, focusing in
particular on service-oriented analysis and design and key principles that un-
derpin the entire service-oriented development lifecycle. The workshop featured
nine research papers, with several authors discussing fundamental SOA prin-
ciples including unified management and governance and SOA. Other authors
proposed service system engineering methods for simulation, automatic test-
ing, and behavioral analysis of SOA processes. Finally, WESOA 2008 included

VI Preface

contributions on software service design for specific application scenarios such
as human-based e-services, service value networks, and scientific workflows.

The theme of the second Mashups workshop (Mashups 2008) was convergence
of service-oriented computing and Web 2.0 with specific focus on mashups and
end-user-oriented compositions of Web-accessible services. The Mashups work-
shop series provides a forum for the discussion of research issues and challenges
that emerge as a result of the interaction of Web 2.0 approaches and technologies
with the existing service-oriented computing solutions that have to be addressed
in order to achieve the vision of a fully programmable Web. The workshop pro-
gram featured two invited keynote presentations and five research papers with
topics ranging from social aspects of mashup applications and the analysis of
mashup ecosystems to the discussion of the impact of mashup technology on
organizations, including a demonstration of visual mashup development tools.

The Quality-of-Service Concerns in Service-Oriented Architectures(QoSCSOA
2008) workshop was the first ICSOC workshop focusing on quality-of-service
(QoS) issues in service-oriented computing, covering the entire lifecycle of
SOA-based systems. This half-day workshop included a keynote presentation
and five research papers with topics ranging from the discussion of challenges
of assuring QoS in service-oriented environments to technical papers discussing
redundancy protocol for SOA, and trust models for service-oriented multi-agent
systems. With the increasing adoption of SOA solutions there is growing inter-
est in ensuring that application systems meet non-functional QoS requirements,
making this workshop a valuable addition to the ICSOC workshop series.

The Enabling Service Business Ecosystems (ESBE 2008) workshop was an-
other new ICSOC workshop that focuses on the problem of service development
across business domains. The workshop included six papers with the topics cov-
ering description of services for service ecosystems, discussing service selection in
business service ecosystem, service standardization, and analysis of evolutionary
changes of Web services.

The Third Workshop on Trends in Enterprise Architecture Research (TEAR
2008) is a continuation of a workshop series on enterprise architectures, with the
2008 workshop focusing specifically on SOA. The eight research papers presented
at the workshop covered topics on governance aspects of SOA, extensions of en-
terprise models, and common terminology for describing enterprise architectures.

The ICSOC 2008 workshops were very well received by the ICSOC attendees
with more than 120 delegates participating in the five workshops. Following the
highly successful workshop events on December 1, 2008, the workshop orga-
nizers were instrumental in compiling the papers for the individual workshops
and ensuring that the reviewers’ recommendations were incorporated into the
final camera-ready versions. This process of finalizing and compiling the paper
contribution was completed in January 2009, ensuring that the workshop pro-
ceedings could be published without excessive delays. ICSOC 2008 workshop
proceedings is a compilation of partially revised versions of papers from all five
workshops published as one book integrating the contributions into a single

Preface VII

unified structure, giving the readers access to an extensive range of the most
recent research papers in this fast evolving area.

Our sincere thanks go to all workshop organizers: Yen-Jao Chung, Wolf-
gang Emmerich, Guadalupe Ortiz and Christian Zirpins for the WESOA 2008
workshop, Michael Maximilian, Stefan Tai, Cesare Pautasso and Patrick Chane-
zon for the Mashups 2008 workshop, Liam O’Brien and Paul Brebner for the
QoSCSOA 2008 workshop, Vincenzo D’Andrea, G.R. Gangadharan Renato Ian-
nella, and Michael Weiss for the ESBE 2008 workshop, and Pontus Johnson,
Joachim Schelp and Stephan Aier for the TEAR 2008 workshop - and to Kai
Jander who helped with formatting this book.

Sydney, Hamburg, Prague George Feuerlicht
February 2009 Winfried Lamersdorf

Organization

ICSOC 2008 Workshop Chairs

George Feuerlicht University of Economics, Prague, Czech Republic
Winfried Lamersdorf University of Hamburg, Germany

WESOA 2008 Organizers

Jen-Yao Chung IBM T.J. Watson Research Center, USA
Wolfgang Emmerich University College London, UK
Guadalupe Ortiz University of Extremadura, Spain
Christian Zirpins University of Karlsruhe, Germany

Mashups 2008 Organizers

Michael Maximilien IBM Almaden Research Center
Stefan Tai University of Karlsruhe, Germany
Cesare Pautasso University of Lugano, Switzerland
Patrick Chanezon Google Inc., San Francisco, USA

QoSCSOA 2008 Organizers

Liam O’Brien National ICT Australia, Canberra, Australia
Paul Brebner National ICT Australia, Canberra, Australia

ESBE 2008 Organizers

Vincenzo D’Andrea University of Trento, Italy
G.R. Gangadharan University of Trento, Italy
Renato Iannella National ICT Australia, Brisbane, Australia
Michael Weiss Carleton University, Ottawa, Canada

TEAR 2008 Organizers

Pontus Johnson Royal Institute of Technology, Stockholm,
Sweden

Joachim Schelp University of St. Gallen, Switzerland
Stephan Aier University of St. Gallen, Switzerland

Table of Contents

I Fourth International Workshop on Engineering
Service-Oriented Applications (WESOA 2008)

Introduction: Fourth International Workshop on Engineering
Service-Oriented Applications (WESOA 2008) . 3

Christian Zirpins, Guadalupe Ortiz, Yen-Jao Chung, and
Wolfgang Emmerich

What Would Smart Services Look Like: And How Can We Build Them
on Dumb Infrastructure? . 5

Keith Duddy

Design of Composable Services . 15
George Feuerlicht

A Conceptual Framework for Unified and Comprehensive SOA
Management . 28

Ingo Müller, Jun Han, Jean-Guy Schneider, and Steven Versteeg

A Metrics Suite for Evaluating Flexibility and Complexity in Service
Oriented Architectures . 41

Mamoun Hirzalla, Jane Cleland-Huang, and Ali Arsanjani

Simulation of IT Service Processes with Petri-Nets 53
Christian Bartsch, Marco Mevius, and Andreas Oberweis

Automatic Test Case Generation for Interacting Services 66
Kathrin Kaschner and Niels Lohmann

Detecting Behavioural Incompatibilities between Pairs of Services 79
Ali Aı̈t-Bachir, Marlon Dumas, and Marie-Christine Fauvet

On Supporting the Design of Human-Provided Services in SOA 91
Daniel Schall, Christoph Dorn, Hong-Linh Truong, and
Schahram Dustdar

Model Transformations to Leverage Service Networks 103
Marina Bitsaki, Olha Danylevych, Willem-Jan A.M. van den Heuvel,
George D. Koutras, Frank Leymann, Michele Mancioppi,
Christos N. Nikolaou, and Mike P. Papazoglou

Building Scientific Workflow with Taverna and BPEL: A Comparative
Study in caGrid . 118

Wei Tan, Paolo Missier, Ravi Madduri, and Ian Foster

XII Table of Contents

II Second International Workshop on Web APIs and
Services Mashups (Mashups 2008)

Introduction: Second International Workshop on Web APIs and
Services Mashups (Mashups 2008) . 133

Cesare Pautasso, Stefan Tai, and E. Michael Maximilien

Innovation in the Programmable Web: Characterizing the Mashup
Ecosystem . 136

Shuli Yu and C. Jason Woodard

The Changing Role of IT Departments in Enterprise Mashup
Environments . 148

Volker Hoyer and Katarina Stanoevska-Slabeva

The Mashup Atelier . 155
Cesare Pautasso and Monica Frisoni

The Reverse C10K Problem for Server-Side Mashups 166
Dong Liu and Ralph Deters

Creating a ‘Cloud Storage’ Mashup for High Performance, Low Cost
Content Delivery . 178

James Broberg, Rajkumar Buyya, and Zahir Tari

III First International Workshop on Quality-of-Service
Concerns in Service Oriented Architectures
(QoSCSOA 2008)

Introduction: First International Workshop on Quality of Service
Concerns in Service Oriented Architectures (QoSCSOA 2008) 187

Liam O’Brien and Paul Brebner

Challenges in Integrating Tooling and Monitoring for QoS Provisioning
in SOA Systems (Keynote) . 189

Adrian Mos

A Scalable Approach for QoS-Based Web Service Selection 190
Mohammad Alrifai, Thomas Risse, Peter Dolog, and Wolfgang Nejdl

Towards QoS-Based Web Services Discovery . 200
Jun Yan and Jingtai Piao

A Redundancy Protocol for Service-Oriented Architectures 211
Nicholas R. May

Table of Contents XIII

A Context-Aware Trust Model for Service-Oriented Multi-Agent
Systems . 221

Kaiyu Wan and Vasu Alagar

Three Common Mistakes in Modeling and Analysis of QoS of
Service-Oriented Systems . 237

Vladimir Tosic

IV Enabling Service Business Ecosystems (ESBE 2008)

Introduction: First International Workshop on Enabling Service
Business Ecosystems (ESBE 2008) . 241

Vincenzo D’Andrea, G.R. Gangadharan, Renato Iannella, and
Michael Weiss

Describing Services for Service Ecosystems . 242
Gregor Scheithauer, Stefan Augustin, and Guido Wirtz

Service Selection in Business Service Ecosystem . 256
Sujoy Basu, Sven Graupner, Kivanc Ozonat, Sharad Singhal, and
Donald Young

On the Feasibility of Bilaterally Agreed Accounting of Resource
Consumption . 270

Carlos Molina-Jimenez, Nick Cook, and Santosh Shrivastava

On Analyzing Evolutionary Changes of Web Services 284
Martin Treiber, Hong-Linh Truong, and Schahram Dustdar

Standardization as a Business Ecosystem Enabler . 298
Paul L. Bannerman and Liming Zhu

Managing Quality of Human-Based eServices . 304
Robert Kern, Christian Zirpins, and Sudhir Agarwal

V Third Workshop on Trends in Enterprise Architecture
Research (TEAR 2008)

Introduction: Third Workshop on Trends in Enterprise Architecture
Research (TEAR 2008) . 313

Stephan Aier, Pontus Johnson, and Joachim Schelp

Towards a Sophisticated Understanding of Service Design for Enterprise
Architecture . 316

Stephan Aier and Bettina Gleichauf

XIV Table of Contents

A Conceptual Framework for the Governance of Service-Oriented
Architectures . 327

Jan Bernhardt and Detlef Seese

Using Enterprise Architecture Models and Bayesian Belief Networks for
Failure Impact Analysis . 339

Oliver Holschke, Per Närman, Waldo Rocha Flores,
Evelina Eriksson, and Marten Schönherr

Assessing System Availability Using an Enterprise Architecture
Analysis Approach . 351

Jakob Raderius, Per Närman, and Mathias Ekstedt

An Information Model for Landscape Management – Discussing
Temporality Aspects . 363

Sabine Buckl, Alexander Ernst, Florian Matthes, and
Christian M. Schweda

A Lightweight Method for the Modelling of Enterprise Architectures 375
Henk Koning, Rik Bos, and Sjaak Brinkkemper

A Contingency Approach to Enterprise Architecture Method
Engineering . 388

Christian Riege and Stephan Aier

Towards a Common Terminology in the Discipline of Enterprise
Architecture . 400

Marten Schönherr

Author Index . 415

Fourth International Workshop on
Engineering Service-Oriented
Applications (WESOA 2008)

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 3–4, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Introduction: Fourth International Workshop on
Engineering Service-Oriented Applications

(WESOA 2008)

Christian Zirpins1, Guadalupe Ortiz2, Yen-Jao Chung3, and Wolfgang Emmerich4

1 Universität Karlsruhe (TH), Germany
Christian.Zirpins@kit.edu

2 University of Extremadura, Spain
GOBellot@unex.es

3 IBM T.J. Watson Research Centre, United States
JYChung@us.ibm.com

4 University College London, United Kingdom
W.Emmerich@cs.ucl.ac.uk

1 Workshop Goals and Contents

In large-scale software projects that increasingly adopt service-oriented software
architecture and technologies, availability of sound systems engineering principles,
methodology and tools for service-oriented applications is mission-critical for project
success. However, engineering service-oriented applications poses specific require-
ments that differ from traditional software engineering and the discipline of software
service engineering (SSE) is not yet established. Consequently, there is an urgent
need for research community and industry practitioners to develop comprehensive
engineering principles, methodologies and tool support for the entire software devel-
opment lifecycle of service-oriented applications.

The WESOA series of workshops addresses challenges of software service engi-
neering that arise from unique characteristics of service-oriented applications. Such
applications are predominantly adopted in application domains that require complex
as well as dynamic collaboration scenarios between autonomous individuals and thus
have to represent many of their interaction patterns and organization principles. In
many cases, service-oriented applications represent transactions of dynamic, process-
driven business networks and drive interaction protocols between fluid configurations
of autonomous service providers. In other cases, service-oriented applications are
provided in the context of social communities, where they are created by a large num-
ber of members for very specific or even situational needs of long-tail economics. In
such domains it is not enough to focus on complex distributed software systems alone
but it is necessary to consider a broad socio-technical perspective.

It is the challenge of software service engineering to not only cope with these spe-
cific circumstances but to capitalise on them with radically new approaches. The
WESOA series addresses these challenges and particularly concentrates on the as-
pects of service-oriented analysis and design that provide principles methodology and
tool support to capture the characteristic requirements of service networks as well as
service communities and transform them into reusable high-quality service system
designs that underpin and drive the holistic service-oriented development lifecycle.

4 Preface

For WESOA 2008 the international PC selected 9 out of 20 high-quality papers.
These papers represent a rich variety of topics revolving around principles, methods
and application domains of SSE with a special focus on analysis and design. A num-
ber of authors tackled fundamental SOA principles as regards composite service de-
sign (Feuerlicht), unified management and governance (Mueller et al.) as well as
SOA metrics (Mamoun et al.). Other authors proposed specific SSE methods for simu-
lation (Bartsch et al.), automatic testing (Kaschner et al.) and behavioural analysis
(Aït-Bachir et al.) of SOA processes. This year, an increased number of contributions
addressed software service design for specific application scenarios like human-based
e-services (Schall et al.), service value networks (Bitsaki et al.) and scientific work-
flow (Tan et al.). The workshop was greatly enhanced by the keynote of Keith Duddy,
in which he explored challenging gaps between the promises of modern service-
oriented systems and the deficiencies of real world computing infrastructures. The
workshop led to vigorous discussions around fundamental as well as specific charac-
teristics of SOA and the challenges of establishing a new discipline of SSE.

2 Workshop Organisation

WESOA’08 was organised by an international group of researchers comprising the
authors of this article. The event would not have been possible without the invaluable
contribution of the international program committee. We would therefore like to
thank the program committee members that include the following experts:

Sudhir Agarwal (Univ. of Karlsruhe, DE), Marco Aiello (Univ. of Groningen, NL),
Sami Bhiri (DERI Galway, IE), Jen-Yao Chung (IBM Watson Research, US), Oscar
Corcho (Manchester Univ., GB), Vincenzo D'andrea (Univ. Trento, IT), Valeria de
Castro (Univ. Rey Juan Carlos, ES), Gregorio Diaz (Univ. of Castilla La Mancha,
ES), Schahram Dustdar (Tech. Univ. of Vienna, AT), Wolfgang Emmerich (Univ.
College London, GB), George Feuerlicht (Sydney Univ. of Tech., AU), Stefan Fischer
(Univ. of Luebeck, DE), Howard Foster (Imperial College London, GB), Paul
Greenfield (CSIRO, AU), Rannia Khalaf (IBM Watson Research, US), Bernd Krämer
(Univ. of Hagen, DE), Winfried Lamersdorf (Univ. of Hamburg, DE), Heiko Ludwig
(IBM Research, US), Tiziana Margaria-Steffen (Univ. of Potsdam, DE), Michael
Maximilien (IBM Almaden Research, US), Massimo Mecella (Univ. Roma LA
SAPIENZA, IT), Harald Meyer (HPI Potsdam, DE), Daniel Moldt (Univ. of Hamburg,
DE), Josef Noll (Telenor, NO), Guadalupe Ortiz Bellot (Univ. of Extremadura, ES),
Rebecca Parsons (ThoughtWorks, US), Greg Pavlik (Oracle, US), Pierluigi Plebani
(Politecnico di Milano, IT), Franco Raimondi (Univ. College London, GB), Wolfgang
Reisig (Humboldt-Univ. Berlin, DE), Thomas Risse (L3S Research Center, DE),
Norbert Ritter (Univ. of Hamburg, DE), Stefan Tai (Univ. of Karlsruhe, DE), Willem-
Jan van den Heuvel (Univ. of Tilburg, NL), Walid Gaaloul (DERI Galway, IE), Jim
Webber (ThoughtWorks, AU), Christian Zirpins (Univ. of Karlsruhe, DE).

Finally, we would like to thank the ICSOC organisers, especially the workshop
chairs George Feuerlicht and Winfried Lamersdorf as well as the local organisation
chairs Helen Paik, Vladimir Tosic and Jian Yang for their guidance and support.

What Would Smart Services Look Like�

And How Can We Build Them on Dumb Infrastructure?

Keith Duddy

Queensland University of Technology / Smart Services CRC
126 Margaret St, Brisbane, QLD 4000, Australia

Abstract. The research for the next generation of service oriented sys-
tems development is well under way, and the shape of future robust and
agile service delivery and service aggregation technologies is taking fo-
cus. However, the distributed computing infrastructure on which these
systems must be built is suffering from years of “worse is better” think-
ing, and an almost invisible vendor fragmentation of the Web Services
and Business Process Modelling spaces. The balkanisation of the basic
technologies of service deployment and business process implementation
threatens to undermine efforts to build the next generation of Smart
Services. This paper is a summary of the keynote talk at WESOA 2008,
which accounts for its informal style. It paints a picture of services fu-
tures, reveals the problems of the present tangle of technologies, and
points to some practical initiatives to find the way out of the mess.

1 The Speaker, and His Journey “Up the Stack”

Keith Duddy is a graduate of the University of Queensland, andwent from Honours
in Computer Science to industry in 1990 where he worked on extending PC-Unix
systems to use plug-in hardware which supported up to 32 serial ports for multiple
terminal, printer and modem connections. His work included a mixture of hacking
C code and supporting customer applications in 12 European countries. In 1993
he returned to the University of Queensland as a Research Assistant, and apart
from a two year sojourn in the Health sector working for a government institute, he
has been a professional researcherwith CooperativeResearch Centres –Australia’s
flagship program for industry, government and university collaboration.

Keith’s research focus moved “up the stack” from serial communications pro-
tocols to working with CORBA Middleware and its supporting infrastructure
services, including contributions to the CORBA Trader and CORBA Notifica-
tions standards. In 1996 Keith and a colleague organised for his employer, the
Distributed Systems Technology Centre (DSTC), to be contracted by the Ob-
ject Management Group (OMG) to develop and host CORBAnet, the CORBA

� The work reported in this paper has been funded in part by the Smart Services
Co-operative Research Centre through the Australian Federal Government’s CRC
Programme (Department of Innovation, Industry, Science and Research).

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 5–14, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

6 K. Duddy

2.0 Interoperability showcase. This became an ongoing web-accessible demon-
stration of 12 separate CORBA implementations making calls on one another’s
distributed objects.

In the late nineties Keith became leader of the Pegamento project at the
DSTC’s successor, the Enterprise DSTC, investigating the confluence of middle-
ware and workflow technologies, and began making extensive use of the DSTC’s
implementation of the MOF meta-modelling standard of OMG, which his DSTC
colleagues had played a major role in specifying. Keith was the first author of
a standard UML profile – for the representation of CORBA interfaces. As an
OMG Architecture Board member, he was a co-author of the first technical white
paper on the Model Driven Architecture, which was a concept already in use in
EDSTC at the time.

His research focus continued to raise the level of abstraction in the specifi-
cation and development of distributed systems – but with a focus on the flip
side of that coin, reification of abstract specifications to real implementations
by capturing parametric transformations from specification to implementations
on multiple platforms. After being part of the large team that standardised the
EDOC Metamodel and UML Profile in OMG, which resulted in some influential
ideas being incorporated into UML 2.0, Keith was one of the authors and spon-
sors of the OMG’s RFP for Model Transformation, to which his team contributed
their in-house technology for MOF model transformations.

After EDSTC closed in 2004, Keith went to the Australian National e-Health
Transition Authority (NEHTA) to apply his architectural and modelling experi-
ence in the health sector. This organisation has been applying Service Oriented
Architecture principles, along with standards-based interoperability in an envi-
ronment where documents and services need to be shared between a large number
of public and private sector organisations, across three tiers of government, with
diverse funding arrangements, and involving a large number of software vendors
and developers. The experience of attempting to use COTS Web Services mid-
dleware which claims conformance to a variety of W3C and OASIS standards
was eye-opening to say the least.

The latest phase of Keith’s career is back in the CRC research framework
– at the Smart Services CRC, where he is involved in two projects called Ser-
vice Aggregation and Service Delivery Framework. These newly formed projects
aim to bring the best of breed research in Service Oriented Computing at four
Australian universities, together with applied research at SAP, Infosys and some
government departments to offer a framework for practical SOA deployment.

2 What Is a Smart Service?

The short answer is that it is a marketing term to bring together various mean-
ings of the term Service (economic, technical, political, business- and end-user-
oriented) with an adjective to make it sound clever. The Smart Services CRC
has an impressive portfolio of 11 projects with focus on finance, media and gov-
ernment which cover the spectrum of these meanings.

What Would Smart Services Look Like 7

What we mean by Smart Service in the context of the Service Aggregation and
Service Delivery Framework projects is easier to narrow down. We use Service
Oriented Architectures as a basis for the meaning of Service – a function of
an enterprise that is exposed through various technology-supported channels,
and is amenable to re-use and composition into larger services which add value.
Therefore a Smart Service is one that is better enabled for this purpose by
approaches and technologies that are being developed in the CRC.

Smart Services, or the infrastructure in which they are deployed, will have
some or all of the following properties.

2.1 Metadata

In order for a service client to be able to select the most appropriate service
in a given environment for its needs and budget, the services available must be
able to expose both their functional interface, as well as a set of non-functional
properties as metadata. This includes concepts such as Quality of Service (QoS),
which usually include things characterised as -ilities, like reliability, availability
and execution time; as well as other properties like trust and reputation, op-
erating hours, and other aspects of service provision usually found in Service
Level Agreements (SLAs). In current service provision models, these are usually
agreed on paper in a static framework of guarantees and compensations, and
not exposed in a computer-readable form. Section 7 provides a suggested path
forward for exposing service metadata.

2.2 Recursive Process Orientation

The emerging literature at ICSOC and other conferences and journals in the SOA
space makes it clear that the name of the services game is to expose encapsulated
business processes on one hand, and to create additional value by reusing services
in the context of new business processes. The array of technologies used to
choreograph and/or orchestrate service invocations is as wide as the Business
Process Management field itself. The term recursive in this section header is
important, however, as it requires the generalisation of the concepts of using
services to enact business processes, as well as the creation of new services by
exposing a wrapper interface to a business process itself. A process uses a service,
which encapsulates a process, which invokes services, which encapsulate other
processes, and so on.

The degree to which the process nature of services is exposed will vary, de-
pending on factors such as traditional information hiding (which dictates opac-
ity) and automated monitoring and use of formal methods for validation (which
require increased transparency). To a large extent this will be dictated by or-
ganisational boundaries, with process exposed inside an enterprise, and hidden
outside its borders to protect competitive advantage. A middle path being in-
vestigated by some researchers is one in which an abstract process definition is
exposed, reflecting the logical execution of a service, but the complexity of the
actual implementation is hidden.

8 K. Duddy

Smart infrastructure to support service aggregation based on process defini-
tions will be able to navigate the recursive process enacapsulations as deep as
they are exposed within its context.

2.3 Service Selection and Substitution

When metadata is available to technical service execution frameworks, such as
the increasingly dominant BPM paradigm, a service can be compared to others
implementing the same logical function, using the same interface, and the one
most fit for use can be selected. This is very simple when comparing only a
single QoS parameter, however, various techniques exist to allow the optimisa-
tion of a whole process execution, involving multiple services, and taking into
account multiple non-functional properties. These include Integer Programming,
and Generic Algorithms, among many others. Some approaches apply local op-
timisation of the properties of each task in a process, and others consider the
execution of a whole process and perform global optimisations.

However, the case where a large number of equivalent services with the same
interface, varying only by QoS, are available is rare, and usually happens only
inside a large “hub” or marketplace where the host defines the interfaces and
makes them standards for provision of services into the market. Finding two Web
Services “in the wild” with the same interface is exceedingly rare. This implies
that some combination of the following approaches needs to be used:

1. Industry sectors and other groups using services will need to produce stan-
dardized “commodity” interfaces that will be implemented the same by all
participants in that sector or grouping. (The political solution.)

2. Techniques need to be used which analyse services for compatibility, and
transform similar interfaces to make them suitable for substitution for one
another. (The technical solution.)

Although the precedent for industries in standardising data transfer formats,
and sometimes interface definitions for their exchange, is there in bodies such
as ISO, IEEE, ITU and even OMG, there is little evidence of this work being
applied to things like standard WSDL definitions for domains. And for leading
edge service integration activities in the current world, the need for Semantic-
Web and AI-based techniques to discover service equivalences is obvious. Some of
these technologies are well advanced in a research context, but mainstream efforts
are still bound to manual wrappers around interfaces to bridge their syntactic
differences, based on a human analysis of their semantic similarities. Once again,
whether using ontologies and other semantic approaches, or AI techniques, the
candidate services require good metadata and documentation above and beyond
their interface definitions.

2.4 Constraint Enforcement

When using service aggregation techniques to bind multiple services into roles
in a larger context, the ability for a high-level specification to indicate appro-
priate resource and other constraints is necessary, as the implementations of the

What Would Smart Services Look Like 9

services are probably hidden from their BPM invokers. The classical example
of such a constraint is the encapsulation of a legislative requirement for differ-
ent entities to play the roles of bank and auditor in financial processes. Other
example constraints include the selection of a service provider only from a list
of nominated business partners, or the same storage provider to be used for all
storage-related activities in a process for financial reasons. Smart infrastructure
for service usage will extend the kinds of resource management functions of cur-
rent Workflow environments to include the use of the metadata available about
services (and their providers) to include constraint enforcement.

2.5 Metering and Billing

Ever wondered why there are only trivial examples of Web Services available
on the open web? E.g. check the ISBN of a book, convert degrees Fahrenheit to
degrees Celsius. It’s probably because, without a standard per-use or per-volume
metering and billing infrastructure available right alongside the WSDL endpoint
information, no-one wants to make anything of value available when there’s no
person at the end of the interaction to view an advertisement – which is the
standard entry-level charging model for the provision of high-value services to
people through web browser interfaces.

To provide the incentive for service providers to offer their non-trivial services
to a set of clients, the infrastructure needs to support a metering and billing
apparatus. The current web economy is supported by consumers providing credit
card details (or PayPal credentials) when they pay for services (usually on a
subscription basis), or by advertising revenue when those services are presented
through the web browser. The credit card/PayPal model typically applies when
purchasing goods or services ordered, but not provided, via the web. There is
no widespread model for charging for services used by aggregators to provide
value-added services to users.

Truly smart services will have the ability to charge their users using multiple
chargingmodels,andunless afinancial services company steps into thisniche, other
brokers will need to assume this role, and ultimately use the banking system to
transfer funds at billing time. However, this is a space where a standard or de facto
standard (analogous to a PayPal) for metering, billing and payment is needed.

3 Traders, Directories and Brokers

The idea of an Open Service Marketplace has been around since the early 1990s,
and by 1995 ISO and the OMG had begun jointly standardising a “Trader”
specification, which was one of the roles identified in the then recently published
ISO Reference Model for Open Distributed Processing. RM-ODP (as it known for
short) is a landmark publication which gave distributed systems researchers and
practitioners the same kind of language for discussing distributed systems that
the OSI specification had given network protocol designers a decade earlier. Both
models continue to be relevant as reference sources today, even though networks
still do not have seven layers, and the Trader role in distributed systems has
failed to manifest.

10 K. Duddy

Trader was a repository that contained Service Offers which had a Service
Type describing both the interface and non-functional properties of a Service1.
It was meant to allow service clients to specify queries across the properties
which identified valid service offers for the needs of the client. Implementations
of the OMG Trader, however, failed to find an application outside a few niche
financial and telecoms management scenarios.

The next major hype about repositories of services came about with the re-
lease of the UDDI specification. The story that seemed to be believed by major
vendors, including HP, IBM, Microsoft and SAP was that a global repository
of Web Services would be available which would be populated by millions of
endpoints, which could be navigated using their type and other metadata. The
dream was backed up by a global scale implementation sponsored by IBM, Mi-
crosoft and SAP, and which lasted from 2001 until 2005, when the lights were
turned off, due to lack of interest by Web Services developers.

So what’s different about the concept of a Service Broker – a component that
will store endpoints to multiple services and act as the place to discover the services
needed in a particular marketplace? Sounds like déjà vu. Well, firstly, a broker
will have a trusted relationship with both client and service provider (although
it does not require that these parties are initially aware of one another), and a
contract that permits it to charge for the services it delivers on behalf of the service
providers, as well as taking a cut to sustain its own role in the marketplace.

Secondly, it will not only store the service endpoints for discovery by clients –
it will be a logical intermediary in every interaction between clients and services.
This mediation is mostly for the purposes of metering and billing. The broker
knows which services are used, by whom, and for how long (or with what payload,
or any other metering criteria that are useful), and has a contract with the clients
which allows them to be billed for what they use.

4 How Does All This Relate to Web Services Standards?

The unstated assumption, since UDDI, is that when we speak of a “Web Ser-
vice”, that we are referring to a network-accessible endpoint which behaves in
a predictable way (as specified in an interface description) when sent a message
– much like its middleware predecessors, CORBA, DCE and Sun RPC. On the
face of it, this appears be true, with the standards SOAP and WSDL being what
makes this possible. But when one looks closer, it is clear that these standards
offer so many variations in style (RPC, Document, Literal, Wrapped) that no
vendor of Web Services toolkits offers all of the variations. . . and what’s more,
the intersection of the subset of the standards that they support is empty (or
very small, depending on which vendor’s products are under consideration).

1 Interestingly, the Type Management function of RM-ODP which was intended to
model these properties morphed into the OMG’s Meta Object Facility (MOF), which
emerged at the same time as the UML, and has since become intervolved with that
standard.

What Would Smart Services Look Like 11

A whole industry consortium was formed on the basis that the standards from
W3C and OASIS offer no profiles for their usage which can foster interoperabil-
ity: Web Services Interoperability (WSI). This body attempted to overcome the
ambiguities and range of implementation choices offered by the standards, but
the evidence seems to be that they have failed to do so, with even the WSI-Basic
profile for the use of Web Services offering three variations, and some of the ma-
jor toolkit vendors (like Microsoft) opting out of supporting even one of these.
Web pages like [7] and [8] give an indication of proliferation of N by N interoper-
ability problems that programmers face when using more than one Web Services
toolkit. An example of an attempt to specify a common profile that makes no
specific product references can be seen in [1], specified by NEHTA. The problem
with this sort of profile is that its implementation in a particular toolkit often
requires hand modification of SOAP messages after they have been created in a
non-conformant manner by the generated code, and no documentation exists in
the toolkit to assist.

The current facts of the situation are that out-of-the box interoperability, with-
out hacking the XML in the SOAP messages for a service by hand, does not ex-
ist between the two most popular WS frameworks: JAXWS and .Net. And this is
just using the most common WS-* standards: WSDL, WS-Addressing and
WS-Security. There are more than 50 current standardisation efforts in W3C and
OASIS that attempt to augment these basic components to do every other mid-
dleware function imaginable, from Transaction and Policy, to Reliable Messaging,
to BPM. The dependency matrix between the standards is highly complex, and
often simply contradictory, with many of the standards gratuitously overlapping
in functionality. The principle of separating interface from implementation is paid
lip service, but in reality the only way to get interoperability is to implement all
services and their clients using the same vendor’s platform.

The current .Net toolkit does not even allow the use of a WSDL with arbitrary
XML payloads – even when using the right combination of literal and wrapped
conventions and the right choice of security signing before encrypting, rather
than the other way around. The Microsoft response to support calls to assist in
delivering HL7 (a heath domain standard) XML payloads using Web Services is
a recommendation to design everything from scratch in C# using Visual Studio,
and then generate the WSDL, as “WSDL-first development is not supported”.

5 What about the Web Services Success Stories?

A number of web-based platforms and Software-as-a-Service offerings are usually
held up by Web Services spruikers as WS Success Stories. These include Rearden
Commerce, which is the platform used in American Express’s Axiom corporate
travel spend-control site; RightNow.com and SalesForce.com, which are CRM
systems hosted on behalf of clients in larger and smaller companies respectively;
and last, but not least, Amazon.com, which integrates thousands of retailers’
product offerings through its portal using WS-* specifications. So when these
successful businesses base their multi-billion dollar strategies on WS, how can I
claim that it’s a big non-interoperable mess?

12 K. Duddy

What is really happening is that WS-* is hidden from the vast majority of
users of these systems - who mainly access their services using POWP (plain old
web pages). The WS part of these companies’ solutions is very carefully managed
between the hub, and their strategic partners – a so-called Walled Garden. The
hub controls all of the WSDL defined, and they use only the simplest WSDL
definitions. These interfaces convey only very simple XML payloads (in the Ama-
zon.com case, everything in the WSDL is a string element). Virtually none of
the other WS-* standards outside of WSDL and SOAP are used (the exception
being some use of WS-Addressing). WS is used to connect to a proprietary set
of functionality to support user profiles, events and notifications, and payment
and charging infrastructure.

Another interesting thing to note is that Google has decided that WS-* is not
ready for prime time, and instead they support a large set of language library
APIs that do proprietary communications back to the Googleplex.

6 What Other Challenges Do We Face?

6.1 Business Process Management

One of the key emerging technologies for aggregating services into useful busi-
ness functions is Business Process Management (BPM), which is being used
increasingly to choreograph services as well as the activities of people. Unlike
the service invocation space, in which WSDL has emerged as the lingua franca
of interface definitions (despite the support for the standard being partial and
often non-overlapping in the various implementations), BPM is still in a state
where a number of competing languages are being used to define processes.

BPMN is favoured by analysts, and has increasing tool support, although the
standard does not have a well defined execution semantics. UML Activity Graphs
have a petri-net inspired token-passing semantics (with “semantic variations”),
and is supported as a graphical language by most UML tools, although most of
these do not perform the necessary well-formedness checks, and thus leave most
Activity Graphs that I have ever seen with errors which make them essentially
semantic-free. BPEL is based on Pi-calculus, and has no formal mappings to the
graphical languages, and no graphical syntax of its own. YAWL is formally defined
based on modified petri-nets, but has only a single open-source implementation.

There are myriad other languages for BPM, all of which are fundamentally
incompatible, and therefore there does not exist any general way of translating
between them, as can be done with RPC interface descriptions of many kinds.
This is a field in which it is also unlikely that the industry will settle on a single
formalism, as there are constant innovations (of the reinventing the wheel sort),
which throw in new concepts and notations (as well as a host of partially defined,
or informal, description techniques) to muddy the waters.

6.2 Quality of Service

The term QoS has been refined and formalised in the context of networking and
telecoms management over the last decade or so, and companies like Cisco have

What Would Smart Services Look Like 13

made a fine art of managing basic networking services. However when applying
the basic idea – of dynamically available meta-data about the performance of
the non-functional aspects of a service – to general computing services, a lot of
confusion exists in the literature, and some basic questions are unanswered:

– Is execution time end-to-end, or just at the server. Is it average, or maximum,
and who measures it?

– Is price the access price (e.g. searching the catalogue) or the price of the
eventual commodity (e.g. buying an MP3). Is price even a QoS?

– Who rates reputation and trust? Who stores it? Is the mechanism revealed
(number of reviews, etc)?

– Who stores any QoS property? And in what format?

Most academics working with optimising service aggregations make assumptions
that QoS is available and accurate, that it is variable and differentiated between
otherwise identical services.Whereas the large deployments of WS that we know of
use mechanisms like Service Level Agreements to ensure that alternative providers
of services all comply to the same level of quality, and none of them store and/or
calculate, or query, QoS properties for individual services at runtime.

7 Some Practical Initiatives to Overcome Challenges

7.1 Service Description Meta-models

The PhD work of Justin O’Sullivan [4] is fully documented at http://service-
description.com/. It resolves many of the questions asked about QoS, and has
been used in European Union projects, and is included in new product develop-
ment underway at SAP.

7.2 Domain Specific Languages

DSLs raise the level of abstraction when specifying the operation of software
(and hardware) in a particular domain setting. Many industries have success-
fully standardised documents and processes that apply across a sector, using
MOF, XML, UML and other abstractions. Much of the promise of OMG’s Model
Driven Architecture is embodied in the use of DSLs to abstract away from much
of the technology and implementation detail when specifying a system. Even
when no automatic code generation is possible, the effort of extracting irrele-
vant detail from a problem specification makes the design more understandable,
more portable, and more amenable to automated code generation or bespoke
platform construction techniques (such as software factories).

7.3 KISS Initiative

The KISS (Knowledge Industry Survival Strategy) Initiative puts forward a
Modeling Tool Interoperability Manifesto and Projects. In addition, the initia-
tive in running a Workshop Series at major conferences throughout 2009/2010.
See http://www.industrialized-software.org/kiss-initiative.

14 K. Duddy

8 Conclusion

Standards development in the Web Services space has hit an all-time quality
low, with conformance being left unconsidered, or at best patched in after the
fact by other standards attempts. Architectural oversight is almost non-existent
across the fifty plus ongoing WS-* standards processes in W3C and OASIS, and
many potential standards overlap in functionality and intent, with support from
vendors very fragmented.

Thankfully in another decade it is very likely that we will be throwing this all
away and starting over for a third generation of middleware standards, according
to the perceived needs and fashions of the time.

Smart Services will be the combination of a range of techniques to describe,
coordinate, allow invocations of, and allow billing of individual Web Services.
These services are likely to be kept to a small common subset of interface types
and styles, and use simple XML types to convey payloads.

The discovery, substitution and construction of variations of services will also
be facilitated by Smart Services infrastructure. This will contain the “duct-tape
and ticky-tacky” needed to glue together the incompatible parts of the WS world.

The aggregation of simple (and wrapped complex) services will increasingly
use BPM techniques, but this field will necessarily be fragmented according to
the kind of BPM language used, as there is no logical path to translating BPM
models between the different formalisms.

References

1. NEHTA: Web Services Profile, Version 3.0 (December 1, 2008)
2. Hamadi, R., Benetallah, B.: A Petri Net-based Model for Web Service Composition.

In: Proceedings of Fourth Australasian Database Conference (2003)
3. Zeng, L., Benetallah, B., Ngu, A.H.H., Dumas, M., Kalaggnanam, J., Chang, H.:

QoS-Aware Middleware for Web Services Composition. IEEE Transactions on Soft-
ware Engineering 30(5) (May 2004)

4. O’Sullivan, J., Edmond, D., ter Hofstede, A.: What’s in a Service? Distributed and
Parallel Databases 12(2-3), 117–133 (2002)

5. Recker, J., Mendling, J.: On the Translation between BPMN and BPEL: Conceptual
Mismatch between Process Modeling Languages,
http://citeseer.ist.psu.edu/recker06translation.html

6. Cohen, F.: Understanding Web service interoperability: Issues in integrating multi-
ple vendor Web services implementations (Februray 2002),
http://www.ibm.com/developerworks/webservices/library/ws-inter.html

7. Simon Guest: Top Ten Tips for Web Services Interoperability (August 2004),
http://blogs.msdn.com/smguest/archive/2004/08/12/213659.aspx

8. Ye, W.: Web Services Interoperability between J2EE and .NET (April 2005),
http://www.developerfusion.com/article/4694/

web-services-interoperability-between-j2ee-and-net-part-1/

http://citeseer.ist.psu.edu/recker06translation.html
http://www.ibm.com/developerworks/webservices/library/ws-inter.html
http://blogs.msdn.com/smguest/archive/2004/08/12/213659.aspx
http://www.developerfusion.com/article/4694/web-services-interoperability-between-j2ee-and-net-part-1/
http://www.developerfusion.com/article/4694/web-services-interoperability-between-j2ee-and-net-part-1/

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 15–27, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Design of Composable Services

George Feuerlicht1,2

1 Department of Information Technology,
University of Economics, Prague, W. Churchill Sq. 4, Prague, Czech Republic

2 Faculty of Engineering and Information Technology,
University of Technology, Sydney

P.O. Box 123 Broadway, Sydney, NSW 2007, Australia
jiri@it.uts.edu.au

Abstract. Service composition methods range from industry standard ap-
proaches based on Web Services and BPEL to Semantic Web approaches that
rely on AI techniques to automate service discovery and composition. Service
composition research mostly focuses on the dynamic (workflow) aspects of
compositions. In this paper we consider the static component of service compo-
sition and discuss the importance of compatibility of service interfaces in ensur-
ing the composability of services. Using a flight booking scenario example we
show that reducing the granularity of services by decomposition into service
operations with normalized interfaces produces compatible interfaces that fa-
cilitate service assembly. We then show how relational algebra can be used to
represent service operations and provide a framework for service assembly.

Keywords: Service composition, service assembly, service reuse.

1 Introduction

In general, the specification of service compositions consists of two parts: the static part
that involves the definition of services, including the service operations and their inter-
faces, and the dynamic part that defines the associated process workflow. It can be ad-
vantageous to treat the design of the static part of service compositions separately, as the
service operations can then be reused in the context of various process specifications [1].
We refer to this static part of service composition as service assembly in this paper. In
this context, the design of the inbound and outbound message structures is of paramount
importance as it determines the compatibility of service interfaces, and consequently the
composability of services into higher level business functions. A key determinant of
service composability and reuse is service granularity, i.e. the scope of functionality that
individual services implement. Increasing the scope of the functionality implemented by
a given service reduces the potential for reuse and therefore makes the assembly of ser-
vices more problematic. In previous publications we have described a methodological
framework for the design of services based on the data properties of interface parameters
that aims at achieving optimal level of service granularity [2, 3]. In this paper we extend
this framework and consider the problem of service assembly. Unlike some authors, for
example [4-8] who consider service composition a run-time problem and apply semantic

16 G. Feuerlicht

techniques to run-time resolution of compatibility conflicts, we regard service assembly a
design-time concern and focus on specifying compatible services interfaces. Further-
more, our analysis assumes that we are dealing with domain-wide services based on an
industry standard specification, avoiding incompatibilities arising from services designed
by individual service providers. Service assembly is a recursive process that produces
high-level (coarse-grained) services as compositions of elementary (fine-grained) ser-
vices. A key objective of service design is to ensure that services are both composable
and reusable so that higher level services can be implemented as assemblies of mutually
independent elementary services. Service compositions are typically implemented using
languages such as BPEL (Business Process Execution Language) to form complete busi-
ness processes, and we adopt the BPEL composition model as the basis for our analysis
[9]. BPEL compositions involve implementing higher level business functions using
previously defined Web Services accessible via partner links and externalizing the result-
ing functionality of the composite service via a WSDL interface. This process can be
repeated recursively, so that complex high-level business functions can be implemented
by aggregation of lower level services [10]. The BPEL model is a message-based para-
digm and the communication between Web Services involves mapping the results of
service invocations between the outbound and inbound messages of service interfaces
(i.e. the signatures of Web Service operations). Local and global BPEL variables are used
to store and manipulate the intermediate results of service invocations. It follows that
composability of services is dependent on the compatibility of interfaces of service op-
erations involved in the composition.

We have argued elsewhere that service interfaces can be treated as data parameters,
and that data engineering principles apply to the design of services [2]. In this paper
we extend this work to considerations of service composability. More specifically, we
argue that composability of services depends on compatibility of service interfaces
within the service assembly, and show that relational algebra formalism can be used
to represent the static part of service compositions. In the next section (sections 2) we
explore service composability in more detail and discuss the relationship between
service reuse and composability. We then illustrate the process of decomposing
coarse-grained services into elementary (fine-grained) services with normalized inter-
faces that facilitate service composition using a flight booking scenario (section 3). In
the next section (section 4) we show how relational algebra formalism can be used to
represent service operations and to describe service assembly. In the final section
(section 5) we summarize the main contributions of this paper, discuss related work
and outline further research.

2 Considerations of Service Reuse and Composability

Composability of services is closely related to service reuse. Many experts believe
that reuse is inherent to SOA (Service-Oriented Architecture), and studies show that
organizations regard reuse as the top driver for SOA adoption [11]. However, in prac-
tice reuse can be difficult to achieve and involves design-time effort to identify and
design reusable services. Once services are published it becomes very difficult to
improve the level of service reuse by runtime intervention, or by modifying the exter-
nalized service interfaces. It can be argued that the perception of improved reuse can
be mainly attributed to the ability to derive business value from legacy applications by

 Design of Composable Services 17

externalizing existing functionality as Web Services [12]. Others have noted that the
relatively low levels of service reuse can be attributed to poor design [13]. For the
purposes of this analysis it is important to understand the mechanism for service reuse
and how it differs from earlier approaches to software development. The mechanism
for service reuse is service aggregation and we can define service reuse as the ability
of a service to participate in multiple service assemblies/compositions; in this sense,
service composability can be regarded as a measure of service reuse. Service compo-
sition implements complex application functionality (for example, a composite ser-
vice can implement a hotel reservation, airline booking and a car rental to form a
complete travel agency service) by means of recursively composing services [14]. In
order to facilitate composition, the constituent services need to have characteristics
which allow reuse in composing services.

Services share the basic characteristics of components such as modularization, ab-
straction and information hiding, and design strategies used in earlier software devel-
opment approaches can be adapted to service design. However, there are significant
challenges to overcome as services are typically implemented at a higher level of
abstraction than components, and reuse potential is limited by the extensive use of
coarse-grained, document-centric services. Another factor that makes achieving good
levels of service reuse particularly challenging is that service-oriented applications
tend to span organizational boundaries and the design of services frequently involves
industry domain considerations. Emerging vertical domain standards such as the Open
Travel Alliance (OTA) [15] specification of (XML) message formats for the travel
industry domain are typically developed by committees or consortia which tend to
operate on a consensus basis and pay little attention to software design. Although
industry-wide standards are an essential prerequisite for e-business interoperability,
standardization of message structures and business processes alone does not ensure
reusability of services. The resulting message structures typically include a large
number of optional elements and embedded instructions that control the processing of
the documents [16]. This results in excessively complex and redundant data structures
(i.e. overlapping message schemas) that include a large number of optional data ele-
ments introducing high levels of data and control coupling between service operations
[17]. Consequently, Web Services based on such message formats do not exhibit good
levels of reuse and composability [18]. It is often argued that standardization leads to
reuse [19], but in order to achieve high levels of service reuse and composability,
detailed consideration needs to be given to service properties at design-time. More
specifically, services should be self-contained, have clearly defined interfaces that are
compatible across the domain of interest. These requirements lead to a consideration
of cohesion (i.e. maximization of service cohesion) and coupling (i.e. minimization of
coupling between services) resulting in fine-grained services that are associated with
improved level of service composability [20].

3 Identifying Composable Services

Most vertical-domain applications are characterized by coarse-grained services that
typically encapsulate high-level business processes and rely on the exchange of com-
posite XML documents to accomplish business transactions. This mode of operation
is widely adopted by the SOA practitioners for developing Web Services applications

18 G. Feuerlicht

to improve performance and reduce the number of messages that need to transmitted
to implement a specific business function [21]. Consider, for example, travel Web
Services based on the OTA specification implement flight booking business process
for a specific itinerary using two request/response message pairs: OTA_AirAvailRQ/
OTA_AirAvailRS and OTA_AirBookRQ/OTA_AirBookRS. The OTA_AirAvailRQ/
OTA_AirAvailRS message pair includes the data elements of requests and responses
for airline flight availability and point of sale information [15]. This situation is illus-
trated in Figure 1. The Availability Request message requests flight availability for a
city pair on a specific date for a specific number and type of passengers, and can be
narrowed to request availability for a specific airline, flight or booking class on a
flight, for a specific date. The Availability Response message contains the corre-
sponding flight availability information for a city pair on a specific date. The Avail-
ability request/response interaction is (optionally) followed by the Booking
request/response message exchange. The Book Request message is a request to book
a specific itinerary for one or more passengers. The message contains origin and des-
tination city, departure date, flight number, passenger information, optional pricing
information that allows the booking class availability and pricing to be re-checked as
part of the booking process. If the booking is successful, the Book Response message
contains the itinerary, passenger and pricing information sent in the original request,
along with a booking reference number and ticketing information.

The use of such complex (coarse-grained) data structures as payloads of Web Services
SOAP message improves performance, but significantly reduces reuse potential [22].

Fig. 1. OTA flight availability and booking message sequence

Decomposition of coarse-grained services into fine-grained (elementary) service
operations improves the opportunity for reuse and is a necessary precondition for
composability of services. In order to facilitate service composition, detailed consid-
eration needs to be given to service interfaces at design-time to ensure that individual
services are mutually compatible across a collection of related services. This leads to
the requirement for matching of interface parameters, so that for example, the Book-
ingReference (output) parameter of the BookFlight operation matches the Bookin-
gReference (input) parameter of the MakePayment operation. We explore this aspect
of service composition in the following sections, using an airline flight booking sce-
nario introduced in this section.

 Design of Composable Services 19

3.1 Decomposition of the Travel Booking Service

We make a number of simplifying assumptions including that the flights are one-way
with no stopovers and that flights for a given FlightNumber depart every day of the
week at the same time (DepartureTime). These simplifications make the example eas-
ier to follow while maintaining good correspondence to the real-world situation.
Unlike the coarse-grained message interchange pattern used by the OTA specification
(illustrated in Figure 1) this scenario breaks down the business function into fine-
grained service operations that closely match the requirements of the flight booking
dialogue. As argued elsewhere [13, 23], the benefits of this fine-grained design include
improved cohesion, reduction in coupling and better clarity. But, also importantly,
reducing granularity leads to improved flexibility, reusability and composability of
services, so that for example, the payment operation (MakePayment) is now separate
from the booking operation (BookFlight). As a result, it is possible to hold the booking
without a payment, furthermore, the MakePayment operation can be reused in a differ-
ent context, e.g. in a hotel booking service. In order to identify candidate service opera-
tions, we first model the flight booking dialogue using a sequence diagram (Figure 2),
and then define the corresponding service interfaces using simplified OTA data ele-
ments. Similar to the OTA message sequence shown in Figure 1, the sequence diagram
in Figure 2 describes the interaction between a travel agent and an airline. Each mes-
sage pair consists of a request (RQ) message and a response (RS) message that to-
gether form the interface of the corresponding candidate service operation. We can
now describe the flight booking function in more detail using a composition of 4 ser-
vice operations: FlightsSchedule, CheckAvailability, BookFlights, and MakePayment
as identified in the sequence diagram in Figure 2. The flight booking dialogue proceeds
as shown in Figure 3. The traveler supplies the values for DepartureCity, Destination-
City, and DepartureDate as input parameters for the FlightsSchedule operation. The

Fig. 2. Modified flight availability and booking message sequence

20 G. Feuerlicht

Fig. 3. Flight booking dialogue using fine granularity services

output of the FlightsSchedule operation produces a list of scheduled flights, i.e. corre-
sponding values of FlightNumber, DepartureTime, and ArrivalTime. The traveler then
selects a suitable flight (i.e. FlightNumber and DepartureDate) supplies the value of
Class (e.g. economy); the values of FlightNumber, DepartureDate and Class then form
the input for the CheckAvailability operation.

The output of the CheckAvailability operation includes information about flight
availability (SeatAvailable) and pricing information (Airfare and AirportTax).

Assuming that seats are available for the selected flight the traveler proceeds to
book the flight using the BookFlight operation that takes the values of FlightNumber,
DepartureDate, Class, and TravelerName as the input, and produces BookingRefer-
ence as the output. Finally, the traveler makes a payment using the MakePayment
operation supplying, credit card information (CreditCardNumber, CreditCardExpiry,
CreditCardName). The MakePayment operation accepts the input parameters Bookin-
gReference and TotalAmount (sum of Airfare and AirportTax) generated by the

 Design of Composable Services 21

BookFlight and SelectFlight operations, respectively, and produces ReceiptNo and
PaymentDate as the output parameters.

Table 1 describes the service interfaces for the operations FlightsSchedule,
CheckAvailability, BookFlights, and MakePayment showing the input and output
parameters.

Table 1. Flight availability and booking service operations

Operation Input Parameters Output Parameters
FlightsSchedule DepartureCity, DestinationCity, DepartureDate FlightNumber,

DepartureTime,
ArrivalTime

CheckAvailability FlightNumber, DepartureDate, Class DepartureCity,
DestinationCity,
DepartureTime,
ArrivalTime,
SeatAvailable,
AirFare, AirportTax

BookFlight FlightNumber,TravelerName,
DepartureDate,Class

BookingReference

MakePayment BookingReference, CreditCardNumber,
CreditCardExpiry,CreditCardName,
TotalAmount

ReceiptNo, PaymentDate

3.2 Data Analysis of Service Interfaces

Although the data used by the flight booking scenario is typically stored in different
databases belonging to different participants in the business process (i.e. travel agent,
airline, etc.), for the purposes of this analysis we assume that this data can be de-
scribed by a common (global) database schema. Although not explicitly defined, this
common schema is implicit in the industry-wide message specifications (i.e. OTA
message schema specification, in this instance). We note here that we do not make
any assumptions about how and where the data is stored; we simply use the underly-
ing data structures to reason about the composability of services. We also do not con-
sider issues related to state maintenance, as these are orthogonal to the considerations
of service composability. OTA specification also assumes that the data transmitted in
XML messages is stored persistently in the target databases and provides a number
of messages to synchronize the data across the various participants (e.g. OTA_
UpdateRQ/RS, OTA_DeleteRQ, etc.).

We can now proceed to analyze the underlying data structures as represented by
the data elements in the interfaces of the service operations. Data analysis of the con-
tent of the interfaces of service operations in Table 1 produces a set of 5 normalized
relations that constitute the database schema associated with the flight booking busi-
ness function:

Flights (FlightNumber,DepartureCity,DestinationCity, DepartureTime,ArrivalTime)

Schedule (FlightNumber,DepartureDate,AircraftType)

Availability (FlightNumber,DepartureDate,Class,SeatAvailable,AirFare,AirportTax)

22 G. Feuerlicht

Bookings (BookingReference,TravelerName,FlightNumber, DepartureDate,Class,Seat)

Payments (ReceiptNo,PaymentDate,CreditCardNumber,CreditCardExpiry,CreditCardName,
BookingReference)

Given the above normalized relations, we can observe by inspecting Figure 3 that
the assembly of the flight booking service takes place by passing the values of the key
attributes between the service operations. For example, the composite key of the
Availability relation (FlightNumber, DepartureDate, Class) forms the data flow be-
tween CheckAvailability and BookFlight operations, and the BookingReference (i.e.
the primary key of the Bookings relation) constitutes the data flow between Book-
Flight and MakePayment operations. This indicates that data coupling between the
service operations is minimized as the elimination of any of the parameters would
inhibit composition, e.g. removing Class from the dataflow between CheckAvailabil-
ity and BookFlight operations would prevent the composition of the flight booking
business function. Furthermore, the interface parameters are mutually compatible as
they share common data parameters. In summary, it can be argued that the normaliza-
tion of service interfaces results in service operations with high levels of cohesion,
low levels of coupling and mutually compatible interfaces; properties that signifi-
cantly improve service reusability and composability.

4 Describing Service Assembly Using Relational Algebra
Operations

In the previous section we have described the process of decomposition of services
into elementary service operation; service assembly involves reversing this process
and combining services based on interfaces data parameters. We have noted that cou-
pling between service operations involves data parameters that correspond to the keys
of the underlying relations. We can use this observation to express services using
relational algebra expressions or operator trees over the underlying schema [24]. For
example, the FlightSchedule operation can be expressed as:

PJFlightNumber,DepartureDate,ArrivalTime SLP1JNFlightNumber=FlightNumber(Schedule, Flights),

where PJ, SL, and JN represent projection, selection, and join operations respectively,
and P1 is a selection predicate (e.g. DepartureCity = “Sydney“ and DestinationCity =
“Melbourne“ and DepartureDate= “31-May-2007“).

We can now express the operation FlightSchedule and CheckAvailability in rela-
tional algebra, for clarity substituting values into the predicates using selection speci-
fication as shown below:

FlightSchedule:
PJFlightNumber,DepartureDate,ArrivalTimeSLDepartureCity=“Sydney“ and DestinationCity=“Melbourne“ and

DepartureDate=“31-May-2007“JNFlightNumber=FlightNumber(Schedule,Flights)

CheckAvailability:
PJDepartureCity,DestinationCity,DepatureTime,ArrivalTime,SeatAvailable,Airfare,AirportTax
SLFighNumber=“QF459“ and DepartureDate=“31-May-2007“ and Class=“Economy“
JNFlightNumber=FlightNumber(Flights,Availability)

 Design of Composable Services 23

Alternatively, the operations FlightSchedule and CheckAvailability can be ex-
pressed in the form of operator trees as shown in Figure 4. Figure 4(a) shows the
operator tree for the FlightSchedule operation. The output parameters of the Flight-
Schedule operation (FlightNumber, DepartureDate, Arrival-Time) appear at the top of
the operator tree, and the input parameters (DepartureCity=“Sydney” and Destina-
tionCity=”Melbourne” and DepartureDate =”31-May-2007”) form the predicate of
the SL (select) operation. Now, assuming that the traveler selects FlightNumber =
“QF459”, DepartureDate =”31-May-2007” and Class = “Economy”, this triplet of
values forms the input for the CheckAvailability operation shown in Figure 4(b).

 (a) (b)

Fig. 4. Operator tree representing the FlightSchedule (a) and CheckAvailability operation (b)

The output parameters of the CheckAvailability operation (DepartureCity, Destina-
tionCity, DepartureTime, ArrivalTime, SeatAvailable, AirFare, AirportTax) appear at
the top of the operator tree in Figure 4(b).

Having expressed service operations using relational algebra formalism we can
now proceed and express service assemblies as an algebraic expression [24]. So that,
for example we can combine the operations CheckAvailability and FlightSchedule to
produce a composite AirAvailability operation:

AirAvailability:PJDepartureCity,DestinationCity,DepatureTime,ArrivalTime,SeatAvailable,Airfare,AirportTax
SLFighNumber=“QF459“ and DepartureDate=“31-May-2007“ and Class=“Economy“
JNFlightNumber=FlightNumber(Flights,Availability,Schedule)

The expression for the AirAvailability operation uses the equivalence: R:P1 JNF
S:P2 = R JN S: P1 AND P2 AND F , where R and S are relations, P1 and P2 are selection
predicates, and F is the join expression. Figure 5 show the resulting AirAvailability
operation expressed as an operator tree. We now show the composite operation AirA-
vailability in the usual form that includes input and output data parameters, and can be
mapped into a WSDL specification:

24 G. Feuerlicht

Fig. 5. Operator tree of a composite operation AirAvailability

AirAvailability:
(IN: FlightNumber, DepartureDate, Class,
OUT: DepartureCity, DestinationCity, DepatureTime, ArrivalTime,

SeatAvailable, Airfare, AirportTax)

Using this approach provides a formal framework for static service composition
that allows decisions about the level of service aggregation to be based on considera-
tions of tradeoffs between complexity of run-time dialogue (i.e. chattiness of services)
on one hand, and software engineering properties of services such reusability, on the
other hand. The designer may, for example, decide to implement the CheckAvailabil-
ity and FlightSchedule service operations internally (i.e. within the service provider
system) and externalize the composite operation AirAvailability, gaining the benefits
of reuse (and composability) for internal applications, and at the same time reducing
the number of messages needed to implement the flight booking dialogue. This solu-
tion is similar to the remote façade design pattern use to implement coarse-grained
interfaces in object-oriented applications [25].

4 Conclusions and Related Work

Service composition methods range from industry standard approaches based on Web
Services and BPEL [26] that focus on defining the workflow of Web Services execu-
tion, to Semantic Web approaches that employ AI techniques to automate service
discovery and composition [27-28]. Service composition can be regarded as a special
category of the software composition problem that has been investigated in the con-
text of object-oriented software [29] and in the general area of software composition
[30]. Many researchers have applied formal methods and developed specialized com-
position languages to address the problem of composition [31-32]. As noted in the
introduction, service composition research mostly focuses on the dynamic (workflow)
aspects of compositions. We have argued in this paper that from the viewpoint of
service reuse and composability, the static part that involves the definition service
operations and their interfaces is of key importance. The design of the inbound and
outbound message structures determines the compatibility of service interfaces, and

 Design of Composable Services 25

consequently the composability of services into higher level business functions. The
main contribution of this paper is to show that composability (and reuse) of services
can be facilitated by designing services with compatible service interfaces and that
service assembly can then be achieved by service aggregation over the key attributes
of the underlying schema. We have also shown that relational algebra formalism can
be applied to the problem of representing service operations, and defining service
assemblies. Service decomposition and assembly framework based on data normaliza-
tion and relational algebra operations can provide a theoretical framework for com-
bining service operations to achieve desired business functionality and at the same
time maintaining high levels of service reuse.

A number of aspects of this approach deserve further investigation. Firstly, the po-
tential of using algebraic equivalence transformations for identifying alternative com-
position strategies and for optimizing the level of service granularity needs further
study [24]. Another potential use of the relational algebra formalism is in the area of
verification of the correctness of compositions, i.e. using algebra to prove the correct-
ness of static compositions. Finally, the examples used in the previous section (sec-
tion 3) involve services that represent query operations, i.e. operations that return data
values given a set of input parameters. Service operations that result in state change,
i.e. functions that generate new data values (e.g. Bookings and Payments) cannot be
directly represented by algebraic expressions and require further analysis to enable
their incorporation into this framework.

Acknowledgements

We acknowledge the support of MŠMT ČR in the context of grant GAČR 201-06-
0175 “Modification of the model for information management”.

References

1. Thöne, S., Depke, R., Engels, G.: Process-oriented, flexible composition of web services
with UML. In: Olivé, À., Yoshikawa, M., Yu, E.S.K. (eds.) ER 2003. LNCS, vol. 2784,
pp. 390–401. Springer, Heidelberg (2003)

2. Feuerlicht, G.: Design of Service Interfaces for e-Business Applications using Data Nor-
malization Techniques. Journal of Information Systems and e-Business Management, 1–14
(2005) ISSN 1617-98

3. Feuerlicht, G., Meesathit, S.: Design framework for interoperable service interfaces. In:
The Proceedings of 2nd International Conference on Service Oriented Computing, New
York, NY, USA, November 15 - 19, 2004, pp. 299–307 (2004) ISBN 1-58113-871-7

4. Wen-Li Dong, H.Y., Zhang, Y.-B.: Testing BPEL-based Web Service Composition Using
High-level Petri Nets. In: 10th IEEE International Enterprise Distributed Object Comput-
ing Conference (EDOC 2006), Hong Kong, pp. 441–444 (2006)

5. San-Yih Hwang, E.-P.L., Lee, C.-H., Chen, C.-H.: On Composing a Reliable Composite
Web Service: A Study of Dynamic Web Service Selection. In: IEEE International Confer-
ence on Web Services (ICWS 2007), pp. 184–191 (2007)

26 G. Feuerlicht

6. Keita, F., Tatsuya, S.: Dynamic service composition using santic information. In: Proceed-
ings of the 2nd international conference on Service oriented computing. ACM, New York
(2004)

7. Freddy, L., et al.: Towards the composition of stateful and independent semantic web ser-
vices. In: Proceedings of the 2008 ACM symposium on Applied computing. ACM, For-
taleza (2008)

8. Meng, X., et al.: A Dynamic Semantic Association-Based Web Service Composition
Method. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web
Intelligence. IEEE Computer Society, Los Alamitos (2006)

9. Arkin, A., et al.: Web Services Business Process Execution Language (WS-BPEL). OA-
SIS 2, Version, http://www.oasis.org

10. Yang, J.: Service-oriented computing: Web service componentization. Communications of
the ACM 46(10), 35–40 (2003)

11. Hurwitz, J., Bloor, R., Baroudi, C.: Thinking from Reuse - SOA for Renewable Business
(2006) (cited December 13, 2007),

 http://www.hurwitz.com/PDFs/IBMThinkingfromReuse.pdf
12. Feuerlicht, G., Wijayaweera, A.: Determinants of Service Resuability. In: The Proceedings

of 6th International Conference on Software Methodologies, Tools and Techniques, SoMet
2006, Rome, Italy, November 7-9 (2007) ISBN 0922-6389

13. Sillitti, A., Vernazza, T., Succi, G.: Service oriented programming: A new paradigm of
software reuse. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 268–280. Springer,
Heidelberg (2002)

14. Dustdar, S., Schreiner, W.A.: A survey on web services composition. International Journal
of Web and Grid Services 1(1), 1–30 (2005)

15. OTA, OTA Specifications (2008) (cited May 6, 2008),
 http://www.opentravel.org/Specifications/Default.aspx

16. Feuerlicht, G.: Implementing Service Interfaces for e-Business Applications. In: The Pro-
ceedings of Second Workshop on e-Business (WeB 2003), Seattle, USA (December 2003)

17. Eder, J., Kappel, G., Schrefl, M.: Coupling and Cohesion in Object-Oriented Systems. In:
Finin, T.W., Yesha, Y., Nicholas, C. (eds.) CIKM 1992. LNCS, vol. 752. Springer, Hei-
delberg (1993)

18. Feuerlicht, G., Lozina, J.: Understanding Service Reusability. In: The Proceedings of 15th
International Conference Systems Integration 2007, Prague, Czech Republic, June 10-12,
2007, pp. 144–150 (2007) ISBN 978-80-245-1196-2

19. Vogel, T., Schmidt, A., Lemm, A., Österle, H.: Service and Document Based Interopera-
bility for European eCustoms Solutions. Journal of Theoretical and Applied Electronic
Commerce Research 3(3) (2008) ISSN 0718–1876

20. Papazoglou, M.P., Heuvel, W.V.D.: Service-oriented design and development methodol-
ogy. International Journal of Web Engineering and Technology 2(4), 412–442 (2006)

21. Baker, S., Dobson, S.: Comparing service-oriented and distributed object architectures. In:
Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 631–645. Springer, Hei-
delberg (2005)

22. Feuerlicht, G.: Service aggregation using relational operations on interface parameters. In:
Georgakopoulos, D., Ritter, N., Benatallah, B., Zirpins, C., Feuerlicht, G., Schoenherr, M.,
Motahari-Nezhad, H.R. (eds.) ICSOC 2006. LNCS, vol. 4652, pp. 95–103. Springer, Hei-
delberg (2007)

23. Papazoglou, M., Yang, J.: Design Methodology for Web Services and Business Processes.
In: Proceedings of the 3rd VLDB-TES Workshop, Hong Kong, pp. 54–64 (August 2002)

 Design of Composable Services 27

24. Ceri, S., Pelagatti, G.: Distributed databases principles and systems. McGraw-Hill Com-
puter Science Series. McGraw-Hill, New York (1984)

25. Fowler, M.: Patterns of Enterprise Application Architecture. The Addison-Wesley Signa-
ture Series. Addison-Wesley, Reading (2002); Pearson Education, p. 533, ISBN 13:
9780321127426

26. Kloppmann, M., et al.: Business process choreography in WebSphere: Combining the
power of BPEL and J2EE. IBM Systems Journal 43(2), 270 (2004)

27. Bleul, S., Weise, T., Geihs, K.: Making a Fast Semantic Service Composition System
Faster. In: The Proceedings of The 9th IEEE International Conference on E-Commerce
Technology and the 4th IEEE International Conference on Enterprise Computing, E-
Commerce, and E-Services, 2007 CEC/EEE 2007, Tokyo, pp. 517–520 (2007) ISBN 0-
7695-2913-5

28. Chen, L., et al.: Towards a Knowledge-Based Approach to Semantic Service Composition.
LNCS, pp. 319–334. Springer, Heidelberg (2003)

29. Nierstrasz, O., Meijler, T.D.: Research directions in software composition. ACM Comput-
ing Surveys (CSUR) 27(2), 262–264 (1995)

30. Nierstrasz, O.M., et al.: Object-oriented software composition. Prentice Hall, Englewood
Cliffs (1995)

31. Kane, K., Browne, J.C.: CoorSet: A Development Environment for Associatively Coordi-
nated Components. LNCS, pp. 216–231. Springer, Heidelberg (2004)

32. Scheben, U.: Hierarchical composition of industrial components. Science of Computer
Programming 56(1-2), 117–139 (2005)

A Conceptual Framework for Unified and
Comprehensive SOA Management�

Ingo Müller1, Jun Han1, Jean-Guy Schneider1, and Steven Versteeg2

1 Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
{imueller,jhan,jschneider}@swin.edu.au

2 CA Labs, CA (Pacific), Melbourne, Victoria 3004, Australia
steven.versteeg@ca.com

Abstract. Business requirements, such as regulations and laws, corpo-
rate policies, quality of service aspects, etc. affect the management of
enterprise-scale SOA systems during different life-cycle stages. Such re-
quirements also induce interdependencies across different elements and
aspects of an SOA system. Therefore, a systematic approach to SOA
management must be in place in order to effectively govern the de-
velopment and execution of automated business processes throughout
the entire SOA life-cycle in compliance with business requirements. Un-
til now, industry and research have focused on specific management
aspects rather than unified and comprehensive solutions. This paper
addresses this issue by proposing a conceptual framework for SOA man-
agement that combines a micro-kernel/plug-in architecture with the con-
cept of management workflows. The micro-kernel incorporates a unified
registry/repository model, facilitating the extension of specific manage-
ment capabilities with plug-ins. Management workflows compose the ca-
pabilities of multiple plug-ins into comprehensive management processes
that can be linked to events in different places in an SOA system.

1 Introduction

Service-oriented architecture (SOA) constitutes a set of design principles and
best practices for guiding the implementation and execution of automated busi-
ness processes in heterogeneous IT environments. SOA is a complex design exer-
cise that intrinsically ties together business requirements, software engineering
aspects, and operational characteristics of IT infrastructures. It results in a mul-
titude of concrete architectures and implementations varying from small sets
of Web services to complex enterprise-scale mediation systems that automate
business processes across different application silos and organisational bodies.

The key to enterprise-scale SOA is business/IT alignment. In order to be suc-
cessful, SOA-based business process automation must yield maximum value for
a business at the lowest possible costs with acceptable risks and in compliance
with business requirements. Business requirements, including regulations and

� This work is supported by the Australian Research Council and CA Labs.

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 28–40, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Conceptual Framework for Unified and Comprehensive SOA Management 29

laws, corporate policies, quality of service aspects, etc. affect the management
of SOA systems during different life-cycle stages. They also induce interdepen-
dencies across different elements and aspects of an SOA system. Therefore, a
systematic approach to SOA management must be in place to effectively govern
the development and execution of automated business processes throughout the
entire SOA life-cycle in compliance with business requirements.

According to a recent Gartner press release [1], business/IT alignment is where
many SOA projects fail. The study identifies insufficient SOA governance as an
“increasingly significant” risk of failure and predicts that by 2010 “less than 25
percent of large companies will have the sufficient technical and organisational
skills necessary to deliver enterprise wide SOA.” Yet, industry and research have
not focused on comprehensive and unified governance solutions. Existing SOA
management products are fragmented, separate the management of different
assets and life-cycle stages, and focus primarily on engineering aspects of run-
time service management. Research contributions are either focused on abstract
design guidelines and best practices or on specific management aspects.

Business/IT alignment is crucial for enterprise-scale SOA, but yet little un-
derstood. We argue that an essential part of a systematic investigation of SOA
governance and management issues is the development of a conceptual software
framework that leverages required levels of business/IT alignment by unifying
the management of relevant assets across the entire SOA life-cycle. This paper
proposes such a framework that is aimed at enabling agile, unified, and com-
prehensive SOA management by combining a micro-kernel/plug-in architecture
with the concept of management workflows.

The rest of this paper is organised as follows. Section 2 outlines the funda-
mental concepts of SOA governance and SOA management as they motivate our
framework. Section 3 proposes our conceptual SOA management framework,
followed by an outline of the generic principles of management workflows in
Section 4. Current trends in industry and research are discussed in Section 5.
Finally, Section 6 summarizes this paper and gives an outlook to future work.

2 SOA Governance and Management

The structural openness at the architecture level, the diversity and complexity
of enterprise-scale SOA systems, and the mandatory compliance with business
requirements require explicit measures for the effective management of SOA sys-
tems. These measures are referred to as SOA governance. SOA governance can
be typified as means to reconcile the business requirements with the characteris-
tics of the existing IT infrastructure that affect an SOA system (Figure 1). This
reconciliation or mediation is also denoted as business/IT alignment.

The core activities of SOA governance are a top-down to-be analysis and
a bottom-up as-is analysis. The starting point of any SOA initiative must be
the clear definition of relevant assets (e.g. business services/processes, business
policies, etc.) that reflect functional and non-functional business requirements,
including aspects such as accountability, ownership, permissions, and compli-
ance to specific regulations, laws, standards, best practices, or quality of service

30 I. Müller et al.

Fig. 1. Illustration of the role of SOA as mediator between business requirements and
an existing IT infrastructure

requirements. The identification of business requirements is imperative for SOA
because they form the base for the design, implementation, and operation of
SOA-based automated business processes. Hence, we assume for the remainder of
this paper that all relevant business requirements are specified (in)formally with
a business reference model using existing standards such as BPMN or BPEL,
and frameworks such as ITIL, COSO, and Cobit.

SOA governance also encompasses an as-is analysis of the static and dynamic
properties of the existing IT infrastructure. It is essential to understand and
constantly validate the dependencies between business requirements and infras-
tructure characteristics. Therefore, SOA governance is a continuous process that
constantly ‘mediates’ between business requirements and the operational reality
in an SOA system. In that sense, SOA governance establishes a control process
on top of an SOA system as shown in Figure 2. The SOA control process puts
procedures in place for directing the automation, guiding the execution, and
controlling the compliance of business processes with business requirements. In
case violations are detected, respective procedures define and trigger mitigation
strategies.

Fig. 2. Illustration of the SOA governance control loop

The implementation and execution of SOA governance procedures with con-
crete concepts and techniques is denoted as SOA management. To ensure effec-
tive SOA governance, SOA management must address the following issues:

• Focus on all relevant assets in an SOA system. Assets model relevant en-
tities and aspects of an SOA system. For example, business services model

A Conceptual Framework for Unified and Comprehensive SOA Management 31

atomic business services and complex business processes. Business actors
model existing users and decision makers. Business policies model business
requirements. The mentioned assets form only the core set. There are typi-
cally more assets in concrete SOA projects.

• Define and manage the entire life-cycle for every asset. A simplified SOA life-
cycle model contains the four stages: development, deployment, execution,
and evolution. A life-cycle stage defines a set of artefacts and metadata
items that represent an asset. A life-cycle stage also specifies a set of valid
operations that can be performed to manipulate the representations of assets.
More complex life-cycle models exist. They may vary for different assets.

• Establish traceability. The aim of SOA governance is to support business/IT
alignment. Therefore, it is essential to manage accountability and compli-
ance of actions that process/manipulate assets in an SOA system (e.g. add
a service to a repository, enact a business process). Besides the real-time
monitoring and validation of such actions and the overall system status,
persistent records must be kept in form of logging and audit trails.

Effective SOA management generates large amounts of data (audit trails for
tracking actions performed on assets) and includes extensive run-time moni-
toring (interception and introspection of messages). Therefore, SOA manage-
ment/governance has a direct impact on the performance of an SOA system,
leaving SOA practitioners with a difficult problem. As the Gartner press re-
lease [1] points out: “there is no one size fits all” approach to SOA management
because “too little or too much governance will kill an SOA project.” Accord-
ingly, an SOA management approach must be customisable to specific business
requirements and characteristics of an SOA system.

Fig. 3. Simplified UML deployment diagram of a generic enterprise-scale SOA system
(The asterisks mark prospective locations for manager components)

Consider a generic enterprise-scale SOA system as depicted in Figure 3. In
general, an SOA system can be structured into three sections, denoted as miles.
The first mile spans the section of an SOA system between a client application
and a gateway/entry point to the SOA mediation tier. The middle mile en-
compasses a mediation tier of intermediaries (e.g. Enterprise Service Bus) that
virtualise the location and technology of the actual service components. The
last mile contains atomic and composite service components that expose and

32 I. Müller et al.

aggregate the functionality of components of existing applications and software
systems. Hence, composite services are an integral part of an SOA system in
order to enable the uniform management of atomic services and compositions of
services, respectively.

There are a number of requirements for an SOA management approach that
can be drawn from the generic layout of an SOA system and the scope of SOA
management as outlined before:

1. SOA management is performed in various places in an SOA system. Manage-
ment facilities are typically incorporated directly at the beginning of every
mile of an SOA (as marked with asterisks in Figure 3) to ensure ‘end-to-end’
management of service requests.

2. SOA management is performed by manager components that consist of three
logical parts: (i) a sensor, a policy enforcement point (PEP) that intercepts
messages, (ii) a decision maker, a policy decision point (PDP) that analyses
messages according to well-defined policies and rules, and (iii) an actuator
that triggers actions (e.g. message manipulation, event notification, mitiga-
tion activities) according to the outcome of the decision making.

3. Manager components perform local management of ‘what matters and where
it matters’ in a lightweight fashion to limit the impact on the performance
of a managed SOA system to a minimum.

4. Manager components coordinate and synchronise their activities within and
across miles that are affected by service requests. A ‘single form of record’ is
required in order to enable manager components to aggregate and share in-
formation about assets, their representations, and monitoring/logging data.

5. Manager components can be flexibly adapted to changes of business require-
ments/the existing IT infrastructure. The separation of business function-
ality from management functionality and the use of declarative techniques
enables non-invasive, extensible, and agile management approaches that re-
duce the need for extensive coding and recompilation.

6. SOA management approaches are customisable. They can be tailored to
the specific scope and requirements of an SOA project. They facilitate the
incorporation of various techniques and technologies to solve management
aspects in an appropriate manner, e.g. utilise management capabilities of the
existing IT infrastructure such as federated identity management (to reduce
the costs of an SOA project and to capitalise on tested IT infrastructure).

3 Conceptual Management Framework

We propose a generic framework for unified and comprehensive SOA manage-
ment of enterprise-scale SOA systems based on the requirements outlined above.
To meet these requirements, an SOA management system cannot exhibit a mono-
lithic or any other rigid structure that imposes limiting constraints on the target
SOA system. Hence, we argue SOA management should be implemented into an
SOA system as a sub-system in form of a hub-spoke architecture such that the

A Conceptual Framework for Unified and Comprehensive SOA Management 33

Fig. 4. UML component diagram of the proposed SOA management framework

spokes can be flexibly intertwined with business logic components of the SOA
system. Based on the general assertion that service-oriented design principles are
good means for developing agile, extensible, and adaptable software systems, we
intend to utilise this concept together with a lightweight architectural style in a
uniform SOA management framework as shown in Figure 4.

The centrepiece of our SOA management framework is a micro-kernel that
models a unified registry/repository as a ‘single form of record’. The micro-
kernel establishes a facade to a shared data space of an enterprise-scale registry/
repository. It provides uniform access to information about all relevant assets and
their corresponding representations from disparate sources in an SOA system
and, for example, enables a comprehensive impact analysis of changes to any
relevant asset. Although the micro-kernel represents the central hub component
in the hub-spoke architecture, it can be implemented in a distributed manner.
The micro-kernel implements functionality (Data API) to (i) register/de-register
adapters to access databases/data sources, and their respective data models, (ii)
handle discrepancies in the various data models with the help of adapters, and
(iii) enable uniform data query and manipulation operations.

The organisation of the registry/repository is oriented on the definition of
the ebXML Registry/Repository standard [2] which is aimed at managing any
kind of electronic content, that is, XML documents, text files, and arbitrary
binary content. An instance of electronic content that represents the whole or
parts of an asset (also denoted as artefact) is stored in the repository section.
Moreover, metadata (associated with artefacts) is stored in the registry section.
Accordingly, the repository is a sink for artefacts whereas the registry embodies
a cataloguing system that keeps standardised metadata for enabling the effective
management and manipulation of the repository content.

The micro-kernel does not provide SOA management functionality other than
for querying and manipulating artefacts and metadata items, respectively. Actual
management functionality must be implemented as management capabilities and
must be connected to the micro-kernel as plug-ins. Hence, the micro-kernel pro-
vides functionality (Plug-in API) to (i) register/de-register plug-ins, (ii) discover
and match management capabilities, and (iii) invoke management capabilities.

34 I. Müller et al.

Management capabilities can access and manipulate artefacts and metadata
items in the registry/repository through the Plug-in API of the micro-kernel.
The permissions to do so depend on the properties of the actor whose service
request triggered a management action, and the affected assets and their state.
Permissions are verified by a specific management capability prior to execution.
Management capabilities may be of different granularity and complexity rang-
ing from simple event notification, template validation, or the creation of an
audit trail record to the integration of external IT management systems (e.g. for
utilising federated identity management).

The micro-kernel also provides functionality (Client API) for manager com-
ponents to request management capabilities for supporting the monitoring, en-
forcement, and tracking of the compliance of service provisioning activities with
business requirements. Manager components are situated in the SOA system
infrastructure next to the service components they manage. They intercept mes-
sages to and from the managed service components in a transparent fashion. A
manager component comprises of three logical units that provide functionality
for different aspects of SOA management: (i) intercepting messages, (ii) perform-
ing decision making, and (iii) executing actions on messages and/or in the SOA
system. The logical units of a manager component may be distributed depend-
ing on particular management aspects, specific business requirements, and the
characteristics of the managed SOA system.

Manager components are typically situated in every mile of an SOA system.
First mile manager components provide capabilities to client applications e.g.
to dynamically discover services, negotiate and fix SLAs, validate, manipulate,
and transform messages to meet security requirements. They may be embedded
into a remote API in order to be installed on client computers outside the actual
SOA infrastructure. They are crucial for managing SLAs because they are lo-
cated closest to the service consumers and, therefore, are most suitable to assess
the consumer experience. There is typically a 1-to-1 relationship between client
applications and first mile manager components.

Middle mile manager components are located in the mediation tier of an
enterprise-scale SOA system which means either at a gateway to the mediation
tier or in a container with intermediary components. They are primarily con-
cerned with authentication, authorisation, security, and performance aspects and
may be involved in message transformation and routing activities. They may also
monitor type and number of specific service requests in order to provide statisti-
cal information for optimised routing and utilisation of infrastructure elements.
There is typically a 1-to-1 or 1-to-n relationship between middle mile manager
components and intermediary components.

Last mile manager components are placed in container with the service com-
ponent they monitor. They enforce the enactment of business processes and
manage consequential effects (e.g. logging statistical data, creating audit trail
records, sending event notifications to subscribers) in compliance with relevant
business requirements, standards, and technologies that are implied by disparate
development teams, existing IT infrastructures, organisational bodies, etc. They

A Conceptual Framework for Unified and Comprehensive SOA Management 35

are also responsible for triggering appropriate mitigation actions in case existing
software systems and applications that are represented by services malfunction
or violate particular business requirements. There is typically a 1-to-1 or 1-to-n
relationship between last mile manager components and service components.

Manager components operate based on management workflows. Management
workflows represent procedural context-aware knowledge about how to apply and
enforce business requirements for the enactment of business services/processes
with respect to the properties of the requesting actor. Management workflows
can be understood as the glue that ties together relevant business requirements
and activities in an SOA system for the implementation and execution of au-
tomated business processes. As such, management workflows are the technical
means that implement SOA governance procedures in order to ensure the ‘direct-
operate-control’ SOA governance control loop. Management workflows utilise the
components of the SOA management framework by specifying compositions of
management capabilities that define how business requirements are enforced, for
example, what information of intercepted messages is required, how it is pro-
cessed, and what actions are triggered depending on the outcome of decision
making processes. The use of declarative techniques for defining management
workflows increases the agility of our SOA management approach because it al-
lows the flexible adaptation to changes without coding efforts, re-compilation,
or re-starting of affected manager components.

4 Outline of Management Activities

This section outlines the generic principles of how the management workflow
concept integrates in an SOA system. For the sake of simplicity we illustrate
the intertwined processing of service requests and management workflows with
a simplified scenario in which one manager component is assigned to exactly one
service component as shown in Figure 5.

Fig. 5. Example scenario with one client, one manager, and one service component

The management of a request of an atomic service works as follows:

1. An actor triggers a service request message that is sent by the client to an
appropriate service component.

2. Before the message arrives at the service component it is intercepted by its
associated manager component in a transparent fashion.

3. The manager component inspects header/payload of the message in order to
determine its context (properties of actor/requested services). Based on the

36 I. Müller et al.

Table 1. Sequential management workflow for an incoming service request

Task Description

1 Retrieve service requester identity and obtain credentials/permissions.
2 Verify requester credentials against security and access policies.
3 Verify request message format based on an XSD template.
4 Validate request message contents according to pre-conditions, e.g. semantics

of parameter values and value ranges.

retrieved information, the manager component selects a suitable manage-
ment workflow from the registry/repository that encompasses management
tasks for all relevant business requirements (cf. Table 1 for a simple example).

4. The manager component enacts the management workflow using the mes-
sage as input. The tasks of the management workflow process data from
the message and may alter, add, or remove data from the message. Upon
execution, a management task raises a flag in case a policy is violated.

5. If all management tasks have been successfully executed, the message is sent
to the service component. If a policy is violated, the manager component does
not send the message to the service component but generates and returns
an error message to the client.

6. The service component executes the requested business service and produces
a response message that is subsequently sent back to the client.

7. The response is also transparently intercepted by the manager component
which then performs steps 2 - 4 on the response message according to an-
other management workflow (cf. Table 2 for a simple example). If all tasks
of the management workflow have been successfully executed, the manager
component passes on the response message to the client. In case of failure,
an error message is generated and returned to the client.

Table 2. Sequential management workflow for an outgoing service response

Task Description

1 Create and store audit trail record.
2 Annotate response message with performance metrics information.
3 Send event notifications to subscribed listeners.

The manipulation of messages with annotations is a powerful means for the
manager component to provide additional information or to correct the header/
payload of a message to guide the processing of service requests. Message an-
notations are also a powerful means for exchanging information or coordinat-
ing management activities among distributed manager components across and
within first/middle/last miles in more complex scenarios.

Hence, message annotations are essential for coordinating the activities be-
tween different manager components involved in the management of business
processes. Firstly, because we do not assume the existence of additional com-
munication channels between management components. Secondly, because the

A Conceptual Framework for Unified and Comprehensive SOA Management 37

Fig. 6. Relationship between manager components and services in a composite service

relationships between manager components are dynamic depending on specific
service requests, message routing, etc. Therefore, the master manager compo-
nent associated with a composite service component coordinates the activities
of slave manager components associated with component services via message
annotations (cf. Figure 6).

5 Trends in Industry and Research

The topic of SOA management and governance marks an active area of develop-
ment in industry and research in academia. The vendors of SOA infrastructure
products have transformed their offerings in the past 5 years from disparate
development tools and simple UDDI registries into comprehensive SOA infras-
tructure and management suites. The key driver of this evolution is the need for
products to support close loop management and closer business/IT alignment in
order to be beneficial for practitioners. Despite the progress, industry products
still expose a number of open issues.

Firstly, full interoperability among and within product suites for truly uni-
fied SOA management is not available due to disparate tool sets and standards
(vendor lock-in) and growth by acquisition strategies (e.g. IBM SOA foundation
includes products of the WebSphere, Rational, and Tivoli product families). Var-
ious product suites comprise heterogeneous tools of partially overlapping func-
tionality and/or limited interoperability. Thus, manual workarounds are often
required that prevent the fully systematic and automated management of assets
throughout all life-cycle stages.

Secondly, although a ‘single form of record’ service registry/repository is typi-
cally described as the pivotal element for effective SOA management (e.g. Strnadl
[3]) existing products suites incorporate multiple disconnected local repositories.
Moreover, most product suites separate service registry (based on the limiting
UDDI standard) from metadata repositories resulting in the poor utilisation of
metadata for service discovery and impact analysis.

Thirdly, existing product suites support the aggregation of management ca-
pabilities in the form of simple approval/promotion workflows that cannot be
substantially extended. As a consequence, different management aspects are typ-
ically handled separately.

38 I. Müller et al.

Fourthly, existing product suites are primarily focused on engineering aspects
of service run-time management and policy enforcement. They leverage only lim-
ited business/IT alignment in form of business activity monitoring (BAM) that
allows the definition and monitoring of business-level key performance indica-
tors (KPI). In general, the systematic mapping between business-level aspects
and engineering-level models and methods is still not well understood. The ex-
pressiveness of BAM is currently restricted to simple metrics and decision mak-
ing/decision support. Policy management is concentrated on engineering aspects
for implementing security, reliability, and transaction management.

Research has also shown a great deal of interest in SOA management and
governance. Papazoglou et al. [4] lists the topic of service management and mon-
itoring as one of four key research topics in the area of SOC. And, there already
exists a significant body of research results. Firstly, research work investigated
specific management capabilities. The interested reader is referred to Papazoglou
et al. [4] for an overview.

Secondly, research work was conducted on general conceptual frameworks that
are aimed at guiding practitioners in designing, implementing, deploying, and
operating SOA systems. Although, SOA management is an intrinsic part of these
conceptual frameworks, management aspects are not explicitly investigated as
discussed by Arsanjani et al. [5]. Moreover, these conceptual frameworks typi-
cally remain at a high level of abstraction. As an example, consider the busi-
ness/enterprise architecture level by Schepers et al. [6] and Roach et al. [7].

Thirdly, a few research activities address the problem of SOA management
with the same scope as we do. Arrott et al. [8] describes an extended service
component concept denoted as rich service. A rich service models functional and
non-functional aspects of one business service/process. It can be flexibly man-
aged and extended via its internal message bus and plug-in mechanism. However,
the focus of this concept on the component level restricts the modelling and coor-
dination of management activities across components. In contrast, our approach
is focused on the system level. Siljee et al. [9] outlines DySOA which is a manage-
ment infrastructure that links a set of management components (similar to our
manager components) to every service component in an SOA system. DySOA is
focused on QoS-driven run-time management of services. Unlike our approach, it
does not promote the unified management of all relevant assets throughout the
full SOA life-cycle. Belter’s work [10] provides a generic high-level framework
for service management systems that is centred on a UDDI service registry. The
framework is focused on comprehensive management of all relevant SOA assets.
However, our framework is more specific. Belter’s contribution omits informa-
tion about how elements of the management system interleave with components
of the managed SOA system, how management capabilities are implemented,
extended, adapted, and how business policies are enforced.

The latest EU Research Framework Programme (www.cordis.europa.eu/
fp7) addresses the current lack of research of the complex problems of busi-
ness/IT alignment and SOA management/governance by providing significant

A Conceptual Framework for Unified and Comprehensive SOA Management 39

funding for a number of large projects including Compass (www.compas-ict.eu),
Master (www.master-fp7.eu), and S-Cube (www.s-cube-network.eu).

6 Summary and Future Work

Industry and research have until now only focused on specific management aspects
rather than unified SOA management. We argue that a unified and systematic ap-
proach to SOA management is essential to effectively govern enterprise-scale SOA
systems in compliance with business requirements. Therefore, we have proposed a
conceptual framework for fostering unified and comprehensive SOA management
as part of a systematic investigation of SOA governance and management issues.
Our framework is characterized by its flexible micro-kernel/plug-in architecture
and the concept of management workflowswhich enables agile context-based man-
agement of assets such as business services/processes, policies, and actors. In fu-
ture work, we plan to verify our framework by investigating specific management
issues and incorporating the results into the framework based on our expertise in
configurable adaptive systems [11], software composition [12], and policy-based
management of service registries [13] in order to create techniques and tools that
support practitioners in their daily work.

References

1. Goasduff, L., Forsling, C.: Bad Technical Implementations and Lack of Gover-
nance Increase Risks of Failure in SOA Projects. Online Press Release (June 2007),
http://gartner.com/it/page.jsp?id=508397

2. Breininger, K., Farrukh Najmi, N.S.: ebXML Registry Services and Protocols, Ver-
sion 3.0 (2005),
http://docs.oasis-open.org/regrep/regrep-rs/v3.0/regrep-rs-3.0-os.pdf

3. Strnadl, C.F.: Bridging Architectural Boundaries Design and Implementation
of a Semantic BPM and SOA Governance Tool. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 518–529. Springer, Hei-
delberg (2007)

4. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: a Research Roadmap. International Journal of Cooperative Information
Systems 17, 223–255 (2008)

5. Arsanjani, A., Zhang, L.J., Ellis, M., Allam, A., Channabasavaiah, K.: S3: A
Service-Oriented Reference Architecture. IEEE IT Professional 9, 10–17 (2007)

6. Schepers, T., Iacob, M., Van Eck, P.: A Lifecycle Approach to SOA Governance.
In: Proceedings of the 2008 ACM Symposium on Applied Computing (SAC 2008),
Fortaleza, Brazil, pp. 1055–1061. ACM Press, New York (2008)

7. Roach, T., Low, G., D’Ambra, J.: CAPSICUM - A Conceptual Model for Service
Oriented Architecture. In: Proceedings of the 2008 IEEE Congress on Services -
Part 1 (Services), Honolulu, USA, pp. 415–422. IEEE Computer Society Press, Los
Alamitos (2008)

8. Arrott, M., Demchak, B., Errnagan, V., Farcas, C., Farcas, E., Krüger, I.H., Menar-
ini, M.: Rich Services: The Integration Piece of the SOA Puzzle. In: Proceedings of
the IEEE International Conference on Web Services (ICWS 2007), Salt Lake City,
USA, pp. 176–183. IEEE Computer Society Press, Los Alamitos (2007)

www.compas-ict.eu
www.master-fp7.eu
www.s-cube-network.eu
http://gartner.com/it/page.jsp?id=508397
http://docs.oasis-open.org/regrep/regrep-rs/v3.0/regrep-rs-3.0-os.pdf

40 I. Müller et al.

9. Siljee, J., Bosloper, I., Nijhuis, J., Hammer, D.: DySOA: Making Service Sys-
tems Self-adaptive. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005.
LNCS, vol. 3826, pp. 255–268. Springer, Heidelberg (2005)

10. Belter, R.: Towards a Service Management System in Virtualized Infrastructures.
In: Proceedings of the IEEE International Conference on Services Computing (SCC
2008), Honolulu, USA, pp. 47–51. IEEE Computer Society Press, Los Alamitos
(2008)

11. Coleman, A., Han, J.: Coordination systems in role-based adaptive software. In:
Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp.
63–79. Springer, Heidelberg (2005)

12. Lumpe, M., Schneider, J.G.: A Form-based Metamodel for Software Composition.
Journal of Science of Computer Programming 56, 59–78 (2005)

13. Phan, T., Han, J., Schneider, J.G., Ebringer, T., Rogers, T.: Policy-Based Service
Registration and Discovery. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 417–426. Springer, Heidelberg (2007)

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 41–52, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Metrics Suite for Evaluating Flexibility and
Complexity in Service Oriented Architectures

Mamoun Hirzalla1, Jane Cleland-Huang2, and Ali Arsanjani3

1 DePaul University and IBM
mhirzall@cs.depaul.edu

2 DePaul University
jhuang@cs.depaul.edu

3 IBM
arsanjan@us.ibm.com

Abstract. Service Oriented Architecture (SOA) is emerging to be the predomi-
nant architectural style of choice for many organizations due to the promised
agility, flexibility and resilience benefits. However, there are currently few
SOA metrics designed to evaluate complexity, effort estimates and health status
of SOA solutions. This paper therefore proposes a SOA metrics framework
which includes both service level and SOA-wide metrics to measure design and
runtime qualities of a SOA solution. The SOA-wide metrics predict the overall
complexity, agility and health status of SOA solutions, while service level
metrics focus on the fundamental building blocks of SOA, i.e. services. The
combined views deliver a compelling suite of SOA metrics that would benefit
organizations as they consider adopting SOA. These metrics, which are based
on observations of many SOA engagements, are illustrated through a case study
that describes a recent ongoing project at IBM where SOA was utilized to build
the solution assets.

Keywords: SOA metrics, SOA complexity, agility, flexibility, SOA health.

1 Introduction

Service Oriented Architecture (SOA) is becoming an increasingly popular architec-
tural style that focuses on providing the right tools and methods for building distrib-
uted applications. The fundamental building blocks of SOA are repeatable business
tasks realized as services and implemented in a variety of distributed components
such as CORBA, EJBs and web services [9].

From a business perspective, one of the primary objectives of SOA-based systems
is the alignment between business and IT and the flexibility and business agility that
SOA injects into an organization [9]. This is achieved through systematically design-
ing and building a SOA-based solution using a method such as SOMA, invented and
initially developed in IBM [7]. SOMA defines key techniques and provides prescrip-
tive tasks and detailed normative guidance for analysis, design, implementation, test-
ing, and deployment of services, components, flows, information, and policies needed

42 M. Hirzalla, J. Cleland-Huang, and A. Arsanjani

to successfully design and build a robust and reusable SOA solution in an enterprise
[7]. However SOMA, like other SOA-based methodologies, does not provide tech-
niques or metrics for measuring underlying complexity and flexibility qualities of a
SOA-solution.

This paper therefore proposes a new suite of metrics, designed specifically to
evaluate flexibility and agility versus complexity of a SOA solution. The set of met-
rics can be used to provide a diagnosis for the health of a SOA solution by providing
information about services used within a SOA solution, their composition interfaces
or provided operations, architectural decisions, flexibility, agility and complexity. The
term “health” of SOA solutions is not limited to the metrics or characteristics identi-
fied in this paper. Obviously, there are other elements that must be considered to
determine the overall health of a SOA solution. SOA Governance with its emphasis
on security, management and testing is a major factor to consider when evaluating
such a question. This paper will focus on the architectural considerations as they per-
tain to the “health” factor.

The proposed SOA metrics are grouped into two major categories: design-time
SOA metrics and run-time SOA metrics. Table 1 summarizes the metrics categories
and their applicability.

Table 1. Individual Design-time and Run-time SOA Metrics

Classification Metric Name Metric Applicability
Design-time Weighted Service Interface Count (WSIC) Service
Design-time Stateless Services (SS) Service
Design-time Service Support for Transactions (SST) Service
Design-time Number of Human Tasks (NHT) Service
Run-time Number of Services (NOS) SOA Solution
Run-time Service Composition Pattern (SCP) SOA Solution
Run-time Service Access Method (SAM) SOA Solution
Run-time Dynamic vs. Static Service Selection (DSSS) SOA Solution
Run-time Service Realization Pattern (SRP) Service
Run-time Number of Versions Per Service (NOVS) Service

These metrics were identified as a result of experiences gained from engaging in

building numerous SOA solutions. More traditional object-oriented (OO) metrics can
also be used to evaluate the internal complexities of individual services [6]. Although,
each metric is individually reported, results are also aggregated in terms of three indi-
ces, a general SOA Complexity Index (SCI), a Services Complexity Index (SVCI),
and a Flexibility and Agility Index (FAI). Table 2 provides a list of the proposed SOA
indices and their descriptions.

These metrics can be captured as part of the SOMA lifecycle. Design-time metrics are
gathered during the identification, specification, and realization phases, while runtime
metrics are gathered during implementation and deployment. Furthermore, metrics collec-
tion is not difficult, because metrics can be automatically collected through inspecting
SOA artifacts such as a service’s Web Service Description Language (WSDL) file,
Choreography Description File (CDL), related policies documents, or through in-
specting SOAP messages and source code.

The remainder of this paper is laid out as follows. Section 2 provides a survey of
SOA metrics, and explains why OO metrics are useful yet insufficient for measuring

 A Metrics Suite for Evaluating Flexibility and Complexity in SOA 43

SOA solutions. Section 3 introduces and describes SOA design-time metrics. Section 4
introduces and describes SOA runtime metrics. Section 5 demonstrates the usefulness of
the metrics through a case study taken from a recent ongoing project that utilized SOA
to build the solution assets. While this case study does not empirically validate the pro-
posed metrics, it illustrates how they could be reasonably used to evaluate the complex-
ity and agility of a SOA solution and provide some indications regarding the health of a
SOA solution. Finally, section 6 concludes with a discussion for future work.

Table 2. Aggregate SOA Indices

SOA Index Description

SOA
Complexity
Index (SCI)

Measures the inherent complexity of the SOA solution including its security,
management and SOA governance measures, all of which offer significant benefits but
also increase the complexity of the overall SOA

Services
Complexity
Index
(SVCI)

Measures complexity, but looks at the individual complexities of each of the composed
services

Flexibility
and Agility
Index (FAI)

Tracks the flexibility and agility of the SOA solution, which represent SOA’s primary
objective to bring business agility and flexibility to an organization [4]

2 Background Information

Measurement is an important component of any process improvement initiative.
Software metrics enable qualities of interest to be measured and evaluated, in order to
identify potential problems, and to provide insight into the costs and benefits of a
potential solution. Unfortunately current SOA metrics are relatively immature and
tend to suffer from many of the problems previously identified by Chidamber and
Kemerer in respect to early OO metrics. These problems include lack of desirable
measurable properties, over generalization, focus on specific technologies, and collec-
tion difficulty [6].

Although OO metrics [6] can be used to measure the internal complexity of a ser-
vice built on the OO paradigm; they are not sufficient for measuring more global
SOA qualities. A few researchers have proposed various SOA metrics. For example,
Liu et al. [2] developed complexity and attackability metrics and showed that com-
plexity has a negative impact on security. Their Average Service Depth metric com-
putes the average number of dependency relationships per atomic service node, as
representatives of various software capabilities within a system. Rud et al. [1] focused
on the infrastructure and performance aspects of SOA solutions and identified many
SOA metrics that are granular in nature. These metrics were classified into the three
major areas of complexity, criticality and reliability, and performance metrics. They
identified a relationship between complexity of a service and amount of time required
to build such a service. Qian et al. [3] developed decoupling metrics for SOA soft-
ware composition such as Average Service State Decomposition (ASSD), Average
Service Persistent Dependency (ASPD) and Average Required Service Dependency
(ARSD), and used it to evaluate decoupling between service-oriented components in

44 M. Hirzalla, J. Cleland-Huang, and A. Arsanjani

the service composition such as Business Process Execution Language (BPEL); a
useful set of metrics that should be considered for loose coupling considerations as
part of the health status of SOA solutions.

Unfortunately, none of these metrics provide a comprehensive approach for meas-
uring flexibility and agility which represent significant factors in the short and long-
term success of a SOA solution. In contrast, the metrics proposed in this paper are
specifically designed to evaluate the impact of SOA architectural decisions upon the
flexibility, agility and complexity of a SOA solution.

3 SOA Design-Time Metrics

The four metrics defined in this section measure the flexibility, agility, and complex-
ity of the solution in respect to design time decisions. The metrics are independent of
the underlying code, and could be applied to either JEE web services or .Net services.
Metrics are first computed for individual services and then compiled into a more
global metric and applied to the FAI, SVCI, and SCI indices.

Metric 1: Weighted Service Interface Count (WSIC)

Definition: WSIC = The weighted number of exposed interfaces or operations per
service as defined in the WSDL documents. The default weight is set to 1. Alternate
weighting methods, which need to be validated empirically, can take into considera-
tion the number and the complexity of data types of parameters in each interface. In
the default case, WSIC simply returns a count of the number of exposed interfaces or
methods defined in the WSDL documents.

Hypothesis: The higher the number of service interfaces the more complex a service
becomes and by association the more complex a SOA solution becomes. In addition,
there is a direct relationship between the complexity of the exposed interfaces and the
complexity of the data structures required per interface.

Observations: The greater the number of defined interfaces per service within a SOA
solution the more complex a service becomes due to the following factors. (i) The
amount of work required to specify, construct and test every interface on the service
increases. (ii) The amount of monitoring required to ensure that service level agree-
ments (SLAs) are met increases with every invocation of an interface. (iii) With the
increase in complexity of individual interfaces of the data structures for a given ser-
vice, performance and problem determination concerns may become a primary issue.
Performance and root cause issues are hard to predict and diagnose.

Impact on defined indices: Both SVCI and SCI increase as WSIC increases. There
is no impact on the FAI index.

Metric 2: Stateless Services (SS)

Definition: SS = The fraction of services which are stateless (SLS) as opposed to
stateful (SFS) as defined in the Web Services Resource Framework (WS-RF) [8] or
WS-Context [12]. SS = SLS / (SLS + SFS).

 A Metrics Suite for Evaluating Flexibility and Complexity in SOA 45

Hypothesis: Developing stateful web services is much harder than developing state-
less web services and therefore increases the complexity of a given service.

Observations: Both WS-RF and WS-Context define how to support stateful interac-
tions while using the web services programming model. WS-RF follows a resource-
based approach to support state, while WS-Context uses a context that resembles
shared state management across different interacting web services. Regardless of
which approach is used, supporting transactions in web services will add an additional
layer of complexity to programming web services. Complexity also increases with an
increase in the number of web services that are participating in a stateful interaction.

Impact on defined indices: SVCI increases as the raw count of SFS services in-
crease. Both SCI and FAI increase with decreased SLS values, i.e. when the fraction
of stateless services increases. SCI would increase by a higher value if SLS fraction of
stateless services decrease compared to stateful services.

Metric 3: Service Support for Transactions (SST)

Definition: SST = The fraction of transaction-aware services (TAS) in relation to the
overall number of transaction-aware and non-transaction aware (NTAS) services
within the SOA solution. SST = NTAS/(NTAS+TAS)

Hypothesis: Web services supporting transactions are more complex to build and as a
result increase the overall complexity of SOA solutions.

Observations: Traditional transaction systems use a two-phase commit protocol to
achieve atomicity between transaction participants. Support of transactions in web
services is accomplished through support of the WS-TX specification which includes
the WS-Coordination, WS-Atomic Transaction and WS-Business Activity specifica-
tions [10]. The WS-TX specification requires additional code that needs to be included
in the body of a web service and its invoking client. In order to maintain consistency of
transactions, compensating transactions are required to provide correct compensation
actions. Furthermore, the coordination between transaction-aware services requires
additional effort that injects additional complexity into building transaction-aware
services and SOA solutions.

Impact on defined indices: SVCI increases as the raw count of transaction-aware
services increase. SCI increases as SST values increase, i.e. when the fraction of
transaction-aware services increases. FAI is relatively unaffected by support for trans-
actions in web services. However, extensive use of transactions is likely to constrict
how flexible and agile a SOA solution becomes.

Metric 4: Service Realization Pattern (SRP)

Definition: SRP = The fraction of services that are realized through Indirect Exposure
(IE) in respect to the total number of services that are realized using both IE and Di-
rect Exposure (DE). SRM = IE /(IE+DE)

Hypothesis: The more indirect exposure service realizations in SOA solution, the
more complex a service becomes and by association the more complex a SOA solu-
tion becomes.

46 M. Hirzalla, J. Cleland-Huang, and A. Arsanjani

Observations: There are many service realization patterns that can be used for expos-
ing and using services including the two primary patterns of Direct Exposure (DE)
and Indirect Exposure (IE). DE refers to exposing current IT systems or modules as a
service without having to go through an intermediary component. For example, a
stored SQL procedure could be turned into an information service directly by wrap-
ping it through a web service and exposing the web service to consuming clients.
Indirect Exposure, on the other hand, refers to exposing current IT systems or a mod-
ule as a service by going through an intermediary component such as an EJB. Direct
Exposure services provide a much faster method for creating and invoking services.
They also require less time to decide on appropriate interfaces since they tend to
match the interfaces that can be exposed from the legacy asset. Direct Exposure ser-
vices also require less time to develop and test due to the direct connectivity with the
backend system. In comparison, Indirect Exposure realization of services entails addi-
tional IT components to mediate between a service and an IT asset. While this pro-
vides additional flexibility to the overall SOA solution, it also increases the time to
build and test such services, and requires additional management and monitoring
steps to ensure services and their associated components are functioning properly.

Impact on defined indices: SVCI increases with the use of IE realization of services
and decreases with the use of DE realization. SCI will increase with the increase in
the value of the SRP. The higher the ratio of DE to IE realizations, the less complex-
ity. This is inversely related to the ratio of IE services to the overall number of both
DE and IE services. In other words, the lower the ratio, the less complexity. FAI de-
pends on the ratio of DE services to the overall number of both DE and IE services.
The lower the ratio, the more flexible and agile a SOA solution will be. This is in-
versely related to the ratio of IE services to the overall number of both DE and IE
services. In other words, the lower the ratio, the less complexity.

Metric 5: Number of Human Tasks (NHT)

Definition: NHT = The fraction of tasks as part of a business flow that are manual.

Human Tasks (HT) in a process flow are important due to their need in real life sce-
narios. For example, a business process flow can invoke many services to automate a
banking process that requires the final verification of an auditor through a human
interaction. The judicious use of human tasks within a process is accepted as a fact of
life. However, with the increased use of human tasks, we end up with less flexible
processes within a SOA solution. NHT is computed as NHT = HT/(HT+AT) where
AT refers to an automated task.

Hypothesis: The use of too many Human Tasks in a SOA solution increases com-
plexity and decreases flexibility of a SOA solution.

Observations: BPEL defines business processes as collections of activities that
invoke services. BPEL doesn't distinguish between services that are provided by ap-
plications and other interactions, such as human interactions. From our metrics per-
spective, any human task that is being executed as part of a BPEL flow within a SOA
solution will have an impact on both complexity and flexibility.

 A Metrics Suite for Evaluating Flexibility and Complexity in SOA 47

Impact on defined indices: There is no direct impact on the service complexity due
to the use of human tasks. However, the maintenance issues associated with manual
tasks will increase the overall complexity of such tasks and therefore increasing the
overall value of the SCI. In addition, too many human tasks will negatively impact the
flexibility and agility of the overall SOA solution and decreases the value of the FAI.

4 SOA Run-Time Metrics

SOA run-time metrics measure the overall complexity and agility of a SOA solution.
As a result, SOA metrics help in achieving the overall objective of exposing overly
complex SOA architectures and provide insights into the flexibility factor of a SOA
solution. In order to calculate the SOA run-time metrics, multiple SOA components
are considered such as ESB, registry, and SOA governance.

Metric 6: Number of Services (NOS)

Definition: NoS =Total number of services that comprise a SOA solution

Observations: Greater numbers of services increase the complexity of a SOA solu-
tion due to the following factors. (i) An increase in the amount of work required to
identify, specify, create, test, deploy and maintain such services. (ii) The need to pro-
vide better SOA Governance and service lifecycle management for the services within
a SOA solution becomes more critical as the number of services used within a SOA
solution increase. (iii) The increased number of services within a SOA solution usu-
ally places additional demand on the SOA infrastructure where services are deployed
to meet service level agreements (SLAs) and scalability requirements.

Hypothesis: The higher number of services within a SOA solution, the more complex
a SOA solution becomes.

Impact on defined indices: SVCI is not impacted. SCI increases as the number of
services increase.

Metric 7: Service Composition Pattern (SCP)

Definition: SCP = The fraction of web services which are composite.
An Atomic Service (AS) is a web service that can stand on its own and does not re-
quire the use of other web services to complete its functionality. In contrast Composite
Services (CS) are composed of other web services through aggregation, also referred to
as structural composition [12] (CSs), or at runtime through invocation and orchestra-
tion of services through use of a workflow (CSwf). SCP is computed as SCP = CS /
(AS + CSs + CSwf) and can be further refined according to the composition method.
SCPs measures the fraction of composite services constructed using aggregation, while
SCPwf measures the fraction composed at runtime. These two metrics are defined as
follows: SCPs = CSs / (AS + CSs) and SCPwf = CSwf / (AS + Cswf).

Hypothesis: The use of composite services in a SOA solution increases both com-
plexity and flexibility of a SOA solution.

Observations: Service orchestration refers to the collaboration among services that is
driven by a central component or workflow engine, while service choreography refers

48 M. Hirzalla, J. Cleland-Huang, and A. Arsanjani

to the collaboration among different parties that are each responsible for one or more
steps of service interaction. The complexity of choreography stems from the fact that
no central entity controls the process as a whole and therefore gleaning insight into
the overall picture of the process status requires additional effort. Managing the state
of service choreography often leads to complications due to the many events that need
to be triggered and correlated to ensure proper execution of business functionality.

Impact on defined indices: There is no impact on the SVCI for an atomic service.
However, structural composition will increase the value of the SVCI. An increase in
SCP leads to an increase in both FAI and SCI.

Metric 8: Service Access Method (SAM)

Definition: SAM = The fraction of services accessed using a virtualization layer,
referred to as Virtualized Access Services (VAS), in respect to the total number of
services that are VAS or accessed point to point(PPS). SAM = VAS / (VAS + PPS)

Hypothesis: Virtualized access to services within a SOA solution increases the flexi-
bility and agility of a SOA solution but also increases its complexity.

Observations: Services can be accessed directly by an invoking client or through a
broker component, referred to as an Enterprise Service Bus (ESB) which looks up the
address of required services through a registry component, retrieves the Web Service
Definition Language (WSDL) file, and then binds to that service during the invocation
process. The ESB in essence provides a virtualization layer so that invoking clients do
not need to know individual physical addresses of services. The ESB is responsible for
routing and translating requests and responses among service requestors and service
providers. The method of invocation will be referred to as Virtualized Access Services
(VAS). The invocation of services also plays a role in the level of complexity associ-
ated with this metric. Services that are invoked directly are considered point to point
(PPS) connections and are harder to maintain. On the other hand, services invoked
through an ESB are easier to maintain but more complex to setup, because adding an
ESB component to the overall SOA solution is not a simple task. It requires proper
planning and design of the ESB and interacting services. The inclusion of a service
registry is not considered a factor for this metric since it is dependent on the level of
SOA governance and management required as part of the overall SOA solution, and is
likely to be introduced when the number of services exceeds a threshold level.

Impact on defined indices:

There is no impact on SVCI. Over the long-term SCI decreases as SAM increases, i.e.
use of point to point connections increase. FAI also decreases as SAM increases.

Metric 9: Dynamic vs. Static Service Selection (DSSS)

Definition: DSSS = The number of services that are selected dynamically (DS) over
the total number of services that are selected dynamically or statically (SS).
DSSE = DS/(DS+SS).

Hypothesis: The more dynamic selection of services for execution within a SOA
solution the more complex, flexible and agile a SOA solution becomes.

 A Metrics Suite for Evaluating Flexibility and Complexity in SOA 49

Observations: Service consumers can invoke services through the typical stub and tie
classes that are generated by the available tools in the market place. However, there are
instances where the business logic requires a truly dynamic method for invoking the
proper service based on a business rule that mandates a better service for a platinum-level
customer to maintain their loyalty. In such scenarios, having a broker in the middle and
the proper advertising of available services becomes mandatory. For this kind of sce-
nario, the ESB and registry along with service monitoring software will play a significant
role. However, it increases the overall complexity of maintaining a SOA solution. As
Dynamic service invocation provides better flexibility and agility since a process can
adapt much quicker than a process those hard codes static locations of services.

Impact on defined indices: There is no impact on SVCI. The higher the ratio of SSE,
the higher the complexity of a SOA solution; SCI therefore increases as SSE in-
creases. Moreover, the higher the ratio of SSE, the more flexible a SOA solution.

Metric 10: Number of Versions per Service (NOVS)

Definition: NOVS = The total number of versions over the total number of services
within the SOA solution. NOVS = VERSIONS / SERVICES

Hypothesis: The higher the number of service versions the more complex a service
becomes and by association the more complex a SOA solution becomes.

Observations: The number of versions available in production per service is depend-
ent on the level of change that services undergo while they are in production. It may
signal an unstable service interface in the first place and a situation where services
were rushed into production. The greater the number of available versions per service
within a SOA solution the more complex a service becomes due to the following
factors. (i)The amount of work required to keep track of service versions and their
associated clients. Multiple service versions may also provide different SLAs for
different consumers. The SOA Governance and management aspects of tracking ser-
vice versions will become harder with every new service version that is maintained.
(ii) The amount of regression testing required per service version increases if a com-
mon defect is discovered in one of the service versions. Therefore, additional time is
required in order to ensure that all service versions are operating uniformly for similar
business logic. The proliferation of many versions for the same service may point to
lack of proper design that considers the level of reuse required. Reusable services tend
to be more carefully planned, designed and implemented.

Impact on defined indices: Both SVCI and SCI increase as NVS increases. There is
no impact on FAI.

5 Case Study

The metrics described in this paper still need to be empirically evaluated across multi-
ple SOA applications to determine if they are complete and relatively non-redundant.
In this section we briefly describe their use in a case study which is representative of
multiple internal projects developed at IBM. The customer in the case study is a bank
that is considering a SOA solution to address some of the primary pain points related to
its Account Open business process. The current process was riddled with manual tasks

50 M. Hirzalla, J. Cleland-Huang, and A. Arsanjani

that were causing the Account Open process to extend to 14 days instead of 10 minutes
as offered by the bank’s primary competitors.

One of the primary business objectives of the bank’s SOA Solution was to inject agil-
ity and flexibility into the Account Open business process while trying to minimize com-
plexity of the overall SOA solution. At a high level, the Account Open business process
consisted of two primary sub-processes: Account Verification and Account Activation.

SOMA was used to model the optimized business process and identify and specify
the services needed to realize the new business process vision. Candidate services
were identified using SOMA’s top down and bottom up approaches and SOMA’s
service litmus test (SLT) was applied to rationalize and verify candidate services.
These services were developed from existing assets or else programmed from scratch.
The SOA solution was built in three iterations. The first iteration of service creation
focused on creating new services that were used to automate previous manual tasks
such as credit check and address validation. The second service connectivity iteration
focused on integrating disparate systems within the bank through the incorporation of
an ESB to virtualize access to services and enhance the overall flexibility of the solu-
tion. Finally the Interaction and Collaboration iteration provided an enhanced user
interface to the web channel by incorporating the automated steps of the newly opti-
mized Account Open business process with the created services.

Fig. 1. Account Open SOA Solution Stack

Figure 1 provides a quick overview of the solution stack for the SOA solution.
Identified services were utilized through the business process layer. Some services
used the indirect exposure realization pattern while other services connected directly
to backend systems. The solution stack does not reflect the physical architecture of
the solution. The physical architecture of the solution included a layer for the ESB to
virtualize access to services.

Table 3 provides an overview of the services used for the Account Open SOA solu-
tion. The Interaction and Collaboration (I&C) iteration was the most complex due to the
total number of services used within the iteration and the utilized service realization

 A Metrics Suite for Evaluating Flexibility and Complexity in SOA 51

patterns. The (I&C) iteration’s SRP metric value is equal to 1 which is the highest value
for the metric. This indicates higher complexity levels for service development since
services are using an additional indirection layer to complete their capabilities. On the
other hand, flexibility and agility index is higher for the same indirection reasons men-
tioned earlier due to the loose coupling that indirect exposure injects into a SOA solution.

Table 3. Services and metrics from the Open Account case study

Notes:
- All services were stateless, provided no support for transactions, had only a single version, and utilized

virtualized access. These columns are therefore not shown in the table.
- The NOS metric column contains two values since the metric distinguishes between the ratios of external

services vs. internal services relative to the overall number of services.

The I&C iteration produced less flexibility due to the existence of a manual human

task, however this was seen as a necessary tradeoff because a human needed to verify
the final steps of the account for a certain percentage of applicants. This is compen-
sated for by the SRP metric since all I&C iteration service realization patterns are done
through indirect exposure which provides looser coupling for the overall SOA solution.

The determination of health of the SOA application based on the short analysis that
was completed is a more complex question given the limited amount of data. As indi-
cated earlier in this paper, additional SOA governance parameters need to be evalu-
ated. However, from the limited information that we collected for this case study,
there are no red flags that can be raised to indicate an unhealthy behavior or any ma-
jor issues with the health of the given SOA solution.

6 Future Work

The primary contribution of this paper is the proposed set of metrics that should be
tracked and measured for every SOA engagement so that better insight can be gleaned
into the complexity, agility and flexibility of the SOA application. However, one of the
common problems with new metrics suite is the difficulty of empirically validating and
calibrating them across a number of projects. For example, the case study demonstrates

52 M. Hirzalla, J. Cleland-Huang, and A. Arsanjani

the need to weight each metric to provide more accurate complexity, flexibility, and
agility measurements. For example, table 3 shows a slightly higher value of SCP for the
Service Connectivity iteration. It also shows a positive value for DSSS metrics which
tends to increase complexity. By definition, this should have resulted in more complex-
ity for the Service Connectivity which is true. However, from real life experience the
Service Connectivity iteration took longer to accomplish due to increased complexity as
a result of other metrics in the table such as SRP and WSIC. Despite these problems,
this paper has proposed a reasonable set of metrics, identified as a result of observing
numerous SOA deployments. Future work will include empirical assessment of these
metrics and the identification of additional ones in order to build a demonstrably useful
set of SOA metrics for predicting complexity, flexibility, and agility across a broad
spectrum of SOA applications. Additional work is also required to provide clear meth-
ods for calculating the values of the proposed aggregate SOA indices and interpret their
implications in terms of SOA flexibility, agility and complexity.

Acknowledgments. We would like to thank our colleague Russell Hartmann from
IBM for his help in providing the data for the case study.

References

1. Rud, D., Schmietendorf, A., Dumke, R.R.: Product Metrics for Service-Oriented Infra-
structure. In: International Workshop on Software Measurement/Metrikon 2006 (2006)

2. Liu, Y.M., Traore, I.: Complexity Measures for Secure Service-Oriented Software Archi-
tectures. In: The International Workshop on Predictor Models in Software Engineering
(PROMISE 2007) (2007)

3. Qian, K., Liu, J., Tsui, F.: Decoupling Metrics for Services Composition. In: Proceedings
of the 5th IEEE/ACIS International Conference and Information Sciences and 1st
IEEE/ACIS International Workshop on Component-Based Software Engineering, Software
Architecture and Reuse (ICIS-COMSAR 2006) (2006)

4. Arsanjani, A., Allam, A.: Service-Orineted Modeling and Architecture for Realization of
an SOA. In: IEEE International Conference on Services Computing (SCC 2006) (2006)

5. Arsanjani, A., Zhang, L., Ellis, M., Allam, A., Channabasavaiah, K.: S3: A Service-
Oriented Reference Architecture. IT Pro., 10–17 (June 2007)

6. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE Trans-
actions on Software Engineering 20(6), 476–493 (1994)

7. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA: A
method for developing service-oriented solutions. IBM Systems Journal 47(3), 377–396
(2008)

8. Web Services Resource Framework (WSRF), http://docs.oasis-open.org/wsrf/
wsrf-primer-1.2-primer-cd-02.pdf

9. Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison Wesley, San
Francisco (2005)

10. OASIS Web Services Transaction (WS-TX) landing page, http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=ws-tx

11. Ferguson, D.F., Stockton, M.L.: Service Oriented Architecture: Programming Model and
Product Architecture. IBM Systems Journal 44(4), 753–780 (2005)

12. Web Services Context Specification (WS-Context),
 http://xml.coverpages.org/WS-ContextCD-9904.pdf

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 53–65, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Simulation of IT Service Processes with Petri-Nets

Christian Bartsch1, Marco Mevius1, and Andreas Oberweis2

1 FZI Research Center for Information Technology, Software Engineering,
Haid-und-Neu-Str.10-14, 76131 Karlsruhe, Germany

{bartsch,mevius}@fzi.de
2 Universität Karlsruhe (TH), Institute AIFB, Kaiserstraße 89, 76133 Karlsruhe, Germany

{andreas.oberweis}@kit.edu

Abstract. Due to a steadily increasing market for IT services, providers need to
set apart from their competitors in order to successfully assert with their service
offerings in the market. As a result the improvement of the quality of service
process provisioning is becoming a major aspect. In this paper we propose a Pe-
tri-net based approach in order to model and simulate service processes in terms
of availability levels. Supported by a tool service providers can perform a priori
estimations during design time on the potential impact and interaction of avail-
abilities of services involved in provisioning processes. We additionally show
how obtained results can be taken into account for negotiating availability le-
vels in Service Level Agreements (SLA).

Keywords: IT Service Process, Availability Pattern, Petri-Net, Process Model-
ing, Process Simulation.

1 Introduction

Service providers need to set apart from their competitors in order to successfully
compete with their service offerings in the market. Besides classical selling proposi-
tions such as price, customer proximity or product quality, the quality of providing
complete and flexible service processes is becoming a key differentiator from the
competition [1]. This is motivated by the fact that the basic thing that matters to the
customer is the usage of services based on agreed typical indicators within the domain
of IT service management. This could be service availability, time to restore a service,
response time or performance level. Furthermore the provisioning of IT services is
increasingly based on the modularization of whole service processes. This characteris-
tic offers certain potential for reducing costs and enhancing service quality at the
same time [2].

Hidden from customers to a certain extent providers have to establish methods and
procedures in order to manage service processes concerning quality aspects. One
aspect could be the maximum service availability which can be provided to a custom-
er. This knowledge is important as service level agreements (SLA) between respec-
tive stakeholders contain such metrics. Additional penalties might also be taken into
account for being part of an SLA in case of nonfeasance. In practice the determination
of service levels for availability during the SLA negotiation phase is often based on a

54 C. Bartsch, M. Mevius, and A. Oberweis

rule of thumb. Providers offer a certain percentage for a complete service process not
knowing about availabilities of partial services involved. A validation of availability
values agreed in an SLA usually occurs after the signing of the contract. An a priori
estimation for example based on simulation in order to reduce risks of nonfeasance
can help providers with identifying feasible levels for service processes. They can
“play around” with availability levels of services being part of an offered service
process. The precise modeling of service processes and the resources [3] enabling
certain process steps utilizing Petri-nets is supposed to support service providers to
make assumptions about what availability levels are feasible for potential service
offerings. The formal representation allows a systematic a priori simulation of availa-
bility values for IT service processes. In addition to this the quality of service
processes is affected twofold. On the one hand side service providers are able to iden-
tify potential bottlenecks regarding the overall process availability by simulating the
impact and interactions of all availabilities of IT services involved. On the other hand
the ability to perform a priori estimations could support customers in identifying the
required service levels in order to leverage and maximize the performance of their
respective business processes. In this paper we introduce a new Petri-net based ap-
proach for modeling and simulating service processes in terms of availability levels in
order to foster a priori estimations during design time. The approach to be introduced
is based on High-level Petri-nets. In High-level Petri-nets, complex objects can be
represented. IT service processes are modeled as a manipulation of these objects.
High-level Petri-nets not only feature significant advantages with respect to IT service
process modeling. Their precise foundation allows straightforward simulation and
further extensive analysis. Moreover, High-level Petri-nets support the development
and implementation of control and monitoring tools for a continuous improvement of
the relevant IT service processes. It is highlighted how Petri-nets can be deployed for
service modeling within the IT service management domain in order to improve
quality aspects for potentially offered and provided service processes.

In Chapter 2 we discuss related work. We then introduce the basic concepts of Pe-
tri-nets and IT service processes in Chapter 3. Afterwards we present in Chapter 4 an
approach for modeling the availability of IT services and show how IT service
processes can be simulated in order to support contracting service level agreements.
Subsequently we present in Chapter 5 two extensive simulation experiments and the
findings which can be derived from the results of the simulations.

2 Related Work

Various publications such as [4, 5] contribute to the topic of business process man-
agement. Modern languages for business process management (e.g. the Business
Process Execution Language (BPEL)1, Business Process Modeling Language
(BPML)2 or ebXML Business Process Specification Schema (BPSS)3) focus on the
tracking and execution of business processes by a business application. The formal
analysis and monitoring of process performance is not considered. Different methods

1 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
2 http://www.omg.org/docs/dtc/06-02-01.pdf
3 http://www.ebxml.org/

 Simulation of IT Service Processes with Petri-Nets 55

and description languages have been proposed for process modeling. Most of them
are based on textual programming languages or graphical notations such as dataflow
diagrams, UML state charts, Event-driven Process Chains (EPCs), Petri-nets or re-
lated notations [6, 7]. They can be divided into semi-formal methods, e.g., EPCs [8],
and formal methods, e.g., Petri-nets [9, 10]. Semi-formal methods, especially EPCs,
are very popular, widely disseminated and easy to use. They do, however, exhibit
major shortcomings especially if they support the modeling and simulation of busi-
ness processes with one integrated method [11]. These shortfalls can be overcome by
the use of Petri-nets. On the basis of different definitions and interpretations of their
static and dynamic modeling components different types of Petri-nets have been de-
rived to date. High-level Petri-nets (Predicate/Transition nets [12] or Colored Petri-
nets [13]) have proven to be suitable for modeling complex dynamic systems. They
support an integrated description of structural and behavioral characteristics of dy-
namic systems. In recent years, enhancements have been made in order to improve the
modeling of objects with more complex structures using High-level Petri-nets. Nested
Relation/Transition nets combine the concept of complex structured objects with the
Petri-net formalism [14]. Motivated by the increasing acceptance and dissemination
of the XML standard [15], XML-nets were derived (for a detailed description we refer
to [16]). The major advantages of the process-oriented High-level Petri-net-based
modeling of IT service processes can be summarized as follows:

• High-level Petri-nets are capable of modeling and simulating availability levels
of IT services in order to foster a priori estimations during design time.

• High-level Petri-nets provide capabilities for modeling complex objects with a
hierarchical structure which can typically be found in IT service processes.

• By using standards, High-level Petri-nets support the intra- and inter-
organizational exchange of service level information and thereby foster standar-
dized design, implementation and monitoring of pre-defined performance levels.

• A High-level Petri-nets-based software prototype can be directly linked to simu-
lation relevant information. It automatically simulates and executes pre-defined
simulation runs of IT service processes.

For these reasons, High-level Petri-nets are not only suited for modeling business
processes but also for the integrated process simulation and analysis especially in the
domain of IT services and Service Level Management. SLM comprises proactive
methodology and procedures to ensure that adequate availability levels of IT services
are delivered to all IT users in accordance with business priorities and at acceptable
cost [17]. One of the main ways for publishing services is by setting up a service level
agreement (SLA) between the IT department and the business. The SLA is a docu-
ment that defines and identifies the various services offered by a service provider to
its clients. Since SLAs provide the term and conditions that define the services ren-
dered by a provider, it then limits its scope of support, therefore minimizing produc-
tion cost [18, 19]. It describes the services along with a regime for managing how
well these are delivered. They are typically defined in terms of the availability, res-
ponsiveness, integrity and security delivered to the users of the service [17]. It states a
commitment to range, quantity and quality of services of service providers. The size
of service levels must be justifiable and benefit the business as a whole. If this is not
the case then such service levels should be renegotiated [20]. Various research

56 C. Bartsch, M. Mevius, and A. Oberweis

approaches and results exist in the context of SLAs and quality of service (QoS) with-
in respective domains such as Web Services [21, 22, 23], mobile communication [24],
IT Management [25, 26] or supply chain management [27]. They primarily focus on
the modeling, monitoring and analysis of SLAs but scarcely use the benefit of simula-
tion for determining the impact of IT services on the service processes they support.
This knowledge could be used – especially if considering service availability aspects
– in order to enhance the definition of service levels during design time.

3 Petri-Nets and IT Service Processes

Petri-nets [10] are a formal graphical process description language that combines the
advantages of the graphical representation of processes with a formal definition. They
allow the representation of a class of real-world processes by utilizing a graphical
process schema. Petri-nets consist of static components (places, depicted by circles)
and dynamic components (transitions, depicted by rectangles) that are connected by
edges. In the following we assume that the reader has basic knowledge about the
functionality of Petri-nets. For illustration purposes we present a Place/Transition net
in Figure 1 that describes a simplified example derived from the IT Service Manage-
ment domain.

Fig. 1. Example for Place/Transition net

A ticket, represented as an individual object in place “service incident ticket”, can
be processed by transition “identification&diagnosis” if an object is available in place
“IT service”. The transition can fire and because of a branch the ticket object is fired
to the places “service incident diagnosed” and “customer notified”. As there is a loop
between place “IT service” and transition “identification&diagnosis” the same object
is sent back to its origin place.

The major task of business performance analysis on the basis of availability levels
is the assessment of alternative business process designs with respect to a given set of
objectives. In addition to methods commonly applied in Business Process Manage-
ment (BPM), in particular High-level Petri-nets support analysis based on simulation.
Simulation in process-oriented management of IT service processes aims, for exam-
ple, at validating the defined exceptional states and the corresponding customizing
activities. Due to their formal foundation Petri-nets can directly be executed and
therefore be used to simulate the described process [28]. A simulation engine

identification &
diagnosis

resolution &
recovery

service incident
ticket

customer
notified

service incident
diagnosed

service restored &
ticket closed

IT service

identification &
diagnosis

resolution &
recovery

service incident
ticket

customer
notified

service incident
diagnosed

service restored &
ticket closed

IT service

 Simulation of IT Service Processes with Petri-Nets 57

interprets the formal syntax and semantics of the Petri-net and transforms it into a
machine-readable code [6]. A widespread technique to formally model services, is
based on Petri-nets [3].

4 Availability Modeling and Simulation of IT Service Processes

In this section we present an approach to model and configure the availability of IT
services and the service processes they support. The availability of an IT service is the
percentage of possible time that the service is online or available to use. A service
should be available on demand as often as possible in order to be able to serve users
needs when they need them to be served [29]. We assume that in case of an IT service
enabling the execution of certain activities within service processes it is mandatory
that a service is available as soon as the processing of a certain object through an
activity requires it. Figure 2 illustrates the states of service availability we differen-
tiate within the IT service management domain.

Diagnosis
Repair

Recover
Detect

Service unavailable Service available

Time Between System Incidents - MTBSI

Uptime
(Time Between Failures - MTBF)

Downtime
(Time To Restore Service - MTRS)

Incident x
start

Restore

Incident y
start

Time

Fig. 2. States of service availability

As soon as any internal or external event triggers an incident x of an IT service and
is detected by respective tools it passes into the state unavailable. The total period that
an IT service is unavailable for operational use within an agreed service time is called
downtime . 1 1

In order to finally restore the failed IT service several steps such as diagnosing the
cause of fault as well as repairing and recovering the service must be processed. All
steps can take a different time. The period from detecting to restoring the IT service is
the time to restore a service (MTRS). The service is now available again.

The determination of service availability always requires an agreed service time
 being the value during which a particular IT service is agreed to be fully

available. The total period that an IT service is operational within an agreed service
time is called uptime and takes the probability into account – being identical
with key figure availability – to which a service will not fail.

 2

58 C. Bartsch, M. Mevius, and A. Oberweis

The time until the next incident y causes another failure of the same IT service is
the time between two failures (MTBF). The Availability of an IT service is the
ability to perform its required function over a stated period of time. The availability of
a service considers all occurred downtimes during an agreed service time. We define: ∑

 3

Availability pattern for IT services
For simulation purposes the formal modeling of service processes and the respective
IT service availabilities with Petri-nets requires closer examination on the representa-
tion of service downtimes and the corresponding Time To Restore Service
involved. With the following pattern shown in Figure 3 we can model the aforemen-
tioned metrics.

()nsp1 ()nst4

()nst3

()nsp4

ns Service IT

)(1 spp)(2 spp)(1 spt

sp Process Service IT

()nsp2

()nst1)(nsa

()nsp3

)(1 nsa−()nst2

Fig. 3. Availability pattern for IT services

It can therefore be interpreted as representative of a respective IT service in
terms of availability. The proposed availability pattern based on Petri-nets can be used
as a type of resource in order to enable the execution of a (semi-) automatic process
step within a service process. A transition is connected to the respective sup-
porting IT service . A marking of the considered IT service process and IT
services enables a transition if it marks every place in • . If
is enabled within , then it can fire, and its firing leads to the successor marking

. In this depiction we simplified the IT service process and assume a
linear process executing process steps sequentially. For simulation purposes each
pattern – representing a single IT service – needs an individual initial configuration
in terms of probability of service failure 1 and the average period from de-
tecting an IT service failure to restoring the service for operational .
Especially the last metric, represented by transition 3 , requires closer examina-
tion as its value is comprised of further data. The checking interval is a defined
repetitive timing after which transitions 1 and 2 is enabled to fire an object.

 Simulation of IT Service Processes with Petri-Nets 59

The introduction of transition 4 is supposed to illustrate the option for integrat-
ing additional activities such as accounting, reporting, penalty handling etc.

The checking cycle is a supporting construct in order to determine the total
number of potential failures within an agreed service time. Due to the structure of the
availability pattern we use uptime for further calculation instead of .
Transitions 1 and 2 can only fire – and therefore check for availability – if 1 is marked. This means that the IT service is up and running.

 4

Running a cycle equates to a hundred proceeded availability checks. This means
for example that for a given service availability of 98.0 percent transition 1 fires
98 objects (= ping for availability) to 2 and 2 2 objects (= service failure)
to 3 on average. In order to calculate , the total amount of “Downtime
objects” in 3 per as shown in (6), we need to identify the number of
potential downtimes per checking cycle at first. 1 100 5

 6

The value for which is represented in the pattern by transition 3
allows the modeling of the maximal allowed downtime per agreed service time. We
calculate the minimum as shown in (7.1) because the value of can’t be
higher than the maximum downtime derived from the given service availability. min , 7.1

On closer examination of it can be seen that the value is individual
for every given service availability considering respective values for
and which leads us to following:

Thesis.

Proof. 1 11 100 100 11

60 C. Bartsch, M. Mevius, and A. Oberweis

As a result we can define (7.2):

′ min , 7.2

This implication eases the identification of values for because the
checking interval as well as service availability serve as direct input into
the model and don’t need to be calculated separately compared to (7.1).

Representation of IT service processes
For our purposes we model service processes using the duration of a single process
step , and the IT services enabling respective step. The service process is depicted
as a sequence of tupels , ; , where , is the duration of process
step within a service process and indicates the availability of IT services

 involved in the execution of , . Exemplarily an IT service process contain-
ing three process steps and supported by two IT services could then be coded as: , 1 ; , 2 ; , , 3 . , 1 is supported by and the respective service availability whereas , is not supported by an IT service at all. In order to finally gain the overall avail-
ability of a service process we first need to identify the maximum number of
objects the service process can go through if IT services involved provide a hundred
percent availability. The number of objects in the end place of the service process
modeled with Petri-nets completely depends on the duration of each process step and
therefore defines an upper bound not being constrained by any IT service availability.
We then determine the impact of single IT service availability to the overall availa-
bility of the supported IT service process by comparing the number of objects in the
end place after a simulation period in relation to the predetermined upper bound.

5 Evaluation

In Figure 4 we present a simplified use case derived from a conducted IT service
management project4.

For this simulation example we assume that all IT services perform independent
from each other. The checking interval within each IT service was set to 60 minutes.
The scenario includes three IT services supporting two incident management
processes with different execution times. It basically differs in the number of IT ser-
vices involved. As the example shows, an IT service is available as long as an object
lies within a place 1 light turns into a green state or red state as soon as a. The
availability pattern, as depicted in Figure 3, was modeled with a simulation tool being
under ongoing development5.

As soon as parallel and alternative paths will become part of the simulation com-
plexity will increase noticeably. As a consequence more simulation cycles will be
necessary in order to keep significance of the simulation results.

4 Please note that other service process configurations containing alternatives and parallelism

would also be possible but are not mentioned in this example.
5 A deployable version of the simulation tool will be open to the public soon.

 Simulation of IT Service Processes with Petri-Nets 61

Fig. 4. IT service process availability simulation

Simulation Scenario A: 3 process steps | 3 IT services (2+1)
The first scenario as shown in Figure 5(a) simulates a service process sup-
ported by IT services , and whereas , 2 is supported by two services

 and simultaneously. The configuration for simulations 1 5 is as
follows:

 , 1 3 , 2 5; ,
 , 3 10; ; d(18;

The parameters for , and – represented by dark grey bars in the
figure – are changed for each simulation in order to find out the availability of the
service process – represented by the light grey bars – at the end of simulation period of
60 days. Results show that of is rather proportional to . A
service provider must therefore increase the availability of selected IT services in order
to increase the availability of the service process. The demand for high process availa-
bility usually implies a high (monetary) effort to ensure high IT service availability.

If we assume that the duration of service process steps themselves plays a role for
respective service process availability we reconfigure to:

 , 1 3 , 2 8; ,
 , 3 7; ; 18;

We notice, that slight changes in , 2 and , 3 cause the effect
that stays on a continuous high level of a hundred percent availability for
all simulations 1 5. As a consequence this means that for service

3 Service IT s

()32 sp ()13 sp

()31 sp

()31 st

()34 st

()33 st

()34 sp)(3sa)(1 3sa−

()32 st

2 Service IT s

()22 sp ()23 sp

()21 sp

()21 st

()24 st

()23 st

()24 sp)(2sa)(1 2sa−

()22 st

Identification &
Categorization

Priorization &
Initial Diagnosis

Resolution &
Recovery

Incident Management Process IM-A

C
us

to
m

er
 A

Incident Management Process IM-B

C
us

to
m

er
 B

1 Service IT s

()12 sp ()13 sp

()11 sp

()11 st

()14 st

()13 st

()14 sp

)(1 AIMp −)(2 AIMp −)(3 AIMp −)(4 AIMp −)(3 AIMt −)(2 AIMt −)(1 AIMt −

)(1 BIMp −)(2 BIMp −)(3 BIMp −)(4 BIMp −)(3 BIMt −)(2 BIMt −)(1 BIMt −

Services IT

Processes Service IT
Identification &
Categorization

Priorization &
Initial Diagnosis

Resolution &
Recovery

)(1sa)(1 1sa−

()12 st

62 C. Bartsch, M. Mevius, and A. Oberweis

process an availability level for the supporting IT services , and
 of 95,00% would be sufficient in order to enable an availability of the sup-

ported IT service process of 100,00%. This finding is helpful for negotiating SLAs as
there is no difference to the overall performance of the service process if paying for a 99,90% or for a 95,00% IT service availability and can save a customer money.

Simulation Scenario B: 3 process steps | 2 IT services (1+1)
As we can see from figure 5(b), simulations 1 5 as well as 15 for scenario B show the same results although we changed the duration of , 2 and , 3 in :

 , 1 3; , 2 5
 , 3 10; ; 18;

 , 1 3; , 2 3
 , 3 8; ; 14;

0,999
0,995
0,990

0,980

0,950

0,940

0,991 0,987 0,952 0,995 0,997

2 3 1 2 3 1 2 3 1 2 3 1 2 3

supporting IT services sn (dark grey)

Availability of IT service process a(IM-A)

A
va

ila
bi

lit
y

of
su

pp
or

tin
g

IT
 s

er
vi

ce
s

a(
s n

)

1

0,999
0,995
0,990

0,980

0,950

0,940

1,000 1,000 1,000 1,000 0,999

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Availability of IT service process a(IM-A‘)

A
va

ila
bi

lit
y

of
su

pp
or

tin
g

IT
 s

er
vi

ce
s

a(
s n

)

Sim A1 Sim A2 Sim A3 Sim A4 Sim A5 Sim A‘1 Sim A‘2 Sim A‘3 Sim A‘4 Sim A‘5

AIMsp − 'AIMsp −

(l
ig

ht
gr

ey
)

(l
ig

ht
gr

ey
)

supporting IT services sn (dark grey)

(a)

0,999
0,995
0,990

0,980

0,950

0,940

1,000 1,000 1,000 1,000 1,000

2 3 2 3 2 3 2 3 2 3

Availability of IT service process a(IM-B)

A
va

il
ab

il
it

y
of

su
pp

or
ti

ng
IT

 s
er

vi
ce

s
a(

s n
)

0,999
0,995
0,990

0,980

0,950

0,940

1,000 1,000 1,000 1,000 1,000

2 3 2 3 2 3 2 3 2 3

Availability of IT service process a(IM-B‘)

A
va

il
ab

il
it

y
of

su
pp

or
ti

ng
IT

 s
er

vi
ce

s
a(

s n
)

Sim B1 Sim B2 Sim B3 Sim B4 Sim B5 Sim B‘1 Sim B‘2 Sim B‘3 Sim B‘4 Sim B‘5

supporting IT services sn (dark grey)supporting IT services sn (dark grey)

(l
ig

ht
gr

ey
)

(l
ig

ht
gr

ey
)

(b)

Fig. 5. (a) Simulation results for service processes and . (b) Simulation results
for service processes and .

 Simulation of IT Service Processes with Petri-Nets 63

Different availability levels for supporting IT services don’t have any influence to
the maximum service process availability of 100,00%. As in Scenario A 95,00% IT
service availability would be sufficient in order to support the process best. The addi-
tional finding is that, even though we changed the duration of process steps all availa-
bilities remained the same. This could be a hint of a much more stable service process

 compared with as slight changes in the duration in combination with
different IT service availabilities don’t affect the overall process performance at all.

6 Conclusion and Outlook

In this paper we presented a simulation-based approach in order to identify potential
impact and interdependencies in terms of availability between IT services and the
service process supported. This can assist service providers and their customers when
negotiating SLAs during design time. The stakeholders involved now have a possi-
bility to simulate a more realistic service availability level which can support their
processes at most. The current approach can’t handle the effect that as soon as an
object is processed by a process step (transition) and the supporting IT service (place)
fails along the way the affected object should actually be considered lost. At the mo-
ment the simulation only considers the incoming moment for a transition to be locked
or active. As soon as an object “enters” a transition, it will be processed in any case.
We need further research on complexity and performance aspects of current simula-
tions as they are very resource intensive already, even though the examples are quite
simple. We are working on an extension of modeling and simulating IT services by
utilizing XML-nets [16] in order to exemplarily include rules and additional informa-
tion about an object to cope with the current constraint. The objective is the Petri-net
based simulation of whole SLAs described as XML-Documents.

References

1. Bartsch, C., Shwartz, L., Ward, C., Grabarnik, G., Buco, M.J.: Decomposition of IT
service processes and identification of alternatives using ontogoly. In: IEEE/IFIP Network
Operations and Management Symposium (NOMS), pp. 714–717. IEEE Computer Society
Press, Los Alamitos (2008)

2. Böhmann, T., Junginger, M., Krcmar, H.: Modular Service Architectures - A Concept and
Method for Engineering IT Services. In: Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, pp. 74–83. IEEE Computer Society Press,
Los Alamitos (2003)

3. Reisig, W.: Towards a Theory of services. In: Kaschek, R., et al. (eds.) UNISCON 2008.
LNBIP, vol. 5, pp. 271–281. Springer, Heidelberg (1974)

4. van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.): Business Process Management.
LNCS, vol. 1806. Springer, Heidelberg (2000)

5. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business Process Management:
A Survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003.
LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

6. Desel, J., Erwin, T.: Modeling, Simulation and Analysis of Business Processes. In: van der
Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS,
vol. 1806, pp. 129–141. Springer, Heidelberg (2000)

64 C. Bartsch, M. Mevius, and A. Oberweis

7. Karagiannis, D., Juninger, S., Strobl, R.: Introduction to Business Process Management
Systems Concepts. In: Scholz-Rieter, S. (ed.) Business Process modeling, pp. 81–106
(1996)

8. Scheer, A.-W.: ARIS – Business Process Modeling, 3rd edn. Springer, Berlin (2007)
9. Reisig, W.: Place/Transition Systems. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

APN 1986. LNCS, vol. 254, pp. 117–141. Springer, Heidelberg (1987)
10. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models. LNCS,

vol. 1491. Springer, Heidelberg (1998)
11. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process Chains.

Information and Software Technology 41(10), 639–650 (1999)
12. Genrich, H.J.: Predicate/Transition Nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

Petri Nets: Central Models and Their Properties, Advances in Petri Nets, pp. 207–247.
Springer, Heidelberg (1986)

13. Jensen, K.: Coloured Petri Nets. In: EATCS Monographs on Theoretical Computer
Science. Basic Concepts, vol. 1. Springer, Berlin (1992)

14. Oberweis, A.: An integrated approach for the specification of processes and related
complex structured objects in business applications. Decision Support Systems 17(1), 31–
53 (1996)

15. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J.:
Extensible Markup Language (XML) 1.1 (Second Edition). W3C Recommendation 16,
edited in place 29, World Wide Web Committee (W3C) (August 2006)

16. Lenz, K., Oberweis, A.: Inter-organizational Business Process Management with XML
Nets. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for
Communication-Based Systems. LNCS, vol. 2472, pp. 243–263. Springer, Heidelberg
(2003)

17. Sturm, R., Morris, W., Jander, M.: Foundations of Service Level Management. Sams
(2000)

18. Blokdijk, G.: Service Level Agreement 100 Success Secrets. Lightning Source UK Ltd.
(2008)

19. Johnston, R., Clark, G.: Service Operations Management – Improving Service Delivery.
Pearson Education Limited, Essex (2005)

20. Bruton, N.: Managing the IT services process. Butterworth-Heinemann, Burlington (2004)
21. Ludwig, H.: Web Services QoS: External SLAs and Internal Policies – Or: How do we

deliver what we promise? In: Proceedings of the 4th IEEE International Conference on
Web Information Systems Engineering Workshops, pp. 115–120. IEEE CS Press, Los
Alamitos (2003)

22. Hudert, S., Ludwig, H., Wirtz, G.: Negotiating SLAs - An approach for a generic
negotiation framework for WS-Agreement. In: Proceedings of the 20th International
Conference on Software Engineering & Knowledge Engineering (SEKE 2008), pp. 587–
592 (2008)

23. Wohlstadter, E., Tai, S., Mikalsen, T., Rouvellou, I., Devanbu, P.: GlueQoS: Middleware
to Sweeten Quality-of-Service Policy Interactions. In: Proceedings of the 26th
International Conference on Software Engineering (ICSE 2004), pp. 189–199. IEEE
Computer Society, Los Alamitos (2004)

24. Song, M., Chang, R., Song, R., Song, J.: Research on the SLA-based Service Management
in Mobile Communication Network. In: Canadian Conference on Electrical and Computer
Engineering (CCECE 2004), vol. 2, pp. 1017–1020 (2004)

 Simulation of IT Service Processes with Petri-Nets 65

25. Anders, T.: Development of a generic IT service catalog as pre-arrangement for Service
Level Agreements. In: 10th IEEE Conference on Emerging Technologies and Factory
Automation (ETFA 2005), vol. 2, pp. 567–573 (2005)

26. Wen-Li, D., Hang, Y., Yu-Bing, Z.: Testing BPEL-based Web Service Composition Using
High-level Petri Nets. In: Proceedings of the 10th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2006), pp. 441–444 (2006)

27. Karhunen, H., Eerola, A., Jantti, M.: Improving Service Management in Supply Chains. In:
Proceedings of the International Conference on Service Systems and Service Management,
vol. 2, pp. 1415–1420 (2006)

28. Mochel, T., Oberweis, A., Sänger, V.: INCOME/STAR: The Petri net simulation concepts.
Systems Analysis – Modeling – Simulation. Journal of Modeling and Simulation in
Systems Analysis 13(1-2), 21–36 (1993)

29. Addy, R.: Effective IT Service Management. Springer, Heidelberg (2007)

Automatic Test Case Generation
for Interacting Services

Kathrin Kaschner and Niels Lohmann

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
{kathrin.kaschner,niels.lohmann}@uni-rostock.de

Abstract. Service-oriented architectures propose loosely coupled inter-
acting services as building blocks for distributed applications. Since dis-
tributed services differ from traditional monolithic software systems, novel
testing methods are required. Based on the specification of a service, we
introduce an approach to automatically generate test cases for black-box
testing to check for conformance between the specification and the imple-
mentation of a service whose internal behavior might be confidential. Due
to the interacting nature of services this is a nontrivial task.

Keywords: Testing, Interacting Services, Test Case Generation.

1 Introduction

Software systems continuously grow in scale and functionality. Various applica-
tions in a variety of different domain interact and are increasingly dependent on
each other. Then again, they have to be able to be adjusted to the rapidly chang-
ing market conditions. Accordingly complex is the development and changing of
these distributed enterprise applications.

To face these new challenges a new paradigm has emerged: service-oriented
computing (SOC) [1]. It uses services as fundamental building blocks for readily-
creating flexible and reusable applications within and acrossorganizationalbound-
aries. A service implements an encapsulated, self-contained functionality. Usually,
it is not executed in isolation, but interacts with other services through message
exchange via a well-defined interface. Thus, a system is composed by a set of log-
ically or geographically distributed services, and SOC replaces a monolithic soft-
ware system by a composition of services.

The encapsulation of a functionality further supports the reuse of services.
To this end, a service-oriented architecture (SOA) proposes a service repository
managed by a broker which contains information about services offered by several
service providers. Due to trade secrets, a service provider will not publish a
verbatim copy of his service containing all business and implementation details,
but only an abstract description thereof. This description— called public view —
only contains the information necessary to interact correctly with the actual
implemented service.

While literature agrees that a public view or a similar description is necessary
to realize an SOA, only few concrete approaches to generate public views have

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 66–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automatic Test Case Generation for Interacting Services 67

been proposed, for instance [2]. Even worse, interaction became more complex as
services evolved. Instead of simple remote-procedure calls (i. e., request/response
operations), arbitrarily complex and possibly stateful interactions on top of asyn-
chronous message exchange are common [3]. In addition control flow, ownerships
of choices, semantics of messages, and nonfunctional properties have to be taken
into account. Then again, also the service provider is interested in whether the
public view of his service implements the same business protocol as the actual
implemented service. That means, every interaction that a customer can de-
rive from the public view should also be valid together with the implemented
service— even without knowledge about non-disclosed business and implemen-
tation details. This is especially important since the public view is used by a
service requester to check whether his service fits to the provider’s implemented
service.

To this end, verification and testing of services received much attention both
in academia and industry. However, the communicating nature of services is
often neglected. Instead of taking the new characteristics of SOC and SOA into
account, existing work on testing classical software systems was slightly adapted
to cope with the new languages used to implement services. Consequently, these
approaches only take the internal behavior of a service into account, but ignore
the interactions with other services. Others in turn are restricted to stateless
remote-procedure calls. This in turn might lead to undetected errors.

In this paper, we suggest a novel approach to test whether an implemented
service interacts as it is warranted by its public view. Thereby, we focus on the
business protocol (i. e., the message exchange and control flow) of the service.
Aspects such as semantics of messages or nonfunctional properties are out of
scope of this paper, but are orthogonal to our approach. We claim that like a
function call is the most natural test case to test a function of a classical program,
a partner service is likewise the most natural test case for another service. But
as mentioned earlier, a public view implicitly describes a large number of cor-
rect interactions, and both finding and testing all possibilities is a tedious task.
Therefore, we propose an approach to automatically generate test cases (i. e.,
partner services) that are required to test whether an implementation conforms
to a public view.

The rest of the paper is organized as follows. In the next section, we describe
how black-box testing can be realized using interacting services. The main con-
tribution of this paper is presented in Sect. 3 where we explain our test case
generation approach and present an algorithm to further minimize the gener-
ated test set. In Sect. 4, we focus on related work and highlight the differences
to our approach. Section 5 concludes the paper.

2 Testing Interacting Services

Best practices propose that complex systems should be specified prior to their
implementation. A specification of a service describes its business protocol and
already contains all relevant internal decisions (e. g., the criteria whether or not

68 K. Kaschner and N. Lohmann

receive
order

receive
login

send terms
of payment

receive
confirmation

send invoice

receive
order

update user
profile

send offer
lookup user
in database

premium userstandard user

send invoice

upgrade to
premium user

order 100

order < 100

pre-notify
shipment

cu
st

om
er

(a)

receive
login

send terms
of payment

receive
confirmation

send offer

send invoice

receive
order

cu
st

om
er

(b)

send
login

receive terms
of payment

send
confirmation

receive offer

send order

on
lin

e
sh

op

receive
invoice

receive
invoice

(c)

Fig. 1. A specification (a) and a public view (b) of a simple online shop together with
a customer service (c) Internal actions are depicted gray

a credit should be approved), but lacks implementation-specific details (e. g.,
whether amounts are represented as integers or floats). Finally, the public view
lacks both details about internal decisions and implementation, and only de-
scribes the business protocol that is realized by the services. Ideally, the business
protocol defined by the public view, the specification, and the implementation
coincides. In particular, if any service behavior that is derived from the public
view (resp. the specification) is a valid interaction with the implemented ser-
vice, we call the implementation conformant with the public view (resp. the
specification).

As the running example of this paper, consider an online shop which processes
an order of a customer. Its specification is depicted as a BPMN diagram [4] in
Fig. 1(a). After a customer logs in to the online shop, its user name is looked up
in the shop’s database. Depending on previous orders, the customer is rated as
standard or premium customer. On the one hand, standard customers have to
confirm the terms of payment and, based on the amount of the ordered goods, can
be upgraded to premium users. On the other hand, the shipment to premium
users is handled with priority. An actual implementation of this specification
(e. g., in BPEL [5]) is straightforward.

To interact correctly with the online shop, certain information does not need
to be disclosed and Fig. 1(b) depicts a public view of the online shop. Non-
communicating activities (depicted gray in the specification) as well as branch-
ing conditions were removed. This public view now describes the online shop’s

Automatic Test Case Generation for Interacting Services 69

business protocol, but does not disclose unnecessary internal information. A cus-
tomer can check whether his service (see Fig. 1(c)) fits to this public view. The
example shows that sheer mirroring of the public view’s message flow is insuffi-
cient to achieve deadlock-free interaction, because the customer cannot influence
the shop’s decision whether to be recognized as standard or premium customer.
Therefore, the customer must be ready to both receive the terms of payment
and the invoice after he sent his order to the shop; in Fig. 1(c), this is expressed
by an event-based exclusive gateway.

In the following, we concentrate on checking conformance between a specifica-
tion and an implementation of a service; that is, we focus on the service provider’s
point of view who has access to both the specification and the implementation.
Nevertheless, the approach is likewise applicable to check conformance between
a public view and an implementation of this public view. This might be relevant
for service brokers who want to assert conformance between their stored public
views and the respective implemented services.

2.1 Verification vs. Testing

A widespread realization of services are Web services [6] which use WSDL to
describe their interface and SOAP to exchange messages. While usually the spec-
ification language (e. g., BPMN, UML activity diagrams, EPCs) differs from the
implementation language (e. g., Java, .NET languages), the Web Service Busi-
ness Process Execution Language (BPEL) can be used to both specify and imple-
ment Web services. The specification (called an abstract BPEL process) contains
placeholders that are replaced by concrete activities in the implementation (the
executable BPEL process). The implementation can thereby be seen as a refine-
ment of the specification.

One possibility to check conformance is verification, see Fig 2(a). Thereby,
the implementation and its specification have to be translated into a formal
model (1, 2). Conformance between the models (3) then implies conformance
between specification and implementation (4). Obviously, this approach can only
be applied if both models are available.

specification

abstract BPEL,
BPMN, UML-AD, ...

implementation

executable BPEL,
Java, .NET, ...

formal
model

formal
model

1 translate 2 translate

3 verify

4 conform

(a) verification

specification

abstract BPEL,
BPMN, UML-AD, ...

implementation

executable BPEL,
Java, .NET, ...

formal
model

test case

1 translate

4 conform

test casetest casetest case2 generate

3 test

test suite

(b) proposed black-box testing

Fig. 2. Approaches to check conformance between specification and implementation

70 K. Kaschner and N. Lohmann

However, there are several scenarios in which a verification is impossible, be-
cause the formal model of the implementation is not available. For example, parts
or the whole implementation might be subject to trade secrets. Furthermore, pro-
gramming languages such as Java are— compared to high-level languages like
BPEL— rather fine-grained and it is therefore excessively elaborate to create a
formal model for such an implementation.

As an alternative, the implementation can be tested. The major disadvantage
is that by testing only the presence of errors can be detected, but not their
absence. To nevertheless be able to make a statement about the correctness
of an implementation, a test suite with a significant number of test cases is
necessary.

To this end, we translate the specification into a formal model (1). This trans-
formation should be possible, because the specification is usually not as complex
as, for example, a Java program. The model of the specification is then the base
for generating the test cases (2) with which we test the implementation (3). If
a test fails, we can conclude that the implementation does not comply to the
specification (4). Because the tester does not need knowledge about the code of
the implementation, our approach is a black-box testing method.

Since a large number of test cases may be required for an adequate test, they
should be automatically generated. This does not only save time and costs during
the development, but furthermore a systematic approach can generate test cases
which are hard to find manually. These test cases in turn allow for the detection
of errors that were missed by manually designed test cases.

2.2 Testing Services by Partner Services

As motivated in the introduction, we propose to use services to test an imple-
mented service. Considering the example online shop, any partner service of the
specification of Fig. 1(a) can serve as one test case to test conformance of an
implementation of the online shop. An example for a test case is the customer
service depicted in Fig. 1(c). Its composition with the specification is free of
deadlocks, and the same should hold for its composition with the implemented
online shop.

A general test procedure for interacting services can be sketched as follows.
The service under test is deployed in a testing environment together with the
test suite. To process a whole test suite, the contained test cases are executed
one after the other. Thereby, each test case follows the business protocol derived
from the specification and interacts by message exchange with the service under
test. The testing environment then is responsible for logging and evaluating
exchanged messages. One implementation of such a test environment is the tool
BPELUnit [7]. However, in BPELUnit the test suite has to be created manually.

Two implementations for the example online shop are depicted in Fig. 3.1

Beside insertion of internal activities such as “store order”, also reordering of ac-
1 To ease the presentation, we again use BPMN to diagram the implementations and

focus on the message exchange between online shop and customer. Additionally, only
an excerpt is depicted.

Automatic Test Case Generation for Interacting Services 71

receive
order

send terms
of payment

send invoice

receive
confirmation

receive
order

update user
profile

premium userstandard user

send invoice

upgrade to
premium user

order 100

order < 100

pre-notify
shipment

store order

store order

cu
st

om
er

(a) conformant implementation

receive
order

send invoice

send terms
of payment

receive
confirmation

receive
order

update user
profile

premium userstandard user

send invoice

upgrade to
premium user

order 100

order < 100

pre-notify
shipment

store order

store order

cu
st

om
er

(b) incorrect implementation

Fig. 3. Parts of two implementations of the online shop

tivities does not necessarily jeopardize conformance [8]. For example, implemen-
tation in Fig. 3(a) receives the order and the confirmation message concurrently,
yet still is conformant to the specification in Fig. 1(a). In contrast, the imple-
mentation in Fig. 3(b) further exchanges the invoice and the terms of payment
message. This implementation does not comply with the specification.

This inconformance can be detected by composing the test case of Fig. 1(c) to
the implementation in Fig. 3(b). If the customer is treated as standard customer,
the online shop— after receiving the login and an order and sending the offer
and the invoice— is left in a state where it awaits the confirmation message. This
will, however, only be sent by the customer test case after receiving the terms of
payment. The services wait for each other; their composition deadlocks. While
this test case can be easily derived directly from the specification, manual test
case generation becomes an increasingly tedious task for real-life specifications
with thousands of partner services.

The next section explains how test cases such as the customer service of
Fig. 1(c) can be automatically generated.

3 Generating Test Cases

In this section, we present how test cases can be automatically generated given
a service specification. Firstly, we describe how all test cases can be compactly
characterized. Among the test cases, some are redundant; that is, their test result
are already implied by other test cases. We conclude this section by defining
some criteria when a test case can be considered redundant and show how this
redundancy criterion can be used to minimize the generated test suite.

72 K. Kaschner and N. Lohmann

3.1 Characterizing Conformant Services

To formally reason about the behavior of a service, an exact mathematical model
is needed. In this paper, we use open nets [9], a special class of Petri nets [10].
For BPEL, a formal semantics based on open nets was specified which allows
to translate BPEL processes into open nets [11]. Furthermore, open nets can be
translated back to BPEL processes [12]. As both translations are implemented2,
results in the area of open nets can be easily applied to real-life Web services.

A fundamental correctness criterion for services is controllability [13]. A ser-
vice is controllable if there exists a partner service such that their composition
(i.e., the choreography of the service and the partner) is free of deadlocks.

Controllability can be decided constructively: If a partner service exists, it
can be automatically synthesized [14]. Furthermore, there exists one canonic
most permissive partner which simulates any other partner service. The converse
does, however, not hold; not every simulated service is a correct partner service
itself. To this end, the most permissive partner service can be annotated with
Boolean formulae expressing which states and transitions can be omitted and
which parts are mandatory. This annotated most permissive partner service is
called an operating guideline [15].

!login !order

!login

!order

?offer (?terms ?invoice)

!login

?terms ?invoice

?offer

!confirm

?terms

?invoice

!confirm

final

?invoice

final

?invoice

!confirm ?offer

?terms

?offer

?invoice ?offer

!confirm

?offer
?offer

?invoice

?offer

?offer

?invoice

?offer

?offer !order

!login

!order

?offer

!order

!order

(a) OG of specification of Fig. 1(a)

?terms

!confirm

?invoice

?invoice

!login

?offer

!order

(b) a test case

!login

!order

?offer

?terms

!confirm

?invoice

?invoice

?offer

(c) another test case

Fig. 4. The operating guideline (OG) (a) describes all 1151 test cases, e. g., (b) and (c).
The former can be used to show that the implementation in Fig. 3(b) does not comply
to the specification of Fig. 1(a).

The operating guideline of the specification of Fig. 1(a) is depicted in Fig. 4(a).
It is a finite state machine whose edges are labeled with messages sent to (pre-
ceded with “!”) or received from (preceded with “?”) the customer. The anno-
tations describe for each state which outgoing edges have to be present (see [15]
for further details). As mentioned earlier, subgraphs of the operating guideline
are only partners if the states also fulfil the respective annotations. One example
for a characterized partner is the subgraph consisting of the gray nodes and the
2 See http://service-technology.org/tools

http://service-technology.org/tools

Automatic Test Case Generation for Interacting Services 73

bold edges, also depicted in Fig. 4(b). This partner describes the behavior of the
customer service of Fig. 1(c). Another test case is depicted in Fig. 4(c). In total,
the operating guideline characterizes 1151 partners, i.e. 1151 rooted subgraphs
fulfilling the annotations (see [15] for details).

The operating guideline of a specified service exactly characterizes the set of
conformant services of this specification. Any service that is characterized by that
operating guideline must also interact deadlock-free with the implementation
and can therefore be seen as a test case. Using the operating guideline of the
specification of a service as a characterization of the test cases postulates the
requirement that the specification is controllable. If it is uncontrollable, then any
interaction will eventually deadlock and no (positive) test cases exists. In this
case, a diagnosis algorithm [16] can help to overwork the specification.

3.2 Selecting Test Cases

The operating guideline of the specification characterizes all necessary test cases
to test conformance of an implementation with its specification. Unfortunately,
even for small services such as the example online shop, there already exist thou-
sands of test cases, each describing a possible customer service derived from the
specification/public view. However, there are some redundant test cases which
can be left out without reducing the quality of the test suite. Thus, even with a
limited number of test cases, it is possible to detect all errors that could also be
detected with the complete set of test cases.

We define redundancy as follows: A partner service T characterized by the
operating guideline is a redundant test case if (1) there exists a set of partner
services T1, . . . , Tn such that each Ti is a proper subgraph of T , and (2) the
union of these graphs equals T ; that is, T1 ∪ · · · ∪ Tn = T . We can generate the
test cases for the reduced test suite directly by decomposing the most permissive
partner (i.e., the operating guideline without the Boolean formulae) into several
smaller partner services T1, . . . , Tn, so that each partner service characterized by
the operating guideline is redundant to a subset of test cases containing in the
test suite. This can be realized by one depth-first search on the most permissive
partner and by exploiting the operating guideline’s annotations.

We illustrate the procedure on the operating guideline in Fig. 4(a). The anno-
tation “!login∨ !order” of the initial node demands that any test case has to start
with a !login action (as the service in Fig. 4(b)), an !order action (cf. Fig. 4(c)),
or both. Thereby, the service containing both actions can choose which message
to send on (test) runtime. This is not desirable, because such a test case has to
be executed twice: once for each action. In such a case, we can move this run-
time decision to the design time of the test case and only consider those services
consisting of one of the respective actions. Hence, the service with the choice
between the two actions can be considered as redundant, because its behavior
is covered by the other two services. Consequently, we have two kinds of test
cases: ones starting with a !login action and another one starting with an !order
action. By following the !login edge in the operating guideline we reach a node
annotated with “?offer ∨ !order”. Thus we can refine the first kind of test case

74 K. Kaschner and N. Lohmann

!login !order

?terms ?invoice

!confirm

?terms

?invoice

!confirm

final

?invoice

final

?invoice

?offer !order

!login

!order

?offer

!order

(a)

!login !order

?offer (?terms ?invoice)

final

!confirm ?offer

?terms

?invoice ?offer

!confirm

?offer

?invoice

?offer

?offer !order

!login

!order

(b)

!login !order

?offer (?terms ?invoice)

?invoice

final

?invoice

final

!confirm ?offer

?terms

?invoice ?offer

!confirm

?offer

?offer

?invoice

?offer

?offer !order

!login

!order

(c)

!login !order

?offer (?terms ?invoice)

!confirm

?invoice

!confirm

final

?invoice

final

!confirm ?offer

?terms

?offer
?offer

?invoice

?offer

?offer !order

!login

!order

(d)

!login !order

?offer (?terms ?invoice)

?terms ?invoice

?offer

!confirm

?terms

?invoice

!confirm

final

?invoice

final

?invoice

?offer !order

!login

!order

(e)

!login !order

!login

!order

?offer (?terms ?invoice)

!login

final

final

!confirm ?offer

?terms

?invoice ?offer

!confirm

?offer

?invoice

?offer

?offer

?invoice

?offer

(f)

!login !order

!login

!order

?offer (?terms ?invoice)

!login

?invoice

final

?invoice

final

!confirm ?offer

?terms

?invoice ?offer

!confirm

?offer

?offer

?invoice

?offer

(g)

!login !order

!login

!order

?offer (?terms ?invoice)

!login

!confirm

?invoice

!confirm

final

?invoice

final

!confirm ?offer

?terms

?offer
?offer

?invoice

?offer

(h)

!login !order

!login

!order

?offer (?terms ?invoice)

!login

?terms ?invoice

?offer

!confirm

?terms

?invoice

!confirm

final

?invoice

final

?invoice

(i)

Fig. 5. Minimal test suite consisting of nine non-redundant test cases. Case (a) coin-
cides with Fig. 4(b) and case (d) coincides with Fig. 4(c).

to those which either start with a !login followed by an ?offer or start with a
!login followed by an !order. With the remaining nodes we proceed in the same
manner. Finally, we will detect only nine test cases which are necessary to test
the conformance of the implementation to its specification. The test cases are
depicted in Fig. 5. All other test cases characterized by the operating guideline
are redundant to these nine test cases. Thus the minimized test suite is complete
in the sense that it is still able to detect all errors that could have been detected
by all 1151 test cases.

Note our notion of redundancy will not split conjunctions. This is important
as they model choices that cannot be influenced by the test case. For instance,
a customer of the online shop of Fig. 1(a) cannot influence whether or not he is
recognized as a premium customer and therefore must be able to receive both
the terms of payment or immediately the invoice (cf. Fig. 4(b) and 4(c)).

If the specification is given as an abstract BPEL service, an existing tool
chain3 is directly applicable to translate the specification into an open net and

3 See http://www.service-technology.org/tools

http://www.service-technology.org/tools

Automatic Test Case Generation for Interacting Services 75

to calculate the operating guideline thereof (cf. [14]). Furthermore, the test cases
can be automatically translated into BPEL processes [12]. The resulting test Web
services can then be executed on a BPEL engine to test the implementation under
consideration.

4 Related Work

Several works exist to systematize testing of Web services (see [17] for an overview).
In [18,7], white-box test architectures for BPEL are presented. The approaches are
very similar to unit testing in classical programming languages, but not applicable
in our black-box setting. Furthermore, the authors give no information about how
to generate test cases.

Test case generation can be tackled using a variety of approaches such as
model checking [19], XML schemas [20], control or data flow graphs [21,22].
These approaches mainly focus on code coverage, but do not take the interacting
nature of Web services into account. In particular, internal activity sequences are
not necessarily enforceable by a test case. Therefore, it is not clear how derived
test cases can be used for black-box testing in which only the interface of the
service under test is available.

To the best of our knowledge, none of the existing testing approaches take
stateful business protocols implemented by Web services into account, but mainly
assume stateless remote procedure calls (i. e., request-response operations), see
for instance [20].

Bertolino et al. [23,24] present an approach to generate test suites for Web ser-
vices and also consider nonfunctional properties (QoS). Their approach, however,
bases on synchronous communication and is thus not applicable in the setting
of SOAs.

Finally, several tools such as the Oracle BPEL Process Manager [25] or Para-
soft SOAtest [26] support testing of services, but do not specifically focus on the
business protocol of a service. In contrast, Mayer et al. [7] underline the impor-
tance of respecting the business protocol during testing, but do not support the
generation of test cases in their tool BPELUnit.

5 Conclusion

We presented an approach to automatically generate test cases for services. These
test cases are derived from an operating guideline of a specification and can be
used to test conformance of an implementation without explicit knowledge of the
latter (black-box testing). We also introduced a notion of redundant test cases
to drastically reduce the size of the test suite while still ensuring completeness
with respect to the specified business protocol. The approach bases on open
nets as formal model, and can be applied to any specification language to which
a translation into open nets exists. Existing translations from BPMN [27] or
UML-AD [28] into Petri nets are likely to be adjustable to open nets easily.

76 K. Kaschner and N. Lohmann

In this paper, we focused on business protocols in which data plays a secondary
role. However, existing works such as [29,30] show that it is principally possible
to add those data aspects into a formal model. As a result, we can refine not
only the open net, but also the resulting operating guideline. This in turn might
further reduce the number of necessary test cases as nondeterministic choices
are replaced by data-driven decisions.

In future work, we also want to consider negative test cases to test the absence
of unintended partners. Such negative test cases can be similarly derived from
the operating guideline. For example, annotations can be wilfully left unsatisfied
by a test case to “provoke” deadlocks during a test. Furthermore, we plan to
validate our test case generation in a BPEL test architecture such as [18,7] using
real-life case studies.

Beside black-box testing, the service test approach is also applicable to several
other settings. Firstly, the test case generation can support isolated testing of
services. In this case, we can use the specification to not only derive test cases,
but also to synthesize stub implementation of third-party services. These stub
implementations follow the business protocol as specified by the specification,
but avoid possible resulting costs of third-party calls. Isolated testing might also
help to locate occurring errors more easily, because we can rely on the synthesized
mock implementations to conform to the business protocol.

Secondly, the completeness of the operating guideline can be used to support
substitutability of services. When implementation I of a service is substituted by
a new implementation I ′, we can use the same test cases to check conformance
of I with the specification to check conformance of I ′ with that specification. In
case a test fails, we can conclude that I ′ should not be replaced by I ′.

A third scenario are inter-organizational business processes. In this setting,
several parties agree on a contract which can be partitioned into several services.
Each service then is implemented by a party. Then, conformance between the
contract (a special kind of a public view) and the implementation can be tested
for each party. Additionally, a party can use the global contract to derive test
cases to test whether another party’s implementation conforms to the contract.

Acknowledgements. Niels Lohmann is funded by the DFG project “Operating
Guidelines for Services” (WO 1466/8-1).

References

1. Papazoglou, M.P.: Agent-oriented technology in support of e-business. Communi-
cations of the ACM 44(4), 71–77 (2001)

2. Martens, A.: Verteilte Geschäftsprozesse – Modellierung und Verifikation mit Hilfe
von Web Services. PhD thesis, Humboldt-Universität zu Berlin, Berlin, Germany
(2003) (in German)

3. Papazoglou, M.P.: Web services: Principles and technology. Prentice Hall, Engle-
wood Cliffs (2007)

4. OMG: Business Process Modeling Notation (BPMN) Specification. Final Adopted
Specification, Object Management Group (2006), http://www.bpmn.org

http://www.bpmn.org

Automatic Test Case Generation for Interacting Services 77

5. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
Committee Specification, OASIS (2007)

6. Curbera, F., Leymann, F., Storey, T., Ferguson, D., Weerawarana, S.: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR, Englewood Cliffs (2005)

7. Mayer, P., Lübke, D.: Towards a BPEL unit testing framework. In: TAV-WEB
2006, pp. 33–42. ACM, New York (2006)

8. König, D., Lohmann, N., Moser, S., Stahl, C., Wolf, K.: Extending the compatibility
notion for abstract WS-BPEL processes. In: WWW 2008. ACM, New York (2008)

9. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

10. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science edn.
Springer, Heidelberg (1985)

11. Lohmann, N.: A feature-complete petri net semantics for WS-BPEL 2.0. In: Du-
mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2008)

12. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models
into simple abstract BPEL processes. In: Modellierung 2008. LNI, vol. P-127. GI
(2008)

13. Wolf, K.: Does my service have partners? Transactions on Petri Nets and Other
Models of Concurrency (2008) (accepted for publication, preprint),
http://www.informatik.uni-rostock.de/~nl/topnoc.pdf

14. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

15. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

16. Lohmann, N.: Why does my service have no partners? In: WS-FM 2008. LNCS.
Springer, Heidelberg (2008)

17. Baresi, L., Di Nitto, E. (eds.): Test and Analysis of Web Services. Springer, Hei-
delberg (2007)

18. Li, Z., Sun, W., Jiang, Z.B., Zhang, X.: BPEL4WS unit testing: Framework and
implementation. In: ICWS 2005, pp. 103–110. IEEE, Los Alamitos (2005)

19. Garćıa-Fanjul, J., Tuya, J., de la Riva, C.: Generating test cases specifications for
BPEL compositions of Web services using SPIN. In: WS-MaTe 2006, pp. 83–94
(2006)

20. Hanna, S., Munro, M.: An approach for specification-based test case generation for
Web services. In: AICCSA, pp. 16–23. IEEE, Los Alamitos (2007)

21. Yan, J., Li, Z., Yuan, Y., Sun, W., Zhang, J.: BPEL4WS unit testing: Test case
generation using a concurrent path analysis approach. In: ISSRE 2006, pp. 75–84.
IEEE, Los Alamitos (2006)

22. Bartolini, C., Bertolino, A., Marchetti, E., Parissis, I.: Data flow-based validation
of web services compositions: Perspectives and examples. In: Dehne, F., Sack, J.-R.,
Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 298–325. Springer, Heidelberg
(2007)

23. Bertolino, A., De Angelis, G., Frantzen, L., Polini, A.: Model-based generation of
testbeds for web services. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T.
(eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 266–282. Springer, Heidelberg
(2008)

http://www.informatik.uni-rostock.de/~nl/topnoc.pdf

78 K. Kaschner and N. Lohmann

24. Bertolino, A., De Angelis, G., Lonetti, F., Sabetta, A.: Let the puppets move!
automated testbed generation for service-oriented mobile applications. In: SEAA
2008, pp. 11–19. IEEE, Los Alamitos (2008)

25. Oracle: BPEL Process Manager (2008),
http://www.oracle.com/technology/products/ias/bpel

26. Parasoft: SOAtest (2008), http://www.parasoft.com
27. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business pro-

cess models in BPMN. Information & Software Technology (2008) (accepted for
publication)

28. Störrle, H.: Semantics and verification of data flow in UML 2.0 activities. Electr.
Notes Theor. Comput. Sci. 127(4), 35–52 (2005)

29. Sharygina, N., Kröning, D.: Model checking with abstraction for Web services. In:
Test and Analysis of Web Services, pp. 121–145. Springer, Heidelberg (2007)

30. Moser, S., Martens, A., Görlach, K., Amme, W., Godlinski, A.: Advanced verifica-
tion of distributed WS-BPEL business processes incorporating CSSA-based data
flow analysis. In: SCC 2007, pp. 98–105. IEEE, Los Alamitos (2007)

http://www.oracle.com/technology/products/ias/bpel
http://www.parasoft.com

Detecting Behavioural Incompatibilities
between Pairs of Services�

Ali Aı̈t-Bachir1,��, Marlon Dumas2,���, and Marie-Christine Fauvet1

1 LIG, University of Grenoble, France
{Ali.Ait-Bachir,Marie-Christine.Fauvet}@imag.fr

2 University of Tartu, Estonia
Marlon.Dumas@ut.ee

Abstract. We present a technique to analyse successive versions of a
service interface in order to detect changes that cause clients using an
earlier version not to interact properly with a later version. We focus
on behavioural incompatibilities and adopt the notion of simulation as a
basis for determining if a new version of a service is behaviourally com-
patible with a previous one. Unlike prior work, our technique does not
simply check if the new version of the service simulates the previous one.
Instead, in the case of incompatible versions, the technique provides de-
tailed diagnostics, including a list of incompatibilities and specific states
in which these incompatibilities occur. The technique has been imple-
mented in a tool that visually pinpoints a set of changes that cause one
behavioural interface not to simulate another one.

1 Introduction

Throughout its lifecycle, the interface of a software service is likely to undergo
changes. Some of these changes do not cause existing clients or peers to stop
interacting properly with the service. Other changes give rise to incompatibilities.
This paper is concerned with the identification of these latter changes.

Service interfaces can be seen from at least three perspectives: structural,
behavioural and non-functional. The structural interface of a service describes
the schemas of the messages that the service produces or consumes and the
operations underpinning these message exchanges. In the case of Web services,
the structural interface of a service can be described for example in WSDL [14].
The behavioural interface describes the order in which the service produces or
consumes messages. This can be described for example using BPEL [14] business
protocols, or more simply using state machines as discussed in this paper. The
work presented here focuses on behavioural interfaces and is complementary to
other work dealing with structural interface incompatibility [12].

In this paper, we present a technique for comparing two service interfaces in
order to detect a series of changes that cause them not to be compatible from

� Work partly funded by the Web Intelligence Project, Rhône-Alpes French Region.
�� The author was supported by a visiting PhD scholarship at University of Tartu.

��� The author is also affiliated with Queensland University of Technology, Australia.

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 79–90, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

80 A. Aı̈t-Bachir, M. Dumas, and M.-C. Fauvet

a behavioural viewpoint. We consider three types of differences between two
services S1 and S2: an operation that produces a message is enabled in a state
of service S2 but not in the equivalent state in S1; an operation that consumes
a message is enabled in a state in S1 but not in the equivalent state in S2; and
and operation enabled in a state of S1 is replaced by another operation in the
equivalent state in S2. It may be that S2 allows operation Op to be invoked, but
at a different point in time than S1 does. So the diagnosis our technique provides
goes beyond what can be provided based purely on structural interfaces.

The paper is structured as follows. Section 2 frames the problem and in-
troduces an example. Section 3 defines a notion of behavioural interface while
Section 4 presents the incompatibility detection algorithm. Section 5 compares
the proposal with related ones and Section 6 concludes and sketches future work.

2 Motivation

As a running example, we consider a service that handles purchase orders pro-
cessed either online or offline. Figure 1 depicts three behavioural interfaces re-
lated to this example. These behavioural interfaces are described using UML
activity diagrams notations that capture control-flow dependencies between mes-
sage exchanges (i.e. activities for sending or receiving messages). The figure dis-
tinguishes between the provided interface that a service exposes, and its required
interface as it is expected by its clients or peers. Specifically, the figure shows the
provided interface P of an existing service (see left-hand side of the figure). This
service interacts with a client application that requires an interface R (shown in
the centre of the figure). We consider the scenario where another service which
satisfies similar needs, but whose interface is P ′ (shown in the right-side of the
figure). In this setting, the questions that we address are: (i) does the differences
between P and P ′ cause incompatibilities between P ′ and P ’s existing client(s);
and (ii) if so, which specific changes lead to these incompatibilities. As mentioned
above, we consider three types of changes: addition and deletion of an operation
enabled in a given state of P , and replacement of an operation enabled in a state
of P with a different operation enabled in a corresponding state in P ′.1

In Figure 1, we observe that the flow that loops from Receive OfflineOrder
back to itself in P does not appear in P ′. In other words, according to P ′’s
interface, customers are not allowed to alter offline orders. This is a source of
incompatibility since clients that rely on interface P may attempt to send mes-
sages to alter their offline order but the service (with interface P ′) does not
expect a new order after the first order. On the other hand, message Shipment
Tracking Number (STN) has been replaced in P ′ by message Advance Shipment
Notice (ASN). This difference will certainly cause an incompatibility vis-a-vis
of existing client applications and peer services. Note also that the possibility
of paying by bank transfer has been added to the branch of the behavioural
interface that deals with online orders. However, this addition does not lead
1 We use the terms operation and message interchangeably, while noting that strictly

speaking, messages are events that initiate or result from operations.

Detecting Behavioural Incompatibilities between Pairs of Services 81

?

Provided interface of P Required interface

*Send

Send

*

Send

Send

?

Receive
OnlineOrder

OnlineInvoice

Receive
CreditCard

Details

ShipmentTrackingNumber
(STN)

Send

OfflineInvoice

OfflineOrder
Receive

Transfer
Receive Receive

Send

Send

Receive

CC Details

Send

OnlineOrder

Transfer

OfflineInvoice

AdvanceShipmentNotice
(ASN)

OfflineOrder

Receive

OnlineInvoice

Receive
STN

OfflineInvoice
Receive

OfflineOrder

Receive
Transfer

Provided interface of P’

Fig. 1. P and P ′ provided interfaces

to an incompatibility since existing client applications or peer services are not
designed to use this option. This later case shows that an incompatibility only
arises when P ′ offers less options than P . In technical terms, a change between
P ′ and P only leads to an incompatibility if it causes P ′ not to simulate P .

3 Modeling Service Behaviour

The proposed technique for detecting incompatibilities is based on the compar-
ison of behavioural interfaces capturing order dependencies between messages
sent and received by a service. We only consider message names, without in-
specting the schema of these messages.

Following [3,10], we adopt a simple yet effective approach to model service
behaviour using Finite State Machines (FSMs). Techniques exist to transform
behavioural service interfaces defined in other languages (e.g. BPEL) into FSMs
(see for example the WS-Engineer tool [7]), and therefore the choice of FSM
should not be seen as a restriction. What we can note is that during the trans-
formation from behaviour description languages that support parallelism (e.g.
BPEL) into FSMs, parallelism is encoded in the form of interleaving of actions.
For example, the parallel execution of activities a and b is encoded as a choice
between ‘a followed by b’ and ‘b followed by a’. In the FSMs we consider, tran-
sitions are labelled with message exchanges. When a message is sent or received,
the corresponding transition is fired. Figure 2 depicts FSMs of provided inter-
faces P and P ′ of the running example presented in Section 2. The message m
is denoted by >m (resp. <m) when it is sent (resp. received). Each conversation
initiated by a client starts an execution of the corresponding FSM.

Definitions and notations: An FSM is a tuple (S, L, T, s0, F) where: S is
a finite set of states, L a set of events (actions), T the transition function (T :
S ×L −→ S). s0 is the initial state such that s0 ∈ S, and F the set of final states
such that F ⊂ S. The transition function T associates a source state s1 ∈ S and

82 A. Aı̈t-Bachir, M. Dumas, and M.-C. Fauvet

Shipped

>ASN

Order

Shipped

>STN

<OnlineOrder

Paid

Order

OfflineOrdered

GoodsInvoiced

OnlineOrdered

OnlineInvoiced

<OfflineOrder

>OfflineInvoice
<OnlineOrder

<Transfer

<CCDetails
<Transfer

>OnlineInvoice

P’ FSM

<OnlineOrder <OfflineOrder

Paid

OnlineOrdered OfflineOrdered

OfflineInvoiced

<Transfer<CCDetails

>OfflineInvoice

<OfflineOrder

<OnlineOrder

OnlineInvoiced

>OnlineInvoice

P FSM

Fig. 2. FSMs of two provided interfaces

an event l1 ∈ L to a target state s2 ∈ S. In this model, a transition is defined as
a tuple containing a source state, a label and a target state.

We assume synchronous communication. While in reality Web service com-
munication is not always synchronous, synchronous communication provides, to
a certain extent, a suitable basis for analysing service behaviour. First of all,
synchronous communication is more restrictive than asynchronous communica-
tion. Therefore, incompatibilities that arise within the asynchronous case arise
in the synchronous case as well. Second, for a relatively large class of interfaces,
it has been shown that adopting the synchronous communication model leads
to the same analysis results than adopting the asynchronous model [6].

Another assumption is that we focus on interfaces that expose only externally
visible behaviour. In particular, internal actions or timeouts do not appear in
the service interface unless they are externalized as messages.

Below, we use the following notations (examples refer to the FSM P depicted
in the left side in Figure 2):

− s• is the set of outgoing transitions from s.
(e.g. OnlineInvoiced• = {(OnlineInvoiced,<CCDetails,Paid),(OnlineInvoiced,
<OnlineOrder,OnlineOrdered) }).

− t◦ is the target state of the transition t.
(e.g. (OnlineInvoiced,<CCDetails,Paid)◦ =Paid).

− Label(t) is the label of the transition t.
(e.g. Label((OnlineInvoiced,<CCDetails,Paid))=<CCDetails)

− ‖ X ‖: set cardinality of a set X .
− The ◦ operator (respectively •) is generalised to a set of transitions (respec-

tively states). For example, if T =
⋃n

i=1{ti} then T ◦ =
⋃n

i=1{ti◦}; where
n =‖ T ‖. Similarly, operator Label is generalized to a set of transitions.

4 Detection of Changes

To detect changes, P and P ′ are traversed synchronously starting from their
respective initial states s0 and s′0. The traversal seeks for two states s and s′

(belonging respectively to P and P ′) such that the sub-automaton starting from

Detecting Behavioural Incompatibilities between Pairs of Services 83

s in P and the one starting from s′ in P ′ are incompatible. The traversal algorithm
is described in section 4.4. But first, we discuss the conditions that need to be
evaluated to diagnose each type of change: deletion (see Section 4.1), addition
(see Section 4.2) and modification of an operation (see Section 4.3).

4.1 Deletion of an Operation

Figure 3 illustrates a situation where a deletion can be diagnosed. It shows two
FSMs: one corresponding to a service (P) and the other to another service P ′.
We observe that all operations enabled in state S1′ are also enabled in state S.
On the other hand, there is an operation (namely >R(m)) enabled in state S
that has no match in state S1′. So we can conclude that operation >R(m) has
been deleted from this particular state.

S1 S1’

S3’S2’S2 S3

>R(m)

<Z(m)

<Z(m)>X(m)
>X(m)deletion

Interface of P Interface of P’

Fig. 3. First case where a deletion is diagnosed

Figure 4 depicts a second scenario where a deletion can be diagnosed. We first
note that the above condition does not hold: not all operations enabled in S1′

are enabled in S1. Indeed, operation <Z(m) is enabled in S1′ but not in S1.
At the same time, operation >X(m) is enabled in S1 but it is not enabled in
S1′. There are two possibilities for this mismatch: either operation >X(m) has
been modified and has become <Z(m), or operation >X(m) has been deleted
altogether. In this example, we can discard the former possibility because <Z(m)
appears downstream in the interface FSM of P (it is the label of the outgoing
transition of state S2). Thus, <Z(m) can not be considered to be a replacement
for >X(m). So we conclude that >X(m) has been deleted.

S1 S1’

S2

S3

<Z(m)

S2’

S3’

>R(m)

<Z(m)>X(m) deletion

Interface of P Interface of P’

Fig. 4. Second case where a deletion is diagnosed

Once this deletion is detected, the state pair to be examined next in the com-
parison of P and P ′ is (S2, S1′). In other words, when deleting a transition,
we jump to its target state and continue looking for other changes that may be
sources of incompatibilities. For reporting purposes, the deletion is denoted by
a tuple (S1, >X(m), S1′, null), meaning that operation >X(m) enabled in S1
is replaced by the ‘null’ value in S1′. Formally, when comparing two interface

84 A. Aı̈t-Bachir, M. Dumas, and M.-C. Fauvet

FSMs P and P ′, a deletion is diagnosed in a pair of states s and s′ (respec-
tively belonging to P and P ′) if the following condition holds (each part of this
condition is explained below):

‖Label(s•) − Label (s′•)‖ � 1 ∧ ‖Label(s′•) − Label (s•)‖ = 0 (1)
∨ ∃t ∈ s•, ∃t′ ∈ s′• : Label(t)
∈ Label(s′•) ∧ ExtIn(t′, (t◦)•) (2)

A deletion is detected in state pair (s, s′) in two cases. The first one (line 1)
is when every outgoing transition of s′ can be matched to an outgoing tran-
sition of s, but on the other hand, there is an outgoing transition of s that
can not be matched to a transition of s′. A second case is when there exists
a pair of outgoing transitions t and t′ (of states s and s′ respectively) such
that: (i) transition t can not be matched to any outgoing transition of s′; and
(ii) the label of t′ occurs somewhere in the FSM rooted at the target state
of t (line 2).2 This second condition is tested in order to determine whether
the non-occurrence of t’s label among the outgoing transitions of s′ should in-
deed be interpreted as a deletion, as opposed to a modification or an addi-
tion. To check if a transition label occurs somewhere in the FSM rooted at the
target of a given transition, we use the following recursive boolean function:
ExtIn(t, T) ≡ T
= ∅ ∧ (Label (t) ∈ Label(T) ∨

⋃‖T‖
i=1 ExtIn(t, (Ti◦)•)). In other

words, ExtIn(t, T) (where t is a transition and T is a set of transitions) evaluates
to true if either transition t’s label appears among the labels of transitions in T
(Label(t) ∈ Label (T)) or, there exists a transition taken in T which has a target
state whose set of outgoing transitions (namely T 1) is such that ExtIn(t, T 1)
evaluates to true. The way it is defined, this recursive function does not converge
if the FSM has cycles, but it can be trivially extended to converge by adding an
input parameter to store the set of visited states and to ensure that each state
is only visited once.

4.2 Addition of an Operation

We now consider the diagnosis of an incompatibility resulting from the addition
of an operation in state pair (S1, S1′). The simplest case is when all the opera-
tions enabled in state S1 are also enabled in S1′ but not the opposite. This is the
case for example of <Z(m) in Figure 5. This particular addition however does
not lead to an incompatibility because what it does is that it allows a service
implementing P ′ to accept an additional message that a service implementing
P would not accept. An existing client of P would simply not send this mes-
sage. Thus, existing clients of P can interact with P ′, even though such clients
would never use the branch starting with transition labelled <Z(m). On the
other hand, if we replaced <Z(m) with >Z(m), the addition would give rise to
an incompatibility, because the service implementing P ′ may try to produce a
message Z(m) that a client of P would not accept.

2 By FSM P rooted at s we mean FSM P in which the initial state is set to be s. This
means that we ignore any state or transition that is not reachable from s.

Detecting Behavioural Incompatibilities between Pairs of Services 85

S1 S1’

S3’ S2’S2

addition
<Z(m)

>X(m) >X(m)

Interface of P Interface of P’

Fig. 5. First case where an addition is diagnosed

Figure 6 illustrates another case where an addition can be diagnosed. Opera-
tion >X(m) is enabled in state S1 and is not enabled in S1′. On the other hand,
operation <Y(m) is enabled in state S1′ but not in S1 and operation >X(m)
is enabled in a state downstream along the transition labelled <Y(m). Thus we
can conclude that operation <Y(m) has been added. This addition constitutes
an incompatibility regardless of whether Y(m) is sent or received, because the
non-occurrence of Y(m) would prevent the execution of a service implementing
P ′ to progress along the branch leading to the state where >X(m) can occur.

S1 S1’

S2

S3

<Z(m)

S2’

S3’

>X(m)

addition
>X(m) <Y(m)

Interface of P Interface of P’

Fig. 6. Second case where an addition is diagnosed

When an addition is detected in a state pair (S, S′), the synchronous traversal
of the two FSMs advances along the added transition. In the case of Figure 5
this means that (S1, S2′) should be visited next, while in the case of Figure 6,
state pair (S1, S3′) should be visited next – in addition to (S2, S2′) since this
latter state pair can be reached by taking transitions >X(m) synchronously.
For reporting purposes, the addition of an operation <Y (m) is denoted by a
tuple (S1, null, S1′, <Y (m)). Formally, an addition of an operation is diagnosed
in state pair (s,s′) if the following condition holds:

(‖Label(s•) − Label (s′•)‖ = 0 ∧ ‖Label(s′•) − Label (s•)‖ � 1) (3)
∨ ∃t ∈ s•, ∃t′ ∈ s′• : Label(t′)
∈ Label (s•) ∧ ExtIn(t, (t′◦)•) (4)

An addition is detected in two cases. The first case (line 3) is when there
exists an outgoing transition of s′ whose label does not match any of the labels of
the outgoing transitions of s, while at the same time, every outgoing transition
of s can be matched to an outgoing transition of s′. In this case, we need to
additionally check whether the added operation corresponds to a “send” or a
“receive”, since an added “receive” does not constitute an incompatibility in this
case. The second case (line 4) is when there exists a pair of outgoing transitions
t and t′ (of states s and s′ respectively) with different labels and such that the
label of t appears in the FSM rooted at the target of transition t′.

86 A. Aı̈t-Bachir, M. Dumas, and M.-C. Fauvet

4.3 Modification of an Operation

Figure 7 shows a situation where we can diagnose that operation >X(m) has
been replaced by operation >Y(m) (i.e. a modification). We can make this diag-
nosis because operation >X(m) is enabled in S1 but not in S1′, and conversely
>Y(m) is enabled in S1′ but not in S1. Moreover, the transition labelled >X(m)
can not be matched to a transition t′ in state S1′ such that operation >X(m) oc-
curs downstream along the branch starting with t′, and symmetrically, >Y(m)
can not be matched with a transition t of state S1 such that >Y(m) occurs
downstream along the branch starting with t. Thus we can not diagnose that
>X(m) has been deleted, nor can we diagnose that >Y(m) has been added.

In this case, the pairing of transition >X(m) with transition >Y(m) is arbi-
trary. If state S1′ had a second outgoing transition labelled >Z(m), we would
equally well diagnose that >X(m) has been replaced by >Z(m). Thus, when we
diagnose that >X(m) has been replaced by >Y(m), all that we capture is that
>X(m) has been replaced by another operation, possibly >Y(m). The output
produced by the proposed technique should be interpreted in light of this.

S1 S1’

S2’

S3’

<Z(m)

S2

S3

<Z(m)

>Y(m)>X(m)
modification

Interface of P Interface of P’

Fig. 7. Diagnosis of a modification/replacement

For reporting purposes, a modification (replacement) of >X(m) into >Y (m))
is denoted by tuple (S1, >X(m), S1′, >Y (m)). The state pair to be visited next
in the synchronous traversal of P and P ′ is such that both transitions involved in
the modification are traversed simultaneously. In this example, (S2, S2′) should
be visited next. Formally, a modification is diagnosed in state pair (s,s′) if the
following condition holds:

∃t1 ∈ s•, ∃t1′ ∈ s′• : Label (t1)
∈ Label(s′•) ∧ Label(t1′)
∈ Label(s•) (5)
∧¬∃t2 ∈ s• : ExtIn(t1′, (t2◦)•)) ∧ ¬∃t2′ ∈ s′• : ExtIn(t1, (t2′◦)•)) (6)

4.4 Detection Algorithm

The algorithm implementing the detection of changes is detailed in Figure 8.
Given two interface FSMs P and P ′, the algorithm traverses P and P ′ syn-
chronously starting from their respective initial states s0 and s′0. At each step,
the algorithm visits a state pair consisting of one state from each of the two
FSMs. Given a state pair, the algorithm determines if an incompatibility exists
and if so, it classifies it as an addition, deletion or modification. If an addition is
detected the algorithm progresses along the transition of the added operation in
P ′ only. Conversely, if the change is a deletion, the algorithm progresses along
the transition of the deleted operation in P only. However, if a modification

Detecting Behavioural Incompatibilities between Pairs of Services 87

1 Detection (Pi: FSM; Pj: FSM): {Change}
2 { Detection(Pi,Pj) returns a set of tuples of changes represented as tuple of the form < si, ti, sj, tj >

where si and sj are states of Pi and Pj respectively, while ti and tj are either null values or outgoing
transitions of si and sj respectively }

3 setRes: {Change}; { result variable }
4 si,sj: State ; { auxiliary variables }
5 visited, toBeVisited : Stack of statePair; { pairs of states that have been visited / must be visited }
6 si ← initState(Pi) ; sj ← initState(Pj)
7 toBeVisited.push((si,sj))
8 while notEmpty(toBeVisited)
9 (si, sj) ← toBeVisited.pop();
10 visited.push((si, sj)) { add the current state pair to the visited stack }
11 combEqual ← {(ti, tj) ∈ si• × sj• | Label(ti) = Label(tj)} { pairs of matching transitions }
12 difPiPj ← {ti ∈ si• | Label(ti) �∈ Label(sj•)}; difPjPi ← {tj ∈ sj• | Label(tj) �∈ Label(si•)}
13 combPiPj ← difPiPj × difPjPi; { all pairs of outgoing transitions of si and sj that do not have a

match }
14 If ‖difPiPj‖ � 1 and ‖difPjPi‖ = 0 then { deletion }
15 For each t in difPiPj do setRes.add(< si, t, sj, null>)
16 If((t◦, sj) /∈ visited) then toBeVisited.push((t◦, sj))
17 If ‖difPjPi‖ � 1 and ‖difPiPj‖ = 0 then { addition }
18 For each t in difPjPi do
19 If (polarity(t) = ‘send’) then setRes.add(< si, null, sj, t>) { otherwise this addition does not

lead to incompatibility }
20 If ((si, t◦) /∈ visited) then toBeVisited.push((si, t◦))
21 For each (ti, tj) in combPiPj do
22 If ExtIn(ti, (tj◦)•) then { addition }
23 setRes.add(< si, null, sj, tj>)
24 If ((si, tj◦) /∈ visited) then toBeVisited.push((si, tj◦))
25 If ExtIn(tj, (ti◦)•) then { deletion }
26 setRes.add(< si, ti, sj, null,’deletion’>)
27 If ((ti◦, sj) /∈ visited) then toBeVisited.push((ti◦, sj))
28 If ((¬∃tj′ ∈ sj• : ExtIn(ti, (tj′◦)•)) ∧ (¬∃ti′ ∈ si• : ExtIn(tj, (ti′◦)•))) then { modif. }
29 setRes.add(< si, ti, sj, tj>)
30 if((ti◦, tj◦) /∈ visited) then toBeVisited.push((ti◦, tj◦))
31 For each (ti, tj) in combEqual do If ((ti◦, tj◦) /∈ visited) then toBeVisited.push((ti◦, tj◦))
32 Return setRes

Fig. 8. Detection algorithm

is detected, the algorithm progresses along both FSMs simultaneously. While
traversing the two input FSMs, the algorithm accumulates a set of changes rep-
resented as tuples of the form (s, t, s′, t′), as explained previously.

The algorithm proceeds as a depth-first algorithm over state pairs of the
compared FSMs. Two stacks are maintained: one with the visited state pairs
and another with state pairs to be visited (line 5). These state pairs are such
that the first state belongs to the FSM of Pi while the second state belongs to
the one of Pj. The first state pair to be visited is the one containing the initial
states of Pi and Pj (line 6). Once a pair of states is visited it will not be visited
again. To ensure this, the algorithm uses the variable visited to memorize the
already visited state pairs (line 10).

Labels that appear both in the outgoing transitions of si and in the outgoing
transitions of sj are considered as unchanged. Thus, a set of state pairs is built
where states are target states of common labels (line 11). Also, the algorithm
reports all differences between the outgoing transitions of si and the outgoing
transitions of sj (line 12). The two set differences of transitions are put in two
variables difPiPj (transitions whose labels belong to Label(si•) but do not belong
to Label(sj•)) an difPjPi (transitions whose labels belong to Label (sj•) but do
not belong to Label(si•)). Line 13 calculates all combinations of transitions whose
labels are not in common among Label(si•) and Label(sj•).

88 A. Aı̈t-Bachir, M. Dumas, and M.-C. Fauvet

Lines 14 to 16 detect a deletion when an outgoing transition of si does not
match any transition in sj•. The result is a set of tuples < si, t, sj,null > where
t is one of the outgoing transitions of si whose label does not appear in any of
sj’s outgoing transitions. The detection of an addition is quite similar to the
detection of a deletion (lines 17 to 20).

Variable combPiPj contains transition pairs such that the label of the first
transition ti belongs to si• but does not belong to Label (sj•) while the label
of the second transition tj belongs to sj• but not to Label(si•). For each such
transition pair, the algorithm checks the conditions for diagnosing an addition
(lines 22 to 24), a deletion (lines 25 to 27) or a modification (lines 28 to 30).
Finally, the algorithm progresses along pairs of matching transitions, i.e. pairs
of transitions with identical labels (line 31). The algorithm has a worst-case
complexity quadratic on the total number of transitions in both FSMs.

The detection algorithm is implemented in a tool called BESERIAL
[1] available at http://www-clips.imag.fr/mrim/User/ali.ait-bachir/
webServices/webServices.html. Figure 9 shows the output of the compatibil-
ity analysis performed by BESERIAL on the example introduced in Section 2.
Here, Process2 is the more recent version of the interface. The operation that
allows clients to update an offline order has been deleted (<OfflineOrder). We
can see a state pair (offlineOrdered, offlineOrdered) linked by a dashed edge
labelled with the change deletion. The deleted operation is <OfflineOrder shown
by a dotted arrow. Other changes (addition of <Transfer and modification of
>STN by >ASN) are pinpointed as well.

Fig. 9. Graphical output of BESERIAL on the running example

5 Related Work

Compatibility test of interfaces has been widely studied in the context of Web
service composition. Most approaches that deal with the behavioural dimension
of interfaces rely on equivalence and similarity techniques to check, at design
time, whether or not interfaces described for instance by automata are compat-
ible [4,2]. These techniques usually rely either on trace equivalence checking or
on (bi-)simulation algorithms [9]. However, these approaches do not deal with

http://www-clips.imag.fr/mrim/User/ali.ait-bachir/webServices/webServices.html
http://www-clips.imag.fr/mrim/User/ali.ait-bachir/webServices/webServices.html

Detecting Behavioural Incompatibilities between Pairs of Services 89

pinpointing exact locations of incompatibilities. In [13], the authors address the
issue of runtime replaceability of services by extending the notions of design-
time replaceability defined in [2] which are based on trace comparison. Again,
this work does not aim at pinpointing a complete set of differences between
service behaviours as we do in our work.

Recent research has addressed interface similarity measures issues. In [8], the
author presents a similarity measure for labeled directed graphs inspired by the
simulation and bi-simulation relations on labeled transition systems. The author
applies this technique to detect and correct deadlocks. Other algorithms based
on graph-edit distances have been applied to service discovery in [5], but do not
pinpoint behavioural differences between services as our work does.

In [11], the authors propose an operator match which is a similarity func-
tion comparing two interfaces by finding correspondences between models. The
similarity measure is a heuristics which returns a value calculated according to
changes involving the addition or the deletion of an operation. However, the re-
sult does not pinpoint the exact location of these changes. In [15], the authors
propose an approach to business process matchmaking based on automata ex-
tended with logical expressions associated to states. Their algorithm determines
if the languages of two automata (which model two business processes) have a
non-empty intersection. This technique for detecting process differences returns
a boolean output. It does not provide detailed diagnostics such as pinpointing
specific states of the two services are different, which is the goal of our work.

6 Conclusion and Future Work

We presented a technique to detect changes (addition, deletion or modification
of an operation) that give rise to behavioural incompatibilities between two
services. The originality of this technique is that the detection algorithm does
not stop at the first incompatibility encountered but tries to seek further to
identify a series of incompatibilities between two services.

Ongoing work aims at extending BESERIAL towards two directions: (i) de-
tecting complex types of incompatibilities (e.g. the order of two operations is
swapped or an entire branch is deleted); and (ii) assisting service designers in
determining how to address an incompatibility. Also, BESERIAL currently as-
sumes synchronous communication. Future work will aim at supporting asyn-
chronous communication. We foresee that the incompatibility detection algo-
rithm can be extended in this direction by maintaining a buffer of unconsumed
messages during the traversal, along the lines of [10].

References

1. Aı̈t-Bachir, A., Dumas, M., Fauvet, M.-C.: BESERIAL: Behavioural Service Inter-
face Analyser. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, Springer, Heidelberg (2008)

90 A. Aı̈t-Bachir, M. Dumas, and M.-C. Fauvet

2. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing
web service protocols. Data and Knowledge Engineering 58(3), 327–357 (2006)

3. Beyer, D., Chakrabarti, A., Henzinger, T.A.: Web service interfaces. In: Proc. of
the 14th WWW int. conf., Japan. ACM, New York (2005)

4. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are two web services
compatible? In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324,
pp. 15–28. Springer, Heidelberg (2005)

5. Corrales, J.C., Grigori, D., Bouzeghoub, M.: BPEL processes matchmaking for
service discovery. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275.
Springer, Heidelberg (2006)

6. Fu, X., Bultan, T., Su, J.: Synchronizability of conversations among web services.
IEEE Transactions on Software Engineering 31(12) (2005)

7. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Ws-engineer: A tool for model-based
verification of web service compositions and choreography. In: Proc. of the IEEE
Int. Conf. on Software Engineering, China (2006)

8. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240. Springer, Heidelberg (2008)

9. Martens, A., Moser, S., Gerhardt, A., Funk, K.: Analyzing compatibility of bpel
processes. In: Proc. of the Advanced Int. Conf. on Telecom. and Int. Conf. on In-
ternet and Web Applications and Services, French Caribbean. IEEE, Los Alamitos
(2006)

10. Motahari-Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: Proc. of the 16th WWW Int.
Conf., Canada. ACM, New York (2007)

11. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and
merging of statecharts specifications. In: Proc. of the 29th Int. Conf. on Software
Engineering, USA. IEEE Computer Society, Los Alamitos (2007)

12. Ponnekanti, S.R., Fox, A.: Interoperability among independently evolving web ser-
vices. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 331–351.
Springer, Heidelberg (2004)

13. Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R.: Supporting the
dynamic evolution of web service protocols in service-oriented architectures. ACM
Transactions on the Web 2(2), 46 (2008)

14. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Services
Platform Architecture. Prentice-Hall, Englewood Cliffs (2005)

15. Wombacher, A., Fankhauser, P., Mahleko, B., Neuhold, E.: Matchmaking for busi-
ness processes based on choreographies. In: Proc. of the Int. Conf. on Multimedia
and Expo., Taipei, Taiwan. IEEE Computer Society Press, Los Alamitos (2004)

On Supporting the Design of Human-Provided
Services in SOA�

Daniel Schall, Christoph Dorn, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
Argentinierstr 8/184-1, 1040 Vienna, Austria

{schall,dorn,truong,dustdar}@infosys.tuwien.ac.at

Abstract. Collaboration platforms evolve into service-oriented systems,
promoting composite and user-enriched services. The problem we address
in this paper is the support of human interactions in SOA. Current col-
laboration tools do not support humans to specify different interaction
interfaces (services), which can be reused in various collaborations. We
focus on the design of Human-provided Services (HPS). Our contribu-
tions center around two main aspects of human interactions in SOA: (i)
an approach for designing service interfaces embodying human activities
as actions offered by Web (HPS) users; (ii) a tagging model for activities
and services to recommend resources in the design process. We discuss
techniques for mapping human activities onto Web services. We present
a recommendation algorithm that is based on collaborative tagging of
resources in SOA. Our algorithm helps to determine suitable resources
drawn from properties of user preferences and measured similarity of
human activities and actions.

1 Introduction

The global nature of the Web promotes access to the knowledge of an immense
large number of people. The Web enables the participation of users in collabora-
tions by various means. Currently, users interact with the Web and share content,
their knowledge, and opinions, etc. through Web sites, forums, Wikis, or blogs.
We have taken user participation on the Web a step further by introducing
Human-provided Services (HPS) utilizing SOA technologies and Web services
[1]. People can publish activities and their capabilities as Web services, creat-
ing a Web of HPSs interwoven with current Wikis, blogs, social networks and
enterprise services. We believe that HPS will be the future trend of human par-
ticipation on the Web and enterprise collaboration. Therefore, supporting users
in designing HPSs in an easy manner is an important issue. HPSs are exposed
as real Web service interfaces acting as interaction interfaces toward humans.
From the user’s point of view, services are represented as activities and actions
a user can perform in SOA-based collaboration environments. We believe that
users should be empowered to define and provide services. HPS use cases include

� Part of this work was supported by the EU project inContext (IST-034718).

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 91–102, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

92 D. Schall et al.

i) obtaining input or opinion from experts, ii) interactions with infield workers
to perform certain tasks, iii) mass collaboration of globally distributed teams
or communities by gathering results/output from users depending on expertise,
geographic location, and availability.

We have designed and implemented a framework [2] with the aim of sup-
porting HPSs as user-contributions in collaborations. While approaches such as
BPEL4People [3] target the support of human interactions as part of business
processes (i.e., workflows) by designing and executing a set of human tasks (cf.
WS-HumanTask [4]), HPS enables the definition of services offered by humans
independent of any process or task. We distinguish between (a) service — at
the technical level encompassing the definition of domain specific interaction in-
terfaces and input/output parameters — defined by users and/or communities
and (b) tasks to model the demanded (human) input as part of a workflow.

The goal of HPS is to provide a framework and tools enabling the engage-
ment of humans in distributed, large-scale collaborations using SOA. To enable
human participation through HPS, users must be able to utilize tools to design
and model their participations. These tools must be simple yet powerful enough
to deal with complexities in the service-design process. To date, most effort has
been spent on tools for Web service professionals and developers which however
cannot be used by novice users. Mashup editors1 are examples of how simple tools
can facilitate user participations and user driven processes by gathering and ag-
gregating different sources of knowledge. We argue that similar tools should be
provided for HPS design, enabling novice users to design their personal services,
thus creating a novel blend of SOA comprising human and software services.
In our previous work, we introduced a middleware enabling HPSs (i.e., registry,
discovery, and interactions). In this paper, we present methods and tools sup-
porting the user in the design of HPSs in SOA-based environments. We analyze
the complexity and challenges of the design process and present our solution.

Our goal is to provide powerful yet simple tools for users to define and provide
services. Such tools should automatically generate all the artifacts needed to
allow users to fully participate in interactions in SOA using Web services. This
paper presents an architecture and its implementation allowing humans to design
services for ad-hoc and process-centric collaborations, with the following key
contributions, (i) a methodology for incorporating human interactions in SOA,
(ii) design and implementation of the HPS designer architecture, giving users
the ability to design activity-centric interfaces which can be translated into low
level services descriptions (e.g., described in WSDL), and finally (iii) a method
for helping users in providing the right service by using tagging methods.

This paper is organized as follows: in Sec. 2 we outline our approach and
propose our solution to designing HPSs in SOA. We given an overview of the
HPS framework in Sec. 3, followed by Sec. 4 describing transformations and
mappings of human activities onto services. We introduce our recommendation
algorithm in Sec. 5 and show implemented tools for ranking and design in Sec.
6. Finally, we discuss related work in Sec. 7 and conclude the paper in Sec. 8.

1 E.g., http://pipes.yahoo.com/pipes/

On Supporting the Design of Human-Provided Services in SOA 93

2 Collaboratively Designing HPS

Dynamic collaborations typically take place using various communication chan-
nels and tools. The HPS middleware is a platform targeting SOA-based collabo-
ration scenarios involving both human and software services. In this section, we
first discuss the challenges in designing HPSs and present our approach. Then,
we provide an overview of the steps in the design process and show how users
are supported in finding/reusing exsting service artifacts.

– Interface transformation and generation: Designing and providing a service
should be as simple as writing a “blog entry”. Mapping human activities onto
Web services is challenging. Novice users have to be supported in designing
services in an easy and intuitive manner by hiding underlying complex pro-
cesses, constituting automatic service interface generation and translation
of service interfaces (e.g., WSDL) into GUI representations. Since standard
Web service technologies are used — at the technical level — to enable HPS,
versatile collaborations can be supported including interaction between hu-
mans as well as using HPSs in, for example, formalized processes. Human
input in a process is depicted in Fig. 1 (a) as Sends request.

– Recommendations for HPS Design: We argue that humans should be able to
design and provide their capabilities as services. Many HPSs may be available
and registered as services, potentially with different interface characteristics
and expertise of users. Users have to be supported in the design process by
recommending resources and interfaces which may already exist. We pro-
pose tagging mechanism helping users in expressing their expertise and an
algorithm based on collaborative filtering methods for ranking HPSs. Fur-
thermore, by tagging SOA artifacts, human activities, and actions – defining

Example Ac t iv i t y
Tags:

Rev iew SOA
document
WSDL 2.0
spec i f i ca t ion
Wr i te Mob i le
WS repor t

HPS Middleware

Artifacts HPSs Activity
Tags

Delegates
task

Requests
opinion

(a)

Get human
input

Utilized for Human and Service Interactions:

Human task in
workflow

initiate
design

Profile
Similarity/
Ranking

Search/
Matching

Keywords:
Know-how and/or
activity type tags

Ranked
HPSs

Expertise as
input for HPS
recommendation

HPSs of users
with similar
interests

Create/
Reuse
Model

Publication
of Design
Artifacts

Create
Personal
Service

Activity types,
and service
interface

Register
HPS

(b)

Fig. 1. (a) Typical collaboration scenario involving human- as well as human-service
interactions. Tags are applied to various artifacts allowing for classification of services
and user activities. (b) The design: users can reuse existing models or define new
interfaces. Services are registered as personal services.

94 D. Schall et al.

the type of collaborations in which an HPS is used – allows search based on
user-defined keywords.

In Fig. 1, we show how the design is supported by utilizing tagged information
and collaborative filtering methods. Tagging becomes increasingly important in
today’s collaborations allowing people to associate metadata to various artifacts
— Web documents, links, messages, etc. (e.g., see [5] for usage patterns of tag-
ging) and keyword-based search of user annotated content. Similarly, tags in the
HPS framework are used to identify the context in which services and artifacts
are used.

Generally speaking, tags are keywords/terms associated to information. In this
work, we distinguish between tags assigned to activities, services, and actions.
In the following we discuss how to utilize this metadata in the design process
and detail the steps in Fig. 1.

1. Let’s assume a user initiates the design process by deciding to define a ser-
vice Fig. 1 (b). The common thing between the design of HPSs and, for
example, creating service mashups is that both are user-defined services or
processes. Like in most collaboration platforms, user-profiles managed by
the HPS middleware contain information such as past/current activities and
user preferences. Examples — in the computer science context — include
“reviewer for a conference”, “J2EE consultant”, etc. We refer to such key-
words available in the profile as activity information (e.g., predefined by the
user).

2. The search for service artifacts is performed by matching the user’s query
vector against existing HPSs. A matching function takes service metadata as
input, either automatically extracted keywords or, again tagged information.
Hence, tagging information is not only used during collaboration, but also
at design time. In contrast to above mentioned activity tags, service tags
express how HPSs are used for collaborations (i.e., for actual interactions).

3. The next step is the ranking of HPSs. We compare a user’s activities with
the expertise of those HPSs matching the demanded set of keywords.

4. The user can create new models, publish related artifacts and type defini-
tions using tools discussed in Section 4, or reuse existing HPS definitions.
The model defines human activities which are mapped into actions (cf. [6])
performed using Web services.

5. Finally, Personal Services (the mapping of user profiles to services) are pub-
lished in the HPS registry.

3 Overview HPS Framework

To enable HPS, we need a framework supporting the management of related
artifacts, user profiles, and HPS interactions. The HPS framework has been
developed for this purpose (cf. [2]). However, in this paper we focus on design
related APIs and components which have been implemented on-top of the core
framework. In the following, we provide a description of components in Fig. 2.

On Supporting the Design of Human-Provided Services in SOA 95

Fig. 2. HPS framework and architecture

The API Layer includes the core services for WSDL document generation
(WSDL API service) which specify human activities and user specified inter-
face elements (parameters and complex elements), the Forms API implement-
ing support for XML Forms (XForms2), an XSD Transformer service utilizing
the Forms API to automatically generate XForms based on XML schema def-
initions, for example, as defined in WSDL documents, and a Tag Management
service associating tags with HPS artifacts (activities, actions, and WSDLs).

Design: Fig. 2 shows the design flow on the left side (top down) starting with
HPS Design – designer tools such as a Web portal allowing users to create service
interfaces in a simple manner.

1. Interface and Message Formats: the HPS framework provides tools to au-
tomatically translate high level specifications (e.g., activities and interface
elements) into low level service descriptions without requiring the user to
understand underlying technologies such as XML or WSDL.

2. Publication of Design Artifacts: artifacts such as message formats and ac-
tivity type definitions are saved in XML collections.

Runtime: The User Management service holds user-related data such as profiles
and contact details and is utilized by the Activity Management service. The
Interface Emitter generates HPS interfaces depending on application scenario,
for example, human interactions using HPS or human interactions in processes.

4 HPS Interface Transformation and Generation

The design process and methodology presented in this paper has to be supported
by a set of tools and models. We start with the definition of the process, which
2 W3C Markup Forms: http://www.w3.org/MarkUp/Forms/

96 D. Schall et al.

allows users to define services without having to understand Web services tech-
nologies (depicted in Fig.3). Several papers focus on automatic GUI generation
based on WSDL descriptions [7,8]. However, these works assume that the WSDL
description of a service already exists and simply needs to be parsed and mapped
into some GUI language/representation.

4.1 Design Process

We define a process allowing users to create an activity model serving as the input
for automatic generation of service artifacts. The HPS framework provides User
Controls and a corresponding Meta Model which enable people to design their
Activity Model and HPS Interfaces. We discuss interface mappings and the meta
model in Sec. 4.2.

User
defines

uses

bind
User Control

Meta Model

XML
Schema

HPS
Interface

Interface
Emitter UI Generator

Service
Description

(WSDL Interface)

Activity
Model

Defines schema
binding and enables

model checking

Service
Model

Serves as input
for HAL
interactions

WSDL
Mapping

Human activity to
service mapping

Instance
Model

Defines SOAP
model for XML

instance

Transformation
Model

(XSD XForms Binding)

(1) User input in design (2) Transformations (3) Automated interface generation enabling interactions

Fig. 3. Conceptual approach and interface design

Step 1 in the design: users define their Activity Model using controls (a simple
example is shown in Fig. 5).

Step 2 comprises automatic transformations of the user’s input into XML arti-
facts: i) invoke the XSD Transformer translating the activity model into XML
schemes (i.e., Schema Binding) using definitions and constraints defined in the
Meta Model. An example of such constraints and mappings is given in Table 1.
Currently we express model mappings in XML schemes. ii) HPS Interfaces are
created by associating activity types with the Service Model, defining how ac-
tivity types (and human actions) are mapped into services definitions (WSDL).
The mapping of an HPS Interface into WSDL is the binding of activity type
definitions and actions with the HPS Access Layer (HAL, see [1]). At run-time,
HAL acts as a proxy service dispatching requests by performing security checks,
routing, message transformations (if needed), and persistency management of
messages (i.e., saving request/response messages in XML collections).

Step 3 comprises the automated generation of interfaces at run-time. The Inter-
face Emitter generates: i) interfaces allowing processes to interact with HPSs by
generating WSDLs. Thus, HPSs may be included in (software) process by defin-
ing human activities in the process definition, which are enacted as HPS actions

On Supporting the Design of Human-Provided Services in SOA 97

Table 1. Excerpt interface mapping

Model & Binding Description

XSD <xs:choice/>

Form <xf:select1 ref="" appearance="$model"/> with appearance
as $model parameter (“full” or “compact”)

Restriction/Model //*[@value=’Choice’]/prop[@name=’type’]/@value and
<xs:choice minOccurs="$model" maxOccurs="$model"> with
$model as parameters (minOccurs and maxOccurs being ”1”)

(interaction through HAL). GUIs are generated automatically by transforming
WSDLs and XSDs into XML forms using the Forms API.

4.2 Interface Mappings

Meta Models define interface mappings of XML schemes into XForms. Table 1
shows an exemplary mapping of an XML type into an XForms representation,
i.e., (1) XSD type, (2) Form model, and (3) mappings and Restriction/Model
as defined in the meta-model.

The above mappings support transformations into a forms representations. We
continue our discussion of HPS interfaces by showing a concrete XML example
of a WSDL description. We start with type definitions in Listing 1.

Of course, no user input is needed for mapping activities onto services or to
create WSDL descriptions. This is automatically performed by services in the
framework. Listing 1 shows GenericResource, ReviewRequest type definitions.

Listing 1. Review-activity types example.
<xsd:schema targetNamespace="http://services.myhps.org/reviewservice">

<xsd:complexType name="GenericResource">

<xsd:sequence>

<xsd:element name="Location" type="xsd:anyURI" />

<xsd:element name="Expires" type="xsd:dateTime" />

<xsd:sequence>

</xsd:complexType>

<xsd:element name="ReviewRequest" type="Request" />

<xsd:complexType name="Request">

<xsd:sequence>

<xsd:element name="ReviewResource" type="GenericResource" />

<xsd:element name="Comments" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

<xsd:element name="AckReviewRequest" type="xsd:string" />

<xsd:element name="GetReviewReply" type="xsd:string" />

<xsd:element name="ReviewReply" type="Reply" />

</xsd:schema>

98 D. Schall et al.

Such definitions can be created using tools, as we shall discuss later. In this
simplified example, the activity to be performed by a human is review compris-
ing resources, the actual request, and the reply, which is complex XML data
structure (abbreviated in this example).

Finally, Listing 2 shows an excerpt of a WSDL representing a review HPS.

Listing 2. HPS WSDL example.
<wsdl:message name="GetReview">

<wsdl:part name="part1" element="ReviewRequest" />

</wsdl:message>

<wsdl:message name="AckReviewRequest">

<wsdl:part name="part1" element="AckReviewRequest" />

</wsdl:message>

<wsdl:portType name="HPSReviewPortType">

<wsdl:operation name="GetReview">

<wsdl:input xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

message="GetReview" wsaw:Action="urn:GetReview" >

</wsdl:input>

<wsdl:output message="AckReviewRequest" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="HALSOAPBinding" type="HPSReviewPortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />

</wsdl:binding>

Notice, PortType (i.e., the interface) for all interactions is the HPS access
layer. At run-time, the access layer extracts and routes messages to the demanded
HPS. Since every interaction is entirely asynchronous, interactions (session) iden-
tifier are automatically generated by the access layer (e.g., AckReviewRequest).

5 Recommendations for HPS Design

In the spirit of collaborative tagging systems, we perform ranking and recom-
mendations based on tagged resources. An entry is a triple (user, resource,
{tags}). We perform matching of relevant users who provide a particular HPS
of interest. The matching function is based on applied tags. To obtain rankings,
we measure the similarity of the user’s preferences with activities and actions
of matching users, i.e., those users already offering HPSs to find definitions of
services that can be reused.

Algorithm 1 outlines our ranking approach. We assume several functions. For
example, we calculate the similarity of preferences/activities as the Pearson corre-
lation coefficient. Furthermore, we calculate the frequency of tags using additive
smoothing, a simple yet effect method to account for missing/misplaced tags.

On Supporting the Design of Human-Provided Services in SOA 99

Algorithm 1. Recommendation algorithm comparing the preferences of a per-
son v searching for existing HPSs and artifacts.
Require: Utag is a set of users that applied the demanded set of tags. S is a vector

holding the scores of services by users ∈ Utag with similar interests.
Require: We determine the correlation between users as:

correl(u1, u2) =
∑

(u1 − u2)(u1 − u2)/(N ∗ stdev(u1)stdev(u2))
1: for each user u ∈ U do
2: for each tag ∈ AT do
3: /* Get the frequency for a specific tag used by u. */
4: Ω[tag] ← getFrequency(u, tag)
5: end for
6: /* Assign the weight using the smoothing factor 0 < γ < 1. */
7: w(u,tag) ← Ω[tag]+γ∑

ftag∈Ω

ftag + γ

8: /* If any of u’s interactions/HPSs contain tag. */
9: Add u to Utag

10: end for
11: for each user u ∈ Utag do
12: /* Calculate correlation between u and v. */
13: φ ← correl(wu, wv)
14: S[u] ← p(u) ∗ score(φ)
15: /* p(u) is personalization vector to assign additional preferences. */
16: end for
17: /* Sort preferred users by decreasing score and truncate S. */
18: return the top-k list of services by users

The input of Algorithm 1 is a query vector and the preferences of the user ini-
tiating the design process. By matching existing HPSs, we determine the initial
set Utag. We determine the score of a particular user by mapping the correlation
factor φ into a linear function score(φ) = φ+1

2 since (−1 ≤ φ ≤ 1) would give us
negative scores if there is no correlation between users. Additional personaliza-
tion can be performed by assigning preferences (i.e., p(u)) for particular users.
The output of the recommendation algorithm is a ranked list of services S.

6 Implementation

In this section we show the tools to manage HPSs, artifacts, etc. supporting
lookup of services. The first tool illustrates how a user can search for existing
services. The first screenshot in Fig. 4 shows the result of a user query. In this
example we show the same HPS WSDL as discussed in previous sections (Sec.
4.2). If none of the existing HPSs fits the desired activities, users have the ability
to create new artifacts and activities which are then mapped into HPSs.

The framework provides a set of designer tools which can be used to define
control elements, options, and definitions of artifacts. A screenshot of a control is
given in Fig. 5, allowing users to define complex data structures. This tool is used

100 D. Schall et al.

Fig. 4. Registry maintaining HPSs and service artifacts: users can search for services,
which are displayed in a ranked list

Fig. 5. Example control allowing users to define activities and complex data structures

in Step 1 as defined by the design process in Sec. 4.1. The prototype version of
this tools automatically translated user input into low-level XML artifacts such
as schemes, instance documents (e.g., encapsulated in SOAP envelopes), WSDL
descriptions and XML forms depending on the HPS use case. For example, in-
teractions between humans in collaborations or using HPS in a process-centric
scenario. Show as XML (for demo purposes) translates user defined elements into
XML schemes, Show as XML Instance displays the associated XML schema in-
stance document, and Preview as Form renders XForm presentation.

7 Related Work

The work presented in this paper focuses on a methodology and tools allowing
humans to define service for various collaborations. We structure our discussion

On Supporting the Design of Human-Provided Services in SOA 101

into related work in the area of SOA, Web services, and process-centric collabora-
tion. Second, we present related research in engineering methods in SOA. Third,
we discuss tagging mechanisms and approaches for resource recommendations.

BPEL4People Task Model: BPEL4People defines human interactions in busi-
ness processes via the human task specification [4]. A concrete implementation
of BPEL4People as a service has been introduced in [9], but without supporting
the design of services. In [10], the relation of various Web standards and resource
patterns is discussed.

In contrast to above mentioned work, we describe a design approach allowing
people to define services. While BPEL4People defines how developers can define
human interactions in processes, related BPEL4People specifications do not de-
scribe how humans define services and how people manage interactions in SOA.
The difference between the task model, such as defined by BPEL4People, and
HPS is that tasks are usually defined for controlling interactions (e.g., start, end,
deadline, etc.). HPS targets collaboration scenarios where users contribute their
skills and expertise as services. Another point is that HPS reflects the compos-
able nature of the Web, for example, reusing and composing services. However,
we have not yet addressed compositions of HPSs.

Approaches for Interface Transformations and Generation: Our frame-
work utilizes open standards such as WSDL, to describe HPS interfaces, and
XForms to automatically generate user interfaces. GUI generation and mappings
for WSDL has been presented in [7,8] and forms generators such as IBM’s XML
Forms Generator3 for the Eclipse environment are available. In this paper we not
only focus on generating GUIs based on WSDL, but also the mapping of human
activities into HPS interfaces and generation of presentations (WSDL or XForms).

Tagging and Resource Recommendations: Recently, models for collabora-
tive tagging have been presented [11] and personalized recommendations-based
tagging models introduced in [12]. In [13], the authors present an evaluation
of tag recommendations in folksonomies using collaborative filtering methods
and an algorithm called FolkRank. Similarly, we follow a tag-based recommen-
dation approach. However, we propose activity tagging to express expertise of
users. Based on these tags, we implemented a collaborative filtering algorithm
for recommendation of HPSs.

8 Conclusion and Future Work

The methodology and tools presented in this work offer support in the design of
HPSs for users without having to implement code. The framework hosts a Web 2.0
portal, implemented in ASP.NET AJAX and C# APIs, allowing users to search
for service artifacts (interfaces already provided by other users) and to design new
services. The next steps include further implementation of XForm specifications
and deployment of a rendering run-time on mobile devices. Also, we are working
on composition aspects of HPSs and usability improvements of user tools.
3 http://www.alphaworks.ibm.com/tech/xfg

102 D. Schall et al.

References

1. Schall, D., Truong, H.L., Dustdar, S.: Unifying Human and Software Services in
Web-Scale Collaborations. IEEE Internet Computing 12(3), 62–68 (2008)

2. Schall, D., Truong, H.L., Dustdar, S.: The Human-provided Services Framework.
In: IEEE 2008 Conference on Enterprise Computing, E-Commerce and E-Services
(EEE 2008), Crystal City, Washington, D.C., USA. IEEE Computer Society, Los
Alamitos (2008)

3. Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König,
D., Leymann, F., Müller, R., Pfau, G., Plösser, K., Rangaswamy, R., Rickayzen,
A., Rowley, M., Schmidt, P., Trickovic, I., Yiu, A., Zeller, M.: WS-BPEL Extension
for People (BPEL4People), Version 1.0 (2007)

4. Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König, D., Leymann,
F., Müller, R., Pfau, G., Plösser, K., Rangaswamy, R., Rickayzen, A., Rowley, M.,
Schmidt, P., Trickovic, I., Yiu, A., Zeller, M.: Web Services Human Task (WS-
HumanTask), Version 1.0 (2007)

5. Golder, S., Huberman, B.A.: Usage patterns of collaborative tagging systems. Jour-
nal of Information Science 32(2), 198–208 (2006)

6. Dustdar, S.: Caramba a process-aware collaboration system supporting ad hoc and
collaborative processes in virtual teams. Distrib. Parallel Databases 15(1), 45–66
(2004)

7. Song, K., Lee, K.H.: An Automated Generation of XForms Interfaces for Web Ser-
vices. Web Services. In: Song, K., Lee, K.H. (eds.) IEEE International Conference
on ICWS 2007, pp. 856–863, July 9-13 (2007)

8. Kassoff, M., Kato, D., Mohsin, W.: Creating GUIs for Web Services. IEEE Internet
Computing 07(5), 66–73 (2003)

9. Thomas, J., Paci, F., Bertino, E., Eugster, P.: User Tasks and Access Control over
Web Services. In: Int. conf. on Web Services (ICWS 2007), Salt Lake City, USA,
pp. 60–69. IEEE Computer Society, Los Alamitos (2007)

10. Russell, N., Van Der Aalst, W.M.P.: Evaluation of the bpel4people and ws-
humantask extensions to ws-bpel 2.0 using the workflow resource patterns. Tech-
nical report, BPM Center Brisbane/Eindhoven (2007)

11. Cattuto, C., Loreto, V., Pietronero, L.: Semiotic dynamics and collaborative tag-
ging. PNAS 104(5), 1461–1464 (2007)

12. Byde, A., Wan, H., Cayzer, S.: Personalized tag recommendations via tagging and
content-based similarity metrics. In: Proceedings of the International Conference
on Weblogs and Social Media (2007)

13. Jäschke, R., Marinho, L.B., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag
recommendations in folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras,
R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS, vol. 4702,
pp. 506–514. Springer, Heidelberg (2007)

Model Transformations to Leverage Service
Networks�

Marina Bitsaki1, Olha Danylevych2, Willem-Jan A.M. van den Heuvel3,
George D. Koutras1, Frank Leymann2, Michele Mancioppi3,

Christos N. Nikolaou1, and Mike P. Papazoglou3

1 Computer Science Department, University of Crete, Greece
{bitsaki,koutras,nikolau}@tsl.gr

2 Institute of Architecture of Application Systems, University of Stuttgart, Germany
{olha.danylevych,leymann}@iaas.uni-stuttgart.de

3 INFOLAB, Dept. of Information Systems and Management,
Tilburg University, The Netherlands

{wjheuvel,m..mancioppi,mikep}@uvt.nl

Abstract. The Internet has catered for the transformation of traditional
“stovepiped” service companies into global service networks fostering co-
production of value to more effectively and efficiently satisfy the ever-
growing demands of mundane customers. The catalyst of this change is
the happenstance of Service Oriented Computing, which provides a nat-
ural distributed computing technology paradigm for implementing and
evolving such highly distributed networks of autonomous trading part-
ners with coordinate and cooperative actions. However, how to faithfully
(re-)map service networks to business processes and service realizations
and vice-versa is still partly terra incognita.

In this paper, we introduce a semi-automatic model transformation
approach for creating the abstract business processes that take place
between trading partners from models of service networks, assuming
limited human-involvement focused on selecting reusable transformation
patterns. This approach is explored and validated using a realistic case
study reflecting best practices in the telecommunications industry.

1 Introduction

The services industry has become the leading contributor to business activities
in developed economies, encompassing sectors such as logistics, education, pub-
lishing, finance, healthcare, telecom and government. The digitally networked
service economy, driven by distributed computing technologies such as Service
Oriented Computing (SOC) [1], is believed to revolutionize the way in which
these companies conduct business, enabling exiting new business models such as
service networks.

Service Networks. (SNs) [2,3] leverage end-to-end service interactions between net-
work partners that embody a succession of business processes typically cutting
� The research leading to these results has received funding from the European Com-

munity’s Seventh Framework Programme under the Network of Excellence S-Cube
- Grant Agreement n◦ 215483.

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 103–117, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

104 M. Bitsaki et al.

across organizational boundaries and spanning various geographical locations.
Service networks sequence service activities with the flow definitions of business
process modelf into end-to-end service constellations, assign work items to the
appropriate human actors or groups, and ensure that both human- and systems-
based activities are performed within agreed-upon timeframes and QoS criteria.

SOC is touted as the de-facto distributed enterprise-computing technology for
developing and evolving SNs. In a SOC-based environment, business processes
can be implemented as networks of choreographed services between- and orches-
trated services within- network partners, relying on global standards including
BPEL and WSDL. Business Process Management (BPM) [4] is a natural sup-
plement to SOC through which business activities can be monitored and mea-
sured across business processes and services, while maximizing business value
in service networks. In a nutshell, BPM has been evolved into a comprehensive
lifecycle model that encompasses (graphical) process analysis & design, process
execution, and process monitoring and reporting capabilities.

SOC-based design & development in tandem with BPM-based management
of SNs should be grounded on a methodology offering a consistent body of meth-
ods, notations and tools. As a first fundamental step, [2] proposed the Service
Network Notation (SNN) as a novel modeling language enabling quantitative
economic analysis of SNs to ascertain the optimal constellation of collabora-
tive economic agents resulting in maximum economic value. Service networks
described as SNN models can be analyzed to optimize the value generated in
the network using financial metrics like cost, revenues and customer satisfac-
tion. Further evolution of the SNN notation and its related analysis techniques
will concern the simulation of service networks to discover value anomalies (e.g.
services or partnerships that do not produce as much value as expected) before
the actual services are realized and deployed, and to perform different types of
“what-if” analysis, such as study the changes of value flows upon replacements
of services and partners, broadening or shrinking of the market (i.e. more partici-
pants join or live the service networks). This paper pursues new steps towards the
alignment of service networks and the underpinning business processes to realize
such a comprehensive service network analysis, development and management
methodology.

The development of business processes and services are already part of the cur-
rent state of the art of subsequently BPM and SOC, and is well understood [5].
Thus, we will not any further consider them in this work. Also, mapping busi-
ness processes and services has been extensively scrutinized in the field of Model
Driven Engineering (MDE) [6] and Model Driven Architecture (MDA) [7]. MDA
is an effort of the Object Management Group providing the foundations and
promoting the generation of programming code from models. Model transforma-
tions are used to generate new models (e.g. source code in some programming
language) from other models (e.g. UML2 Class Diagrams) using repeatable (au-
tomatic) processes expressed as rules [8].

Similarly to their applications to software engineering, MDE and MDA harbor
huge potential benefits for BPM and service networks. In BPM, a wide variety

Model Transformations to Leverage Service Networks 105

of transformations have been devised to facilitate the generation, for instance,
of executable business processes from abstract ones (such as, but not limited to,
[9,10]). In the ambit of service networks, one of the links currently missing is
how to exploit the information about value flows among participants contained
in SNN models to streamline the generation of those business processes that
are the backbone of the service networks, and vice-versa how to extract service
network representations from existing abstract business processes. In this paper
we bridge this gap by introducing a transformation approach for constructing
business processes in from models of service networks and the other way around,
which is accelerated through the usage of process interaction patterns that can be
injected during the transformation processes. This results into an approach that
is one of continuous (re-)design, scoping, refinement and adjustment of service
network- and abstract business process models.

The paper is organized as follows: Section 2 outlines the SN4BPM architecture
on which our transformation is grounded. Section 3 then introduces a realistic
running example of a service network for customer- and network fault handling.
Section 4 describes a staged transformation method to map SNs into business
processes, after which Section 5 elaborates the transformation mechanisms in
detail. Finally, Section 6 concludes the paper with conclusions and directions
future work.

2 The SN4BPM Architecture

Fig. 1. The SN4BPM stack

The SN4BPM (Fig. 1) entails
a stratified architecture that
serves as the foundation for
realizing business processes in
service networks. This archi-
tecture unifies the BPM and
SOC standards stacks for re-
alizing service networks, fos-
tering a clean separation of
concerns among the devising
of the strategies, partnerships
and their effects, the abstract
business processes realizing
them, the executable business
processes and the underpin-
ning IT infrastructure.

At the top layer of this
architecture, the Service Net-
work layer encompasses ser-
vice network models that

serve as the basis of analyzing, simulating and optimizing networked constel-
lations of business partners, each of which contributes to the network processes,
while adding value.

106 M. Bitsaki et al.

The Process Models layer deals with modeling abstract business processes with
languages such as the Business Process Modeling Notation (BPMN). Abstract
business process models are implementation agnostic, and harness processes as
orchestrations of services, each of which realizes an activity and is executed
according to a control flow that may be private or public to the partners in
the SN. Abstract business processes thus omit implementation details that are
necessary to the execution of the business processes (e.g. the endpoint of the
services to interact with). Abstract business processes can be partitioned into
business process fragments that group independent and cohesive subsets of in-
teractions among the participants. For example, an abstract business process
CustomerProblemHandling in a telecommunications service network can be par-
titioned into two cohesive business process fragments, viz., ProblemDiagnostics
and ProblemFixing.

In particular, abstract processes are realized as executable processes in the
Composition layer, where they can be rendered as choreographies, which pro-
vide a global view on the (inter- and intra-organizational) multiparty collab-
orations focusing on the message-based communication among partners, or
orchestrations, which specify and connect into executable workflows the activities
performed and the message exchanges performed by a participant or a service.
Executable business processes are technology-dependent, and are usually mod-
eled using languages such as the Web Services Business Process Execution Lan-
guage (WS-BPEL) and BPEL4Chor [11], respectively focusing on orchestrations
and choreographies. The Services layer provides the set of discrete services avail-
able in the service network, relying on open standards based message backbone,
enabled by SOC infrastructural plumbing technologies such as an Enterprise
Service Bus [12].

3 The Service Network Notation

The transformation approach will be illustrated and explored with a simple and
realistic running example concerning a service network for resolving resource and
service problems that are reported by Telco clients, e.g. connection problems, in
a telecommunications service network comprised of consumers, intermediaries,
telco service providers and suppliers. This case study is based on a description of
standard, end-to-end business processes in the eTOM Business Process Frame-
work [13]. For reasons of understandability we will now briefly explain the basic
concepts in SNN.

A comprehensive overview of the SNN notation and its meta-model are pro-
vided in [2]. Fig. 2 depicts our running example as an SNN model. It focuses on
two essential processes in fault resolution, the Customer Fault Resolution and
the Network Fault Resolution business processes. The Customer Fault Resolu-
tion process conceptualizes the customers procedure for reporting a fault to a
Customer Service Representative (CSR): after the reception of a trouble ticket,
the CSR delegates the resolution job to a Field Agent, after which the Field
Agent intervenes at the Customers site to solve the issue. When the issue is
solved, the Customer pays for the intervention.

Model Transformations to Leverage Service Networks 107

Fig. 2. An SNN model representing the eTOM example

The SNN model captures this scenario among the three business entities,
Customer, CSR and Field Agent as follows. The provisioning of the resolution
service from the CSR to the Customer is represented as a directed arrow labeled
as the Customer Support offering. The Field Agent supplies the Customer with
the Fix Failure service and the CSR with the Solve Ticket service. The Customer
pays for the intervention by generating revenue for the CSR, which is modeled
with the dotted directed arrow labeled Pay Intervention pointing to the CSR.
The Customer Support, Solve Ticket, Fix Failure and Pay Intervention relations
are correlated (the star-like symbol connecting them) because they all take place
within the context a single business process fragment, called Customer Fault
Resolution, with a clearly demarcated start and end.

4 Transformations in the Enhanced BPM Lifecycle

The development practices and activities for developing service-enabled pro-
cesses in SNs are organized and integrated by the enhanced BPM lifecycle intro-
duced in [2], which is depicted in Fig. 3.

This lifecycle extends the traditional BPM lifecycle by introducing a phase
called Rationalization that deals with the design, optimization and simulation

Fig. 3. The enhanced BPM lifecycle

108 M. Bitsaki et al.

of SNN models. The Analysis phase elicits and collects business process re-
quirements, and resolves requirement inconsistencies and incompleteness. The
Modeling phase addresses design, maintenance and evolution of abstract busi-
ness process models. The IT refinement phase centers on realizing executable
process models, which are then deployed on the IT infrastructure during the
Deployment phase. The Execution phase enables the execution of processes, and
generating execution trails which are used in the Monitoring phase to adapt
particular process instances while still running, detect trends and patterns in
the current usage of the processes, keep track of the overall state of the system,
etc.

Transformations are the mortar that bind the new elements of the enhanced
BPM lifecycle with the well-established practices of the standard BPM lifecycle,
enabling the analyst to move from the Modeling phase to the Rationalization
phase and vice-versa as shown in Fig. 3. The connections between the Analysis
and Rationalization phases are based on one direction on modeling SNN models
that capture the requirements specified on the Analysis phase, and on the other
on extracting new requirements from optimized SNN models. The transforma-
tions that are scrutinized in this paper foster in the lifecycle the bi-directional
synchronization of artifacts designed during the Modeling- and Rationalization
phases, viz. the SNN model and the abstract business process model that are
logically associated through the stratified SN4BPM architecture.

5 The Transformation Approach

Enhanced business process management is facilitated when the business analyst
may easily progress from one phase to the next and back to iteratively develop
service-enabled processes for new service networks, and to incrementally deal
with changes in existing ones.While not incremental and iterative, the trans-
formation approach here proposed is an initial step towards this vision. The
TopDown and BottomUp transformations, named after the relative directions
in traversing the SN4BPM stack of Fig. 1, respectively allow to map service

Fig. 4. Overview of the transformation approach

network models (belong-
ing at the Service Net-
works layer) into abstract
business process model
(at Process Models layer
in the stack) and vice-
versa through a multi-
step approach Mapping
SNN models (belonging
at the Service Networks
layer) to abstract busi-
ness process models (at
Process Models layer in
the stack).

Model Transformations to Leverage Service Networks 109

Fig. 4 provides an overview of the basic workings of the transformation ap-
proach indicating whether steps are completely automatic (gears), or that re-
quire some decisions taken by an analyst (sticky figure), or involve Business
Interactions Patterns (BIPs). A BIP is a generic and reusable template of a
business process fragment that can be applied to concepts in the SNN model
(e.g. correlation). In particular, a BIP summarizes roles played by participants
in a business fragment, workflows structuring the activities performed by the
roles, and message-based interactions that occur among the different roles.

As depicted in this Fig. 4, the BottomUp transformation is composed of five
steps, one requiring human intervention and the other automatic, that produce a
well-formed SNN model from a BPMN model. The first step requires the analyst
to label the message-flows at BPMN level that represent revenue and offering
relations between participants at SNN level. From then on, the BottomUp trans-
formation is fully automated. The TopDown transformation creates a BPMN
model from the information embedded in a SNN model. The transformation is
divided in two main phases, the first required and the second optional. The steps
from 1 to 4 (phase 1) are completely automatic and start from a SNN model
to result in a BPMN model that describes pools, lanes that divide the pool
in independent business process fragment, sub-processes captured in the lanes,
and also defines interrelationships between sub-processes through message-flows
that mirror interactions at SNN level. Step 5 (phase 2) is semi-automatic, as it
requires human involvement for the selection of the BIPs to be applied.

Both transformations are based on the mapping between the SNN and BPMN
meta-models that is presented in Section 5.1. The business interaction patterns
are examined more in depth in Section 5.2. The BottomUp and TopDown trans-
formations are respectively described in detail in Section 5.3 and Section 5.4.

5.1 Model Mappings for SNN and BPMN Model Transformation

Both the TopDown and BottomUp transformations are defined on the basis of
the mapping between the SNN and the BPMN1 meta-models presented in Fig. 5
(see the bold bi-directional arrows in this figure).

Each SNN Service Network corresponds to a BPMN process. Participants in
SNN models are mapped to pools in BPMN. SNN correlations group interac-
tions among participant in different business process fragments. A participant
involved in interactions spread over multiple business process fragments has mul-
tiple lanes in its pool, one per fragment. For instance, if a participant takes part
in interactions that are divided into three different business process fragments,
its respective pool will contain three lanes. In BPMN, for all practical purposes,
pools with a single lane and pools without lane are equivalent. Pools and lanes
contain workflows (i.e. activities connected by control flow constructs). Sub-
processes are special activities that abstract entire workflows. Workflows and
sub-processes can be recursively nested into each other. Activities communicate

1 Extrapolated from the BPMN meta-model published on WSPER.ORG based on
[14], and available at: http://www.wsper.org/bpmn10.html

http://www.wsper.org/bpmn10.html

110 M. Bitsaki et al.

Fig. 5. The mappings between the SNN and BPMN meta-models

with other activities in different pools through message-flows, which represent
message exchanges. Both offering- and revenue relations in SNN are mapped to
message-flows in BPMN.

These mapping are based on two critical assumptions about the structure
of the BPMN. Interactions among participants in the SNN are represented by
message-flows in BPMN (i.e. the participants in the service network carry out
their interactions over message-based conversations). Secondly, each pool only
comprises business logic (workflows) of one particular business fragment. Work-
flows in different lanes within the same pool are independent, i.e. they are not
connected through control flows. The first assumption allows the BottomUp
transformation to derive the offering and revenue relations to be represented in
the resulting service networks. The second assumption enables the BottomUp
transformations to cluster message exchanges between participants in different
abstract business processes as correlations in the SNN model.

5.2 Business Interaction Patterns under the Lens

The Business Interaction Patterns play a central role in creating via the Top-
Down transformation BPMN models that are immediately usable in a BPM
lifecycle to, for instance, automate the generation of executable BPEL processes
as proposed in [9]. SNN models describe which interactions take place between
the participants, but not how these interactions are structured (e.g. in terms of
message exchanges and activities performed by the involved participants). It is
not possible for an automatic transformation to “guess” how participants will

Model Transformations to Leverage Service Networks 111

communicate with each other to carry out the interactions described at SNN
level, and this is mirrored by the coarse granularity of the intermediate BPMN
models resulting from the first four steps of the TopDown transformation. BIPs
are meant to improve the level of detail of the business processes resulting from
the transformations by providing a structure (based on message-exchange com-
munication) for the abstract interactions at SNN level in the shape of business
process fragments that are selected by humans and are automatically “plugged”
in the BPMN models resulting from the first transformation phase.

BIPs are based on existing business process standards in industry Such as Roset-
taNet Partner Interface Process (PIPs) [15], which are widely adopted reference
models for standard, multi-party collaborative business process models. In the re-
mainder of this paper we assume that BIPs are modeled as context-independent
BPMN models where each role is represented by a pool. Each pool captures a well-
structured sequence of internal processing steps; we refer to this as a workflow.
Workflows in different pools are logically interconnected via message-flows.

Fig. 6. The “On Behalf Of” Business Interaction
Pattern

Fig. 6 presents an exam-
ple of BIPs that we have
developed, called “On Be-
half Of” BIP. It defines
a BPMN template for a
chain of value-relationships
between multiple partners
participating in a correla-
tion within the service net-
work, and is computed as
a transitive relation be-
tween a Provider and a
Customer comprising a co-
hesive path of message-
exchanges that involve the
sub-contractor (Service Fa-
cilitator) as “man in the
middle”. A series of delegated service offerings are subsequently traversed during
the execution of a particular business process fragment, e.g. the CustomerFault-
Resolution process. Note that for reasons of brevity, we concentrate on a simple
“On Behalf Of” correlation involving three participants; however, in practice
we have already encountered correlations involving larger chains for which we
have designed more complicated BPMN templates (e.g. for the automotive repair
service scenario introduced in [3]).

5.3 The BottomUp Transformation: Extracting SNN Models from
Abstract Process Models

The BottomUp transformation extracts a service network model from an ab-
stract business process. As explained in Section 5.1, the correspondences between
business entities in SNN and participants in BPMN are rather straightforward.

112 M. Bitsaki et al.

On the other hand, it is much harder to extrapolate from an abstract business
process, in which the participants interact over message exchanges, what kind
of revenue and offering relations occur. The first step of the BottomUp trans-
formation, requiring human intervention, tackles this issue by having an analyst
label the message-flows in the source BPMN model that represent interactions
between participants that have to be represented at SNN level in the shape of
revenue or offering relations. This approach relies on the assumption that each
relation at SNN level is represented by (at least) one message flow in the source
BPMN model.

The BottomUp transformation produces an SNN model from a source BPMN
model using the following five steps (see also Fig. 4):

1. Label message-flows that represent revenue- or offering-based interactions:
the analyst labels the message-flows that represent offering or revenue rela-
tions at SNN level as shown in Fig. 7. For instance, the message-flow “Solve
Ticket” represents an offering relation with the Field Agent as source and
the CSR as target, while “Pay Intervention” represents a revenue relation
from the Customer to the CSR.

2. Collapse sub-processes in the source BPMN model: expanded sub-processes
(i.e. sub-processes that show their internal workflow) are transformed in
collapsed sub-processes as explained in [14].

3. Create the participants: for each pool in the source, create a participant in
the SNN model, and name the participant after the pool.

4. Create offering and revenue relations: for each message-flow connecting an
activity in the pool of participant A with an activity in the pool of participant
B, do as follows:
(a) If the a group of message flows is labeled as a revenue relation, then cre-

ate a new revenue relation in the SNN model connecting participant A to
participant B and using the name of the message-flow as the revenue of-
fering associated with the newly created revenue relation R. Participant
A and B are respectively source and target of R.

(b) If the message flow is labeled as an offering relation, then create a new
offering relation in the SNN model connecting participant A to partici-
pant B and using the name of the message-flow as the offering associated
with the newly created offering relation O. Participant A and B are re-
spectively source and target of O.

(c) If neither Step 4a nor Step 4b apply, then ignore the message-flow.
5. Create correlations: group the message-flows in the source BPMN model ac-

cording to the business process fragments they belong to. This is obtained by:
(a) Grouping the workflows in the participants lanes in workflow-groups.

Two workflows belong to the same workflow-group if they are connected
by a message-flow. Namely, a workflow-group is the transitive set2 of
workflows that are connected by a message-flow.

2 In other words, conversations at SNN level are identified in Step 5 by calculating
the transitive sets of the message-flows on the basis of the workflows they connect,
and creating a new correlation for every transitive set, connecting all the revenue
and offering relations originated by the message-flows in that transitive set.

Model Transformations to Leverage Service Networks 113

(b) Grouping message-flows in message-flow-groups. Two message-flows be-
long to the same message-flow-groups if they originate from or end in
workflows grouped in the same workflow-group. Alternatively, a message-
flow-group is the transitive set of message-flows that connect workflows
in the same workflow-group.

(c) For each message-flow-group, create a correlation connecting all the
offering- and revenue relations that have been created starting from the
message-flows in the message-flow-group.

Consider the BPMN model in Fig. 7 that models the key abstract business
processes in our running example. The first step in the transformation is to
label the message-flows as revenue- or offering-relations. The second step is to
collapse the sub-processes. After these first two steps, the resulting BPMN model
looks like the one presented in Fig. 7. Fig. 8 exemplifies the three remaining
steps in the BottomUp transformation. The third step of the transformation
creates the participants in the SNN model (result shown in Fig. 8, Step 3). The
revenue and offering relations in the SNN model are created in the fourth step
(outcome presented in Fig. 8, step 4). Finally, the correlations are added to the
SNN model during the fifth step (result in Fig. 8, step 5). The workflow groups
are two: the workflows in the “Network Fault Resolution” sub-processes in the
Agent and Field Agent pools (they are connected by the message-flows “Resolve
Network Fault” and “Pay Intervention”), and the workflows named “Customer
Fault Resolution” in the pools Field Agent, CSR and Customer (transitively
connected by the “Customer Support”, “Solve Ticket”, “Fix Failure” and “Pay
Intervention” message-flows).

Fig. 7. A BPMN model based on the eTOM example presented in Section 3

5.4 The TopDown Transformation: Creating Abstract Process
Models from SNN Model

In the following we introduce the TopDown transformation to refine a SNN into
a BPMN model as a two-staged process.

114 M. Bitsaki et al.

Fig. 8. The results of Step 3, Step 4 and Step 5 of the BottomUp transf. on the BPMN
model in Fig. 7

PHASE 1 (Required): Produce an Abstract Business Process Chore-
ography Model. This abstract business process model is rendered in BPMN,
and defines the process choreography tracking the globally visible message flows
between network partners. It is automatically generated in the following manner:

1. Create the pools: for each participant in the SNN model, create a pool in the
BPMN model with the same name.

2. Create the lanes and simple workflows: for each correlation in the SNN model
a participant is involved in, create a lane (named after the correlation) in the
participants respective pool. If a relation in the SNN model does not belong
to any correlation, it is treated as it belonged to a correlation comprising
only itself. Each lane thus created this way is filled with a workflow made
of a start event, a sub-process named as the correlation, and an end event
sequentially connected in this order.

3. Create revenue message-flows: for each revenue relation R in the correlation
C connecting the source participant A and the target participant B, create
a message-flow from the sub-process in the lane C of the pool A to the sub-
process in the lane named C of the pool B. Let the revenue of the relation R be
revenue. The newly created message-flow is labeled as: “[Revenue] revenue”.

4. Create offering message-flows: for each offering relation O in the correlation
C connecting the source participant A and the target participant B, create
a message-flow from the sub-process in the lane C of the pool A to the sub-
process in the lane named C of the pool B. Let the offering associated to
the relation O be offering. The newly created message-flow is labeled as:
“[Offering] offering”.

PHASE 2 (Optional): Produce an Extended Abstract Business Pro-
cess Model. The resulting model not only defines the process choreography,

Model Transformations to Leverage Service Networks 115

but also captures the private workflows of network partners. This phase is op-
tional if the level of detail in the BPMN model resulting from the first phase is
deemed insufficient, and thus requires further refinement through the applica-
tion of one of more business interaction patterns. The phase is composed of the
following semi-automatic step:

1. Apply BIPs: the application of a BIP requires the user select a correlation
(selected correlation) in the SNN model (again, relations not involved in
any correlation are treated as if they belonged in a correlation comprising
only themselves). The participants that are source or target of offering and
revenue relations that are comprised in the selected correlation are called
involved participants. The user provides a mapping from the roles in the
BIP to the involved participants. The BIP must define as many roles as
the involved participants. For each involved participant, the workflow in the
mapped roles pool is copied inside the lane created at Step 2 for the selected
correlation in the pool corresponding to that participant. Finally, all the
message-flows in the BIP are automatically copied into the BPMN model
and connected to the same activities as they are in the BIP.

Fig. 7 visualizes the result of applying the first four steps to the SNN model
in Fig. 2. The Field Agent participant is transformed in the Field Agent pool
(Step 1). Since the Field Agent participant in the SNN model has offering and
revenue relations grouped in different correlations (“Customer Fault Resolu-
tion” and “Network Fault Resolution”), the Field Agent pool has two lanes,
one per correlation (Step 2). The revenue relation Resolve Network Fault in the
SNN model is transformed into a message-flow, labeled “Resolve Network Fault”

Fig. 9. Result of application of the “On Behalf Of” BIPs to the business process
fragment “Customer Fault Resolution”

116 M. Bitsaki et al.

(Step 3) which connects the two sub-processes in the lanes of the Agent and Field
Agent pools that are created because of the correlation.

Fig. 9 shows the results of the application of the fifth transformation step
(“Apply BIPs”) to our running examples. At the left hand side in the result
of applying at the fifth step the “Provide Service Within Deadline” BIP to the
correlation “Network Fault Resolution” by mapping the role “Service Provider”
to the Field Agent, and “Service Requestor” to the Agent, is exemplified. At the
right hand side of this figure, it demonstrates the application of the “On Behalf
Of” BIP to the BPMN model in Fig. 7 by respectively mapping the “Service
Requestor”, “Service Facilitator” and “Service Provider” roles to the Customer,
CSR and Field Agent pools.

6 Future Work and Conclusions

The service industry, the leading contributor to developed economies, is quickly
transitioning towards the digital networked economy that is leveraged through
distributed computing technologies including Service Oriented Computing. In
conjunction with its natural complement Business Process Management, SOC is
touted as the ideal paradigm to develop, evolve and manage sophisticated service
networks that enact successions of automated end-to-end business processes that
traverse several enterprises and geographical locations. However, this vision is
far from a reality and many organizations are still fixated on orchestration of
internal processes, witnessing the popularity of languages such as BPEL.

Service networks promise to effectively leverage and bridge between business-
like requirements such as value and revenues, and the IT enactment through Ser-
vice Oriented Architecture and Business Process Management. Service networks
have recently catered a wide interest, which resulted, among other proposals, in
the Service Network Notation that describes the interactions among participants
in a service network in lieu of offering- and revenue relations.

In this paper, we have proposed and explored a semi-automatic approach for
constructing business processes in service networks, or redefining service networks
after changes to business processes. The proposed transformation approach is
grounded on a series of mappings between the meta-models of SNN and BPMN
models, and is formalized through procedural transformation algorithms. This ap-
proach is almost completely automated, and assumes restricted involvement of
human experts restricted to the selection of the business interaction patterns that
best capture recurrent skeletons of interactions between and within processes part-
ners in the service network, and to the labeling in the business processes of message
exchanges that need to be represented at service network level.

The results presented in this paper are core results in nature. Extensions and
refinements are needed in various directions. Firstly, we intend to further elab-
orate the transformation approach to make it incremental and iterative, and to
improve the BottomUp transformation to use pattern recognition mechanisms to
automatically extract the revenue and offering relations at SNN level by applying
“backwards” the BIPs (i.e. recognize process fragments that fit BIPs and gener-
ate the corresponding relations at SNN level). In addition, we intend to further

Model Transformations to Leverage Service Networks 117

explore and elaborate the transformation approach in several real case studies.
Thirdly, we wish to further extend the library of business process interaction
patterns. The BIP library, currently populated with a handful of patterns, will
be extended with existing patterns that can be easily extracted from industrial
reference models, standard protocols and industrial best practices. Moreover,
we intend to investigate more complex transformation scenarios where multiple
business interaction patterns occur in the same business process. Lastly, we are
in the process of implementing the transformations in the Value Network Tool
(http://vnt.tsl.gr/), the integrated development environment that supports
the design of SNN models.

References
1. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and di-

rections. In: WISE, pp. 3–12. IEEE Computer Society, Los Alamitos (2003)
2. Bitsaki, M., Danylevych, O., van den Heuvel, W.J., Koutras, G., Leymann, F.,

Mancioppi, M., Nikolaou, C., Papazoglou, M.P.: An architecture for managing
the lifecycle of business goals for partners in a service network. In: Mähönen, P.,
Pohl, K., Priol, T. (eds.) ServiceWave. LNCS, vol. 5377, pp. 196–207. Springer,
Heidelberg (2008)

3. Caswell, N.S., Nikolaou, C.N., Sairamesh, J., Bitsaki, M., Koutras, G.D., Iacovidis,
G.: Estimating value in service systems: a case study of a repair service system.
IBM System Journal 47(1), 87–100 (2008)

4. McGovernan, D.: An introduction to BPM and BPMS. Business Integration Jour-
nal (April 2004)

5. Papazoglou, M.P., van den Heuvel, W.J.: Service oriented architectures: ap-
proaches, technologies and research issues. VLDB J. 16(3), 389–415 (2007)

6. Havey, M.: Essential Process Modeling. O’Really (2005)
7. Object Management Group (OMG): MDA Guide Version 1.0.1, Document Nr:

omg/2003-06-01 (June 2003)
8. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of mod-

eldriven software development. IEEE Software 20(5), 42–45 (2003)
9. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: From BPMN

process models to BPEL web services. In: ICWS, pp. 285–292. IEEE Computer
Society, Los Alamitos (2006)

10. Hornung, T., Koschmider, A., Mendling, J.: Integration of heterogeneous BPM
schemas: The case of XPDL and BPEL. In: Boudjlida, N., Cheng, D., Guelfi,
N. (eds.) CAiSE Forum. CEUR Workshop Proceedings, vol. 231 (2006) CEUR-
WS.org.

11. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL
for modeling choreographies. In: ICWS, pp. 296–303. IEEE Computer Society, Los
Alamitos (2007)

12. Chapell, D.A.: Enteprise Service Bus. O’Really (2004)
13. TeleManagement Forum: Enhanced Telecom Operations Map The Business Pro-

cess Framework For The Information and Communications Services Industry,
http://www.tmforum.org

14. Object Management Group (OMG): Business Process Modeling Notation Specifi-
cation (February 2006)

15. RosettaNet Consortium: Partner Interaction Processes (PIPs),
http://www.rosettanet.org

http://vnt.tsl.gr/
http://www.tmforum.org
http://www.rosettanet.org

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 118–129, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Building Scientific Workflow with Taverna and BPEL:
A Comparative Study in caGrid

Wei Tan1, Paolo Missier2, Ravi Madduri3, and Ian Foster1

1 Computation Institute, University of Chicago and Argonne National Laboratory,
Chicago, IL, USA

2 School of Computer Science, University of Manchester, Manchester, UK
3 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL

wtan@mcs.anl.gov, pmissier@cs.man.ac.uk,
madduri@mcs.anl.gov, foster@mcs.anl.gov

Abstract. With the emergence of “service oriented science,” the need arises to
orchestrate various services to facilitate scientific investigation -- that is, to cre-
ate “science workflows.” In this paper we summarize our findings in providing
a workflow solution for the caGrid service-based grid infrastructure. We choose
BPEL and Taverna as candidate solutions, and compare their usability in the
full lifecycle of a scientific workflow, including service discovery, service
composition, workflow execution, and workflow result analysis. We determine
that BPEL offers a comprehensive set of primitives for modeling processes of
all flavors, while Taverna provides a more compact set of primitives and a func-
tional programming model that eases data flow modeling. We hope that our
analysis not only helps researchers choose a tool that meets their needs, but also
provides some insight on how a workflow language and tool can fulfill the re-
quirement of scientists.

1 Introduction

More and more data and computation resources used by the scientific community are
built on a service-oriented architecture (SOA) [1]. Given the proliferation of web ser-
vices, service-oriented science [2] is becoming an emerging paradigm in facilitating
scientific investigation, and scientific workflow has become an important approach to
orchestrate various services [3]. For example, caGrid [4] is the service-based grid
software infrastructure that underpins the cancer Biomedical Informatics Grid. This
infrastructure, based on the Globus Toolkit [5], enables the sharing of information and
analytical resources (via grid services). By this means it helps domain scientists to
easily contribute to and leverage caBIG resources, accelerating biomedical research in
a multi-institutional environment.

There are already many languages, tools and systems exist for scientific workflow
[6]. Through a comprehensive survey on existing workflow tools [7], the caGrid team
decided to choose Taverna [8] and BPEL [9] as candidate workflow solutions: as
Taverna is representative of many scientific workflow systems, while BPEL is an
well-accepted standard in business domain and is gaining momentum in science.

 Building Scientific Workflow with Taverna and BPEL 119

BPEL: WS-BPEL (Web Service-Business Process Execution Language, or BPEL for
short) is a meta-model and an XML-based specification for describing the behavior of
a business process that is composed of Web services and also exposed as a Web ser-
vice. Although originally designed for business workflows, BPEL has also attracted
attention from the scientific community because of its support for the SOA paradigm.
BPEL can be seen as a good representative of those languages originated from busi-
ness domain and are now been adopted by the scientific community.

Taverna: Developed in the UK by the myGrid consortium (http://www.mygrid.
org.uk), Taverna is an open-source workbench for the design and execution of scien-
tific workflows. Aimed primarily at the life sciences community, its main goal is to
make the design and execution of workflows accessible to bioinformaticians who are
not necessarily experts in web services and programming. A Taverna workflow is a
linked graph of processors, which represent Web services or other executable compo-
nents, each of which transforms a set of data inputs into a set of data outputs. These
workflows are represented in the Scufl language (using an XML syntax), and exe-
cuted according to a functional programming model [10]. The data-driven model is
briefly presented in Section 4. Taverna also provides a plug-in architecture so that ad-
ditional applications, such as secure Web Services, can be populated to it. The caGrid
plug-in recently implemented by members of our group [11] is an example.

The design and implementation of workflow systems for scientific purposes has
been a subject of considerable research [6]. The goals of this paper are to communi-
cate practical experiences based on our work in the caGrid project. In this analysis,
we consider the entire scientific workflow lifecycle, from service discovery to service
composition, workflow execution, and workflow result analysis. The analysis is based
on our understanding of caGrid’s requirements for a workflow language and tooling,
but we believe is also applicable to other areas in data intensive and exploratory sci-
ence. We hope that our work not only helps researchers choose a tool that meets their
needs, but also provides some insight on how a workflow language and tool can fulfill
the requirement of scientists.

In our comparison of BPEL and Taverna we consider not only the two workflow
languages but also their associated tooling. This is because scientific workflow users
are generally scientists that have expertise in their specific domain (biology, physics,
astronomy, etc.) but understandably limited knowledge of IT technology and thus re-
quire easy-to-use tooling. In the remaining of this paper, the term Taverna is used to
refer to both the Scufl workflow language that Taverna uses and the Taverna tool,
while BPEL to both the language and the open source tools supporting it.

In the remainder of this paper we first present a caGrid use case and then examine
the lifecycle and features of scientific workflows. Then, we compare Taverna and
BPEL from three perspectives: service discovery, service composition and workflow
execution, and workflow results analysis. Finally, we draw conclusions.

2 A caGrid Use Case

We present a caGrid use case that relates to the querying of semantic data in cancer
research. The use of a standardized metamodel and semantic annotation to enable the
formal description and harmonized use of data is a primary feature that caGrid moves
beyond the basic grid infrastructure.

120 W. Tan et al.

Fig. 1. The caGrid use case used in the paper

In the use case illustrated in Fig. 1, a user wants to query description logic concepts
that relate to a particular context, namely “caCore.” First, the user queries all projects
related to context “caCore”; second, they find UML classes in each project; third, they
use project and UML class information to query the semantic metadata; and finally,
they retrieve the concept code.

3 The Lifecycle and Features of Scientific Workflows

To define the scope of the comparative study, we first discuss the lifecycle of a scien-
tific workflow. This lifecycle involves four stages: discover relevant data/analytical
services, compose these services into a workflow, execute workflow, and analyze the
results (see Fig. 2).

1. Discover relevant data/analytical services. Data/analytical services are developed,
owned and maintained by different institutions, organizations, etc. Usually the
URL of these services is not well-known. Moreover, the scientific community is
too autonomous to share a common terminology, so domain knowledge is needed
to get the exact semantics of the services whose syntax is already known.

2. Compose these services into a workflow. After the individual services are found,
the next step is to compose them into a workflow. This step involves the addition
of data and control dependencies between services; it may also involve data trans-
formations between services’ invocation.

3. Execute workflow. A workflow definition is sent to an engine for execution. The
engine invokes the services in the pre-defined order.

4. Analyze results. Scientific workflow is for the purpose of exploratory research, and
therefore, the intermediate results generated by component services, as well as the
final results yield by the workflow, are of great value and deserve to be analyzed
carefully. Scientific researches are usually undertaken in an iterative manner so the
analysis results often initiate another round of workflow modeling/execution.

 Building Scientific Workflow with Taverna and BPEL 121

Fig. 2. Lifecycle of a scientific workflow

We summarize some features of scientific workflows in caGrid, and these features
can also be seen as challenges encountered when providing a scientific workflow so-
lution in a more general sense (the number of the bullets represents their position in
the lifecycle shown in Fig. 2).

• (1) Resources are highly distributed. Compared to business domain, users in scien-
tific domain usually use services owned by other organizations, like data storage,
high-performance computing, etc.

• (2) Data-flow oriented. Data is considered to be the first-class citizen in scientific
workflows, because scientific workflows are mostly pipelines of parallel data proc-
essing. In a data flow, tasks and links represent data processing and data transport,
respectively; parallel execution of independent tasks is desired to be modeled for
free -- tasks can execute once their input are ready.

• (2&3) Large scale. Scientific workflows often contain many tasks, involve large
data sets, and require intensive computation. The modeling tool should make it
easy to model such complex workflows.

• (4) Data analysis and provenance is an important step and the workflow execution
can be in an iterative manner.

In the rest of this paper we highlight some of the differences between the BPEL
and Taverna, from the point of view of their impact on the users' experience in the
lifecycle of scientific workflows. The discussion is organized according to the lifecy-
cle model of Fig. 2.

4 Support for Service Discovery

As suggested in Fig. 2, a user’s first task involves finding appropriate services that
can be composed into a workflow. In a Grid setting, these services are virtualizations
of data storage, computation capability or other resources. Service endpoints are not
naturally known to users, either because users are not familiar with the service itself,
or because the service deployment may have changed in time. Support for service dis-
covery is therefore needed.

122 W. Tan et al.

Taverna offers two levels of support for this. Firstly, it is often the case that a web-
site is known to host one or more services. In these cases, a scavenger meta-service
can be used to locate endpoints within the site which correspond to valid WSDL ser-
vice definitions. The WSDL is automatically analyzed and a description of the service
is added to the Taverna workbench's library, ready to be used in workflows.

The Taverna plug-in framework simplifies the creation of new scavengers that may
offer advanced service discovery features. As part of the caGrid project, for example,
we have developed a caGrid scavenger that supports semantic/metadata based query
to caGrid services. Users can use multiple query criteria to get the list of desired
services. For example, they can query the services that are developed by Ohio State
University, whose names are CaDSRService, and with the class Project as output.
Through this query we find the matching service for the first step in the use case
shown in Fig. 2 – use context to get related projects.

As a second, more general-purpose option, a semantic discovery facility called
Feta [12] also offered natively as part of the Taverna distribution. Feta includes a se-
mantic service registry that maintains annotated description of services, and can be
searched using terms from a publicly available ontology. The annotations describe (1)
the task performed by a service, for example bioinformatics task, (2) the type of re-
source used by the service, e.g. bioinformatics data resource, (3) the types of input
data it accepts and of output data it produces (protein structure, for example), and
more. The terms used in the annotations belong to the myGrid ontology [13], a con-
trolled ontology of terms for the bioinformatics domain.

These discovery facilities stand in contrast with the lack of analogous integrated
tools for BPEL design environments. To the best of our knowledge, no open-source
BPEL tool is available that works with a service query component in an integrated
way.

5 Service Composition and Workflow Execution

The second and third phase of the lifecycle involves composing the discovered ser-
vices into complete workflows and executing them. In this section we focus on the
modeling style, the definition of data, the iteration strategies adopted by BPEL and
Taverna, respectively, and their influence to the run-time engine.

5.1 Data-Driven vs. Control-Driven Modeling

When modeling a workflow, users are confronted with the choice among the different
modeling paradigms offered by Taverna and BPEL. While the former follows a pure
data flow approach to workflow modeling and execution, the latter exposes a funda-
mentally procedural language.

In a data flow model, the workflow is described as a graph where nodes represent
processors that can be executed on input provided along the incoming arcs, and whose
output is forwarded to other processors through outgoing arcs. In this model, the order
in which the processors are executed is determined primarily by the order in which
the data appears on the various inputs. Any processor for which the input data is
available can be scheduled for execution.

 Building Scientific Workflow with Taverna and BPEL 123

In Taverna, scheduling is simple: processors are executed as soon as possible, in a
greedy fashion as long as a new execution thread can be started (a limit on the number
of threads can be defined on the scheduler). This means, in particular, that paralleliza-
tion of processor execution is managed by the scheduler, based on the available data,
without the need for explicit user directives. Also, the order of execution of two proc-
essors that have no data dependencies amongst each other may be different for differ-
ent executions of the same workflow, even on the same input, due to the possible
variations in execution speeds of some of the other processors.

In contrast, a procedural workflow language like BPEL includes the explicit defini-
tion of the control flow that determines the order of execution of the processors. In
particular, parallel execution of independent processors must be specified explicitly.

A comprehensive analysis on the differences and relative merits of control-driven
and data-driven execution is beyond the scope of this paper. A more in-depth discus-
sion can be found in [14]. In the rest of this section we focus on the specific differ-
ences between Taverna and BPEL, summarized in Table 1.

Table 1. Comparison of BPEL and Taverna (Scufl) w.r.t. control/data-flow

 BPEL Taverna (Scufl)

Activities in
model

Basic and structure activities Processors as data
processing units with

in/output ports
Semantics of

links
Transfer of control Transfer of data

Data definition Explicitly defined (global
variables)

Implicit defined
(processor’s input/output)

Data
initialization

Complex data type need to be
explicitly initialized

Automatically

Control logic Full-fledged: sequence,
conditional, parallel, event-

triggered, etc

Limited: sequential,
parallel and conditional

Parallel
execution

Defined in <flow> or
<ForEach>

By default

5.2 Implicit vs. Explicit Definition of Data

Complementary to the control model described in the previous section is the data
specification model. In Taverna, processors have input and output ports with an asso-
ciated data type, and data travels from the output port of a processor to the input for of
one or more downstream processors. No other data structure specification is needed
besides the port types, and interaction among processors is defined entirely by the
arcs in the dataflow graph.

In contrast, BPEL requires the explicit definition of variables to hold data struc-
tures that are meant to be shared amongst activities; furthermore, each activity can be
specified as either a producer or a consumer for values associated to a variable.

124 W. Tan et al.

Although BPEL’s requirement for explicit data definition takes additional effort, it
also brings about flexibility. For example, in BPEL you can easily define a data that
controls the overall flow but is not the input/output of any activities, but in Taverna
you have to add a processor to hold this data (as either input or output).

In BPEL, variables of complex type, must also be initialized prior to their first use
(i.e., by means of the <copy>syntactic construct – see Section 8.4.2 of the WS-BPEL
Specification in [9]). In contrast, Taverna provides a special built-in processor, called
an XML splitter, which automatically pulls apart a complex XML message defined in
a WSDL interface so that its components can be easily accessed by other user-defined
processors. An example of its use is provided in the next sub-section.

5.3 Implicit vs. Explicit Iteration on Data

Each port in a Taverna processor has a type, which is either a simple type value (i.e., a
string, a number) or a list, possibly nested, of simple type values. As part of normal
processing, it may be the case that an input port receives a value of a type that does
not correspond exactly to its declared type. A processor that outputs a value of type
“list of strings,” for example, can legally be connected to a processor with an input
port of type “string.” Taverna interprets this type mismatch as an indication that the
destination processor must be invoked repeatedly, once for each element of the input
list. This behavior is consistent with Taverna's functional programming model,
whereby the application of a function f with a formal argument of type t, to an actual
parameter x of type list(t), is interpreted as (map f x).

Fig. 3. Implicit iteration

 Building Scientific Workflow with Taverna and BPEL 125

In general, when mismatches appear simultaneously on multiple input ports, Tav-
erna performs either a cross-product (i.e., a Cartesian product) or a dot product (if the
cardinalities of the two lists are the same) involving the elements of each of the unex-
pected lists. Users may explicitly choose which of these two iteration strategies is
appropriate for each processor. The implicit iteration feature is commonly used in
Taverna scientific workflows. The implication, from the user's perspective, is that the
design of a service can be simplified by assuming that it will manage individual data
items, while the execution engine takes care of managing input collections.

In Fig. 3, see an example from the caDSR (Cancer Data Standards Repository) ser-
vice that access and generate the information related to caGrid standard metadata.
caDSR has two operations: findProjects and findClassesInProject. Operation findPro-
jects returns a set of projects (i.e., an array Project []); findClassesInProject receives
an instance of data type Project and find all the UML classes in this project. Fig. 3 il-
lustrates the Taverna and BPEL presentation of how to connect them into a workflow.
The left and right parts are Taverna and BPEL representation, respectively. In the left
part, the output of findProjects is put to an xml-splitter which extracts out the project
array, and sends it to findClassesInProject. In the right part, since BPEL does not
have an implicit iteration mechanism, a <ForEach> construct is added and configured
to iterate on project array. After each invocation of findClassesInProject, result data
need to be collected and merged into the final results set.

From this example one can see that, BPEL handles the iteration like an imperative
programming language, a <ForEach> construct and the iteration method (a counter,
an array or an expression) is to be configured. It is verbose and exposes too many im-
plementation details to the end users (and thus error-prone). Taverna deals with this
issue in a straightforward way -- its implicit iteration framework requires (in the sim-
plest cases) no additional configuration, and the user simply connects an output con-
taining a collection of items into an input that consumes a single item of the same
type. This leaves the complexity to the workflow engine instead of the users.

Again, as an imperative language, BPEL offers more flexibility in handling ad-
vanced iteration strategies. For an example, BPEL can handle this issue: an activity
receives two lists of inputs, needs a special kind of dot-product iteration over them,
with a special “correlation” mechanism (like, classes and projects with the same de-
veloper should be combined.)

For space limitation, in Fig. 4 we only show the completed Taverna workflow for
the caGrid use case in Fig. 1. There are four caGrid processors (findProject, find-
ClassesInProject, findSemanticMetadataForClass, and searchDescLogicConcept)
that represent caGrid services, and more “shim” processors for data transformation
between caGrid processors.

6 Workflow Result Analysis

The final phase of the workflow lifecycle, namely analysis of the results, is increasingly
perceived as of great importance within the e-science community [15]. The provenance
of a piece of data produced by an arbitrary process is a complete account of how that
piece of data was computed, starting from user input and taking into account intermedi-
ate results produced by the processors involved in the computation. Business and scien-
tific workflows may differ in both their requirements and their ability to track data
provenance, in particular with regards to the precision of provenance information.

126 W. Tan et al.

Fig. 4. Completed Taverna workflow for the caGrid use case in Fig. 1

Precision, in this case, denotes the levels of detail at which provenance can be
traced, and depends on the unit of information that the workflow engine can observe
during execution. When dealing with Web Services, both in BPEL and Taverna, the
atomic unit of information that flows through a processor is an XML document, for
instance “purchase order” for a business process, or an XML-formatted description of
a protein in the case of a scientific process. The black-box nature of the Web Services

 Building Scientific Workflow with Taverna and BPEL 127

that produce and consume these documents limits the ability to track its individual
elements. For instance, consider a service that takes a purchase requisition request
document as input, and returns a purchase order document. While it is likely that spe-
cific elements within the purchase order depend on only some of the input document
elements, this fine-grained dependency is hidden within the service logic: from the
point of view of provenance, the service is a black box, because the nature of the data
transformation they implement is not exposed through the WSDL interface. Thus, the
only data dependency that can be safely used in provenance tracking is that the entire
purchase order depends on the entire purchase requisition request. The black-box na-
ture of the service limits the degree of precision with which provenance of the output
can be tracked: the granularity of traceable provenance is that of entire XML docu-
ments, rather than that of their composing elements.

As we mentioned, this problem affects both BPEL and Taverna. Unlike BPEL, how-
ever, Taverna is not limited to using processors that are implemented as Web Services;
processors types include local Java classes, as well as beanshells, or small interpreted
Java programs. This makes it quite natural for Taverna workflows to handle simple
types, such as strings, as well as collections of elements of these types that often repre-
sent sets of scientific data products. In this case it is important to be able to track the
provenance of each of these products individually. Our caGrid use case, for example,
involves a one-to-many association between Projects and their UML classes, which is
then used to retrieve semantic concepts associated to project classes. For provenance in-
formation to be useful, here we cannot simply state that “the collection of the concepts
depends on the collection of input projects,” because this is as trivially true as it is unin-
teresting. Instead, we must be able to determine that the presence of a specific concept
in the output is due to a specific project being present in the original input.

An important example of this fine-grained data manipulation is the “packing” and
“unpacking” of complex XML data, something that can be achieved automatically us-
ing XML splitters, as mentioned in Sec.5.2 and 5.3. In some cases, this may enable
provenance tracking through the internal element of XML documents, for instance it
may be possible to trace the originator element of a purchase order back to some spe-
cific workflow input, at a stage in the process prior to its use as part of the order.

In our preliminary experiments on provenance tracking in Taverna, performed
within the myGrid team, we have been able to achieve high precision in many practi-
cal cases, namely when simple values are composed into collections or into complex
XML messages in a way that is visible to the engine, i.e., by means of dedicated pack-
ing and unpacking processors.

As a corollary to this investigation, we have also been arguing that processors that
map entire collections to new collections (i.e., without any iteration being exposed to
the workflow engine) should be annotated, where possible, with an indication of
properties of the mapping that help provenance tracking. A detailed discussion of the
promises and limitations of this idea can be found in [16].

Other approaches to tracking provenance through Web Services involve the ex-
plicit semantic annotation of the involved services. This semantic provenance over-
lays approach is really complementary to the problem discussed in this section, and
early experiment done on Taverna show promising results [17].

128 W. Tan et al.

7 Conclusion and Future Work

From our experience in using both Taverna and BPEL as the candidate solutions for
caGrid workflow, we have the following conclusions:

1. Taverna provides a compact set of primitives that eases the modeling of data flow.
This functional-programming manner allows users to tell “what to do” instead of
“how to achieve it.”

2. BPEL offers a comprehensive set of primitives to model processes of all flavors
(control-flow oriented, data-flow oriented, event driven, etc), with full feature
(process logic, data manipulation, event and message processing, fault handling,
etc). BPEL is also flexible enough to handle complex processing logic, although a
little bit verbose in modeling basic data flow.

3. As a tool-suite, Taverna provides better support in the whole lifecycle of scientific
workflows, including service discovery and results analysis, than the existing open-
source BPEL tools do.

We do not mean to indicate that Taverna is better than BPEL, or vice versa. We
would rather say that Taverna better fits the requirement of modeling a data flow, and
the open source community has provided a handy workbench that consists of the
modeling and the execution tools. We also acknowledge nice features of BPEL en-
gines. For example, BPEL engines typically run inside application servers and are
with persistent state storage, which offer more reliability and scalability. This is im-
portant for those long-running and computation-intensive workflows. For now the
Taverna engine does not provide these capabilities.

At the same time, we suggest a promising multi-stage modeling approach in adapt-
ing BPEL to scientific workflow, leveraging its capability and retaining the simplic-
ity. That is, the scientists use a model which is intuitive to them, and transform this
model into a standard BPEL model automatically, through a macro-expansion proce-
dure. This BPEL model can be orchestrated by a BPEL-compliant engine. Actually
this approach has already been adopted by existing research efforts [18]. In future, we
also plan to investigate the possibility to provide a BPEL-centric tool set where dis-
covery and result analysis tools are included.

Acknowledgement

We thank Taverna team, especially Mr. Stian Soiland-Reyes at University of Man-
chester, for the great help in using Taverna and developing plug-ins for it. We also
thank the constructive comments from anonymous reviewers. This project has been
funded in part with Federal funds from the National Cancer Institute, National Insti-
tutes of Health, under Contract No. N01-CO-12400.

References

1. Krishnan, S., Bhatia, K.: SOAs for Scientific Applications: Experiences and Challenges.
In: Proc. IEEE International Conference on e-Science and Grid Computing (2007)

2. Foster, I.: Service-Oriented Science. Science 308(5723), 814–817 (2005)

 Building Scientific Workflow with Taverna and BPEL 129

3. Tan, W., et al.: Workflow in a Service Oriented Cyberinfrastructure Environment. In: Cao,
J. (ed.) Cyberinfrastructure Technologies and Applications. Nova Science Publishers
(2008)

4. Saltz, J., et al.: caGrid: design and implementation of the core architecture of the cancer
biomedical informatics grid. Bioinformatics 22(15), 1910–1916 (2006)

5. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. Journal of
Computer Science and Technology, 2006 21(4), 513–520 (2006)

6. Taylor, I.J., et al.: Workflows for e-Science: Scientific Workflows for Grids. Springer,
Heidelberg (2007)

7. ICR Workflow Working Group, Tool Reviews (2007), http://gforge.nci.nih.
gov/docman/view.php/332/7509/icr_workflow_tool_review_2007.doc

8. Oinn, T., et al.: Taverna/myGrid: aligning a workflow system with the life sciences com-
munity. In: Taylor, I.J., et al. (eds.) Workflows for E-science: Scientific Workflows for
Grids, pp. 300–319. Springer, Guildford (2007)

9. OASIS, Web Services Business Process Execution Language Version 2.0 (2007), http://
docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html

10. Turi, D., et al.: Taverna Workflows: Syntax and Semantics. In: Proc. 3rd e-Science Con-
ference, Bangalore, India (2007)

11. Tan, W., et al.: Orchestrating caGrid Services in Taverna. In: Proc. IEEE International
Conference on Web Services (ICWS 2008), Beijing, China (2008)

12. Lord, P., et al.: Feta: A light-weight architecture for user oriented semantic service discov-
ery. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 17–31.
Springer, Heidelberg (2005)

13. Wolstencroft, K., et al.: The myGrid ontology: bioinformatics service discovery. Interna-
tional Journal of Bioinformatics Resesearch and Applications 3(3), 303–325 (2007)

14. Shields, M.: Control- Versus Data-Driven Workflows in Workflows for E-science: Scien-
tific Workflows for Grids. In: Taylor, I.J., et al. (eds.), pp. 167–173. Springer, Heidelberg
(2007)

15. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD
Record 34(3), 31–36 (2005)

16. Missier, P., et al.: Data lineage model for Taverna workflows with lightweight annotation
requirements. In: Proc. Second International Provenance and Annotation Workshop, Uni-
versity of Utah, Salt Lake City, Utah (2008)

17. Zhao, J., et al.: Using semantic web technologies for representing E-science provenance.
In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 92–106. Springer, Heidelberg (2004)

18. Tan, W., Fong, L., Bobroff, N.: BPEL4Job: A fault-handling design for job flow manage-
ment. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 27–42. Springer, Heidelberg (2007)

Second International Workshop on
Web APIs and Services Mashups

(Mashups 2008)

Introduction: Second International Workshop on
Web APIs and Services Mashups

(Mashups 2008)

Cesare Pautasso1, Stefan Tai2, and E. Michael Maximilien3

1 Faculty of Informatics
University of Lugano, Switzerland

cesare.pautasso@unisi.ch
2 Karlsruhe Service Research Institute (KSRI)

Karlsruhe Institute of Technology (KIT), Germany
stefan.tai@kit.edu

3 IBM Almaden Research Center
San Jose, CA, USA
maxim@us.ibm.com

http://icsoc-mashups.org

1 Overview

The Mashups workshop series is about the convergence of Service computing
and the Web 2.0 in the form of mashups: end-user-oriented compositions of
Web-accessible services, APIs, and data sources, sometimes taking advantages
of social and collaborative nature of Web 2.0 content and services. The inter-
action and integration of Service computing and Web 2.0 expose various issues,
challenges and problems that have to be addressed in order to make the vision
of a fully programmable Web become a reality. In this space, a flurry of new
languages, tools, platforms, and solutions for end-user service reuse, assembly
and composition is displacing current legacy distributed system applications and
middleware. The Mashups workshop series is the international forum intended to
foster a conversation within the service-oriented computing community around
the research, emerging technologies and novel applications that appear as the
Web 2.0 paradigm, as well as the more established Web services middleware tech-
nology. As these two communities continue to merge, the Mashups workshop is a
venue that can help bring about the innovation potentials of the programmable
Web and accelerate their applications and disseminations.

The following papers constitute the proceedings of Mashups’08 the second
international workshop in a successful series of workshops that look specifically
at the engineering, scientific, social, and business concerns and challenges en-
countered in the area of Web mashups.

Mashups’08 was held on December 1st, 2008, co-located with International
Conference of Service-Oriented Computing (ICSOC) in Sydney, Australia. The
workshops call for papers targeted submissions on topics spanning:

– Programming models (languages, frameworks, and platforms) for the compo-
sition of Web-accessible services, APIs, content, and data of all kinds and of

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 133–135, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

134 Preface

different architectural styles (e.g., SOAP, REST, RSS, and Atom Publishing
Protocol)

– Quality of mashups, including reliability and security, and management ap-
proaches

– Understanding social and economic factors in the creation, the acceptance,
and the sustainability of services mashups, including software-as-services
(SaaS) markets and services marketplaces, digital communities, as well as
directory, pricing, and contracting models

The full-day workshop program featured two invited keynote speakers, and
five research paper presentations. The topics of the presentations are represen-
tative of the current state of research in the area. They cover:

– the demonstration of visual mashup development tools for non-programmers,
– the discussion of social aspects of mashup applications,
– the analysis of the mashup ecosystem,
– the observation of the impact of mashup technology to IT organizations,
– the usage of mashup visual tools to awake the interest of young inexperienced

end-users in computer science,
– the performance optimization required to scale mashup run-times, and
– the innovative mashup application of cloud storage services.

The organizers would like to thank Nick Hodge (Microsoft, Inc.) and Pamela
Fox (Google, Inc.) for their inspiring keynote presentations, the papers authors,
the panelists, the participants, and the international program committee for their
help in also making this years edition of the workshop a success. We are grateful
to Microsoft for their financial support and to the ICSOC conference organizers
for supporting Mashups’08.

Preface 135

2 Organization

Program Chairs

E. Michael Maximilien, IBM Almaden, USA
Cesare Pautasso, University of Lugano, Switzerland
Stefan Tai, Karlsruhe University, Germany

Publicity Chair

Nirmit Desai, NC State University

Program Committee

Gustavo Alonso, ETH Zurich, Switzerland
Mehmet Altinel, Anvato, Mountain View, CA
Brian Blake, Georgetown University
Christoph Bussler, MercedSystems, Inc, USA
Schahram Dustdar, Vienna University of Technology
George Feuerlicht, University of Technology, Sydney
Robert Ennals, Intel Research, Berkeley, CA
Gregor Hohpe, Google, Inc.
Christine Legner, European Business School, Germany
Mehdi Jazayeri, University of Lugano, Switzerland
Anant Jinghran, IBM Silicon Valley Labs
Rania Khalaf, IBM T. J. Watson Research Center
Jonathan Marsh, WSO2
Ravi Nemana, Services Science at UC Berkeley
Duane Nickull, Adobe Systems
Dave Nielsen, Independent Consultant
Ajith Ranabahu, Wright State University and Apache Software Foundation
Amit Sheth, Kn.o.esis Center, Wright State University
Ashutosh Singh, IBM Almaden Research Center
Kunal Verma, Accenture Research Labs

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 136–147, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Innovation in the Programmable Web:
Characterizing the Mashup Ecosystem

Shuli Yu and C. Jason Woodard

School of Information Systems
Singapore Management University

{shuli.yu.2004,jwoodard}@smu.edu.sg

Abstract. This paper investigates the structure and dynamics of the Web 2.0
software ecosystem by analyzing empirical data on web service APIs and
mashups. Using network analysis tools to visualize the growth of the ecosystem
from December 2005 to 2007, we find that the APIs are organized into three
tiers, and that mashups are often formed by combining APIs across tiers. Plot-
ting the cumulative distribution of mashups to APIs reveals a power-law rela-
tionship, although the tail is short compared to previously reported distributions
of book and movie sales. While this finding highlights the dominant role played
by the most popular APIs in the mashup ecosystem, additional evidence reveals
the importance of less popular APIs in weaving the ecosystem’s rich network
structure.

Keywords: API, mashup, social network, power law, long tail, small world.

1 Introduction

The emergence of a new generation of web-based technologies, collectively dubbed
“Web 2.0” [1], has fueled the growth of applications such as wikis and blogs that
make it easier for users to publish their own content. A subset of these technologies
have set the stage for an even more profound transformation by enabling users to go
beyond static publishing and create their own web applications using powerful build-
ing blocks provided by third parties. This paper explores the recent explosion of these
personalized applications, called mashups, and the application programming inter-
faces (APIs) they build upon.

The term “mashup” is borrowed from pop music, where it denotes remixing songs
(or parts of songs) to create new derivative works. Similarly, web-based mashups are
created by integrating data from one or more sources to create a new application,
typically in a way that hides the details of the source applications to provide a seam-
less experience for the user [2]. Major companies like Google, Amazon and eBay
have provided interfaces to many of their services at little or no cost, allowing indi-
viduals and other businesses to create composite applications with novel functionality.
As more firms choose to provide APIs for public use, the number of opportunities to
combine these APIs in new ways increases exponentially. Each new mashup may then
attract its own base of users, further extending the market reach of the API providers.

 Innovation in the Programmable Web: Characterizing the Mashup Ecosystem 137

Despite the potential importance of this trend, few empirical studies have attempted
to characterize the ecosystem of Web 2.0 mashups and APIs in a general way. Most of
the existing literature is focused on the concerns of stakeholders in a particular domain
(e.g., health librarians [3] or digital journal publishers [4]), the legal and policy issues
associated with remixing content [5, 6], or the underlying technologies [7, 8]. A number
of classification schemes for mashups have been proposed [1, 9], but we are unaware of
any studies that apply these schemes in an empirical setting.

The task of characterizing the mashup ecosystem is made more complicated—and
more interesting—by the fact that the web of relationships among mashups and APIs
has evolved along with the populations of each. To understand the dynamics of these
relationships, we need to investigate the process by which mashup creators choose
APIs to build on, which in turn depends on the decisions of API providers (to expose
their APIs in the first place, as well as the terms under which they do so) and the ex-
pectations of the mashup creators’ own target audiences. The importance of these
interlinked decisions suggests viewing mashups and APIs as a single evolving net-
work rather than as independent populations of discrete entities. This network-based
approach allows us to explore how APIs become connected through mashups, and
how these connections influence the overall network structure and the popularity of
individual APIs.

This paper presents the results of a preliminary effort to study the API–mashup
network using well-established concepts and techniques. Section 2 describes our data
set, which was obtained from publicly available sources. We examined the following
characteristics of the network, and report the results in sections 3–5 respectively:

• Graphical network structure. Visual snapshots of the network illustrate
its rapid growth and reveal qualitative structural patterns, most notably a
partition of APIs into three tiers, with Google Maps at the center. APIs
in Tier 1 and 2 tend to serve as platforms, while those in Tier 2 and 3 of-
ten serve as data sources.

• Degree distributions. Plotting the cumulative distribution of mashups to
APIs reveals a power-law relationship, which is commonly generated by
processes in which popular network nodes attract new links at a higher
rate than less popular ones [10]. We also assess the extent to which the
mashup ecosystem exhibits the “long-tail” property found in studies of
books, movies, music and other information goods [11]. Perhaps sur-
prisingly, the distribution of API popularity has a relatively short tail
compared to other types of goods.

• Social network statistics. Analysis of the API affiliation network pro-
vides additional information on the evolving network topology. We find
that the links between APIs exhibit the properties of a small-world net-
work [12], suggesting a high level of novelty in mashup designs. While
the most popular APIs are responsible for the vast majority of links, the
small-world structure is due mainly to the less popular APIs.

Section 6 comments on the implications of our findings for stakeholders in the
mashup ecosystem, and concludes with a call for further research.

138 S. Yu and C.J. Woodard

2 Data: The Programmable Web

To construct a network view of the mashup ecosystem, we turned to the largest online
repository of information about Web 2.0 mashups and APIs, ProgrammableWeb.com.
This aggregator site provided the most comprehensive listing of mashups and APIs
available, including information on which mashups use which APIs.

Our data set consisted of 2664 mashups and 590 APIs that were registered between
September 2005 and December 2007. We used this data to create snapshots of the
mashup ecosystem at 9 quarterly intervals, beginning in December 2005.

For each snapshot, we created a rectangular matrix with mashups on the rows and
APIs on the columns. Each cell in the matrix was assigned a binary value (0 or 1) indi-
cating whether the mashup corresponding to the given row uses the API corresponding
to the given column. These relationships can also be represented graphically. In Figure
1a, APIs are shown as boxes and mashups as circles. The line segments connecting
them represent instances in which a mashup uses (i.e., builds on) a particular API.

While the API–mashup network is useful for visualizing relationships among APIs
and mashups, many network analysis techniques are limited to a single type of entity.
For the analysis in Section 5, we therefore followed standard practice in the social
network literature [13] and transformed the rectangular (two-mode) API–mashup
matrices into square (one-mode) affiliation matrices to study the relationships be-
tween APIs. These API affiliations can also be represented graphically (Figure 1b).
Two APIs are linked by a line segment if they have been used together in a mashup.

m

API m

API

API

API

m

m

m

API

API

API

API

(a) (b)

Fig. 1. (a) API–mashup network (b) API affiliation network

3 Graphical Network Structure

We used NetDraw [14], a popular social network visualization tool, to study the
growth of the mashup ecosystem. Figure 2a shows four snapshots of the API–mashup
network rendered using NetDraw’s node repulsion algorithm. The population of both
APIs and mashups grew roughly linearly over time. API growth tended to be slower
and more consistent than mashup growth, with APIs growing at a mean rate of 20.1
per month (SD = 6.2) and mashups at a rate of 93.8 per month (SD = 25.4).

While network visualization is as much an art as a science—and the choice of lay-
out algorithm is to some extent arbitrary—it is striking that each snapshot exhibits a
distinctive three-tiered structure, with a layer of mashups between each API tier.
These layers appeared in all time periods, even as the total number of APIs and mash-
ups increased tenfold.

 Innovation in the Programmable Web: Characterizing the Mashup Ecosystem 139

The enlarged snapshot from December 2007 (Figure 2b) shows a more detailed
view of the key APIs and their corresponding mashups. The network clearly centers
around Google Maps (Tier 1), with a ring of popular but less central APIs around it
(Tier 2) and a constellation of other APIs (Tier 3) on the periphery. This layered
structure suggests that Google Maps and at least some of the Tier 2 APIs play the role
of platforms in the mashup ecosystem. Google Maps, in particular, adds value to the
multitude of other APIs that provide spatial data by providing a powerful and conven-
ient way to display this data in a web application. The fact that it is freely available
and uses common protocols and data standards makes it an especially attractive
choice for mashup developers.

Dec 2005 Jun 2006 Dec 2006 Jun 2007

(a)

(b)

Fig. 2. (a) Evolution of the Web 2.0 mashup ecosystem. (b) The API–mashup network in
December 2007.

140 S. Yu and C.J. Woodard

Although the relationships between Tier 2 and Tier 3 APIs are less clear-cut, we
observe similar patterns of complementarity between platform-type services and ser-
vices that supply raw data. APIs for mapping (Google Maps, MS MapPoint), search
(Google Search, Yahoo Search), community (Facebook), payment (PayPal) and te-
lephony (Skype) are often combined with APIs that provide data like images (Flickr),
video (YouTube, LiveVideo), product details (eBay, Shopping.com, PriceRunner) and
news feeds (Technorati, CNET, LiveJournal). Most of the APIs that provide platform
services reside in Tier 2, while most of data providers (except the most popular ones)
are in Tier 3.

4 Degree Distributions

Before exploring the network structure of the mashup ecosystem in greater depth, we
pause to consider a more aggregate phenomenon, namely, the relative frequency with
which APIs are used in mashups. This analysis will shed light on how API “market
share” is distributed, and provide clues about how some APIs become vastly more
popular than others.

4.1 A Power Law: The Rich Get Richer

Figure 3 plots the cumulative distribution of mashups over APIs at two points in time,
December 2005 and December 2007. For each distribution, the vertical coordinate of
the top-left data point indicates the number of APIs that were used by a single mashup
between September 2005 and the given date. The horizontal coordinate of the bottom-
right point indicates the number of mashups that used the single most popular API
during the same time period. Plotting the distributions on log-log axes reveals a linear
relationship characteristic of a power-law distribution.

In a power-law distribution, small events are extremely common and large events
are extremely rare [15]. In the context of the mashup ecosystem, this would mean that
a large number of APIs are used by few mashups and a small number of APIs are
used by many mashups, compared to a bell-shaped pattern in which more and less
popular APIs are distributed symmetrically. Such a phenomenon occurs in many
markets that are dominated by a few popular products, for example a bookstore that
sells a few blockbuster novels in large quantities along with many obscure texts in
small quantities.

The power-law pattern is sometimes expressed by the “Pareto principle,” which
states that 20% of the causes often yield 80% of the effects. In the mashup ecosystem,
the distribution is even more lopsided: by December 2007, the top 20% of APIs (121
out of 590) had captured 95% of the market (2535 mashups out of 2664).

Prior research identifies preferential attachment as a mechanism that can give rise
to power-law distributions [10]. If preferential attachment were operating in the
mashup ecosystem, APIs that became popular early in the ecosystem’s development
would continue to gain mashups at a higher rate than less popular APIs, reinforcing
their popularity. We did not test this hypothesis quantitatively, but it seems like a
plausible explanation.

 Innovation in the Programmable Web: Characterizing the Mashup Ecosystem 141

Fig. 3. Cumulative distribution of mashups to APIs for December 2005 and 2007

Although the data for both time periods is consistent with preferential attachment,
the strength of the effect appears to have weakened over the period of our study. We
computed best-fit lines for the December 2005 and December 2007 distributions,
yielding the equations shown in Figure 3. The absolute value of the exponent in-
creased in magnitude from 0.68 to 0.86, which implies a decrease in the fraction of
mashups that use the top APIs relative to the fraction of APIs with a small number of
mashups. The impact of this change can be seen by looking at the top and bottom
ends of the distribution. At the bottom, the number of APIs with only one mashup
increased by a factor of 16, from 25 in 2005 to 401 in 2007. At the top, the API with
the largest number of mashups (Google Maps) also increased its number of mashups,
but only by 9 times, from 114 in 2005 to 1048 in 2007.

4.2 A Long Tail? Yes, But a Short One

The concept of a power-law distribution is frequently associated with the idea of a
“long tail.” Long-tailed distributions are characterized by a large number of low-
frequency occurrences that can cumulatively outweigh the high-frequency ones [11].
Such distributions are common in online retailing, where product selection is not
limited by physical storage restrictions or holding costs, and consumers can easily
find specific products by searching online or acting on recommendations, resulting in
an overall high volume of sales from niche products [16]. Since the mashup ecosys-
tem is similarly unencumbered by physical constraints, it is plausible that the number
of APIs with few mashups could be so numerous that they form a long tail and cap-
ture the lion’s share of the market.

In 2007, Kilkki [17] proposed a mathematical formula to model long-tailed
distributions:

142 S. Yu and C.J. Woodard

1)(
)(

50 +
=

α

β

x

N
xF

When products (in this context, APIs) are ranked according to their volume or share,
F(x) represents the share of total volume covered by products up to rank x. In this
model, three parameters determine the size of the tail: (1) N50 is the number of prod-
ucts that cover half of the total volume; (2) α is the factor that defines the form of the
function by describing the steepness of slope in the middle part of the function; and
(3) β is the total volume of the distribution, including latent demand suppressed by the
current structure of the product market. Kilkki applied the model to a wide range of
data sets, including book sales and movie viewership in the United States. He found
that the distribution of book sales has a much longer tail (N50 = 30714, α = 0.49 and β
= 1.38) than movie viewership (N50 = 56, α = 0.82 and β = 1.60).

Fig. 4. Cumulative share of mashups by API in December 2007

Fitting the December 2007 API and mashup data to the model using nonlinear re-
gression yields N50 = 8.24, α = 0.570 and β = 1.14. Figure 4 plots the actual data along
with fitted data from the model. Although the model fits the data very well, it would
be misleading to conclude that the mashup distribution has a long tail in the same
sense as books and movies do. On the contrary, the parameters indicate that API use
by mashups has a shorter tail than book sales on all three dimensions, as well as a
shorter tail than movie viewership on two dimensions, N50 and β.

This result is consistent with the frequency data reported earlier. Recall from
Section 4.1 that the head of the mashup distribution is top-heavy, with the top 20%
of the APIs capturing 95% of the mashups, a far greater share than the 80% suggested
by the Pareto rule. Moreover, the tail flattens out quickly at the bottom end, with 51%
of the APIs excluded because they were not used by any mashups at all.

 Innovation in the Programmable Web: Characterizing the Mashup Ecosystem 143

5 Social Network Statistics

The impression conveyed by the analysis so far is that the most popular APIs are
vastly more important than the rest in terms of their contribution to the mashup eco-
system. While it is true that a small set of APIs account for the majority of mashups
(with the top 10 responsible for well over 50% of the observed mashup links), a closer
look at the network structure reveals a subtler but perhaps equally important role for
the less popular APIs in the ecosystem.

In this section, we focus on the API affiliation network. Investigating the structure
of API affiliations enables us to explore patterns of innovation by mashup creators.
Since each link in the affiliation network represents a different pair of APIs used by
one or more mashups, this analysis sheds light on the ways in which mashup creators
combine APIs to create applications with novel functionality.

We computed a set of network metrics commonly employed in the social network
literature: mean degree, normalized degree, network density, characteristic path
length and clustering coefficient. These metrics were calculated for each of the 9
quarterly network snapshots, and are summarized in Table 1.

Table 1. API affiliation network metrics by quarter

Date
Mean

Degree
Normalized

Degree
Network
Density

Characteristic
Path Length

Clustering
Coefficient

Dec-05 1.152 0.0127 0.0162 2.355 0.320

Mar-06 2.971 0.0175 0.0272 2.284 0.500

Jun-06 4.901 0.0231 0.0415 2.228 0.399

Sep-06 5.279 0.0189 0.0344 2.206 0.395

Dec-06 6.171 0.0176 0.0329 2.243 0.418

Mar-07 9.170 0.0230 0.0395 2.223 0.458

Jun-07 9.155 0.0200 0.0350 2.237 0.448

Sep-07 8.929 0.0172 0.0344 2.240 0.428

Dec-07 8.488 0.0144 0.0281 2.282 0.414

5.1 API Affiliation Metrics

The degree of a network node is the number of connections the node has with others.
In the API affiliation network, the degree indicates the number of other APIs that are
used in common with a given API by one or more mashups. Examining the mean
degree of the network over time, we see a steady increase from 1.152 mashups per
API in December 2005 to a maximum of 9.170 in March 2007, followed by a plateau
and a slight downward trend for the remainder of the year.

The normalized degree is the mean degree divided by the maximum possible degree
(the total number of nodes minus one), providing a measure of network connectivity
that controls for the growth of the network. Over the period of the study, the normal-
ized degree varied much less than the mean degree, ranging from about 0.013 to 0.023.

144 S. Yu and C.J. Woodard

The network density is the ratio of the number of actual links in the network to the to-
tal number of possible links that would exist if all nodes were directly connected to each
other. Hence, it is another measure of network connectivity, i.e., the extent to which
APIs are connected to each other by mashups. The network density fluctuated substan-
tially over the study period, from about 0.016 to 0.045, but without a clear trend.

The characteristic path length (CPL) is the expected distance along the shortest
path between any two nodes in the network. After a slight drop between December
2006 and March 2006, it remained fairly stable (between about 2.2 and 2.3).

The clustering coefficient (CC) measures the extent to which network nodes tend to
form groups with many internal connections but few connections leading out of the
group. Like the CPL, it remains nearly constant after March 2006 (between about
0.40 and 0.45).

5.2 Small-World Analysis

The characteristic path length and clustering coefficient are the key statistics used to
identify networks with the small-world property coined by Watts and Strogatz [12].
The concept of a small-world network was inspired by Stanley Milgram’s famous
experiment in which randomly selected individuals in Nebraska and Kansas were able
to forward letters to a target in Boston through an average of only six intermediaries.

In the formalization of the concept proposed by Watts and Strogatz, a network has
the small-world property if its characteristic path length is similar to that of a random
network with the same density despite having a much larger clustering coefficient. In
a random network, the expected CPL is approximately ln n / ln k and the expected CC
is approximately k, where n is the number of nodes and k is the mean degree of the
network. For the API affiliation network in December 2007, CPLrand = 2.98 and
CCrand = 0.0144, while the actual CPL was 2.28 (even lower than CPLrand) and the
actual CC was 0.414 (almost 30 times higher than CCrand). The API affiliation net-
work thus easily qualifies as a small-world network. Further investigation shows this
to be true throughout the two-year sample period.

What does it mean for the API affiliation network to have the small-world prop-
erty? Loosely speaking, nodes in a small-world network are more closely connected
than one would expect based on their density and clustering. In the context of the
mashup ecosystem, this suggests that APIs with very different functionality (e.g.,
mapping, audio search, and news feeds) are more likely to be connected through
mashups (e.g., an application that shows famous places from popular songs, and one
that finds news stories on popular artists) than one might otherwise expect. Although
we caution against reading too much into this finding, it is an encouraging sign that
the mashup ecosystem has generated a substantial level of novelty and surprise.

5.3 Importance of Peripheral APIs

To better understand why the API affiliation network has the small-world property,
we repeated the analysis on the affiliation network formed by a subset of the most
popular APIs. To construct the subset, we selected APIs that were used by at least 5
mashups in December 2007. These 152 APIs comprised 57% of the APIs with at least
one mashup, or about half of the APIs that played an active role in the mashup
ecosystem.

 Innovation in the Programmable Web: Characterizing the Mashup Ecosystem 145

Omitting the less popular APIs from the network reveals their important role
in giving rise to the small-world property of the mashup ecosystem as a whole. As
Table 2 indicates, the affiliations among most popular APIs barely qualify as small-
world. Their clustering coefficient (0.446) is similar to the full set, but only 3.02 times
that of a comparable random network, compared to 28.78 for the full set. Despite this
comparatively low level of clustering (which intuitively ought to reduce path lengths),
the CPL of the subset affiliation network is longer than CPLrand, indicating a relative
absence of the distinctive short paths associated with the small-world property.

Table 2. Small-world metrics for a subset of the most popular APIs (December 2007)

APIs n k CC CCrand
randCC

CC CPL CPLrand
randCPL

CPL

Full set 590 8.49 0.414 0.0144 28.78 2.28 2.98 0.765
Popular 152 22.42 0.446 0.1475 3.02 1.99 1.62 1.233

The role of the less popular APIs in forming these short paths can be seen in

Figures 5a and 5b. These visualizations were generated using NetDraw’s spring em-
bedding algorithm, which locates pairs of nodes with the shortest path lengths closest
to each other. The full network is shown in Figure 5a; the network with the most
popular APIs omitted is shown in Figure 5b. The nodes are colored according to the
number of mashups for each API: red nodes represent the most popular 152 APIs with
5 or more mashups, while orange, yellow, light green and dark green represent APIs
with 4, 3, 2 and 1 mashups respectively. APIs with no mashups were omitted. The
size of each node corresponds to the degree of each API, with larger nodes indicating
APIs with higher degrees.

In Figure 5a, the most popular APIs form the core of the network, and are highly
interconnected through the mass of black lines. The less popular APIs in orange, yel-
low, light and dark green, form rings around the core, indicating that they are further
away in terms of path length. These peripheral APIs mostly have connections to the
APIs in the core, forming clusters around them. Figure 5b shows clearly that there are
few direct connections between less popular APIs.

(a) (b)

Fig. 5. (a) Full set of API affiliations. (b) Affiliations of peripheral APIs.

146 S. Yu and C.J. Woodard

This additional analysis highlights the structural differences between the more and
less popular APIs in the network. This is consistent with the qualitative findings of
Section 3, in particular that APIs can be roughly segmented into two types: core plat-
form APIs, which tend to form hubs since they can be used with many other APIs,
and peripheral APIs, which tend to be more specialized in function (e.g., supplying a
particular type of raw data) and less attractive for reuse. The structure of the affilia-
tion network suggests that innovation (i.e., the appearance of mashups that create new
affiliations) is concentrated in two areas: within the core set of platform APIs, and
between the platform APIs and the periphery.

6 Conclusion

The growth of the mashup ecosystem has attracted media attention and fueled high
expectations. In 2006, commentators called it “incredibly ripe for innovation” [18]
and saw “numerous forces combining to make the mashup ecosystem ‘explode’” [19].
However, the ProgrammableWeb.com data revealed a more modest growth pattern.
(In fact, the growth rate declined toward the end of our sample period and into 2008.)
Moreover, as the highly concentrated distribution of API popularity makes clear,
simply releasing an API is no guarantee that mashup creators will build on it. These
factors should encourage ecosystem participants to think carefully about the roles they
want to play, and how to succeed in these roles.

This paper was motivated by the desire to help inform such thinking with empirical
data from the mashup ecosystem. Our analysis was intended to be exploratory rather
than conclusive. It shows that mashup developers do not simply mix and match APIs
arbitrarily to create new mashups. Instead, they tend to build on a small subset of
platform-like APIs (which become very popular and densely interconnected) while
drawing less frequently from a much wider range of APIs that perform more special-
ized functions. By far the most popular of the platform APIs is Google Maps, which
was used by 48% of the mashups in our sample.

Despite the apparent dominance of the most popular APIs, we find a significant
role for the ecosystem’s less popular APIs as well. Many of these peripheral APIs are
involved in mashups that bring together novel combinations of functionality, thus
creating new links in the API affiliation network. We view the structural richness of
this network as a sign of innovative activity in the mashup ecosystem.

There are many limitations in our analysis. In particular, although Programmable-
Web.com was the most comprehensive repository of API and mashup data available
to us, it relies extensively on data reported by API providers and mashup creators.
Both groups have incentives to participate (there is no cost to list an API or mashup,
and both stand to benefit from the visibility provided by the site), but there are un-
doubtedly APIs and mashups in existence that are not registered.

There is also much more analysis that could be done. This paper took a first cut at
describing the characteristics of the mashup ecosystem through graphical visualiza-
tion and quantitative investigation of its network structure. Future research can build
on these findings to develop a more rigorous theoretical framework for explaining the
patterns we observed and predicting how the ecosystem will evolve. We hope this and
subsequent work will help Web 2.0 participants make sound strategic choices about
designing and releasing APIs, and enable mashup creators to innovate more effec-
tively by recombining these APIs in compelling new ways.

 Innovation in the Programmable Web: Characterizing the Mashup Ecosystem 147

Acknowledgments. Many thanks to John Musser of ProgrammableWeb.com for
providing API access to the site, and to Darshan Santani for his generous help with
data extraction and cleanup.

References

1. O’Reilly, T.: Web 2.0: Compact Definition? (2005), http://radar.oreilly.com/
archives/2005/10/web-20-compact-definition.html

2. Wikipedia: Mashup,
 http://en.wikipedia.org/wiki/Mashup_web_application_hybrid

3. Cho, A.: An Introduction to Mashups for Health Librarians. JCHLA 28, 19–22 (2007)
4. Kulathuramaiyer, N.: Mashups: Emerging Application Development Paradigm for a Digi-

tal Journal. JUCS 13, 531–542 (2007)
5. O’Brien, D.S., Fitzgerald, B.F.: Mashups, Remixes and Copyright Law. INTLB 9(2), 17–

19 (2006)
6. Goodman, E., Moed, A.: Community in Mashups: The Case of Personal Geodata (2006),

http://mashworks.net/images/5/59/Goodman_Moed_2006.pdf
7. Jackson, C., Wang, H.J.: Subspace: Secure Cross-domain Communication for Web Mash-

ups. In: 16th International World Wide Web Conference, pp. 611–620 (2007)
8. Liu, X., Hui, Y., Sun, W., Liang, H.: Towards Service Composition Based on Mashup. In:

2007 IEEE Congress on Services, pp. 332–339 (2007)
9. Hinchcliffe, D.: Is IBM Making Enterprise Mashups Respectable? (2006),

 http://blogs.zdnet.com/Hinchcliffe/?p=49
10. Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286,

509–512 (1999)
11. Anderson, C.: The Long Tail (2004),

 http://www.wired.com/wired/archive/12.10/tail.html
12. Watts, D.J., Strogatz, S.H.: Collective Dynamics of “Small-World” Networks. Nature 393,

409–410 (1998)
13. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cam-

bridge Univ. Press, Cambridge (1994)
14. Borgatti, S.P.: NetDraw: Graph Visualization Software. Analytic Technologies (2002)
15. Adamic, L.A.: Zipf, Power-Laws, and Pareto: A Ranking Tutorial,

 http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html
16. Brynjolfsson, E., Hu, Y.J., Smith, M.D.: From Niches to Riches: Anatomy of the Long

Tail. Sloan Mgmt. Rev. 47(4), 67–71 (2006)
17. Kilkki, K.: A Practical Model for Analyzing Long Tails. First Monday 12(5) (2007)
18. Berlind, D.: Mashup Ecosystem Poised to Explode (2006),

 http://blogs.zdnet.com/BTL/?p=2484
19. Hinchcliffe, D.: The Web 2.0 Mashup Ecosystem Ramps Up (2006),

 http://web2.socialcomputingmagazine.com/the_web_20_mashup_
 ecosystem_ramps_up.htm

The Changing Role of IT Departments in
Enterprise Mashup Environments

Volker Hoyer1,2 and Katarina Stanoevska-Slabeva1

1 University of St. Gallen, Institute for Media and Communications Management,
9000 St. Gallen, Switzerland

2 SAP Research, 9000 St. Gallen, Switzerland
{volker.hoyer,katarina.stanoevska}@unisg.ch

Abstract. A new paradigm, known as Enterprise Mashups, implicates a
shift concerning the service development and consumption process: end
users combine and reuse existing Web-based resources within minutes
to new applications in order to solve an individual and ad-hoc business
problem. In such democratized operational environments, the role of IT
departments is changing. They are no longer solely responsible for devel-
oping or installing business applications. Instead, end users in the busi-
ness units compose their own operational environment in a collaborative
manner. This paper analyses and discusses challenges and the changing
role of IT departments toward service intermediaries by leveraging the
St. Gallen Media Reference Model (MRM).

Keywords: Enterprise Mashups, St. Gallen Media Reference Model.

1 Introduction and Motivation

Tradition problems between IT departments and business units, such as a low
service transparency, low reaction time, lack of customer orientation, and poor
quality of IT support, are no longer accepted, a fact which is demonstrated
by the tendency to build up independent IT resources with business units [1].
In addition, the growing relevance of information centric and situation applica-
tions to address the individual and heterogeneous needs of end users [2], leads
to a new generation of Web-based applications, known as Enterprise Mashups.
By empowering users in the business units with no programming skills to cre-
ate collaboratively the own operational environment, IT departments are under
pressure to justify their existence on the one side and to increase the efficiency
and effectiveness of the IT service infrastructure on the other side [1],[2].

However, an analysis of the implications of usage Enterprise Mashups environ-
ments is missing. The goal of this short position paper is to identify and analyse
the challenges in context of Enterprise Mashup environments - in particular re-
garding the role of IT departments. The remainder of this paper is structured
as follows: Chapter two clarifies the terminology used in context of the Enter-
prise Mashup paradigm and contrasts the development model against traditional
Service-Oriented Architectures. Based on the St. Gallen Media Reference Model

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 148–154, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Changing Role of IT Departments in Enterprise Mashup Environments 149

(MRM), chapter three outlines the shifting role of the IT department regarding
from the MRM layers community, interaction, service, and infrastructure. Fi-
nally, chapter four closes the paper with a summary and an outlook to further
research.

2 Related Work

2.1 Enterprise Mashups – Definition and Characteristics

An Enterprise Mashups is a Web-based resource that combines existing re-
sources, be it content, data or application functionality, from more than one
resource in enterprise environments by empowering the actual end users to cre-
ate and adapt individual information centric and situational applications [3].
Thereby, Enterprise Mashups focus on the UI integration [4] by combining the
philosophy of Service-Oriented Architecture (SOA) and approaches of End User
Development (EUD) [3].

Table 1. Service-Oriented Architecture versus Enterprise Mashups

Criteria Service-Oriented Architecture Enterprise Mashups

Time-to-value Many weeks, months, or even years Minutes, hours or days
Developer
Profile

IT department Business units (limited program-
ming skills); small teams or individ-
uals

Integration
Layer

Application Integration Focus on UI Integration

Development
Phases

Well defined, following agreed-to
schedule (although with frequent
schedule overruns)

No defined phases or schedules; fo-
cus on a good-enough solution to
address an immediate need

Functional
Requirements

Defined by limited number of users,
IT needs to freeze requirements
to move to development, require-
ment creep often caused by chang-
ing business needs

As requirements change, Enterprise
Mashups usually changes to ac-
commodate business changes; En-
terprise Mashups encourages unin-
tended uses

Nonfunctional
Requirements

Resources allocated to address con-
cerns for performance, availability,
and security; robust solutions

Little or no focus on scalability,
maintainability, availability, etc.

Testing By IT with some user involvement By users through actual uses

With the assistance of a layer concept, the relevant components and terms
can be structured in an Enterprise Mashup Stack [3] consisting of the elements
resources, widgets and Mashups. Resources represent actual contents, data
or application functionality. They are encapsulated via well-defined public in-
terfaces (Application Programming Interfaces; i.e. WSDL, RSS, Atom, CSV,
XML, etc.) allowing the loosely coupling of existing Web-based resources - a
major quality of SOA. The layer above contains widgets which are responsible

150 V. Hoyer and K. Stanoevska-Slabeva

for providing graphical and simple user interaction mechanism abstracting from
the underlying technical resources. Users can combine and configure such visual
widgets according to their individual needs, which results in a Mashup.

Key driver of the Enterprise Mashup paradigm is the lightweight composition
style by reusing existing building blocks in new ways - getting value out of prior
investments. The mass collaboration is an additional driver. The willingness of
users to offer feedback to the Mashup creator who may be unaware of problems
or alternative uses, directly contributes to the adoption of the Mashup and can
foster its ongoing improvement. Rating, recommending, tagging, or sharing fea-
tures for the different Enterprise Mashups layers, support the collaborative reuse
of existing knowledge to solve daily business problems [3].

To understand the changing development environment, table 1 summarizes
the findings of a desk research [5],[6],[3],[2] and experiences taken from first
implementations of domain specific Mashups with the SAP Research Rooftop
Mashup prototype. The comparison of the traditional development approach
and the Enterprise Mashups paradigm indicates the changing environment.

2.2 Enterprise Mashup Platforms

Driven by the consumer-oriented industry, various Mashup tools and platforms
were developed in the last two years. According to the classification of [7] and by
applying the Enterprise Mashup Stack [3], we can distinguish between Mashup
platforms and widget editors on the one dimension and between the enter-
prise and consumer target group on the other dimension. Because this paper
focuses explicitly on enterprise requirements, we narrow the following discussion
on enterprise-oriented platforms:

– Widget Platforms. Widget platforms and editors allow to compose het-
erogeneous Web-based resources (”‘piping”’) and to put a visual face on
the technical resources. Well known widget tools are Yahoo Pipes, Microsoft
Popfly, SAP Research Rooftop, or IBM Damia. The composition results of
these tools (sometimes they are also called as data Mashups) can be con-
sumed by desktop environments (Vista Gadgets, Yahoo Widgets), mobile
devices (Apple iPhone, Nokia Symbian), or Mashup platforms.

– Mashup Platforms. In contrast to widget platforms, Mashup platforms
address the actual end user with no programming skills. By adding new wid-
gets from a catalogue and by connecting their input and output parameters
(”‘wiring”’), end users are empowered to customize their individual oper-
ational environment. Examples for Enterprise Mashup platforms are IBM
Mashup Center/ Infosphere Mashup Hub (based on the research projects
IBM QEDWiki and IBM Mashup Hub), JackBe Presto Edge, Serena Mashup
Suite, or the Open Source project EzWeb.

Both types of tools have in common the lightweight composition style and
the integrated community features to share, rate, or recommend a mashable
component (resource or widget) similar to electronic markets.

The Changing Role of IT Departments in Enterprise Mashup Environments 151

3 St. Gallen Media Reference Model for Enterprise
Mashup Environments

In order to structure the analysis, we revert to the St. Gallen Media Refer-
ence Model (MRM)[8]. Due to the similarities to electronic markets as identified
by [9] and also indicated in the section before, we leverage the St. Gallen Me-
dia Reference Model which has its roots in electronic markets. It provides a
framework for specifying IT infrastructures and has already been applied in dif-
ferent contexts successfully (i.e., modeling electronic markets[8] or m-commerce
applications[10]). Under the term medium, we understand platforms based on
information and communication technologies, i.e., communication spaces of ”so-
cial interaction which allow the participant to meet and which embed them in a
common physical, logical, and socio-organizational structure” [11].

Fig. 1. St. Gallen Media Reference Model for Enterprise Mashup Environments

The media reference model provides guidelines for how to build a medium
based on information and communication technology by guiding the process
of requirement evaluation and by identifying the required services. It provides
four layers to structure the different successive interaction goals of the partici-
pating agents. The community view describes the participating agents and the
organizational structure. The interaction (process) view refers to the procedural
description of the interaction events. It models the community view requirements
by means of the service view which provides the necessary services for carrying
out the described process steps in the interaction view. Finally, the infrastruc-
ture view contains communication protocols and standards which comprise the
groundwork for the implementation of services.

In addition, the MRM identifies four phases. First, the knowledge phase is
which information about offered services and knowledge and the media platform

152 V. Hoyer and K. Stanoevska-Slabeva

itself is acquired. Second, the intention phase in which agents signal their inten-
tions in terms of offers and demand. Third, the contract (design) phase where
agents compose their individual workspace and finally the settlement phase, in
which agents execute the designed applications, using the platform’s settlement
services offered for this purpose. Figure 1 depicts a first version of a reference
model for Enterprise Mashup environments. Following each component of the
model is described briefly focusing on the changing role of IT departments.

3.1 Community View

A critical success factor for Enterprise Mashups is a broad potential user group,
familiar with the technology and willing to use it in their daily operational
environment. In general, Mashups are developed in very small user groups or by
individuals. The possible interactions and tasks of the agents can be described
by the following model: A provider develops and publishes a Mashup element via
a intermediary, where a consumer can find it and subsequently may bind to the
provider. In contrast to SOA, users from the business units don’t just interact as
consumers. They are able to create their own Mashup element and provide it to
the community. Besides the traditional provider role, the IT department takes
over the intermediary role. It monitors continuously the parameters (such as
availability and response latency) and provides performance metrics and other
evaluation results (rating, tagging, recommending, etc.) which may be used by
consumers to select a Mashup element [3]. In addition, the richness of Enterprise
Mashups applications are based on combining seamlessly corporate internal with
Web-based information sources. So Web providers have to be integrated into the
Enterprise Mashup community to publish their value added Mashup elements.

3.2 Interaction View

Figure 2 depicts a simplified process describing the interaction between the main
roles covering the four MRM phases. According to the findings of section two, the

Fig. 2. Simplified interaction process between Enterprise Mashup agents

The Changing Role of IT Departments in Enterprise Mashup Environments 153

process itself has to be simple and quick as possible - in particular for the users
from the business units. They focus on solving daily business problems in the
sales or accounting department and not on creating or adapting their operational
environment. The IT department is responsible to hide the complexity and to
support the actual end-users towards a service intermediary.

3.3 Service View

The growing number of available mashupable elements requires adequate discov-
ery concepts for retrieval purposes. According to the user context (profile, pref-
erences, social network it belongs to) relevant services are presented to the users
who are able to select the right Mashup element. Sharing of information, experi-
ences and knowledge with the community is a key driver for Enterprise Mashups.
Besides the default semantic annotations (functional and non-functional qual-
ities) defined by the provider, consumers are able to tag, recommend, or rate
the elements. By creating a folksonomy, essential a bottom-up, organic taxon-
omy, consumers are empowered to organize the available elements. The compo-
sition takes place both on the resource layer (piping) and on the widget (wiring)
layer. In reference to the UNIX shell pipeline concept, the piping composition
integrates heterogeneous resources. Aggregation, transformation, filter, or sort
functions adapt and mix the underlying resources. The visual composition of
input and output ports on the widget layer is called wiring. In contrast to pip-
ing that requires skills in programming and data standards, wiring can be done
by users without special IT skills. Good enough solutions within minutes lead
to a converging design and run time (execution). From consumer perspective,
no deployment exists. They design their operational environment and execute
it immediately. For IT departments, the execution means providing support for
administrating, monitoring, and accounting the consumed Mashup elements.

3.4 Infrastructure View

In contrast to existing applications (i.e., MS Excel or MS Access) created and
managed by business units to address ad-hoc requirements, the infrastructure of
Enterprise Mashups environments are managed by the corporate IT department.
Business units are empowered to integrate easily their local resources or back-
end systems into the environment. However, wide accepted standards (widget,
Mashups), protocols for the visual composition (piping or wiring), or accounting
methods are still missing in existing Enterprise Mashup environments [7].

4 Conclusion

The aim of the paper is the analysis of the changing role of IT departments
towards service intermediaries in Enterprise Mashup environments. In order to
achieve this, the main terms related to Enterprise Mashups were defined. By
applying the St. Gallen Media Reference Model, we structure the analysis to
identify the challenges implicated by the democratized environments.

154 V. Hoyer and K. Stanoevska-Slabeva

However, the model serves only as a starting point and framework for further
research focusing on the different views. In frame of the EU funded research
project Fast and Advanced Storyboard Tool (FAST) [12], we are currently de-
veloping an infrastructure and the relevant services for the creation of widgets.
By means of various real-world industry scenarios, we will analyse and observe in
detail the relationship between IT departments and business units. In addition,
we will use the designed reference model of this paper to analyse the economic
benefits of the Enterprise Mashups paradigm.

Acknowledgments. This paper has been created closely to research activities
during the EU-funded project FAST (INFSO-ICT-216048) [12].

References

1. Zarnekow, R., Brenner, W., Pilgram, U.: Integrated Information Management. Ap-
plying Successful Industrial Concepts in IT. Springer, Berlin (2006)

2. Cherbakov, L., Bravery, A., Goodman, B., Pandya, A., Bagget, J.: Changing the
corporate IT development model: Tapping the power of grassrots computing. IBM
System Journals 46(4) (2007)

3. Hoyer, V., Stanoevska-Slabeva, K., Janner, T., Schroth, C.: Enterprise Mashups:
Design Principles towards the Long Tail of User Needs. In: IEEE International
Conference on Services Computing (SCC), vol. 2, pp. 601–602 (2008)

4. Daniel, F., Matera, M., Yu, J., Benatallah, B., Saint-Paul, R., Casati, F.: Under-
standing UI Integration. A Survey of Problems, Technologies, and Opportunities.
IEEE Internet Computing 11(3), 59–66 (2007)

5. Cherbakov, L., Bravery, A., Pandya, A.: SOA meets Situational Applications:
Changing Computing in the Enterprise (2007),
http://www.ibm.com/developerworks/

6. Janner, T., Canas, V., Hierro, J., Licano, D., Reyers, M., Schroth, C., Soriano, J.,
Hoyer, V.: Enterprise Mashups: Putting a face on next generation global SOA. In:
Tutorial at the 8th Int. Conf. on Web Information Systems Engineering (2007)

7. Hoyer, V., Fischer, M.: Market Overview of Enterprise Mashup Tools. In: Proceed-
ings of the 6th Int. Conf. on Service Oriented Computing (ICSOC) (2008)

8. Schmid, B., Lindemann, M.: Elements of a Reference Model for Electronic Markets.
In: Proceedings of the 31st Hawaii Int. Conf. on System Sciences (HICSS) (1998)

9. Legner, C.: Is there a Market for Web Services? - An Analysis of Web Services
Directories. In: Proceedings of the 1st International Highlight Workshop on Web
APIs and Services Mashups (2007)

10. Stanoevska-Slabeva, K.: Towards a Reference Model for M-Commerce. In: Pro-
ceedings of European Conference on Information Systems (ECIS 2003) (2003)

11. Schmid, B.: The Concept of Media. In: Proceedings of the Fourth Research Sym-
posium on Electronic Markets, pp. 77–90 (1997)

12. FAST: EU Project, INFSO-ICT-216048 (2008),
http://fast.morfeo-project.eu/

http://www.ibm.com/developerworks/
http://fast.morfeo-project.eu/

The Mashup Atelier

Cesare Pautasso and Monica Frisoni

Faculty of Informatics
University of Lugano (USI)

via Buffi 13, 6900 Lugano, Switzerland
cesare.pautasso@unisi.ch, monica.frisoni@lu.unisi.ch

Abstract. Can mashups be used to make high school students inter-
ested in studying computer science? To answer this question, we have
designed the mashup atelier. The goal of this experimental lecture is to
make students realize that the Web is not only a medium for passively
consuming information but it can be actively reprogrammed as they see
fit. The atelier introduces the topic of Web 2.0 Mashups to students with-
out any formal pre-existing computer science education. After giving the
atelier several times, we report on the results of a student evaluation sur-
vey showing that, if supported with right kind of mashup tools, creative
students can become very productive developing interesting mashups in a
short timeframe. The feedback we gathered from the students can also be
used to improve existing mashup languages and tools, with the ultimate
goal of understanding what makes them intuitive and fun to use.

1 Introduction

Mashup [1] development targets the so-called long tail of application develop-
ment, enabling end-users to compose Web services and Web data sources by
themselves to fulfill their own specific requirements [2]. Ideal mashup develop-
ment tools should require very little upfront training and exhibit a gently-sloped
learning curve [3,4]. Using such tools, end-users having very little programming
experience can quickly become productive and build their own mashups [5].

To check whether mashup development is indeed a suitable target for end-user
software engineering, we designed an experimental lecture called “The Mashup
Atelier”. In this paper we present the feedback we gathered by observing end-
users as they build mashups and asking them about their experience attending
the lecture. We contribute this valuable feedback to help improving existing
mashup tools and languages that also target end-users without programming
skills.

The mashup atelier was originally designed in the context of an ongoing na-
tional initiative to make high school students aware of the computer science
discipline and to awake their interest in pursuing a computer science degree.
The goal of the atelier was to use mashups to convey to the students the idea
that the Web is not only an interactive medium for consuming information, but
it is also a new kind of medium where they can become active participants [6]. By

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 155–165, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

156 C. Pautasso and M. Frisoni

showing the students how to program the Web by building mashups, we hoped
to unleash their creativity and inspire them to learn more about informatics and
computer science.

In this paper we show that – given the right kind of tools – indeed it is possible
for end-users to develop simple but interesting mashup applications without
previous programming experience. We also show that mashup development can
be a useful approach for attracting the interest of young students to the computer
science discipline.

The rest of this paper is organized as follows. In Section 2 we define the
structure of the mashup atelier and outline the questionnaire that was handed
out to the students. We list some of the mashups that were developed during the
atelier in Section 3. Section 4 contains the results of the survey and the feedback
we gathered by observing the students. We discuss related work in Section 5 and
draw some conclusions in Section 6.

2 Methodology

The mashup atelier is structured in two parts and lasts approx. 3 hours in total.
During the first part, students are given some theoretical background on the
inner workings of the Web and are presented with many examples of Web 2.0
services. This part concludes by introducing the notion of mashup. To do so,
several example mashups are shown to students with the promise that they
would be soon ready to develop similar ones.

The main part of the atelier (2 hours) is practical. Students attending it
have access to a PC pre-configured with the mashup development environment.
The practical mashup development work starts with a 20 minute step-by-step
tutorial. Afterwards the students may work independently, first to implement a
few exercises (or challenges), then to create their own mashups.

During the atelier we interacted with the students, guiding them, answering
their questions and observing their progress. Thus, the students were intention-
ally not left alone to try to develop mashups on their own. On the contrary,
students were allowed to collaborate and to share their work with one another.
Our goal was not to test each student’s abilities, but to create a positive working
atmosphere. Towards the end of the atelier we gave the students an evaluation
questionnaire (Table 1) to fill out and were able to collect answers from all
participants.

The students worked with the Microsoft PopFly mashup development envi-
ronment [7]. This tool was chosen due to several reasons. First of all, the tool
does not require to be installed locally (apart from the requirement of having
the Microsoft Silverlight runtime [8]). This way, students can start developing
mashups during the atelier and then – if they used their own MSN accounts to
log in – they are able to continue working on them from home. Additionally,
this free tool is rather mature and stable. It provides a large library of reusable
mashup building blocks, which can be explained by referring the students to
the concept of function (y = f(x)), known to students from their high school

The Mashup Atelier 157

Table 1. Summary of the Feedback Questionnaire

1. Are you a member of a social networking site? (Yes/No) If Yes, which ones?
2. Do you know how to program? (Yes/No) If Yes, with which languages?
3. Did you already know what is a ‘Mashup’ before attending the atelier? (Yes/No)
4. Did you know how to use Microsoft Popfly before attending the atelier? (Yes/No)
5. What was your impression of the mashup development tool? Why?
6. Was the mashup tool intuitive? (Yes/No) Why?
7. What did you like most about the mashup tool?
8. What did you dislike most about the mashup tool?
9. Will you keep using the mashup tool in the future? (Yes/No/Maybe) Why?

10. Overall, are you satisfied about the mashup atelier? (Yes/No) Why?

math. It features a very quick design-run-test cycle and also enables users to
share mashups by publishing them on their homepages. We also thought that
the rich visual environment (with 3D animations) provided by Popfly would
make it appealing to young high school students.

3 Mashup Examples

In this section we briefly describe some example mashups developed by the stu-
dents attending the atelier. This helps to give an idea of the difficulties involved
and of the complexity of the resulting mashups that were developed in the limited
time available (1 hour and 30 minutes).

All students were initially guided through the development of a simple exam-
ple mashup that would display a set of images retrieved from the flickr service.
This simple example can be implemented in Popfly using two blocks: the first
to search flickr for pictures and the second to display the results. Such warmup
exercise helped students to understand how to configure the input parameters
of a block and how to draw a connection between two blocks in order to specify
data flow. During this first exercise, students were also given a walkthrough the
mashup development environment so that they learned how to design, run, test,
and modify their mashups.

Starting from this basic example, students were assigned the following exer-
cises to grow the complexity of their mashup and discover more useful blocks
and features of the PopFly environment:

– Display the pictures of a predefined search term on a map – this would
require the mashup to fetch from flickr the geo-tagging data associated with
the pictures and pass this information to the ’VirtualEarth’ display block.

– Let the user enter the search terms during the mashup execution – this
requires to add an additional user input block and to correctly link it with
the flickr search block. Some students testing this extended version of the
mashup realized that an incorrect linkage would always result in the same
pictures being displayed, as the data they entered would not flow between the
boxes at run-time. This shows that support for debugging is an important
feature of end-user software engineering tools.

158 C. Pautasso and M. Frisoni

(a) Slide show with multiple sets of pictures

(b) Twittervision

Fig. 1. Mashup Examples

– Display pictures extracted from two different sites (i.e., Yahoo! Images and
Flickr) – this exercise would require students to learn how to merge multi-
ple data streams into a single one using the combine operator provided by
PopFly. Students with good observation skills would then inquire on why
pictures of the second set are not appended to the first and the two sets are
simply interleaved by the combine block.

After working through these exercises of increasing complexity, the students
had some time left for browsing the block library and creating their own mashups.
Several students extended the previously described mashup collecting images
from multiple sources into a mashup to retrieve and mix multiple sets of images
(e.g., cats and dogs) from the same source (Figure 1a). Inspired by the twittervi-
sion.com mashup, some students were able to access a twitter feed, geo-code the
location of its entries and display them on a map. To do so, they had to discover
the ‘Twitter’ block from the standard PopFly library and learn how to cor-
rectly use it in conjunction with the ‘GeoNames’ block also found in the library
(Figure 1b). One student was able to use the ‘RSS’ block to aggregate multiple
technology-related newsfeeds and display them into a widget that could be em-
bedded into his homepage. Another student successfully attempted to publish a
mashup with the daily horoscope onto her facebook profile.

The Mashup Atelier 159

4 Survey Results

4.1 Background

All 43 students (29 male and 14 female) attending the four editions of the
Mashup atelier held in September 2008 at the University of Lugano, in the
Italian-speaking part of Switzerland, participated in the survey. Their age dis-
tribution (between 16 and 21 year-old) is shown in Figure 2. Since their native
language is Italian, both the feedback questionnaire and the answers we collected
were in Italian and had to be translated to be included in this paper.

All students declared their familiarity with the Web and knowledge about some
common Web 2.0 services. Half of the students also used one or more social net-
working sites (e.g., 10 Netlog, 9 MySpace, 6 Facebook, 5 WebTI, 4 MSN). We were
surprised to find out that at least five students are also running their own blog.

Figure 3 shows which programming languages (including HTML) the students
have been in contact with. 26 declared not to have programming experience. If
we exclude HTML, then only 9 students had previously learned at least one
programming language (the most popular one being Visual Basic). We can thus
identify two sub-groups of students, the ones without programming experience
and the ones with some programming experience.

None of the students we interviewed knew the term ’Mashup’ before the ate-
lier. Also, no student had previously been in contact with the Microsoft PopFly
mashup development environment.

4.2 Overall Impression

Figure 4 shows the number of answers to the question concerning the overall
impression of the students after working with the mashup tool for two hours.
Multiple answers were possible. The majority of the students found PopFly
useful and interesting. Only 4 students complained about some limitations and
1 student found it useless. Only one student admitted he did not know how to
evaluate the tool given he had never seen one like it.

1

18
16

4

1
3

0

10

20

16 17 18 19 20 21

Age (years)

Fig. 2. Age distribution of the students attending the Mashup Atelier

160 C. Pautasso and M. Frisoni

1

1

2

3

4

6

15

26

0 10 20 30 40

JavaScript

Pascal

PHP

C++

Java

Visual Basic

HTML

None

Fig. 3. Existing Experience with Programming Languages

11

39

4

1

1

0 10 20 30 40

useful

interesting

limited

useless

don't know

Fig. 4. What was your impression of the mashup tool?

From the positive side, the students that found the tool useful grasped its
potential to “save valuable time, since all data can be put in one page”. Students
also found it an interesting idea to make multiple Web pages “overlap” when
various data sources are combined. Many students enjoyed using their mashup to
browse the flickr picture database and were also attracted by the various display
blocks at their disposal. One was positively impressed because he “did not think
it would have been possible to create a mashup so easily”.

Some of the negative opinions were caused by glitches in the tool. One stu-
dent had problems saving his homepage. One could publish the mashup but

The Mashup Atelier 161

complained that the PopFly logo is embedded into the published mashup. An-
other student with some previous knowledge about programming complained
that the tool lacks support for interactive debugging. One student pointed out
that he found the tool both interesting because of its visual block-based program-
ming paradigm, but also limited because he would not have enough knowledge
to be able to add his own personalized block to the library.

4.3 Was the Mashup Tool Intuitive?

As shown in Figure 5, the large majority (including 24 students without pro-
gramming skills) of the students agreed in finding PopFly an intuitive mashup
development environment.

5

37

0 10 20 30 40

no

yes

Fig. 5. Was the mashup tool intuitive?

The students giving a positive answer motivated their choice for many rea-
sons. Some were related to the properties of the development environment. “The
environment supports fast trial and error”. “It is fun to use”. “To work with it,
is enough to try out some blocks from the library and figure out how to connect
them”. “Blocks have tooltips with descriptions of their functionality”. “Once
you understand how to connect the boxes, it is easy”. “Even if I am not a com-
puter expert, I could more or less finish all of the exercises”. Other students
also commented on the language itself. “It does not use a technical language”.
“The language uses symbols rather than words”. “The language basic connection
mechanism is not too complex and anyone can use it thanks to its clear graphi-
cal notation”. “It works even if you have never seen a programming language”.
“The graphics look visually simple and the available commands are not too
complicated.” “Even if it is in English, it is rather understandable and simple”.

The 5 negative answers were explained as follows. One student admitted that
he “needed to ask the teacher for help”, despite his knowledge of Pascal and
Visual Basic. Two students with knowledge of HTML recognized that the tool
“requires good computer science skills” and “it is not very interactive”. The two
students without programming knowledge stated that “It was the first time I
used it”, and “It looks rather complicated”.

4.4 Positive Feedback

In general, the students liked learning about the notion of mashup, and the idea
of creatively mixing together information coming from various Web pages.

162 C. Pautasso and M. Frisoni

The students were enthusiastic to have a sort of control to some known and
powerful Web applications, such as ”Google Maps” or ”Virtual Earth”, and to
easily have access to pictures from ”Flickr” and ”Yahoo! Images”. The idea that
they could embed them into their personal web page, and show to their friends
what they could create, made them appreciate the mashup philosophy and let
them discover an alternative way to use the Web.

The students liked the following specific features of the mashup development
tool. On the one hand, they appreciated how quickly they could play with the
blocks of the library, experiment with their mashups and build visually appealing
slide shows. On the other hand, a few students also liked the rich graphical
notation and the search feature of the library browser tool. The ability of easily
gaining control over a certain Web data source or display widget was found very
positive by many students. They enjoyed searching for pictures and displaying
them using different kinds of visualizations. They were fascinated by the fact
that data and images coming from different well-known Web services could be
merged together into a new mashup application designed by them.

Some students were also very excited about the possibility of sharing their
mashup and publishing them on their homepage. After learning about this fea-
ture, one student quickly invited all of her friends present in the classroom to
join her new PopFly social network and forced them to “become a fan” of her
mashup.

4.5 Negative Feedback

23 students also gave some constructive criticism from their experience with the
mashup development tool. Only 2 students wished the tool was available in the
Italian language.

The block library attracted many suggestions for improvement, showing that
it is one of the most important features of a mashup development tool. Some
students felt overwhelmed and confused by the size of the library with hundreds
of reusable building blocks. Others were satisfied of having so much choice at
their disposal. Thus, whereas it is hard to argue in favour of a smaller or a larger
block library, its accessibility becomes very important. To help them getting
started, we gave them a list of 10 useful blocks and suggested they would ignore
the user-contributed blocks (since they may not always work). The automatic
suggestion feature was also used by the students to filter the block library and
make it display only blocks that could somehow be connected to the current
one. The results of this feature were not always clearly understood, as they did
not distinguish the blocks that could be used to provide input from the ones
that could be used to consume the output. Also, some pointed out that the
descriptions associated with the blocks and their configuration parameters were
not always easy to understand.

After becoming familiar with the block library, many students realized that
the set of mashups they could build is limited by the available blocks they
could find and understand how to use. Thus, they would not be able to build a
mashup unless they could find a suitable set of blocks to implement the required

The Mashup Atelier 163

functionality. Thus, PopFly supports very well a bottom-up composition sce-
nario where users are guided building mashups starting from existing blocks.
However, it only offers partial support for top-down design and decomposition.
This became evident to some students, since they realized that they would not
be able to implement their own blocks to supply the missing functionality (For
example, to scrape information out of a Web page). This is due both to their
lack of JavaScript programming skills, but also to the lack of documentation of
the PopFly block development API. The students that dared to switch to the
advanced configuration view of a block were simply lost facing the low-level code
implementing the block.

Some students were also annoyed by the requirement of obtaining and entering
a registration key, as this would break their creative exploration flow. Thus, it
would be convenient to provide pre-registered blocks for demo purposes that can
be later on configured with the proper credentials. Four students also complained
about the limitation concerning the maximum number of display blocks that
could be added to their mashup. Others were not successful in using the display
widgets to show their own pictures or could not find a block to play music.

Regarding the usability of the graphical notation, several students – at first
– were confused by the positioning of the input/output connectors of a block.
Without an explicit explanation they did not independently grasp the conven-
tion of using the connector on the right-hand side to represent the output and
the one on the left to represent the input of the block. Whereas this is a com-
mon notational convention of many visual languages, for complete beginners it
remains an arbitrary convention that needs to be explained. Once this was clar-
ified, drawing arrows between boxes simply required them to learn the correct
mouse click/drag sequence.

Another limitation pointed out by the more technically savvy students is
related to the requirement for having the Silverlight extensions installed both
for developing mashups but also for displaying them once they are shared and
published on their own hompage. Also, they were disappointed that once their
mashup was embedded into their personal Web page, they would not be able to
hide the Microsoft PopFly logo.

4.6 Will You Keep Using PopFly in the Future?

Also in this case, as summarized in Figure 6, the majority of students answered
that they would be interested in further usage of PopFly at home.

The positive replies were motivated because the students were curious to
find out more about the tool’s potential applications. They found it interesting,
useful, and even “cute and fun”. Two students emphasized the possibility of
embedding mashups into their own web pages and they planned to use the tool
to build interactive photo albums, only if they could find out how to build
mashups feeding them their own pictures and personal data.

The uncertain replies were due to some difficulties that were encountered
during the atelier, lack of time to explore the tool in depth, and a vague: “you
never know if it will become useful someday”.

164 C. Pautasso and M. Frisoni

11

6

25

0 10 20 30 40

no

maybe

yes

Fig. 6. Will you keep using the mashup tool in the future?

The negative replies did not give much insight on how the tool could be
improved, as this group of 11 students seemed to be satisfied with browsing
existing Web sites and participating in existing social networking tools. They
were not interested in further exploration and did not find an immediate need
for the tool. One stated that: “he does not normally use the computer for this
kind of things”.

5 Related Work

The potential for using mashups for educational purposes was first discussed
in [5]. In the same context, [9] is a more recent paper documenting the usage of
mashup development tools with teenagers. A comprehensive survey on end-user
programming languages and environments can be found in [4].

Whereas most existing research on mashup development environments shares
the goal of making it fast and easy to serendipitously reuse [10] and compose ex-
isting Web services and Web data sources into a mashup, only a few contributions
explicitly target inexperienced end-users. For example, the Mashmaker tool [11],
is presented as a user-friendly mashup environment based on a functional pro-
gramming language. Also, Marmite [12] addresses the needs of end-users with
its highly interactive development environment. We did not considering using
these tools in the mashup atelier due to their limited availability.

6 Conclusion

This paper reports on our initial experiences with the Mashup Atelier, an interac-
tive, project-based lecture for introducing young high school students with the
topic of Web 2.0 Mashups. This experimental atelier was designed with three
main objectives. The first was about testing whether young students with no
programming experience are capable of building mashups within a short time-
frame. The second was to gather feedback from the student impressions to benefit
future generations of “intuitive” mashup development environments and lan-
guages. The third was to see if mashup development could be effectively used to
get young students interested in learning more about computer science. Overall,

The Mashup Atelier 165

the mashup atelier received very positive feedback and a high degree of student
satisfaction (41 out of 43 students were satisfied with it, while the remaining 2
did not answer the question). It is still early to measure how many of the high
school students who attended will choose to enroll in a computer science degree
program. Nevertheless, from the results of our survey we observe that expos-
ing students to mashup development using a visual and interactive tool such as
Microsoft PopFly was very useful to get their attention.

Acknowledgements

This work is partially supported by the Informatica08 initiative. The authors
would also like to thank Mauro Prevostini for his excellent logistical support
with the atelier organization and Monica Landoni for her help in improving an
early draft of the student feedback questionnaire.

References

1. Wikipedia: Mashup (web application hybrid),
http://en.wikipedia.org/wiki/Mashup_web_application_hybrid

2. Hoyer, V., Stanoesvka-Slabeva, K., Janner, T., Schroth, C.: Enterprise mashups:
Design principles towards the long tail of user needs. In: Proc. of IEEE International
Conference on Services Computing (SCC 2008), pp. 601–602 (July 2008)

3. Rode, J., Bhardwaj, Y., Pérez-Quiñones, M.A., Rosson, M.B., Howarth, J.: As easy
as “Click”: End-user web engineering. In: Lowe, D.G., Gaedke, M. (eds.) ICWE
2005. LNCS, vol. 3579, pp. 478–488. Springer, Heidelberg (2005)

4. Kelleher, C., Pausch, R.: Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM Comput.
Surv. 37(2), 83–137 (2005)

5. Lamb, B.: Dr. Mashup or, Why Educators Should Learn to Stop Worrying and
Love the Remix. EDUCAUSE Review, 7 (2004)

6. Jhingran, A.: Enterprise information mashups: integrating information, simply. In:
VLDB 2006: Proceedings of the 32nd international conference on Very large data
bases, Seoul, Korea, pp. 3–4 (2006)

7. Microsoft: Popfly, http://www.popfly.ms/
8. Microsoft: Silverlight, http://www.microsoft.com/silverlight/
9. Yardi, S.: From functional to fun: End user development for teenagers. In: Proc.

of the IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC 2007), pp. 272–274 (September 2007)

10. Vinoski, S.: Serendipitous reuse. IEEE Internet Computing 12(1), 84–87 (2008)
11. Ennals, R., Gay, D.: User-friendly functional programming for web mashups. In:

ICFP 2007: ACM SIGPLAN International Conference on Functional Programming
- SIGPLAN Not., vol. 42(9), pp. 223–234 (October 2007)

12. Wong, J., Hong, J.: Marmite: end-user programming for the web. In: CHI 2006
extended abstracts on Human factors in computing systems, Montreal, Quebec,
Canada, pp. 1541–1546 (2006)

http://en.wikipedia.org/wiki/Mashup_web_application_hybrid
http://www.popfly.ms/
http://www.microsoft.com/silverlight/

The Reverse C10K Problem for Server-Side
Mashups

Dong Liu and Ralph Deters

Department of Computer Science
University of Saskatchewan

Saskatchewan, Canada
dong.liu@usask.ca, ralph@cs.usask.ca

Abstract. The original C10K problem [1] studies how to provide rea-
sonable service to 10, 000 simultaneous clients or HTTP requests using
a normal web server. We call the following problem the reverse C10K
problem, or RC10K — how to support 10, 000 simultaneous outbound
HTTP requests running on a web server. The RC10K problem can be
found in scenarios like service orchestrations and server-side mashups. A
server-side mashup needs to send several simultaneous HTTP requests
to partner services for each inbound request. Many approaches to im-
proving the performance and scalability of HTTP servers can be applied
to tackle the original C10K problem. However, whether these approaches
can tackle the reverse C10K problem needs to be verified. In this paper,
we discuss the RC10K problem for server-side mashups, and propose a
design that takes advantage of advanced I/O, multithreading, and event-
driven programming. The results of analysis and experiments show that
our design can reduce the resource requirements by almost one order of
magnitude with the same performance provided, and it is promising to
tackle the RC10K problem.

Keywords: HTTP, Mashup, Scalability, Performance, Client, C10K,
RC10K.

1 Introduction

AJAX (Asynchronous JavaScript and XML) and mashup applications are ef-
ficient interfaces for consuming published services on the web. An AJAX or
mashup page gets data from one or more services hosted on different servers
[2]. If a mashup is generated by on-demand code on client agent (client-side
mashup), requests are typically sent out by an API like XMLHttpRequest (XHR)
of JavaScript. XHR acts as an HTTP client in such scenarios. The server host-
ing those AJAX and mashup pages is not responsible for requesting data from
partner services, and all those computations are carried out on the client by
code-on-demand. The situation is different when the HTTP request tasks of a
mashup is executed on the server (server-side mashup, SSM for short), and the
SSM server is responsible for fetching data from partner services by sending out-
bound HTTP requests through broker clients. The conceptual structure of an
SSM server is shown in Fig. 1.

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 166–177, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Reverse C10K Problem for Server-Side Mashups 167

Fig. 1. The conceptual structure of an SSM server

HTTP brings two constraints [3] to the clients running on an SSM server:

(1) The basic message exchange pattern is request-response.
(2) An established connection is required for message transportation.

The constraints means a mashup server needs to maintain at least one connec-
tion for each outbound service consumption, and perform at least one request-
response transaction on that connection. In order to reduce the service time of
an inbound request, an SSM will launch parallel outbound requests. This yields
simultaneous outbound connections and message exchanges. If there are N si-
multaneous inbound requests for an SSM server, and each request results in C
parallel outbound requests, there will be CN simultaneous outbound connec-
tions and active outbound HTTP requests in the worst case. If an SSM server
needs to handle several thousand simultaneous requests, then the server can have
about 10, 000 or more simultaneous outbound HTTP requests to deal with. How
an SSM server can support that many simultaneous outbound HTTP requests
is what we called the reverse C10K problem, or RC10K for short.

The original C10K problem [1] studies how to provide reasonable service to
10, 000 concurrent clients using a normal server. Many approaches to improving
the performance and scalability of HTTP servers can be applied to tackle the
original C10K problem [1,4,5]. However, whether and how these approaches can
tackle the RC10K problem of an SSM server are still open questions. This pa-
per proposes a client design that adapts the approaches for the original C10K
problem to this RC10K problem. The evaluation shows that our approach can
effectively improve the scalability of an SSM server, and tackle the RC10K prob-
lem. The rest of this paper is structured as following. Section 2 discusses the ap-
proaches addressing the original C10K problem. An architectural design of SSM
server’s broker client is presented in Section 3. Section 4 evaluates the design by
experiments. Related work is discussed in Section 5. Section 6 is the conclusions
and future work.

2 The C10K Problem

The essential of the C10K problem is how to support a large number of inbound
TCP connections and how to serve the concurrent inbound requests, which leads
to two key design decisions of HTTP servers: I/O and concurrency strategy.

168 D. Liu and R. Deters

2.1 I/O

The input/output models can be divided into two groups: basic I/O and ad-
vanced I/O. Basic I/O is synchronous and blocking. An I/O operation is syn-
chronous if the thread initializing the I/O operation cannot switch to other
operation until the I/O operation is finished. A function or method is blocking
if it does not return until its execution either successfully finishes or encounters
an error. There are three ways to make advanced I/O [6]. The first approach is
to construct a loop to keep trying an I/O option while catching I/O errors until
it succeeds. This approach is called polling and it wastes CPU time. The second
approach is I/O multiplexing uses select()-like system functions. Most operat-
ing systems support select(), and it is also supported by Java VM 1.4 and later
versions. The descriptors of connections can be registered on a selector, which
calls select() to check if there is any I/O event for each of the descriptors. So
a thread initializing an I/O operation can delegate the job to a selector and
switch to other job. Note that select() is blocking until one of the registered
descriptors has an event or timeout happens. The third approach is asynchronous
I/O (AIO), which is both asynchronous and non-blocking. Both I/O multiplex-
ing and AIO enable a server to use very few threads to handle many concurrent
connections. In practice, I/O multiplexing and AIO are applied for developing
scalable servers [1].

2.2 Concurrency

Servers can roughly be classified into two categories, single-threaded and multi-
threaded, according to their concurrency model. Multithreading is favoured in
many servers as a means to dealing with simultaneous requests, increasing the
degree of concurrent processing, and making use of multiprocessors e.g. multi-
core processors [7]. This improves the performance of the platform compared to
single-threaded implementations [8].

HTTP 1.1 [3] introduced persistent connections, which enables a client to send
multiple requests through the same connection. Persistent connections improved
the keep-alive connections in HTTP 1.0 [9]. By using persistent connections, the
time to open or close connections can be saved and the number of parallel connec-
tions needed by a fixed number of requests can be reduced [10]. A connection can
have two different behaviours — idle for a long period or busy with back to back
requests. Polling of Web 2.0 applications is a typical cause of the second situation.
It is tricky to optimize the usage of threads when allocating threads to connections
in a multithreading server.Resources will be wasted if a thread is allocated for each
connection and the connections are often idle. The strategy of allocating a thread
for each request will also waste resource if the request has to be hold waiting for
other messages or events and the thread cannot be switched to other job.

For a multithreading server programmed in Java or .Net, the number of
threads is a measure of allocated resources, since it is directly related to CPU and
memory consumption. It has been observed on .NET applications [11] and Java
EE applications [12,13] that the response time of an application will increase

The Reverse C10K Problem for Server-Side Mashups 169

with respect to the number of active threads in an application server until the
server is overloaded. Therefore, the concurrency model needs to:

(1) limit the maximum numbers of threads that can be spawned in the server,
and

(2) keep the number of active threads as few as possible.

The first requirement results in a bounded thread pool. For the second require-
ment, the threads need to be programmed in an event-driven fashion, which
yields a hybrid server architecture [14,15]. There are two different strategies for
the second requirement — one is to make the waiting thread idle until the event
for its job comes, and the other is to switch the thread to another active job and
resume the current waiting job later on the corresponding events.

3 Design for the RC10K Problem

It is straightforward to apply the I/O and concurrency strategies of the server
to the broker client. However, the client has two new problems that the server
does not have. One problem is how to reuse the available connections in order
to save connection open and close time and keep the concurrent opened connec-
tion number below the maximum number allowed on partner server. The other
problem is how to embedded the client code into a mashup application easily.

A solution of the first problem is to introduce a component for connection
management to the client. We propose a modular design shown in Fig. 2. Our
design is inspired by the design of Jetty server [16], whose details can be found in
Section 5. The client contains a connector that is responsible for connecting to a
server and transporting messages to and from it. A thread pool provides worker
threads to perform the client jobs. A connection manager creates, registers, and
reuses connections. The connector and thread pool of the server can be reused
by the client. The SSM server and the broker client can share the same thread
pool instance for easy coordination of resource allocation.

The second problem can be addressed by introducing a message exchange
object or structure, which has conceptually four components: destination, socket
connection, request message, and response message. Its major behaviours are
the state transitions during message exchanging and the actions driven by the
transition events.

The state transitions of an HTTP client are shown in Fig. 3. A socket con-
nection is initially closed when created by a client, and the connection will be
established when a SYN+ACK from the server side is received. The client may
retry connecting for several times before giving up if the connection attempts
are either rejected or timeout. HTTP requests then can be sent through the
established connection. The client will wait for the response when the request
is completely sent. When the response comes, the client will first parse out the
header then the message body. When the whole response is completed, the con-
nection will become idle and ready for another request to be sent. Timeout may
happen when the client is waiting for or getting a response. The client may try
to resend the request several times before giving up.

170 D. Liu and R. Deters

Fig. 2. The architecture of the proposed HTTP client

ConnectionEstablishedConnectionClosed
newConnection

Connecting

connect

ConnectiongFailed

reject/timeout retry

giveup

SYN+ACK

close

(a) State transitions of transportation.

Idle

Sending WaitingForResponse

ParsingHeader

ParsingBody

Expired

dispatch

sent

reponseArrival

headersCompletedbodyCompleted

timeout

timeout

timeout

giveup

retry

(b) Detailed state transitions of the composite
state ConnectionEstabished.

Fig. 3. A state transition diagram of an HTTP client

The important events and corresponding potential actions described in Fig. 3
are listed in Table 1. Some events happen on socket I/O level, and therefore the
responsibility of capturing them can be allocated to the connector. These events
can be programmed as the methods of exchange object. So a mashup application
just needs to create an exchange object that implements the required methods.
The major purpose of combining event-driven programming with multithreading
is to enable asynchronous processing. Asynchronous processing means that, the
processing of a request can be suspended when waiting for responses of outbound
requests, and it can be resumed when those responses come or timeout happens.
Asynchronous processing can save computation resource effectively.

The Reverse C10K Problem for Server-Side Mashups 171

Table 1. The important events and associated potential actions for an HTTP exchange

Event Potential actions

On connection established update the connections for the current IP socket address, pre-
pare request message to be sent

On connection failed handle the failure

On connection idle update the connections for the current IP socket address

On waiting for response switch the thread to other job

On headers completed process the headers or wait for the body

On body completed locate a thread for current request and process the message

On expired handle the expiration

4 Evaluation

We want to verify if the design described in Section 3 can lower resource demand
for the same workload compared with other design options. The number of active
threads is used as the indicator of resource consumption. First we derive an
analytic result and then use experiments to verify the analysis.

4.1 Analysis

How many threads are required in an SSM server for N concurrent requests?
The number will be a linear function of N , the number of concurrent inbound
requests, as the following equation.

n = N × (1 + c) , (1)

where 1 represents the demand by the thread allocated for the inbound request,
and c is the number of threads required by outbound HTTP requests. Further-
more, c can be calculated by

c =
∑C

i=1 Di

S
,

where C is the number of outbound service consumptions for each inbound
request, Di is the time demand for ith outbound service consumption, and S is
the average service time of an inbound service request. From Equation 1, there
are two ways to decrease n — reducing either Di or 1. Di will become smaller by
switching the threads to other jobs while it is waiting for outbound responses.
Similarly, if a thread initially allocated to an inbound request can be switched
to another job by asynchronous processing, the 1 can become smaller, and the
average thread number will be

n = N × (
D

S
+ c) , (2)

where D is the time demand for inbound service request. In order to have an
inbound or outbound service request suspended and resumed later, the platform
needs to support continuation-like mechanism [17,18].

172 D. Liu and R. Deters

4.2 Experiments and Results

In order to evaluate the design presented in Section 3, we carried out a se-
ries of experiments. The mashup server in the experiments are programmed in
Java based on Jetty 7.01. Note that implementation details are not the focus of
this paper and implementations vary for various programming paradigms and
languages.

The first aspect to be evaluated is how event-driven programming and asyn-
chronous processing can optimize the usage of computation resources. We use
two machines in this experiment, machine A is running Window XP SP3 and
Java SE runtime environment 1.6 on 3.2GHz P4 CPU with Hyper-threading2

and 2GB RAM, and machine B is running Window XP SP3 and Java SE run-
time environment 1.6 on dual 3.2GHz Xeon CPU’s with Hyper-threading and
2GB RAM. Both of them have the TcpIP parameter TcpTimedWaitDelay3 set
as 60 seconds. The two machines are connected with a router, and the connec-
tion speed is 100Mbps. JMeter4 is running on machine A to simulate end users.
The think time of simulated users is set to zero in order to make the number of
concurrent requests in the intermediary service as close to the number of simu-
lated users as possible. We chose JMeter for load generation because JMeter can
control the exact number of concurrent running clients. A server-side mashup is
running on machine B, and it consumes two other partner services to generate
responses. The broker client uses select() type I/O. The two partner services
are hosted by Jetty running on machine B as well. One partner service spends
about 0.5 seconds for each request, and the other about one second. Both of them
reply with tiny payloads. The resource requirements for running the two part-
ner services are low enough for not interfering the mashup’s performance. Fig. 4
shows the active thread number and throughput as functions of the number of
simulated users in synchronous and asynchronous processing modes.

As shown in Fig. 4(b), the throughputs for synchronous and asynchronous
processing are almost the same because most of the response time is spent on
getting response from the partner services. There is a distinction of active thread
number between two processing models shown in Fig. 4(a) The thread number for
synchronous processing is about linear with respect to the number of simulated
users. Note that the number of simulated users is very close to the number of si-
multaneous active requests due to zero think time and low network latency. This
fits Equation (1) very well. On the contrary, the thread number for asynchronous
processing is likely constant, which does not seem to accord to Equation (2) at
first glance. In fact, the thread demand is still increasing with the user number
in this case, but it is very slow because D

S +c in Equation (2) is very small. Table
2 lists the values of D, S, and D

S in the experiments. Asynchronous processing

1 See http://www.mortbay.org/jetty/
2 See http://www.intel.com/technology/platform-technology/hyper-threading/
index.htm

3 See http://support.microsoft.com/kb/314053
4 See http://jakarta.apache.org/jmeter/index.html

http://www.mortbay.org/jetty/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
http://support.microsoft.com/kb/314053
http://jakarta.apache.org/jmeter/index.html

The Reverse C10K Problem for Server-Side Mashups 173

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Simulated user number

A
ct

iv
e

th
re

ad
 n

um
be

r

synchronous
asynchronous

(a) Active thread number

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

Simulated user number

T
hr

ou
gh

pu
t (

/s
ec

on
d)

synchronous
asynchronous

(b) Throughput

Fig. 4. Active thread number and throughput as functions of the number of simulated
users in synchronous and asynchronous processing modes

Table 2. The average time demand and service time for intermediary service request

Users number 10 30 50 70 90

D (millisecond) 0 1 1 1 2

S (millisecond) 1014 1012 1012 1015 1014

D/S 0 0.0010 0.0010 0.0010 0.0020

can drop the resource requirements of intermediary services dramatically when
D
S is far less than 1.

The second aspect to be evaluated is whether our design is sufficient for the
RC10K problem, or how close it can be pushed to the target. In this experi-
ment, the mashup server is running on machine B. The tested mashup consumes
3 partner services 2 times for each inbound request. The partner services are
hosted by YAWS5 on three other machines running Linux 2.6.24-19-server, and
their hardware is exactly the same as machine B. Tsung6 running on machine
A is used to generate the load. All the machines are connected through 100
Mbps LAN. Tsung is choosed in this scenario because it can generate workload
of high arrival rate, and therefore is able to simulate an open network environ-
ment. Machine B is specially tuned for the large number of inbound and out-
bound TCP connections. The TcpIP parameter MaxUserPort is set as 65534,
MaxFreeTcbs as 10000, and MaxHashTableSize as 8192. The JVM is tuned
for heap size and thread stack size, specially -Xss64k -Xms1024M -Xmx1024M
-XX:PermSize=256M -XX:MaxPermSize=256M is used in this experiments.

Each consumption of a partner service takes averagely 5 seconds. This time is
deliberately set to be large compared to normal services in order to obtain a large
number of concurrent outbound connections for a certain arrival rate. Each test

5 See http://yaws.hyber.org/
6 See http://tsung.erlang-projects.org/

http://yaws.hyber.org/
http://tsung.erlang-projects.org/

174 D. Liu and R. Deters

is composed of several phases back to back, and each phase takes one minute.
Fig. 5 shows the throughput and concurrent users of the mashup server in one
of the tests. The inter-arrival time (seconds) changes along different phases from
0.04 to 0.02, 0.01, 0.005, 0.004, and 0.003. The inter-arrival time is decreased
gradually in order to warm up the SSM server and reach its maximum capacity
gracefully.

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

time(sec)

ra
te

(/
se

c)

request
connection

(a) Throughput.

0 50 100 150 200 250 300 350 400 450
0

500

1000

1500

time(sec)

nu
m

be
r

users
connections

(b) Concurrent users.

Fig. 5. The throughput and concurrent users along different phases of a test

The largest number of concurrent users that has been reached is about 1400
when the server still operates normally. When the inter-arrival time decreases to
0.002 seconds, the server becomes unstable. The largest number of concurrent
outbound connections is about 8400 (1400× 6). Although it is less than 10, 000,
it is very close to the target. The same tests were performed on WSO2 mashup
server 1.5.1 on which a mashup with the same logic was deployed. The WSO2
mashup server is overloaded when the inter-arrival time reached 0.1 seconds,
that is, the server cannot even support 50 concurrent inbound requests and 300
concurrent outbound requests. The details about WSO2 mashup server can be
found in Section 5.

5 Related Work

As discussed in Section 2, there have been many research and development ac-
tivities related to the original C10K problem or the scalability issues of HTTP
servers. There are few research literature addressing the scalability issues of
HTTP client that can be seen in the RC10K problem. We expect there will
be more and more research work related to this topic with the development of
mashup and web service applications.

XMLHttpRequest (XHR) is probably the most popular HTTP client interface
currently used for Web-based service consumption. XHR’s interface was special-
ized by W3C [19] and its implementations vary a lot in different Web browsers.

The Reverse C10K Problem for Server-Side Mashups 175

Each XHR object requires an event listener that is normally a callback func-
tion describing the actions to be triggered on certain events. The function is
called every time the readyState changes. readyState can be in one of the five
states, namely request unsent, open() success, response header received, load-
ing response body, and response done. The XHR also provides accesses of re-
quest header, request body, response status, response header and response body.
XHR is a perfect example for high-level message exchange interface design. How-
ever, XHR specification does not address the aspects of connection and thread
management.

HTTPCLIENT7 is aJava-basedopen-sourceproject atApache.HTTPCLIENT
depends on HttpCore NIO extensions8 to support non-blocking I/O (NIO) and
event-drivenprogramming. HTTPCLIENT is used in someSSM servers likeWSO2
Mashup Server9. HTTPCLIENT has a component for connection management,
but does not provide thread pool. Without a thread pool, it will be difficult to reuse
the available idle threads.

WSO2 Mashup Server is a platform that uses JavaScript as the language of
representing and programming mashups. In other words, it exposes JavaScript
functions as services. WSO2 Mashup server provides several hosted objects that
ease common mashup operations like fetching feeds, scrapping web pages, and
sending either HTTP or SOAP requests to other services. The WSRequest ob-
ject10 mimics the XHR interface, and is able to perform both synchronous and
asynchronous requests. Due to the limitation of JavaScript and the underlying
Mozilla Rhino JavaScript engine, the response of an asynchronous request can
only be caught by using a wait() to hold the requesting thread, which make the
asynchronous request consume more resources and run slow.

The tested SSM server of proposed architecture is developed on the basis of
Jetty 7.0 and especially its Servlet 3.0 features11. Jetty is an open-source web
server implemented in Java. Jetty provides dynamic content support through
Servlet and JSP technologies. We leverage the client code base of Jetty with
shared thread pool and asynchronous processing for the evaluation. Note that
the official Jetty project focuses on HTTP server, and the client is just an ‘extra’
part. More efforts are needed to improve the client code base, and make an SSM
server out of it.

6 Conclusions

The scalability and performance of the broker client in an SSM server directly
affect server scalability and performance. To date, the scalability issues of HTTP
clients have been overlooked in research. Although many approaches have been
studied for improving HTTP servers’ scalability like the C10K problem, whether
7 See http://hc.apache.org/httpclient-3.x/
8 See http://hc.apache.org/httpcomponents-core/index.html
9 See http://wso2.org/projects/mashup

10 See http://wso2.org/project/mashup/1.5.1/docs/wsrequesthostobject.html
11 See http://jcp.org/en/jsr/detail?id=315

http://hc.apache.org/httpclient-3.x/
http://hc.apache.org/httpcomponents-core/index.html
http://wso2.org/projects/mashup
http://wso2.org/project/mashup/1.5.1/docs/wsrequesthostobject.html
http://jcp.org/en/jsr/detail?id=315

176 D. Liu and R. Deters

those approaches are effective for HTTP clients is still an open question. We
formulate the reverse C10K problem in this paper, and propose an architectural
design of the client that uses advanced I/O, multithreading, and asynchronous
processing in order to tackle the RC10K problem.

The evaluation shows that our design can reduce resource requirements by al-
most one order of magnitude in order to achieve the same performance compared
with other designs using synchronous processing. The evaluation also shows that
the 10, 000 simultaneous outbound connections is feasible in a normal web server
setup and virtual machine environment like JVM. Currently, we are investigat-
ing how much better other languages like Erlang12 can perform in the RC10K
problem due to its features like light-weight process, no memory-sharing, and
built-in message-passing.

References

1. Kegel, D.: The c10k problem. Web (September 2006),
http://www.kegel.com/c10k.html

2. Ort, E., Brydon, S., Basler, M.: Mashup styles, part 1: Server-side mashups. Web
(May 2007),
http://java.sun.com/developer/technicalArticles/J2EE/mashup_1/

3. The Internet Society: Hypertext transfer protocol – http/1.1. Web (June 1999),
http://tools.ietf.org/html/rfc2616

4. Darcy, J.: High-performance server architecture. Web (August 2002),
http://pl.atyp.us/content/tech/servers.html

5. Barish, G.: Building scalable and high-performance Java Web applications using
J2EE technology: Using J2EE Technology. Addison-Wesley, Reading (2002)

6. Stevens, W.R.: Advanced Programming in the UNIX Environment. Addison-
Wesley Professional, Reading (1992)

7. Dollimore, J., Kindberg, T., Coulouris, G.: Distributed Systems: Concepts and
Design, 4th edn. Addison-Wesley, Reading (2005)

8. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts, 7th edn.
John Wiley & Sons, Chichester (2004)

9. The Internet Society: Hypertext transfer protocol – http/1.0. Web (May 1996),
http://tools.ietf.org/html/rfc1945

10. Gourley, D., Totty, B., Sayer, M., Reddy, S., Aggarwal, A.: HTTP: The Definitive
Guide. O’Reilly, Sebastopol (2002)

11. Hasan, J., Tu, K.: Performance Tuning and Optimizing ASP .NET Applications.
Apress (2003)

12. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An analytical
model for multi-tier internet services and its applications. In: SIGMETRICS 2005:
Proceedings of the 2005 ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems, pp. 291–302. ACM Press, New York
(2005)

13. Haines, S.: Pro Java EE 5 Performance Management and Optimization. Apress
(2006)

12 See http://www.erlang.org/

http://www.kegel.com/c10k.html
http://java.sun.com/developer/technicalArticles/J2EE/mashup_1/
http://tools.ietf.org/html/rfc2616
http://pl.atyp.us/content/tech/servers.html
http://tools.ietf.org/html/rfc1945
http://www.erlang.org/

The Reverse C10K Problem for Server-Side Mashups 177

14. Beloglavec, S., Heričko, M., Jurič, M.B., Rozman, I.: Analysis of the limitations of
multiple client handling in a java server environment. SIGPLAN Not. 40(4), 20–28
(2005)

15. Li, P., Zdancewic, S.: Combining events and threads for scalable network services
implementation and evaluation of monadic, application-level concurrency primi-
tives. SIGPLAN Not. 42(6), 189–199 (2007)

16. Wilkins, G.: Jetty 6 architecture. Web (November 2006),
http://docs.codehaus.org/display/JETTY/Architecture

17. Queinnec, C.: Inverting back the inversion of control or, continuations versus page-
centric programming. SIGPLAN Not. 38(2), 57–64 (2003)

18. Gomez, J.C., Ramos, J.R., Rego, V.: Signals, timers, and continuations for multi-
threaded user-level protocols. Softw. Pract. Exper. 36(5), 449–471 (2006)

19. W3C: The xmlhttprequest object. Web (April 2008),
http://www.w3.org/TR/XMLHttpRequest/

http://docs.codehaus.org/display/JETTY/Architecture
http://www.w3.org/TR/XMLHttpRequest/

Creating a ‘Cloud Storage’ Mashup for High
Performance, Low Cost Content Delivery

James Broberg1, Rajkumar Buyya1, and Zahir Tari2

1 Department of Computer Science and Software Engineering,
The University of Melbourne, Australia

2 Department of Computer Science and Information Technology,
RMIT University, Australia

Abstract. Many ‘Cloud Storage’ providers have launched in the last two
years, providing internet accessible data storage and delivery in several
continents that is backed by rigourous Service Level Agreements (SLAs),
guaranteeing specific performance and uptime targets. The facilities of-
fered by these providers is leveraged by developers via provider-specific
Web Service APIs. For content creators, these providers have emerged as
a genuine alternative to dedicated Content Delivery Networks (CDNs)
for global file storage and delivery, as they are significantly cheaper, have
comparable performance and no ongoing contract obligations. As a re-
sult, the idea of utilising Storage Clouds as a ‘poor mans’ CDN is very
enticing. However, many of these ‘Cloud Storage’ providers are merely
basic storage services, and do not offer the capabilities of a fully-featured
CDN such as intelligent replication, failover, load redirection and load
balancing. Furthermore, they can be difficult to use for non-developers,
as each service is best utilised via unique web services or programmer
APIs. In this paper we describe the design, architecture, implementation
and user-experience of MetaCDN, a system that integrates these ‘Cloud
Storage’ providers into an unified CDN service that provides high perfor-
mance, low cost, geographically distributed content storage and delivery
for content creators, and is managed by an easy to use web portal.

1 Introduction

Content creators, ranging from large media companies to smaller, independent
start-ups have a need to store and distribute large files (such as audio and video
files and rich documents) cost effectively, but with both a global reach and good
performance for end-users (consumers) of these files. Traditional CDNs such as
Akamai [1] can be too expensive for all but the largest enterprise customers [2].
Most major CDN providers do not publish prices but are anecdotally 2−15 times
more expensive, and require 1−2 year commitments1. ‘Cloud storage’ providers
such as Amazon S3 and Nirvanix SDN are an appealing alternative, as they
provide internet accessible data storage and delivery services in several continents
1 Information obtained from http://www.cdnpricing.com, part of a popular website

and blog for CDN and streaming media professionals run by StreamingMedia.com.

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 178–183, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Creating a ‘Cloud Storage’ Mashup 179

that are backed by rigourous Service Level Agreements (SLAs), guaranteeing
specific performance and uptime targets. They offer utility pricing (only pay for
what you use), and have no ongoing commitments or obligations. As such, a
content creator can choose to harness these services only when required for peak
load [3].

These emerging services have reduced the cost of content storage and de-
livery by several orders of magnitude, but they can be difficult to use for non-
developers, as each service is best utilised via unique web services or programmer
API’s, and have their own unique quirks. Many websites have utilised individual
Storage Clouds to deliver some or all of their content [3], most notably the New
York Times [4] and SmugMug [5], however there is no general purpose, reusable
framework to interact with multiple Storage Cloud providers and leverage their
services as a unified CDN. Furthermore, a customer may need coverage in more
locations than offered by a single provider. To address these issues, in Section 2
we introduce MetaCDN, a system which utilises numerous storage providers in
order to create an overlay network that can be used as a high performance, re-
liable and redundant geographically distributed CDN. MetaCDN makes it easy
to harness the performance and coverage footprint of multiple ‘Cloud Storage’
providers, removes single vendor lock-in, and allows content creators to agilely
manage their deployments by expanding and contracting them as needed.

In this paper we focus on the design, architecture, implementation and user-
experience of the MetaCDN system. Interested readers are directed to our pre-
vious work [6] which gives an extensive background on the ‘Cloud Storage’
providers used by MetaCDN (listed in Table 1), and demonstrates that they
provide sufficient performance (i.e. predictable and sufficient response time and
throughput) that is consistent with previous performance studies of dedicated
content delivery networks [7,8].

Java stub
MetaCDN.org

WebDAVConnector

Amazon S3 &
CloudFront

Coral CDNNirvanix SDN
Mosso Cloud

Files CDN

Java SDK
Open Source

JetS3t toolkit
Java SDK
Nirvanix, Inc

Nirvanix SDK

Java stub
MetaCDN.org

AmazonS3Connector
Java stub
MetaCDN.org

NirvanixConnector
Java stub
MetaCDN.org

CoralConnector

MetaCDN

MetaCDN
Manager

MetaCDN QoS
Monitor

MetaCDN
Allocator

Java (JSF/EJB) based portal
Support HTTP POST
New/view/modify deployment

Web Portal
SOAP Web Service
RESTful Web Service
Programmatic access

Web Service

Shared/Private
Host

Random redirection
Geographical redirection
Least cost redirection

Load Redirector

MetaCDN
Database

Java stub
MetaCDN.org

CloudFilesConnector

Java SDK
Mosso, Inc

Cloud Files SDK

Java stub
MetaCDN.org

SCPConnector

Java stub
MetaCDN.org

FTPConnector

Fig. 1. MetaCDN Architecture

180 J. Broberg, R. Buyya, and Z. Tari

Table 1. Cloud Features (< 2TB for Nirvanix, < 10TB for Amazon, < 5TB for Mosso)

Feature Nirvanix SDN Amazon S3 Mosso Cloud
Files

Coral CDN

SLA 99.9 99-99.9 * None
Max. File Size 256GB 5GB 5GB 50MB
US PoP Yes Yes Yes Yes
EU PoP Yes Yes Yes2 Yes
Asia PoP Yes Yes3 Yes2 Yes
Australasia PoP No No Yes2 Yes
Per File ACL Yes Yes Yes No
Automatic Replication Yes Yes3 Yes2 Yes
Developer API Yes Yes Yes No
Bittorrent Support No Yes No No
Sideloading Support Yes No No No
Incoming data ($/GB) 0.18 0.10 0.00 0.00
Outgoing data ($/GB) 0.18 0.17(US/EU),

0.21(HK)3, 0.22(JP)3
0.22 0.00

Storage ($/GB) 0.25 0.15(US), 0.18(EU) 0.15 0.00
Requests ($/1,000 PUT) 0.00 0.01 0.02 0.00
Requests ($/1,000 GET) 0.00 0.01 0.00 0.00

2 The MetaCDN System

The aim of the MetaCDN system is to to build a low cost, high performance
CDN that harnesses the power of ‘Storage Clouds’, and is presented to users as
a cohesive, unified interface. In this section we discuss the design, architecture,
implementation and user-experience of the MetaCDN system.

2.1 Overall Design and Architecture of the System

The MetaCDN service (shown in Figure 1) is made available to users as a web
portal, allowing users to harnessing the storage, performance capabilities and lo-
cality of multiple Cloud Storage providers, whilst hiding the complexity involved
with interacting with these different entities. The web portal is most suited for
small or ad-hoc deployments. A SOAP Web Service has been developed for
MetaCDN that is useful for users with more complex and frequently changing
content delivery needs. A RESTful Web Service is also under development, that
will provide a lightweight Cloud Storage solution for mashup developers that
is trivial to utilise. The web portal was developed using Java Enterprise and
Java Server Faces (JSF) technologies, with a MySQL back-end to store user ac-
counts, deployments, and the capabilities and pricing of service providers. The
MetaCDN system integrates with its’ upstream providers via connectors, which
are discussed further in Section 2.2.

The web portal acts as the entry point to the system and also functions as
an application-level load balancer for end-users that wish to download content
2 When used with Limelight’s CDN service.
3 When used with Amazon’s CloudFront CDN service.

Creating a ‘Cloud Storage’ Mashup 181

that has been deployed by MetaCDN. In order to utilise the MetaCDN system
effectively, content must be deployed and managed via the portal or the Web
Service, as MetaCDN is unaware of content uploaded directly to participating
providers. Currently, the MetaCDN portal (and backing MySQL database) is
deployed at a single location (Melbourne, Australia) but in the near future we
intend to deploy MetaCDN portals (and replicated backing databases) in all
major continents to improve responsiveness and locality for users of MetaCDN,
and consumers of the content deployed by the system. This aspect is discussed
further in Section 2.5.

The MetaCDN system offers a number of functions via the web portal inter-
face4, including:

1. The creation of an account in the MetaCDN system, where a user registers
their details, as well as credentials for any service providers (listed in Table 1)
they wish to utilise.

2. Intelligent deployment of content based on geographical regions of the user’s
choice, their storage and transfer budget, or specific quality of service pa-
rameters (described in Section 2.3).

3. Viewing, modifying or deleting existing content deployment.
4. Viewing the physical location of deployed content replicas as a Google Maps

Geolocation mashup (described in Section 2.4).

2.2 Integrating ‘Cloud Storage’ Providers

The MetaCDN system integrates with each storage provider via a connector
that provides an abstraction to hide the complexity arising from each provider
having their own unique Web Service API. An abstract class, DefaultConnec-
tor, is defined that prescribes the basic functionality that each provider could
be expected to support, that must be implemented for all existing and future
connectors. These include basic operations like creation, deletion and renam-
ing of files and folders, and more advanced operations like creating Bittorrent
deployments, and sideloading files (replicating a file from a publicly available
origin URL). If an operation is not supported on a particular service, then the
connector for that service should throw a FeatureNotSupportedException.

Whilst the intent of the MetaCDN system is to provide its users a consistent,
unified interface to disparate ‘Cloud Storage’ systems, there are some important
differences in functionality and cost between the various providers (as noted
in Table 1). For example, Amazon S3 supports Bittorrent deployment of files,
whilst the other providers do not. There are also differences in the largest file
size that can be deployed, or whether files can be sideloaded as well as directly
uploaded to a given service. MetaCDN users do not need to be aware of these
subtle differences, as the content they wish to replicate is intelligently matched
to the most appropriate provider that suits their specific requirements.

4 A screencast of the web interface is available at http://www.metacdn.org

182 J. Broberg, R. Buyya, and Z. Tari

2.3 Content Deployment Options

Users of the MetaCDN web portal are presented with a number of different
deployment options for replicating their content. These include:

1. Maximising coverage and performance, where MetaCDN deploys as many
replicas as possible to all available locations.

2. Deploying content to specific locations a user nominates, where MetaCDN
matches the requested regions with providers that service those areas.

3. Cost optimised deployment, where MetaCDN deploys as many replicas in
the locations requested by the user as their storage budget will allow.

4. Quality of Service (QoS) optimised deployment, where MetaCDN deploys
to providers that match specific QoS targets that a user specifies, such as
average throughput or response time from a particular location, which is
tracked by persistent probing from the MetaCDN QoS monitor.

Once a user deploys using the options above, they are either returned a set of
publicly accessible URLs, pointing to the specific locations of the replica files, or a
singleMetaCDNURL,http://www.metacdn.org/FileMapper.jsp?itemid=XX,
where XX is a unique hash key associated with the deployed content. This provides
a single namespace which may be more convenient for users, and can provide au-
tomatic and totally transparent load balancing for end-users. This functionality is
described further in Section 2.5.

2.4 Integration of Geo-IP Services and Google Maps

Cloud Storage offerings are already available from providers located across the
globe. The principle of cloud computing and storage is that you shouldn’t need to
care where the processing occurs, or where your data is stored - the services are
essentially a black box. However, your software and data are subject to the laws
of the nations they are executed and stored in. Cloud storage users could find
themselves inadvertently running afoul of the Digital Millennium Copyright Act
(DMCA)5 or Cryptography Export laws that may not apply to them in their
own home nations. As such, it is important for Cloud Storage users to know
precisely where their data is stored. Furthermore, this information is crucial
for MetaCDN load balancing purposes, so end-users are redirected to the closest
replica, to maximise their download speeds and minimise latency. To address this
issue, MetaCDN offers its’ users the ability to pinpoint exactly where their data
is stored via geolocation services and Google Maps integration. When MetaCDN
deploys replicas to different Cloud Storage providers, they each return a URL
pointing to the location of the replica. MetaCDN then utilises a geolocation
service (either free6 or commercial7) to find the latitude and longitude of where
the file is stored. This information is stored in the MetaCDN database, and can
be overlaid onto a Google Maps view inside the MetaCDN portal, giving users
a birds-eye view of where their data is currently being stored.
5 Available at http://www.copyright.gov/legislation/dmca.pdf
6 Hostip.info is a free community-based project to geolocate IP addresses.
7 MaxMind GeoIP is a commercial IP geolocation service.

Creating a ‘Cloud Storage’ Mashup 183

2.5 Load Balancing via DNS and HTTP Redirection

Load balancing for both MetaCDN users and consumers of the content that the
system replicates is achieved in two stages. First, users or consumers of MetaCDN
are directed to their closest portal at the DNS resolution stage. Currently, there
is a MetaCDN portal running in Australia, and soon their will be portals running
in Europe and North America. For MetaCDN consumers, if they are attempting
to access a file via a MetaCDN URL, then they are redirected (by a HTTP 302
Found directive) to the most appropriate replica. What constitutes the most
appropriate replica depends on the deployer of the content (and the preferences
they expressed, described in Section 2.3). This could be the highest performing
replica, the geographically closest replica or even the cheapest replica.

3 Conclusion

In this paper we gave an overview of the design, architecture, implementation and
user-experience of MetaCDN, a system that integrates ‘Cloud Storage’ providers
into an unified CDN service that provides high performance, low cost, geograph-
ically distributed content storage and delivery for content creators, and is man-
aged by an easy to use web portal. More information on the ongoing development
of MetaCDN can be found at http://www.metacdn.org

This work is supported by Australian Research Council (ARC) as part of the
Discovery Grant ‘Coordinated and Cooperative Load Sharing between Content
Delivery Networks’ (DP0881742, 2008-2010).

References

1. Maggs, B., Technologies, A.: Global internet content delivery. In: First IEEE/ACM
International Symposium on Cluster Computing and the Grid, pp. 12–12 (2001)

2. Pathan, M., Buyya, R.: A Taxonomy of CDNs. Content Delivery Networks, 33–78
(2008)

3. Elson, J., Howell, J.: Handling Flash Crowds from your Garage. In: USENIX 2008:
2008 USENIX Annual Technical Conference (June 2008)

4. Gottfrid, D.: Self-service, prorated super computing fun! OPEN: All the
code that is fit to print (2007), http://open.nytimes.com/2007/11/01/

self-service-prorated-super-computing-fun
5. MacAskill, D.: Scalability: Set Amazon’s Servers on Fire, Not Yours. In: ETech

2007: O’Reilly Emerging Technology Conference (2007), http://blogs.smugmug.

com/don/files/ETech-SmugMug-Amazon-2007.pdf
6. Broberg, J., Buyya, R., Tari, Z.: MetaCDN: Harnessing ‘Storage Clouds’ for high

performance content delivery. Technical Report GRIDS-TR-2008-10, Grid Comput-
ing and Distributed Systems Laboratory, The University of Melbourne (August
2008)

7. Johnson, K., Carr, J., Day, M., Kaashoek, M.: The measured performance of content
distribution networks. Computer Communications 24(2), 202–206 (2001)

8. Su, A., Choffnes, D., Kuzmanovic, A., Bustamante, F.: Drafting behind Akamai
(travelocity-based detouring). ACM SIGCOMM Computer Communication Re-
view 36(4), 435–446 (2006)

http://open.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
http://open.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
http://blogs.smugmug.com/don/files/ETech-SmugMug-Amazon-2007.pdf
http://blogs.smugmug.com/don/files/ETech-SmugMug-Amazon-2007.pdf

First International Workshop on
Quality-of-Service Concerns in Service

Oriented Architectures
(QoSCSOA 2008)

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 187–188, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Introduction: First International Workshop on Quality of
Service Concerns in Service Oriented Architectures

(QoSCSOA 2008)

Liam O’Brien and Paul Brebner

NICTA, Building A, 7 London Circuit, Canberra, ACT 2601, Australia
RSISE, Australian National University, Canberra, ACT 0200, Australia

{Liam.OBrien,Paul.Brebner}@nicta.com.au

Keywords: Quality-of-Service, Quality Attributes, Service Oriented Architecture.

1 Workshop Description

Service-Oriented Architecture (SOA) is having a substantial impact on the way soft-
ware systems are developed. Today many systems are being designed and developed
that use an SOA style. Although some progress has been made on several fronts on
addressing Quailty-of-Service (QoS) concerns in SOAs much research is still needed
in addressing QoS issues in the design, development and operation of SOA-based
systems. This workshop focuses on techniques and approaches for managing QoS
concerns throughout the entire lifecycle of SOA-based systems. The following topics
are of interest in this workshop:

• Techniques for determining quality requirements for SOA-based systems
• Techniques, patterns and approaches for handling specific quality attribute

requirements in the design of SOA-based systems
• Techniques, patterns and approaches for handling specific quality attribute

requirements in the implementation of SOA-based systems
• Deployment and Monitoring of SOA-based systems
• Resourcing models to guarantee specific QoS requirements (virtualisation,

grid, etc)
• QoS aspects of virtualised SOA-based systems
• Assessment techniques and approaches for specific qualities of SOA-based

systems including modeling and simulation of specific qualities
• Service Level Agreements (SLAs) in an SOA context including their devel-

opment and negotiation
• Validation of properties/service qualities in SOA-based systems
• Economics of handling specific QoS requirements in SOA-based systems
• Managing QoS concerns for SOA-based systems throughout the entire soft-

ware life cycle
• Autonomic QoS management in SOA-based systems
• Relationship of QoS of SOA-based systems to the underlying business

processes

188 Preface

2 Workshop Objectives

The objective of this workshop is to bring together researchers and practitioners with
experience in QoS issues in SOAs. The workshop aims to determine the current state
of the practice in determining, using and managing QoS and non-functional require-
ments throughout the entire life cycle of an SOA-based system. It is proposed to
determine the current state of the art in this area and outline a roadmap of potential
research directions.

3 Motivation

As SOA technology matures and organisations are adopting and building business and
mission critical systems using the SOA approach there is a growing need to make sure
that such systems meet their non-functional and QoS requirements as well as their
functional requirements. It is important that the non-functional and QoS requirements
of such SOA-based systems are determined early in the life cycle and the systems are
designed, built, and deployed in such a way so as to meet these requirements. The aim
of this workshop is to examine how non-functional and QoS requirements are cap-
tured, used and managed throughout the entire life cycle of SOA-based systems.

4 Workshop Format

The half-day workshop consists of a keynote by Adrian Mos on the theme of “Chal-
lenges in Integrating Tooling and Monitoring for QoS Provisioning in SOA Systems”.

The following technical papers were accepted for presentation at the workshop:

• Challenges for Assuring Quality of Service in a Service-Oriented Environ-
ment, Sriram Balasubramaniam, Grace A. Lewis, Ed Morris, Soumya Si-
manta, and Dennis B. Smith (paper not included in proceedings)

• A Scalable Approach for QoS-based Web Service Selection, Mohammad Al-
rifai, Thomas Risse, Peter Dolog, and Wolfgang Nejdl

• Towards QoS-based Web Services Discovery, Jun Yan and Jingtai Piao
• A Redundancy Protocol for Service-Oriented Architectures, Nicholas May
• A Context-aware Trust Model for Service-oriented Multi-agent Systems,

Kaiyu Wan and Vasu Alagar

The workshop also includes a discussion session led by Vladimir Tosic on the
topic “Three Common Mistakes in Modeling and Analysis of QoS of Service-Oriented
Systems”.

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, p. 189, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Challenges in Integrating Tooling and Monitoring for
QoS Provisioning in SOA Systems

(Keynote)

Adrian Mos

INRIA, 655 avenue de l'Europe, Montbonnot 38334, France
Adrian.Mos@inria.fr

Abstract. When addressing QoS concerns in SOA systems, some of the impor-
tant challenges lie in the seamless integration of user-side tooling support with
the actual execution of services and business processes. The user must be able
to easily express QoS constraints and associate them with service definitions,
compositions and orchestrations. The constraints must be taken into account at
all levels in the increasingly complex SOA infrastructures and used to monitor
and enforce SLAs, as well as to potentially drive adaptation mechanisms to im-
prove end-to-end QoS. Conversely, QoS data generated by the execution of ser-
vices and processes must be made available to the user in ways that ensure that
appropriate information is presented at different levels of abstraction with the
right level of granularity in order to improve understanding and future planning
of service-based functionality.

These challenges can be grouped in two main areas: Driving Monitoring and
Adaptation from SOA Tooling and Integrating Dynamic Monitoring Informa-
tion in SOA Tooling. The first area includes means of providing simple and ex-
pressive QoS specifications within a variety of tooling options, including
heavyweight editors and lightweight Web 2.0 based designers. It also includes
approaches to generate appropriate monitoring artefacts (probe-specific infor-
mation for provenance determination) and adaptation rules and options based
on expressed QoS requirements.

The second area includes challenges in obtaining proper monitoring
information at all relevant SOA levels (Enterprise Service Buses, component-
platforms such as SCA, process engines as well as lower-level grid infrastruc-
tures). It equally relates to transporting and presenting it to a large variety
of editors and SOA-related visual tools (for architecture definition, process
specification or service mash-ups in both heavyweight and lightweight user
environments). Apart from presenting useful information to the user, QoS in-
formation must also be stored and updated in service repositories for later user-
referral, as well as for use in self-adaptive environments where processes and
compositions can dynamically change in order to improve QoS.

This presentation gives an overview of these challenges and presents ongoing
work undertaken by INRIA for addressing them in the context of different re-
search projects as well as the internal INRIA initiative called “galaxy”. Such
work includes a metamodel-based approach to transformations called the STP-
Intermediate Model which is part of the Eclipse SOA Tools Platform Project and
that aims at unifying the SOA tooling space and relating it to monitoring data.

Keywords: SOA, quality of service (QoS), monitoring, modelling, tooling.

A Scalable Approach for QoS-Based Web
Service Selection

Mohammad Alrifai1, Thomas Risse1, Peter Dolog2, and Wolfgang Nejdl1

1 L3S Research Center
Leibniz University of Hannover, Germany

{alrifai,risse,nejdl}@L3S.de
2 Department of Computer Science

Aalborg University, Denmark
dolog@cs.aau.dk

Abstract. QoS-based service selection aims at finding the best com-
ponent services that satisfy the end-to-end quality requirements. The
problem can be modeled as a multi-dimension multi-choice 0-1 knap-
sack problem, which is known as NP-hard. Recently published solutions
propose using linear programming techniques to solve the problem. How-
ever, the poor scalability of linear program solving methods restricts their
applicability to small-size problems and renders them inappropriate for
dynamic applications with run-time requirements. In this paper, we ad-
dress this problem and propose a scalable QoS computation approach
based on a heuristic algorithm, which decomposes the optimization prob-
lem into small sub-problems that can be solved more efficiently than the
original problem. Experimental evaluations show that near-to-optimal
solutions can be found using our algorithm much faster than using linear
programming methods.

1 Introduction

Industrial practice witnesses a growing interest in the ad-hoc model for ser-
vice composition in the areas of supply chain management, accounting, finances,
eScience as well as in multimedia applications. With the growing number of
available services the composition problem becomes a decision problem on the
selection of component services from a set of alternative services that provide
the same functionality but differ in quality parameters.

Given an abstract representation of a composition request (e.g. in a workflow
language like BPEL [1]), and given a list of functionally-equivalent web service
candidates for each task in the composition request, the goal of service selec-
tion algorithms is to find one web service from each list such that the overall
QoS is optimized and user’s end-to-end QoS requirements are satisfied. This
problem can be modeled as Multi-Choice Multidimensional Knapsack problem
(MMKP), which is known to be NP-hard in the strong sense [2]. Therefore it can
be expected that any exact solution to MMKP has an exponential cost. In the
dynamic environment of web services, where deviations from the QoS estimates

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 190–199, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Scalable Approach for QoS-Based Web Service Selection 191

occur and decisions upon replacing some services has to be taken at run-time
(e.g. in multimedia applications), the efficiency of the applied service selection
algorithm becomes crucial.

Due to the poor scalability of (Mixed) Integer Linear programming (MILP)
methods [3], recently proposed solutions like [4,5] fail short in addressing run-
time requirements. In this paper we propose an efficient and scalable heuristic
approach for the QoS-based service selection problem. The contribution of this
paper can be stated as follows:

– We map the global QoS optimization problem into sub-problems that can
be solved more efficiently by local QoS optimization.

– We show how the results of the problem decomposition can be applied in a
distributed architecture that includes a service composer and a set of dis-
tributed service brokers.

Our heuristic approach to QoS-based service selection does not necessarily result
in “the” optimal set of services. Nevertheless, since the business requirements
(such as response times or throughput) are only approximate, we need to find
a reasonable set of services that covers the requirements approximately at ac-
ceptable costs and avoids obvious violations of constraints. The experimental
evaluation we present in this paper show that our approach outperforms all pre-
vious solutions in terms of computational complexity but still gives qualitative
comparable results.

The rest of the paper is organized as follows. In the next section we discuss
related solutions. Section 3 introduces the system model and gives a problem
statement. Our approach for a scalable QoS computation for web service se-
lection is presented in section 4. In section 5 we discuss the results from our
experimental evaluation. Finally, section 6 gives conclusions and an outlook on
possible continuations of our work.

2 Related Work

Recently, the QoS-based web service selection and composition in service-oriented
applications has gained the attention of many researchers [4,6,5,7]. In [6] the au-
thors propose an extensible QoS computation model that supports open and fair
management of QoS data. The problem of QoS-based composition is not addressed
by this work. The work of Zeng at al. [4] focuses on dynamic and quality-driven se-
lection of services. The authors use global planning to find the best service compo-
nents for the composition. They use (mixed) linear programming techniques [3] to
find the optimal selection of component services. Similar to this approachArdagna
et al. [5] extends the linear programming model to include local constraints. Lin-
ear programming methods are very effective when the size of the problem is small.
However, these methods suffer from poor scalability due to the exponential time
complexity of the applied search algorithms [8]. In [7] the authors propose heuristic
algorithms to find a near-to-optimal solution more efficiently than exact solutions.
The time complexity of the heuristic algorithm (WS HEU) is polynomial. Despite

192 M. Alrifai et al.

the significant improvement of this algorithm compared to exact solutions, it dose
not scale with respect to an increasing number of web services and remain out of
the real-time requirements.

3 System Model and Problem Statement

In our model we assume that we have a universe of web services S which is defined
as a union of abstract service classes. Each abstract service class Sj ∈ S is used to
describe a set of functionally-equivalent web services (e.g. Lufthansa and Qantas
flight booking web services). In this paper we assume that information about ser-
vice classes is managedby a set of service brokers as described in [6,9]. Web services
can join and leave service classes at any timebymeans of a subscriptionmechanism.

3.1 Abstract vs. Concrete Composite Services

We also distinguish between the following two concepts:

– An abstract composite service, which can be defined as an abstract represen-
tation of a composition request CSabstract = {S1, . . . , Sn}. CSabstract refers
to the required service classes without referring to any concrete web service.

– A concrete composite service, which can be defined as an instantiation of an
abstract composite service. This can be obtained by binding each abstract
service class (e.g. flight booking) in CSabstract to a concrete web service sj ,
sj ∈ Sj (e.g. Qantas flight booking web Service).

3.2 QoS Criteria

In our study we consider quantitative non-functional properties of web services,
which can be used to describe the quality of a service s. We use the vector
Qs = {q1, q2, . . . , qr} to represent these properties. These can include generic QoS
attributes like response time, availability, price, reputation etc, as well as domain-
specific QoS attributes like bandwidth, video quality for multimedia web services.
The values of these QoS attributes can be either collected from service providers
directly (e.g. price), recorded from previous execution monitoring (e.g. response
time) or from user feedbacks (e.g. reputation) [6]. The set of QoS attributes
can be divided into two subsets: positive and negative attributes. The values of
positive attributes need to be maximized (e.g. availability), whereas the values
of negative attributes need to be minimized (e.g. response time). For the sake of
simplicity, we consider only negative attributes (positive attributes can be easily
transformed into negative attributes by multiplying their values by -1). We use
the function qi(s) to determine the i-th quality parameter of service s.

3.3 QoS Computation of Composite Services

The QoS value of a composite service is decided by the QoS values of its com-
ponent services as well as the composition model used (e.g. sequential, parallel,

A Scalable Approach for QoS-Based Web Service Selection 193

conditional and/or loops). In this paper, we focus on the service selection algo-
rithm for QoS-based service composition, and its performance on the sequential
composition model. Other models may be reduced or transformed to the sequen-
tial model. Techniques for handling multiple execution paths and unfolding loops
from [4], can be used for this purpose.

The QoS vector for a composite service CS is defined as QCS = {q′1(CS), . . . ,
q′r(CS)} where q′i(CS) represents the estimated QoS values of a composite ser-
vice CS and can be aggregated from the expected QoS values of its component
services. Table 1 shows examples of some QoS aggregation functions.

Similar to [4,6,5,7], we assume in our model that QoS aggregation functions
can be linearized and represented by the summation relation. For QoS attributes
that are typically aggregated as a product (e.g. availability) we apply a logarithm
operation to transform them into a summation relation. We extend our model
to support the following aggregation function:

q′k(CS) =
n∑

j=1

qk(sj) (1)

Table 1. Examples of QoS aggregation functions for composite services

QoS Attribute Aggregation Function

Response Time q′res(CS) =
∑n

j=1 qres(sj)
Price q′price(CS) =

∑n
j=1 qprice(sj)

Availability q′av(CS) =
∏n

j=1 qav(sj)

3.4 Utility Function

In order to evaluate the multi-dimensional quality of a given web service compo-
sition a utility function is used. In this paper we use a Multiple Attribute Deci-
sion Making approach for the utility function: i.e. the Simple Additive Weighting
(SAW) technique [10]. The utility computation involves scaling the values of QoS
attributes to allow a uniform measurement of the multi-dimensional service qual-
ities independent of their units and ranges. The scaling process is then followed
by a weighting process for representing user priorities and preferences. In the
scaling process each QoS attribute value is transformed into a value between 0
and 1, by comparing it with the minimum and maximum possible aggregated
value. These values can be easily estimated by aggregating the local minimum
(or maximum) possible value of each service class in CS. For example, the max-
imum execution price of any concrete composite service can be computed by
summing up the execution price of the most expensive service in each service
class. Formally, we compute the minimum and maximum aggregated value of
the k-th QoS attribute as follows:

Qmin′(k) =
n∑

j=1

Qmin(j, k) and Qmax′(k) =
n∑

j=1

Qmax(j, k) (2)

194 M. Alrifai et al.

where Qmin(j, k) = min∀sji∈Sj qk(sji) is the minimum value (e.g. minimum
price) and Qmax = max∀sji∈Sj qk(sji) is the maximum value (e.g. maximum
price) that can be expected for service class Sj according to the available infor-
mation about service candidates of this class.

Now the overall utility of a composite service is computed as

U ′(CS) =
r∑

k=1

Qmax′(k) − q′k(CS)
Qmax′(k) − Qmin′(k)

· wk (3)

with wk ∈ R
+
0 and

∑r
k=1 wk = 1 being the weight of q′k to represent user’s

priorities.
The utility function U ′(CS) is used to evaluate a given set of alternative ser-

vice compositions. However, finding the best composition requires enumerating
all possible combinations of service candidates. For a composition request with
n service classes and l service candidate per class, there are ln possible combi-
nations to be examined. Performing exhaustive search can be very expensive in
terms of computation time and, therefore, inappropriate for applications with
many services and dynamic needs.

3.5 Problem Statement

The problem of finding the best service composition without enumerating all
possible combinations is considered as an optimization problem, in which the
overall utility value has to be maximized while satisfying all global constraints.
Formally, the optimization problem we are addressing can be stated as follows:

For a given abstract composite service CSabstract = {S1, . . . , Sn} with a set
of m global QoS constraints C′ = {c′1, . . . , c

′
m}, find an implementation CS =

{s1b, . . . , snb} by bounding each Sj to a concrete service sjb ∈ Sj such that:

1. The overall utility U ′(CS) is maximized, and
2. The aggregated QoS values satisfy: q′k(CS) ≤ c′k, ∀c′k ∈ C′

4 A Scalable QoS Computation

In this section we present a scalable solution to the QoS-bases web service
composition problem. We decompose the global optimization problem into sub-
problems that can be solved independently. For this purpose, we first map the
global QoS computation on the composite service level U ′(CS) into local com-
putations that can be performed on each service class independently (see Sec-
tion 4.1). Second, we propose a simple algorithm for decomposing each global
QoS constraint c′k ∈ C′ into n local constraints that can be verified locally
on the component services (see Section 4.2). Finally, we present a distributed
service selection algorithm that leverages local search for achieving global QoS
requirments (see Section 4.3)

A Scalable Approach for QoS-Based Web Service Selection 195

4.1 Decomposition of Global QoS Computation

The use of (3) on the composite service level requires enumerating all possi-
ble combinations of the service candidates to find the optimal selection. This
approach can be very inefficient for large scale problems or applications with
run-time requirements. Therefore, we derive a modified utility function U ′

local(s)
from U ′(CS) that can be applied on the component service level, without the
need for evaluating all possible combinations.

By applying (1) and (2) we get:

U ′(CS) =
r∑

k=1

∑n
j=1 Qmin(j, k) −

∑n
j=1 qk(sj)

Qmax′(k) − Qmin′(k)
· wk

=
n∑

j=1

(
r∑

k=1

Qmax(j, k) − qk(sj)
Qmax′(k) − Qmin′(k)

· wk)

︸ ︷︷ ︸
U ′

local(s)

=
n∑

j=1

U ′
local(sj) (4)

The utility function U ′
local(s) can be computed for each service class Sj inde-

pendently, provided that the global parameters Qmin′ and Qmax′ are specified.
These parameters can be easily computed beforehand by aggregating the local
maximum and minimum values of each service class. Thus, by selecting the ser-
vice candidate with the maximum U ′

local value from each class, we can ensure
that U ′(CS) is maximized (i.e. satisfying the first requirement in 3.5).

4.2 Decomposition of Global Constraints

To ensure that the outcome of the local QoS computation satisfies global QoS
constraints (i.e. the second requirement in 3.5), we need to decompose each global
constraint c′k ∈ C′, 1 ≤ k ≤ m into n local constraints. We use local statistics
about the quality values to estimate a reasonable decomposition of each global
constraint c′k as follows:

1. Initially set the local constraint value cjk of each service class to the local
maximum value of that class,

∀c′k ∈ C′ : ckj = Qmax(j, k), 1 ≤ j ≤ n (5)

2. Compute the difference between the global constraint values and the aggre-
gated value of the local constraints,

∀c′k ∈ C′ : dk =
n∑

j=1

ckj − c′k (6)

3. Adjust the current set of local constraints based on the relative distance
between the local maximum and minimum QoS value using the following
formula:

∀c′k ∈ C′ : ckj = ckj −dk ∗ Qmax(j, k) − Qmin(j, k)∑n
x=1(Qmax(x, k) − Qmin(x, k))

, 1 ≤ j ≤ n (7)

196 M. Alrifai et al.

4.3 Distributed Optimization of the QoS Computation

We assume an architecture consisting of a service composer and a number of
service brokers - either distributed or on a single machine. Each service broker
is responsible for managing QoS information of a set of web service classes.
A list of available web services is maintained by the service broker along with
registered measurements of their non-functional properties, i.e. QoS attributes,
like response time, throughput, price etc. The service composer instantiates a
composite service CS in interaction with the service brokers.

The procedure of the distributed QoS-based service composition is depicted
in figure 1. The service composer requests statistical information for each service
class from the responsible service brokers, namely, Qmax(j, k) and Qmin(j, k)
and computes the global parameters: Qmax′(k), Qmin′(k), 1 ≤ k ≤ r. Each
global constraint c′k, 1 ≤ k ≤ m is decomposed as described in section 4.2 into
a set of local constraints c1k, ..., cjk. The composer sends these local constraints
along with the global parameters Qmax′(k), Qmin′(k), 1 ≤ k ≤ r to each service
broker. Each service broker performs a local search and returns the best service
candidate that satisfies the local constraints and has the maximum U ′

local value.
The service composer collects the results from the brokers and checks them for
further optimization. Further optimization is possible if the total saving in the
value of any of quality attributes is greater than zero. The total saving δk of the
k-th QoS attribute is computed as:

δk =
n∑

j=1

(cjk − qjk), 1 ≤ k ≤ m (8)

The service composer uses the total saving in the quality value to relax the
current local constraints as follows:

∀ckj ∈ C′ : ckj = qkj + δk ∗ Qmax(j, k) − qjk∑n
x=1(Qmax(x, k) − qxk)

, 1 ≤ j ≤ n (9)

The relaxed local constraints are sent back to the service brokers for improving
their local results. The procedure is repeated as long as a new solution is found.
Otherwise, the procedure stops and the final composition is constructed from
the currently select component services CS = {s1, . . . , sn}.

Unlike the heuristic algorithm WS HEU [7], the expected number of itera-
tions in our algorithm is very low as we only consider upgrading the current
solution by means of relaxing the constraints and no downgrading is required.
By only relaxing the local constraints it is guaranteed that the new solution,
if any exists, has a higher overall utility value than the current solution. Our
algorithm is guaranteed to converge as after each round the service composer
checks the new solution as well as the new total saving value δk against those
of the previous round. The composer stops the optimization process as soon as
there is no improvement in the utility value nor saving in the quality values.

A Scalable Approach for QoS-Based Web Service Selection 197

Fig. 1. Service Composer - Service Broker interactions

5 Experimental Evaluation
We have evaluated our proposed solution by means of several experiments, which
we describe in this section. We conducted the experiments on a HP ProLiant
DL380 G3 machine with 2 Intel Xeon 2.80GHz processors and 6 GB RAM. The
machine is running under Linux (CentOS release 5) and Java 1.6.

We compare the performance and the quality of the results of our solution with
those of the linear programming methods (LP) [4,5] and the heuristic algorithm
WS HEU [7]. For LP we use the open source Linear Programming system lpsolve
version 5.5 [11]. For WS HEU we use our own implementation. We implemented
it as fair as possible taking into account all possible optimizations to reduce the
computation time as much as possible. We experimented with several instances
of the QoS composition problem by varying the number of service classes n and
the number of service candidates per class l. Each unique combination of these
parameters represents one instance of the composition problem. For the QoS data
we use the QWS real dataset from [12]. This dataset includes measurements of 9
QoS attributes for 364 real web services. To evaluate the scalability of our solution,

198 M. Alrifai et al.

however, we need to run experiments with a much larger set of services. Therefore,
we duplicated the QWS dataset several times, each time multiplying the quality
values of web services by a uniformly distributed random value between 0.1 and
2.0. In this way we achieved a data set of about 100.000 services.

5.1 Performance Evaluation

We evaluate the performance of the three approaches, by measuring the required
time for finding the solution (i.e. the best combination of concrete services) by
each approach. Figure 2 shows a comparison of the performance of LP, WS HEU
and our solution, which we label with DIST HEU. In this experiment we study
the performance of the three approaches with respect to the size of the problem
in terms of the number of service classes n and the number of service candidates
per class l. The results in both graphs (varying number of classes and varying
number of candidates) show that DIST HEU has a much better scalability than
LP and WS HEU in all problem instances (always less than 100 msec).

5.2 Optimality Evaluation

To evaluate the quality of the results of our approach, we measure the closeness of
the returned results to the optimal results obtained by the LP method by
calculating the optimality ration R = Uapprox

Uopt
. Uapprox is the utility of the best

composition returned by our approach according to (3) and Uopt is the utility of

Fig. 2. Computational time with respect to the problem size

Fig. 3. Comparison of the achieved optimality with respect to the size of the problem

A Scalable Approach for QoS-Based Web Service Selection 199

the composition returned by the LP method. The results shown in figure 3 indi-
cate that DIST HEU achieves good results with 98% optimality ratio in average.
It can also be seen that result quality of our approach DIST HEU is in average
just 1% below the WS HEU results. However, the cost of WS HEU for this little
improvement in terms of computation time is very high as we see from figure 2.

6 Conclusion and Future Work

This paper describes a scalable method for the QoS-based service selection. The
problem is known to be NP-hard. Therefore heuristic solutions are commonly
used. Our proposed method allows to dramatically reduce the efforts compared
to existing heuristic solutions by a factor of 10 to 100 dependent on the complex-
ity of the service environment. We decompose the global optimization problem
into a number of sub-problems that can easily be solved by local optimization
within each service class. In addition the decomposition allows distributing the
processing to better fit to the distributed web service environment. We are cur-
rently working on extending our approach to support more complex composition
models than the sequential model. Furthermore, we plan to develop a more so-
phisticated QoS constraint decomposition algorithm to improve the optimality
of the obtained results.

References

1. OASIS: Web services business process execution language (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

2. Pisinger, D.: Algorithms for Knapsack Problems. PhD thesis, University of Copen-
hagen, Dept. of Computer Science (1995)

3. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-
Interscience, New York (1988)

4. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: WWW, pp. 411–421 (2003)

5. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Trans. Software Eng. 33(6), 369–384 (2007)

6. Liu, Y., Ngu, A.H.H., Zeng, L.: Qos computation and policing in dynamic web
service selection. In: WWW, pp. 66–73 (2004)

7. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Trans. Web 1(1), 6 (2007)

8. Maros, I.: Computational Techniques of the Simplex Method. Springer, Heidelberg
(2003)

9. Li, F., Yang, F., Shuang, K., Su, S.: Q-peer: A decentralized QOS registry architec-
ture for web services. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC
2007. LNCS, vol. 4749, pp. 145–156. Springer, Heidelberg (2007)

10. Yoon, K.P., Hwang, C.L.: Multiple Attribute Decision Making: An Introduction
(Quantitative Applications in the Social Sciences). Sage Publications, Thousand
Oaks (1995)

11. Berkelaar, M., Kjell Eikland, P.N.: Open source (mixed-integer) linear program-
ming system. Sourceforge, http://lpsolve.sourceforge.net/

12. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web.
In: WWW (2008)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://lpsolve.sourceforge.net/

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 200–210, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards QoS-Based Web Services Discovery

Jun Yan and Jingtai Piao

School of Information Systems and Technology
University of Wollongong

Wollongong, NSW, Australia 2522
{jyan,jp928}@uow.edu.au

Abstract. The current UDDI-based web services discovery technologies are de-
signed to discover services which can satisfy consumers’ functional require-
ments. The consumers’ non-functional requirements such as quality of services
are largely ignored in discovery. This may lead to the problem that the services
returned from discovery are ineffective and even useless. To solve this problem,
this paper presents an approach to achieving QoS-based Web services discov-
ery. Data structures are proposed for both service providers and service
consumers to describe non-functional information about services. A serial of al-
gorithms are developed for matching and ranking services according to con-
sumers’ non-functional requirements.

1 Introduction

Web services is an emerging technology which provides a machine to machine inter-
action over a network by using a series of standardized technologies, including
WSDL, SOAP and UDDI [1]. Of these technologies, UDDI is designed to be interro-
gated by SOAP messages, as well as to provide an access to WSDL documents which
describe the protocol bindings and messages [3]. With UDDI in place, the advertise-
ment, discovery, and binding of web services through the Internet can be achieved.
IBM, SAP and Microsoft established a publicly accessible Universal Business Regis-
try (UBR) and this is recognized as a trial of the UDDI specification. However, the
adoption rate of UDDI is still remained at a low level [1]. One of the significant rea-
sons for this stagnation is that the existing Web services discovery framework only
supports discovery of services which functionally match with the user request. Dis-
covery with consideration of services’ non-functional features has been largely
ignored [1].

Services’ non-functional features can be best represented with the Quality of Ser-
vice (QoS) offered by the web services, such as price, response time, reliability, and
so on [4]. In the real world, there may be a set of web services which offer the same
functional features but current UDDI cannot distinguish these functionally equivalent
services. QoS should be a key factor to differentiate the services with similar func-
tionalities [9] [6]. When a service consumer queries for such functional features, only
those services that also satisfy the consumer’s non-functional requirements are of
interests to this consumer [2]. Service discovery based on functional matching only

 Towards QoS-Based Web Services Discovery 201

can lead to severe problems. For example, those services with much longer-than-
expected response time or much lower-than-expected availability may be presented to
a service consumer as results of service discovery. Subsequently, the performance of
the consumer application can be largely deteriorated due to the use of these services.
For this reason, QoS-based service discovery which aims at discovering services
which meet both functional and non-functional requirements of service consumers
becomes critical to the wide adoption of Web services in practice.

To address the above problem, this paper presents an approach towards QoS-based
Web services discovery through the extension of the current UDDI service discovery
framework. This research primarily focuses on two areas. First, this paper proposes a
generic model to represent QoS information in service advertisements as well as QoS
requirements in service discovery requests. Based on this model, a matching algo-
rithm and a ranking algorithm are presented. Given a service discovery request, the
matching algorithm compares its QoS requirements with the QoS advertisements in
the repository and locates those services with matching QoS. The ranking algorithm
furthers ranks these discovered services to facilitate the consumers to select services.

The remainder of this paper is organized as follows. Section 2 introduces major re-
lated work. Then, Section 3 presents a XML-based model to represent the QoS infor-
mation, and an extension to UDDI tModel to store QoS information. In Section 4,
QoS matching and ranking algorithms for service discovery are discussed based on
the proposed QoS model. Finally, Section 5 concludes this paper and outlines our
future work.

2 Related Work

Extension of UDDI with consideration of QoS has been recognized as a key solution
of distinguishing the web service discovery results with same functionality [1][15]
[20]. The first step to achieving this is the active development of QoS information rep-
resentation approaches. To name a few, Mani et al [19] claimed that the major QoS
requirements are performance, reliability, security, etc. Ran [1] categorized the QoS
information as three domains, namely run-time related QoS, transaction related QoS and
security related QoS. Dobson et al [8] proposed a reusable generic QoS ontology by
categorizing the QoS information as measurable and immeasurable. Maximilien et al [7]
intended to develop a comprehensive QoS ontology including the description of the
QoS relationship. Moreover, Zhou et al [6] provided a novel DAML-QoS to establish a
three-layer QoS ontology, including profile layer, property layer and metrics layer.
Bianchini et al [10] proposed an approach which allows users to submit their QoS re-
quirements semantically, using an ontology which categorizes the QoS attributes as
numeric, Boolean and enumeration. Although these representation approaches are suc-
cessful in capturing QoS information from different perspectives, the flexibility of syn-
tactic QoS model is still lack and the semantic QoS model is relatively complex and
time consuming.

Embedding QoS information within UDDI is another important research issue.
Adam Blum and Fred Cater [11] stated four different QoS information sorting meth-
ods by extend tModel and bindingTemplate within UDDI. D’Melloet et al [16] intro-
duced a QoS repository as a QoS broker to store and interact with QoS information.
Similarly, Yu and Lin [17] proposed a QoS capable web service (QCWS) architecture

202 J. Yan and J. Piao

which is operated as a QoS broker to manage the interaction of QoS information be-
tween client and service provider. Furthermore, QCWS is designed have the capabil-
ity to allocated resource to the clients.

QoS matching and ranking is the key in QoS-based service discovery. The existing
work covers both syntactic matching and semantic matching. Yang and Huangcan
[12] treated the QoS model as an N dimensional matrix. The priority of QoS can be
described as the distance from the spot of the requirement to the provided spot in the
QoS space. Wenli [15] suggested utilizing fuzzy logic to calculate a threshold value
of QoS information. The services which are out of this threshold will not be discov-
ered. Kritikos and Plexousakis [14] proposed a matching algorithm, which transfers
the QoS information into Constraint Satisfaction Problem (CSP) and the matching
progress is performed based on the consistency of the CSP. Bianchini et al [10] cate-
gorized the QoS information into three types, namely numeric, Boolean and enumera-
tion and the users’ QoS requirement of each type can be Good, Poor and Fair etc. The
service discovery process is performed by matching those categories. Giallonardo and
Zimeo [17] provided an ontology-based matching approach to avoid one-by-one QoS
parameter matching failures which are caused by misunderstanding the terminology
of QoS attributes.

3 QoS Information Description

This section presents a novel model to represent both service providers’ QoS advertise-
ments and service consumers’ QoS requirements. This model is generic and can easily
be extensible to provide comprehensive and explicit description of QoS information.

3.1 QoS Information Advertisement

A service provider can conventionally publish its service information such as busines-
sEntity, businessService, and bindingTemplate. In order to publish its QoS capabilities,
a service provider needs to include an entity called QoSInformation in its advertisement.
As shown in Figure 1, the QoSinformation can contain information of one or more QoS
attributes, each of which is described using a five-tuple, <attributeName, attributeType,
attributeValue, attributeUnit, constraints>.

The element attributeName represents the name of the QoS attribute, such as price,
response time, availability, and so on. The element attributeType represents the type
of the QoS attribute. In this research, three types of QoS attributes are introduced,
including Numeric QoS attribute, Boolean QoS attribute, and Enumeration QoS at-
tribute. In the matching process, the different algorithm will be invoked according to
the type of attribute. The element attributeUnit defines the measurement units of the
QoS attribute. For example, the attributeUnit of the attribute price can be DOLLAR
and the attributeUnit of the attribute response time can be DAY or HOUR. The ele-
ment attributeValue, represented in different forms according to the type of the QoS
attribute, defines the advertised value of the QoS attribute. For Numeric QoS attrib-
ute, two numeric values describe the value range of this attribute as an interval. For
Boolean QoS attribute, the attributeValue can be either TRUE or FALSE. For Enu-
meration QoS attribute, the attributeValue is a discrete value set. The element con-
straint allows service providers to publish the constraints of their services, such as the

 Towards QoS-Based Web Services Discovery 203

server maintenance time, upgrade information, price adjustment and so on. The fol-
lowing sample advertisement <execution time, numeric, [0, 3], hour, (between 9am
and 5pm, Monday to Friday)> describes a service provider’s QoS promises on attrib-
ute execution time. From this advertisement, it is clear that the execution time of this
service is no more than 3 hours between 9am and 5pm, Monday to Friday.

0..1

0..*

businessEntity
businessService
bindingTemplate
tModel

attributeName
attributeType
attributeUnit
attributeValue
declaration

Service Advertisement with
QoS

QoS Attribute

qosInformation

Fig. 1. Structure of QoS Advertisement

3.2 Storage of QoS information

Service providers’ QoS information needs to be embedded in the current UDDI frame-
work for it to be used in discovery. To achieve this, a new tModel called QoS Informa-
tion tModel is created, as depicted in Figure 2. The element overviewURL of this tModel
is referred to an external file which stores all the QoS information about this service.
Such an approach requires minimum modification to the current UDDI data structure.
The external file can be hosted by a third party or even by the service provider.

Fig. 2. QoS Information tModel

3.3 QoS Requirement

In order for a service consumer to discover “right” services, the service discovery
request should contain information to represent the QoS requirements of the service
consumer, in addition to functional requirements. As shown in Figure 3, a service
consumer can include requirements on one or more QoS attributes in the service dis-
covery request. The requirement on a QoS attribute can either be compulsory or op-
tional, which will be treated differently in matching and ranking.

204 J. Yan and J. Piao

inquiryBusinessEntity
inquiryBusinessService
inquirybindingTemplate
inquirytModel

User Requirement with QoS

qosRequirement

0..1

0..*

attributeName
attributeType
attributeValue
attributeUnit
constraint
weight
direction
relationshipDescription

QoS Attribute

independentAttributeValue
dependentAttributeName
dependentAttributeValue
constraint

Relationship Description

0..1

0..*

compulsoryRequirement

optionalRequirement

0..1

0..*0..1

0..*

0..1

0..*

Fig. 3. Structure of QoS requirement

A compulsory requirement attribute is described by the following eight-tuple:

 <attributeName, attributeType, attributeValue, attributeUnit, constraint, weight,
direction, relationship>

The first four elements are of the same meanings as those discussed in Section 3.1.
The element constraint which can be either belongTo or notBelongTo is introduced to
illustrate the restriction of the attributeValue. For instance, assuming that a user does not
need a service between 1pm to 3pm, this requirement can be described by this model,
using an interval [1, 3] and a constraint value notBelongTo. The element weight indi-
cates the importance of this attribute to the service consumer. The value of weight
should be a number between 0 and 1 and it should be assigned by the consumer. This
attribute is introduced to rank the services in the ranking process. The element direction
only used to describe numeric attributes to show the expected tendency of the attribute.
The positive direction means that user expects an increasing trend of this numeric attrib-
ute, whereas negative shows that user expects a decreasing trend of this attribute. Both
weight and direction are used in the ranking algorithm discussed in Section 4 to com-
pare discovered services. Finally, the element relationship is used to describe the com-
plex requirements on the relationship of two QoS attributes.

The relationships between attributes are used to trade-off or negotiate with the ser-
vice discovery system. This paper only provides a way to describe the relationship
between two compulsory attributes. In a statement of a relationship, the related two
attributes are treated as piecewise function. The value of the dependent attribute is
contingent on the independent attribute. Furthermore, the omission of independentAt-
tributeName and independentAttributeType is because these two attributes map with

 Towards QoS-Based Web Services Discovery 205

Fig. 4. A Sample of QoS Requirement

the content of the attributeName and attributeType which are located in the description
of the attribute. Similarly, it is not necessary to reclaim the dependentAttributeType
because it is mapped to the attribute according to the dependentAttributeName.

3.4 A Sample of QoS Requirement

In this section, the data structure of the proposed QoS requirement is realized by a
XML document. In the sample shown in Figure 4, the user has two compulsory re-
quirements about availability and resolution and an optional requirement about
encryption. Moreover, the requirement includes a relationship between availability

206 J. Yan and J. Piao

and resolution, namely while the availability more than 99.99 percent and less than
99.9999percent then the resolution can be 600 800.

4 Matching and Ranking Algorithms

The matching algorithm is to locate the services with matching QoS information,
whereas ranking algorithm is in charge of present them to a consumer in an order that
may best reflect the consumer’ interests.

4.1 Matching Algorithm

Given a service request R which contains compulsory requirements on n QoS at-

tributes 1A , 2A ,… nA , the objective of the matching algorithm is to select, among

those services that provide the required functions of R , services that satisfy these
QoS requirements. The strategy is to examine these requirements one by one to obtain

service sets 1S , 2S ,… nS which represent the set of services that satisfy n compul-

sory QoS requirements, respectively. For a compulsory requirement on a numeric
type attribute, the upper bound and lower bound of the interval will be compared
between the requirement and the advertisement respectively. If the upper bound of the
requested interval is larger than the upper bound of published interval and the lower
bound of requested interval is smaller than the lower bound of published interval then
this service should be selected, otherwise this service should be discarded. For a com-
pulsory requirement on a Boolean type attribute, if the value of a requested Boolean
attribute matches with the published Boolean attribute then this service should be
selected, otherwise, the service should be discarded. For a compulsory requirement on

an enumeration type attribute, if the published enumeration attribute set pE is a subset

of the request attribute set RE , then the service should be selected, otherwise, the

service should be discarded. Finally, the result of the matching service set S is calcu-
lated by the following equation.

I
n

i
iSS

1=

= (1)

The Detailed Matching Algorithm Is Shown in Figure 5.

Using symbol
iRS to represent the service set that satisfies the relationship statements

of the attribute 1A ; whereas CS indicates the service set that satisfies the constraint

statement of this attribute. The service set 1S should be the union of
1RS and

1CS . If

there are multiple relationships, the formula can be summarized as follows:

UU C

n

i

Ri SSS
i
)(

1=

= (2)

 Towards QoS-Based Web Services Discovery 207

Fig. 5. Pseudocode of Matching Algorithm

Thus, combining formulas (1) and (2), the final matching formula becomes:

))((
1 1
I UU

n

i
C

n

i
R SSS

i

= =

= (3)

4.2 Ranking Algorithm

If the matching algorithm returns more than one matched service, it is a desirable
feature to rank these services in an order that best represents the consumer’s prefer-
ence. The ranking measures the “goodness” of the matched services and makes rec-
ommendation to the consumers according to their needs.

The ranking algorithm takes both the compulsory and optional QoS requirements
into consideration. In order to compute the preference of users, QoS metrics are intro-
duced in this approach. Firstly, all of the published QoS attributes of service p are

modeled as a vector },...,,{ ,2,1, npppp AAAA = (n is the number of attributes) Sec-

ondly, the QoS requirements in the service request can be modeled as a n-dimension

binary vector as well, namely, () () ()()nnr wAwAwAA ,,...,,,, 2211= ,

where]1,0[

1

,1 ∈

=

=∑ i

n

i

i ww . iw is the weight of the attribute i which is normally given

by the service consumer. Thirdly, a distance),(rp AAdis between the requested

208 J. Yan and J. Piao

vector rA and the published vector pA could be calculated. It is believed that a ser-

vice that is more close to the requirements would satisfy the consumer better.
Based on the above, the situation that there is m services that each contains n QoS

attributes can be modeled as an m×n matrix Q :

nmmm

n

n

AAA

AAA

AAA

Q

,2,1,

,22,21,2

,12,11,1

...

............

...

...

=

Then, the normalization process should be applied. This process is conducted ac-
cording the value of direction as well. Each element in the Q matrix should be nor-

malized into the interval [0, 1]. If the direction is positive, then the formula (4) will be
used to normalize. In contrast, if the direction is negative, the formula (5) will be
used.

kiki

kiki
ki AA

AA
ANor

,,

,,
, minmax

max
)(

−
−

= (i = 1, 2,… m); (k = 1, 2,… n) (4)

kiki

kiki
ki AA

AA
ANor

,,

,,
, minmax

min
)(

−
−

= (i = 1, 2,… m); (k = 1, 2, … n) (5)

After that, matrix Q should be merged with the requirement vector rA to get a

(m+1) ×n matrix Z .

nmmm

n

n

rrr

AAA

AAA

AAA

AAA

Z

n

,2,1,

,22,21,2

,12,11,1

...

............

...

...

...
21

=

The requirement vector rA should be optimized in order to indicate a QoS destina-

tion in the QoS space, namely all of the attributes of requirement adopt the best value.
Rather, Direction represents the user preference tendency, the optimized numeric
value should be the biggest or the smallest accordingly. For the Boolean and enu-
meration type attributes, the optimized value should be 1 which is used to indicate the
meaning of “true”.

Finally, using the formula (6) to calculate the distance between pA and rA .

∑
=

−=
m

i
rjirp j

AAWAAdis
1

2
,)(),((6)

 Towards QoS-Based Web Services Discovery 209

Comparing the distance),(rp AAdis , the ranking list can be generated. If the re-

quested optional QoS attribute is absent within the register service then set the dis-
tance as 1.

5 Conclusion and Future Work

The lack of consideration of non-functional requirements in service discovery may
lead to the problem that the retrieved services cannot guarantee the quality of the
services. This paper made an important step towards fully functional QoS-based ser-
vice discovery by proposing a novel approach to extending UDDI with consideration
of QoS, including QoS information description, QoS information storage and QoS
information discovery. More specifically, this paper has established a XML data
structure to represent QoS information of both service providers and service consum-
ers. A QoS information tModel has been introduced to reference these QoS informa-
tion documents. In addition, a QoS matching algorithm and a QoS ranking algorithm
have been presented to make use of the QoS information in service discovery.

In the future, further research work will be carried out in QoS-based service dis-
covery. The priority will be given to an implementation of the proposed approach for
the purpose of proof-of-concept. Based on this implementation, accuracy and effi-
ciency of the matching and ranking algorithms will be evaluated, followed by im-
provement. In addition, validation of service consumers’ discovery request to ensure
the consistency between QoS requirements will be investigated.

Acknowledgement

This research is partially supported by University of Wollongong Small Research
Grant.

References

1. Shuping, R.: A Model for Web Services Discovery with QoS. SIGecom Exch. 4(1), 1–10
(2003)

2. Andrea, D.A.: A Model-driven WSDL Extension for Describing the QoS of Web Services.
In: Proc. of 2006 IEEE International Conference on Web Services (ICWS 2006), Chicago,
USA, pp. 789–796 (September 2006)

3. Clement, L., Hately, A., von Riegen, C., Rogers, T.: UDDI Version 3.0.2, OASIS (October
19, 2004), http://uddi.org/pubs/uddi_v3.htm

4. Kritikos, K., Plexousakis, D.: A Semantic QoS-based Web Service Discovery Algorithm
for Over-Constrained Demands. In: Proc. of the 3rd International Conference on Next
Generation Web Services Practices (NWeSP 2007), Korea, 29-31 October 2007, pp. 49–54
(2007)

5. Duwaldt and Trees. Web Services A Technical Introduction, DEITELTM Web Services
Publishing. GUNTHER, N.J, The Practical Performance Analyst. McGraw-Hill.ISO, New
York (1998), http://www.iso.ch/iso/en/ISOOnline.frontpage

210 J. Yan and J. Piao

6. Chen, Z., Liang-Tien, C., et al.: DAML-QoS ontology for Web services. In: Proceedings.
IEEE International Conference on Web Services, San Diego, California, USA, 6-9 July
2004, pp. 472–479 (2004)

7. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic Web services se-
lection. Internet Computing 8(5), 84–93 (2004)

8. Dobson, G., Lock, R., et al.: QoSOnt: a QoS ontology for service-centric systems. In: 31st
EUROMICRO Conference on Software Engineering and Advanced Applications, Porto,
Portugal, 30 August -3 September 2005, pp. 80–87 (2005)

9. Gwyduk, Y., Taewoong, Y., et al.: A QoS model and testing mechanism for quality-driven
Web services selection. In: The Fourth IEEE Workshop on Software Technologies for Fu-
ture Embedded and Ubiquitous Systems, 2006 and the 2006 Second International Work-
shop on Collaborative Computing, Integration, and Assurance. SEUS 2006/WCCIA 2006,
27-28 April 2006, p. 6 (2006)

10. Bianchini, D., De Antonellis, V., et al.: QoS in ontology-based service classification and
discovery. In: Proceedings of the 15th International Workshop on Database and Expert
Systems Applications, Washington, DC, USA (2004)

11. Blum, A., Carter, F.: Representing Web Services Management Information,
 http://www.oasisopen.org/committees/download.php/5144/

12. Yang, L., Huacan, H.: Grid Service Selection Using QoS Model. In: Third International
Conference on Semantics, Knowledge and Grid, Xi’an, China, 29-31 October 2007, pp.
576–577 (2007)

13. Somasundaram, T.S., Balachandar, R.A., et al.: Semantic Description and Discovery of
Grid Services using WSDL-S and QoS based Matchmaking Algorithm. In: ADCOM 2006.
International Conference on Advanced Computing and Communications, 20-23 December
2006, pp. 113–116 (2006)

14. Kyriakos, K., Dimitris, P.: Semantic QoS Metric Matching. Web Services. In: 4th Euro-
pean Conference on ECOWS 2006 (2006)

15. Wenli, D.: QoS Driven Service Discovery Method Based on Extended UDDI. In: Third In-
ternational Conference on Natural Computation, ICNC 2007, 24-27 August 2007, pp. 317–
324 (2007)

16. D’Mello, D.A., Ananthanarayana, V.S., et al.: A QoS Broker Based Architecture for Dy-
namic Web Service Selection. In: Second Asia International Conference on Modeling &
Simulation, AICMS 2008 (2008)

17. Yu, T., Lin, K.J.: The design of QoS broker algorithms for QoS-capable Web services. In:
2004 IEEE International Conference on e-Technology, e-Commerce and e-Service, pp.
17–24. IEEE, Los Alamitos (2004)

18. Giallonardo, E., Zimeo, E.: More Semantics in QoS Matching. In: IEEE International Con-
ference on Service-Oriented Computing and Applications, SOCA 2007, Newport Beach,
California, USA, June 19-20 (2007)

19. Mani, A., Nagarajan, A.: Understanding quality of service for Web services (2002),
 http://www-106.ibm.com/developerworks/library/ws-quality.html

20. Yu-jie, M., Jian, C., Shen-sheng, Z., Jian-hong, Z.: Interactive Web Service Choice-
Making Based on Extended QoS Model. Journal of Zhejiang University - Science A 7(4),
483–492 (2006)

A Redundancy Protocol for Service-Oriented
Architectures

Nicholas R. May

RMIT University, Melbourne, Australia
Nicholas.May@rmit.edu.au

Abstract. Achieving high-availability in service-oriented systems is a
challenge due to the distributed nature of the architecture. Redundancy,
using replicated services, is a common software strategy for improving
the availability of services. However, traditional replication strategies are
not appropriate for service-oriented systems, where diverse services may
be grouped together to provide redundancy. In this paper we describe the
requirements for a redundancy protocol and propose a set of processes
to manage redundant service providers.

1 Introduction

Service-Oriented Architecture (SOA) is a style of software architecture that pro-
motes software reuse and inter-operability. This it achieves by distributing its
functionality amongst services, which are loosely coupled software components.
However, the distributed nature of SOA presents a serious challenge to a system’s
quality of service when services are spread across organizational boundaries.

The availability of a service is a quality that is difficult to manage when
the service depends on inter-organizational services. It is usually improved by
using redundancy, in the form of additional components that provide backup
services in the event of a failure. Traditional redundancy strategies are principally
concerned with the synchronization of state between identical components, but
services in an SOA system are independent and autonomous and so do not need
synchronizing. However, some service invocations incur a cost or result in a
change in the shared state. Therefore, an SOA redundancy strategy is required
to ensure that only one redundant service is executed per invocation.

We address this problem by identifying the requirements that a process must
meet if it is to manage redundant services. These requirements are met by adapt-
ing the three-phase commit (3PC) fault tolerance protocol to SOA.

In the following sections we will cover some background, the protocol, and
draw some conclusions about the protocol and its limitations.

2 Background

In order to define a protocol for redundancy in SOA, we must first provide some
background in the relevant subject areas. In this section we discuss the areas of
service-oriented architecture, fault tolerance, redundancy, and related work.

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 211–220, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

212 N.R. May

2.1 Service-Oriented Architecture

Software architecture is a discipline of software engineering. It can also be viewed
as an abstraction of a software system, in terms of its functional components,
the properties of the components, and the relationships between them [1].

The software components provide the systems functionality and can range
from a primitive computational unit to a whole composite systems. The rela-
tionships between components are called connectors. They represent the means
of communication between components, and can represent a simple association
or a more complex interaction. The properties of a component are its exter-
nally visible, non-functional qualities. They influence the quality by which the
functionality is provided by the component, but do not affect the functionality
provided. Availability is an example of a non-functional property.

Another feature of architecture is the use of styles. These are patterns of soft-
ware composition that have well known quality consequences. Styles are defined
by the components types, their relations and the rules by which they may be
combined [18].

Service-Oriented Architecture (SOA) is a style of software architecture de-
signed to utilize distributed components that may be located across organiza-
tional boundaries. Its goals are to promote the reuse, evolution, scalability and
interoperability of software components [12]. SOA components are called ser-
vices, which interact through the publish and subscribe connection pattern.

The principles of SOA provide guidelines for implementing systems so that
the aims of SOA can be achieved [2,5,12,15,20]. The important principles for this
study are as follows;

• Discoverability: Services should be visible, such that they can be found
and accessed via a discovery mechanism. This is accomplished by publishing
descriptions, to some form of repository, in a widely accessible and under-
standable format.

• Composability: Services can be composed into composite services, either
by static definitions or by the dynamic discovery of services at run time.

• Statelessness: The purpose of invoking a service is to realize an effect. This
may be a response message or a change in the shared state of the participat-
ing services. However, a service provider is stateless in that it need not retain
information about the state of a service consumer between invocations.

Other features of a service include; defined service contract, loose coupling,
autonomy, abstraction, and reusability.

SOA is an abstract architecture in that it only describes the principles to
which service-oriented systems should adhere. A common set of standards by
which these systems can be implemented, collective known as Web Services, are
published by the Organization for the Advancement of Structured Information
Standards (OASIS) and the World Wide Web Consortium (W3C). The core
standards provide for the description, publication, discovery, and consumption
of services using the publish-subscribe communication paradigm.

A Redundancy Protocol for Service-Oriented Architectures 213

Additional specifications, commonly known as the WS-* extensions, define
standards for managing the quality of service consumption. Some of the Web Ser-
vice extensions include; WS-ReliableMessaging (OASIS), WS-Coordination (OA-
SIS), WS-AtomicTransaction (OASIS), and WS-Policy (W3C). These provide
frameworks for managing messages, coordinating actions, implementing fault tol-
erance features, and defining policies for quality of service constraints. Two ad-
ditional languages have been defined to allow the specification of orchestrations,
BPEL4WS (OASIS), and choreographies, CDL4WS (W3C), of interacting
services.

2.2 Fault Tolerance

A fault tolerant system aims to avoid system failure even if faults are present.
In terms of SOA, a failure occurs if a service is unable to respond to a request
as defined by its published definition. In an inter-organization SOA the most
important phase of fault tolerance is error detection. Once an error is detected,
a service consumer must take the appropriate action to find another provider
to fulfill its request. This form of error recovery is the only guaranteed option
available, where failed service providers may be in external domains. If no al-
ternatives are available for a critical service provider then the fault cannot be
recovered and the consumer must propagate the failure. The service will remain
in a failure state until it can discover a working service provider to satisfy its
critical functions.

Many techniques have been proposed to improve the fault tolerance of dis-
tributed systems. These can be characterized as either optimistic or conservative
approaches. Optimistic techniques make assumptions from the properties of the
system in order to improve the performance of fault tolerance. However, when
the assumptions fail the technique requires additional work to undo operations.
A discussion of optimistic approaches is provided by Jiménez-Peris and Patiño-
Mart́ınez [8].

Conservative techniques, such as atomic commitment, involve a greater num-
ber of messages under normal operation than an optimistic technique, and
hence a worse performance. Two examples of atomic commitment are the two-
phase (2PC) and three-phase (3PC) commit protocols. Both protocols assume
that the communications network is reliable and detection of service failures is
identified by timeout actions initiated by the non arrival of expected messages.
However, the 3PC contains additional operations and states that ensure that it
is a non-blocking protocol.

A finite state automata (FSA) of a 3PC protocol, adapted from Jalote [7,
p239], is shown in Fig. 1. This FSA shows the input and output messages as-
sociated with state transitions, which synchronize a coordinator with any
number of participant components. It can seen that this is a non-blocking
protocol because there is no commit state (c) adjacent to an abort state (a) or
non-committable state.

214 N.R. May

Fig. 1. FSA of a Three-Phase Commit protocol

2.3 Redundancy

An availability of less than 100% can result in a failure of a system if it means
that a critical call cannot be serviced. If the required functionality is available in
another component then a system failure may be avoided. A common strategy
for improving the availability of a software component involves adding redun-
dancy into the functionality on which the component depends [17]. Redundancy
can be defined as the introduction of components that are not needed for the
correct operation of the system if no failures occur [7]. This can be achieved by
replicating copies of critical components.

In SOA, replication strategies must be assessed in terms of the service defi-
nition and the dynamic nature of binding. Service discovery allows a consumer
to build a list of providers that are not identical but can still satisfy the re-
quired contract. These can be considered replicas for the sake of redundancy in
SOA. However, these replicas may exist across organizational boundaries, so any
strategy that relies on communication between replicas must be excluded, which
means that passive replication [7] is not feasible in an SOA system. Furthermore,

A Redundancy Protocol for Service-Oriented Architectures 215

we can assume that any request to a group of replicas is atomic, stateless and
satisfied if “at-least-one” response is returned. Finally, the distributed nature
of an inter-organization SOA means that functional error detection is not guar-
anteed. Therefore, the best detection strategy is a time check failure, such as
failing on timeout of a response.

2.4 Related Work

Studies of service redundancy have been focused on traditional solutions using
service replication. They can generally be divided into replication strategies,
replication architectures, and implementation frameworks.

Several studies that focus on the various replication strategies, such as ‘active’
and ‘passive’ techniques, are presented by Maamar et al. [11], Guerraoui and
Shipper [6], and Chan et al. [3]. These papers discuss replication communities in
Web Services, survey replication techniques, and evaluate temporal and spacial
redundancy techniques.

Architectures are described by Osrael et al. [14], who propose a generalized
architecture for a service replication middleware, and Juszczyk et al. [9], who
describe a modular replication architecture.

Among the frameworks are those described by Salas et al. [16], Engelmann et
al. [4], and Laranjeiro and Vieira [10]. They propose an active replication frame-
work for Web Services, a virtual communication layer for transparent service
replication, and a mechanism for specifying fault tolerant compositions of web
services using diverse redundant services, respectively.

The focus of these studies is on describing and implementing various strategies
for invoking and maintaining replicated services. However, most do not treat
services as autonomous components, and so their applicability is limited for an
SOA system.

3 Protocol

A protocol is a set of rules governing the exchange of data between devices [19]. In
this instance, it can be described by the processes, states and allowable actions,
that satisfy the protocol’s requirements. In order to deduce a protocol we must
first define the requirements and assumptions for redundancy in an SOA system.

We can make the following assumptions of services included in a redundancy
group. Service are stateless outside of the protocol. Each conversation with an
available provider is assumed to be reliable because there are existing proto-
cols, such as WS-ReliableMessaging and WS-AtomicTransaction, to manage a
conversation once it is established. Finally, operations are not guaranteed to
be idempotent, in that they may have an associated cost or state change for
each invocation. However, any operation that is idempotent, such as a simple
query, may be invoked many times without consequence and so will not require
a redundancy protocol.

216 N.R. May

CANDIDATE = (begin -> WAIT),

WAIT = (no -> END | yes -> READY),

READY = (abort -> END | prepare -> PREPARED),

PREPARED = (execute -> END).

Fig. 2. FSP and state machine of the candidate process

The requirements of the protocol are as follows;

1. Provider services are autonomous (SOA).
2. Provider services in a redundancy group may have different contracts, but

each must satisfy a common sub-contract (SOA).
3. Consumers must be able to conduct multiple, simultaneous conversations

with provider services (Fault Tolerance).
4. Any invocation of an operation that has a cost must result in the execution

of only one redundant service (SOA).
5. Providers are selected by voting or time ordering (Fault Tolerance).

These requirements lead to the following attributes of the protocol. Firstly,
each redundant service must be modeled as an independent concurrent pro-
cess (Req. 1). Secondly, the protocol must be independent of a particular service
contract (Req. 2). Thirdly, the protocol must be non-blocking (Req. 3). Fourthly,
the protocol must support ‘at most once’ execution (Req. 4). Finally, the pro-
tocol must include a controlling action that can select which redundant service
to invoke (Req. 5). A solution to these requirements is to adapt the 3PC proto-
col. This must be modified to ensure that only one process is executed, rather
than all committed. To reflect this change in emphasis the name ’Participant’ is
replaced by the name ‘Candidate’ to represent the redundant processes.

The constituent processes of the protocol are modeled as Finite State Pro-
cesses (FSPs) [13]. FSP is a language especially suited to modeling synchronized,
concurrent processes. Processes are defined in a textual language that represents
the states and the actions that trigger state transitions. Concurrency is modeled
in FSP with interleaved actions. However, actions that must be performed simul-
taneously can be defined with shared action pairs. FSP does not show message
exchange explicitly, but messages are the normal mechanism used to implement
shared actions. The Labeled Transition System Analyzer (LTSA) [13] is a tool
that can be used to generate state machines from FSP definitions and to check

A Redundancy Protocol for Service-Oriented Architectures 217

COORDINATOR = (begin -> WAIT),

WAIT = (timeout -> END | found -> READY),

READY = (timeout -> END | select -> PREPARED),

PREPARED = (invoke -> END).

Fig. 3. FSP and state machine of the coordinator process

their properties. The protocol definition using FSP consists of a three processes;
candidate, coordinator and redundancy.

The candidate process is initialized with a begin action, after which it will re-
spond with a yes or no action to indicate whether it is able to perform its service.
If it is able, it will wait until it receives a prepare action. If none is received before
a specified timeout period then it will abort the process. A candidate that is
prepared will then be executed. This process satisfies the requirements for a
non-blocking protocol because the execute and abort actions are not available
from the same state. The FSP and State Machine for the candidate process
are shown in Fig. 2.

The coordinator process is also initialized with a begin action. It will then
wait until it receives a message to indicate that a candidate has been found.
If none are found before a specified period then the coordinator will timeout
and the process will end. If a candidate is found then the coordinator will
select an appropriate candidate using a specified election method, for instance
the first response. Finally, the coordinator will invoke the candidate in the
prepared state and accept the response. Similarly to the candidate process,
this process also satisfies the requirements for a non-blocking protocol. The FSP
and State Machine for the coordinator process are shown in Fig. 3.

The redundancy process consists of a coordinator and two candidate
processes, labelled a and b. In addition, the FSP includes the following shared
actions pairs; (begin,begin), (yes,found), (select,prepare), and (invoke,execute).
This process ensures that the coordinator will select and invoke a single
candidate, and the other candidate processes will abort if available but
not selected. The FSP and state machine for a redundancy process with two
candidate processes is shown in Fig. 4. The state machine is shown only to
give an impression of its scale. This process satisfies the requirements for a re-
dundancy protocol in an SOA system because;

– Each service provider is modeled by a separate candidate process.
– The protocol is independent of any particular service contract

218 N.R. May

||REDUNDANCY = (COORDINATOR || {a,b}:CANDIDATE)
/{ begin/{a,b}.begin,

{a,b}.yes/found,
{a,b}.prepare/select,
{a,b}.execute/invoke }.

Fig. 4. FSP and state machine of a redundancy process with two candidates

– The processes are non-blocking.
– “At most one” candidate is executed.
– The ‘select’ action provides a mechanism for the coordinator to determine

which candidate to invoke.

The state machine covers all available paths of the interleaved actions, syn-
chronized by the shared actions. The safety and liveness properties of the state
machine can be validated using the LTSA. Safety properties include the absence
of deadlocks and mutual exclusion of participant execution. The LTSA reports
no deadlocks for the state machine. In addition, the LTSA animator allows indi-
vidual paths to be traced through the state machine. This shows that each path
that includes an execute action includes only one. Liveness properties include
path progress and successful termination. The LTSA shows that all states, ex-
cept the end state, have at least one out action, and that all paths eventually
terminate at the end state.

4 Conclusions

In this paper we discuss the background to redundancy in SOA systems and
identified the requirements for a protocol to manage redundant services which

A Redundancy Protocol for Service-Oriented Architectures 219

are not idempotent. These requirements have been satisfied by adapting the
three-phase commit protocol to ensure that ‘at most one’ redundant service is
executed per invocation. The protocol consists of two non-blocking processes
(candidate and coordinator) and a synchronizing process (redundancy),
all of which have been modeled as finite state processes.

The protocol is a conservative, passive, fault detection mechanism, in that
it cannot predict where a fault will occur or actively exclude unavailable ser-
vices before the invocation process begins. This will reduce the performance and
increase the number of messages at invocation compared to an active or opti-
mistic protocol. However, a conservative protocol can be adapted to combine
the fault detection with the negotiation of quality attributes for the provided
service. Therefore, this protocol would be more efficient in a dynamic, quality
negotiation scenario.

Only a simple redundancy process has been modeled, with two redundant
candidates and selection by first response. This protocol would benefit by mod-
eling more complex redundancy groups and investigation of how to integrate
different selection strategies. In addition, the modeling of fault recovery has not
been considered. For instance, how would the protocol recover from a failure
whilst in the prepared state?

The processes of this protocol have not yet been implemented. Further inves-
tigation will be required to determine the most appropriate method to commu-
nicate and implement different redundancy strategies. The various Web Service
specifications may provide a basis for the protocol and a means to communicate
implementation parameters, such as whether a service invocation incurs a cost.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley, Reading (2003)

2. Bastani, F., Ma, H., Gao, T., Tsai, W.-T., Yen, I.-L.: Toward qos analysis of adap-
tive service-oriented architecture. In: IEEE International Workshop on Service-
Oriented System Engineering (SOSE 2005), pp. 219–226 (2005)

3. Chan, P.P.W., Lyu, M.R., Malek, M.: Making services fault tolerant. In: Pen-
kler, D., Reitenspiess, M., Tam, F. (eds.) ISAS 2006. LNCS, vol. 4328, pp. 43–61.
Springer, Heidelberg (2006)

4. Engelmann, C., Scott, S.L., Leangsuksun, C., He, X.: Transparent Symmetric Ac-
tive/Active Replication for Service-Level High Availability. In: 7th IEEE Interna-
tional Symposium on Cluster Computing and the Grid, Rio de Janeiro, Brazil,
May 2007, pp. 14–17 (2007)

5. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. The
Prentice Hall Service-Oriented Computing Series from Thomal Erl. Prentice Hall,
Upper Saddle River (2005)

6. Guerraoui, R., Schiper, A.: Software-based replication for fault tolerance. Com-
puter 30(4), 68–74 (1997)

7. Jalote, P.: Fault Tolerance in Distributed Systems. PTR Prentice Hall, Englewood
Cliffs (1994)

220 N.R. May

8. Jiménez-Peris, R., Patiño-Mart́ınez, M.: Towards Robust Optimistic Approaches.
In: Schiper, A., Shvartsman, M.M.A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Fu-
ture Directions in Distributed Computing. LNCS, vol. 2584, pp. 45–50. Springer,
Heidelberg (2003)

9. Juszczyk, L., Lazowski, J., Dustdar, S.: Web service discovery, replication, and
synchronization in ad-hoc networks. In: 1st International Conference on Availabil-
ity, Reliability and Security (ARES 2006), pp. 847–854. IEEE Computer Society,
Washington (2006)

10. Laranjeiro, N., Vieira, M.: Towards fault tolerance in web services compositions.
In: 2007 workshop on Engineering fault tolerant systems (EFTS 2007), p. 2. ACM,
New York (2007)

11. Maamar, Z., Sheng, Q.Z., Benslimane, D.: Sustaining web services high-availability
using communities. In: Third International Conference on Availability, Reliability
and Security (ARES 2008), Barcelona, Spain, pp. 834–841 (March 2008)

12. MacKenzie, C.M., et al.: Reference Model for Service Oriented Architecture 1.0.
Organization for the Advancement of Structured Information Standards (October
2006) (October 5, 2007),
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html

13. Magee, J., Kramer, J.: Concurrency: State Models and Java Programming, 2nd
edn. John Wiley and Sons, Chicester (2006)

14. Osrael, J., Froihofer, L., Goeschka, K.M.: What service replication middleware
can learn from object replication middleware. In: 1st Workshop on Middleware for
Service Oriented Computing (MW4SOC 2006), pp. 18–23. ACM, New York (2006)

15. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krämer, B.J.: Service-
oriented computing: A research roadmap. In: Cubera, F., Krämer, B.J., Papa-
zoglou, M.P. (eds.) Service Oriented Computing (SOC), Schloss Dagstuhl, Ger-
many. Dagstuhl Seminar Proceedings, vol. 05462, Internationales Begegnungs und
Forschungszentrum fuer Informatik (IBFI) (2006)

16. Salas, J., Pérez-Sorrosal, F., Patiño Mart́ınez, M., Jiménez-Peris, R.: WS-
Replication: a framework for highly available web services. In: 15th International
Conference on World Wide Web (WWW 2006), pp. 357–366. ACM, New York
(2006)

17. Schmidt, K.: High Availability and Disaster Recovery: Concepts, Design, Imple-
mentation. Springer, Berlin (2006)

18. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, Upper Saddle River (1995)

19. Thompson, D. (ed.): The Concise Oxford English Dictionary of Current English,
9th edn. Oxford University Press, Oxford (1995)

20. Tsai, W.T., Malek, M., Chen, Y., Bastani, F.: Perspectives on service-oriented
computing and service-oriented system engineering. In: Proceedings of the Second
IEEE International Symposium on Service-Oriented System Engineering, Wash-
ington, DC, USA, pp. 3–10. IEEE Computer Society, Los Alamitos (2006)

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html

A Context-Aware Trust Model for Service-Oriented
Multi-Agent Systems�

Kaiyu Wan1 and Vasu Alagar2

1 Department of Computer Science, East China Normal University, China
kaiyu.wan@gmail.com

2 Department of Computer Science and Software Engineering, Concordia University, Montreal,
Canada and X’ian Jiaotong-Liverpool University, Suzhou, China

alagar@cs.concordia.ca

Abstract. Service-oriented systems offer the potential for minimizing the
development time of business applications within an enterprise while promot-
ing collaborative joint ventures among enterprisers distributed geographically.
Service-oriented applications assembled from services obtained from different
vendors, sometimes anonymous, should be trustworthy. In this paper we inves-
tigate context-aware multi-agent systems (MAS) which can dynamically form
coalitions of trusted partners as an effective mechanism to act on behalf of ser-
vice requestors, find services requested by them, determine trusted services, and
provide services to the requestors without violating the privacy of the partners
involved in such transactions. The MAS is open with respect to external agents
requesting and receiving services, but closed with respect to other activities initi-
ated by external agents. The agents in MAS may have different trust models. We
explain how trust models of different agents should be composed into a web of
trust for trusted transactions in MAS.

1 Introduction

The concept of service-oriented computing system is not new. Its concepts and char-
acteristics have been detailed in many works [4,23,11]. What is new in this paper is
the introduction of context-aware MAS as a means of discovering and delivering de-
pendable services to its clients in an open distributed environment. Agents in MAS can
dynamically form coalitions of trusted partners as an effective mechanism to act on be-
half of service requestors, find services requested by them, determine trusted services,
and provide services to the requestors without violating the privacy of the partners in-
volved in such transactions. The MAS is open with respect to external agents requesting
and receiving services, but closed with respect to other activities initiated by external
agents. The trust models of agents, which may be different, can be combined to generate
global trust for agent collaboration in delivering services.

Dependability, recently coined as trustworthiness [22], is a composite property. It in-
cludes safety, security, service availability, and reliability attributes. A service is trust-
worthy if it is reliable, available without interruption, secure, and safe to use. In order

� This research is supported by a Research Grant from Natural Sciences and Engineering Re-
search Council of Canada(NSERC).

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 221–236, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

222 K. Wan and V. Alagar

that an agent recognize and evaluate these attributes in a service, we require it to be
context-aware. In agent literature, the BDI (belief, desire, intention) semantics is the
semantics for agent actions and interactions. We may interpret the full power of BDI as
providing the awareness for an agent. Agents indulging in service-oriented activity may
be regarded as software agents, who need not have the full power of BDI semantics,
instead its internal and its external awareness constitute a sufficient semantic basis for
its actions.

1.1 Awareness and Context

An agent is aware of its internals such as resources under its care, knowledge of its
domain of activity, history of its activities and interactions, and norms (policies) that
constrains its actions. We call the internal awareness of an agent as self-awareness.
The external awareness of an agent includes a knowledge of its environment that may
include physical devices, humans and other agents. In order that the system response
with respect to a request from its environment be equivalent to a cognitive reaction,
the “feel” component of external awareness should be factored in. This is realized by
introducing the agent to the world with which it has to react. This world consists of the
information space of its clients and their behavior. The information space is, in general,
multi-dimensional where each dimension has information or data with respect to one
sort. Aggregating dimensions along with information along the dimensions give rise
to a formal definition of context [3,28,29], and justifies formalizing external awareness
using contexts. External awareness is known as context-awareness.

Context is rich concept. Carnap, in his famous treatise [8] Meaning and Necessity,
distinguished between the intension and extension of a natural language statement. In-
tension is the uttered statement and extension is its truth values in different contexts. As
an example, the intension of the statement ”The physician in charge of the clinic works
from 9 am to 3 pm.” is itself, and its extensions are evaluated when the physician’s
name, the clinic’s name, and a time are specified. The world of information to evalu-
ate this statement has three dimensions, namely Physician name, Clinic name, and
Time. A context is constructed when a value/data is given along each dimension. This
meaning of context was tacitly understood and first used in AI, and HCI applications.
Since then, context has found several applications in a variety of fields of study within
computing, however context itself was represented and interpreted only in an ad-hoc
manner. Just to give an overview of its spectrum, see [21,7,14] for logic of context and
reasoning in AI, [1] for a tutorial on efforts in formalizing context, [9,10] for HCI ap-
plications, [16,17,18] for using context within semantic web for service compositions,
[3,28] for high-level languages with context as first class objects, [24,27] for context-
aware system architecture and [2,30] for context-aware enforcement of privacy, iden-
tity management, and trust. The ability to automatically detect contexts, dynamically
de-construct and reconstruct contexts are very relevant to context-aware computing, in
particular for mobile and pervasive computing applications. Without a formal represen-
tation of context, adaptation and reasoning about the consequences of adaptation is not
possible. The formal syntax and the semantic domain for context calculus that we have
developed in our research are briefly described in Section 2.

A Context-Aware Trust Model for Service-Oriented Multi-Agent Systems 223

1.2 Trust

Trust, similar to context concept, is also a rich concept. It has a pivotal role in hu-
man relationships. McKnight and Chervany [19] have given a typology for classify-
ing trusting behavior in domains such as sociology, psychology, political sciences, and
management. A trusting behavior, when expressed in natural language and semantically
interpreted through Carnap’s intensional logic, becomes an intensional statement. The
natural language statements corresponding to these trusting behaviors have a natural
intensional logic interpretation. This is the rationale behind the intensional trust model
discussed in [30]. In Section 3.3 we show that the six-fold trusting behavior discussed
in McKnight and Chervany [19] can be cast within context-aware trust model. Exam-
ples 1 and 2 illustrate the necessity to integrate context and trust.

Example 1. It is remarked in [15] that inaccuracies in the Wikipedia has been rumored
to cause students to fail courses. Apparently this fault is attributed to a “free for all”
approach to the contribution of articles by internet users. Anybody can write an article
irrespective of the contributing author’s expertise in that area. There is no mechanism
to verify either the correctness or completeness of the content in an article. A user who
accepts the services offered by such sites will eventually lose her trust in the integrity of
the service provider.

Example 2. This example is taken from [1], and perhaps the starting point for a for-
mal treatment of context by McCarthy [21]. MYCIN [25] is a computer-based medical
consultation system. In particular it advises physicians on treating bacterial infections
of the blood. When MYCIN is given the information “the patient has Chlorae Vibrio”
it recommends two weeks of tetracycline treatment and nothing else. What it does not
reveal is that there is massive dehydration during the course of the treatment. While the
administration of tetracycline would cure the bacteria, the patient would perish long
before that due to diarrhea. Here is an instance where context of usage is not explicitly
stated. Although the treatment is in principle correct, it is incomplete. The service is
totally unsafe.

If there were to exist a trust model for a system, that model can automatically assign
a trust degree based on the completeness and correctness of the information content
and offer a personalized rating for every service provided by the system. Completeness
and correctness are contextual concepts. Consequently, integrating the trust model with
the system awareness of its internal and external contexts, we aim to make the system
trustworthy.

1.3 Contributions

We give a rigorous approach to integrate trust model with context-awareness for agents
in a MAS. The paper is organized as follows. In Section 2 we briefly outline context
formalism. We describe context-aware trust model for service-oriented systems in Sec-
tion 3. In Section 4 we give a formal context-aware MAS architecture and explain how
trusted services are provided by the agents in the absence of a centralized authority. We
conclude the paper in Section 5 with a summary of our ongoing research on trustworthy
MAS. Appendix 1 lists the formal concepts that we use in MAS architecture.

224 K. Wan and V. Alagar

2 Context Formalism

Context has several working definitions. According to Dey [9] context is any informa-
tion that can be used to characterize an entity, where an entity is a person, place, or
object that is considered relevant to the interaction between user and application. Con-
text is considered as a semantic object by Mrissa etal [18] and this definition is quite
close to the formal definition of Wan [29]. Since agents in a MAS need to dynamically
construct, assemble, disassemble, modify, and reason with context, a formal definition
is necessary. The five most important dimensions from which they should collect infor-
mation are who, what, where, when, and why. They respectively provide information
on perception, to recognize the software component or agent that provides the service
or requires the service, interaction to determine the type of service, locality to deter-
mine the location (and its constraints) for providing the service, timeliness that specify
time bounds for (safe) service delivery, and purpose for requested service. It is natural
therefore to define a context as a structured typed data: Let τ : DIM → I , where
DIM = {X1, X2, . . . , Xn} is a finite set of dimensions and I = {a1, a2, . . . , an} is a
set of types. The function τ associates a dimension to a type. Let τ(Xi) = ai, ai ∈ I .
Define a context c as an aggregation of ordered pairs (Xj , vj), where Xj ∈ DIM , and
vj ∈ τ(Xj). The dimensions and the types are suggested by the application of interest.

Example 3. The vital information to seek an on-line health care service should include
the service requestor’s credentials. A credential along with location information, date
and time can constitute the context. The dimensions are PN (patient name: type string),
HC (hospital card number: type integer), LOC (the location where service should be
provided: type string), DATE (the date when the service is to be provided: type record).

2.1 Syntax and Semantics

The context type is determined by the set of dimensions DIM , the types I and the
function τ . Our discussion applies to contexts of the same type. The syntax for a con-
text is [Xi : vi, . . . , Xj : vj]. The binding between dimensions and the values from
the types associated with the dimensions is made explicit. The necessity is that agents
should be aware of the dimensions from which the information are perceived. An in-
stance of a context for the type in Example 3 is [PN : Bob, HC : 123456, LOC :
Boston, DATE : 〈2008/10/30〉]. For a context c, we write dim(c) to denote the set
of dimensions in c, and val(c) to denote the set of typed values in c.

The semantics for contexts is adapted from the set theoretic and relational semantics.
we define context operators whose operational semantics are close to the set theoretic
and relational operators. Table 1 lists these operators, their precedence and their mean-
ings. By an application of this operational semantics a context expression is evaluated,
as in Example 4.

Example 4. Let c1 = [PN : Bob, HC : 123456, LOC : Boston, DATE : 〈2008/
10/30〉], c2 = [PN : Alice, HC : 456123, LOC : Chicago, DATE : 〈2008/11/
15〉], and c3 = [PN : Tom, HC : 142536, LOC : Boston, DATE : 〈2008/10/30〉]
be three different contexts of the type in Example 3. The expression c1 ⊕ c2 ↑ {LOC,

A Context-Aware Trust Model for Service-Oriented Multi-Agent Systems 225

Table 1. Context Operators and Precedence

operator name symbol meaning precedence
Union � Set Union (dimension, value pairs) 3
Intersection � Set Intersection (,, ,,) 3
Difference � Set Difference (,, ,,) 4
Subcontext ⊆ Subset of dimensions 6
Supcontext ⊇ Superset of dimensions 6
Override ⊕ Function overwrite 4
Projection ↓ Domain Restriction 1
Hiding ↑ Range Restriction 1
Undirected Range � Range of simple contexts with same domain 5
Directed Range ⇀ Range of simple contexts with same domain 5

DATE} evaluates to the context [PN :Alice, HC : 456123, LOC :Boston, DATE :
〈2008/10/30〉]. The result reflects the status wherein Alice wants service to be provided
at Boston on 2008/10/30.

Many other properties, such as dim(c1 � c2) = dim(c1) ∪ dim(c2), can be derived
by an application of the semantics1. It is sufficient to admit in MAS contexts in which
the dimensions are distinct. A context in which a dimension is repeated is equivalent
to a set of contexts in each of which the dimensions are distinct [29]. As an example,
if Bob wants health care services on two different dates one can construct c = [PN :
Bob, HC : 123456, LOC : Boston, DATE : {〈2008/10/30〉, 〈2009/01/05〉}], in
which the DATE dimension is repeated. Context c is equivalent to the set with two
contexts cs = {[PN : Bob, HC : 123456, LOC : Boston, DATE : {〈2008/10/30〉],
[PN : Bob, HC : 123456, LOC : Boston, DATE : {〈2009/01/05〉}].

Reasoning with Contexts
Let α be a logical expression on some quality attributes that must be verified in a context
c. We write vc(c, α) to denote such a verification condition. The dimensions of a context
and the quality attributes that are to be verified in that context may sometime overlap.
In that case, the expression α will involve those common dimension names and are
treated as free variables. While evaluating α in context c, the dimension names in the
logical expression should be bound to some values in their respective typed domains.
If sufficient information is not available to evaluate α in context c, the evaluation is
postponed, not abandoned. Some simple axioms for verification within a context are
the following:

If α is true in a context c2 then it is true in every sub-context of c2. That is,

c1 ⊂ c2

vc(c2, α) ⇒ vc(c1, α)
(1)

If α is true in context c then there exists a context c′ such that vc(c′,vc(c, α)). That is,
for every context c there exists an outer context c′ from which the verified truths can be
observed.

1 Note that cup is a set operator, whereas � is a context operator.

226 K. Wan and V. Alagar

vc(c, α)
∃c′ • vc(c′,vc(c, α))

(2)

Analogous to the Law of Excluded Middle we give the axiom

vc(c, α → β),vc(c, α)
vc(c, β)

(3)

A context c′ is a consistent extension of context c, written c′ � c, if dim(c) ⊂ dim(c′),
and vc(c, α) ⇒ vc(c′, α). A consistent extension is monotonic. Suppose not enough
information is available in context c to evaluate α. Since context c′ has more (precise)
information than context c, vc(c′, α) may have the information to evaluate α.

2.2 Modeling Contact Awareness

A service providing site (agent) must be aware of the different contexts that it is in
and the contexts encountered by it. The first kind of awareness is its self-awareness or
internal awareness. The second kind of awareness is its external awareness.

Internal Awareness: It is modeled with a view to protect the critical assets of the agent,
regulate the service, and optimize resources. It is necessary to abstract in it information
regarding it’s clients, assets, permission policies, and obligations. A client can be an
agent acting on behalf of someone, or another entity in the system. In general, they are
the subjects who are active in seeking its services. The agent maintains a database (or
has access to a database which it can query) of its client categories and identification of
clients in each category. Authorization to access the site, get service, and query it can be
regulated by identity/password combination or credentials. Assets are the objects that
are under its control/ownership. Access to every asset is controlled by the policy (se-
curity and privacy) of the institution that the agent represents. For each asset under its
control and for each client a permission is determined dynamically, taking into consid-
eration the asset category, the client category, the context of service requirement, and
the purpose behind the request. An obligation is a policy. There are two kinds of obliga-
tions. One kind is ”mandatory” that specifies the action (response) that the agent must
perform after a user request is fulfilled. For example, if a request for a service is denied,
the client shall be informed to get a new authorization, before her session may be ter-
minated. The second kind is obligation set by clients. For example, when a client pays
on-line for downloading a software from the site under the agent’s control, she may set a
time limit for getting a refund on it in case the software fails to work in the configuration
set up of the client. Such obligations are usually time constrained. From the above mod-
eling elements, the context type for self-awareness can now be constructed. Assume that
UC = {UC1, . . . , UCm} is the set of client categories as determined by the site. Let
AC = {AC1, . . . , ACk} be the set of asset categories which are to be protected. We
regard UCi’s and ACjs as dimensions for this context type. Let PC denote the purpose
dimension. Assume that the type for UCi is string, the type for ACi is the set of in-
tegers (pointers to files), and the type for PC is the set {Accounts, Clinical, Registry}.
An example of context in this type is [UC1 : Alice, AC2 : EI1, PC : Clinical]. In this
context Alice in user category UC1 is requesting access to the asset EI1 in category

A Context-Aware Trust Model for Service-Oriented Multi-Agent Systems 227

AC2 required for a clinic. An obligation is expressed as a logical expression. An ex-
ample of obligation is α = onduty(Alice) ∧ 2 ≤ deliver clinic(Metabolism) ≤ 5,
to be interpreted as that Alice is on duty and she must deliver the asset within the time
limit [2, 5]. In order to enforce the obligation the verification condition vc(c, α) must
be fired at context c.

External Awareness: Contexts that characterize external awareness are constructed
automatically from the information gathered from client profile, and client request.
The relevant dimensions are LOC, TIME, WHO, WHAT , WHERE, WHEN ,
WHY which correspond respectively to the location from where service is requested,
the date/time at which the service request is made, the client role, the nature of ser-
vice, the location where the service should be provided, the date/time by which the
service should be given, and the reason for requesting the service. An example of ex-
ternal context is c = [LOC : Montreal, T IME : d1, WHO : Manager, WHAT :
EPR2, WHEN : d2, WHY : Accounts, WHERE : Boston].

3 An Overview of Trust Model for Service-Oriented Systems

The MAS model that we discuss in Section 4 differs from peer-to-peer servicing sys-
tems. The MAS has a middle layer in which agents act as mediators between service
requestors and service providers. Service requestors should communicate the quality
attributes to the mediators, rather than absolute trust values they expect for a service.
The mediators discover the service that satisfies the quality attributes and deliver the
service together with a trust value (in a standard ordinal scale) associated with the ser-
vice to the service requestor. The advantages of this approach include ensuring privacy
of service requestors, avoiding the conflicting views on absolute trust values coming
from different sources, and guaranteeing the quality of service on behalf of the many
service providers whose services might have been composed into the delivered service.
We believe that it is necessary to separate trust calculation from trust verification for the
following reasons.

Every trust model, regardless of the mechanisms used to measure trust and types of
values used to assess and compare trust, will use (1) a trust function, which assigns a
trust value on an entity in the context of service request, and (2) enforce trust policies
for trust evaluation, and propagation. A system or service is defined to be trustwor-
thy [22] if the four quality attributes safety, security, reliability, and availability can be
verified in it. If we could formulate these attributes into a logical expression α, then we
have to verify vc(c, α), in every context in which service is provided. This implies that
the dimensions used in constructing the service providing context must be sufficiently
expressive to include these four quality attributes. The number of dimensions may dra-
matically increase, and in practice it is not easy to identify all dimensions. Hence, trust
calculation, which may be only approximate, must be separated from verification which
should be exact. In order to make verification feasible, only those parameters that are
recognized as most important for a specific application should be included in the veri-
fication condition. As an example, in a movie downloading site the ratings is the most
important parameter and it must be verified in the service.

228 K. Wan and V. Alagar

3.1 Choice of Trust Domain

In the literature there exists different conventions for choosing trust values. Regardless
of the choice, the trust domain D which includes all the trust values for an application
should be a complete partial order [30]. Integers, and real numbers are the natural
choices that fit this requirement. If symbols are used, as in stock recommendations or
in grading, then we regard it as an enumerated type, the order being implicit in the
enumeration. As an example, in the enumeration {hold, sell}, the degree of trust in
sell recommendation is higher than the degree of trust in hold recommendation. When
the trust domain is either non-numeric or non-simple (such as vectors), it is necessary to
define a metric on the trust domain to enable the measurement of the distance between
two trust values. Such a measurement helps to understand the disparity or closeness
between trust values. Towards such a definition of metric here is a simple approach. If
σ : D → ω is a total monotone function and � is a partial order on the trust domain then
for d1, d2 ∈ D (1) if d1 � d2 then σ(d1) ≤ σ(d2), and (2) for every chain d1, . . . , dk

in D, σ(d1) ≤ σ(d2) ≤ . . . σ(dk). This way of metricizing the trust domain is an
abstraction of the way that PICS rankings [20,13] are usually interpreted.

3.2 Context-Aware Trust Measurement

We denote the set of entities (subjects and objects in the system) by E , the set of contexts
by C, and the set of logical expressions over quality attributes by Q. For some α ∈ Q,
if vc(c, α) is true then the trust value in context c should be based upon the quality
attributes in α and the information available in context c.

Definition 1. The function,

π : E × E × C × Q → D

associates for a, b ∈ E , and c ∈ C a unique element d ∈ D, called the trust that a has
on b in context c, provided vc(c, α) is true.

A service-oriented system is an open distributed system, where sites may have different
trust domains and context types. In order to interpret the trust value in one context of
one site in a context of another site, a mapping between their trust domains, and another
mapping between their context types must be provided. As an example, let us fix the
context as common for both sites, say on-line auction, and one site is in Euro zone and
another site is in US dollar zone. The sites must have a type conversion function to
interpret one another’s bidding. In a decentralized MAS, as we explain in Section 4,
both type conversions and context homomorphisms can be done by agents.

Reasoning with Context-aware Trust
We fix the context type and trust domain, and give rules for reasoning with trust values.

vc(c, α) ∧ vc(c, β)
π(a, b, c, α ∧ β) = maximum{π(a, b, c, α), π(a, b, c, β)} (4)

vc(c, α) ∧ α ⇒ β

π(a, b, c, β) = π(a, b, c, α)
(5)

A Context-Aware Trust Model for Service-Oriented Multi-Agent Systems 229

Corresponding to the axiom 2 we postulate

∃β • vc(c′, β) ∧ β ⇒ α

π(a, b, c, α) = π(a, b, c′, β)
(6)

That is, what is observed from c′ should not be invalidated at c′. Corresponding to the
subset axiom that if c1 ⊂ c2 then vc(c2, α) ⇒ vc(c1, α), we postulate

vc(c2, α) ∧ c1 ⊂ c2

κ(π(a, b, c1, α) = π(a, b, c2, α))
(7)

where κ is the belief operator. The trust value, that is believed at one context, can be
changed in the same context when more constraints are added to α. In the following
equation vc(c1, α) ∧ vc(c2, β) is true.

π(a, b, c1, α) ≥ (π(a, b, c1 � c2, α ∧ β) (8)

π(a, b, c2, β) ≥ π(a, b, c1 � c2, α ∧ β) (9)

lub{π(a, b, c1, α), π(a, b, c2, β)} ≥ π(a, b, c1 � c2, α ∧ β) (10)

where the symbol lub is the least upper bound operator. In the next equation assume
that vc(c1, α) ∨ vc(c2, β) is true.

π(a, b, c1 � c2, α ∨ β) ≥ π(a, b, c1, α) (11)

π(a, b, c1 � c2, α ∨ β) ≥ π(a, b, c2, β) (12)

π(a, b, c1 � c2, α ∨ β) ≥ glb{π(a, b, c1, α), π(a, b, c2, β)} (13)

where the symbol glb is the greatest lower bound operator.

3.3 Trust Model vs. Trusting Behavior

We illustrate that the six-fold classification of trusting behavior of an entity a, called
trustor, on another entity b, called trustee, given by McKnight and Chervany [19],
can be expressed within context-aware trust model. A trusting behavior can also be
associated with one or more of the trustworthiness features security, safety, reliability,
and availability.

1. Disposition: An entity a (client) is naturally inclined to trust b (a vendor). The inten-
tion affects directly the actions, without going through any reasoning process. That
is, a trusts in her judgement in order to trust b, which implies that her judgement
on attributes expressed in the expression α is true in every context c the service is
offered by b.

2. Situation: An entity a trusts b in a particular scenario. As an example, a (consumer)
may trust b (broker) in the context c1 of buying mutual funds but not in the context
c2 of buying stocks. That is, for entity a vc(c1, α) is true and vc(c2, β) is false
where α is the assertion on the quality attributes for buying mutual funds and β is
the assertion on the quality attributes for buying stocks. Axioms 8-13 hold.

230 K. Wan and V. Alagar

3. Structure: An entity a trusts the structure (institution) of which the entity b is a
member. For example, if b is a chartered bank and a knows the norms of the federal
bank of which all chartered banks are affiliates a has the natural inclination to
trust b. If b is the mortgage officer in a chartered bank and a is a customer who
understands the bank policies on privacy, investments, and mortgage loans, a is
inclined to trust b. All the axioms enumerated above are valid. Most importantly
trust is transitive because of the axioms 3, 5-6.

4. Belief: An entity a believes that b is trustworthy. The belief may be based upon
factors such as predictable behavior, timeliness, and integrity of service. Consumer
a trusts site b because whenever she downloads a software the downloaded soft-
ware behaves as specified. Trust is calculated in a context, based upon the trust
values in the history of contexts encountered by the entity. The belief axiom 7 can
be generalized so that trusts at two different contexts, not necessarily subsets, are
comparable.

vc(c1, α) ∧ vc(c2, β) ∧ α ⇒ β

π(a, b, c2, β) = π(a, b, c1, α)
(14)

5. Behavior: An entity a voluntarily depends on entity b. There is no third party in-
volvement here. Consumer a trusts the services provided by a site b because she is
either unable to find that service from another site or has not heard anything bad
about b’s service. Hence consumer a accepts vc(c, α) to be true, even when she
does not have sufficient information to actually evaluate it.

6. Intention: Intention is the result of a desire to reach a goal in a specific context.
Once the goal is set in a context an entity a is willing to depend on the services
provided by entity b in order to reach her goal. In order to reach the goal, a will try
to extend the current context in a consistent manner at each step. Consumer a may
choose different b’s at different contexts in order to achieve her goal. Formally, let
c1 . . . cn be a sequence of contexts such that ci is a consistent extension of ci−1,
vc(ci, αi) is true, and αn ⇒ αn−1 . . . α2 ⇒ α1. Then we can deduce from the
axioms that pi(a, b, c1, α1) ≤ pi(a, b, c2, α2) ≤ . . . ≤ pi(a, b, cn−1, αn−1) ≤
pi(a, b, cn, αn). That is, until the goal is reached the trust values are monotonic
non-decreasing, implying that no contradiction is ever introduced.

4 MAS Model of Service

A service delivered in a context c is a function [6] which should satisfy the quality
attributes α if vc(c, α) is true. To receive and process a service request we model the
MAS with four types of agents. The types are defined by the roles and the normative
behavior of agents. Many agents of one type may be active in each session of service
processing. We write x : X to mean that agent x is of type X .

4.1 Agent Types

The four agent types in the system are UIA, MMA, SPA, and TSA. An agent of type
UIA assists users external to the MAS, in formulating service requests, compiling their
profiles, deducing the user’s information needs by direct communication and history

A Context-Aware Trust Model for Service-Oriented Multi-Agent Systems 231

of transactions, presenting the requests to agents of type MMA, receiving response to
a request from MMA agents and communicating them to the respective users, taking
corrective actions on behalf of the user, and adapting to the changes in the environment
so that it can improve its assistance to the user. An agent of type MMAinteracts with
UIA agents to receive service requests and return services, interacts with SPA agents to
discover and receive services, and interacts with TSA agents for authentication, certifi-
cation, trust and context management. An agent of this type SPA provides services in
one specific application domain. As an example, Air Travel is one specific application
within Transportation domain. In the MAS model, an SPA agent will provide service
in one such specific application domain. Agents of type TSA act as certification author-
ities, context managers, trust managers, configuration managers, ontologists, vigilante,
and auditors. While acting as a vigilante it will monitor events, maintain a history of
system evolution, draw inferences, and plan actions to ensure that no agent from out-
side the AMS has intruded into the system. An important requirement is that all agents
in MAS trust the agents who manage their trust information in a secure and manner,
assuring integrity and confidentiality. The TSA agents are assumed to have been given
sufficient resources to ensure that the services are provided without getting interrupted
by external attacks and internal failures. More than one agent may act out the same role,
however an agent may act only in conformance with the norms prescribed for its type.
An agent may advertise its roles to other agents in MAS and may subscribe for their
services. An agent may deny service to an agent not subscribed to its services. We use
the notation x : X to denote that x is an agent of type X .

4.2 Service Protocol

A service interaction between two agents can happen only if at least one of them is sub-
scribed to the services published by the other. An external client of MAS can subscribe
to one or more agents of type UIA. No other MAS agent is visible to an client. Although
an external client may subscribe to more than one UIA agent, she cannot interact with
more than one UIA agent during a session. A session of a client u, denoted us, starts
from the instant u contacts one of her UIA agents, say uuia : UIA, for service. The ses-
sion us ends when uuia either delivers the service to u or informs u that the requested
service is not deliverable. The assumption is that all external clients subscribe prior to
starting their sessions.

A subscription is made to an agent when a profile of the requestor is registered with
it. The profile includes a specific set of services and a verifiable credential of the re-
questor. The attributes that make up a profile are determined by the agent to whom
the subscription is made. A submitted profile may be modified by the subscriber af-
ter the first submission. In turn the agent is obliged to ensure the confidentiality of the
registered profiles by announcing the trusted authority in the system with whom the
profiles are registered. That is, only a trusted authority agent taa : TSA can maintain
the database of profiles collected by an agent uuia. More than one UIA agent may use
the services of a taa agent. However, an agent uuia cannot use the services of more
than one taa agent.

232 K. Wan and V. Alagar

Protocol Steps

1. submit service request: User u contacts one of the agents of type UIA. This micro-
step can be just a handshake based on password authorization. Agent uuia from
this set presents u with a service template. The user returns an instance of the
service template, in which information that can identify the user, a service (domain
of service, functionality of service), quality attributes for the service, and contextual
information for service delivery are specified. This instance is the specification of
the service request, called Su. The agent uuia sends Su to its trusted authority
taauia, to the context-management agent cma : TSA, and to the matchmaking
agent mma : MMA2. The service specification Su is structured in such a way
each agent that receives Su can understand and decide which part of Su is relevant
for its task.

2. matching a profile: Agent taauia ignores the information in Su that is not relevant
to its task, and uses the rest of the information to match the profiles in its database.
It selects a set of profiles from its database3 such that in every selected profile the
service specified in Su matches exactly, and the identification information in Su

is either completely or partially matched. If the set of selected profiles is empty it
informs uuia, otherwise it sends the selected profile to the authentication agent asa.

3. authentication of client: Agent asa has sufficient knowledge in its knowledge base
to construct logical assertions from submitted information and reason whether or
not a submitted information implies already subscribed information. That is, from
the credentials in Su it forms a logical expression α, from the matching profile
of the client received from taauia it forms another logical expression β and will
evaluate β ⇒ α. If it is true, then from the fact that β it can conclude α is true and
authenticate the client. It includes the result of authentication in Su and sends it to
uuia and mma.

4. context construction: The agent cma has an implementation of context calculus. It
extracts the contextual information cu at which request for service is made and the
contextual information c′u for service delivery from Su. Context c′u includes quality
attributes. It constructs the contexts in the syntax described in Section 2. It includes
the contexts in Su and send it to mma.

5. notification of authentication failure: If uuia receives back Su a notice of authenti-
cation failure, it informs the user u and the security agent asa.

6. matchmaking process: Agent mma receives from cma contexts cu and c′u. Con-
text cu is the context in which client u has requested the service, and context c′u
includes the constraints on the quality and other non-functional constraints (such
as hardware) to be respected at service delivery to the client. Agent mma has a
table of service information gathered from the service providers. For each service
provider spa there is an entry in the table, showing the names of services provided
by spa, the functionality and quality attribute for each service, and obligation con-
straints, if any, for each service. We defer a formal discussion on these issues, and
assume that mma has the knowledge and resources to match a request against the

2 For simplicity of exposition assume that there exists only one context management agent, one
authentication/security agent, and one match making agent in the system.

3 The database is a shared resource between trusted authority agent and authentication agent.

A Context-Aware Trust Model for Service-Oriented Multi-Agent Systems 233

services in the table, choose services, and compose them to meet the request. The
context-based Service composition approach discussed by Mrissa et al; [18] can be
the basis of the knowledge-base of mma. What is needed is to extend this approach
so that mma can verify the satisfaction of the composition to the service delivery
context c′u. A brief description of these steps follow. We let spa1, . . . , spak be the
service providers whose services are needed for the composition.
checking credentials of client: Agent mma evaluates vc(cu,dci), where dci is a
logical expression composed from the institutional policy governing service provi-
sion by spai. A service provision agent represents some institution and is bound
by the policy of that institution. A policy is rule, which being declarative, can be
formulated into a logical expression. As an example, the hospital policy regarding
physicians to access patient records from the nursing home and for the purpose
specified in the context cu, may have to be evaluated at this stage. In order that u
may be permitted to receive the service the expression

∧
i{vc(cu,dci)} must be

true. If there exists a service provider spaj for whom vc(cu,dci) is false, then that
service provider is removed from the list of service providers, and agent mma will
contact another spa to get an equivalent service.
service composition: After a successful termination of the previous step, services
are composed. Let f denote the composition of services. If α is the logical expres-
sion conjoined from the quality attributes (security, trust, reliability, availability,
performance) of all spas whose services are composed into f , the assertion claimed
by the service providers is that f satisfies α (denote as f sat α). That is, the prop-
erty α is verifiable in the function f . According to Hoare logic, it is sufficient to
verify that the post-condition of f implies α.
conformance with expected quality: Agent mma evaluates vc(c′u, α). If it is true,
then because the agent has already proved f sat α) it can conclude that α conforms
to the quality attributes specified in the service delivery context c′, and consequently
f is acceptable in context c′u.
trust calculation: Agent mma sends the list of service providers, the context c′u
and α to the trust management agent tma, which calculates a trust value for mma
on each spai. The agent tma applies homomorphism and type conversion to nor-
malize the trust values to an ordinal scale, and returns the resulting trust values
π(mma, spai, c

′
u, α) to mma.

obligation calculation: Agent mma calculates β =
∨

i{vc(c′u,obi)}, the obliga-
tion constraint.
service provision: From the trust values received, agent mma computes one trust
value4, and sends the service f , the obligation constraint β, along with the com-
puted trust value to agent uuia.

7. service delivery: Agent uuia delivers the service f to u, informs u the degree of
trust in the service, and enforces the obligation β on behalf of the client u. The en-
forcement is a firing of the verification condition vc(c′′u, β), where c′′u is a consistent
extension of c′u.

4 This can be an infimum reflecting the most pessimistic value, or supremum, reflecting the most
optimistic value, or the average, reflecting a statistical value.

234 K. Wan and V. Alagar

5 Conclusion

In this paper we have given a comprehensive overview of a context-aware trust model for
service oriented systems. A service oriented system is envisaged through a multi-agent
system, modeled with four agent types. Agents in the MAS can form dynamic coali-
tions of trusted partners, acting on behalf of service requestors and service providers,
and facilitate trustworthy service delivery. The MAS architecture ensures the privacy of
participants in a transaction without compromising on the quality of service.

The basic function that computes trust is context-specific, but the actual method used
in assessing it is left undefined. We believe that trust formation is a separate issue, and
is actively studied by various research groups. Those methods are only empirical. Our
approach abstracts the properties of trust, regardless of how they are assessed, and pro-
vides a basis for reasoning about trust within a context as well as across different con-
texts. The important benefits in our approach are: (1) Context is independent of what
it references. As a consequence, context-based trust definition captures different kinds
information conveyed by events that are observable by agents; (2) Context calculus en-
ables the construction of new contexts from existing contexts, and the logic of contexts,
once defined, enables one to reason about the information in the newly constructed con-
text with respect to the information contents in the contexts from which the new one
is constructed. As a consequence context-based trust definition is well-suited to handle
trust in dynamic networks, in which contexts and their respective information contents
may dynamically change independent of each other. Our ongoing work includes a pro-
totype implementation to evaluate the impact of the model on performance attributes,
development of a case study on which the theory and performance evaluation are to be
applied, and a thorough comparison between our approach and the approach carried out
in the semantic web research forums.

References

1. Akman, V., Surav, M.: Steps toward Formalizing Context. AI Magazine, 55–72 (Fall 1996)
2. Alagar, V., Wan, K.: Context Based Enforcement of Authorization for Privacy and Security

in Identity Management. In: de Leeuw, E., Fischer Hubner, S., Tseng, J.C., Borking, J. (eds.)
IFIP International Federation for Information Processing. Springer Series, vol. 261, pp. 25–
38 (2008)

3. Alagar, V.S., Paquet, J., Wan, K.: Intensional programming for agent communication. In:
Leite, J., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS, vol. 3476, pp. 239–
255. Springer, Heidelberg (2005)

4. Barry, D.K.: Web Services and Service-Oriented Architecture: The Savvy Manager’s Guide.
Morgan Kaufmann Publishers, San Francisco (2003)

5. Bucur, O., Beaune, P., Boissier, O.: Representing Context in an Agent Architecture for
Context-Based Decision Making. In: Proceedings of CRR 2005 Workshop on Context Rep-
resentation and Reasoning (2005)

6. Broy, M.: A Formal Model of Services. ACM Transactions Software Engineering and
Methodology 16(1), 1–40 (2007)

7. Buvač, S., Buvač, V.: Mathematics of context. Fundamenta Informaticae 23(3), 263–301
(1995)

A Context-Aware Trust Model for Service-Oriented Multi-Agent Systems 235

8. Carnap, R.: Meaning and Necessity: A study in semantics and modal logic (1947); reprinted
by University of Chicago Press (1988)

9. Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-aware Applications. Anchor article of a special issue on
Human Computer Interaction 16 (2001)

10. Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Computing Jour-
nal 5(1), 4–7 (2001)

11. Dijkman, R., Dumas, M.: Service-oriented Design: A multi-viewpoint approach. Interna-
tional Journal on Cooperative Information Systems 13(14) (2004)

12. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communication Lan-
guage. In: Proceedings of the 3rd International Conference on Information and Knowledge
Management (CIKM 1994). ACM Press, New York (1994)

13. Grandison, T., Sloman, M.: A Survey of Trust in Internet Applications. IEEE Communica-
tions Surveys, 2–16 (2000)

14. Guha, R.V.: Contexts: A Formalization and Some Applications, Ph.d thesis, Stanford Uni-
versity (1995)

15. Korsgaard, T.R., Jensen, C.D.: Reengineering the Wikipedia for Reputation. In: 4th Interna-
tional Workshop on Trust Management (STM 2008), Trondeim, Norway, July 16-17, 2008.
Electronic Notes in Theoretical Computer Science (2008),
www.elsevier.nl/locate/entcs

16. Maamar, Z., Mostefaoui, S.K., Yahyaoui, H.: oward an Agent-Based and Context-Oriented
Approach for Web Services Composition. IEEE Transactions on Knowledge and Data Engi-
neering 17(5), 686–697 (2005)

17. Maamar, Z., Benslimane, D., Narendra, N.C.: What can CONTEXT do for WEB SER-
VICES? Communications of the ACM 49(12), 98–103 (2006)

18. Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z., Rosenberg, F., Dustdar, S.: A Context-
Based Mediation Approach to Compose Semantic Web Services. ACM Transactions on In-
ternet Technology 8(1), 1–23 (2007)

19. McKnight, D.H., Chervany, N.L.: Trust and distrust definitions: One bite at a time. In: Fal-
cone, R., Singh, M., Tan, Y.-H. (eds.) AA-WS 2000. LNCS (LNAI), vol. 2246, pp. 27–54.
Springer, Heidelberg (2001)

20. Miller, J., Resnik, P., Singer, D.: PICS Rating Services and Rating Systems (and Their Ma-
chine Readable Descriptions) version 1.1,
http://www.w3.org/TR/REC-PICS-services

21. McCarthy, J.: Some expert systems need common sense. In: Pagels, H. (ed.) Computer Cul-
ture: The Scientific Intellectual, and Social Impact of Computer. Annals of the New York
Academy of Sciences, vol. 426 (1984)

22. Mundie, C., de Vries, P., Haynes, P., Corwine, M.: Trustworthy Computing - Microsoft White
Paper. Microsoft Corporation (October 2002)

23. Papazoglou, M.P.: Service-oriented Computing: Concepts, characteristics, and directions. In:
Proceedings of the Fourth International Conference on Web Information Systems Engineer-
ing, Whasington, DC, USA, p. 3. IEEE Computer Society Press, Los Alamitos (2003)

24. Rey, G., Coutaz, J.: The Contextor Infrastructure for Context-Aware Computing. In: Pro-
ceedings of 18th ECOOP 2004 Workshop on Component-oriented approach to context-aware
systems (2004)

25. Shortcliffe, E.: MYCIN: Computer-based Medical Consultations. Elsivier, New York
26. Toivonen, S., Lenzini, G., Uusitalo, I.: Context-aware Trust Evaluation Functions for Dy-

namic Reconfigurable Systems. In: Proceedings of WWW 2006, Edinburgh, UK (May 2006)
27. Wan, K., Alagar, V., Paquet, J.: An Architecture for Developing Context-Aware Systems. In:

Tzschach, H., Walter, H.K.-G., Waldschmidt, H. (eds.) GI-TCS 1977. LNCS, vol. 48, pp.
48–61. Springer, Heidelberg (1977)

www.elsevier.nl/locate/entcs
http://www.w3.org/TR/REC-PICS-services

236 K. Wan and V. Alagar

28. Wan, K., Alagar, V.S.: An Intensional Programming Approach to Multi-agent Coordination
in a Distributed Network of Agents. In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P.
(eds.) DALT 2005. LNCS, vol. 3904, pp. 205–222. Springer, Heidelberg (2006)

29. Wan, K.: Lucx: Lucid Enriched with Context. Ph.d Thesis, Department of Computer Science
and Software Engineering, Concordia University, Montreal, Canada (January 2006)

30. Wan, K., Alagar, V.: An Intensional Functional Model of Trust. Trust Management II. In:
Karabulut, Y., Mitchel, J., Hermann, P., Jensen, C.D. (eds.) IFIP 2008, pp. 69–85. Springer,
Heidelberg (2008)

Appendix – Type Conversion and Homomorphism

Homomorphism: In a distributed MAS, agents are most likely to have different trust
domains. In order that trust values across agents can be compared and global trust com-
puted it is necessary that a homomorphism φ, defined below, be a continuous function
on the partial order trust chains.

φ : (D, �, σ) → (D′, �′, σ′)

– for d1, d2 ∈ D, φ(d1 � d2) = φ(d1) �′ φ(d2)
– φ(σ(d1, d2)) = σ′(φ(d1), φ(d2))

If a homomorphism, as defined above exists, then trust value from one domain can
be converted to a trust value in another domain. Let π : E × E × C → D and π′ :
E × E × C → D′ be two functions that give the trust values on the trust domains D and
D′. Then φ ◦ π = π′.

Context Type Conversion:

[DIM and I are same:] Let τ : DIM → I and τ ′ : DIM → I be two context
types, τ
= τ ′. Let DIM1 ⊂ DIM , and I1 ⊂ I , such that τ = τ ′ when restricted
to DIM1 → I1. Let DIM2 = DIM \ DIM1, and I2 = I \ I1. Then for every
Xi ∈ DIM2, τ(Xi) = ai, τ ′(Xi) = aj , ai, aj ∈ I2, and ai
= aj . However, if the
two types ai and aj have a common super-type bij , in the sense defined below, then
we can replace values of types ai and aj with a value in bij .

Definition 2. If there exists a type bij and two maps ιi : aj → bij and ιj : ai → bij

such that ιj ◦τ = ιi◦τ ′ then the type bij can be used for the dimension Xi. Contexts
c1 = [Xi : x], x ∈ ai and c2 = [Xi : y], y ∈ aj are type convertible to [Xi, z]
because there exists z ∈ bij such that z = ιj(x) = ιi(y).

[(DIM,I), (DIM,I’) are two different pairs:] The context types are τ : DIM → I , and
τ ′ : DIM → I ′. If there exists a map φ : I → I ′ such that φ◦τ = τ ′ then contexts
of type τ can be converted to contexts of type τ ′.

[DIM and DIM’ are two different sets of dimensions:] Let τ : DIM → I and
τ ′ : DIM ′ → I ′ be two context types. If there exists D ⊂ DIM and D′ ⊂ DIM ′

such that | D |=| D′ |, and for each d ∈ D there exists a unique d′ ∈ D′ such
that τ(d) = τ ′(d′) then the dimension pairs (d, d′) are alias to each other. Hence,
from the context type τ we can project out the sub-contexts on dimensions in the
set D, and then rename every context in d ∈ D with its alias in D′. In practice, this
is much easier if the ontologist, an agent in MAS, has the alias table and helps the
cma agents to extract contexts that suit the dimensions gathered by its clients.

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, p. 237, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Three Common Mistakes in Modeling and Analysis of
QoS of Service-Oriented Systems

Vladimir Tosic1,2,3

1 NICTA*
2 University of New South Wales, Sydney, New South Wales, Australia

3 University of Western Ontario, London, Ontario, Canada
vladat@computer.org

Abstract. Since the basic Web service technologies did not address QoS issues,
a huge body of academic and industrial works studied various aspects of QoS
modeling/specification, analysis, monitoring, and control for service-oriented
systems. Unfortunately, some of these works adopted oversimplifications that
are often not appropriate for the complex reality. In this discussion session, we
will point out to three such recurring oversimplifications: 1) specifying pro-
vider’s QoS guarantees without limiting the number of requests; 2) using past
QoS measurements to predict future QoS without taking into consideration con-
text of requests; and 3) predicting response time of a sequence of services as a
simple addition of their response times without discussing circumstances under
which such calculation is valid/invalid. A significant number of authors (often
independently from each other) used these oversimplifications without inform-
ing readers about their limitations and consequences. We will discuss why such
oversimplifications are mistakes and “anti-patterns” in QoS modeling and anal-
ysis for service-oriented systems.

Keywords: Quality of service, contract, performance analysis, performance
prediction, Web service selection, Web service composition, anti-pattern.

* NICTA is funded by the Australian Government as represented by the Department of Broad-

band, Communications and the Digital Economy and the Australian Research Council
through the ICT Centres of Excellence program.

Enabling Service Business Ecosystems
(ESBE 2008)

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, p. 241, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Introduction: First International Workshop on
Enabling Service Business Ecosystems

(ESBE 2008)

This part of this volume contains the proceedings of the First International Workshop
on Enabling Service Business Ecosystems (ESBE'08), held on December 01, 2008 in
Sydney, Australia, in conjunction with the International Conference on Service Oriented
Computing (ICSOC) 2008.

Today, services are used as a core component or utility of business operations and
offer programmatic interfaces to applications to exploit these services. The majority
of attention on service oriented systems has been contemplated on its related technical
standards and technology integration. However, many of today’s available services
are not considered as providing relevant business value as their use by third-party
clients have unclear terms and conditions with unknown risk. The trend of software
transforming to the service oriented paradigm demands a new way of business model
reassurance to manage services operation, deployment, and longevity in the context of
business ecosystems.

The ESBE workshop aims to bring together researchers and practitioners in
services development across business domains. Its focus is on creating business value
through services and, looking beyond individual businesses, fostering the growth of a
service ecosystem.

This year 6 papers were selected in two categories, 4 full research papers and 2
short research papers, based on a thorough review process, in which each paper was
reviewed by at least 3 experts in the field. The selected papers illustrate very high
caliber research in the field of service ecosystem.

We would like to take this opportunity to express our thanks to all people who
have contributed to ESBE’08. We are indebted to all members of the program
committee for their reviews and comments. We appreciate the opportunity given by
the ICSOC workshop chairs to organize this workshop in conjunction with ICSOC
2008.

We hope you find the papers in this proceedings interesting and stimulating.

Vincenzo D’Andrea

G.R. Gangadharan
Renato Iannella
Michael Weiss

Describing Services for Service Ecosystems

Gregor Scheithauer1,2, Stefan Augustin1, and Guido Wirtz2

1 Siemens AG, Corporate Technology, Knowledge Management
Otto-Hahn-Ring 6, 81739 Munich, Germany

2 University of Bamberg, Distributed and Mobile Systems Group
Feldkirchenstrasse 21, 96047 Bamberg, Germany

Abstract. Service ecosystems are electronic market places and emerge
as a result of the shift toward service economies. The aim of service
ecosystems is to trade services over the internet. There are still obstacles
that impede this new form of market places. Two of these challenges are
addressed in this paper: (1) identification of appropriate service proper-
ties to specify service descriptions, and (2) a need of a clear classification
for service description notations. Therefore, service properties and their
relationship are introduced and an adaption for the Zachman Frame-
work is presented to classify service description notations depending on
the relative perspective.

Keywords: Service description, Zachman Framework, service ecosys-
tems.

1 Introduction

Tertiarisation describes a structural change in developed countries concerning
the sectoral composition. Countries shift from an industry economy toward a ser-
vice economy. Sources of this change include globalization, technological change,
and an increasing demand for services [21]. Considering this trend, it becomes
clear that services and the service economy play an important role in today’s
and tomorrow’s business. In line with this trend, service ecosystems [4] emerge,
such as eBay, Google Base, Amazon.com, SalesForce.com, and SAP Business by
Design. Such market places allow to trade services between different legal bodies.

One major challenge for service ecosystems is the fact that services are dif-
ferent to goods. According to Booms and Bitner [5] services are intangible, and
thus, can neither be stored, transported, nor resold. Goods are produced at some
point, stored, and eventually consumed. In contrast, production and consump-
tion of services take place at the same time. Goods can be transported from one
point to another. Services, on the other hand, are consumed at customers’ loca-
tion, thus, production and consumption happen in one place. Whereas goods can
be resold, services’ outcome cannot be sold to another party. Additionally, ser-
vices can hardly be standardized, since service experience is unique and depends
on individual expectations. Moreover, no established language exists to define,
agreeing on, and to monitor service properties [12]. For service ecosystems, ser-
vice descriptions abstract from concrete services and provide a tangible artifact,

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 242–255, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Describing Services for Service Ecosystems 243

which can be stored and transported, and therefore relax some of Booms and
Bitner’s arguments.

Another challenge is that notations for service descriptions depend on perspec-
tive. Service descriptions on a business operational perspective and a technology
perspective differ in concepts and semantics. A system to categorize different ser-
vice description notations and realization languages would support a common
understanding. Service engineering would benefit from such a classification, since
it comprises different stakeholders and different phases such as innovation, strate-
gic planning, service design, service implementation, and market launch [11]. It
would support the work to derive service description from service provider’s
business models, and to implement them with web service related technology.

This paper presents (1) service properties and their relationship to specify a
service description from a service provider’s viewpoint, and (2) an adaptation for
the Zachman Framework [31] in order to categorize service description notations
for various perspectives.

The remainder of this paper is structured as follows: section two introduces
service ecosystems. The Zachman Framework is summarized in section three.
The service properties and their relationships are explained in section four, and
section five presents the service description adaptation for the Zachman Frame-
work. Section six concludes this paper. Related work is presented in the relative
sections.

2 Service Ecosystems

Web services [34] for heterogeneous application integration and communication
between companies gained popularity during the last years [27]. Recently, com-
panies, such as Amazon.com, acknowledged web services beyond integration as a
means to create value for customers. In consequence, the service ecosystem con-
cept gained momentum. Since it is a fairly new field of research, various names
exist for service ecosystems, which include service systems [32] and internet of
services [25]. The vision of service ecosystems is an evolution of service orien-
tation and takes services from merely integration purposes to the next level by
making them available as tradable products on service delivery platforms [4].

Service ecosystems are market places for trading services in the business sense
and involve actors from different legal bodies. Service trade involves the following
steps: service discovery, service selection, service contracting, service consump-
tion, monitoring, and profiling. During discovery and selection, service providers
advertise their services toward potential consumers, whereas service consumers
specify their service preferences toward providers. During service contracting,
providers and consumers negotiate and finally agree on service levels (SLA)
which are monitored (for billing & payment) throughout service consumption.
In the event service levels are not met, compensations must be triggered. During
service profiling, valuable information on services’ performance is stored, which
is gathered during consumption and monitoring.

On the technical side, service ecosystems refer to a logical web service col-
lection [4], with more than one service provider. On the business side, service

244 G. Scheithauer, S. Augustin, and G. Wirtz

Fig. 1. Top-level Architecture of a Service Ecosystem [4]

ecosystems bring together shared information, people, and technology [32]. They
comprise service innovation, service design, service engineering, service market-
ing, and service provisioning [11]. These systems provide core services such as
payment and monitoring, domain-specific services such as eco-value calculations
[9], and complex services such as travel services. These service are leveraged by
others to implement end-to-end business processes [28], which cross companies’
borders, to create value for end-customers. Business models such as Business
Webs [33] foster this idea of coopetition.

Barros and Dumas [4] (cf. figure 1) identify next to service consumers three
different roles for actors in service ecosystems. Service providers, who provide ser-
vices in the first place. Service brokers offer services from different providers. Their
business model is to bring providers and consumers together, or enhance services
with delivery functions for convenient service provisioning. Service mediators gen-
erate value by customizing provider’s standard services toward consumer’s needs.
All the same, service ecosystem actors may play more than one role.

Services that are traded in service ecosystems are so-called e-services. Baida
et al. [2] offer a terminology comprising the terms service, e-service, and web
service. Services refer “. . . to business activities which often result in intangible
outcomes or benefits . . . ” [2]. E-services, in contrast, refer to service provisioning
by means of electronic network protocols, such as the Internet. E-services are
technically implemented with web services. For the rest of this paper, the term
service refers to the e-service definition.

In conclusion, service ecosystems aim at (1) trading services over the internet,
(2) composing complex services from existing ones, and (3) supporting service
provisioning with IT [9].

3 Zachman Framework

The Zachman Framework [35] provides a taxonomy to relate real world concepts
to Enterprise Architecture [31]. Zachman describes Enterprise Architecture as

Describing Services for Service Ecosystems 245

means to flexibly react to business changes and to manage the varied resources of
an enterprise. The Zachman Framework embodies vital artifacts to describe, cre-
ate, operate, and change an object. The term “Object” is used consciously, since
it may relate to practically anything, e.g., an enterprise, a project, a solution,
and in this case a service.

The Zachman Framework distinguish between six perspectives and six de-
scriptions which are orthogonal to each other. The first six columns (internal
view) in figure 2 depicts the framework’s matrix. Each column of the matrix of-
fers a basic model for the description in question from a certain perspective. It is
important to note that the framework does not specify the order of descriptions.
Each intersection is a placeholder for a basic notation which satisfies a columns’
basic model.

3.1 Perspectives

The six different perspectives are organized into corresponding layers [31]. It
is important to note that the various perspectives are different with respect to
nature, content, and semantics and not only in their detail level [35].

The scope layer represents the planner’s perspective. The purpose of this layer
is to identify “... the size, shape, spatial relationships, and final purpose of the
final structure.” [31] and thus, the scope. On this basis a planner decides whether
to invest in the architecture.

The business layer symbolizes the owner’s perspective. Architects describe
the requirements from the owner’s perspective, whereas the intention is to “...
enable the owner to agree or disagree with the ...” [35] description.

The system layer corresponds to the designer’s perspective. The purpose of
this layer is to transform the enterprise model’s artifacts into detailed specifi-
cations. The owner can use these specifications to negotiate with builders to
implement the system.

The technology layer represents the builder’s perspective. The rationale of this
layer is that the detailed specifications must be adapted into builder’s plans to
take into account the “... constraints, of tools, technology, and materials.” [31].

The component layer symbolizes the perspective of a sub-contractor. Builder’s
plans are translated into shop plans. Shop plans “... specify details of parts or
subsections ...” [31] of builder’s plans.

The operations layer represents the system itself.

3.2 Descriptions

The six descriptions depict an enterprise from different angles. Though, each
of them is unique and addresses a different purpose, they relate to each other
[35]. Descriptions are the answers to the basic questions: What (Data Descrip-
tion), How (Process Description), Where (Location Description), Who (People
Description), When (Time Description), and Why (Motivation Description). It
is important to note, that for each description exists a set of terms (descrip-
tion model) which are valid for all perspectives. Nonetheless, these terms differ
essentially in semantics for each perspective.

246 G. Scheithauer, S. Augustin, and G. Wirtz

The data description’s model consists of entities and relationships between
entities. The basic intention is to identify enterprises’ inventory.

The process description’s model embodies processes and arguments (input
and output to processes). The purpose is to make out enterprises’ processes and
business functions.

The location description’s model uses the concepts of locations and connec-
tions in order to discover enterprises’ network.

The people description’s model is that of roles and work. The description’s
intention is the “... allocation of work and the structure of authority and respon-
sibility.” [31].

The time description’s model embodies event and cycle. The description’s
intention is to “... produce a schedule of events and states that maximizes the
utilization of available resources while at the same time satisfying the external
commitment.” [31].

The motivation description’s model uses the concepts of ends and means.
The motivation description’s intention is to describe the motive of an enterprise,
where ends equal objectives and means equal strategies.

4 Service Properties

This section introduces service properties to describe services. Initially, Schei-
thauer and Winkler [26] introduced these properties. They collected properties
from different sources: (1) PAS 1018:2002 [14], (2) IEEE 830:1998 [29], (3) IEEE
1061:1998 [30], (4) ISO 9126 [8], (5) O’Sullivan’s service properties [20], (6) qual-
ity attributes [3]. The actual set presents some adapted properties as well as a
different and a more coherent property grouping. The taxonomy from Avizie-
nis et al. [1] was added to the analysis for quality of service. Additionally, a
hierarchy is introduced which depicts the parent property in combination with
cardinalities. Nevertheless, the presented properties are not intended to be com-
plete. They rather show the current state of the work. Once service ecosystems’
requirements toward describing services are discovered, an exhaustive analysis
is possible. Another limitation is that the presented properties lack appropriate
metrics. This results from the fact that depending on the perspective, proper-
ties are interpreted differently, e.g., a capability is differently expressed on the
scope layer than on the technical layer. This challenge is beyond the scope of
this paper.

These properties are valid for all perspectives of the Zachman Framework
(cf. section 5). It is important to note that these properties do not intend to
describe services’ behavior, implementation, nor how to technically integrate
a service into various software environments. They rather serve to propose a
service on a market place toward potential customers in terms of functionality,
financial, legal, marketing, and quality aspects. The following subsections will
shortly introduce each property.

Describing Services for Service Ecosystems 247

Table 1. Functional Service Properties

Property Name Parent Property Cardinality

Capability Service Description 1...*
Classification Service Description 0...*

4.1 Functionality

Functionality provides the service consumer with an understanding of what the
service is actually providing and thus, what the consumer can expect from the
service. Properties include capabilities and service classifications (cf. table 1).

A Capability is the major function that services provide. A capability allows a
service consumer to access services’ functionality. Often, services’ functionality
is divided into several capabilities. This allows service consumers to access par-
ticular subsets of services’ functionality. Additionally, a service’s outcome might
be different, depending on capabilities to perform in what order. E.g., a flight
booking service offers different capabilities, such as to browse different flights,
to plan a flight route, to book a flight, and to pay for it. In some cases just some
of these capabilities are necessary for service consumers to achieve their goals.
However, to book a flight, one of more specific capabilities must be invoked in
a predefined way. A service has one or more capabilities. This property is rep-
resented by a formal naming system. This would include a capability’s name,
involved parties, data which is processed by the service, and the outcome, which
address also pre- and postconditions.

A classification allows to apply the service into one or more classification sys-
tems. A classification is a system of interrelated terms which generally form a
hierarchical structure. The terms allow to specify the kind of service, an unique
identifier, and a reference to a classification standard, such as eCl@ss and UN-
SPSC [7]. While the classification property is optional, it may be the case that a
service is classified according to multiple classification standards. For that rea-
son it is necessary to model service classification as a tuple of a reference to a
classification standard and a unique identifier.

4.2 Financial

This section comprises monetary related properties (cf. table 2).
The price property represents an economical numerical value for services.

PAS 1018:2002 [15] and O’Sullivan [20] list this property. PAS 1018:2002 depicts
two price properties. The first price property describes service providers’ price
conception. The second price property specifies the service consumers’ price idea.
O’Sullivan, however, offers a more holistic approach. His work includes four
different types of price. It is possible to relate all price types to entities such as
time, area, etc. This allows to specify different prices for different time or areas of
service usage. Additionally, tax information can be included as well. Four price
types are explained briefly [20]. An absolute price specifies a specific amount
of money and a currency. E.g., booking a flight costs EUR 10. A proportional

248 G. Scheithauer, S. Augustin, and G. Wirtz

Table 2. Financial Service Properties

Property Name Parent Property Cardinality

Absolute Price Capability 0...*
Ranged Price Capability 0...*
Proportional Price Capability 0...*
Dynamic Price Capability 0...*
Discount Price 0...*
Early Payment Discount 0...*
Payment Instrument Discount 0...*
Coupon Discount 0...*
Volume Discount 0...*
Location Discount 0...*
Age Group Discount 0...*
Student Discount 0...*
Membership Discount 0...*
Shareholder Discount 0...*
Payment Service Description 1...*
Payment Option Payment 1...1
Payment Schedule Payment 0...*
Card Instrument Payment 1...*
Cheque Instrument Payment 1...*
Cash Instrument Payment 1...*
Voucher Instrument Payment 1...*

price depicts a percentage with respect to a given value. E.g., a life insurance
monthly rate is 1% of one’s yearly income. A ranged price allows to specify
a price range with a minimum and maximum absolute price or proportional
price. Service providers may use this price type in case it is impossible to set an
absolute price. Fixing the final price is part of the negotiation phase between
service providers and service consumers. E.g., a rental car’s price per day ranges
from EUR 50 to EUR 70. The final price depends on the final car configuration.
A dynamic price covers auctions, where the price matching is based on natural
supply and demand. E.g., a service provider offers train tickets and potential
service consumers bet an amount of money they perceive as their value. The
metric for currencies is the ISO 4217:2001. The price amount is represented by
a numerical data type.

The payment property specifies feasible options to fulfill service consumer’s
payment liability. PAS 1018:2002 [15] and O’Sullivan [20] list this property. Where
PAS 1018:2002 depicts only a placeholder for payment, O’Sullivan offers a more
thorough approach. However, they do not contradict each other. According to
O’Sullivan [20], payment is complementary to the price property. He subdivided
this property into four models: payment options, payment schedules, payment in-
struments, and payment instrument types. A payment option constitutes, whether
a particular payment option is the preferred one, whether there is a charge con-
nected to the payment option, where a payment option is available, specific con-
ditions for a payment option, and currencies. A payment schedule depicts when a

Describing Services for Service Ecosystems 249

payment is due. This property has two dimensions. Firstly, it is possible to specify
a percentage of the whole price with respect to services’ provisioning moment (be-
fore, during, and after). Secondly, percentages together with concrete dates can
be specified. Four payment instrument types are available: card based instruments,
cheques, cash, and vouchers. A service has one or more payment properties. Each
payment property has exactly one option, none or more schedules, and at least
one instrument. Payment is a mandatory property. Dates are represented with
ISO 8601, currencies with ISO 4217, and regions with ISO 3166.

The discount property specifies possible price reductions. Only O’Sullivan
[20] lists this property. In general, discount properties can be offered within a
specified time segment (temporal), for a specific location (locative), or a given
condition. The discount property is differentiated between payment related dis-
counts and payee related discounts. Payment related discounts group types of
discounts that refer to how payment is done. This includes early payment, type
of payment instrument, coupons, location of payment, and volume invocation.
Payee related discounts relates to the service consumer, who pays for a service.
This includes age group, student, membership, and shareholder. A service has no
or more discounts for a price. Dates are represented with ISO 8601, and regions
with ISO 3166.

4.3 Legal

The legal category embodies properties which state terms of use. The properties
are rights, obligations, and penalties (cf. table 3).

Rights state what service consumer are allowed or expected to do with the
service. For service ecosystems, re-selling, and re-bundling with other services
needs to be considered. Rights are represented with semantically defined terms.

Obligations determine and settle the commitment for a service provider and a
service consumer. This includes what a service provider must deliver. Obligations
are represented with semantically defined terms.

The penalty property dictates compensation in case an obligation was not met
by one party. Each obligation property relates to one penalty property to cover
the effects. Penalties are represented with semantically defined terms.

Table 3. Legal Service Properties

Property Name Parent Property Cardinality

Right Service Description 0...*
Obligation Service Description 0...*
Penalty Obligation 1...1

4.4 Marketing

The marketing category allows to promote the service toward potential cus-
tomers. Properties in this category should both attract customers and establish

250 G. Scheithauer, S. Augustin, and G. Wirtz

Table 4. Marketing Service Properties

Property Name Parent Property Cardinality

Certification Service Description 0...*
Expert Test Rating Service Description 0...*
Benefit Service Description 0...*

a trusted relationship. A certification would provide a rather neutral view on a
service provided by a third party. On the other hand, expert test ratings provide
a subjective view on the service from an expert perspective. Service benefits are
the gained outcome of the service with respect to the potential service consumer.
These properties are summarized in table 4.

The certification property represents a declaration issued by trusted institutes
or by the service platform itself. This property tells whether a service is certified
by a known and trusted party. This party issues a certificate in case one or more
requirements regarding services are met. An analogous concept is the certifica-
tion for secure websites. The certificate is represented with a formal system or
a common standard, such as the X.509.

Expert test rating represents a rating from autonomous parties which are
experts in the service domain. Potential service consumers might consult the
expert test rating to decide whether to use the service or not. The expert test
rating is determined by thorough tests, where domain-specific criteria are applied
to services and then, depending on the performance, are rated. This property
may be represented via a scale of values ranging from a minimum to a maximum
value (e.g., scale from 1 to 10 as described before).

The benefit of a service is the gained outcome of the service for the service
user. This information is needed for a potential service consumer to determine
whether this particular service has the potential to suit its needs.

4.5 Quality of Service

As aforementioned, service provisioning in service ecosystems is conducted over
the internet, technical properties of the network and the service itself can be
of importance for service discovery and selection. Properties include: (1) perfor-
mance and (2) dependability (cf. table 5).

Performance represents a service’s responsiveness with respect to events and
time [3]. Performance is expressed with latency and throughput. Latency de-
scribes a fixed time interval in which an expected event’s response must be fired.
Throughput specifies how many responses to a given event during a time interval
will be completed.

Avizienis et al. define [1] dependability as “. . . the ability to deliver service
that can justifiably be trusted.” For this analysis, availability and reliability are
regarded. A service’s availability represents the systems readiness to be trig-
gered [3]. Reliability, on the other hand, express the service’s capability to keep
performing over time [3]. Both, availability and reliability are expressed with a
percentage.

Describing Services for Service Ecosystems 251

Table 5. Quality Service Properties

Property Name Parent Property Cardinality

Latency Service Description 0...1
Throughput Service Description 0...1
Availability Service Description 0...1
Reliability Service Description 0...1

5 Service Description for the Zachman Framework

This section presents a seventh description for the Zachman Framework to create
a classification for service description notations and realization languages. The
general logic for perspectives (cf. section 3) is used as the basis.

The existing six descriptions in the Zachman Framework address the solution
itself, e.g., an enterprise architecture or a service. These descriptions can be
considered as an internal view on the solution. Considering service ecosystems
as market places to trade services, an internal view is not appropriate for two
reasons: (1) service customers might not be interested in how services work or are
implemented and (2) service providers do not want to expose this information
to customers and competitors. Thus, a description must become available which
depicts the external view of the solution, which promotes the service toward
potential customers. This external view has different semantics depending on
the different perspectives during service engineering.

Hence, the Zachman Framework is used to align the service description nota-
tions and realization languages with the six different perspectives. This allows
to find appropriate service description notations and realization languages for
each perspective and to identify the need for further notations. Furthermore, this
classification supports the arrangement of the perspectives and their appropriate
notations to foster business-IT alignment.

One limitation to this approach is that this adaptation works for service
ecosystems. In other environments than service ecosystems, different require-
ments might apply, and therefore other adaptations than the one presented be-
come necessary.

It is important to note that the service properties introduced in section 4, are
valid for all perspectives of the Zachman Framework.

The service description’s model is that of properties and values. The service
description intention is to describe a service’s proposition [6] a company offers
toward its customers. Properties refer to service elements which describe a cer-
tain aspect of services. Values refer to the characteristic of service elements. This
model is valid for each perspective, though the semantic differs for each of them.
Figure 2 depicts the resulting framework.

On the scope layer properties have a strategic semantic and take into account
the service final purpose and context by listing the important properties. For
example, the price property refers to a price strategy, and price values refer to a
specific strategy, such as Porter’s generic price strategies. Suitable models for this
perspective are the business model ontology [19,25] and the service bundle [22].

252 G. Scheithauer, S. Augustin, and G. Wirtz

Fig. 2. Service Adaptation for the Zachman Framework

Properties and values on the business layer describe the owner’s requirements
with respect to the services. The result is a value proposition toward potential
customers. For example, the price property refers to a price model, and the price
value to a specific price model, such as Proportional Price [20].

On the system layer designers create a complete service model, which is
technology-independent and formal. On this formal basis, builders can imple-
ment a platform-dependent service description. For example, the price property
refers to the obligation a potential service consumer must pay in order to con-
sume the service and price value specifies the amount of money. Suitable model
notations for this perspective are the UML Profile and Metamodel for Services
(UPMS) [17], the UML Profile for Modeling Quality of Service and Fault Tol-
erance Characteristics and Mechanisms (UPMQoS) [16], as well as the Service
Component Architecture (SCA) [18].

Properties and values on the technology layer are adapted to a concrete tech-
nology. Appropriate technologies for web services include the Web Service Mod-
eling Ontology (WSMO) [24] and Web Ontology for Services (OWL-S) [13].

On the component layer the service description is divided into sections. This
parting allows to realize different parts independently. For example functionality
properties and values are presented with a WSDL file [23], and quality of service
properties and values with the web service level agreement (WSLA) [10].

The operation layer represents the implemented service description itself.

Describing Services for Service Ecosystems 253

6 Conclusion and Future Work

First, service properties were presented to describe services’ external view. Sec-
ond, an adaptation for the Zachman Framework was motivated and introduced.
Lastly, notations were selected for each perspective. Service providers are now in
the position to categorize different service description notations with respect to
the various perspectives which are involved during service engineering. Nonethe-
less, nothing is said about method. A perspective’s service description can be
either modeled before the other descriptions as a requirement, or after the other
descriptions. The service properties offer attributes to describe services in a com-
mon way and hence narrow the gap between business model’s value propositions
and service description implementations. It serves as a domain-specific taxonomy
for describing services for service ecosystems.

Future work includes the evaluation of the service properties. Additionally,
requirements for service descriptions must be derived from service ecosystems to
improve and complete the service property set. Furthermore, the service prop-
erties will be codified in a formal language, in order to share this knowledge be-
tween service providers and service consumers. The Zachman Framework adap-
tation is already in place with the Inter-enterprise Service Engineering (ISE)
methodology [11]. Tool support is under development. Finally, a routine needs
to be developed to model and to derive service properties from business model’s
value propositions [25].

Acknowledgments

This project was funded by means of the German Federal Ministry of Economy
and Technology under the promotional reference “01MQ07012”. The responsi-
bility for the content of this publication lies with the authors. The presented
service properties in this paper are also a result from previous work [26] which
was done in collaboration with Matthias Winkler from SAP Research.

References

1. Avizienis, A., Laprie, J.-C., Randell, B.: Dependability and its threats - A taxon-
omy. In: Jacquart, R. (ed.) IFIP Congress Topical Sessions, pp. 91–120. Kluwer,
Dordrecht (2004)

2. Baida, Z., Gordijn, J., Omelayenko, B.: A shared Service Terminology for Online
Service Provisioning. In: Janssen, M., Sol, H.G., Wagenaar, R.W. (eds.) ICEC.
ACM International Conference Proceeding Series, vol. 60, pp. 1–10. ACM, New
York (2004)

3. Barbacci, M., Klein, M.H., Longstaff, T.A., Weinstock, C.B.: Quality attributes.
Technical Report ESC-TR-95-021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213 (December 1995)

4. Barros, A.P., Dumas, M.: The Rise of Web Service Ecosystems. IT Profes-
sional 8(5), 31–37 (2006)

254 G. Scheithauer, S. Augustin, and G. Wirtz

5. Booms, B., Bitner, M.: Marketing strategies and organization structures for service
firms. In: Marketing of Services, American Marketing Association, Chicago, IL, pp.
47–51 (1981)

6. Gordijn, J., Petit, M., Wieringa, R.: Understanding business strategies of net-
worked value constellations using goal- and value modeling. In: RE, pp. 126–135.
IEEE Computer Society, Los Alamitos (2006)

7. Hepp, M., Leukel, J., Schmitz, V.: A quantitative analysis of product categorization
standards: content, coverage, and maintenance of ecl@ss, UNSPSC, eOTD, and the
rosettanet technical dictionary. Knowl. Inf. Syst. 13(1), 77–114 (2007)

8. International Organization for Standardization (ISO). ISO/IEC 9126: Software en-
gineering - Product quality (2001)

9. Janiesch, C., Ruggaber, R., Sure, Y.: Eine Infrastruktur fuer das Internet der Di-
enste. HMD - Praxis der Wirtschaftsinformatik 45(261), 71–79 (2008)

10. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service
level agreements for web services. J. Network Syst. Manage 11(1) (2003)

11. Kett, H., Voigt, K., Scheithauer, G., Cardoso, J.: Service Engineering for Business
Service Ecosystems. In: Proceedings of the XVIII. International RESER Confer-
ence, Stuttgart, Germany (September 2008)

12. Kuropka, D., Troeger, P., Staab, S., Weske, M. (eds.): Semantic Service Provision-
ing. Springer, Heidelberg (2008)

13. Martin, D., Paolucci, M., McIlraith, S.A., Burstein, M., McDermott, D., McGuin-
ness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan, N., Sycara,
K.P.: Bringing semantics to web services: The OWL-S approach. In: Cardoso, J.,
Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidel-
berg (2005)

14. Mörschel, I., Behrens, H., Fähnrich, K.-P., Elze, R.: Standardisation in the Service
Sector for Global Markets. In: Advances in Services Innovations, Engineering, pp.
257–277. Springer, Heidelberg (2007)

15. Mörschel, I.C., Höck, H.: Grundstruktur für die Beschreibung von Dienstleistun-
gen in der Ausschreibungsphase. Beuth Verlag GmbH, Ref. Nr. PAS1018:2002-12
(2001)

16. Object Management Group (OMG). Specification: UML Profile for Modeling Qual-
ity of Service and Fault Tolerance Characteristics and Mechanisms, v 1.1 (May
2005), http://www.omg.org/technology/documents/formal/QoS_FT.htm

17. Object Management Group (OMG). Specification: UML Profile and Metamodel
for Services RFP UPMS Services Metamodel (September 2006),
http://www.omg.org/cgi-bin/doc?soa/2006-09-09

18. Organization for the Advancement of Structured Information Standards (OASIS).
Specification: Service Component Architecture (SCA),
http://www.oasis-opencsa.org/sca

19. Osterwalder, A.: The Business Model Ontology: A Proposition in a Design Science
Approach. PhD thesis, Universite de Lausanne Ecole des Hautes Etudes Commer-
ciales (2004)

20. O’Sullivan, J.: Towards a Precise Understanding of Service Properties. PhD thesis,
Queensland University of Technology (2006)

21. Peneder, M., Kaniovski, S., Dachs, B.: What follows tertiarisation? structural
change and the role of knowledge-based services. The Service Industries Jour-
nal 23(2(146)), 47–66 (2003)

22. Pijpers, V., Gordijn, J.: Bridging Business Value Models and Process Models in
Aviation Value Webs via Possession Rights. In: HICSS, p. 175. IEEE Computer
Society, Los Alamitos (2007)

http://www.omg.org/technology/documents/formal/QoS_FT.htm
http://www.omg.org/cgi-bin/doc?soa/2006-09-09
http://www.oasis-opencsa.org/sca

Describing Services for Service Ecosystems 255

23. Chinnici, A.R.S.W.R., Moreau, J.-J.: Specification: Web Services Description Lan-
guage (WSDL) Version 2.0 Part 1: Core Language. W3C Recommendation, 6
(2007)

24. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied
Ontology 1(1), 77–106 (2005)

25. Scheithauer, G.: Process-oriented Requirement Modeling for the Internet of Ser-
vices. In: Ruggaber, R. (ed.) Proceedings of the 1st Internet of Services Doctoral
Symposium 2008 (I-ESA), Berlin, Germany, vol. 374, March 25 (2008)

26. Scheithauer, G., Winkler, M.: A Service Description Framework for Service Ecosys-
tems. Bamberger Beiträge zur Wirtschaftsinformatik 78, Bamberg University (Oc-
tober 2008) ISSN 0937-3349

27. Scheithauer, G., Wirtz, G.: Applying Business Process Management Systems – a
Case Study. In: The 2008 International Conference on Software Engineering and
Knowledge Engineering (SEKE 2008), Redwood City, California, USA, pp. 12–15
(2008)

28. Scheithauer, G., Wirtz, G., Toklu, C.: Bridging the Semantic Gap between Process
Documentation and Process Execution. In: The 2008 International Conference on
Software Engineering and Knowledge Engineering (SEKE 2008), Redwood City,
California, USA (2008)

29. Software Engineering Standards Committee of the IEEE Computer Society USA.
IEEE Guide for Software Requirements Specifications, 830-1998 (1998)

30. Software Engineering Standards Committee of the IEEE Computer Society USA.
IEEE Standard for a Software Quality Metrics Methodology, 1061-1998 (1998)

31. Sowa, J.F., Zachman, J.A.: Extending and Formalizing the Framework for Infor-
mation Systems Architecture. IBM Systems Journal 31(3), 590–616 (1992)

32. Spohrer, J., Maglio, P.P., Bailey, J., Gruhl, D.: Steps toward a science of service
systems. IEEE Computer 40(1), 71–77 (2007)

33. Tapscott, D., Ticoll, D., Lowy, A.: Digital capital: harnessing the power of business
Webs. Harvard Business School Press (May 2000)

34. W3C Working Group. Web services glossary (February 2004),
http://www.w3.org/TR/ws-gloss/

35. Zachman, J.A.: A Framework for Information Systems Architecture. IBM Systems
Journal 26(3), 276–292 (1987)

http://www.w3.org/TR/ws-gloss/

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 256–269, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Service Selection in Business Service Ecosystem

Sujoy Basu, Sven Graupner, Kivanc Ozonat, Sharad Singhal, and Donald Young

Hewlett-Packard Laboratories, 1501 Page Mill Road
Palo Alto, CA 94304, USA

{sujoy.basu,sven.graupner,kivanc.ozonat,sharad.singhal}@hp.com

Abstract. A world-wide community of service providers has a presence on the
web, and people seeking services typically go to the web as an initial place to
search for them. Service selection is comprised of two steps: finding service
candidates using search engines and selecting those which meet desired service
properties best. Within the context of Web Services, the service selection
problem has been solved through common description frameworks that make
use of ontologies and service registries. However, the majority of service
providers on the web does not use such frameworks and rather make service
descriptions available on their web sites that provide human targeted content.

This paper addresses the service selection problem under the assumption that
a common service description framework does not exist, and services have to be
selected using the more unstructured information available on the web.

The approach described in this paper has the following steps. Search engines
are employed to find service candidates from dense requirement formulations
extracted from user input. Text classification techniques are used to identify
services and service properties from web content retrieved from search links.
Service candidates are then ranked based on how well they support desired
properties. Initial experiments have been conducted to validate the approach.

Keywords: Service, selection, unstructured data, service discovery, service
matchmaking, text analysis, service ontology, service description framework.

1 Introduction

The service selection problem is how to find and select services offered by service
providers that best meet the requirements described by a service seeker. On one side,
the service seeker provides a description of requirements or desired service properties.
On the other side, service providers describe their capabilities. In general, this is a
two-step process. In the first step, a set of service provider candidates, which
generally meet requirements (not necessarily all requirements), are identified.
Requirements are described as a set of desired service properties. In the second step,
the “best” service provider is selected from the candidate set based on a “best match”
between the properties exposed by the service provider and those requested by the
service seeker. Typically, in order to solve the service selection problem, a common
base must exist or must be established between the descriptions of desired service
properties on one side and descriptions of service capabilities on the other. This
common base can be strong and formal, as it has traditionally been defined by service

 Service Selection in Business Service Ecosystem 257

description frameworks with pre-defined syntactic and semantic constructs for
expressing service properties and query and matchmaking capabilities built on top of
it. A service registry is an example of a system which defines a service description
framework.

While the service selection problem has been explored and has largely been solved
under the assumption that a formal service description framework exists, this is not
true of the majority of service offerings, which are described in natural language in
marketing collateral, web content or advertisements. The same applies at the service
seeker's side: most documents that describe what a person is looking for are expressed
in (largely) unstructured formats. And this is particularly true for the web as the most
significant medium through which service offerings are promoted and advertised as
well as sought and found. Consequently, the service selection problem must be
considered for an unstructured environment such as the web.

We see a need to enable service technology to better deal with unstructured data. It
will be a central challenge for the comings years. In this paper, we present an
approach to the service selection problem using unstructured data for service
properties. We address the problem under the assumption that no common description
framework exists. In the proposed approach, first, search engine is employed to find
service candidates from dense requirement formulations extracted from user input.
Next, text classification techniques are used to identify services and service properties
from web content retrieved from returned search links. Service candidates are then
ranked based on how well they supported desired properties. We have evaluated the
approach through conducting experiments on a sampling of real requirements
documents of an internal marketing department of a large corporation. The
experiments show encouraging results.

The paper is structured as follows. First, we discuss related work in Section 2.
Then we discuss assumptions underlying the work in Section 3. Next, we present the
problem statement in Section 4. Section 5 gives an overview of the approach of the
proposed solution. Details about the techniques and experiments are presented in
Section 6. Finally, we discuss future work and conclude the paper in Section 7.

2 Related Work

Service technology from the Web 1.0 era mainly relied on established service
description frameworks in order to find and select services. Prominent representatives
are service registries, which are a fundamental building block of Service-Oriented
Architecture (SOA) [1] today. An example is the Universal Description, Discovery
and Integration registry (UDDI) [2]. Service registries have not only been defined for
technical (web-) services, but also for businesses services (e.g. OASIS ebXML
Registry [3]). Registries define syntax and semantics in which service descriptions
must be expressed. A common pattern is the use of attribute-value pair sets. Query
techniques in registries rely on either a priori known or discoverable attribute sets for
finding and selecting services. Query languages are based on Boolean expressions or
first-order logic upon property sets. They lead consistently to defined, repeatable
search results in a given search space. More advanced techniques use extendable
service vocabularies and ontologies for expressing and matching service properties.
Service technology of this kind has been targeted towards machines.

258 S. Basu et al.

Approaches for discovering Web services, i.e., those that are described using
WSDL [19] interfaces, are extensively investigated in the literature (e.g., [20], [21],
[22]). There exist also Web services repositories and portals where such services are
indexed and can be explored and discovered (e.g., XMethods [23] and Seekda [24]).
in the focus of this paper is rather on general services over the Web, most of which
are described in natural language. Indeed, more recent service technology is, in
contrast, more targeted towards both people as service seekers and providers. The
common base here is a common natural language with all its ambiguity making it
hard for machines to identify good service selections.

The Web plays a central role today for bringing service seekers and service
providers together, as individuals or as businesses. An indicator for this is the
significant revenue search engines harvest from searches on the web. And yet, support
for service selection in search engines and on the web in general remains rather
limited. More advanced techniques are needed which can deal with the ambiguity of
the web.

Ideally, the web should "understand" human natural language, and there are efforts
towards this [4, 5]. Similarly, efforts are underway in the Semantic Web [6] to
structure web content. However, neither has made the necessary progress. Rather, text
analysis and categorization techniques appear more practical and promising and have
widely been explored on general web content [7, 8, 9], but not specifically for the
service selection problem. This paper specifically considers the service selection
problem and outlines an approach that uses text analysis techniques for finding and
selecting services offered over the web.

3 Assumptions

The paper addresses the service selection problem from the perspective of a seeker of
services in a corporate or private environment. It is assumed that someone (a person)
in the service seeker’s role informally knows about a task to be given to a service
provider and that a textual description of desired service properties exists. One form
of expressing these properties is in form of documents such as a statement-of-work
(SOW), a request-for-proposal (RFP) or a request-for-quote (RFQ) document that
corporations use to procure external services. We use a sample set of these documents
for identifying desired service properties.

It is furthermore assumed that service providers have presences on the web (web
sites) where they informally describe and advertise their capabilities and that those
web pages can be found through search engines. While it is assumed that informal
descriptions about service providers can be obtained from the web, it is not assumed
that the actual business interaction also is mediated over the web. For example, a legal
counseling agency may be found on the web, but actual counseling then occurs in
person. We explore service providers’ web content and classify its properties.

Another assumption is that a common language (English) is used to describe
sought and offered service properties; and that the same words or phrases are used for
same concepts. WordNet [10] provides a rich set of English language words, terms,
phrases and defining semantics.

 Service Selection in Business Service Ecosystem 259

4 Problem Statement

Based on these assumptions, the paper addresses the following problems:

1. Can sought service properties (requirements) be gathered informally from a
business person in a service seeker role and represented in a condensed
descriptive vector of meaningful terms?

2. Can these terms then be used in search engines to find service provider
candidates? This includes that service providers must be distinguished from
other content returned from search.

3. Can service properties be extracted and classified from service providers’ web
content (their web sites)?

4. Can properties from service seeker’s requirements and service provider’s
capabilities be correlated such that providers can be ranked based on how well
they support requirement properties?

The first two problems relate to “how to find service candidates”; the last two
address the matchmaking aspect of the service selection problem.

5 Approach

People seeking services typically go to the web and search for them and then select
what they like. This process is inherently manual since most data based on which
those decisions are made exists as unstructured data, e.g. content of web pages. In this
paper, an approach has been developed which allows automating the process.

A search engine is employed to find service candidates. It is fed with key words
which are extracted from informal user input using a text classification technique. The
result page returned from the search engine contains links to potential service
providers. Those links are followed programmatically to fetch content which may or
may not represent a service provider. A machine learning technique is employed to
automatically make a judgment whether content represents a service provider or not.
Furthermore, if content was classified as representing a service provider, more pages
are fetched from this site to accumulate enough material to again employ a text
analysis technique to determine how well desired service properties are supported.
The produced result is factored into a final score of all identified service providers to
rank order them.

The approach consists of four steps, each addressing one of the above problems:
The first step aims at condensing the information business people use informally

when communicating service requirements. The goal is to identify the essential terms
from documents which describe required service properties. Forms and questionnaires
are familiar to a business audience and a good way to produce dense information for
procuring external services. An example illustrates this approach. For a marketing
campaign at a larger customer event, a service provider may be sought which can “print
quantity 2,000 colored 8.5x11 z-fold brochures, 100 lb. gloss within 10 days with
maximum budget of $1,000”. This string represents a condensed form of a statement of
work document and the essence of desired service properties. Latent Semantic Indexing
(LSI) [11] is used to extract these terms from a representative set of documents. This

260 S. Basu et al.

step results in a descriptive vector of meaningful words representing the essence of
required service properties.

The second step is to use these meaningful words in search engines and to obtain a
pool of links to potential service candidates. Since links returned from search may
refer to any content, which may or may not be service providers, links must be
followed and content obtained from links in order to determine whether or not content
represents a service provider. If content could be successfully probed and classified as
representing a service provider, the service provider is added the pool of potential
service provider candidates. For example, when the string above is typed into the
Google search engine, it returns 11 sponsored links of print service providers (in the
US) and a number of random entries, which are more or less related to printing
brochures, but may or may not be service providers. Typically, in Google, it is
sufficient to consider content returned with the first page. Other search engines such
as Yahoo! and Microsoft may return different content.

Further sources of information about service providers can be involved such as
established service catalogs such as Hoovers [12], Dun and Bradstreet [13] or
ThomasNet [14] in order to obtain a larger candidate pool of service providers. These
service catalogs have been collecting structured information about businesses in the
US and worldwide and make this information available over the web.

However, the answer from search engines or service catalogs can only be used as a
starting point to further explore whether or not a returned link represents a service
provider. The second problem hence addresses whether or not a site behind a link can
be identified as a service provider. The approach here is to look for FORM pages
encouraging users to engage with the service. This step results in a pool of potential
service provider candidates.

Furthermore, in preparation of comparison, service properties must be identified
for candidates from their web content. The approach here relies on meta-tags and
content of online service engagement forms. Thus, this step also provides a set of
service properties identified for each service.

The service candidates are ready for comparison after their service properties have
been extracted. Furthermore, they must be correlated with service properties from
condensed requirements derived in the first step. Since LSI has been used in the first
step, we repeat the process with the service provider pages to generate their condensed
set of properties as a vector of terms. Then we use cosine similarity as the metric to rank
the list of service provider candidates that support the desired service properties best.

While this process does not guarantee that service providers found as a result will
support the requirements and that the top-ranked service candidate is indeed the best
to engage, it mirrors the process a person would follow when asked to find a product
or a service on the web. The advantage here is that we can automate the manual steps
to potentially explore a much larger set of service provider candidates than would be
feasible manually. In the next section, we describe a number of initial experiments
that have been conducted to highlight the potential of this approach.

6 Techniques and Experiments

This section describes experiments that have been conducted for the four steps. We
consider these experiments as an initial set of experiments and are currently scaling

 Service Selection in Business Service Ecosystem 261

up our experiments to larger data sets. We do not claim that these experiments
represent the best choices of techniques that could have been made, nor do we claim
to evaluate and compare different techniques in this paper. Our goal is to demonstrate
a feasible implementation of the four steps of the service selection problem in an
unstructured web environment. Others researchers such as Forman [15] have done
extensive empirical study of feature selection for text classification.

6.1 Extracting Significant Words for Service Requirements

Input. We use 24 PDF documents from an internal marketing department, which are
primarily request for quotes (RFQ) for various printing projects undertaken by a large
enterprise typically through an entity known as the print concierge. The RFQs are
normally sent to approved vendors.

Objective. We seek an automated method, which is not based on domain-specific
knowledge, which can identify the list of terms representing the essence of required
service properties and can handle synonymy and redundancy inherent in natural
language documents. We do not expect the number of RFQ documents to grow as fast
as documents on the Web. We are currently using Latent Semantic Indexing (LSI) to
identify the list of terms in this environment.

Technique. The LSI method in [11] uses Singular Value Decomposition (SVD),
which belongs to the class of matrix decomposition techniques in linear algebra. To
begin, we create a matrix where the rows represent the terms and its columns
represent the documents. An element of the matrix represents the frequency of a term
in a document. SVD expresses this matrix X as the product of 3 matrices, T, S and Dt,
where S is a diagonal matrix of singular values ordered in descending order, and T
and D are the matrices of eigenvectors of the square symmetric matrices XXt and XtX
respectively. Furthermore, the square of the singular values are the eigenvalues for
both XXt and XtX. The dimension of X is t (number of terms) by d (number of
documents), while that of T is t by m, where m is the rank of X and is at most the
minimum of t and d. S is an m by m matrix. Intuitively, SVD transforms the
documents (columns of X) and the terms (rows of X) into a common space referred to
as the factor space. The singular values in S are weights that are applied to scale the
orthogonal, unit-length columns vectors of T and D and determine where the
corresponding term or document is placed in the factor space. Similarity between
documents or the likelihood of finding a term in a document can be estimated by
computing distances between the coordinates of the corresponding terms and
documents in this factor space.

The eigenvectors corresponding to the highest eigenvalues represent principal
components that capture the most important characteristics of the data. The contributions
keep diminishing for descending eigenvalues. By dropping some of the lower
eigenvalues and corresponding eigenvectors, we lose some information, but can reduce
the dimensionality of the data. This is useful when the number of documents is very
large. We can retain the k highest eigenvalues, and the corresponding eigenvectors in the
T and D matrices. The product Ttxk Skxk D

t
kxd gives the unique matrix of rank k closest to X

based on a least-square distance metric. LSI is the process of using this matrix of lower
rank to answer similarity queries such as which terms are strongly related and given

262 S. Basu et al.

query terms, and what are the related documents. LSI has been shown to return query
matches with higher precision when synonyms or multiple word senses would have
prevented syntactic matching.

Experiment. We use LSI on the term by document matrix obtained from our
document set. The terms were single words, bigrams and trigrams. We filtered out
stopwords and the long tail of words that occurred only once. We reduced the rank of
the matrix to k chosen such that 99% of the sum of squares of the singular values,
which is the sum of eigenvalues, is retained. Next, we take the product Ttxk Skxk which
consists of the eigenvectors weighted by their singular values. In [17], Deerwester
et.al. show that the comparison of two terms can be done in the factor space by taking
inner product of corresponding rows in Ttxk Skxk. However, we want to extract the
important terms. So we take the maximum absolute value in each row as the
importance of that term, and sort based on this metric to order the terms by their
descending importance. Given a threshold, our algorithm outputs all terms for which
the metric, normalized to its maximum value, exceeds this threshold. When a new
requirement document arrives in our system, LSI allows us to map it into a vector in
the factor space by a simple matrix multiplication, and extract its important terms
using this threshold technique.

Fig. 1. Variation of Precision with Recall as threshold is varied

Since we need the ground truth to determine how well this approach works, we

asked a human participant in our experiment to read the documents and identify
important terms. To eliminate bias, this person had no a priori knowledge of the terms
selected by our automated approach based on SVD and limited himself to manual
analysis of the documents. He created a list of the top 20 important terms, henceforth
referred to as the ground truth for this experiment. We started with the top 20 terms
from the sorted list created by SVD, and progressively relaxed the threshold. At each
stage, we calculated precision as the fraction of SVD’s output that is present in the
ground truth. We also calculated recall as the fraction of the ground truth that is
present in the output of SVD. Our recall suffers due to our strategy of including all 2
and 3 letter words as stopwords. Thus the word ‘ink’, which is included in the ground
truth, is absent from our term by document matrix. The same is true for terms such as
“80# gloss” since we did not process any token such as “80#” that does not have at

 Service Selection in Business Service Ecosystem 263

least one alpha character. Figure 1 shows the variation of precision with recall as the
threshold is varied. Precision drops from 1 to 0.25 when we relax our threshold
progressively from 1 to 0.28. During this period, we observed only a small increase in
recall to 0.2. The threshold was then relaxed progressively to 0.07. During this period,
recall increased to 0.6, while precision dropped to 0.06.

6.2 Finding Service Candidates

We use a search engine (in particular, AltaVista) to find a pool of service providers
through which the customer can engage in a business interaction over the web to meet
its service needs. We use phrases such as “telemarketing service”, “printing service”
or “copyright litigation service” as input to retrieve the service provider pages.

In order to populate our data set (of service providers), we randomly selected
words under the Wikipedia descriptions of the three services (telemarketing, printing
and copyright litigation), and used them as input phrases to the AltaVista search
engine. The choice is based on the fact that we were successful in accessing it
programmatically. Recently, we have been made aware of BOSS [18], which is
Yahoo!'s open search web services platform. We intend to redo our experiments using
this API. Our understanding is that Google has stopped issuing new keys for its SOAP
API that would have allowed programmatic search. Instead the new AJAX API must
be used. It is geared towards browsers that need to tweak the display of search results,
and will most likely not be suitable for our needs.

The pages retrieved by the search engine needed to be filtered as we seek only web
forms and only web forms that contain the properties and attributes of the offered
services to initiate a business engagement. Thus, for each retrieved web page by
AltaVista, we retrieved the HTML source of the page to filter the non-form pages (or
non-form sections of the form pages). We used the standard HTML tags that denote
HTML form tags in order to filter out the non-form pages or non-form sections.

6.3 Identify Service Properties of Service Candidates

Once the pool of service providers (or, alternatively, the pool of forms, since there is a
one-to-one mapping between forms and service providers) is determined by the
methods of section 6.2, we seek to find the properties of each service type represented
in the pool. For the experiments we conducted, there are three service types:
telemarketing, printing and copyright litigation.

Throughout the remainder of the discussion, we denote each service type by m,
each service providers (or form) by n, and each word used in the forms by w. We
denote the number of service types, number of service providers, and the number of
distinct words used in the forms by M, N and W, respectively. We note that the
parameters N and W are pre-determined, since the pool of forms is already discovered
in section 6.2. We assume that the service types m (and consequently the number of
service types M) are known.

We use statistical learning techniques to identify properties of services based on
the pool of service providers (or forms) retrieved by the methods discussed in section
6.2. We employ both supervised and unsupervised learning techniques. In supervised
learning, the service type of each service provider n is assumed to be known, while in
unsupervised learning this information is missing.

264 S. Basu et al.

Data representation: We model each service provider (or form) n by a sequence of W
bits (sequence of 0’s and 1’s), where each bit represents whether a word is present in
the form. If the bit is 0, the word is absent, and if it is 1, the word is present.

Unsupervised learning: Clustering is an unsupervised learning technique, where
objects that are close under some distortion criterion are clustered in the same group.

Supervised learning: When the cluster labels of the objects are already available (i.e., the
service type of each service provider is known), one can use a supervised learning
technique. We model the data as a mixture of M (where M=3) W-dimensional Gaussians,
and estimated the parameters each Gaussian using the sample averages of the forms in
that cluster. We use the k-means clustering algorithm for supervised classification with
the squared-error distortion measure to cluster forms into M=3 groups. Each object to be
clustered is a vector of 0’s and 1’s of length W, representing a form.

In total, 600 pages have been classified for this experiment for the three service
categories with ~200 for each category. 122 of those pages have been form pages.

Results: We did not obtain encouraging results through unsupervised learning;
however, supervised learning led to keywords that describe each service reasonably
well. These words were selected based upon the probability of 50% or greater that the
word will be found in all documents in the cluster. Keywords are shown in Table 1.

Table 1. Keywords describing service properties for three service categories

Service category Significant keywords

Telemarketing inbound, outbound, call, center, telemarketing, outsourcing,
marketing, company, phone, address, zip, list.

Printing business, card, printing, format, color, folder, sample,
presentation, text, quote.

Litigation intellectual, property, dispute, client, copyright, litigation,
client, business, infringement, attorney, law, trial, website,
competitor.

6.4 Rank Service Candidates

Input. In this step, we start with web pages of services identified from the web similar
to step 6.2.

Objective. We seek an automated method, not based on domain-specific knowledge,
which can identify the subset of the input services that match the required service
properties of one of the requirement documents described in section 6.1. Since
multiple matches are expected, a rank-ordered list of the services should be produced.

Technique. Singular Value Decomposition (SVD) was introduced in Section 6.1. We
use SVD to index the service descriptions and treat one of the requirement documents
as a term vector with which a query is performed.

Experiment. We use SVD on the term by document matrix obtained from the service
web pages treated as documents. The HTML tags were removed. Again, we use

 Service Selection in Business Service Ecosystem 265

single words, bigrams and trigrams as the terms. We reduced the rank of the matrix to
k chosen such that 99% of the sum of squares of the singular values, which is the sum
of eigenvalues, is retained. The term vector for the query is transformed into the
factor space obtained by SVD. This involves multiplying the transpose of the term
vector by the SVD term matrix Ttxk. The coordinates of the transform may be
compared in this space to the other documents representing the services by accessing
individual rows of the matrix product Ddxk Skxk. For each row of this matrix product,
we compute the inner product with the transform of the query term vector. Then we
compensate for variable document sizes by normalizing the result by the product of
the Euclidean length of the two vectors. The result is their cosine similarity, a
standard measure for quantifying similarity of two documents in a vector space.

For our data, the human participant again established the ground truth without a
priori knowledge of how SVD ordered the services. He did a manual evaluation of the
requirement document used as query term vector. Based on his qualitative judgment,
he provided us with a rank ordering of the services documents (HTML pages) in
terms of how well they will meet the requirements specified in the query document.

We ranked the services based on cosine similarity of the service documents to the
requirement document used for query. The correlation of two rank orders can be
quantified by the Spearman rank correlation coefficient, which ranges between +1
when both rank orders are identical to -1 when one rank order is 1, 2,3,…,n and the
other one is n,n-1,n-2,…,1. The results are presented in Table 2. In the absence of
shared ranks, the Spearman coefficient is simply 1 – (6∑ d2 / n (n2 – 1)). From this
table, ∑ d2 is 106 and n = 17. So the Spearman coefficient is 0.87 for our experiment,
indicating very high correlation.

Table 2. Comparison of service ranks obtained manually and through SVD for three service
categories: printing (prt), telemarketing (tlm) and legal services (lwr)

Anonymized Service
Names

Cosine
Similarity

Cosine
Rank

Manual
Rank

d-
squared

pitn-prt 0.4848 7 1 36
mpit-prt 0.7469 2 2 0
pitl-prt 0.6404 3 3 0
ppit-prt 0.8149 1 4 9
pitu-prt 0.5275 5 5 0
mkid-mlg 0.51 6 6 0
jsad-mlg 0.5665 4 7 9
pitn-mlg 0.4564 9 8 1
byro-tlm 0.2363 12 9 9
bbec-tlm 0.182 13 10 9
gtqo-tlm 0.3634 10 11 1
vnes-tlm 0.4821 8 12 16
spra-tlm 0.3045 11 13 4
il_o-lwr 0.0505 17 14 9
lwno-lwr 0.1524 14 15 1
cbrr-lwr 0.134 15 16 1
cmue-lwr 0.0709 16 17 1

266 S. Basu et al.

In Table 2 we compare the service ranks obtained manually and through SVD for
three service categories: printing, telemarketing and legal services.

This is further analyzed in Figure 2 where we plot the precision versus recall,
assuming that the top 10 services in the manual rank column are relevant to the needs
expressed in the requirement document. This is likely to be over-optimistic since an
enterprise is likely to take the list of 17 services and put them through a qualification
process and create a shortlist of vendors to whom requirements will be sent in future
as part of a request for quote. Ideally, that shortlist should be the ground truth for
calculating precision and recall. We assume that the top 10 services in the manual
rank column will be fairly representative of the shortlist that an enterprise may
generate if provided with these 17 services in response to requirement documents that
are related to marketing campaigns. We observe from this graph that we can obtain a
recall of 0.7 without losing any precision.

Fig. 2. Precision versus recall for ground truth consisting of top 10 services from manual
ranking

6.5 Discussion

We consider the chosen techniques and experiments as an initial set which led to an
initial set of answers. There is no doubt that the service selection problem remains
difficult in an environment with largely unstructured data.

From the experiments in the first part, we can conclude that SVD provides a
reasonable method for extracting important terms. As we have stated at the beginning
of Section 5, our current goal was not to find the best method for each part, but to
validate the approach. Since some of the terms provided as ground truth are 3-letter
words, we conclude our policy of eliminating all 3-letter words as stopwords should
be replaced by a more specific one based on lexical databases like WordNet.

For the second part, the identification of service providers from content returned
from search using form tags on the web site, we can conclude that search engines
such as Google, Yahoo and AltaVista retrieve not only the form pages that typically
include attributes/capabilities for the services, but all pages that are related to the
service being searched. Using the standard HTML tags that denote forms in order to
filter out the non-form pages or non-form sections is a simple, but powerful technique
in filtering out irrelevant text.

 Service Selection in Business Service Ecosystem 267

For the third part, the identification of service properties from form tags, we can
conclude that we do not have a quantitative measure of accuracy. We note that the
words in Table 2 reflect the major attributes of the services to which they correspond.
For instance, for telemarketing services, the key attributes include the call volumes as
well as numbers of inbound and outbound calls per minute. These are extracted by our
algorithm and included as inbound, outbound and call. The keywords extracted for
printing and copyright litigation also include major attributes of those services. We
should point out, however, that not all keywords for each service have been extracted.
For instance, for printing services, keywords that describe products to be printed (e.g.,
brochures, posters, etc.) are not extracted.

For the fourth part, the ranking of service provider candidates against a set of
requirements using the SVD method, we compared against manual ranking and
obtained high positive correlation. We can conclude that SVD was an effective means
of ranking the services in the small set used for this experiment.

7 Conclusion and Future Work

The paper has presented an approach to the service selection problem using
unstructured data for service properties. The problem has been addressed under the
assumption that no common description framework exists. Four essential steps have
been identified to address the problem. A search engine was employed to find service
candidates from dense requirement formulations extracted from user input. A text
classification technique was used to identify services and service properties from web
content retrieved from returned search links. Service candidates were then ranked
based on how well they supported desired properties using a Single Value
Decomposition method.

An initial set of experiments has been conducted using a sampling of real
requirements documents of an internal marketing department of a large corporation to
procure external services for marketing campaigns. Descriptions of real service
providers found on the web were used to extract service capabilities. Initial
experiments showed encouraging results, but also exposed shortcomings that need to
be addressed by further research.

A number of challenges have been uncovered by this research. We will address
some of them in future work. One direction is to improve the techniques used for the
service selection problem. Another direction aims at expanding from selecting
services to also engaging them.

For the first direction, we will explore and develop stronger statistical learning
techniques to improve accuracy for identifying service providers and extracting their
properties from web content. We are also looking at incorporating structured data
sources available on the web such as service catalogs or clustered information sources
to improve results. The size of data sets (numbers of documents and services) we have
considered was relatively small (10’s of documents, 100’s of web page from
services). We need to explore how well the techniques scale over larger numbers of
documents and services.

The second direction is to also actually engage services if they provide means of
online engagement. It will open a whole new set of problems that needs to be

268 S. Basu et al.

explored such as what different types of engagements can exist, how business
relationships and service contracts are represented, and how engagement stages, steps
and processes are described and executed, again under the assumption that no
common formally defined framework can be assumed such as, for instance,
RosettaNet’s Partner Interface Processes (PIP) or Trading Partner Implementation
Requirements (TPIR) [16] definitions or conventional Business Processes.

Acknowledgement

We would like to acknowledge the advice of Hamid Motahari for bringing the paper
into its final shape.

References

1. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service Oriented Architecture Best
Practices. Prentice-Hall, Englewood Cliffs (2005)

2. Universal Description, Discovery and Integration (UDDI), http://uddi.xml.org
3. OASIS ebXML Registry, http://www.oasis-open.org/committees/regrep
4. Lapata, M., Keller, F.: Web-based Models for Natural Language Processing. ACM

Transactions of Speech and Language Processing 2(1), 1–30 (2005),
 http://homepages.inf.ed.ac.uk/mlap/Papers/tslp05.pdf

5. Powerset. Discover Facts. Unlock Meaning. Scan Summaries,
 http://www.powerset.com

6. W3C Semantic Web, http://www.w3.org/2001/sw
7. Chakrabarti, S.: Mining the Web: Analysis of Hypertext and Semi Structured Data.

Morgan Kaufmann, San Francisco (2002)
8. Liu, B.: Web Data Mining: Exploring Hyperlinks, Contents and Usage Data. Springer,

Heidelberg (2007)
9. Nasraoui, O., Zaïane, O.R., Spiliopoulou, M., Mobasher, B., Masand, B., Yu, P.S. (eds.)

WebKDD 2005. LNCS (LNAI), vol. 4198. Springer, Heidelberg (2006)
10. WordNet. Cognitive Science Laboratory. Princeton University,

 http://wordnet.princeton.edu
11. Dumais, S.T., Furnas, G.W., Landauer, T.K., Deerwester, S.: Using latent semantic

analysis to improve information retrieval. In: Proceedings of CHI 1988: Conference on
Human Factors in Computing, pp. 281–285. ACM, New York (1988)

12. Hoovers. Online business registry, http://www.hoovers.com
13. Dun and Bradstreet. Provider of international and US business credit information and

credit reports, http://www.dnb.com
14. ThomasNet. Provider of information about Industrial Manufacturers,

 http://www.thomasnet.com
15. Forman, G.: An Extensive Empirical Study of Feature Selection Metrics for Text

Classification. Journal of Machine Learning Research 3, 1289–1305 (2003)
16. RosettaNet: Trading Partner Implementation Requirements (TPIR) Partner Interface Process

(PIP) Maintenance Service,
 http://www.rosettanet.org/shop/store/catalogs/publications.html

 Service Selection in Business Service Ecosystem 269

17. Deerwester, S., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by
latent semantic analysis. Journal of the Society for Information Science 41(6), 391–407
(1990)

18. Yahoo! Search BOSS (Build your Own Search Service),
 http://developer.yahoo.com/search/boss/

19. W3C, Web Services Description Language (WSDL) 1.1,
 http://www.w3.org/TR/wsdl

20. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web
services. In: Proceedings of VLDB 2004, pp. 372–383 (2004)

21. Ma, J., Zhang, Y., He, J.: Efficiently finding web services using a clustering semantic
approach. In: Proceedings of WWW 2008 (2008)

22. Wang, Y., Stroulia, E.: Flexible Interface Matching for Web-Service Discovery. In:
Proceedings of the Fourth international Conference on Web information Systems
Engineering (2003)

23. XMethods, http://www.xmethods.com
24. Seekda, http://seekda.com/

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 270–283, 2009.
© Springer-Verlag Berlin Heidelberg 2009

On the Feasibility of Bilaterally Agreed Accounting of
Resource Consumption

Carlos Molina-Jimenez, Nick Cook, and Santosh Shrivastava

School of Computing Science, Newcastle University, UK
{Carlos.Molina,Nick.Cook,Santosh.Shrivastava}@ncl.ac.uk

Abstract. The services offered by Internet Data Centers involve the provision
of storage, bandwidth and computational resources. A common business model
is to charge consumers on a pay-per-use basis where they periodically pay for
the resources they have consumed (as opposed to a fixed charge for service
provision). The pay-per-use model raises the question of how to measure
resource consumption. Currently, a widely used accounting mechanism is
provider-side accounting where the provider unilaterally measures the
consumer’s resource consumption and presents the latter with a bill. A serious
limitation of this approach is that it does not offer the consumer sufficient
means of performing reasonableness checks to verify that the provider is not
accidentally or maliciously overcharging. To address the problem the paper
develops bilateral accounting models where both consumer and provider
independently measure resource consumption, verify the equity of the
accounting process and try to resolve potential conflicts emerging from the
independently produced results. The paper discusses the technical issues
involved in bilateral accounting.

Keywords: Service provisioning, resource accounting, unilateral resource
accounting, bilateral resource accounting, storage accounting, trusted outcomes,
Amazon’s storage service.

1 Introduction

The focus of our research is services provided by Internet Data Centers (IDC) to
remote customers over the Internet. The variety of these services is large and still
growing. Leaving aside specific technical details, we consider there to be three basic
services that sell storage, bandwidth and compute power to remote consumers. We are
interested in pay-per-use services, as opposed to fixed charge services. In the latter,
the bill is fixed irrespective of the amount of resources consumed. In the former, the
bill depends on the amount of resources consumed. Pay-per-use services can be
further categorised into on-demand and utility services. In the case of on-demand
services, the consumer pays (normally in advance) for a fixed amount of resource (for
example, 60 minutes of international phone calls) and the service is terminated when
the consumer exhausts the resources. With utility services the consumer consumes as
much as he needs; charges are calculated according to actual consumption and
presented to the consumer at the end of an agreed upon accounting period. A well

 On the Feasibility of Bilaterally Agreed Accounting of Resource Consumption 271

known example from the IT field that uses the utility service model is the Amazon
Simple Storage Service (Amazon’s S3) [1] that sells storage space to remote users.
Central to the pay-per-use model is the issue of accountability for the consumed
resources: who performs the measurement and decides how much resource has been
consumed –– the provider, the consumer, a trusted third party (TTP), or some
combination of them? Traditional utility providers such as water, gas and electricity
services use provider-side accounting based on metering devices that have a certain
degree of tamper-resistance and are deployed in the consumer’s premises. Provider-
side accounting is also widely used by phone services and Internet-based utility
providers like Amazon. However, in contrast to traditional utilities, the infrastructure
responsible for measuring resource consumption is deployed at the provider. The
distinguishing feature of provider-side accounting is that it is unilateral. Provider-side
accounting is acceptable when the consumer has good reasons to trust the provider not
to accidentally or maliciously overcharge. However, we contend that there will be a
class of applications, or of relationships between consumer and provider, where this
assumption does not hold and where other models are needed. Unilateral consumer-
side accounting can be implemented but we do not discuss it in this paper because it is
not representative of practical applications –– it is very unlikely that a provider would
simply accept accounts unilaterally computed by a consumer. Unilateral accounting
by a TTP on behalf of both consumer and provider would be more practical than
consumer-side accounting, but in this paper we consider a hitherto unexplored
alternative of bilateral accounting of resource consumption. We develop a new model
in which the consumer and provider independently measure resource consumption,
compare their outcomes and agree on a mutually trusted outcome. The problem of
achieving mutual trust in accounting for resource consumption is currently neglected
but is becoming important as users increasingly rely on utility (or cloud) computing
for their needs. We explore the technical issues in bilateral accounting and develop a
model that is abstract and general enough to apply to the different types of resources
that are being offered on a utility basis. To ground our approach in current practice,
we often use storage consumption as an example and, in particular, use Amazon’s S3
as a case study for bilateral accounting.

Section 2 presents an overview of a generic accounting system, its components and
underlying trust assumptions. Section 3 discusses our model of bilateral accounting
for resource consumption and issues such as data collection and conflict resolution. In
Section 4 we take Amazon’s S3 storage service as a case study and discuss the
feasibility of bilateral accounting of storage consumption. Section 5 presents related
work. Section 6 concludes the paper with hints on future research directions.

2 Resource Accounting Services

We conceive a resource accounting system as composed out of three basic component
services: metering, accounting and billing (see Fig. 1). We assume that resources are
exposed as services through one or more service interfaces. As shown in the figure,
the metering service collects data on resource usage at the service interfaces that it is
able to access. The metering service stores the collected data for use by the
accounting service. The accounting service retrieves the metering data, computes

272 C. Molina-Jimenez, N. Cook, and S. Shrivastava

resource consumption from the data and generates accounting data that is needed by
the billing service to calculate the billing data. We assume that billing and accounting
services use deterministic algorithms known to all the interested parties. Thus, given
the same data, any party can compute the outcome of the relevant accounting or
billing service.

Legend
: information flow

metering
data

billing
data

accounting
data

metering
service

accounting
service

billing
service

resource
usage service

interfaces

accounting system

Legend
: information flow

Legend
: information flow

metering
data

billing
data

accounting
data

metering
service

accounting
service

billing
service

metering
data

billing
data

accounting
data

metering
service

accounting
service

billing
service

resource
usage service

interfaces

accounting system

Fig. 1. Components of the resource accounting system

2.1 Trust Assumptions and Root of Trust

Regarding the trustworthiness of outcomes produced by the component services, we
distinguish between unilaterally trusted and mutually trusted outcomes. A
unilaterally trusted outcome is produced by a party with the help of its own
component services and is not necessarily trusted by other parties. The components
could be located either within or outside the party’s infrastructure. In the latter case,
the component’s owner may need to take additional measures, such as the use of
tamper-resistant mechanisms, to protect the component and its outcomes against
modification by other parties [2, 3]. There are two approaches to producing a
mutually trusted outcome: 1) a TTP produces the outcome using its own certified
infrastructure, or 2) the parties concerned use their respective unilaterally trusted
outcomes as the basis for agreement on a valid, mutually trusted outcome. This
alternative is the focus of our interest and, as discussed later, requires the execution of
some protocol between the participants (two in a bilateral relationship) to produce an
agreed upon and non-repudiable outcome. Mutually trusted outcomes form the “root
of trust” for building trusted resource accounting systems. The source of mutually
trusted outcomes can be rooted at any one of the three levels shown in Fig. 1. Once a
mutually trusted outcome source is available, the trustworthiness of the component
services above it becomes irrelevant. Given the determinacy assumption, a party can
always resort to the mutually trusted outcome to compute and verify results produced
by other parties. For example, given a metering service that produces mutually trusted
metering data, the accounting and billing services can be provided by any of the
parties in any combination; their outcomes are verifiable by any other party.

 On the Feasibility of Bilaterally Agreed Accounting of Resource Consumption 273

3 Bilateral Resource Accounting

Bilateral accounting is an attractive solution in applications where mutually untrusted
consumer and provider are reluctant, or unable, to use a TTP and therefore agree to
deploy their own component services. A distinguishing feature of this approach is that
the consumer and provider own and run their own independent but functionally
equivalent component services to produce their unilaterally trusted outcomes.
Bilateral agreement between the pair of component services results in the trusted
outcome needed to build the whole resource accounting system. This approach
presents us with two fundamental problems: (i) how do the consumer and provider
collect the metering data that is essential to compute unilaterally trusted outcomes that
can form the basis for agreement on resource consumption, and (ii) how do consumer
and provider resolve conflicts over resource consumption.

3.1 Collection of Metering Data

As stated in Section 2, we assume that a resource user (consumer or provider) uses a
resource by invoking operations at service interfaces to the resource. Consumers use a
resource through one or more service interfaces exposed by the provider. In their turn,
the provider accesses the resources necessary to provide the service through a set of
interfaces. The consequence is that any party wishing to collect metering data is
restricted to analysing operations at the service interfaces that they can access.

consumer

application

put, get,…

resp

user1

application

user2

put, get,…
resp

put, get,…resp

b) Access from several applications.

provider
storage
interface

resource
interface
storage

resources

storage
services

application

providerconsumer
put, get, …

resp

a) Access from single application.

storage
interface

resource
interface
storage

resources

storage
services

application

consumer

application

put, get,…

resp

user1

application

user2

put, get,…
resp

put, get,…resp

b) Access from several applications.

provider
storage
interface

resource
interface
storage

resources

storage
services

application

consumer

application

put, get,…

resp

user1

applicationapplication

user2

put, get,…
resp

put, get,…resp

b) Access from several applications.

provider
storage
interface

resource
interface
storage

resources

storage
services

storage
interface

resource
interface
storage

resources

storage
services

applicationapplication

providerconsumer
put, get, …

resp

a) Access from single application.

storage
interface

resource
interface
storage

resources

storage
services

application

providerconsumer
put, get, …

resp

a) Access from single application.

storage
interface

resource
interface
storage

resources

storage
services

storage
interface

resource
interface
storage

resources

storage
services

applicationapplication

Fig. 2. Example use cases for utility storage services

For example, in Fig. 2-a, the consumer accesses the provider’s storage services
through a storage interface. To generate its unilaterally trusted outcome with respect
to storage consumption, the consumer must generate metering data by analysing
operations at this storage service interface. In contrast, the storage provider has access
both to the storage service interface it exposes to the consumer and to a resource
interface for operations on its storage resources. Consequently, it can collect metering
data by analysing operations at both interfaces, combine this information and produce
its own unilaterally trusted outcome about the consumer’s resource consumption. For
the sake of illustration, we consider two common utility storage use cases. In Fig. 2-a,
a consumer hosts a single application that invokes operations on the provider’s
storage service. An example of this case is the use of a storage service for backup. In
Fig. 2-b, the storage is consumed by the consumer’s application and by applications

274 C. Molina-Jimenez, N. Cook, and S. Shrivastava

hosted by other users (user1, user2, etc.) that all access the storage service at the
consumer’s expense. An example of this case is a consumer using a storage service to
provide photo or video sharing services to other users.

In the single application case, the consumer can analyse its requests to and the
responses from the service over a given period. The consumer can collect metering
data on the type of a request (put, get etc.), on the size of a request and of an
associated response, and on the round-trip time for request/response pairs. It can
compute the bandwidth used for its service invocations (for example, in GB
transferred per month). Given a defined relationship between data transferred and
amount of storage used (see Section 4), from request types and request/response sizes
the consumer can compute storage consumption (for example, in GB stored per
month). From round-trip times, it can compute average response times for its service
invocations. On the other hand, the provider can compute bandwidth usage by
performing essentially the same analysis as the consumer on the request/response
traffic as seen by the provider. It can use the same data to compute storage
consumption in the same way as the consumer. In addition, the provider is able to
analyse operations at the storage resource interface. That is, the provider can compute
storage consumption based on data collected at either the storage service interface or
at the resource interface (which may allow a more direct measure of consumption).
The choice of input data will determine the algorithm the provider uses to compute its
unilaterally trusted outcome. Equally important, the choice of input data admits the
possibility of a degree of divergence between the unilaterally trusted outcomes
produced by consumer and provider. With respect to response time as experienced by
the consumer, the provider must either: (i) compute estimates based on average
network latency, or (ii) compute actual response times using data the provider collects
at the consumer. The former approach can be used if the provider-side data supports
computation of response times to a degree of accuracy that is acceptable to both
parties. The latter approach can be used if the provider can deploy their own metering
service at the consumer.

The multi-user, multi-application case shown in Fig. 2-b presents the consumer
wishing to independently compute resource usage with additional problems. The
applications all access the resource through the storage service interface and the
consumer is accountable for all usage. However, in addition to collecting data on its
own operations, the consumer must now collect data on operations performed by user1

and user2 (and any additional users given access). The consumer may be able to
collect this data by deploying metering services with each application instance, in
their own and each user’s infrastructure. An advantage of this approach is that the
consumer can collect data to compute bandwidth consumption, storage consumption
and response times for all the applications for which it is accountable. The feasibility
of the approach will depend on factors such as the degree of control the consumer has
over the deployed applications and the number of users. Alternatively, the consumer
may be able to deploy a metering service at the provider to collect data on user
operations at the storage service interface. If this approach is adopted, the consumer
can compute bandwidth and storage consumption (under the same assumptions as the
single application case). They can no longer directly compute response times for any
party other than themselves. As for the provider in the single application case,
estimates of response times, to some agreed degree of accuracy, may be acceptable.

 On the Feasibility of Bilaterally Agreed Accounting of Resource Consumption 275

From the storage provider’s viewpoint, the multi-user, multi-application case is
similar to the single consumer application case. The provider can compute resource
consumption such as bandwidth and storage from data collected at the storage service
and/or resource interfaces. The discussion of provider computation of consumer-
perceived response times applies to computation of response time for other users.

The preceding discussion highlights the fact that bilateral accounting relies on the
ability of the parties involved to independently collect the data necessary to produce
their unilaterally trusted outcomes. Further, as noted in Section 2, data collection may
require additional protection mechanisms such as tamper-resistance. We now
generalise the discussion.

providerconsumer

MSp
TR
cMS

providerconsumer

TR
pMSMSc

a) Metering from within both
consumer’s and provider’s.

providerconsumer

MSpMSc

b) Metering from within provider’s
only.

c) Metering from within consumer’s
only.

providerconsumer

MSp
TR
cMSTR
cMS

providerconsumer

TR
pMSMSc
TR
pMSTR
pMSMSc

a) Metering from within both
consumer’s and provider’s.

providerconsumer

MSpMSc MSpMSc

b) Metering from within provider’s
only.

c) Metering from within consumer’s
only.

Fig. 3. Models for bilateral metering

Fig. 3 shows three possible scenarios. A provider (p) offers some service to a
consumer (c). MS stands for Metering Service. MSc is a consumer’s metering service.
MSP is a provider’s metering service. TR means tamper-resistant protection.
So, TR

cMS is a consumer metering service that is tamper-resistant to provider

modification. The outcomes of metering services are unilaterally trusted (MSc by c
and MSp by p) and made available to their respective accounting services (not shown).
Fig. 3-a applies when metering data can be collected from within the consumer and
the provider (for example, data to compute bandwidth). Fig. 3-b applies when the
metering data of a required degree of accuracy can only be collected from within the
provider (for example, data on access by multiple users). In this case, the provider
deploys its MSp locally, whereas the consumer performs remote metering with the
help of TR

cMS . Fig. 3-c mirrors Fig. 3-b: metering data of a required degree of

accuracy can only be collected from within the consumer (for example, data to
compute response time). In this case, MSc performs local metering whereas the
provider deploys TR

pMS at the consumer.

3.2 Agreement on Mutually Trusted Accounting Outcomes

Though they are functionally equivalent, consumer and provider components do not
necessarily use the same algorithms or input data to compute their unilaterally trusted
outcomes. As discussed in Section 3.1, they may use data collected at different
interfaces to compute an outcome. There is then the possibility of divergence between
the independently computed (unilaterally trusted) outcomes. To address this problem
we suggest the use of a Comparison and Conflict Resolution Protocol (CCRP). A
suitable protocol will support: (i) the comparison of independently produced and
unilaterally trusted outcomes to detect potential divergences; (ii) where possible, for

276 C. Molina-Jimenez, N. Cook, and S. Shrivastava

example, when dOutcomeOutcome cp ≤− || , (c, p, d stand for consumer, provider and

agreed-upon acceptable divergence, respectively), the immediate declaration of
absence of conflicts; (iii) where the divergence is greater than d, the execution of a
negotiation protocol between consumer and provider with the intention of reaching
agreement on a single outcome; (iv) when the negotiation protocol fails to sort out the
conflict automatically, the declaration of conflict for off-line resolution; (v)
production of non-repudiable mutually trusted outcome. The non-repudiation property
is necessary to ensure that neither consumer nor provider can subsequently deny
execution of the CCRP or the result of that execution. That is, they could not
subsequently deny their agreement or otherwise to a given accounting outcome.

Our middleware for non-repudiable information sharing [4, 5] can form the basis
of a CCRP. The middleware provides multi-party, non-repudiable agreement to
updates to shared information which can be maintained in a distributed manner with
each party holding a copy. Essentially, one party proposes a new value for the state of
some information and the other parties sharing the information subject the proposed
value to application-specific validation. If all parties agree to the value, then the
shared view of the information is updated accordingly. Otherwise, the shared view of
the information remains in the state prior to proposal of the new value. For non-
repudiable agreement to a change:

1. there must be evidence that any proposed change originated at its proposer, and
2. there must be evidence that all parties agreed to any change and therefore share the

same (agreed) view of information state.

That is, there must be evidence that all parties received the proposed update and that
they agreed to the state change.

In our consumer-provider application the problem is for consumer and provider to
reach agreement on the set of mutually trusted outcomes that will ultimately be used
to compute the bill for a given accounting period. For example, if bills are computed
from a set of resource usage records for a given period, the problem is to reach
agreement on the valid membership of the set. Fig. 4-a shows the abstraction of a
consumer and provider sharing, and adding to, a set of resource usage records; the
box is shown dotted to indicate that this is a logical view; in reality each party has a
local copy of the set. The non-repudiable information sharing middleware will
maintain this abstraction of a set of mutually agreed records and control the addition
of new records to the set. The middleware generates non-repudiation evidence to
ensure that the state of the agreed set of records is binding on both parties. In the case
of the provider proposing a new record, the basic two-party agreement process is:

1. The provider proposes a new record.
2. The consumer performs application specific validation of the proposed record. This

validation can be arbitrarily complex. The record could be compared with an
equivalent record computed locally by the consumer. Bounds on divergence
between the two records could be imposed. The history of previous interactions
could be used to detect any persistent over-estimation of consumption on the part
of the provider.

3. The consumer returns a decision on the validity, or otherwise, of the proposed
record.

 On the Feasibility of Bilaterally Agreed Accounting of Resource Consumption 277

consumer
agreed resource usage

R1
add add

a) Sharing resource usage records.

provider R2 R3

1. R4,NRO(R4)

2. decn,NRR(R4),NRO(decn)

3. NRR(decn)

b) Non-repudiable sharing of resource usage records.

agreed update

agreed resource
usage

new state

R3R1 R2 R4

agreed resource
usage

current state

R3R1 R2

consumerprovider

consumer
agreed resource usage

R1
add add

a) Sharing resource usage records.

provider R2 R3

1. R4,NRO(R4)

2. decn,NRR(R4),NRO(decn)

3. NRR(decn)

b) Non-repudiable sharing of resource usage records.

agreed update

agreed resource
usage

new state

R3R1 R2 R4

agreed resource
usage

current state

R3R1 R2

agreed update

agreed resource
usage

new state

R3R1 R2 R4

agreed resource
usage

current state

R3R1 R2

consumerprovider

Fig. 4. Non-repudiable agreement to resource usage

The middleware uses a signed, two-phase commit protocol with application-level
validation to achieve the preceding basic agreement. Fig. 4-b shows the execution of
the protocol for addition of a new record, R4, to the agreed set of records {R1, R2,
R3}. First, the provider proposes the addition of R4 with non-repudiation of its origin
(NRO(R4)). Then, the consumer validates the record and returns a decision on its
validity or otherwise (decn), non-repudiation of receipt of R4 (NRR(R4)) and non-
repudiation of origin of the decision (NRO(decn)). The decision is essentially a binary
yes or no value. However, the middleware supports annotation of the decision with
application-specific information. For example, the decision may be annotated with the
degree of divergence of the record from the consumer’s view of resource usage.
These annotations form part of the evidence generated during protocol execution and
may be used to support more complex negotiation built on top of the basic agreement
mechanism. The protocol terminates with the provider sending non-repudiation of
receipt of the validation decision to the consumer (NRR(decn)). As shown in Fig. 4-b,
if the consumer decides that R4 is valid then the agreed set of records is {R1, R2, R3,
R4}. Otherwise, the agreed view of the set remains unchanged ({R1, R2, R3}) and the
failure to agree to the addition of R4 will be signaled to both parties. As with
annotations to decisions, this failure signal can be used to build more complex
negotiations. For example, the signal could trigger the proposal of a revised record or
the initiation of extra-protocol dispute resolution. At the end of a protocol run, both
parties have the same irrefutable (binding) view of the set of agreed records and of the
validation decisions made with respect to records in the set and with respect to
proposed records that have been rejected by either consumer or provider.

As discussed, the non-repudiable agreement provided by the middleware can be
used as a basic building block for negotiation of a mutually trusted accounting
outcome. Proposal of, and agreement to, addition of a new outcome is cheap
(involving a single agreement protocol round). Disagreement to the proposed addition
of an outcome to the set in one round of protocol execution can trigger further
protocol rounds with revised proposals or lead to extra protocol resolution (based on
evidence generated during protocol executions). The middleware supports the
application-specific, autonomous imposition of conditions for validation of updates,

278 C. Molina-Jimenez, N. Cook, and S. Shrivastava

proposal of revised updates and termination of protocol execution. Therefore, more
complex multi-round negotiation could be built on the basic agreement mechanism.

3.3 Models for Bilateral Accounting

We now complete our models for bilateral accounting by combining the component
services with execution of a CCRP. Fig. 5 shows the three variants of our model when
metering data is collected at both consumer and provider (as in Fig. 3-a). As before, c
and p stand for consumer and provider. MS, AS and BS stand for metering service,
accounting service and billing service, respectively. The difference between the three
variants is the level at which the root of trust is established. This is determined by the
level at which the parties execute the CCRP to agree on a mutually trusted outcome.

a) MS-bilateral.

CCRP

provider

MSp

ASp

BSp

consumer

MSc

b) AS-bilateral.

CCRP

provider

MSp

ASp

BSp

consumer

MSc

ASc

BSc

consumer

CCRP

provider

MSp

ASp

BSp

MSc

ASc

c) BS-bilateral.a) MS-bilateral.

CCRP

provider

MSp

ASp

BSp

consumer

MSc

b) AS-bilateral.

CCRP

provider

MSp

ASp

BSp

consumer

MSc

ASc

BSc

consumer

CCRP

provider

MSp

ASp

BSp

MSc

ASc

c) BS-bilateral.

Fig. 5. Models for bilateral resource accounting

In Fig. 5-a the mutually trusted outcome is produced at the metering level, at the
accounting level in Fig. 5-b and at the billing level in Fig. 5-c. In each variant, the
provider deploys the component services above the level of the root of trust. As
indicated in Section 2, the rational here is that once a bilaterally trusted outcome is
available, the consumer can verify any subsequent accounting computation. This
verification is orthogonal to the operation of the bilateral resource accounting system.
There are six further variants of the model: three for deployment of MSc and tamper-
resistant MSp at the consumer (as in Fig. 3-c), and three for deployment of MSp and
tamper-resistant MSc at the provider (as in Fig. 3-b). The full set of models also
allows for the combination of data from mixed MS deployments to build a complete
bilateral accounting system.

4 On the Feasibility of Bilateral Accounting for Amazon’s S3
Storage

Amazon’s S3 is currently one of the best-known services that provides storage to
remote users over the Internet on a pay-per-use basis. S3 presents its users with the
abstraction of buckets that contain arbitrary data objects up to 5GB in size with 2KB
of metadata. Each bucket is owned by an Amazon’s S3 user. A user-assigned key
identifies each object in a bucket. There are both REST-style and SOAP Web service
interfaces to the service. The interfaces define operations to create, list, delete and
retrieve buckets and objects. There are other operations to manage object access
control and metadata and to obtain limited statistics of service usage. User requests to

 On the Feasibility of Bilaterally Agreed Accounting of Resource Consumption 279

perform operations on the storage service are authenticated by a user signature and
signed timestamp. Amazon charges S3 consumers monthly for 1) the amount of GB
stored, 2) the number of put, get and list requests generated by the consumer, and 3)
the amount of bandwidth consumed by the consumer (bytes transferred from outside
Amazon into S3 and in the opposite direction). At least twice daily Amazon checks
their storage resources to calculate the amount of storage occupied by a consumer’s
buckets and multiplies this by the amount of time elapsed since the last check.
Amazon charges a flat amount for every 1000 put or list request and a flat amount for
every 10000 get request. There is no charge for delete request. Download (e.g. object
retrieval) is approximately twice as expensive as upload (e.g. object creation).
Currently, accounting for use of Amazon’s S3 is provider-side. Amazon meters the
consumer’s consumption, calculates the charges and presents the consumer with a
bill. According to the definitions in Section 2.1, Amazon’s charges are based on
unilaterally trusted outcomes. Ideally, resource consumers should have mechanisms to
independently measure their resource consumption and verify that they are not
accidentally or maliciously overcharged. This would result in a bilateral accounting
system.

ASc

BSc

consumer

application

file operations like
put,get,delete,…

billing
model

CCRP

MSc

accounting
model

intercepted
operations

storage provider

MSp

ASp

st
or

ag
e

in
te

rf
ac

e

BSp

storage
services

storage
resources

resource
interface

ASc

BSc

consumer

application

file operations like
put,get,delete,…

billing
model

CCRP

MSc

accounting
model

intercepted
operations

storage provider

MSp

ASp

st
or

ag
e

in
te

rf
ac

e

BSp

storage
services

storage
resources

resource
interface

storage provider

MSp

ASp

st
or

ag
e

in
te

rf
ac

e

BSp

storage
services

storage
resources

resource
interface

Fig. 6. Model for bilateral accounting of resource consumption in Amazon’s S3

For the specific example of accounting for S3 storage consumed by an application
deployed within the consumer’s infrastructure (as in Fig. 2-a), we can envisage a
bilateral accounting system based on the abstract model illustrated in Fig. 6. It is
relatively easy to bilaterally meter the number and type of requests and bandwidth
consumption. As discussed in Section 3, both consumer and provider can collect the
necessary data at the storage service interface. In the case of Amazon, MSc and MSp
can independently intercept a consumer’s requests and provide the metering data to
ASc and ASp. Given that MSc and MSp are intercepting the same request/response
traffic, the two accounting services should arrive at the same result. Thus, it is
straightforward to bilaterally account for two elements of Amazon’s charging model:

280 C. Molina-Jimenez, N. Cook, and S. Shrivastava

numbers of requests and bandwidth. A more challenging problem is to ensure that
ASc and ASp produce similar accounting data about storage consumption over time
(the third element of Amazon’s charging model). The difficulty with storage
consumption is that the consumer does not have the same degree of access to the
storage resources as Amazon. Amazon, as storage provider, accesses the resources
though their resource interface. This allows Amazon to more directly measure
resource consumption. Amazon’s S3 does provide operations to list storage
information, to obtain service statistics and perform some user-accessible logging.
However, Amazon explicitly states that this information cannot be relied on for
checking consumer’s storage accounting. In any case, these operations cannot be used
by MSc as an independent means of collecting metering data about storage
consumption. As suggested in Section 3.1, this leads to different strategies for
collection of metering data by MSc and MSp. For example, MSc can independently
meter the size of upload requests to Amazon. ASc can then use such consumer-side
data to estimate storage consumption. However, it is very likely that the results
produced by ASc will diverge from those produced by ASp because ASp is able to rely
on data collected by MSp which has access to the resource interface within Amazon.
There is clearly some relationship between the request size that a consumer can
measure and the storage resource usage (which may for example include file meta
data) that Amazon is able to measure more directly. Unfortunately, Amazon’s
published charging model does not define this relationship. Furthermore, the charging
model does not provide sufficient information to the consumer about the time from
which storage usage is charged. Thus, when computing the impact of a request to
create or delete an object or bucket, it is unlikely that the consumer ASc will arrive at
the same result as the provider ASp. In summary, the only independent metering data
available to the consumer is based on their request traffic. The published charging
does not provide them with sufficient information to use that data to perform their
own storage accounting and produce results that will be compatible with those
produced by Amazon. Bilateral accounting is currently possible for two elements of
the Amazon’s S3 charging model (number of request and bandwidth usage) but not
for the third (storage usage over time).

A solution to the preceding problem is that the provider publish a reference model
that allows the consumer to estimate with an agreed upon accuracy the impact of their
requests on storage usage. In Fig. 6, this idea is represented by the provider-supplied
accounting model that the consumer’s accounting service uses to generate accounting
data. For example, an Amazon’s S3 accounting model for use by consumers would
stipulate how to calculate the impact on storage usage of a put request given the time
and size of the request. This would include the means to estimate the size of any
storage metadata and the time from which Amazon would charge storage. Such a
model is necessary but, given they are using different input data, ASc and ASp may
still produce divergent unilaterally trusted outcomes. Therefore, as shown, in this case
ASc and ASp would execute the CCRP to arrive at a mutually trusted outcome that
becomes the root of trust for billing. In principle, the root of trust could be produced
at the metering services or billing services level. However, in this example, reaching
agreement at the metering services level is difficult because there is a significant
difference between the data on storage usage collected by the consumer and provider.
It is only when ASc and ASp apply the accounting model that outcomes will converge.

 On the Feasibility of Bilaterally Agreed Accounting of Resource Consumption 281

The availability of a mutually trusted outcome at the accounting level makes bilateral
billing redundant. This is why we represented consumer’s BSc in dashed lines. The
argument here is that the consumer can always retrieve the bilaterally trusted
accounting outcome, input it into a billing service that implements the billing model
and verify the bill.

5 Related Work

The topic of bilateral monitoring of resource consumption has received little attention
as an object of study in its own right. In this section we will briefly mention some
results that are somehow related to our work. General architectural concepts involved
in monitoring service level agreements are discussed in [6]. The emphasis there is in
providing the two parties with mechanisms for monitoring each other’s behaviour. In
[7], the authors introduce the concept of monitorability of service level agreement
parameters and point out that some parameters are unmonitorable, monitorable by the
consumer, monitorable by the provider or monitorable by a TTP. This relates directly
to the discussion in Section 3.1 on the collection of data at the set service interfaces
available to a given party. Regarding models for resource accounting, in [8] authors
describe a reference model for building accounting services based on accounting
policies. The layers of this model correspond to the component services of our work,
however, the focus of the authors is only on unilateral accounting. To the best of our
knowledge, Saksha [9] is one of the first attempts to implement bilateral accounting
of storage consumption. The paper discusses only scenarios with a single application
deployed within the consumer like in Fig. 2-a. The authors do not explicitly describe
their trust model which appears to be a combination of what we call consumer-side
and provide-side metering, where the consumer and the storage provider unilaterally
measure the amount of storage consumed and freed, respectively. The merit of this
work is that it raises several issues that need to be studied. Our decomposition into
component services is similar to that suggested in [10] where the issue of storage
accounting in Grid environments is addressed; the interest of the author is in unilateral
accounting, whereas in our work, the focus is on bilateral. A general discussion on the
use of strong accountability from the perspective of liability for actions (e.g., deletion
of files, retrieval of the latest version, etc.) executed between a client and their storage
service provider is presented in [11]; however, the issue of storage consumption
accounting is not discussed. The need for bilateral accountability of storage
consumption is hinted in [12] where a storage provider charges for executing their
consumer’s operations such as create, replace, append, delete, find and list file, etc,
depending on the size of the file. The paper focuses on the payment mechanisms and
overlooks the issue about the computation of the size of the file which seems to be
unilaterally decided by the consumer. Comprehensive discussions of Amazon’s
storage and an application hosting services is presented in [13, 14]. Bilateral
accounting of storage consumption is not mentioned, yet related parameters such as
throughput, availability, consistency, etc. are discussed. Our work is related to
research on the financial impact of IT solutions. In [15] for example, the authors study
analytical models for resource allocation and job acceptance in a Web service hosting
enterprise, that allow the enterprise to maximize its revenue. Bilateral accounting

282 C. Molina-Jimenez, N. Cook, and S. Shrivastava

opens up the possibility of empowering consumers to minimize their expenditure on
IT resources. We believe that a consumer can take advantage of their metering data to
infer expenditure pattern and tune the application to minimise the bill; a step further
would be for the consumer to analyse accounting models offered by different
providers with the intention of dynamically re-locating the application to the provider
whose accounting model would minimize the expected resource consumption
charges.

6 Concluding Remarks

Users are increasingly relying on pay-per-use services from utility (or cloud)
computing service providers. Charging is on the basis of the provider unilaterally
measuring the consumer’s resource consumption and producing the accounting data.
We believe that this practice of provider-side accounting will need to be
supplemented by measures that enable consumers to produce their own accounting
data, minimally to check the reasonableness of the provider produced data. Bilateral
accounting of resource consumption is the next logical step: the consumer and the
provider independently measure resource consumption, compare their outcomes and
agree on a mutually trusted outcome. We developed a number of models of bilateral
accounting and used Amazon’s S3 storage services as a case study to highlight the
issues involved. Success of bilateral accounting to a large extent will depend on two
factors: the quality of accounting data consumers can collect and the availability of a
relatively simple comparison and conflict resolution protocol (CCRP) to enable
production of mutually agreed outcomes. Service providers can help consumers by
providing (i) suitable service interfaces to enable consumer side metering, and (ii) a
reference model (e.g., an accounting model) to enable consumers to estimate resource
consumption and associated charges. Further, as we discussed, sometimes there is
also a need for a consumer (provider) to collect metering data directly at the
provider’s (consumer’s) premises, so suitable metering techniques will need to be
developed. CCRP procedures will also need to be developed and agreed as a part of
the service level agreement.

Acknowledgements

This work has been funded in part by UK Engineering and Physical Sciences Research
Council (EPSRC), Platform Grant No. EP/D037743/1, “Networked Computing in Inter-
organisation Settings”.

References

1. Amazon Simple Storage Service (Amazon S3), http://aws.amazon.com/s3
2. van Oorschot, P.C.: Revisiting Software Protection. In: Boyd, C., Mao, W. (eds.) ISC

2003. LNCS, vol. 2851, pp. 1–13. Springer, Heidelberg (2003)
3. TCG Specification Architecture Overview. Specification Revision-1.4,

 http://www.trustedcomputinggroup.org/

 On the Feasibility of Bilaterally Agreed Accounting of Resource Consumption 283

4. Cook, N., Shrivastava, S.K., Wheater, S.: Distributed Object Middleware to Support
Dependable Information Sharing Between Organisations. In: IEEE International
Conference on Dependable Systems and Networks (DSN 2002), Washington DC, pp. 249–
258. IEEE Computer Society, Los Alamitos (2002)

5. Cook, N., Robinson, P., Shrivastava, S.K.: Design and Implementation of Web Services
Middleware to Support Fair Non-repudiable Interactions. Int. J. Cooperative Information
Systems (IJCIS) Special Issue on Enterprise Distributed Computing 15(4), 565–597 (2006)

6. Molina-Jimenez, C., Shrivastava, S.K., Crowcroft, J., Gevros, P.: On the Monitoring of
Service Level Agreements. In: First IEEE International Workshop on Electronic
Contracting, San Diego, pp. 1–8. IEEE Computer Society, Los Alamitos (2004)

7. Skene, J., Skene, A., Crampton, J., Emmerich, W.: The monitorability of service-level
agreements for application-service provision. In: Sixth International Workshop on
Software and Performance (WOSP 2007), Buenos Aires, Argentina, pp. 3–14. ACM, New
York (2007)

8. Zseby, T., Zander, S., Carle, G.: Policy–Based Accounting, IETF RFC 3334 (October
2002), http://www.ietf.org/rfc/rfc3334.txt

9. Kher, V., Kim, Y.: Building Trust in Storage Outsourcing: Secure Accounting of Utility
Storage. In: 26th IEEE International Symposium on Reliable Distributed Systems (SRDS
2007), Beijing, pp. 55–64. IEEE Computer Society, Los Alamitos (2007)

10. Scibilia, F.: Accounting of Storage Resources in gLite Based Infrastructures. In: 16th IEEE
International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE 2007), Paris, pp. 273–278. IEEE Computer Society, Los Alamitos
(2007)

11. Yumerefendi, A.R., Chase, J.S.: Strong Accountability for Network Storage. ACM Trans.
on Storage 3(3) (2007)

12. Ioannidis, J., Ioannidis, S., Keromytis, A.D., Prevelakis, V.: Fileteller: Paying and Getting
Paid for File Storage. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 282–289.
Springer, Heidelberg (2003)

13. Garfinkel, L.S.: An Evaluation of Amazon’s Grid Computing Services: EC2, S3 and SQS.
Technical Report TR-08-07; Center for Research on Computing and Society, School of
Engineering and Applied Science, Harvard University (2007)

14. Brantner, M., Florescu, D., Graf, D., Kossmann, D., Kraska, T.: Building a Database on
S3. In: Annual ACM Conference (SIGMOD 2008), Vancouver, pp. 251–263. ACM, New
York (2008)

15. Mazzucco, M., Mitrani, I., Palmer, J., Fisher, M., McKee, P.: Web Service Hosting and
Revenue Maximization. In: Proceedings of the Fifth IEEE European Conference on Web
Services (ECOWS 2007), Halle, Saale, Germany, pp. 45–54. IEEE Computer Society, Los
Alamitos (2007)

On Analyzing Evolutionary Changes of Web Services�

Martin Treiber, Hong-Linh Truong, and Schahram Dustdar

VitaLab, Distributed Systems Group
Institute of Information Systems
Vienna University of Technology

{treiber,truong,dustdar}@infosys.tuwien.ac.at

Abstract. Web services evolve over their life time and change their behavior. In
our work, we analyze Web service related changes and investigate interdependen-
cies of Web service related changes. We classify changes of Web services for an
analysis regarding causes and effects of such changes and utilize a dedicated Web
service information model to capture the changes of Web services. We show how
to put changes of Web services into an evolutionary context that allows us to de-
velop a holistic perspective on Web services and their stakeholders in a ecosystem
of Web services.

1 Introduction

Web services undergo changes during their life time. This behavior is of particular in-
terest when putting Web services in the context of Web service ecosystems [1]. With
regard to Web services, a Web service ecosystem is the environment in which a Web
service operates. The environment consists of different stakeholders that have interest
in Web services and influence or control the life cycle of a Web service. To understand
these ecosystems, we need to understand Web services with regard to evolutionary as-
pects since they are the central entities in such ecosystems. In particular, we need to
analyze the artifacts that have impact on Web services, Web service ecosystems respec-
tively, and investigate the reasons for changes of Web services.

Currently there is little support for Web service evolution, even though the evolution
of Web services accounts for major development costs. The evolution of Web services
involves changes of requirements, implementation modifications, changes of Web ser-
vice semantics, changes of Web service usage and so on. These activities originate from
different stakeholders, such as developers, providers, brokers, end users and service in-
tegrators that interact in Web service ecosystems.

In this work, we focus on the complexity of evolutionary Web service modifica-
tions. It’s important for Web service providers to understand the prerequisites and the
consequences of modifications of Web services in the light of limited resources (time,
manpower, money). Current practices to describe Web services do not take these dy-
namic aspects into account. Approaches such as (WSDL [2], OWL-S [3], WSMO [4],
WSDL-S [5]) primarily focus on interface related issues and do not model changes. We

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 284–297, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Analyzing Evolutionary Changes of Web Services 285

argue that an evolutionary model requires a holistic perspective on Web services and
needs to integrate information from the perspective of various stakeholders as well as
different (design time and run time) data sources [6].

Real world Web services provide valuable input for our investigations with regard
to the understanding of Web service evolution. In this paper we are using real world
Web services of an Austrian SME called Wisur 1 to illustrate the challenges concerning
Web service evolution. Wisur provides business related information to customers. Their
main business is to sell business reports with information about companies (turnover, fi-
nancial situation, etc) and consumer data (address, date of birth, etc.) to their customers.
Wisur’s customers use Wisur’s Web services to search in Wisur’s database and to ac-
cess the desired information 2. As soon as the requirements of customers change, Wisur
needs to adapt their services accordingly. Examples are for instance the addition of new
functions to existing services, or the creation of new Web services. In addition, Wisur
reviews it’s Web services once a month to look for issues that might cause problems
in the future or did cause problems in the past (e.g., SLA violations). Future activities,
such as a planned augmentation of a database with consumer data can lead to longer
execution times of queries. This has impact on the overall execution time of the Web
service that queries data from this database. When putting these activity into the con-
text of Web service evolution, we can observe the need for classification of modification
activities under the umbrella of Web service evolution. In this paper, we focus on the
evolution of single Web services that we consider as atomic building blocks of Web ser-
vice ecosystems. In particular we analyze changes of Web services based on empirical
observations. We investigate the impact of these changes from different perspectives.
We propose a methodology that identifies influencing factors of Web services and a
model of Web service related changes. Our major contribution is to define the basic el-
ement of Web service evolution, i.e. the evolutionary step, and embed it in Web service
ecosystems. The rest of the paper is organized as follows. After summarizing related
work in Section 2 we provide our analysis of changes of Web services in Section 3. We
conclude the paper with a discussion and an outlook in Section 4.

2 Related Work

From an organizational point of view, our work is related to service management in
general. Approaches such as WSDM [7] or WSMF [8] offer frameworks to collect
data about Web services and to manage them. The work of Casati et. al. [9] focuses
on the business perspective of Web service management. Fang et. al. [10] discuss the
management of service interface changes. The authors describe version-aware service
descriptions and directory models. The work by Kaminski [11] introduces a framework
that supports service interface adaptors for backward compatible versioning of Web
services. Our work covers different aspects of service changes, such as runtime aspects
(e.g., QoS), implementation changes, semantic changes, etc.

1 http://www.wisur.at
2 See http://webservice.wisur.at:8000/axis/services/WISIRISFuzzySearchService?wsdl for an

example of a Web service.

286 M. Treiber, H.-L. Truong, and S. Dustdar

The collection of run time information about Web services (usage statistics, logging,
etc.) is discussed by Ghezzi et. al. [12]. The area of Software Configuration Manage-
ment [13] is also related to our research with regard to analysis of changes of software
systems and versioning issues. We follow ideas such as the collection, classification
and monitoring of change events from the aforementioned approaches. However, our
approach differs insofar, since we focus on evolutionary aspects that are not covered by
management approaches.

From an evolutionary perspective, our work is closely related to evolutionary as-
pects of software in general. Of particular importance is the work of in [14] where the
authors studied software changes and considered software systems as dynamic entities
that change over time. Lessons can also be learned from the basic SPE classification
scheme which is extensively discussed in [15] and [16].

Papazoglou [17] discusses the challenges of service evolution and introduces two
categories of service related changes. While similar in spirit, our work follows a broader
scope, since our approach introduces a concrete information model to capture service
related changes and lays the foundation for deeper analysis of service related changes.
Andrikopoulos et. al. [18] discuss the management of service specification evolution.
The author’s abstract service definition model addresses Web service evolution on an
abstract layer whereas we follow a bottom up approach with the analysis of single Web
services with regard to Web service evolution.

The work in [19] describes the use of a dependency structure matrix that reflects the
overall software structure and highlights dependency patterns between software com-
ponents. Our work includes the aspect of dependency, however, we focus on a broader
set of information in our analysis (e.g., QoS information, usage data).

3 The Anatomy of Web Service Changes

In this section, we analyze changes that are related to Web services. As indicated by
the working example of the introduction, changes of Web service happen due to various
reasons. During our observations, we’ve developed a methodology that classifies the
factors of influence associated with Web services (see Table 1). We base our classifi-
cation of the factors of influence on the work of Canfora and Penta [20] that identified
the different stakeholders of Web services. Our proposed methodology consists of the
following steps:

1. Identify the stakeholders that are interested in the Web service. This is done by an-
alyzing the development process of Web services and investigating how the com-
munication process is structured. For instance, developers might be informed about
changes of Web service requirements by phone or by email.

2. Identify the tasks of the corresponding stakeholders. This step is basically the as-
signment of responsibilities to the interested parties. For instance, a user of a Web
service is responsible for giving feedback about the service performance.

3. Collect data of Web services and identify the source of the data. In this step, we
distinguish between runtime and static data. Runtime information (e.g., QoS, Web

On Analyzing Evolutionary Changes of Web Services 287

Table 1. Perspectives on Web services

Perspective Task
Provider The provider is responsible for the planing and conception of the Web service.

This includes the definition of requirements, the negotiation of SLA with
customers, service pricing policy, etc. as well as managing changes of these.

Developer The main task of the developer is the implementation of the Web service.
The developer needs to manage changes of interface descriptions, different
versions of the implementation and track change of requirements.

Service Integrator The service integrator’s task is to integrate external services into a software
system and focuses on technical aspects of services. Service integrators role
is complementary to Web service developers. Service integrators have inter-
est in changes of the interface, QoS attributes and the semantics of the Web
service since these have effects on their integration effort of the Web ser-
vice. Service integrators also modify the requirements of Web services, due
to technical issues, like using a .NET client with a Java Web service, etc.

User The end user of a Web service is the actual consumer of a Web service and has
interest in the functionality of Web services from a non technical perspective.
The end user specifies the functional requirements and defines QoS attributes
that must be satisfied by a Web service.

Broker The Web service broker manages information of different Web services in a
repository that is publicly available for searching and browsing. Web service
broker provide information that is needed by Web service requesters to find a
particular Web service.

service usage statistics) is provided by tools that continuously monitor Web ser-
vices. Other Web service related information is (e.g., requirements, user feedback)
is entered into a persistence framework by developers, etc.

In our previous work [6], we’ve analyzed information sources concerning changes of
Web services and introduced a hierarchical information model to persist this kind of
data as Atom feeds (see Figure 1)3. With this information we able to perform analysis
on available information and to infer dependencies between changes of different Web
service attributes. This empirical data if further classified among different stakeholder
perspectives as shown in Figure 2. During the evolution process of a Web service, we
can observe transitive effects of changes that lead to a new versions of a Web service
(see Figure 3). We consider this change propagation as foundation for the understanding
of evolutionary changes of Web services. In this respect, we regard a set of interrelated
modifications as step in the evolutionary process of Web services. To illustrate this, let
us consider the following illustrating scenario: The provider of a commercial Web ser-
vice monitors its service continuously in order to obtain usage statistics of Web service.
Critical changes in the usage pattern, like a drop in the daily use of a commercial ser-
vice are very important for the provider. In such cases these changes trigger activities
of the Web service provider. For instance, the provider might contact the customer and

3 See http://berlin.vitalab.tuwien.ac.at/projects/semf for detailed information about the Web ser-
vice information model.

288 M. Treiber, H.-L. Truong, and S. Dustdar

containsExternal file

Licence

Web
Service

WSDLQoS

Feed Entry

Root Level - contains all
a list of all available
services

First Level - describes all
available information
categories

Second Level - describes
changes of corresponding
categories

Link

Licence QoS Interface ...

Fig. 1. Web service information model

OoS

Interface

Implementation

Folksxonomy/
Feedback

Execution
Environment

SLALicense

Pre-/Post-
conditions

Requirements

Usage

Dependency

Interest

Attribute/
Characteristic

Developer

Service Integrator

End User

Provider

Service

Broker

Stakeholder

Fig. 2. Information model of Web service changes. Note that the dependencies between the dif-
ferent attributes are not mandatory and depend on the concrete service.

ask for feedback. Let’s assume that the customer is not satisfied with the pricing of the
service with regard to its performance which is the reason for a change in the service
usage. The customer might argue that competitors are able to provide a similar service
with a lower price. Since the provider does not want to lose the customer, the provider
adapts the pricing and updates the corresponding SLA. Meanwhile the developer was
informed by the provider that a customer is not satisfied and that the SLA have changed.
The provider requests to optimize the service performance because the provider expects

On Analyzing Evolutionary Changes of Web Services 289

Usage SLA Requirements Implementation QoS

User Provider Developer Service Integrator

Change Event
triggerscommunicates
changes/oberserves

Broker

Fig. 3. Propagation of changes and interested parties

Table 2. Impacts on Web service changes

Observed Change Trigger Impact on Modification of Effect on
Interface Provider, User,

Service Integra-
tor

Integrator, De-
veloper, Broker

Impl. QoS, SLA, Us-
age

Implementation Developer Integrator, User Impl. QoS, Interface
QoS Usage Provider, Devel-

oper
Impl., Interface Interface, QoS,

SLA, Usage
Usage User Provider SLA QoS
Requirement User, Integrator Provider, Devel-

oper
Interface, Impl., SLA Usage

SLA Provider User, Developer,
Integrator

Usage Requirement,
QoS, Impl.

Pre-Post Conditions Provider, Devel-
oper

User, Integrator SLA Impl.

Feedback User, Integrator Provider, Devel-
oper

SLA Usage

in the future customers to require better performance of the service. These changes have
effect on the QoS parameters of the Web service which in turn influence the usage of the
Web service. Notice that in such scenarios Web service broker are not directly involved.
However, after the modifications of a Web service took place, Web service broker might
notice changes in the QoS of the service with some delay using QoS monitoring tools
and inform potential customers of these adaptations. As shown by the example above,
we can observe change propagations and impacts on different perspectives from one
single change event. We’ve summarized potential changes and impacts in Table 2.

In the following subsections we discuss major changes of Web services in detail.
We show how change activities are interrelated and explain how these activities con-
tribute to the evolution of Web services. We provide examples that are represented in our

290 M. Treiber, H.-L. Truong, and S. Dustdar

service evolution and discuss the benefits of out approach for the different stakeholders
of Web services. Notice that we group changes into two groups. We consider dynamic
changes that occur during runtime. These changes can be observed by monitoring tools
that log performance related QoS attributes (e.g., response time, throughput, etc.) and
collect data of the use of a Web service. Static changes happen prior to the execution of
a Web service and may be triggered by observations of the run time behavior of a Web
service. The trigger for static changes may be either changes in the observed behavior
(decreasing response time due to more server load) or changes in the requirements such
as requests for new functionality, etc.

3.1 Web Service Requirements Changes

Changes of requirements are the main driver for all evolutionary Web service changes.
Requirements serve as ”benchmark” for the correct functionality of Web service imple-
mentations. Changes of requirements are thus very critical during the evolution of Web
services and have a number of effects on Web service characteristics:

Implementation: Changes of requirements affect the implementation of Web services,
since changes of Web service functionality need to be implemented by the devel-
oper.

Interface: The interface reflects changes of Web service requirements when these
changes affect functionality of the Web service.

SLA: The provider of the Web service may change SLAs with customers when their
requirements change. For example, new functionality needs to be specified in SLAs
as well as changes of the required performance of the Web service, data quality,
costs, etc.

Pre- and Postconditions: With changing requirements the prerequisites for the execu-
tion of Web services might change. For example, new requirements may require a
registration for customers prior to the use of the Web service. The effects of the
execution of Web service may also change with new requirements. For example, a
data Web service might provide additional information to the customer.

All stakeholders of Web services have interest in Web service requirements. Conceptu-
ally, requirements can be considered as logical link that links different aspects of Web
service modifications together. During the evolution of Web services, every evolution-
ary step is delimited by the definition of requirements and the publication of a new Web
service. Activities by stakeholders as modification of the interface (developer), imple-
mentation (developer), definition of SLAs (provider, user), feedback (service integrator,
user) are triggered by the definition of requirements, changes respectively.

Example. As noted before, a change of a requirement triggers a set of related activities
in order to implement the requirement. Utilizing our evolution framework we can track
these activities and link them. When put into a historical perspective, provider can an-
alyze, based on historical information, the costs of the different Web service versions
when following the provided links to details about the implementation (see code snippet
in Listing 1).

On Analyzing Evolutionary Changes of Web Services 291

<change t y p e ="Requirement">
<l i n k>h t t p : / / w e b s e r v i c e . w i s u r . a t / WISIRISFuzzySea rchSe rv ice ? ReqPhon . pd f</ l i n k>
<c a t e g o r y>New F u n c t i o n</ c a t e g o r y>
<d e s c r i p t i o n>A new f u n c t i o n was added t o t h e r e q u i r e m e n t</ d e s c r i p t i o n>
<c a u s e t y p e ="Feedback">

<r e a s o n>Cus tomers want t o s e a r c h wi th p h o n e t i c methods . </ r e a s o n>
< t r i g g e r t y p e ="User"> . . .</ t r i g g e r>

</ c a u s e>
<d e p e n d e n c y l i s t>

<dependency t y p e ="Implementation"> <!−− l i n k t o imp l . change d e s c r i p t i o n −−>
<l i n k i d ="urn:uuid:e2e2f679-8a67-439a-a65e-bbafd1dd0091" />
</ dependency>

</ d e p e n d e n c y l i s t>
<impac t><p e r s p e c t i v e t y p e ="Developer" /> . . .</ impac t>
</ change>

Listing 1. WISIRISFuzzySearch requirement change

3.2 Interface Changes

Syntactical descriptions of Web services define available operations and the structure
of messages that Web services are capable to process. We consider interface changes
as (i) the addition of new functionality or (ii) the update of existing functionality (e.g.,
interface refinement with new parameters or removal of functionality). As shown in the
overview table, the trigger such changes can be either the provider, the service integra-
tor or the user of a Web service. The cause of an interface change is a change of the
requirement. Consequently, interface changes affect primarily the service integrator that
is using the service in other software systems, since s/he must adapt the software sys-
tem that uses the service accordingly. We can observe the following effects of interface
changes:

Implementation: Interface changes have impact on the implementation of a Web ser-
vice. Depending of on the type of interface change, we can observe different effects
on the implementation of a Web service. The addition of new functionality or the
update of existing functionality are reflected by modifications of the implementa-
tion.

QoS: QoS attributes of Web service may be effected by interface changes. However,
an interface change does not have immediate consequences for QoS properties. For
instance, if the addition of new service functionality also changes existing imple-
mentation (e.g., optimizations) then the QoS attributes (e.g., response time, etc.)
also change.

Pre- and Postconditions: Changes of the interface have effects on pre- and post-
conditions of Web services. These reflect the necessary conditions that must be
fulfilled to execute a service. For instance, the update of existing functionality to a
Web service might require new constraints to be satisfied, such as the provision of
a customer identifier and a trial-key.

Usage: Changes of the interface influence the usage of a Web service. Unless the in-
terface change is backward compatible, a new interface with new functionality has
impact on the usage of the service.

292 M. Treiber, H.-L. Truong, and S. Dustdar

During the evolution of Web services, each publicly available interface version denotes
a new version of the Web service. By analyzing the frequency of interface changes, Web
service stakeholders are able to establish the interface stability of the Web service.

Example. From the perspective of the developer it is important to connect interface
changes with requirements. In this way it is possible to check implementations for their
consistency with (functional) requirements. By combining versioning information with
interface modifications, developers are able to track different service versions and cor-
responding requirements.

From the perspective of the service integrator interface changes are very critical
since the service integrator relies on stable interfaces when integrating external services.
When interfaces change, service integrators require Web services to be compatible with
existing systems. If this is not the case, service integrators require information about the
nature of the interface changes to infer how much they have to change. In our approach
we follow the classification schema by Leitner et. al.[21] to classify interface related
changes.

The example in Listing 2 illustrates how we integrate the changes into our service
information model and how we link changes dependencies. In the code snippet, we
show how we represent the addition of new functionality to a Web service.

<change t y p e ="Interface">
<c a t e g o r y t y p e ="Add Method" />
<d e s c r i p t i o n>A new s e a r c h method was added t o t h e
WISIRS Fuzzy Sea rch S e r v i c e</ d e s c r i p t i o n>
<c a u s e t y p e ="Requirement">
<−− l i n k t o t h e r e q u i r e m e n t where d e t a i l s can be found −−>
<l i n k i d ="urn:uuid:823157f7-7174-4b09-b815-64750b0e2f83" />

</ c a u s e>
<d e p e n d e n c y l i s t>

<dependency t y p e ="Implementation">
<!−− l i n k t o i m p l e m e n t a t i o n i n f o r m a t i o n i n SEMF −−>
<l i n k i d ="urn:uuid:912ae1a0-96b0-11dd-ad8b-0800200c9a66" />

</ dependency>
</ d e p e n d e n c y l i s t>
<impac t>

<p e r s p e c t i v e t y p e ="System Integrator" />
</ impac t>
</ change>

Listing 2. WISIRISFuzzySearch interface change

3.3 Web Service Implementation Changes

Closely related to interface changes are implementation changes. We consider two types
of changes, (i) code refactoring/internal optimizations and (ii) change in the function-
ality. The former subcategory are changes that are transparent for all users of the Web
service. The latter is a consequence of interface changes since the new service function-
ality is expressed by interface changes. Potential triggers for implementation changes
are changes of requirements which are caused by the service provider, the user or the
service integrator.Implementation changes have effects on the following attributes of
Web services:

On Analyzing Evolutionary Changes of Web Services 293

Interface: Depending on the type of implementation change, we can observe differ-
ent effects of implementation changes on the service interface. The interface of a
service changes when new functionality is added to the Web service or removed
from the Web service. Code refactorings or internal code optimizations leave the
interface of a Web service untouched since the functionality remains unmodified.

QoS: Internal optimizations have effects on QoS. Consider for instance a database
that is accessed by multiple parallel threads simultaneously instead of a sequen-
tial manner. This optimization changes the service execution time and is reflected
by changes of the response time of the service. Similar, the addition of security
mechanisms (e.g. WS-Security, etc.) to a service have impact on QoS attributes.

Pre- and Postconditions: Both, pre- and postconditions are potentially affected by im-
plementation changes. Depending on the type of implementation change, new ser-
vice functionality (e.g., new methods to search in the provider database) obviously
requires new pre conditions (e.g., new input parameters) that must be satisfied in
order to execute a service. Postcondition changes depend on the type of implemen-
tation change. Consider for example a service that required payment and is now
free of charge for customers. In this case, the service implementation was changed
in order to acknowledge the new form of service use.

Usage: The effects on the usage of Web services depend on the type of implementation
change. Similar as in the case with interface changes, new functionality can lead to
an increased usage of a Web service, because potentially more users can be served.
Internal changes (along with enhanced performance) might also result in a higher
usage of the Web service.

In our evolutionary approach, every evolutionary step is preceded be a series of imple-
mentation changes to achieve the fulfillment of requirements. The publication of a new
Web service version denotes the finalization of all necessary implementation changes.

Example. As in the case of interface changes, the developer needs to trace modifi-
cations in the source code with respect to changes of requirements and user/service
integrator feedback. In particular, when the developer modifies the implementation to
improve the performance the developer needs to know whether the changes have the
desired impact and requires feedback from the user/service integrator. From the per-
spective of the Web service provider it is important to know how much time was spent
to implement in the required modifications. To illustrate these types of change, consider
for example a Web service that offers facilities to search in a consumer database. In the
example, internal changes were implemented that had no effect on the interface of the
Web service. The code snippet in Listing 3 illustrates how we capture these information
in our Web service information model.

3.4 Web Service QoS Changes

QoS related changes of Web service depend on changes of other properties of Web ser-
vices. In contrast to implementation modifications, QoS changes are observed at run
time. The reasons for QoS changes are manifold: server load, number of concurrent
users, performance of back end systems such as databases, external factors such as net-
work latency, network throughput, as well as issues like security, etc., influence the QoS

294 M. Treiber, H.-L. Truong, and S. Dustdar

<change t y p e ="Implementation">
<c a t e g o r y t y p e ="Internal Modification" />
<d e s c r i p t i o n>The o r d e r i n g of t h e s e a r c h r e s u l t was changed .</ d e s c r i p t i o n>
<c a u s e t y p e ="Feedback">

<r e a s o n>User r e q u i r e a o r d e r e d s e a r c h r e s u l t (by familyname) .
</ r e a s o n>
< t r i g g e r t y p e ="User"> . . . </ t r i g g e r>

<l i n k>w e b s e r v i c e . w i s u r . a t /</ l i n k>
</ c a u s e>

<d e p e n d e n c y l i s t> <−− i m p l e m e n t i n g c l a s s −−>
<dependency t y p e ="Class">
<name>WISIRISSearchWrapper</ name>

<d e s c r i p t i o n>M o d i f i c a t i o n of SQL que ry</ d e s c r i p t i o n>
</ dependency>

</ d e p e n d e n c y l i s t>
<v e r s i o n number="1"> <!−− v e r s i o n i n g i n f o r m a t i o n −−>

<e f f o r t d e v e l o p e r i d ="12"> <!−− i m p l e m e n t a t i o n e f f o r t −−>
<h o u r s>3</ h o u r s>
</ e f f o r t>

</ v e r s i o n>
<impac t><p e r s p e c t i v e t y p e ="Developer" /></ impac t>
</ change>

Listing 3. WISIRISFuzzySearch implementation change

attributes of Web services. Domain related QoS attributes, like data quality (complete-
ness, correctness, etc.) when providing data centric services are also of concern. For
instance, the hit rate of a search Web service is of importance when a provider desires
to sell business reports. Simply put: the higher the hit rate, the higher is the probability
that a user will use the service.We can observe the following effects QoS changes:

Usage: Changes of Web service related QoS have impact on the usage of Web services.
When a service is selected by QoS attributes like response time, then a degradation
of QoS changes such as a higher response time can lead to a reduced service usage.

Implementation: Observed QoS changes may lead to implementation changes. Inter-
nal optimizations of the program code (e.g., different algorithms) are potentially
used to enhance performance related QoS attributes.

During the evolution of Web services, QoS attributes serve as indicator concerning the
overall fitness of the Web service. With QoS information, we are to measure the fitness
of Web services with regard to SLAs. When put into a historical context, QoS data
provides information about the overall development of a Web service and allows to
estimate when the performance of a Web service may become critical.

Example. With regard to the provision of data centric services, we address (i) data
quality (is the provided information up to date? and (ii) typical QoS (response time,
availability, etc.) of a Web service. We now show an example that highlights service
quality aspects from the perspective of the service provider with regard to service per-
formance. The code snippet in Listing 4 shows a notification about the violation of SLA
constraints that is generated by a monitoring tool that logs the performance of Wisur’s
Web services, making the observation of QoS very important from the perspective of
the service provider.

On Analyzing Evolutionary Changes of Web Services 295

<change t y p e ="QoS">
<c a t e g o r y t y p e ="Violation" />
<c a u s e t y p e ="Usage">

<r e a s o n>Response of WISIRISFuzzySea rchSe rv ice</ r e a s o n>
< t r i g g e r t y p e ="Service Environment"> . . .</ t r i g g e r>

</ c a u s e>
<d e p e n d e n c y l i s t>
<dependency t y p e ="SLA"><!−− l i n k t o s l a i n f o r m a t i o n i n SEMF −−>

<l i n k i d ="urn:uuid:da66f3c0-96da-11dd-ad8b-0800200c9a66" />
</ dependency>

</ d e p e n d e n c y l i s t>
<impac t>

<p e r s p e c t i v e t y p e ="Developer" /><p e r s p e c t i v e t y p e ="Provider" />
</ impac t>
<d e t a i l s>

<c l a s s e s><c l a s s name="WISIRISDataAccess">
<e x e c u t i o n t i m e>59955ms</ e x e c u t i o n t i m e>
<e x c e p t i o n />
</ c l a s s></ c l a s s e s>

</ d e t a i l s>
</ change>

Listing 4. WISIRISFuzzySearch QoS change notification

Notice that our tool includes information for the developer in order to track the part
of the Web service implementation which is responsible for the violation of the SLA.
Similar to Web service providers, end users are concerned with the Web service quality.
Consider the example, of a Web service which must respond within 60 seconds and
be available 24/7. The data presented in Figure 4 and Figure 5 shows the observed
execution times of the reporting service of two consecutive months of a real world Web
service from Wisur. As shown in the figure, the execution time during April 2008 was
constantly under 30 seconds, with a tendency to increase towards the end of the month
and a constraint violation at the end of April 2008. This lead to user feedback and
triggered a change in the implementation of the Web service. The observed execution
time in May 2008 was considerably higher (more peaks moving towards 60 seconds)
but no constraint violation occurred.

Service Execution Times April 2008

0

50

100

150

200

250

300

350

400

E
x
e
cu

ti
o

n
 T

im
e
 i

n
 S

e
co

n
d

s

Fig. 4. Observed execution during April 2008

Service Execution Times May 2008

0

10

20

30

40

50

60

70

E
x
e
cu

ti
o

n
 T

im
e
 i

n
 S

e
co

n
d

s

Fig. 5. Observed execution during May 2008

296 M. Treiber, H.-L. Truong, and S. Dustdar

4 Discussion and Outlook

In this paper, we analyzed dependencies of Web service changes and provided a model
that captures the changes. We introduced a conceptual model which offers the means
for deeper analysis of these changes. In context of Web service evolution we are able
to define an evolutionary step as set of activities (modifications of the interface, im-
plementation, requirements, SLA) that are triggered by different stakeholders of Web
services. The result of an evolutionary step is a new version of a Web service that is
adapted to these changes.

This lays the foundation for the Web service evolution process. We consider Web
service evolution as an (potentially) indefinite sequence of evolutionary steps that result
in observable changes of the Web service. We assume that there are several variations
of a Web service at a given point in time. Every variation represents a independent
evolution sequence of a Web service and is represented by historical information.

In future work, we will focus on composite Web services and investigate evolutionary
issues of Web service compositions and investigate graphical models for the representa-
tion of the evolution [22] of complex composite Web services. Moreover, we are going
to formalize our proposed conceptual methodology with a meta model that provides a
formal foundation for roles and change dependencies. Furthermore, we will investigate
complex event processing with regard to evolutionary aspects. In this context, we plan
to extend our framework with the support of event processing in the context of Web
service registries as discussed in [23].

References

1. Barros, A.P., Dumas, M.: The rise of web service ecosystems. IT Professional 8, 31–37
(2006)

2. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web Services Description Language
(WSDL) 2.0 (2007)

3. W3C: OWL Web Ontology Language Overview (2004) W3C Recommendation (February
10, 2004)

4. Dumitru, R., de Bruijn, J., Mocan, A., Lausen, H., Domingue, J., Bussler, C., Fensel, D.:
Www: Wsmo, wsml, and wsmx in a nutshell. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F.
(eds.) ASWC 2006. LNCS, vol. 4185, pp. 516–522. Springer, Heidelberg (2006)

5. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Sheth, A., Verma, K.: Web
Services Semantics – WSDL-S (2005)

6. Treiber, M., Truong, H.L., Dustdar, S.: Semf - service evolution management framework. In:
SEAA 2008 (to appear, 2008)

7. OASIS: Web Services Distributed Management: Management of Web Services (WSDM-
MOWS) 1.1 (2006)

8. Catania, N., Kumar, P., Murray, B., Pourhedari, H., Vambenepe, W., Wurster, K.: Web ser-
vices management framework, version 2.0 (2003)

9. Casati, F., Shan, E., Dayal, U., Shan, M.C.: Business-oriented management of web services.
Commun. ACM 46, 55–60 (2003)

10. Fang, R., Lam, L., Fong, L., Frank, D., Vignola, C., Chen, Y., Du, N.: A version-aware
approach for web service directory. In: ICWS, pp. 406–413 (2007)

On Analyzing Evolutionary Changes of Web Services 297

11. Kaminski, P., Múller, H., Litoiu, M.: A design for adaptive web service evolution. In: SEAMS
2006: Proceedings of the 2006 international workshop on Self-adaptation and self-managing
systems, pp. 86–92. ACM, New York (2006)

12. Ghezzi, C., Guinea, S.: Run-time monitoring in service-oriented architectures. In: Test and
Analysis of Web Services, pp. 237–264. Springer, Heidelberg (2007)

13. Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM
Comput. Surv. 30, 232–282 (1998)

14. Lehman, M.M., Ramil, J.F.: Software evolution: background, theory, practice. Inf. Process.
Lett. 88, 33–44 (2003)

15. Cook, S., Harrison, R., Lehman, M.M., Wernick, P.: Evolution in software systems: foun-
dations of the spe classification scheme: Research articles. J. Softw. Maint. Evol. 18, 1–35
(2006)

16. Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.) EWSPT 1996.
LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996)

17. Papazoglou, M.: The challenges of service evolution. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 1–15. Springer, Heidelberg (2008)

18. Andrikopoulos, V., Benbernou, S., Papazoglou, M.: Managing the evolution of service speci-
fications. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 359–374.
Springer, Heidelberg (2008)

19. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage complex
software architecture. SIGPLAN Not. 40, 167–176 (2005)

20. Canfora, G., Di Penta, M.: Testing services and service-centric systems: Challenges and op-
portunities. IT Professional 8, 10–17 (2006)

21. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: End-to-end versioning support for
web services. In: IEEE International Conference on Services Computing, SCC 2008, vol. 1,
pp. 59–66 (2008)

22. Luqi: A graph model for software evolution. IEEE Transactions on Software Engineering 16,
917–927 (1990)

23. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Advanced event processing and noti-
fications in service runtime environments. In: DEBS, pp. 115–125 (2008)

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 298–303, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Standardization as a Business Ecosystem Enabler

Paul L. Bannerman and Liming Zhu

Managing Complexity, NICTA, Australian Technology Park, Sydney, NSW, Australia
School of Computer Science and Engineering, University of New South Wales, Australia

{Paul.Bannerman,Liming.Zhu}@nicta.com.au

Abstract. This paper reports research-in-progress that considers standardization
as an enabler in business ecosystems. Based on issues encountered, we propose
that: business model design is also critical for standards bodies; standards can
separate competition from cooperation; standards employ rule-centric designs;
and requirements specification and compliance checking are essential. The
propositions are illustrated using a standards body with which we have been
working.

Keywords: Standardization, business model, service-oriented computing.

1 Introduction

As service-oriented computing enables businesses to expose their functions more
widely, a business ecosystem forms around the exposed services. To foster efficient
collaboration between the stakeholders (many of whom are competitors), a
standardization body is often formed to improve interoperability within the ecosystem
through standards. This is particularly the case in vertical industries. Examples
include HL7 in health, ACORD in insurance and MISMO in the US mortgage
industry. This type of standard can be difficult to develop and implement because an
existing industry structure is often entrenched, and a new e-business standard may
challenge that structure. Change may impact existing business models requiring them
to be rebalanced to establish a new equilibrium. It is important, therefore, to consider
how such bodies and standards can be enablers of the business ecosystem.

NICTA (nicta.com.au) has been working with a leading Australian e-business
industry standardization body, LIXI (Lending Industry XML Initiative; lixi.org.au),
which serves the lending industry in Australia. LIXI initially developed a XML-based
data-centric standard, later complemented by a process model described in BPMN
(Business Process Modeling Notation) developed by NICTA. To further bridge the
gap between business standards and technical implementation, and promote technical
interoperability, NICTA also helped devise a Reference Architecture and associated
Reference Implementations to supplement LIXI’s e-business standards [9, 10]. During
this process, we encountered a number of business and technical issues that can
impact the effectiveness of standardization in a business ecosystem:

1) Process openness and funding model. Striking the right balance in the role
played by the standards organization in the ecosystem involves trade-offs between

 Standardization as a Business Ecosystem Enabler 299

being open to as many industry players as possible (large and small) and sourcing
adequate funding to finance operations.

2) Intellectual Property Rights (IPR) and commercial liability. Policies relating to
in-bound and out-bound IPR can significantly impact members’ participation in
standardization processes, their ability and willingness to adopt developed standards
and the commercial risk they may face if they implement the standards.

3) Consistency and variety balance. There are tradeoffs between prescriptive
guidance and flexibility, immediate technical needs and long term evolution. This
balance has a major impact on the diversity and efficiency of the business models in
the business ecosystem.

4) Interpretation of standards. Multiple interpretations of a standard can result in
reduced interoperability between systems. The risk is that an application will have to
be changed significantly whenever it needs to interact with a new system, even
though both parties could reasonably claim to be in compliance with the e-business
standards. Such hindrance to genuine mass interoperability can reduce the efficiency
of the whole business ecosystem.

In this short paper, we analyze these issues and outline propositions that relate to
the business of a standards body (addressing issue 1 and 2) and the nature of its
standards (addressing issue 3 and 4) as enablers in a business ecosystem of diverse
interests and business models. We develop the propositions in Section 2 and illustrate
them against the LIXI case in Section 3 before making concluding comments.

2 Issue Analysis

Existing research is very limited in addressing these issues. For issues 1 and 2, while
some work has been done in open communities and IPR (e.g., [3]), theory remains
under-developed. Standards organizations adopt different strategies, but the principles
underlying decision options and criteria are unclear. Yet it is clear that these decisions
can impact the efficiency and performance of stakeholders and the ecosystem at large.
For issue 3, our early work has shown that a rule-based rather than structure-based
architecture approach may alleviate the problem of balancing flexibility for future
evolution against prescriptive guidance to meet short-term technical needs [11].
However, the connection to business models is not fully considered. For issue 4, due
to the nature of standards, the solutions to standard compliance checking vary widely.
At one extreme, an Application Programming Interface (API) standard may have an
automated and comprehensive compliance testing tool kit. At the other, a process
standard may rely on subjective assessment through checklists, interviews and
documentation. Data format standards present a particular problem. Superficially,
“schema validation” is a good solution. However, schemas cannot usually capture all
the rules and constraints between data elements that must be satisfied. We advocate
non-prescriptive requirements specification and strong compliance checking.

2.1 The Business of a Standards Organization

Standards organizations typically operate within a business ecosystem. A business
ecosystem is an interacting population of business entities in a bounded environment.

300 P.L. Bannerman and L. Zhu

Each has its own agenda but must interact with others to survive and prosper. In the
ecosystem, entities co-evolve capabilities that enable them to work cooperatively and
competitively in pursuing their own objectives [7]. Standards can be an important
capability in this ecology because they can enable the necessary interactions.

A business model is an organization’s fundamental design for creating value. It
comprises a business’s value proposition, target market(s), how it will generate
revenue, its cost structure, and activity value chain [4]. An e-business model, for
example, is optimised around transacting business through electronic media such as
the web. In conjunction with capabilities, these components permit great diversity in
business models. There is no single ‘right’ model for an industry. Indeed, competition
drives differentiation in the business models of industry participants. However, for
optimum performance, business model design must be consistent with the aims and
purpose (the ‘dominant logic’) of the entity. The parts must fit together harmoniously,
otherwise inefficient integrating mechanisms will evolve to overcome the misfit [6].

We propose that business model design is also critical for standards bodies and
their performance. The challenge for a standards body in formulating its appropriate
business model within a business ecosystem can be greater than that of the business
operatives. By definition, a standards organization serves a diverse range of industry
stakeholder interests. Striking the right balance between those interests – that is,
establishing its dominant operating logic – may be a process of co-evolution with its
members. Key decisions include: Should it engage in commercial for-profit activities
or restrict itself to providing not-for-profit services to members? How will it fund its
operations; at the front-end from membership fees or at the back-end from standards
licensing and publication fees? How open should it be in inviting input to standards
development and access to completed standards [5]? Should it tightly control IPR to
published standards or push it out to the industry, and how should it approach IP from
others [8]? Finding the right balance in answering these questions will fundamentally
shape the business model and internal consistency of the standards organization.

Furthermore, we argue that in a business ecosystem standards can sequester
competition from cooperation, enabling companies to coexist and thrive. Resource-
based theory [2] tells us that organisations comprise a variety of resources including:
ordinary capabilities that are necessary for daily operations (and which may be
common to other firms); and unique capabilities that can generate distinctive value for
the firm. These latter capabilities enable innovation [1] and competitive advantage
[2]. For firms that need to interoperate within an ecosystem, a standard can be a
common operational capability that permits firms to interact, as necessary, through
their business processes, in a non-threatening manner. This sequesters interoperation
from the exploitation of strategic capabilities and the competitive side of the industry.

2.2 Nature of a Non-prescriptive But Compliance-Checkable Standard

Our experiences working with the Australian lending industry show that the cost of
pair-wise integration can be prohibitively high even when both sides claim to be data
standard “compliant”. From a service-oriented computing perspective, problems in
integrating multiple parties are not new. Some degree of control, centralized
coordination and using SOA/WS-* standards can alleviate many of them. However,
these problems are significantly different in the context of a whole industry, which is

 Standardization as a Business Ecosystem Enabler 301

essentially an ultra-large-scale business ecosystem. Too much prescription (especially
beyond data format) in industry-wide standards may dictate particular business model
designs or behavior and constrain innovation. The challenge is to determine what to
standardize, beyond data and leveraging service-oriented computing, so that a right
balance between too much and not enough prescription can be reached. Accordingly,
we advocate two further propositions:

Use rule-centric architectures. In Service Oriented Architecture (SOA), the notion of
architecture traditionally implies an arrangement of structural components and
connectors. An industry-level SOA cannot prescribe too much structure as it may
prevent new business relationships/models between parties and adoption of new
technologies. We advocate a rule-based approach. An architectural rule is defined as
principles that need to be followed by structures within a system. An architectural rule
may serve several potential structural architectures. This approach is consistent with
other IT-related industry practices such as open API and mashup (e.g., Google’s
OpenSocial). We illustrate this rule-based approach in Section 3.

Support standard requirements specification and compliance checking. Often, there
are two difficulties in standard compliance checking. First, standards bodies do not
provide a consistent way of checking standard compliance. As argued earlier,
mechanisms like schema validation are inadequate. Second, compliance checking
may fail because a standard does not sufficiently capture the requirements. The
implementer faces a trade-off between losing must-have features and not complying
with a standard. These difficulties are usually caused by a weak standard requirements
elicitation phase without a compliance checking tool kit. Thus, we propose that:

1. Standard requirements should also be subject to an open process with voting as a
form of quality control. Currently, most standardization bodies only consider the
standard itself to be subject to the standardization process.

2. All standard specifications should be “testable” for compliance checking. Non-
testable specifications will cause downstream interoperability problems.

3. A compliance testing toolkit must be released with the final draft of the standard
before voting and after standard publication to facilitate interpretation of the standard.

4. A reference implementation that has passed the compliance testing toolkit
should also be released.

Items 3 and 4 have been adopted in a small number of standards bodies such as
Java Community Process (JCP). However, the JCP standards are all Java APIs which
are easily testable. The challenge is to find a suitable way of testing other types of
standards. For items 1 and 2, many standards bodies do vote on a new standard
proposal. However, the proposal usually only covers high level purposes rather than
detailed standard requirements, let alone testable requirements in conjunction with a
compliance testing toolkit.

3 Case Illustrations

Application of these propositions is illustrated from the LIXI case.

302 P.L. Bannerman and L. Zhu

3.1 The Business of a Standards Organization

In an effort to encourage broader industry participation, especially from small and
medium enterprises, LIXI recently changed its business model. Previously, standards
were free to members and funding was sourced from memberships. In the change,
membership fees were reduced to a nominal annual figure and a schedule of licensing
fees was introduced for different bundles of standards. This increased the openness of
the standard development process in terms of broader participation.

However, two challenges emerged: management of IPR, and; commercial liability
(e.g., how can LIXI avoid legal liability if a standard beaches another organization’s
IPR, and how can it avoid being sued by members if their business suffers as a result
of using a LIXI standard?). Elements of these challenges are purely legal, for which
exemplars exist in other successful standards organizations. Others affect the business
models within the ecosystem and the interplay between openness, funding, IPR
control, cooperation and competition. Based on the above theory, these challenges
need to be considered in the context of the organization’s purpose and business
model. An open design that enables interoperation between members in a manner that
is not perceived to be commercially threatening could achieve a consistent logic that
fosters effective cooperation.

3.2 Nature of a Non-prescriptive But Compliance-Checkable Standard

The following are example rules from a list of 40 applied in the LIXI context [10]:

Use Minimal Service Interface. A LIXI-compliant system should use message-centric
(rather than operation-centric) interfaces. That is, service interfaces should not expose
abstractions in the form of remote procedures. Essentially, we advocate the use of a
single operation on a service (ProcessLIXIMessage), but allow more complicated
interfaces to exist. Messaging behaviors are specified by LIXI content structure and
LIXI message exchange protocols. This rule encourages maximum flexibility in the
face of constant evolution. Ever-changing shared contexts are carried within LIXI
messages. Message processing logic can either be hidden behind the service or
exposed as protocol-related metadata.

Avoid Explicit Intermediaries. We do not introduce the role of an intermediary
explicitly in the reference architecture. However, we allow such intermediaries to
organically appear in the overall ecosystem. This is very different from existing e-
business meta-standards such as ebXML, which have an explicit concept of central
registry and repositories through which companies post business processes, capability
profiles and collaboration protocol agreements. Technically, this is appealing and
simplifies some business scenarios. However, we found it very difficult to introduce
such a structure within LIXI because of complex business issues such as who the
intermediaries should be, legal issues such as confidentiality concerns, and practical
issues such as the difficulty of semi-automated agreement negotiation. Thus, in our
reference architecture, interacting directly with another business or indirectly through
an intermediary is treated as the same general mechanism. Local intermediaries
within certain areas can be introduced. Dynamic binding and proxy solutions can help
achieve various relationships in practice.

 Standardization as a Business Ecosystem Enabler 303

Regarding testing compliance, we provided a number of reference implementations
with data checking beyond the basic schema validation [9, 10]. The use of RELAX-
NG and Schematron are proposed for better compliance checking.

Finally, we are currently developing a more systematic compliance testing toolkit
strategy and standard requirements elicitation/voting process.

4 Conclusions

This paper has considered the role of standards and standardization bodies as enablers
in business ecosystems and developed initial business and technical propositions with
practical application. In addition to the basic function of enabling interoperation
between industry stakeholders, we have proposed that: the effectiveness of industry
participants, including standards bodies, is a function of the internal consistency of
their business model; standards are useful in demarking a boundary between
cooperation and competition; effective standards use rule-based architectures, and;
standardization must include requirements specification and compliance checking.

NICTA continues to work with LIXI to research and apply these principles.

Acknowledgments. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

References

1. Bannerman, P.: Smoothing Innovation Discontinuities. In: Proceedings of the IEEE
International Conference on Communications (ICC 2008), Beijing, pp. 5458–5462 (2008)

2. Barney, J., Clark, D.: Resource-based Theory: Creating and Sustaining Competitive
Advantage. Oxford University Press, Oxford (2007)

3. Blind, K., Thumm, N.: Intellectual Property Protection and Standardization. International
Journal of IT Standards & Standardization Research 2(2), 61–75 (2004)

4. Chesbrough, H., Rosenbloom, R.S.: The Role of the Business Model in Capturing Value
from Innovation. Industrial and Corporate Change 11(3), 529–555 (2002)

5. Krechmer, K.: Open Standards Requirements. International Journal of IT Standards and
Standardization Research 4(1), 43–81 (2006)

6. Miles, R., Snow, C.: Organizational Strategy, Structure, and Process. Stanford Business
Classic (2003)

7. Moore, J.: Predators and Prey: A New Ecology of Competition. Harvard Business
Review 71(3), 75–86 (1993)

8. Pisano, G.P., Teece, D.J.: How to Capture Value from Innovation: Shaping Intellectual
Property and Industry Architecture. California Management Review 50(1), 278–296
(2007)

9. Zhu, L., Thomas, B.: LIXI Visible Loans: Reference Architecture and Implementation
Guide. Lending Industry XML Initiative (LIXI) (2007)

10. Zhu, L., Thomas, B.: LIXI Valuation Reference Architecture and Implementation Guide
1.0. Lending Industry XML Initiative (LIXI) (2007)

11. Zhu, L., Staples, M., Tosic, V.: On Creating Industry-Wide Reference Architectures. In:
The 12th IEEE International EDOC Conference (EDOC 2008), Munich, Germany (2008)

Managing Quality of Human-Based eServices

Robert Kern, Christian Zirpins, and Sudhir Agarwal

University of Karlsruhe, Karlsruhe Service Research Institute, Germany
{robert.kern,christian.zirpins,sudhir.agarval}@ksri.uni-karlsruhe.de

Abstract. Modern business strategies consider Web-based outsourcing
of microjobs to the masses. Respective business activities are however
difficult to manage. Traditional approaches of covering human tasks in
business processes build on assumptions of limited process scale and
closed organizational models that are not valid in crowdsourcing scenar-
ios. Web services have been proposed as a means to represent human
tasks that allow leveraging interaction, brokerage and composition ca-
pabilities of SOC for human interaction management. In this paper we
argue that crowdsourcing requires considering qualitative constraints and
sketch a platform for managing the quality of human-based eServices.

Keywords: Crowdsourcing, Human-based eServices, QoS Management.

1 Introduction

Despite all endeavours of rationalizing their business processes, organizations
still face many types of tasks which cannot be fully automated but which require
human intelligence or action to be completed. Traditionally, such activities are
integrated into workflows as so called human tasks, which are passed to a well
defined group of employees of the company. The drawback of this approach is
its limited scale. A large workforce has to be hired to cover peak workloads that
partly idles in times of small workload resulting in cost overheads.

Amazon was first to address this issue by offering the Web marketplace Mturk
(http://www.mturk.com), on which service requesters can publish open calls for
Human Intelligence Tasks (HITs) [1]. Any Internet user that meets certain skill
criteria might act as a service worker and complete tasks for small amounts
of money. The business model of the platform is to act as a broker between
requesters and workers and to keep a percentage of the service fee for each task.
However, there is no control over the correctness of the results that are delivered
by the services workers, nor about any other quality aspects like response time
or availability. In case a certain QoS-level is required, the requester has to take
care of it himself. This limitation dramatically restricts possible usage scenarios.

In this paper we argue that the utilization of human-based electronic services
for large-scale outsourcing of human tasks requires platform support for ac-
tively managing their QoS and offer initial considerations on respective platform
mechanisms. In the following sections, we will first elaborate on the economical
background of human-based electronic services and introducing the term people

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 304–309, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.mturk.com

Managing Quality of Human-Based eServices 305

service for a broad type of human tasks in sec. 2. Following that, we highlight
some requirements for respective service-oriented platforms and infrastructure
mechanisms in sec. 3. Finally in sec. 4, we outline our conceptual solution ap-
proach for an integrated platform that does not only act as a broker between
service requester and service worker but which extends the business model by
actively managing the QoS of the results delivered to the service requesters.

2 Human-Based Electronic Services

Within the diversified Web 2.0 technology landscape, a recent trend of social
computing applications concerned the virtualization of human-based intellec-
tual activities as electronic services. The business motivation for these develop-
ments can be identified as a combination of two orthogonal economic strategies:
human capital outsourcing and business process rationalization. Human capital
outsourcing offers benefits of increasing labor capacity and human potential in an
organization without the indirect costs and risks that accompany long term em-
ployment relationships. Business process rationalization aims at optimizing and
automating sourcing interdependent activities that in combination, add value to
an organization in order to maximize revenue.

While rationalization is a classical domain of information systems, the out-
sourcing of labor witnesses enormous changes through the advent of modern
Web technologies. On an individual basis, connectivity and interoperability of
Web-based software applications fostered an increase of homeshoring so called
telecommuters that offer their services to independently carry out a wide array of
IT-enabled jobs via outsourcing portals like Odesk (http://www.Odesk.com/)
or Elance (http://www.Elance.com). At the same time, the phenomenon of
wikinomics opened up new possibilities of mass collaborations that allowed to
drastically increase the scale of outsourcing labor while simultaneously decreas-
ing activities into specialized microjobs. Respective crowdsourcing generally in-
volves an organizational requester issuing calls to members of the public that
carry out activities on individual or group basis [2]. Despite its potentials it has
to be said that this approach also involves severe risks. Companies easily under-
estimate the challenges of managing crowdsourced projects that include issues
like coordination, motivation, contracting, sustainability and loyalty. Another
dimension of issues revolve around the virtual absence of employment rights.

For companies, the next step is to leverage wikinomics to a business context,
where competition requires not only effectiveness but efficiency, and rationaliza-
tion of economic activities is a necessity. This corresponds to a sharper focus
on qualitative properties of functional business activities. For example, devel-
opment of acceptable Wikipedia entries might take an unconstrained duration
and is driven by public volunteers for idealistic reasons. In contrast, the doc-
umentation of product features in the crowdsourced development of a product
manual needs to be finished in a given time and to a required standard in return
of a monetary compensation in order to provide business value for the requester.
Theoretical foundations for the qualitative optimization of massively collabora-
tive processes might be found in areas like game theory or cybernetics. Their

http://www.Odesk.com/
http://www.Elance.com

306 R. Kern, C. Zirpins, and S. Agarwal

application however requires infrastructures for large scale human interaction
management in the context of mass collaboration. Such infrastructures are in-
creasingly provided on the basis of electronic services that represent microjobs
in crowdsourcing contexts and allow for their systematic and automatic sourc-
ing and coordination. We refer to these as people services (pServices) and define
them as Web-based software services that enable human intelligence, percep-
tion, or action to be effectively sourced and coordinated in order to contribute
to massively distributed business processes.

An early example of pService infrastructure is Amazon’s Mturk platform that
focuses on pService sourcing and provides a simple request-driven marketplace
for so called human intelligence tasks (HITs). Mturk gained public attention dur-
ing its application for searching half a million of satellite images for the lost vessel
of Microsoft’s Jim Gray to thousands of volunteers on the Web [3]. The failure
of this undertaking might be considered an indication for a number of problems
and open research questions that still exist for people service infrastructures.
While problems like misunderstanding of requests and missing information on
the results of others indicate shortcomings of pService sourcing and coordina-
tion, the fact that the mission was just not finished in time underlines the need
to actively manage the quality of people services.

Building on pServices, organizational requesters might plan and operate
massively distributed business processes by mapping their operational business
models onto service-oriented architectures and platforms that are enabled for
crowdsourcing. Such architectures and platforms leverage basic software ser-
vice technologies like WS Human Tasks [4] that supports the implementation
of human-based Web Services. However, the distinctive nature of crowdsourced
business activities requires for rethinking the upper layers of the software service
stack. These traditionally focus on workflows of classic business processes in a
context of closed organizational models. Situations, where thousands of tasks
need to be allocated to participants on the Web are so far not considered.

3 Requirements Analysis

Corresponding to the business goals of enabling crowdsourced business activi-
ties with qualitative optimizations, pService platforms have to provide means
for two major classes of tasks: sourcing and coordination. pService sourcing
leverages software service brokerage and marketplaces in order to discover and
aggregate temporary workforce. pService coordination leverages software service
mashups and composition in order to plan and enforce collaboration of tempo-
rary pService workers. An important aspect for pService platforms is to support
service workers to understand pService semantics and provide ergonomic inter-
faces that incorporate mobile devices [5]. Additionally, a crucial point is for the
platform methods to jointly provide a certain level of quality as required by orga-
nizational requesters. Only if qualitative properties like performance, scalability,
availability, and correctness in relation to prices are observable and guaranteed,
organizations will consider to incorporate pServices. Therefore pService sourcing

Managing Quality of Human-Based eServices 307

not only needs to map pService requests to respective offers but also to ensure
timely allocation with acceptable costs. Likewise, pService coordination not only
needs to regulate and enforce relationships of multiple pService tasks but also
to introduce feedback loops for controlling correctness of results. The following
list summarizes key quality requirements for pServices.

– Performance: Ability to return a result within certain response time limits
– Scalability: Ability to handle a certain average and peak number of requests
– Availability: Ability to continuously provide the service
– Correctness: Ability to return a minimum percentage of correct results

These quality requirements can typically not be met by individual service
workers. Neither do these ’scale’, nor are they necessarily available at any time
requested or at once. Moreover, individual service workers won’t be able to de-
liver correct results for all service requests. Thus, it seems inappropriate for
service requesters to directly deal with individual service workers. Instead, their
work should be managed by a pService platform that takes care of quality-of-
service goals. Subsequently, we differentiate 2 types of pServices: individual ones
performed by service workers and the managed ones requested by the service re-
questers for which SLOs can be defined and which might build on combinations
of individual ones. We call the latter managed people services and define them
as pServices that support service level objectives (SLOs) to guarantee certain
quality-of-service goals like performance, scalability, availability, and correctness.

4 Platform Considerations

We see a need for people service platforms to support SLOs and guarantee QoS to
service requesters. In the following, we provide some preliminary considerations
about the functionality of such a platform. Fig. 1 describes the basic components.

Similar to Mturk, the proposed platform deals with two groups of customers:
service requesters, who are submitting pService requests to the platform and
service workers, who are willing to work on those requests. However, in our case,
the pService requests are not directly passed to the service workers, but the
platform deals with two different types of pService requests. Managed pService
requests which are passed to the platform by the service requesters and (native)
pService requests which are passed to the service workers by the platform.

A managed pService request consists of two parts: a service template and a
set of SLOs. The service template refers to what is presented to service workers
when delivering services. It includes informal and possibly semantic descriptions
of the problem to be solved as well as a response form to interact with service
workers when delivering results. The SLOs comprise information about response
time goals, scalability and availability requirements as well as the correctness of
the results. Availability goals include the initial availability of the service (date,
time), as well as the period of time it will be available for. Service workers can
register at the platform and provide information about their skills, availability,
and expected compensation with respect to service template classes.

308 R. Kern, C. Zirpins, and S. Agarwal

Fig. 1. Schematic view of proposed pServices platform

Once a managed pService request is submitted to the platform, the planning
component analyses the request. This includes forecasting whether enough ser-
vice workers with appropriate skills will be available. In addition, an execution
plan is created that addresses the service level objectives. Based on the type of
service and the service level objectives, the platform generates a price offer for
delivering the service to the requester as a managed pService.

At runtime, the service requester passes individual service calls to the plat-
form. The platform operation engine will autonomously coordinate those service
calls based on the execution plan which might make use of a variety of approaches
to actively manage the SLOs: An incoming service call might be turned into mul-
tiple pService calls passed to service workers and results returned by one service
worker might be compared with results from other service workers or sent to
other service workers for validation. The quality of the service worker’s con-
tributions might be tracked with a reputation mechanism and might be used
for quality forecasting. A notification mechanism might be used to actively pass
requests to individual service workers to reduce lead time before they start work-
ing on a service. The same request might be sent to multiple service workers in
parallel to ensure that at least one of them meets the response time goals. Vari-
able incentives might be used to drive the service worker’s motivation to meet
response time goals, to be available even at unusual hours, and to deliver correct
results. These and possibly more options are offered by the platforms as patterns
that might be utilized in order to provide certain qualities of pServices. Many of
those patterns build on the coordination of interactions between service workers
in order to realize redundancy as well as feedback control loops. After completing
the execution plan, the individual responses returned from the service workers
are aggregated and returned to the service requester as a single result.

Managing Quality of Human-Based eServices 309

The business model of the platform is based on the gap between the fixed price
for the managed pServices payed by the service requester and the average incen-
tives payed to the service workers. Based on information about registered service
workers and historical information, the future incentives might be estimated and
used for pricing of new pServices.

5 Summary and Outlook

There are two general approaches for incorporating human activities into
electronic business processes or applications, each having a major deficiency.
Traditional human tasks of business processes lack scalability because they are
typically performed by a closed group of people. Recent approaches like Ama-
zon’s Mturk are addressing the scalability issue by dealing with a virtually un-
limited number of service workers over the Internet but at the same time lack
quality because of limited control of the workforce.

After introducing the term of people service (pService) for a broad type of
electronic services that leverage human intelligence, perception, or action, this
paper discussed the need for pServices to meet quality-of-service goals. An inte-
grated platform and business model was outlined, which is capable of supporting
SLOs for pServices by actively managing contributions of service workers.

Additional research is required for many aspects of the platform, e.g. the
formal description of the service requests which allow for matching them to the
skill profiles of service workers, reputation mechanisms and incentive models for
motivating the workers to do their best, and coordination patterns to produce
high quality results based on the contributions of multiple service workers. We
plan to substantiate our concept by implementing a prototype for the proposed
pService platform and validate the concept based on different usage scenarios.

References

1. Pontin, J.: Artificial intelligence, with help from the humans. The New York Times
(March 25, 2007), http://tinyurl.com/58nec5

2. Brabham, D.C.: Crowdsourcing as a model for problem solving: An introduction
and cases. Convergence: The International Journal of Research into New Media
Technologies 14(1), 75–90 (2008)

3. Silberman, S.: Inside the high-tech search for a silicon valley legend. Wired magazine
(July 24, 2007), http://tinyurl.com/358k7f

4. Agrawal, A., Amend, M., Das, M., et al.: Web Services Human Task (WS-
HumanTask), Version 1.0. Technical report, Active Endpoints Inc., Adobe Systems
Inc., BEA Systems Inc., IBM Corporation, Oracle Inc., and SAP AG (2007)

5. Maleshkova, M., Komazec, S., Grasic, B., Denaux, R.: iService: Human Computa-
tion through Semantic Web Services. In: Future Internet Symposium (FIS 2008)
(October 1, 2008), http://tinyurl.com/5fr3po

6. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated Discovery, Inter-
action and Composition of Semantic Web Services. Journal of Web Semantics 1(1),
27–46 (2003)

http://tinyurl.com/58nec5
http://tinyurl.com/358k7f
http://tinyurl.com/5fr3po

Third Workshop on Trends in
Enterprise Architecture Research

(TEAR 2008)

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 313 – 315, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Introduction: Third Workshop on Trends in Enterprise
Architecture Research

(TEAR 2008)

Stephan Aier1, Pontus Johnson2, and Joachim Schelp1

1 Institute of Information Management, University of St. Gallen,
Müller-Friedberg-Strasse 8

9000 St. Gallen, Switzerland
{stephan.aier,joachim.schelp}@unisg.ch

2 Dpt. of Industrial Information and Control Systems, Royal Institute of Technology (KTH),
Stockholm, Sweden

pontus@ics.kth.se

1 Introduction

The field of enterprise architecture attracted the attention of the research community
for the first time when Zachman introduced the Framework for Information Systems
Architecture in 1987. However, it was not until 1996 that enterprise architecture
emerged as an active field of business activity and research.

Enterprise architecture (EA) is important because organizations need to adapt with
increasing speeed to changing customer requirements and business goals. This need
influences the entire chain of activities of an enterprise, from business processes to IT
support. To keep the enterprise architecture coherent and aligned with business goals,
the relations between the different architectures must be clearly defined and consistent.

In previous years, the emergence of service oriented design paradigms (e.g. Service
Oriented Architecture, SOA) contributed to the relevance of enterprise architectures.
The need to design services along business processes forced companies to pay more
attention to business architectures. At the same time, the growing complexity of exist-
ing application landscapes lead to increased attention to application architectures.

To better align business and IS architectures a number of major companies started
to establish EA efforts after introducing service oriented architectures. Until recently,
practitioners, consulting firms and tool vendors have been leading in the development
of the EA discipline.

Research on enterprise architecture has been taking place in relatively isolated
communities. The main objective of this workshop is to bring these different commu-
nities of EA researchers together and to identify future directions for EA research
with special focus on service oriented paradigms. An important question in that re-
spect is what EA researchers should do, as opposed to EA practitioners.

2 Contributions

Building on its great success in previous years, the Third Workshop on Trends in
Enterprise Architecture Research (TEAR2008) was held in conjunction with the

314 Preface

ICSOC conference in Sydney on December 1st 2008. The TEAR 2008 call for paper
attracted 16 submissions. A total of eight papers passed the review process success-
fully, resulting in a 50% acceptance rate.

The accepted papers reflect the developments in the field of Enterprise Architec-
ture as sketched in the introduction.

Two papers focused on the relationship to Service-Oriented Architectures. The pa-
per “Towards a Sophisticated Understanding of Service Design for Enterprise Archi-
tecture” by Stephan Aier and Bettina Gleichauf discusses different service categories,
which can be identified in an Enterprise Architecture. Governance aspects with spe-
cial attention to Service-Oriented Architectures are highlighted by Jan Bernhardt and
Detlef Seese in their contribution “A Conceptual Framework for the Governance of
Service-Oriented Architectures”.

Two submissions reflected usage potentials and implications of Enterprise Archi-
tecture in general. Oliver Holschke, Per Närman, Waldo Rocha Flores, Evelina Eriks-
son, and Marten Schönherr are “Using Enterprise Architecture Models and Bayesian
Belief Networks for Failure Impact Analysis”. Another usage is shown by Jakob
Raderius, Per Närman, and Mathias Ekstedt in their paper “Assessing System Avail-
ability Using an Enterprise Architecture Analysis Approach”.

Extensions to the understanding of Enterprise Architecture are given in three other
contributions. Sabine Buckl, Alexander Ernst, Florian Matthes, and Christian M.
Schweda extend the current understanding of Enterprise Architecture with aspects of
time in their paper “An Information Model for Landscape Management Discussing
Temporality Aspects”. The model perspective of managing an Enterprise Architecture
is highlighted by Henk Koning, Rik Bos, and Sjaak Brinkkemper in their paper “A
Lightweight Method for the Modelling of Enterprise Architectures Introduction and
Usage Feedback”. The authors pay special attention to keep Enterprise Architectures
models as simple a possible in order to increase their net benefit. Christian Riege and
Stephan Aier extended the understanding of Enterprise Architectures with situational
aspects in their paper “A Contingency Approach to Enterprise Architecture Method
Engineering”. Finally Marten Schönherr sums up latest developments between indi-
vidual research groups and practitioners with his paper “Towards a Common Termi-
nology in the Discipline of Enterprise Architecture”.

3 Results of the Workshop

The discussion at the workshop resulted in the following questions for further re-
search:

• To what extent is there consensus among enterprise architecture researchers? What
are the paradigmatic assumptions on which we all agree?

• Trend 1 in EA research: Decision making and prediction. There seems to be a
general consensus that the increased use of EA models for prediction and decision
making is a trend for the future.

• Trend 2 in EA research: Complexity of EA models and methods and effort of mod-
elling. It is believed that the problems of keeping the EA program on an acceptable
effort and complexity level are becoming increasingly noticed. Research on means
for reducing this complexity is therefore considered as a future trend.

 Preface 315

There was also a discussion on the future of TEAR. It was agreed that a fourth TEAR
workshop should be held. Stephan Aier accepted on behalf of St. Gallen to remain as
co-organizer for 2009. A second organizing institution solicited. Marten Schönherr at
TU Berlin/T-Labs indicated preliminary interest.

4 Programme Committee

The Programme Committee members and reviewers each deserve credit for forming
the excellent final programme that resulted from the diligent review of the submis-
sions. The organizing members of the programme committee would like to thank all
of them and especially all authors submitting contributions to the TEAR workshop
series.

Members of the Programme Committee
− Stephan Aier, University of St. Gallen, Switzerland (workshop organizer)
− Guiseppe Berio, University of Turin, Italy
− Scott Bernard, Carnegie Mellon University, Syracuse University, USA
− Udo Bub, Deutsche Telekom Laboratories, Germany
− Luis Camarinha-Matos, UNINOVA, Portugal
− Haluk Demirkan, Arizona State University, USA
− Andreas Dietzsch, Postfinance, Bern, Switzerland
− Peter Emmel, SAP, Germany
− Mathias Ekstedt, KTH, Sweden
− Ulrich Frank, University of Duisburg-Essen, Germany
− Matthias Goeken, Frankfurt School of Finance and Management, Germany
− Jan Goossenaerts, Technische Universiteit Eindhoven, The Netherlands
− Michael Goul, Arizona State University, USA
− Pontus Johnson, KTH Stockholm, Sweden (workshop organizer)
− Dimitris Karagiannis, University of Vienna, Austria
− Marc Lankhorst, Telematica Instituut, Enschede, The Netherlands
− Tim O'Neill, University of Technology, Sydney
− Erik Proper, Radboud University Nijmegen and Capgemini, The Netherlands
− Gerold Riempp, European Business School (EBS), Germany
− Michael Rosemann, QUT, Australia
− Joachim Schelp, University of St.Gallen, Switzerland (workshop organizer)
− Marten Schönherr, TU Berlin, Germany
− Gerhard Schwabe, University of Zurich, Switzerland
− Markus Strohmaier, University of Toronto, Canada
− José Tribolet, University of Lisbon, Portugal
− Hongbing Wang, Nanjing University, China
− Alain Wegmann, EPFL, Switzerland
− Martin Zelm, CIMOSA, Germany
− Michael zur Mühlen, Stevens Institute of Technology, USA

Stephan Aier, Pontus Johnson, Joachim Schelp

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 316–326, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards a Sophisticated Understanding of Service
Design for Enterprise Architecture

Stephan Aier and Bettina Gleichauf

Institute of Information Management, University of St. Gallen,
Müller-Friedberg-Strasse 8

9000 St. Gallen, Switzerland
{stephan.aier,bettina.gleichauf}@unisg.ch

Abstract. The service orientation approach emerged form the software engi-
neering community and has now become a widely discussed design paradigm
for almost every aspect of an enterprise architecture (EA). However, experience
from cases studies has shown that it is necessary to explicitly differentiate ser-
vice categories in EA, its goals and its resulting design guidelines. This paper
derives a sophisticated understanding of different services categories, their re-
spective goals and design guidelines based on empirical research.

1 Introduction

Enterprise architecture (EA) describes the fundamental structure of an organization
[22, 25, 29, 33] and supports an organization’s transformation by offering a holistic
perspective on their elements and the relations between these elements [18]. EA is
widely accepted as an approach to manage transformations by (a) propagating strat-
egy and organizational changes consistently to software and infrastructure descrip-
tions, by (b) supporting consistent business transformation enabled by technology
innovations, and by (c) decoupling business-oriented and technology-oriented partial
architectures [1, 9, 13, 23, 30, 32]. The main challenges of this transformation are the
complexity of existing structures, the interdependencies of the architectural elements
as well as the heterogeneity of ownership of architectural elements within an organi-
zation. The goals that are addressed by EA programs aiming at these challenges are
transparency, consistency, IT/Business alignment, stakeholder orientation, standardi-
zation, reuse and eventually flexibility and sustainability.

Service orientation as a paradigm not only for software engineering but for enter-
prise architecture engineering addresses these goals and challenges [26, 27]. How-
ever, service orientation precisely discussed in software engineering, e.g. [6, 10, 34],
has developed to a broad discussion concerning almost all architectural layers from
strategy and business architecture to software, data and infrastructure architecture
[33]. Unfortunately this discussion often lacks the necessary precision e.g. when dis-
cussing non-technical aspects of service orientation.

When service orientation is discussed as a design paradigm for EA it is indispensa-
ble to explicitly differentiate the design goals and their resulting design principles for
different design objects in an EA since experience from case studies shows that there
is hardly any “one-size-fits-all” design methodology that is equally effective for

 Towards a Sophisticated Understanding of Service Design for Enterprise Architecture 317

e.g. the design of technology related services as well as business architecture related
services at the same time.

Therefore the research questions of this paper are: (a) Which kinds of services
should be differentiated from an EA perspective? (b) Which goals are related to these
service categories and what are the consequences for service design? To answer these
questions we outline three industry case studies to find similarities in their under-
standing and definitions of services. Based on these cases studies we derive our un-
derstanding of services categories in an EA as well as the related goals and design
principles for each category.

2 Related Work

Within the last years services were mainly discussed with regard to the technical de-
sign of (software) services. There is a multitude of literature concerning this topic and
dealing with the actual realization of service orientation, e.g. in the form of web ser-
vices (e.g. [6, 10, 34]). Besides the realization through software services several au-
thors also claim a comprehensive understanding of service orientation on business
layers to the point of a service oriented enterprise [7, 8, 27]. The term “enterprise
services” is often used in this context. However, until today there is no consensus
either on a clear definition and conceptual delimitation of such services on business
layers opposed to software services or among one another or on possible subtypes of
these services.

Literature sources say little on the differentiation between the goals that are pur-
sued by the different types of services. Among the general goals mentioned in con-
nection with software services are improvement of process support and increased
process flexibility [6], agility of the information systems [11], cost savings due to low
maintenance IT systems as well as higher quality due to the possible reuse of software
components [7, 16]. In terms of the design of services reuse is acknowledged as the
main purpose [14]. LEGNER and HEUTSCHI further identify the goals standardized
integration infrastructure and decoupling of application domains [19]. This shows the
tight linkage of service orientation and EA. Service orientation can serve as a com-
mon “language” between IT and business as it is a fundamental paradigm [18]. The
main impact of SOA on EA is the enhanced flexibility in terms of new business
partners, new processes, new assets, all while not affecting business operations or
enforcing the implementation of a new EA model. Despite these obvious benefits of
software service design, there is still no evidence on how these goals can be applied to
develop guidelines for the design of services on the business layers of an EA.

With regard to service design most authors refer to the significance of interface
orientation and, in conjunction, of service interoperability [11]. Additionally, LEGNER
and HEUTSCHI identify the design principles of autonomy and modularity as well as
business suitability from existing SOA research on the design of software services
[19]. Several authors have presented ideas how enterprise services in particular can be
identified and designed [15, 24, 27] but they still remain very close to the concept of
software services that are used in a business context. Therefore they lack a business
perspective on service design for a comprehensive EA. SCHELP and WINTER show
that the conceptual design of enterprise services does not differ considerably from

318 S. Aier and B. Gleichauf

traditional application design. However they point out that a well-founded and differ-
entiated design method for enterprise services is still missing [28].

Considering the diverse focus of the different service types within a comprehensive
EA, the need for differentiated guidelines for services construction becomes evident:
In order to adequately apply the required business perspective to business architecture
related services and effectively pursue the resulting goals, the construction of such
services will differ substantially from software service design. Corresponding design
guidelines should be derived from the goals pursued, which have to be identified and
structured first. Therefore the paper at hand examines the diversity of service types
from an EA perspective and shows how they can be designed in a differentiated way.

3 Case Studies

For deriving a set of differentiated types of services, to describe their design goals as
well as their design rules this section presents three case studies. The case studies are
used to consolidate essential characteristics of the differentiated service definitions
observed. Data for the case studies have been collected with two of these companies
since 2002/2003 and with the remaining one since 2006. Key stakeholders in IT man-
agement, architecture management (i.e. IS and business architects), and Business/IT
relationship management have been interviewed. In addition to the interviews regular
review meetings have been set up to observe state, development, and architectural
issues in the companies involved. The companies participated in long term collabora-
tive research projects in IS integration and enterprise architecture involving ten com-
panies in the period of 2002–2008. The companies chosen for this study have a long
term experience with service oriented architectures and have mature architecture
management structures in place. Data presented in the case studies below aggregate
the research results gained with these companies until summer 2008. Due to company
request the case studies have been made anonymous.

3.1 Company A

Company A is an IT service provider for a large banking network in Germany. In its
current form the network is the result of several mergers of formerly independent and
regionally organized IT service providers. Every formerly independent company had
its own evolutionary grown banking solution. However, none of these solutions had a
predominant position within the network. Therefore the network decided to imple-
ment a new and common system as their core banking solution. The development
started in 2002 and was finished in 2005 for the time being. The new system is de-
signed following a service oriented paradigm in order to adapt and to consistently
provide the implemented functionality to every partner.

On a business level the enterprise architecture of company A is designed following
the network’s process reference model. The process reference model serves as a struc-
tural blueprint for the design of the actual business processes consisting of several
steps, e.g. choosing a certain product for a credit application. Single steps of a process
are designed as enterprise services. These enterprise services are eventually imple-
mented as software services on a system level in the enterprise architecture.

 Towards a Sophisticated Understanding of Service Design for Enterprise Architecture 319

Each enterprise service, e.g. management of a credit application, may be used in
the entire network for a broad range of products. Throughout the network, reuse of
enterprise services is explicitly intended. An enterprise service is comprised of a self-
contained set of business functionalities and belongs to a specific domain but may
also be reused in other domains. Each enterprise service is linked with exactly one
software service as a technical implementation. However, software services may be
called in different contexts which may result in a different behaviour.

3.2 Company B

Company B is one of the largest insurance companies in Switzerland. They have
started their first projects utilizing a service oriented software design at the end of the
1990ies with the introduction of web applications which integrated basic functional-
ities of the host systems. These early projects aimed at providing functionality over
internet technology. Effects like reuse occurred rather accidentally. However, the
potential of service oriented design has soon been recognized and resulted in stan-
dardization initiatives as well as an embedment in the company’s enterprise architec-
ture framework in order to systematically foster reuse and maintainability of services.

Company B differentiates three layers of service orientation in their architecture: A
user-access layer, a process layer and a service layer. The service layer contains busi-
ness activity services which call business object services. Business object services
directly access software systems and may run an update on a database record for ex-
ample. The process layer does not explicitly define process services but it contains
business processes, sub-processes as well as detailed workflow definitions. Work-
flows employ the functional specifications of the business activity services but may
also access business object services directly. On the top level access to application’s
graphical user interfaces is designed by employing access services implemented in
e.g. portals.

The variety of possibilities to use the service framework of company B provides a
high flexibility and enables the adaptation to a variety of situations. However, it also
demands for strong governance in order to preserve the maintainability of such a
framework.

3.3 Company C

Company C is a globally operating telecommunications service provider with a large,
complex and heterogeneous application landscape. At the end of the last century, corpo-
rate management decided to structure the corporate group into four rather independent
divisions representing the four strategic business areas. The new structure reduced the
overall complexity by reducing the interdependencies between the four divisions on a
business layer as well as on a technology layer by definition. At the same time, how-
ever, the heterogeneity as well a redundancy between the divisions grew as a result of
their new independence. This independence resulted in e.g. inconsistent information
about customers where different divisions served the same customer segments with
different, division-specific products. As a consequence, divisions have been continually
integrated again in order to leverage synergies among them.

Company C primarily focuses the definition of enterprise services as a solid and stan-
dardized definition of business functionalities. The major goal of this standardization is to

320 S. Aier and B. Gleichauf

provide a reusable repository of enterprise services in order to enable the flexible and fast
definition of new or changed products. Consequently the initial identification of enter-
prise services will be derived from product definitions, e.g. an availability check for an
internet connection. For the actual execution the enterprise services employ software
services which implement the necessary functionality, e.g. the measurement of signal
quality on the physical wire. The encapsulation of required functionality in enterprise
services provides the necessary decoupling of the product layer and the technical soft-
ware layer.

4 Differentiating Services and Guidelines for Service Construction

Contemplating these case studies two categories of services can clearly be identified:
On a system layer software services carry out the technical realization of functional
tasks while enterprise services (or business activity services in company B) encapsu-
late functionalities. At this point it is crucial to determine that the term enterprise
services does not stand for pieces of software—as opposed to the wording e.g. in
[24]—but it denotes model based abstractions. Furthermore the arrangement of ser-
vices in the case studies leads to the assumption that there is another relevant layer
above the enterprise services. Processes and products are located on this layer and are
being served by enterprise services (companies A and C).

… … …

… … …

Service Oriented Process Architecture

Service Oriented Software Architecture

Process P1

Software System S1

P2

S2

… … …

Domain D1

Enterprise
Service
1.1

Service Oriented Integration Architecture

Software
Service
1.1

Software
Service
1.2

Software
Service
1.3

Software
Service
1.4

Software
Service
2.1

Process
Service
1.1

Process
Service
1.2

Process
Service
1.3

Process
Service
1.4

Process
Service
2.1

D2

Enterprise
Service
1.2

Enterprise
Service
1.3

Enterprise
Service
2.1

… … …

Architecture Goals Design Guidelines

• Interoperability
• Changeability
• Decoupling of technical
dependencies
• Performing functional tasks
on information systems

• Along data objects affected
• As granular as necessary

•Make business processes
more flexible
• Reuse of standardized
functionalities
• IT/Business Alignment
•Decoupling of business and
IT structures

•More coarse grained than
software services
• Abstract logical
representations of IT
functionalities
• Context independent
• Black box behavior

• Flexible adaptation of
business models
• Standardized description of
goods and services

• Produces economically
measurable output
• Encapsulates sub processes
incl. workflows

Fig. 1. System of differentiated services following [2]

 Towards a Sophisticated Understanding of Service Design for Enterprise Architecture 321

Taking into account these three layers described by the case studies and an enter-
prise architecture described by [33], three sub architectures can be distinguished: a
Service Oriented Software Architecture (SOSA) on the basis of software services, a
Service Oriented Integration Architecture (SOIA) on the basis of enterprise services
and a Service Oriented Process Architecture (SOPA) on the basis of process services
(Figure 2).

4.1 Service Oriented Software Architecture

The goals of a SOSA are interoperability and changeability on the software layer by
the means of software services. Changeability and flexibility should be achieved by
decoupling, i.e. by the reduction of technical dependencies. Moreover, software ser-
vices in a SOSA are used to perform functional tasks on information systems [3].

In order to realize decoupling, the design of software services should be orientated
to the data object produced, changed or consumed by them. This is also done in prac-
tice like all of the three case studies show: Software services are designed in order to
conduct functional tasks on the supporting information systems. There already exists
a lot of literature on how to design such software services (cf. chapter 2). According
to the goals of a SOSA loose coupling and interoperability are the main guidelines for
software services design. Concerning the granularity of software services, our re-
search findings show that services should be as granular as necessary in order to sup-
port the functional tasks.

Depending on the task to be performed component services (context oriented ser-
vices), process services, entity services (data oriented services) and utility services
can be identified [24]. For their SOA blueprints OASIS distinguishes between atomic,
independent services and composite services. Regarding their statefulness and spe-
cific task conversational services, data services, publish-subscribe services and ser-
vice brokers can be named [21].

The adoption of software services is reasonable in highly volatile environments be-
cause interoperability and loose coupling provide advantages in implementation time
[16]. On the other side, one finding from our research was that the effectiveness of
service orientation in areas that claim extremely high standards concerning perform-
ance, transactionality or data security have to be analyzed in detail first (cf. also secu-
rity and transaction issues discussed in [20]).

4.2 Service Oriented Integration Architecture

A SOIA aims at the creation of enterprise services in order to orchestrate business
processes more flexibly. Besides flexibility reuse of standardized functionalities is
named as a key objective in the case studies presented above. Company C indirectly
aims at process flexibility by concentrating on products as a result of business proc-
esses. SCHELP and WINTER [28] mention the connection of business-oriented artifacts
and IT artifacts as the main objective of service orientation on the integration layer.
Thus, enterprise services aim at supporting IT/Business Alignment. With regard to the
alignment objective of enterprise services, case study C seems especially interesting:
Enterprise services are applied in order to establish a stable “middle layer” that is able

322 S. Aier and B. Gleichauf

to realize the relations between the fast changing products on one side and the long-
term IT systems on the other side. Besides flexibilisation, reuse and IT/Business
Alignment SOIA focuses on the decoupling of different change frequencies of busi-
ness and IT structures.

In order to operationalize these objectives, enterprise services should provide a dis-
continuation of interdependencies between functional and technical structures. There-
fore, enterprise services should be more coarse-grained compared to the software
services underneath and the process services above [2]. Company C is realizing this
principle. In company A each enterprise service is assigned to a software service,
though the access is possible through different call options. Thus the coarsening be-
tween software services and enterprise services is implemented indirectly.

Enterprise services can be defined as abstract logical representations of IT func-
tionalities on the integration layer [28]. To enable flexibilisation of functionalities
within business processes, enterprise services should encapsulate coarse-grained func-
tionalities [2]. In contrast to activities enterprise services should be able to exist with-
out contextual information on business processes [31], thus they should not contain
information on workflows or the like. Another crucial service design principle in view
of the IT/Business Alignment and the flexibilisation of processes is a black box be-
havior of the services.

KOHLMANN and ALT [15] as well as SCHELP and WINTER [27] present approaches
for the design of enterprise services: KOHLMANN and ALT [15] propose a business-
driven identification of enterprise services by deducing them from reference processes
while considering role models. The orientation towards processes, functions and data
objects as well as the aggregation of self-contained activity sets is also named by
SCHELP and WINTER [27] among the main design guidelines for enterprise services.
This approach seems to be applicable in practice, too: Company A identifies enter-
prise services by the means of given reference processes while company B is deduc-
ing the specification for enterprise services directly from their business activities and
business objects that have to be realized.

Enterprise services can be differentiated in loose coupled, i.e. orchestrated, or
tightly coupled, i.e. composed services [27]. KOHLMANN and ALT [15] distinguish
between enterprise service types for process activities, business rules and business
objects. Company B also models activity oriented and business object oriented
services. According to the traditional application design SCHELP and WINTER [28]
distinguish product centered, information centered and function centered enterprise
services. In practice the differentiation along contextual factors seems sensible: In
company A enterprise services are assigned to application domains so the services are
grouped by explicit business contexts. This may lead to the differentiation in internal
or external services.

In order to successfully apply service orientation to functionalities the decomposi-
tion of functionalities should be logically possible. The presented companies A, B and
C only partition and encapsulate functionalities if they affect multiple business ob-
jects, like customers or business processes, so that reuse is possible. If the decomposi-
tion in services results in high complexity and reuse potentials are no longer given,
service orientation should not be applied in this business area. For example Company
A does not design singular functionalities by the service orientation paradigm.

 Towards a Sophisticated Understanding of Service Design for Enterprise Architecture 323

4.3 Service Oriented Process Architecture

On the organization or process layer, service orientation can be used to flexibly adapt
business models by the means of process services. An example for the need of such
an adaptation is the outsourcing of individual business functions or processes (busi-
ness process outsourcing). The essential explication of service interfaces makes the
shift of goods and services into another environment possible. By defining process
services a structured description of goods and services is achieved at the same time.

Process service should encapsulate sub processes respectively a self-contained ac-
tivity set that has an economically measurable output. Opposed to enterprise services
process services also incorporate sub processes’ workflows that are deduced from
existing process models that exist in the company. In order to anticipate the possible
changes in the process design, like outsourcing or inter-corporate collaboration, the
design of process services should consider the usage of non-exclusive, common stan-
dards [4].

The delimitation of process services as opposed to enterprise services on the inte-
gration layer seems to be tough in practice, as our case studies show: In company A
individual process steps are identified but not explicitly implemented as a service.
Company B differentiates between business activities and business objects but as
regards content they are rather instances of enterprise services than process services.

In view of the flexibility for new business models the implementation of process
services seems reasonable if the sub processes can be standardized concerning their
quality and execution.

5 Discussion

This contribution illustrates the necessity to precisely and explicitly differentiate ser-
vice categories from an EA perspective. The main reasons to differentiate services are
the different goals and resulting different design guidelines applying to these service
categories.

Based on three cases studies we differentiate software services, enterprise services
and process services. While the cases studies and also literature provide a profound
understanding of software services and enterprise services, the design of process ser-
vices is dominated by a classical top-down process design. The fact that classical
business process management and process modelling predominantly use a top-down
approach while service orientation traditionally aims at clustering existing assets
applying a bottom-up methodology may lead to new challenges but also to new syn-
ergies. In process modelling research, reuse of process building blocks has also been a
topic discussed for several years, often in conjunction with (process) reference models
(e.g. [5, 17]). It can be supposed that such approaches are relevant and fruitful for
process service design. Therefore, future research should elaborate on the appropri-
ateness of “classical” process design in a services oriented EA. In doing so, the appli-
cability and the practical use of SOPA can be further evaluated.

An opportunity for further research can also be found in the field of service design
guidelines. Neither literature nor the practitioner’s community provide an empirically
validated understanding of which design guidelines effectively contribute to their

324 S. Aier and B. Gleichauf

respective goals. There are only a few publications on service design guidelines—and
only as far as IT architecture is concerned. Regarding integration and process archi-
tecture, there is hardly any publication on service design. Empirical validation of
successful service design guidelines—especially for service oriented integration and
process architecture—is non-existent and practitioners’ experiences are limited. How-
ever, service design guidelines which have proven to be successful will be beneficial
for the practitioners’ community and therefore represent a reasonable goal for explor-
ative research.

We strongly encourage research which investigates the influence of contextual fac-
tors on the success of services orientation. The contingency theory of leadership [12]
argues that there is no “best way” of organizing or leading an organization. Instead,
there are various internal and external factors that influence organizational effective-
ness. The organizational style must therefore be contingent upon those factors. Trans-
lated into the context of success of service orientation, it stands to reason that contin-
gency factors such as industry sector, organizational size or prior experience with
service orientation might influence SOA success.

Finally, for a validation of the concept of different service sub-architectures, the in-
terplay of SOPA, SOIA and SOSA should be analyzed in detail. It can be assumed
that the relationships between the different services on different layers are quite com-
plex—both, as EA models and as their observable artifacts. In order to describe and to
establish a comprehensive and flexible EA based on services, the links between the
different layers need to be understood thoroughly.

References

1. Aier, S., Riege, C., Winter, R.: Classification of Enterprise Architecture Scenarios – An
Exploratory Analysis. Enterprise Modelling and Information Systems Architectures 3(1),
14–23 (2008)

2. Aier, S., Winter, R.: Virtual Decoupling for IT/Business Alignment – Conceptual Founda-
tions, Architecture Design and Implementation Example. Business & Information Systems
Engineering 51(2) (forthcoming, 2009)

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services – Concepts, Architctures
and Applications. Springer, Heidelberg (2004)

4. Alt, R., Fleisch, E.: Key Success Factors in Designing and Implementing Business Net-
working Systems. In: Proceedings of Proceedings of 12th Electronic Commerce Confer-
ence: Global Networked Organizations, Bled, Slovenia, Kranj, Slovenia, Moderna organi-
zacija, June 7–9, 1999, pp. 219–235 (1999)

5. Baacke, L., Rohner, P., Winter, R.: Aggregation of Reference Process Building Blocks to
Improve Modeling in Public Administrations. In: Proceedings of Electronic Government,
6th International EGOV Conference, Proceedings of ongoing research, project contribu-
tions and workshops, Trauner Druck, pp. 149–156 (2007)

6. Berbner, R., Grollius, T., Repp, N., Eckert, J., Heckmann, O., Ortner, E., Steinmetz, R.:
Management of Service-oriented Architecture (SOA)-based Application Systems. Enter-
prise Modelling And Information System Architectures 2(1), 14–25 (2007)

7. Bieberstein, N., Bose, S., Walker, L., Lynch, A.: Impact of Service-oriented Architecture
on Enterprise Systems, Organizational Structures, and Individuals. IBM Systems Jour-
nal 44(4), 691–708 (2005)

 Towards a Sophisticated Understanding of Service Design for Enterprise Architecture 325

8. Brown, G., Carpenter, R.: Successful Application of Service-Oriented Architecture Across
the Enterprise and Beyond. Intel Technology Journal 8(4), 345–359 (2004)

9. Buchanan, R.D., Soley, R.M.: Aligning Enterprise Architecture and IT Investments with
Corporate Goals, Object Management Group (2002)

10. De Backer, M., Dedene, G., Vandelbulcke, J.: Web Services Composition, Execution and
Visualization. In: Proceedings of Proceedings of the 12th IEEE International Workshop on
Program Comprehension (IWPC 2004), pp. 264–265. IEEE Computer Society Press, Los
Alamitos (2004)

11. Erl, T.: SOA: Principles of Service Design. Prentice Hall, Upper Saddle River (2007)
12. Fiedler, F.E.: A Contingency Model of Leadership Effectiveness. Advances in Experimen-

tal Social Psychology 1, 149–190 (1964)
13. Fischer, R., Aier, S., Winter, R.: A Federated Approach to Enterprise Architecture Model

Maintenance. Enterprise Modelling and Information Systems Architectures 2(2), 14–22
(2007)

14. Herr, M., Bath, U., Koschel, A.: Implementation of a Service Oriented Architecture at
Deutsche Post MAIL. In: Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250,
pp. 227–238. Springer, Heidelberg (2004)

15. Kohlmann, F., Alt, R.: Business-Driven Service Modeling – A Methodology Approach
from the Finance Industry. In: Proceedings of BPSC 2007: Proceedings of the 1st Interna-
tional Working Conference on Business Process and Services Computing, Leipzip, pp.
180–193 (2007)

16. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA – Service-Oriented Architecture Best
Practices, The Coad Series. Pearson, Upper Saddle River (2005)

17. Lang, K., Bodendorf, F., Glunde, J.: Framework for Reusable Reference Process Building
Blocks. SIGGROUP Bulletin 18(1), 68–70 (1997)

18. Lankhorst, M.: Enterprise Architecture at Work: Modelling, Communication and Analysis.
Springer, Berlin (2005)

19. Legner, C., Heutschi, R.: SOA Adoption in Practice – Findings from Early SOA Imple-
mentations. In: Proceedings of Proceedings of the 15th European Conference on Informa-
tion Systems, Relevant rigour – Rigorous relevance (2007)

20. McGovern, J., Sims, O., Jain, A., Little, M.: Enterprise Service Oriented Architectures:
Concepts, Challenges, Recommendations. Springer, Dordrecht (2006)

21. OASIS, SOA Blueprints, OASIS (2005) (last access: 08.08.2008),
 http://www.oasis-open.org/committees/download.php/15965/
 05-12-00000.001.doc

22. Rood, M.A.: Enterprise Architecture: Definition, Content, and Utility. In: Proceedings of
Proceedings of the Third Workshop on Enabling Technologies: Infrastructure for Collabo-
rative Enterprises, pp. 106–111. IEEE Computer Society Press, Los Alamitos (1994)

23. Ross, J.W., Weill, P., Robertson, D.C.: Enterprise Architecture as Strategy. Creating a
Foundation for Business Execution. Harvard Business School Press, Boston (2006)

24. SAP, Enterprise Services Design Guide, SAP AG (2006)
25. Schekkerman, J.: How to Survive in the Jungle of Enterprise Architecture Frameworks:

Creating or Choosing an Enterprise Architecture Framework, 2nd edn. Trafford Publish-
ing, Victoria (2004)

26. Schelp, J., Aier, S.: SOA and EA – Sustainable Contributions for Increasing Corporate
Agility. In: Proceedings of 42th Hawaii International Conference on Systems Science
(HICCS-40). IEEE Computer Society Press, Los Alamitos (2009)

326 S. Aier and B. Gleichauf

27. Schelp, J., Winter, R.: Towards a Methodology for Service Construction. In: Proceedings
of 40th Hawaii International Conference on Systems Science (HICCS-40). IEEE Computer
Society, Los Alamitos (2007)

28. Schelp, J., Winter, R.: Business Application Design and Enterprise Service Design: A
Comparison. Int. J. Service Sciences (2008)

29. The Open Group, The Open Group Architecture Framework TOGAF – 2007 Edition (In-
corporating 8.1.1), Van Haren, Zaltbommel (2007)

30. Veasey, P.W.: Use of Enterprise Architectures in Managing Strategic Change. Business
Process Management Journal 7(5), 420–436 (2001)

31. Vernadat, F.B.: Reengineering the Organization with a Service Orientation. In: Hsu, C.
(ed.) Service Enterprise Integration. Integrated Series In Information Systems, vol. 16, pp.
77–101. Springer, Heidelberg (2007)

32. Wagter, R., van den Berg, M., Luijpers, J., van Steenbergen, M.: Dynamic Enterprise Ar-
chitecture: How to Make It Work. John Wiley & Sons, Hoboken (2005)

33. Winter, R., Fischer, R.: Essential Layers, Artifacts, and Dependencies of Enterprise Archi-
tecture. Journal of Enterprise Architecture 3(2), 7–18 (2007)

34. Yuan, R., Zunchao, L., Boqin, F., Jincang, H.: Architecture-based Web service composi-
tion framework and strategy. In: Proceedings of 12th IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS 2005), pp. 129–134.
IEEE Computer Society, Los Alamitos (2005)

A Conceptual Framework for the Governance
of Service-Oriented Architectures

Jan Bernhardt1 and Detlef Seese2

1 SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany
2 Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany

jan.bernhardt@sap.com, seese@aifb.uni-karlsruhe.de

Abstract. With the widespread adoption of service-oriented architec-
ture (SOA) as the leading paradigm for the development of business
applications, the need for adequate governance mechanisms to keep con-
trol of the increasing complexity inherently introduced by SOA arises.
However, current approaches to SOA governance are often limited to ei-
ther design time or runtime aspects of SOA governance, despite the need
for adequate governance mechanisms covering the complete SOA lifecy-
cle. Furthermore, no common understanding of SOA governance exists
today, as many solution vendors misleadingly label SOA management
products as solutions for SOA governance.

This work presents a reference model for SOA governance that is
based on the OASIS Reference Model for Service Oriented Architecture.
It aims at establishing a common understanding of SOA governance and
is intended to serve as a basis for comparing and developing concrete
SOA governance solutions.

1 Introduction

To date neither a common understanding of, nor a common model for SOA
governance exists. Moreover, current approaches proposed by SOA governance
solution vendors are incomplete in that they only address some aspects of SOA
governance, mainly technical governance and management aspects. Our reference
model for SOA governance strives at closing these gaps. It is based on a reference
model for SOA methodologies (see [1]), which in turn is based on the OASIS
Reference Model for Service Oriented Architecture (SOA-RM) [2].

In order to account for the special nature of SOA – increased complexity (e.g.
[3]), augmented security requirements (cf. [1]), and demand for better business
and IT alignment (e.g. [4]) – the discipline of SOA governance has evolved. It is
an extension or evolution of IT governance defining the organizational structures
and processes that are required to successfully adopt SOA (e.g. [4], [5]).

Drawing on [6] and on definitions of corporate [7] and IT governance [8] we
define SOA governance as follows:

Definition 1 (SOA governance). SOA governance consists of the organiza-
tional structures, processes, and policies an organization puts in place to ensure

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 327–338, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

328 J. Bernhardt and D. Seese

that the adoption, implementation, and operation of SOA in an organization
is done in accordance with best practices, architectural principles, government
regulations, and laws, that is, in a manner that sustains and extends the orga-
nization’s strategies and objectives.

The SOA-RM defines SOA as “a paradigm for organizing and utilizing dis-
tributed capabilities that may be under the control of different ownership do-
mains” providing “a uniform means to offer, discover, interact with and use
capabilities to produce desired effects” [2]. Based on this understanding of SOA
and taking into account its special nature we have developed a reference model
for SOA governance consisting of a comprehensive set of governance policies,
processes, and corresponding organizational constructs.

The remainder of this work is organized as follows. Sect. 2 summarizes related
work in the area and identifies gaps in current approaches, motivating the need
for a reference model for SOA governance. The reference model is presented in
Sect. 3. We conclude our work in Sect. 4 by giving an outlook on areas for future
research.

2 Related Work

Over the last few years SOA governance has been a topic primarily driven by
analysts (e.g. [6], [9], [10]) and technical governance and management solution
vendors (e.g. [11]), and only recently scientific literature has been published in
the area (e.g. [5]). In addition, some of the recent books on SOA also contain
chapters about SOA governance (e.g. [4], [12]). Finally, numerous online articles
are available covering the topic in more or less detail (e.g. [13], [14], [15]).

Some main characteristics of SOA governance recur throughout the litera-
ture. First if all, the need for SOA governance is motivated from the increased
complexity of SOA originating from the number of services and their interde-
pendencies that exist in a SOA landscape (e.g. [4], [5], [12]). Secondly, consensus
seems to exist about the fact that SOA governance can be seen as a specializa-
tion (or extension) of IT governance accounting for the special nature of SOA
(e.g. [4], [12], [14], [15]). Thirdly, [4], [5], and [6] name policies, processes, or-
ganizational structures, and metrics as core constituents of a SOA governance
program. In addition it is stated that in order to successfully fulfill its mandate
SOA governance needs control over project approval and funding as well as port-
folio management decisions (e.g. [4], [13]). Finally, reuse of services is commonly
named as a main benefit of SOA (e.g. [9], [13]). However, [5] legitimately argues
that reuse contradicts agility.

Based on the SOA-RM [2] OASIS has published a Reference Architecture for
Service Oriented Architecture [16], which contains a generic model for gover-
nance augmented with some specifics for SOA governance. Furthermore, The
Open Group has set up a project on SOA governance [17] as part of its SOA
working group, whose aims include the definition of a reference model for SOA
governance. However, no results have been published to date.

A Conceptual Framework for the Governance of SOA 329

What distinguishes the reference model presented in this work from available
material in the domain is the rigorously holistic approach assumed, covering
the complete SOA lifecycle from service proposition to retirement. Moreover,
all aspects that should be considered by SOA governance have been identified
from a reference model for SOA methodologies (see [1]) and are presented in a
comprehensive, uniform set of governance policies, processes, and organizational
constructs, which to the best of our knowledge is unprecedented in the literature.

3 A Reference Model for SOA Governance

In order to successfully adopt SOA in an organization, certain organizational
structures, consisting of a number of organizational units, have to be established
to govern the introduction and operation of SOA. The organizational units define
governance policies and processes, execute governance processes, and employ
metrics to measure adherence to them (Fig. 1).

Governance processes enable governance policies and enforce compliance. Met-
rics provide visibility into the processes allowing for supervision, control, and
identification of areas for improvement. Furthermore, a SOA governance infras-
tructure helps to manage governance information, enforce governance policies,
and collect corresponding metrics (cf. [6]). The following subsections describe
the proposed constituents of SOA governance in detail.

3.1 Organizational Structure

The organizational structure for SOA governance comprises the SOA governance
board, the SOA program office, and a number of delegate councils.

SOA Governance Board. The SOA governance board constitutes the main
governance body of a SOA initiative. It should be composed of specialists from
both the business and technology domains such as business analysts, enterprise
architects, and service architects. In addition, it is important that decision mak-
ers such as the line of business managers that are affected by the SOA initiative

Governance
Policy

Governance
Process Metrics

Organiza-
tional

Structure

realizes
1..* 1..*

measures adherence to

1..* 1..*

provides visibility into
1..* 1..*

defines

1..*

1..*

defines and executes
1..*

1..*

employs

1..*

1..*

Organiza-
tional Unit

1..*1

collects

*

0..1

facilitates

*

0..1

enforces

*

0..1 SOA Gover-
nance Infra-

structure

Fig. 1. Elements of SOA governance

330 J. Bernhardt and D. Seese

are also part of the governance board to establish the required influence and
authority.

In particular, the SOA governance board takes into account business objec-
tives, architecture and design standards and best practices, and applicable laws
to translate them into corresponding governance policies. It also defines metrics
that will be used to measure adherence to and success of the policies. Further-
more, governance processes have to be defined and set up that integrate with
the SOA lifecycle to realize the policies.

The governance board is supported by a number of councils to which it may
delegate work (cf. [16], see [1] for details). Depending on whether an organization
applies a central or distributed SOA governance scheme (cf. [4]), the board either
possesses exclusive decision rights regarding policies and processes, or it may
empower the delegate councils to make decisions themselves.

As a transition to SOA is a highly complex undertaking with impact on many
different parts of an organization, the transition should take place iteratively (cf.
[4]). It is the responsibility of the SOA governance board to set up an overall
SOA roadmap that accounts for progressive adoption of SOA.

Finally, project prioritization and funding are necessary means to steer the
SOA initiative into the desired direction, particularly with respect to business
alignment of services. Without practical control of funding projects are more
likely to produce project-centric services which might not meet the overall re-
quirements of the organization [13]. Therefore the SOA governance board must
at least possess authority to influence decisions on project prioritization and
funding.

SOA Program Office. The SOA program office is the main organizational
management body in a SOA initiative, which is in charge of the overall SOA
program management. Its responsibility is to set up the required organizational
structures, first and foremost the delegate councils.

The program office reports to the SOA governance board. It is authorized to
decide on project prioritization, selection and funding in accordance with the
board, which may take influence in the decision process. The program office also
assigns people to the roles defined by the governance board. Finally, it may also
influence the SOA roadmap.

3.2 Policies

Policies are the means to define what is right. This reference model distinguishes
two notions of policies. Governance policies, on the one hand, formulate general
rules that address important aspects of SOA such as how to develop, introduce
and operate a SOA. Governance policies state on a high level what to do and
how to do it. Service policies, on the other hand, are more concrete; they directly
affect, and can be attached to one or more services.

Definition 2 (Governance policy). Governance policies comprise rules that
on a high level address all aspects that are important in developing, deploying

A Conceptual Framework for the Governance of SOA 331

and managing a SOA, that is, the SOA lifecycle. Governance policies define what
to do and how to do it.

Definition 3 (Service policy). Service policies define rules that specifically
apply to one or more services. They are always derived from governance policies.

Service and governance policies are both specializations of policies. A policy
consists of one or more policy assertions, the fulfillment of which is measurable
[2]. When an individual or an organization adopts one or more policy assertions
as their policy, the policy assertions become the policy of that individual or
organization. In the scope of this reference model we do not explicitly distinguish
between policies and policy assertions, but reluctantly speak of policies instead.

Every policy has a dedicated policy owner. The policy owner is the one who
has an interest in the policy. He usually is responsible for the enforcement of the
policy [2].

In our work we have identified 41 different governance policies for the complete
SOA lifecycle (i.e. service proposition, design, implementation, provisioning, con-
sumption, and management). These policies are motivated from the definition of
SOA given in [2]. They ensure that all activities associated with the SOA lifecy-
cle are executed in a manner that sustains the organization’s objectives. In the
following paragraphs we present the most important of the identified governance
policies; for a full description see [1].

Service Proposition. For service proposition the approach that should be
taken has to be specified (service proposition policy). Services can either be
proposed in a top-down, bottom-up, or in a combined manner (cf. [18], [19]). Top-
down service proposition identifies service candidates from some kind of business
model, whereas bottom-up service proposition uses existing application system
functionality to propose services. It is also possible to apply a combination of
the two alternatives.

Furthermore, fundamental choices regarding general service-oriented design
principles, which also have an effect on service proposition, have to be made.
Two aspects that need to be considered in this regard are service granularity
and reusability (e.g. [20]; service granularity and reusability policies). Designing
services for reuse is more expensive [5], wherefore the benefit of avoiding du-
plicate functionality has to be weighed against the additional costs. Moreover,
service reuse decreases agility [3], as it increases the number of dependencies
that have to be considered in case services need to change. Service granularity
and reusability also affect each other, since services with a narrower focus may
be more easily reused [20].

Service Design. Regarding service design it has to be determined whether dif-
ferent service types should be distinguished (e.g. infrastructure, data, functional,
and process services; cf. [21]). This is stipulated in a corresponding service type
policy.

Another fundamental aspect of service design is the use of service design
patterns. A number of design patterns for services are emerging (e.g. [22]), and

332 J. Bernhardt and D. Seese

it has to be determined if any of these patterns should be applied for service
design (design pattern policy).

Furthermore, the service error handling scheme has to be determined (error
handling policy). Options include using a standard (e.g. SOAP) or a proprietary
error handling mechanism, and to handle all types of errors (e.g. application
errors, communication errors) in the same way or differently.

Finally, the transaction behavior of services also has to be taken into account
(transaction behavior policy). The question to answer here is whether service
invocations should adhere to the ACID (atomicity, consistency, isolation, and
durability) characteristics common in database design.

For service interface modeling it has to be defined whether service inter-
faces should be designed according to common message schema standards (e.g.
ebXML, RosettaNet). In case many services will be disclosed to external parties,
it may be advantageous to comply with common standards. On the other hand,
if the number of public services is low, the development of proprietary schemas
following the organization’s data architecture may be more applicable (message
schema policy).

An important aspect of a SOA initiative is the unification of data types across
the organization (cf. [23]) to achieve a common understanding of data types, to
allow for reuse, to create compatible service interfaces in terms of syntax and
semantics, and to keep message transformations during service operations to a
minimum (data type unification policy). In addition, data type definition and
reuse policies stipulate naming rules for data types, application of common stan-
dards for data type definition (e.g. Core Components Technical Specification)
to facilitate semantic service interoperability, and rules regulating reuse of data
types.

Another fundamental decision refers to transaction patterns (transaction pat-
tern policy). The definition and prescription of transaction patterns such as query/
response or request/confirmation for all service interfaces provides a means to
unify the semantics of the interfaces, which enhances service interoperability (see
e.g. [20]).

Consistent naming of service interfaces, i.e. the definition of naming conven-
tions, is another important aspect (naming policy). In case transaction patterns
are employed, it may be beneficial to include the employed pattern into the
interface and operation names to clearly indicate their semantics. For exam-
ple, the interface of a customer management service that adheres to the re-
quest/confirmation pattern may have customerCreateRequest and customerCre-
ateResponse operations.

Finally, it has to be discussed whether reliable communication is required and
how it should be achieved (reliable communication policy).

Service Implementation and Quality Assurance. Regarding service im-
plementation governance has to decide whether services should be implemented
on the basis of a component technology (e.g. Service Component Architecture
(SCA) [24]). Furthermore, the implementation and interface technologies to-
gether with the technical frameworks that should be used have to be determined

A Conceptual Framework for the Governance of SOA 333

(service component policy and implementation technology policy, respectively).
As it is one of the aims of SOA to allow services built using a variety of platforms
and programming languages to interact, it is possible that multiple languages
are chosen for implementation depending on the specific requirements.

Governance concerning service quality assurance is a crucial aspect for the suc-
cess of SOA and ranges from determining tests that have to be conducted (test-
ing policy) to reviews that have to be passed (review policy). Common tests for
services include dependency, interoperability, and regression tests for functional
service testing, and performance, stress, and security tests for non-functional ser-
vice testing. In addition, scenario tests to test a number of dependent services
in combination are particularly important (cf. [6]).

Service Documentation. The service description is a fundamental part of
SOA as it provides information necessary to interact with a service to poten-
tial service consumers. A service documentation policy therefore has to ensure
that all relevant information is actually included in the service description. It is
probably useful to define a service description template in this respect which has
to be adhered to. Moreover, with regard to service discovery, it is advisable to
define a service taxonomy and to classify all services according to this taxonomy
to alleviate discovery of services that can satisfy a consumer’s needs.

According to [2] the service description should at least contain information
about the functionality of the service, access to the service (i.e. the service ad-
dress), and policies the service operates under. Concerning the service interface
the required message syntax, the underlying semantics, and allowed message
sequences, including applicable transaction patterns, have to be specified. In
addition, main characteristics of the service such as statelessness, idempotency,
and warranties regarding reliable communication should be part of the service
description as well.

Finally, service policies such as guaranteed service levels and according remu-
neration schemes, as well as the service’s error handling mechanism should also
be described.

Service Publication and Consumption. Regarding service publication it
has to be decided where services (i.e. service descriptions) should be published,
i.e. if a service registry should be employed, or whether services should simply be
published in a file, for example (service publication policy). In case it is decided to
use a registry, options include using separate registries for service publication and
service governance (e.g. for maintaining administrative information and service
lifecycle states), or a single registry for both.

Furthermore, a role concept and according access control mechanisms for the
registry have to be determined, including decisions regarding who is allowed to
publish and who entitled to release services for production.

Finally, in case a service taxonomy has been defined for services, the attributes
assigned to each service should be published in the registry as part of the service
description.

334 J. Bernhardt and D. Seese

The role concept and access control mechanisms for the registry also have
to take into account rules for service consumption. The corresponding service
consumption policy has to specify who is allowed to search for services, access
services (e.g. for testing, for production), and to generate service proxies from
the service interfaces in order to consume services.

Another important aspect of service consumption is contract negotiation.
Therefore the service consumption policy also has to determine who is responsi-
ble for and entitled to negotiating contracts with service consumers. This could,
for example, be the service owner.

Finally, the contract language is another important aspect to consider. De-
pending on the subject of the contract it may be specified that contracts have to
be expressed in a machine-processable form to permit automated interpretation
and enforcement (cf. [2]).

Service Management. Services in production have to be monitored to en-
sure that non-functional service requirements specified during service design,
and service levels negotiated during service consumption are maintained. Ser-
vice monitoring inherently is a management activity. It is the responsibility of
governance, however, to specify what has to be monitored and to define remedial
actions in case violations occur (service monitoring policy). Service monitoring
likely includes service level, availability, security, and error monitoring.

Besides, distinct policies define how individual management responsibilities
should be handled. A service level management policy defines how contracted
service levels should be maintained, remedial actions in case service levels are
violated, and different service levels and according pricing models offered.

A service availability policy specifies how service availability management
should be performed in order to guarantee the degree of service availability as-
sured to service consumers. This again includes the definition of remedial actions
in case availability is threatened.

A security management policy determines how security management should
be performed. This may reach from high level governance rules stating that
sensitive services have to be secured in some way, to concrete rules prescribing
the actual access control and encryption mechanisms to be applied.

Finally, a dependency management policy specifies how service dependencies
should be managed. One of the main challenges in SOA is the increased complex-
ity that has to be handled and which stems from the number of interdependent
services existing in a SOA landscape together with their organizational structure
and the dynamics of their interaction (cf. [5]). If these dependencies are not struc-
tured well and managed without gap, service changes may lead to critical errors.

Service Versioning, Change, Deprecation, and Retirement. Due to chan-
ging business and other requirements, services are likely to change during their
lifetime. Governance has to decide how changes are handled, and whether in-
compatible or only compatible changes are allowed (change policy).

Closely related to change is the topic of versioning (versionig policy). For ex-
ample, it could be specified that compatible changes entail a new service version,

A Conceptual Framework for the Governance of SOA 335

whereas incompatible changes require a new service with a different name and
different taxonomy attributes. Another aspect pertains to how many versions of
a service are allowed to exist in parallel. Increasing maintenance costs probably
necessitate the retirement of older versions at some point in time.

Furthermore, service deprecation and retirement procedures, as well as transi-
tion periods have to be appointed (service deprecation and retirement policies).
Transition periods may be subject to negotiation and codified in the service
contract.

Finally, service providers may want to notify service consumers of events such
as service change, deprecation, and retirement (notification policy). The obliga-
tion to send notifications may also be included in the service contract.

3.3 Governance Processes

Governance processes are the means to realize governance policies. This includes
policy-related processes such as definition and enforcement, as well as project-
related processes such as prioritization and funding. Furthermore, review pro-
cesses as an instrument to verify policy compliance are another important aspect
of SOA governance (for details see [1]). To minimize the overhead inherently
introduced by any governance mechanism, governance processes should be au-
tomated wherever feasible.

Policy-Related Processes. A number of governance processes revolve around
the definition, propagation, and enforcement of governance policies. Having es-
tablished an appropriate organizational structure for SOA governance, the re-
spective organizational bodies (i.e. the SOA governance board, the delegate
councils) start defining and documenting governance policies for their specific ar-
eas of expertise. The policies may have to pass a resolution process, particularly
if policies developed by delegate councils have to be ratified by the governance
board. Besides, it is necessary to educate on the policies (policy enablement).

Furthermore, mechanisms enabling policy enforcement have to be established.
Enforcement can either be achieved manually (e.g. by a design review), or auto-
matically (e.g. by a SOA management system). Closely related to enforcement is
the handling of policy violations, which likely comprises initiating compensatory
actions (cf. [2]). In addition, policy waiver procedures should be defined (cf. [6])
to be able to bypass certain policies in case special business requirements require
to do so.

Finally, policies may have to be adapted due to changing business require-
ments, or because they prove inadequate in practice. The concept of versioning
is therefore applicable not only to services, but to policies as well.

Approval, Review and Reporting. Review processes are a means to enforce
governance policies, particularly regarding design time policies. Passing a review
may be a prerequisite for the transition to the next phase of the SOA lifecycle (cf.
[13]). For example, before moving on to service implementation, service models
may have to pass a service design review.

336 J. Bernhardt and D. Seese

Closely related to reviews are approval processes, which are another means for
policy enforcement. In particular, new services or service changes may have to
be approved by the SOA governance board before they may be realized. Besides
services, other design decisions such as the introduction of new data types may
be subject to approval as well.

Finally, reporting processes provide feedback from the organizational units
concerned with realizing the SOA to the SOA governance board, which it requires
to maintain overview of the SOA initiative and to intervene if necessary.

3.4 Metrics

Metrics improve transparency and provide visibility of essential states and pa-
rameters of the SOA initiative on the whole, and into governance processes in
particular to the SOA governance board (compare corresponding developments
on lower levels such as software or process metrics, see e.g. [25]). They may be
partitioned into metrics related to services, service operations and projects.

Regarding services it is interesting to know how many services exist in total,
have been proposed, are being developed, are published, and are actually con-
sumed. Furthermore, numbers on changed, deprecated and retired services also
provide useful insights. Finally, information on the number of consumers per
service and service version is helpful as well, particularly regarding the impact
of changes.

To provide visibility into service operations and to identify areas for improve-
ment a number of operations-related metrics are helpful. These include the num-
ber of successful vs. the number of erroneous interactions, including information
indicating the reasons for the errors (e.g. SOAP faults, invalid input data, size of
input data etc.). Another important aspect is performance KPI’s, as these help
to identify both bottlenecks in the infrastructure and the need for service design
revisions. Furthermore, service level and security violations are also important
to report.

Finally, in order to maintain the overview of the SOA initiative on the whole it
is important to provide feedback on the number of successful and failed projects
and the reasons for both failure and success.

3.5 SOA Governance Infrastructure

SOA governance processes must be as unobtrusive as possible to encourage adop-
tion of SOA. A SOA governance infrastructure (SGI) helps facilitating SOA gov-
ernance by managing governance information, automating governance processes,
enforcing governance policies, and collecting metrics (cf. [6]).

The elements of an SGI are determined by the specific governance require-
ments. A service registry helps to maintain overview of existing services and to
manage administrative information such as service lifecycle states. It may also al-
low for service consumer notifications, e.g. using some kind of publish/subscribe
mechanism for change and deprecation events. For the management of design ar-
tifacts a repository can be employed. It is also a natural candidate for a central
data type inventory.

A Conceptual Framework for the Governance of SOA 337

Policy and contract management are supported by policy and contract man-
agement systems. A policy management system helps to define and document
policies, attach policies to artifacts, and to propagate policies to their respective
points of application. It may also provide capabilities for analyzing the impact
of policy changes.

With respect to the elevated testing requirements in SOA a specialized quality
management system may support testing complete service compositions, as well
as impact analysis in case of service changes, taking into account dependencies
between services.

Finally, a SOA management system should facilitate service administration
(e.g. lifecycle transitions) and monitoring. Moreover, automatic policy enforce-
ment mechanisms, as well as reporting capabilities should also be provided.

4 Conclusion

This work has outlined a comprehensive reference model for SOA governance
that is based on the standardized SOA-RM [2] and motivated from aspects
relevant to methodologies for SOA (see [1]). Unlike previous approaches to SOA
governance, our reference model addresses governance aspects for the complete
SOA lifecycle, stipulated in a comprehensive set of governance policies, processes,
and organizational considerations.

Having established a common understanding of the concepts relevant for SOA
governance, in a next step we plan to investigate in detail the relationships
between our reference model and common frameworks for IT governance (e.g.
COBIT) and Enterprise Architecture (e.g. TOGAF, Business Engineering Model
[26]).

References

[1] Bernhardt, J.: A Conceptual Framework for the Governance of Service-Oriented
Architectures. Master’s thesis, Universität Karlsruhe (TH), Germany (April 2008)

[2] MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: OASIS Refer-
ence Model for Service Oriented Architecture 1.0 (October 2006)

[3] Schelp, J., Winter, R.: Towards a Methodology for Service Construction. In:
HICSS 2007: Proceedings of the 40th Annual Hawaii International Conference
on System Sciences, Washington, DC, USA, p. 64. IEEE Computer Society, Los
Alamitos (2007)

[4] Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R.: Service-Oriented
Architecture Compass: Business Value, Planning, and Enterprise Roadmap, 2nd
edn. IBM Press Pearson Education, Upper Saddle River (2006)

[5] Schelp, J., Stutz, M.: Serviceorientierte Architekturen (SOA). In: SOA-
Governance, 1st edn. ser. HMD – Praxis der Wirtschaftsinformatik, pp. 66–73.
dpunkt-Verlag, Heidelberg (2007)

[6] Manes, A.T.: You Can’t Buy Governance, InfoWorld SOA Executive Forum
(November 2007), http://www.infoworld.com/

[7] Organisation for Economic Co-Operation and Development, “OECD Principles
of Corporate Governance (2004), http://www.oecd.org/

http://www.infoworld.com/
http://www.oecd.org/

338 J. Bernhardt and D. Seese

[8] IT Governance Institute (ITGI), Board Briefing on IT Governance, 2nd edn.
(2003), http://www.itgi.org/

[9] Malinverno, P.: Service-Oriented Architecture Craves Governance (January 2006),
http://www.gartner.com/

[10] Malinverno, P.: Sample Governance Mechanisms for a Service-Oriented Architec-
ture (April 2006), http://www.gartner.com/

[11] Systinet, SOA Governance: Balancing Flexibility and Control Within an SOA
(September 2006), http://www.hp.com/

[12] Starke, G., Tilkov, S. (eds.): SOA-Expertenwissen: Methoden, Konzepte und
Praxis serviceorientierter Architekturen, 1st edn. dpunkt-Verlag, Heidelberg
(2007)

[13] Carlson, B., Marks, E.: SOA Governance Best Practices – Architectural, Organi-
zational, and SDLC Implications (January 2006),
http://webservices.sys-con.com/

[14] Brown, W.A., Cantor, M.: Soa governance: how to oversee successful implemen-
tation through proven best practices and methods (August 2006),
http://www.ibm.com/

[15] Starke, G.: SOA Governance: Crucial Necessity or Waste of Time?(November
2007), http://www.infoq.com/

[16] McCabe, F.G., Estefan, J.A., Laskey, K., Thornton, D.: OASIS Service Oriented
Architecture Reference Architecture 1.0 Public Review Draft 1 (April 2008)

[17] The Open Group, SOA Working Group SOA Governance Project (August 2006),
http://www.opengroup.org/projects/soa-governance/

[18] Arsanjani, A.: Service-oriented modeling and architecture – How to identify, spec-
ify, and realize services for your SOA (November 2004),
http://www.ibm.com/developerworks/library/ws-soa-design1/

[19] Cherbakov, L., Galambos, G., Harishankar, R., Kalyana, S., Rackham, G.: Impact
of service orientation at the business level. IBM Systems Journal 44(4), 653–668
(2005)

[20] Erl, T.: SOA Principles of Service Design, 1st edn. Prentice Hall, Upper Saddle
River (2008)

[21] Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture
Best Practices. Prentice Hall, Upper Saddle River (2006)

[22] Erl, T.: SOA Design Patterns. Prentice-Hall, Upper Saddle River (scheduled for
2008)

[23] Manes, A.T., Tilkov, S.: Anne Thomas Manes on SOA, Governance and REST
(July 2007), http://www.infoq.com/

[24] Open SOA Collaboration, Service Component Architecture (SCA) v1.0 (March
2007), http://www.osoa.org/

[25] Melcher, J., Seese, D.: Process Measurement: Insights from Software Measure-
ment on Measuring Process Complexity, Quality and Performance. University of
Karlsruhe (TH), Institute AIFB, Tech. Rep. (2008)

[26] Österle, H., Winter, R. (eds.): Business Engineering, 2nd edn. ser. Business En-
gineering. Springer, Berlin (2003)

http://www.itgi.org/
http://www.gartner.com/
http://www.gartner.com/
http://www.hp.com/
http://webservices.sys-con.com/
http://www.ibm.com/
http://www.infoq.com/
http://www.opengroup.org/projects/soa-governance/
http://www.ibm.com/developerworks/library/ws-soa-design1/
http://www.infoq.com/
http://www.osoa.org/

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 339–350, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using Enterprise Architecture Models and Bayesian
Belief Networks for Failure Impact Analysis

Oliver Holschke1, Per Närman2, Waldo Rocha Flores2,
Evelina Eriksson2, and Marten Schönherr3

1 Technische Universität Berlin, Fachgebiet Systemanalyse und EDV, FR 6-7,
Franklinstr. 28-29, 10587 Berlin, Germany

Oliver.Holschke@sysedv.tu-berlin.de
2 Dpt. of Industrial Information and Control Systems, Royal Institute of Technology (KTH),

Stockholm, Sweden
{PerN,WaldoR,EvelinaE}@ics.kth.se

3 Deutsche Telekom Laboratories, Ernst-Reuter-Platz 7, 10587 Berlin, Germany
Marten.Schoenherr@telekom.de

Abstract. The increasing complexity of enterprise information systems makes
it very difficult to prevent local failures from causing ripple effects with serious
repercussions to other systems. This paper proposes the use of Enterprise
Architecture models coupled with Bayesian Belief Networks to facilitate
Failure Impact Analysis. By extending the Enterprise Architecture models with
the Bayesian Belief Networks we are able to show not only the architectural
components and their interconnections but also the causal influence the
availabilities of the architectural elements have on each other. Furthermore, by
using the Diagnosis algorithm implemented in the Bayesian Belief Network
tool GeNIe, we are able to use the network as a Decision Support System and
rank architectural components with their respect to criticality for the
functioning of a business process. An example featuring a car rental agency
demonstrates the approach.

Keywords: Enterprise Architecture Management, Decision Support Systems,
SOA, Bayesian Belief Nets, Diagnosis, Failure Impact Analysis.

1 Introduction

Today’s businesses are increasingly dependent upon IT, not only to support their
business processes but also to automate their business processes. With the advent of
integration technologies the information systems have become more and more
interconnected. This means that the decision makers in charge of managing the
enterprise information systems have lesser possibilities of knowing how any
particular decision concerning changes to the information systems affect other
information systems or for that matter the business itself. The process of conducting
and planning preventive IT maintenance and allocating maintenance and operation
resources where they do the most good is one area where the sheer complexity of the
information system poses a problem.

340 O. Holschke et al.

Enterprise Architecture (EA) is a proposed solution to reduce complexity and
allow for better decision-making. Using EA models illustrates the architectural
components of the enterprise system and their interconnections in a way that is
comprehensible to ordinary people. There is a plethora of EA frameworks currently in
use including The Open Group Architecture Framework (TOGAF) [1], the
Department of Defense architecture framework (DoDAF) [2], and others [3].
Although many of these frameworks propose models that capture interconnections
between systems, they fail to depict causal relations between availability of various
architectural elements.

To be able to depict and model causal relations between systems, one might use
Bayesian Belief Networks [4], which feature a graphical notation to capture causal
relations in a more qualitative fashion. In addition to this, there is also a statistical
apparatus behind the graphical notation with which one can quantitatively estimate
which decision yields the most benefit. We propose a Decision Support System (DSS)
for failure impact analysis for Enterprise Architectures based precisely on the
Bayesian Belief Networks (BBN) introduced above. Our proposed management
process and underlying DSS address several concerns of enterprise architects
identified in the Enterprise Architecture Management Pattern Catalogue [5] which
has been developed at the Technische Universität München, Germany. Our method
can be regarded as an implementation of the Infrastructure Failure Impact Analysis
(M-34) pattern which addresses concerns about infrastructure failures, including
concerns about the probability of these failures being causes for process, service or
other element defects. The method of creating the DSS consists of EA models based
on the ArchiMate meta-model [6, 7] and their translation to a BBN, then using an
algorithm to simulate which architectural element is the most critical. The following
section proceeds to describe BBNs in general and diagnostic analysis. Section 3
describes how to apply BBNs and diagnostic analysis and how to create the Decision
Support System for failure impact analysis. The creation of the DSS is demonstrated
in section 4, applied to an example car rental agency. The diagnostic use of the DSS is
illustrated in section 5. Section 6 concludes the paper.

2 Bayesian Belief Networks and Diagnostic Analysis

2.1 Bayesian Belief Networks

A Bayesian Belief Net (BBN) is a graphical model that combines elements of graph
and probabilistic theory. A BBN describes a set of causal relations within a set of
variables, and a set of conditional independencies including joint probabilities as
depicted in Fig. 1. A directed, acyclic graph (DAG) represents the causal
dependencies between the variables (or nodes). Each node represents a variable with
corresponding conditional probability distribution, displayed in a Conditional
Probability Table (CPT). The strength of BBN manifests in the possibility of
reasoning about results given certain observations according to Bayesian rules. BBN
can answer requests of the form “what, if …” with respect to specific variables.
Applied in this way BBN are powerful probabilistic inference machines [8]. Further
explanations on the semantics of BBN can be found in e.g., [4, 9].

 Using Enterprise Architecture Models and Bayesian Belief Networks 341

While the structure of a BBN may in principle be unknown, we propose to exploit
the availability of an EA model in which nodes and relations are “known”. Doing this
relieves us of learning an expressive BBN structure, e.g., by search-and-score
procedures [8]. The exact mapping of an EA model to a BBN structure will be
explained in section 3 and 4. The parameters of a BBN can either be collected from
historical data and/or expert assessments, or learnt via estimation methods such as
Maximum-Likelihood or Bayesian Estimation [8, 9]. Fully parameterized BBN can be
used for different inferential tasks, i.e., classification (mapping a data element into a
previously defined category), prediction (the forecast of a value of a dependent
variable given a specific observation), and diagnosis (concluding a possible cause of a
changed variable given a specific observation). With respect to the concerns of
enterprise architects the use type diagnosis is of particular relevance. If the architect –
in case of EA changes – had means of identifying causes of disruptive effects, this
would benefit his architectural decision-making process in terms of efficiency and
effectiveness. For this diagnostic analysis can be conducted on a BBN. In the
following we briefly describe how diagnosis is applied.

2.2 Diagnostic Analysis

The following description of diagnosis in BBN is based upon [10], a master thesis that
specifically describes the implementation of the relevant diagnostic functions in the
Bayesian Belief Network modeling tool GeNIe [11] developed at the University of
Pittsburgh.

Diagnosis involves two types of tasks: 1) determining the (combination of) causes
of the observations, and 2) increasing the credibility of the diagnosis through the
collection of additional, initially unobserved, data. Since information seldom comes
for free, the second task by necessity involves the formulation of a strategy to gather
information as cleverly as possible, i.e., to gain the most diagnostic value at the least
cost. We now proceed to make this more precise.

Let a diagnostic probability network (DPN) be defined as a Bayesian Belief
Network where at least one random variable H is a hypothesis variable (e.g., an
infrastructure element such as a server) and at least one other random variable T is a
test variable (those variables of the model that we potentially can collect information
about, i.e., a manager’s opinion about the availability of an architectural element he is
responsible for).

Let H denote the set of all hypothesis variables, and T the set of all test variables.
Furthermore, each test T ∈ T has a cost function Cost(T): T → R, because usually an
effort has to be made to collect data about an object. If a test is free, the associated
cost is set to zero. Also, each hypothesis H has an associated value function, V(P(H)):
[0,1] → R.

Given a DPN, we have the expected value EV of performing a test T ∈ T:

∑
∈

⋅=
Tt

tPtHPVTEV)())|(()((1)

To make an informed decision, we also need to account for the expected outcome of
not performing the test T. We therefore introduce the expected benefit EB:

342 O. Holschke et al.

))(()())|(())(()()(HPVtPtHPVHPVTEVTEB
Tt

−⋅=−= ∑
∈

(2)

Still, however, no connection has been made to the cost of the test. This is remedied
by the test strength TS,

)(
))((

)(
),(TCostK

HPV

TEB
THTS ⋅−= , (3)

where we have introduced the coefficient K, reflecting the relative importance of the
expected benefit versus the cost of the test.

The definition of the value function still remains. To optimize the test selection
with respect to multiple hypotheses, a function based on the marginal probability
between hypotheses (rather than the joint probability) called Marginal Strength 1
(MS1) is introduced [10],

F
F

Tt

n
n

f
FPMS

1

5.0

)5.0(
))((1

2

2

⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−
=
∑
∈ , (4)

where F is the set of all selected target states fi of the hypotheses that the user wishes
to pursue and nf is the total number of target states. This test selection function is
convex with a minimum at 1 – nf and maxima at 0 and 1. The value function that we
are looking for now becomes the sum of the marginal strength for all target states:

∑
∈

=
Ff

fPMSFPV))((1))((. (5)

3 Using a BBN for Decision Support in Failure Impact Analysis

3.1 Management Process for Failure Analysis Using a Decision Support System

Before we describe our Decision Support System (DSS), we briefly provide the
organizational context of failure impact analysis in Enterprise Architecture. For this
we explain a management process that generally needs to be walked through in the
case of disruptions in business processes, services or other architectural elements. The
management process consists of the following 5 main activities: 1. Observe failure
event: Before any measures can be planned or taken to resolve a failure, the failure
event has to be observed e.g., by the responsible enterprise architect. The failure can
be an actual observation or be part of a simulation in order to prepare
countermeasures for future events. Tools that support the inspection and visualization
of failure events are of great assistance to the observing person. The information
required to detect failures may be supplied by Business Activity Monitoring (BAM)
systems. 2. Set observation in DSS: The observed failure is provided to the DSS (next
section) – either manually through exporting and importing data or automatically in
case of an integrated system. 3. Conduct diagnosis: The DSS conducts a diagnosis

 Using Enterprise Architecture Models and Bayesian Belief Networks 343

based on the provided observation and delivers a ranked list of architectural elements.
The ranking is based on probabilistic information in the DSS and displays what
probable causes the observed failure may have. 4. Availability of additional
observations: The person in charge of the failure analysis checks whether additional
observations are available (that could also be to check how costly additional
observations would be and if that would add more valuable information to the
diagnosis). If positive, then this process loops back to step 2 and sets the additional
observations in the DSS. If negative, the process can proceed to step 5. 5. Initiate
repairing activities according to diagnosis: Based on the ranked architectural
elements resulting from the DSS, repairing activities or projects can be planned and
initiated by the responsible architect and/or project manager. The probabilistic
ranking shall make the sequential ordering of activities in these projects more
efficient and complete.

3.2 Creating the Decision Support System for Failure Analysis Based on BBN

In the following we describe our method of how to create a BBN on the basis of an
EA model in order to use it for decision support in EA. Starting point for the
construction is a specified EA model. The overall method consists of four main steps.
Steps 1 and 2 address the creation of the BBN’s structure based on the EA model, i.e.,
what are the variables and what relations exist between them. Steps 3 and 4 address
the parameters of the BBN: during step 3 discrete values for the variables are defined
for improved usability; in step 4, the built BBN structure is complemented with
conditional probability distributions for all variables. The method and its steps are
shown in Fig. 1. The detailed actions within all steps will be explained in the next
subsections.

Fig. 1. Method for creating a Bayesian Belief Net on the basis of an Enterprise Architecture
model in order to use it as a Decision Support System for failure impact analysis

Mapping the EA Structure to the BBN Structure (Steps 1 & 2)
For obtaining the BBN structure we exploit the fact that in EA models as well as in
BBN the central concepts elements and relations are used. Regarding the EA model as
a graph allows us to map the EA model to a BBN. We define the following general
mapping rule that constitutes step one and two of the method:

1. Map EA elements to BBN variables: Each EA element of the EA model maps to
a variable (node) in the BBN.

2. Map EA relations to BBN relations: Each EA relation between two EA elements
in the EA model maps to a causal relationship between two variables (nodes) in
the BBN.

BBN as graphs are directed and acyclic. When mapping the EA model to the BBN,
directedness and acyclicity must be preserved. Relations that violate this rule either

344 O. Holschke et al.

have to be removed or be modified. For preserving acyclicity see also [12]. The result
of the mapping is a DAG consisting of variables and relations representing EA
elements and EA relations. Having defined the structure of the BBN, the parameters
of all variables now have to be determined.

Discretizing Variables and Determining CPTs (Steps 3 & 4)
Variables in a BBN can, in principle, represent continuous spectra of a specific
feature [9]. We focus on discrete states of BBN variables due to successful
implementations in other domains [8] and the increased ease for users. Relating this to
our EA context, an exemplary discretization of a variable would be: the EA element
“Server” has the two discrete states “up” and “down”, or, a “Service” has three
possible states for response time, i.e., “fast”, “moderate” and “slow”. Determining the
discrete states can be done conjointly with developers and end-users. All these
activities can be summed up in step 3. Discretize variables of the BBN.

Having determined the BBN structure and discretized its variables, the conditional
probability distributions for all variables have to be obtained. This constitutes step 4.
Determine CPTs for BN variables of our method. In case of availability of some data,
existing mathematical estimation methods can be applied, such as Maximum-
Likelihood estimation (MLE) and related estimation algorithms [13]. In addition to
this there are many ways to gather empirical data, see for instance [14] or [15].

The collection of data without using any mathematical estimation methods can be
done applying one of the following general methods below:

Direct collection (of technical parameters of the actual EA elements; read out log
files, etc.);

1. Indirect collection (of data in data bases at distributed locations that allow to
draw conclusions about element dependencies);

2. User-based estimation of causal dependencies (by querying the users – via
interview or questionnaire).

The manner of data elicitation may also depend on the individual collection
strategy of a company. Methods one and two usually require additional technical
efforts beforehand because EA elements have to be enabled to provide adequate
information to the probabilistic model. Method three does not require these technical
efforts. This approach collects relevant conditional probabilities through interviews
with e.g., architecture experts, programmers, and system users as well as through
analysis of the participating EA elements. On data collection see also [14]. Having
collected all conditional probability distributions the BBN is now fully specified and
may serve as decision support for failure impact analysis in EA.

4 Scenario-Based Analysis: Creating the Decision Support System

We apply our method to an exemplary Enterprise Architecture to demonstrate the
creation of the BBN and its application as decision support for failure impact analysis
in EA. The enterprise we chose is a virtual car rental agency with a service-oriented
architecture and a real life implementation. The description of the business scenario
and the service-oriented architecture and its implementation details can be found in
[16]. The core business processes of a car rental agency are ‘car reservation’, ‘car

 Using Enterprise Architecture Models and Bayesian Belief Networks 345

pick-up’, and ‘car check-in’, i.e., returning the rental car. We analyze the business
process of returning a rental car back to the agency, i.e., “Check-in car”.

The business process “Check-in car” is initiated at the local service by the return of
a car. For this, data about the returned car has to be requested from the system. The
car is inspected in presence of the customer and claims are recorded. An invoice is
then created automatically based on the rental data and the entered claim information.
The monetary quantification of claims and retention is based on a claims list mapping
claims to amounts. If there are no claims the car is released right away. If claims are
asserted, a claim report is generated. This claim report is submitted to the claim
settlement department which is responsible for contacting the insurance company and
entering regulation information. At the final stage the case is documented and the car
is repaired and released. The corresponding EA is modeled with ArchiMate [6, 7] and
is depicted in Fig. 2. In accordance with our method defined in section 4 the following
steps are executed to create the BBN.

Fig. 2. EA model of the car rental scenario, showing all architectural elements involved in the
“Check-in car” process

346 O. Holschke et al.

Fig. 3. Structure and parameters of the Bayesian Belief Network mapped from the car rental
agency Enterprise Architecture model

Step 1: Map EA Elements to BBN Variables
Out of the 27 architectural elements in the EA model (Fig. 2), 24 elements are
mapped to the BBN as variables/nodes. All mapped EA elements are depicted in the
BBN in Fig. 3. For instance, the EA element “Apache Geronimo J2EE Application
Server” is mapped to node “(1) Apache Geronimo application server”, the EA
element “Data handling service” between Application and Technology Layer in the
EA model is mapped to node “(3) Data handling service” in the BBN, and so on. It
has to be noted that not all EA elements have been mapped to the BBN under the
assumption that the non-mapped EA elements do not have any causal influence on
other elements. This could be because they serve the mere purpose of structuring
(e.g., the business service “Car renting”) or are on a very deep technological layer,
such as the “Intalio|BPMS workflow engine”, whose causal relations to the hardware
would not contribute to a significant better understanding from a business process
management perspective. The latter supports the goal of maintaining a manageable
view on the BBN.

Step 2: Map EA Relations to Causal Relationships in the BBN
In the car rental EA model there are mostly directed relations. Those relations are
mapped to causal relationships in the BBN, e.g., the “Realization” relation (dotted

 Using Enterprise Architecture Models and Bayesian Belief Networks 347

line, arrowhead not filled) between the “Apache Geronimo J2EE application server”
and the application component “Task management” is mapped to a causal relationship
between node “(1) Availability Apache Geronimo application server” and node “(5)
Availability Task management application component” in the BBN (as in Fig. 3).

There are also eleven undirected relations, i.e., those relations between business
roles and business processes/services/applications (e.g., between “Process Owner”
and the “Check-in car” business process). We say that the people who adopt a specific
business role are able to assess the status of the architectural element they are
responsible for to a certain extent, e.g., a process owner can make a judgment on the
availability of a business process. This observation is based on the actual status of the
element. Therefore we can map the undirected EA relations to directed causal
relationships going from the element to the observer, indicating that the observation
of an element by a person will usually be influenced by the actual status of the
element. Having mapped the undirected relations to directed ones, we fulfill the
criterion of directedness required by BBN.

Due to the strictly maintained paradigm of service-oriented architecture in the
scenario, any cycles in the EA model are absent. Thus, the step in our method which
removes any cycles from the BBN is not required here (for cycle removal see [12]).
As opposed to the traditional top-down build-up of BBN, we model the causal
relationships and nodes upwards – like a bottom-up growing tree – to maintain the
resemblance with the EA model.

Step 3: Discretize Variables of the BBN
Each EA element that we have identified as a BBN node could be described by
various features. Depending on the value of a feature of one variable, which could in
principle stem from a continuous spectrum, the feature(s) of other variables are
influenced. An important feature of Enterprise Architecture elements that we focus
on is the availability of these elements [17]. We therefore apply the feature
„Availability“ and define two discrete, mutually exclusive values: “up” and “down”
(see also [8, 12]). We discretize the value spectrum for our single-feature variables to
keep the complexity of the network nodes manageable. Moreover, these two values
have shown to be generally comprehensible states of different system elements during
talks with system experts and users. Also, for a user it will be generally easier to give
estimations on the conditional probability distribution of two states of an element,
rather than to estimate distributions between three or even more states. The EA
model-based BBN structure is depicted in Fig. 3.

Step 4: Determine CPTs of the BBN variables
In this example we have not engaged in the elicitation of data to set the CPTs
according to the methods proposed by for instance [13], [15] or [14]. To simulate the
actual approach we randomly assigned numbers to the CPTs for the BBN in Fig. 3
above.

5 Using the Decision Support System for Failure Impact Analysis

We use the DSS as we have described in the management process in section 3.1
according to diagnostic analysis (section 2.2) to localize probable causes of an

348 O. Holschke et al.

observed failure. To demonstrate the usage of the DSS we let the “Process Owner”
observe that the business process “Check-in car” is down. This relates to the first step
in the management process: Observe failure event. The next step is to set the
observation in the DSS, i.e., the modeled Bayesian Belief Network, according to the
observation. This is done in the GeNIe-tool by setting the evidence of node “(24)
Process Owner” to “down” (see Fig. 3). During the third step, Conduct Diagnosis, the
actual diagnostic analysis based on the one observation and the BBN model is
executed (in GeNIe, the Test Diagnosis button initiates this). In our example the cost
of observing the availability status of architectural elements is still set to zero,
assuming that querying service or application managers is an effortless task. This
means that additional observations will always contribute to a better diagnosis since
the observation is for free. For a more realistic representation in the future the costs of
asking people or having people to publish their observations need to be introduced in
the model.

After the observation, diagnostic analysis calculates the a-posteriori probabilities of
all target nodes. In Fig. 4, left (screenshot taken from GeNIe [11]), the diagnostic
results are depicted as a list of ranked (ranked according to the probability of being
down) target nodes. The ranked target node list starts with nodes (11): 0.892, (13):
0.566, (14): 0.447… and so forth. This information points an enterprise architect to
architectural elements that ought to be attended to immediately – those having high
probabilities of unavailability and being the possible cause of the process failure –
compared to those elements with lower probabilities. Based on the given information
this would be the best order of activities in a repair project.

The order of activities can change when more information of the status of
architectural elements is known. In addition to the formerly observed business process
“Check-in car” being down, we let “Service Manager 3” observe the services “Car
documenting service” and “Contacting service” under his responsibility being
available, i.e., up (Fig. 4, right). The ranking of target nodes significantly changes,
after having this additional observation. For instance, node (14) Availability
contacting service: down had a probability of 0.447. Taking into account the new
observation, the probability of node (14) being down drops to 0.175. This provides
useful information to the enterprise architect who can now initiate differently ordered
activities to repair the failure.

Fig. 4. Left: Diagnostic results as a list of ranked target nodes after one observation, and Right:
Additional observation: differently ordered ranked target nodes after two observations

 Using Enterprise Architecture Models and Bayesian Belief Networks 349

6 Conclusion

We have proposed a DSS based on a Bayesian Belief Network to address one
important concern of today’s Enterprise Architects, i.e., conducting failure impact
analysis and diagnosis in EAs. The BBN was created based upon an architectural
model of an Enterprise Architecture, i.e., the knowledge about causal dependencies
between actual architectural elements was exploited to create the BBN nodes and
relationships to capture the uncertainties. Particularly for architectures with growing
complexity, those approaches which capture this uncertain knowledge and still allow
reasoning on it seem suitable. This is supported by situations in which the actual
states of system elements cannot be determined, but only observed by managers using
there experience.

We have designed a detailed method to create the Bayesian Belief Network-based
DSS consisting of the mapping of EA model elements to a BBN and eliciting all its
required structural features and probabilistic parameters. To demonstrate the general
feasibility of the approach we created a DSS for an EA of a car rental agency and
conducted an exemplary failure diagnosis in it, giving managers valuable information
about what elements could be the probable causes. Even though our exemplary
scenario is a complete service-oriented Enterprise Architecture, more complex
structures of EA models (e.g., those including loops, non- and bi-directed relations) in
other enterprises are definitely possible. In these cases additional mapping rules –
from the EA modeling language to BBN parameters – need to be introduced in order
to remove irregularities and create a formally correct Bayesian Belief Network.

In further work we will concentrate on the elicitation of probabilities to populate
the CPTs of the Bayesian Belief Network. The spectrum of possibilities, e.g.,
leveraging expert opinions on system element behavior in contrast to exploring
automatic ways of using monitoring information about system availability and other
qualities, needs to be analyzed considering the trade-off between expressiveness and
cost of elicitation.

References

1. The Open Group: The Open Group Architecture Framework (TOGAF), version 8
Enterprise Edition. The Open Group (2005)

2. Department of Defense Architecture Framework Working Group: DoD Architecture
Framework Version 1.0 Department of Defense, USA (2004)

3. Schekkerman, J.: How to survive in the jungle of Enterprise Architecture Frameworks.
Trafford, Victoria, Canada (2004)

4. Friedman, N., Linial, M., Nachman, I.: Using Bayesian Networks to Analyze Expression
Data. Journal of Computational Biology 7, 601–620 (2000)

5. Buckl, S., Ernst, A.M., Lankes, J., Matthes, F.: Enterprise Architecture Management
Pattern Catalogue, Version 1.0. Technische Universität München, München (2008)

6. Buuren, R.v., Hoppenbrouwers, S., Jonkers, H., Lankhorst, M., Zanten, G.V.v.:
Architecture Language Reference Manual. Telematica Instituut, Radboud Universiteit
Nijmegen (2006)

350 O. Holschke et al.

7. Jonkers, H., Lankhorst, M.M., Buuren, R.v., Hoppenbrouwers, S., Bonsangue, M.M.,
Torre, L.W.N.v.d.: Concepts For Modeling Enterprise Architectures. Int. J. Cooperative
Inf. Syst. 13, 257–287 (2004)

8. Lauría, E.J.M., Duchessi, P.: A Bayesian Belief Network for IT implementation decision
support. Decision Support Systems 42, 1573–1588 (2006)

9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley Interscience, Hoboken
(2000)

10. Jagt, R.M.: Support for Multiple Cause Diagnosis with Bayesian Networks. Vol. M. Sc.
Delft University of Technology, the Netherlands and Information Sciences Department,
University of Pittsburgh, PA, USA, Pittsburgh (2002)

11. Decision Systems Laboratory: GeNIe (Graphical Network Interface). vol. 2008, University
of Pittsburgh (2008)

12. Tang, A., Nicholson, A.E., Jin, Y., Han, J.: Using Bayesian belief networks for change
impact analysis in architecture design. Journal of Systems and Software 80, 127–148
(2007)

13. Neapolitan, R.: Learning Bayesian networks. Prentice-Hall, Inc., Upper Saddle River
(2003)

14. Keeney, R.L., Winterfeldt, D.v.: Eliciting Probabilities from Experts in Complex
Technical Problems. IEEE Transactions On Engineering Management 38 (1991)

15. Woodberry, O., Nicholson, A.E., Korb, K.B., Pollino, C.: Parameterising Bayesian
Networks Australian Conference on Artificial Intelligence. Springer, Heidelberg (2004)

16. Holschke, O., Gelpke, P., Offermann, P., Schröpfer, C.: Business Process Improvement by
Applying Reference Process Models in SOA - a Scenario-based Analysis. Multikonferenz
Wirtschaftsinformatik. GITO-Verlag, Berlin, München, Germany (2008)

17. International Standardization Organization and the International Electrotechnical
Committee: ISO/IEC 13236 - Information technology — Quality of service: Framework.
ISO/IEC (1998)

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 351–362, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Assessing System Availability Using an Enterprise
Architecture Analysis Approach

Jakob Raderius, Per Närman, and Mathias Ekstedt

Department of Industrial Information and Control Systems,
Royal Institute of Technology (KTH), Stockholm, Sweden
raderius@kth.se, {pern,mek101}@ics.kth.se

Abstract. During the last decade, a model based technique known as enterprise
architecture has grown into an established approach for management of
information systems in organizations. The use of enterprise architecture
primarily promotes good decision-making and communication between
business and IT stakeholders. This paper visualizes a scenario where enterprise
architecture models are utilized to evaluate the availability of an information
system. The problem is approached by creating models based on metamodels
tailored to the domain of enterprise architecture analysis. As the instantiated
models are fed with data particular to the information system, one can deduce
how the organization needs to act in order to improve the system´s availability.

Keywords: Enterprise architecture, architecture analysis, Bayesian networks,
decision graphs, availability.

1 Introduction

The discipline of Enterprise Architecture (EA) advocates using models to capture IT-
systems, business processes and their interrelations. The purpose of these models is to
visualize the business and IT in a way that abstracts from the complexity inherent in
modern enterprise information systems thus facilitating IT management and ensuring
business-IT alignment [1].

When faced with architectural changes, decision-makers can use EA models from
an enterprise analysis framework for decision-support. To facilitate decision-making,
the analysis framework must preserve and explicitly display the uncertainty of the
analysis. Uncertainty is frequently abundant when performing architecture analysis.
To remedy this, a formalism with which one is able to perform quantitative
architecture analysis with information which may be uncertain, such as interview
answers, was presented in [4]. This formalism is called Extended Influence Diagrams
(EID).

In addition to the ability of capturing the uncertainty of the world, the EIDs are able
to model causal properties of the world. This entails that the result of the architecture
analysis will not only show which decision alternative is better with respect to the goal
at hand, but also why this is so, i.e. which factors make one alternative better than its
competitors.

352 J. Raderius, P. Närman, and M. Ekstedt

Using an EID for architecture analysis imposes information requirements on the
architecture models, i.e. the models and in particular their underlying metamodels
must answer the questions posed by the EID.

This paper describes an EID for availability assessment, how it was used together
with associated metamodels for analysis of a set of system properties according to the
ISO 9126 standard [6][7]. Specifically, the paper describes the application of the
approach in a case study of a specific system at a Swedish company. The system in
question is an enterprise data warehouse whose initial goal was to create an
infrastructure not limited to current functional requirements of data, but could
accommodate future changes in information structure due to a generic and extensible
nature. Although the case study analyzed the system properties maintainability,
availability; interoperability and functional suitability space limitations only permits
us treating the availability assessment. For a full account readers are referred to [22].

The remainder of this paper consists of six sections. Next is a related works chapter
which treats other approaches to IT system availability assessment. Section 3 gives an
overview of the analysis framework, and its two main components; EIDs and
metamodels. Section 4 is dedicated to the concept of quality of service and the quality
attributes. Section 5 describes the case study and Sections 6 and 7 present the analysis
and conclusion respectively.

2 Related Works

There are many methods for availability analysis. Commonly used methods to
estimate availability include reliability block diagrams and Monte Carlo simulations
[23]. All of these approaches are unable to i) express and manage input data
uncertainty, and ii) rely heavily on the building of intricate models of, primarily,
hardware architectures. In this case study, decision-makers had to rely on vague and
incomplete information collected mainly through interviews – due to the lack of
proper documentation - and it was therefore crucial to be able to express the level of
certainty of the analysis.

As for ii), the scope of the present study made the creation of elaborate models of the
system’s architecture prohibitively expensive. Especially since detailed topologies of
networks, nodes and other infrastructure documentation was more or less unavailable.

Due to i) and ii), the approaches to availability analysis as presented in [23] and as
further elaborated in [24], [25] and [26] were not applicable in this case. Queuing
models [27] and Petri nets [23] also require exact and complete data and must be
discarded for the same reasons.

Further, iii), it was hinted by the stakeholders that the problems concerning the
availability of the system are at least partly a result of problems within the
organization operating it, and not simply the result of an inferior implementation.

The analysis approaches mentioned above are unable to perform any kind of
organizational analysis, and are therefore insufficient with respect to iii).

3 A Quality of Service Evaluation Framework

This chapter will present the skeleton of a framework which can be used to create
models that will answer a very specific set of questions about the quality of service of

 Assessing System Availability Using an Enterprise Architecture Analysis Approach 353

enterprise information systems. The approach utilizes a model-based approach to
achieve a level of abstraction sufficient to perform analyses concerning system
qualities such as the functionality, availability, usability, performance, security and
interoperability.

Fig. 1. To support architecture analysis, the architecture models must contain information
specified by the analysis framework, here captured in the form of an extended influence
diagram

Models are created with a specific goal in mind, such as increased system
availability, and allow reasoning about the consequences of various scenarios with
various modifications of variables. To guarantee that the models support system
quality analyses, the underlying metamodel must contain at least the information
required by the analysis frameworks for the respective system qualities. For example,
if the goal is to analyze system maintainability the analysis framework might
postulate that the analyst must determine the size of the system. If the analyst uses a
model-based approach this means that the model must contain the property “system
size”. See Figure 1. Since the content of the architecture model is determined by their
underlying metamodel, the model’s metamodel must be closely coupled with the
analysis frameworks.

In order to break down system characteristics into concrete and measurable
questions suitable for analysis, we capture the characteristics using Extended
Influence Diagrams (EID). These are graphic representations of decision problems
and can be used to formally specify enterprise architecture analyses [4][7]. EIDs are
an extension of influence diagrams, [18] [19] and feature the probabilistic inference
engine taken from Bayesian networks [5][20], with which it is possible to reason
about causal relations between different nodes through the means of Conditional
Probability Tables.

Nodes of EIDs could in this context for example be “system coupling”, or “system
maintainability”, and capture relations of the real world, such as “lower system
coupling increases the system maintainability” through casual relationships. EIDs
allow each node [7] to be broken down into sub-nodes until a sufficient level of
tangibility adequate for data collection and analysis is achieved. To automate the

354 J. Raderius, P. Närman, and M. Ekstedt

rather cumbersome probabilistic calculations of Bayesian networks there are several
software tools available; see for instance GeNIe [21] which was used in this study.

Even though EIDs formally specify characteristics that influence a system and the
causalities that exist between them they are in themselves insufficient to perform
architecture analysis. To be able to create and measure different scenarios where those
characteristics assume different states one needs a model better suited for analysis and
use-case-specific instantiation. Class diagrams capture the entities of an architecture
and their entity-relations and thus complement the EIDs that merely describe entity
properties and their causal relations. The concept of abstract models [28] extends
regular class diagram metamodels by layering an extended influence diagram on the
metamodel. The nodes of the EIDs are represented as attributes of the metamodel and
the causal relations between the attributes as attribute relations.

An abstract model thus contains the entities and attributes necessary to conduct
analyses of a certain system. The entities can be extracted from EIDs and given
attributes and relations based upon the stated causal relations [7].

3.1 Using the Framework

The analysis frameworks capture theories concerning architecture analysis. This
theory is expressed in the abstract models comprising an EID and a metamodel. When
using the approach, appropriate data is collected to create architecture models. The
data collected is used to set the states of the attributes of the model entities. This
information can be used as input to the Bayesian inference engine underlying the
EIDs which makes the task of analysis straightforward. Values are propagated
throughout the structure of the EIDs, and yield a quantitative result.

4 Quality of Service

The term quality of service resembles and is based on software quality as defined in
the first part of the ISO-specification 9126 - 1 [6]. Its software quality metrics roughly
correspond to the quality attributes of quality of service. The metrics found in ISO
9126 are, however, too low level, requiring massive amounts of data which make
them inapplicable for the kind of high-level analyses that are performed here.

Quality of Service is defined in terms of four are stand-alone main quality
attributes and four sub-attributes of the fifth main attribute; functionality. The
availability of an information system is a measure of how often it is ready to deliver
its services to its users [8]. The usability is a measure of how easy it is for a user to
interact with and perform his or her tasks in the system [9]. The efficiency represents
the degree to which a software system can meet its objective in terms of scalability
and responsiveness [10]. Further, the maintainability represents the ease with which
a software system or component can be modified to correct faults, improve
performance or other attributes, or adapt to a changed environment [11]. The
accuracy is one of four sub-attributes that comprise functionality, and represents the
degree to which a system, given correct input data, produces output data that is both

 Assessing System Availability Using an Enterprise Architecture Analysis Approach 355

accurate and precise [12]. The security – another functionality sub-attribute – is the
system´s ability to maintain data confidentiality, integrity and availability [13].The
interoperability represents the ability of two or more systems or components to
exchange information and to use that information [11]. Last of the functionality sub-
attributes, the suitability of an information system is the degree to which the
functionality of the system supports its intended work tasks (i.e. the match between
the system and its functional requirements) [14][15]. We now proceed to describe the
breakdown of the attribute availability [22], where each major area influencing the
availability of an information system is given its separate sub-heading. See Figure 2
below for an overview EID for availability assessment.

4.1 Quality of the Maintenance Organization

The quality of the maintenance organization is crucial to the availability of a system
and this quality is dependent, among other things, on the maintenance organization´s
service level management – the understanding, enforcement management and
monitoring of the expected requirements and service levels [16].

In order to successfully manage these requirements and to enable a system-
evolution that continuously upholds them, they have to be clearly understood. Only
then can an enterprise information system be managed purposefully as part of a larger
concept [17].

Since it is in most systems´ nature to evolve, change management is of utter
importance, dependent first and foremost upon a change management process and its
grade of use. This process includes change requests, as well as approval processes for
these requests to ensure that sufficient levels of financial control are exerted [17].

Problem management - incident and problem detection and handling – is, of
course, fundamental to correct operation and high uptime. Availability of appropriate
resources is a must, as well as quick responsiveness of those resources.

4.2 Reliability

Reliability is the ability to perform under stated conditions for a stated period of time.
Dependencies consist of redundancy, the quality of fault prediction and avoidance,
and the reliability of sub-components.

Redundancy is essentially a mix of different fail-over solutions. The extension to
which software redundancy solutions such as separate memory management and
process isolation have been deployed plays a significant part, as well as hardware
solutions such as backup disks, networks or complete fail-over servers [16].

When it comes to the quality of fault prediction and avoidance in the case study-
system, a special subsystem is responsible for active and pro-active defense against
faulty and/or incomplete data as well as quality assurance of incoming data deliveries.
It does this by analyzing and benchmarking data against validation rules and
descriptions of each data supplier´s format and alerting personnel when errors are
encountered, even sending data for manual correction when the need arises.

356 J. Raderius, P. Närman, and M. Ekstedt

Most systems are divided into sub-components, containing data tiers or runtime
code, for example. Those are mostly interdependent in the sense that the whole
system will not be working correctly without all of them.

For example, although the data receiving component of the system will still be
operational if the validation component stops working, the system seen from a
customer point of view will not be able to deliver the agreed service levels (in this
case, possibly inferior quality data). Thus, the system´s reliability depends strongly
upon the reliability of its sub-components [16].

4.3 Recoverability

The recoverability of a system is its ability to bypass and recover from a failure [16].
It is dependent upon automatic mechanisms that can be sprung into action as soon as
something bad happens (failure with data loss etc.), as well as mechanisms that
pro-actively monitor the system and generate the appropriate warning and/or take
the appropriate action as soon as possible. Thus, the quality of automatic fault
recognition and the fastness of automatic recovery techniques play important roles.

If failure occurs and leads to corrupt data, speed is of the essence. While nightly
jobs creating backups and scripts to automatically restore data when necessary are all
valid and fairly standard recovery techniques in the realm of enterprise data
warehousing, it is the fastness of the initiation of the rollback of transactions gone
wrong or the restoration of corrupted databases that matter the most.

4.4 Serviceability and Manageability

Serviceability is defined as the ability to perform effective problem determination,
diagnosis and repair [16]. It is dependent upon the quality of the system documentation
[16][17]. The serviceability of a system is highly dependent upon concise, up-to-date
documentation, especially since the maintenance organization changes, and with it the
personnel responsible for risen issues. When breaking down the quality of the system
documentation into its constituents, one will find dependencies such as the availability,
completeness and accuracy of said documentation, among other things.

No less important is the ability of the maintenance personnel to be able to
understand what has gone wrong and where. Understandability of error messages is
of paramount importance, as no incident management can take place if the nature of
the incident is unknown [16].

Finally, manageability; the ability to create and maintain control over an environment
in which the system works correctly, has a highly important dependability upon correct
specifications on how the system works and behaves [16]. The continuous management
of a system will no doubt see it evolve, and the organization has to ensure that it evolves
in a controlled fashion.

An EID for availability analysis containing all the relevant aspects as listed above
is shown in Figure 2.

 Assessing System Availability Using an Enterprise Architecture Analysis Approach 357

Fig. 2. An availability Extended Influence Diagram

Fig. 3. Part of the metamodel for availability assessment

358 J. Raderius, P. Närman, and M. Ekstedt

4.5 A Metamodel for Availability Assessments

A metamodel was derived based on the EID, the metamodel is very similar to the one
presented in [7]. This metamodel is generic, containing classes such as information
system and hardware platform. A small part of the metamodel for the case study
system is shown in Figure 3. The metamodel can be found in its entirety in [22].

5 Case Study – Evaluating the Availability of a Data Warehouse

In order to analyze the availability of the enterprise data warehouse, data from the
system and the organization was collected. Sources include documentation, logged
statistics and interviewees. Questions are based on the theory captured in the EID
presented in the previous section and the frequencies of the answers were mapped to
discrete states to be useful for the Bayesian inference engine of the EID.

Figure 4 depicts a scenario where interviewees with varying degree of certainty
and credibility (see [29] for an account of how to estimate source credibility) are
asked questions related to change management, to facilitate an estimation of the grade
of use of the change management process.

Fig. 4. Collecting data through interviews

As this data, shaped from answer frequencies and aptly modified for their source’s
credibility is then used in the Bayesian network tool GeNIe to perform the analysis.
Collecting data using statistics or documentation is done in a similar fashion.

5.1 Instantiating the Models

By instantiating the metamodel into models it is possible to establish a detailed view
of the system, its environment and the links between different parts of the platform
and functions within the organization.

With such a model, one is able to reason clearly about how different entities in
the system are coupled, and gather insight into how changes in variables will impact the
system and the organization. Classes are instantiated using a notation similar to the

 Assessing System Availability Using an Enterprise Architecture Analysis Approach 359

Fig. 5. Part of the model based on the availability metamodel

Fig. 6. Availability results

one used for the generic metamodel, though all instances except the top one use a
crosshatched line to mark the border of the box representing it, see Figure 5 for an
excerpt of the model of the evaluated system.

360 J. Raderius, P. Närman, and M. Ekstedt

The instantiated model contains class instances for the three layers of the data
warehouse, as well as separate instance for the platforms and software platforms
used.

5.2 Results

Figure 6 shows the results for the availability assessment of the data warehousing
solution. It should be interpreted as the probabilities that availability reaches a certain
state. In this case, it is high with 53%, medium with 33% and low with 14%
probability. As the intergroup weights of the different influences for this particular
system are not known, weighted sampling distribution is used to distribute the
proportionality of the influences in the GeNIe model evenly.

6 Analysis

According to the results displayed in Figure 6, one can say with 53% certainty that the
availability of the case study system is high. High in this context translates to the
99.8-99.9% uptime necessary to uphold the organizations´ established service level
agreements with customers. Thus, this quality attribute could certainly use some
improvement.

The availability causalities found in the EID for availability (Figure 2) state that
the quality of the maintenance organization, the Recoverability and the Serviceability
& Manageability of the system are main influences and the GeNIe model states that
they are 35%, 17% and 17% low respectively.

In the case of the maintenance organization one can tell from the GeNIe model that
the low states originate in the lack of a business requirements specification and clarity
of the correlation between business requirements and system functional requirements.
Hence, a clear link between business concerns and IT should improve availability.

The recoverability is another source of concern, mainly because of a low quality of
the fault prediction and avoidance system. This in turn is caused by a very limited set
of fault handling logic implemented.

Suggestions for improvement include developing a monitoring and message
handling application to be able to respond to incidents more effectively and
efficiently, and implementing a sub-system that monitors the system and is able to
handle software fatalities by running different command scripts. When it comes to
Serviceability & Manageability, efforts to improve system documentation would
greatly improve availability.

7 Conclusion

This paper has presented a case study where availability was assessed using an
extended influence diagram – a form of Bayesian network - combined with an
enterprise architecture metamodel. The metamodel makes it possible to create models
with precisely the information that is needed for quantitative system quality analysis.

Furthermore, the paper discussed how a model for availability can be built from a
theoretical foundation and then injected with empirical data in order to find the actual

 Assessing System Availability Using an Enterprise Architecture Analysis Approach 361

availability of a data warehouse solution. The analysis provided suggestions for how
improvement of certain aspects of the data warehouse and its surrounding
organization can improve the system’s availability.ï

References

1. Minoli, D.: Enterprise Architecture A to Z. s.l.: Auerbach (2008)
2. Zachman, J.A.: Concepts of the Framework for Enterprise Architecture (1992)
3. The Open Group Architecture Framework. TOGAF 8 Enterprise Edition. The Open Group,

http://www.opengroup.org/togaf/
4. Johnson, P., et al.: Enterprise Architecture Analysis with Extended Influence Diagrams.

Information System Frontiers, vol. 9. Springer, Netherlands (2007)
5. Jensen, F.: Bayesian Networks and Decision Graphs. Springer, New York (2001)
6. ISO/IEC. 9126-1 Software Engineering - Product Quality - Quality Model (2001)
7. Närman, P., Johnson, P., Nordström, L.: Enterprise Architecture: A Framework Supporting

System Quality Analysis. In: Proceedings of the 11th International EDOC Conference
(2007)

8. Hawkins, M., Piedad, F.: High Availability: Design,Techniques and Processes. Prentice
Hall, Upper Saddle River (2001)

9. Nielsen, J.: Usability Engineering. Academic Press, San Diego (1993)
10. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating

Responsive, Scalable Software. Pearson Education, Indianapolis (2001)
11. IEEE. IEEE Standard Glossary of Software Engineering Terminology (1990)
12. Redman, T.: Data Quality for the Information Age. Artech House, Norwood (1996)
13. Stoneburner, G.: Underlying Technical Models for Information Technology Security.

National Institute of Standards and Technology, Gaithersburg (2001)
14. ISO/IEC. 9126-2 Technical Report - Software Engineering – Product Quality - Part 2:

External Metrics (2003)
15. Sommeville, I., Sawyer, P.: Requirements Engineering. Wiley, Chichester (2004)
16. Johnson, P., Ekstedt, M.: Enterprise Architecture - Models and Analyses for Information

Systems Decision Making. s.l.: Studentlitteratur (2007) ISBN 9789144027524
17. Addy, R.: Effective Service Management - To ITIL and Beyond. s.l. Springer, Heidelberg

(2007)
18. Shachter, R.: Evaluating influence diagrams. Operations Research, vol. 34(6). Institute for

Operations Research and the Management Sciences, Hanover Maryland (1986)
19. Howard, R.A., Matheson, J.E.: Decision Analysis. Influence Diagrams, vol. 2(3). Institute

for Operations Research and the Management Sciences, Hanover Maryland (2005)
20. Neapolitan, R.: Learning Bayesian Networks. Prentice-Hall, Inc., Upper Saddle River

(2003)
21. GeNIe & SMILE. GeNIe Website (2008), http://genie.sis.pitt.edu
22. Raderius, J.: Assessing the quality of service of an enterprise data warehouse. ICS, KTH,

Stockholm (2008)
23. Trivedi, K., et al.: Achieving and Assuring High Availability. LNCS. Springer, Heidelberg

(2008)
24. Sahner, R.A., Trivedi, K.S., Puliafito, A.: Performance and Reliability Analysis of

Computer Systems. Kluwer Academic Press, Dordrecht (1996)
25. Trivedi, K.S.: Probability & Statistics with Reliability, Queueing and Computer Science

Applications, 2nd edn. John Wiley, New York (2001)

362 J. Raderius, P. Närman, and M. Ekstedt

26. Zhou, L., Held, M., Sennhauser, U.: Connection availability analysis of span-restorable
mesh networks. Springer Science, Heidelberg (2006)

27. Grønbæk, J., et al.: Client-Centric Performance Analysis of a High-Availability Cluster
(2007)

28. Johnson, P., et al.: A Tool for Enterprise Architecture Analysis. In: Proceedings of the 11th
International EDOC Conference (2007)

29. Gammelgård, et al.: Architecture Scenario Analysis – Estimating the Credibility of the
Results. In: Proceedings of the Seventeenth Annual International Symposium of The
International Council on Systems Engineering (2007)

An Information Model for Landscape
Management – Discussing Temporality Aspects

Sabine Buckl, Alexander Ernst, Florian Matthes, and Christian M. Schweda

Technische Universität München, Institute for Informatics,
Boltzmannstr. 3, 85748 Garching, Germany

{buckls,ernst,matthes,schweda}@in.tum.de

http://www.systemcartography.info

Abstract. Planning, managing, and maintaining the evolution of the
application landscape is a focal point of enterprise architecture (EA)
management. Whereas, planning the evolution of business support pro-
vided by the business applications is understood as one challenge to be
addressed in landscape management, another challenge arises in the con-
text of traceability of management decisions.

This paper discusses the requirements regarding support for land-
scape management as risen by practitioners from industry, gathered in
an extensive survey during which the tool support for EA management
was analyzed. Thereby, a lack of support for this management discipline
was discovered, which is caused by the way, application landscapes are
modeled in tools. We subsequently discuss how to incorporate these re-
quirements into an information model.

Keywords: EA management, modeling, temporality, historization.

1 Motivation and Introduction

Over the last years enterprise architecture (EA) management has become an im-
portant management area, many companies are currently executing or planning
to introduce in the nearby future. As a consequence, a multitude of methods for
EA management has been developed by academic communities (cf. [1,2,3]), stan-
dardization bodies (cf. [4]), or practitioners (cf. [5,13]). Although these methods
differ substantially concerning the quantity, abstractness, and granularity of the
EA documentation, needed for EA management, the need for a documentation
is common. Thus, different methods and models for creating such a documen-
tation as well as for maintaining its timeliness have been subjected to research,
commonly attributing this documentation as a model of the EA (cf. [6]).

The methods and models developed have to address different challenges aris-
ing in the context of EA management, especially when the management of the
application landscape1 is concerned. During information gathering not only in-
formation about the as-is situation of the landscape has to be collected, but also
1 The term application landscape refers to the entirety of the business applications

and their relationships to other elements, e.g. business processes in a company. We
do not use the term application portfolio, which we regard to have a narrower focus.

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 363–374, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.systemcartography.info

364 S. Buckl et al.

information about future aspects, e.g. projects changing the application land-
scape, has to be maintained. In order to get an overview on the relationships
and dependencies of the various elements of the enterprise, different kinds of vi-
sualizations, which we refer to as software maps, are typically used (see e.g. V-30
in [1]). Different versions of visualizations are commonly used to illustrate the
evolution of the application landscape, either the status quo or future business
support. In order to create these documentations, the respective data has to be
stored in a repository corresponding to an information model, which defines the
elements and the moment in time the information is related to (planned for).

Furthermore, landscape management is closely connected to project portfolio
management, as the selected project portfolio determines the future develop-
ment of the application landscape. Regarding the state of the art in the context
of project portfolio management, most decisions about portfolios are currently
based on gut feel, not on information, which is derived from a comparison of
different variants of the landscape regarding quantitative or qualitative aspects
(cf. [7]). The landscape variants therein should be related to the project portfo-
lios, they result from. These variants have to be stored to facilitate comparisons
and therefore be used to provide decision support.

EA management follows a typical management cycle consisting of the phases:
Plan - Do - Check - Act (cf. [8,9]). Thereby, the traceability2 of management
decisions taken in the Plan phase and implemented in the Do phase, must be
ensured to control the achievement of objectives (Check). An exemplary ques-
tion in this context could be: Is the status of the planned landscape reached
within the planned time frame or has the plan been changed? This information
is subsequently used to prepare the next management cycle (Act). Consequently,
a third type of information has to be stored in an information model for land-
scape management besides the planned for and the variant information: the
moment in time the landscape was modeled (modeled at). From this discussion
the following research question has been derived:

How should an information model for landscape management be designed to
incorporate both business and technical aspects, and to support future planning
and traceability of management decisions?

This question takes aspects of temporality as connected to landscape manage-
ment into account. Therein, different versions of the landscape are of importance:
the current, planned, and target version. The current landscape represents the
status quo of the landscape as is. The planned landscape represents a future state
of the landscape as to be at a specific time in the future3. This state is modeled
by an architect at a certain time, emphasizing e.g. the changes performed by
projects up to that specific future date. As a long term perspective the target
landscape shows the architecture of the application landscape as envisioned at

2 Traceability of decisions can be achieved by storing previous states of the managed
objects. The respective technique is mostly referred to as historization.

3 In some publications on EA management(cf. e.g. [13]), the terms as-is and to-be are
used for the respective landscape version. We do not use this terminology, as the
term to-be is often used ambiguously for both planned and target landscapes.

An Information Model for Landscape Management 365

a certain time. Thereby, there is no need to have projects defined transforming
the current or planned landscape into the target one. Furthermore, the target
landscape does not necessarily specify deployed business applications but refers
to envisioned future support providers.

Summarizing, the traceability aspects of landscape management lead to three
different time-related dimensions: Firstly, a landscape is planned for a specific
time, secondly, a landscape has been modeled at a certain time, and thirdly,
different variants of a planned landscape may exist. Figure 1 illustrates the rela-
tionships between current, planned, and target landscape as well as the different
dimensions relevant for landscape management.

Legend

Fig. 1. Current, planned, and target landscape

The research question is approached in this article as follows: Section 2 gives
an overview on current approaches to landscape management as described by
researchers and practitioners in this field. Further, requirements – especially
time-related ones – for an information model for landscape management are
introduced. Thereby, a framework for the analysis of the support for landscape
management is established. Alongside this framework an analysis of the current
tool support for landscape management is performed in Section 3. Section 4
discusses ideas, which could be used to create an information model for landscape
management fulfilling the aforementioned requirements. Therein, especially ideas
originating from related modeling disciplines are considered. Finally, Section 5
hints at further areas of research in the context of EA management.

2 Requirements for and Current Approaches to
Landscape Management

Due to the importance of managing the application landscape as a constituent
of EA management, a number of different ways to approach this task have been

366 S. Buckl et al.

proposed both in practice and academia. Subsequently, we give an overview on
these approaches with an emphasis on the aspect of temporality.

In [10] the application landscape is referred to as a concept specifying the
enterprise’s business applications and their interdependencies. This information
is reflected in the information model of [10] via interfaces utilized to intercon-
nect the applications. References from these application level concepts (on the
application layer as in the notion of [10]) to business level entities, e.g. the dif-
ferent types of business processes (on the organizational layer of the model),
are present and can describe the way, how business support is provided. The
question at which organizational unit which business process is supported, by
which business application, cannot be answered based on the information model.
The aspect of temporality is also only partially addressed, while the models
contain ways to store life cycle states of applications, it does neither support
planning transitions between life cycle states nor does it take projects into
account.

In [11] the business applications ands their relationships to other EA con-
stituents form an important information asset, which should be presented to
managers to provide decision support. As presentation form of choice, they in-
troduce a type of visualizations, called landscape maps, in which the business
applications are related to business functions and products. This relationship is
referred to in [11] as a ternary one, which could also be established between ap-
plications and two other concepts, although such considerations are not detailed
in the article. Temporal aspects are not part of the approach, while ways to use
the landscape map visualizations for interacting and changing the data in the
underlying models are explicitly stated.

A slightly different focus on managing the application landscape is taken in
[12]. Therein, the aspect of the interfaces connecting the business applications is
analyzed. The number of interfaces associated to a business application is con-
sidered an important impact factor, e.g. when changes to the application land-
scape are considered. In this context, [12] puts special emphasis on documenting
and analyzing the current application landscape. This information is used as
input to coordinate potential change processes affecting the landscape. While
[12] takes a rather detailed look on the business applications and their intercon-
nections, relationships to business related concepts of the EA are not presented
in the paper. Whereas, the topic of the evolution of the application landscape
is indicated, actual planning of future states or transformation projects is not
discussed.

Beside the academic community also practitioners address the field of land-
scape management. In [5] the overall architecture of the application landscape
is considered an important topic of EA management, exerting strong influence
on the overall success of the company. Detailing the aspects of landscape man-
agement, [5] emphasizes on the relationships of the applications to the business
processes, they support, as well as to logical structuring principles, e.g. orga-
nizational units. Further, the importance of application landscape planning is
referred to, by complementing the current landscape with a target landscape,

An Information Model for Landscape Management 367

not solely consisting of business applications but also of more abstract providers
of support for business processes. Issues of how to transform from the current
to the target landscape are also discussed in [5], although concept of planned
landscapes is not introduced. Further topics, e.g. traceability of management
decisions, are not considered therein.

In [13] the application landscape is presented as a management subject em-
bedded in the context of business and technical concepts, ranging from business
processes to technical platform modules. The current landscape should, accord-
ingly, be documented with references to these aspects, especially the technical
ones. Complementing the current landscape, a so called ideal landscape4 should
be defined as part of a landscape management endeavor, incorporating technical
visions of the landscape. Mediating between current and ideal, different to-be
landscapes5 should be developed,of which each is assigned to a set of projects,
which must be executed to realize the to-be landscape. Here, a strong relation-
ship between the projects and the to-be landscapes is maintained, nevertheless
means for tracing back the evolution of a to-be landscape are not incorporated.

Subsuming the state-of-the-art in managing application landscapes as pre-
sented in literature, different approaches are employed especially concerning
the aspect of temporality. Nevertheless, creating an information model of the
application landscape is a widely accepted prerequisite employed in landscape
management. In some of the papers, presented above, information models are
provided. These information models differ widely regarding the concepts intro-
duced and the relationships as well as regarding their complexity. We regard,
notwithstanding, such a model to be mandatory to approach landscape manage-
ment as a whole and the important aspect of temporality in special.

Due to great interest from industry partners in information about EA man-
agement tools and especially their capabilities to address the concerns arising
in the context of landscape management, an extensive survey – the Enterprise
Architecture Management Tool Survey 2008 – was conducted [14]. The survey
was developed in cooperation with 30 industry partners. The survey pursued a
threefold evaluation approach, relying on two distinct sets of scenarios together
with an online questionnaire. Thereby, the first set of scenarios focuses on specific
functionality, an EA management tool should provide, without connecting these
functionalities to the execution of a typical EA management task, e.g. 1) flexibil-
ity of the information model or 2) creating visualizations,. The EA management
tools are further evaluated by the scenarios of the second set, which reflect tasks
that have been identified as essential constituents of many EA management
endeavors, e.g. 1) business object management, or 2) SOA transformation man-
agement. One of the most prominent scenarios of the second part is the scenario
landscape management, which is concerned with the managed evolution of the
application landscape [15]. The concern of the scenario was described by the
industry partners as follows:

4 Target landscape in the terms used throughout this paper.
5 In this paper, these landscape are called planned ones.

368 S. Buckl et al.

Information about the application landscape should be stored in a tool. Starting
with the information about the current landscape potential development variants
should be modeled. The information about the current application landscape and
future states should be historicized to enable comparisons. [14]

Subsequently, a catalog of typical questions in the context of landscape man-
agement as raised by the industry partners is given:

– What does the current application landscape look like today? Which business
applications support which business process at which organizational unit?

– How is, according to the current plan, the application landscape going to
look like in January 2010? Which future support providers support which
business process at which organizational unit?

– What was, according to the plan of 01-01-2008, the application landscape
going to look like in January 2010?

– How does the target application landscape do look like?
– What are the differences between the planned landscape according to the

plan of 01-01-2008 and the current plan?
– What projects have to be initiated in order to change from the planned

landscape (according to the current plan) to the target landscape? What
planning scenarios can be envisioned and how do they look like?

Based on the questions from the industry partners and the different dimen-
sions relevant for landscape management, the following requirements regarding
an information model can be derived, the model thus must:

(R1) contain a ternary relationship in order to support analyzes regarding
current and future business support (which business processes are supported by
which business applications at which organizational units),

(R2) provide the possibility to specify envisioned business support providers
in order to facilitate target landscape planning without having to specify imple-
mentation details of the business support,

(R3) support the deduction of future landscapes from the project tasks, which
execute the transition from the current to the future business support,

(R4) foster the creation of landscape variance based on distinct project port-
folios in order to tightly integrate project portfolio management activities, and

(R5) ensure the traceability of management decisions by storing historic in-
formation of past planning states. This information may be interesting especially
if complemented with information on the rationale for the decisions.

Based on these requirements, an overview about the support for landscape
management as provided in the approaches from literature is given in Table 1.

3 Tool Support for Landscape Management

The solutions of nine major players in the market of EA management tools
were analyzed regarding the information models, which they come shipped with.
Three different exemplary approaches as taken by the different tools are subse-
quently explicated to provide an overview about the current operationalizations

An Information Model for Landscape Management 369

of landscape management. The attributes are thereby not shown to improve
readability but are mentioned in the description, if necessary for understanding.

Prior to discussing the different approaches taken by the tools, the core con-
cepts of landscape management, which are most likely to be represented as classes
in the information models, are briefly introduced (for details see [1]):

BusinessProcess: A business process can, according to Krcmar [16], be de-
fined as a sequence of logical individual functions with connections between
them. The process here should not be identified with single process steps or
individual functions, but with high-level processes at a level similar to the
one used in value chains. Thus, a process can have a predecessor process and
a successor process, expressed by a respective relationship.

DeployedBusinessApplication: A deployed business application is a software
system, which is part of an information system in an organization. The
term refers to an actual deployment. In landscape management, business
applications are restricted to applications that support at least one process.

FutureSupportProvider: A future support provider poses a sort of envisioned
planning object, to be used instead of an actual deployed business application
in a target landscape to define a business support.

OrganizationalUnit: An organizational unit represents a subdivision of the
organization according to its internal structure, e. g. the entities showing up
in an organigram can be used as organizational units.

Project: Adaptations of the application landscape are performed by projects,
which each hold different attributes with temporal information, e.g. for their
startDate and endDate6. Additionally, a project is plannedAt and removedAt
referring to the planning time of its creation and of its deletion – effectively
resulting in a time interval of validity, which is assigned to each project. A
relationship between the project and the concepts affected by it, e.g. deployed
business applications, exists.

SupportProvider: A support provider is an abstract concept, representing an
entity, which can provide support for a business process at a specific orga-
nizational unit. In the context of the information model, actually deployed
application systems can be used as SupportProvider instances as can future
business applications.

SupportRelationship: This concept represents the support of a specific busi-
ness process by a specific support provider at a specific organizational unit.

Starting with a basic approach to landscape management tool 1 presents an
information model containing landscape management related concepts, as shown
in Figure 2. Here, the business process is connected with the organizational unit
via the support provider to support target landscape planning (cf. R2). Whereas
data gathered according to this information model can support basic analyzes of
the business support for a business process, the relationship to the organizational
unit, where the support takes place, is not derivable unambiguously (cf. R1).
6 If more detailed modeling of projects should be performed, the temporal information

could be extended to contain starting and ending dates for different phases of the
project, e.g. planning and development.

370 S. Buckl et al.

Fig. 2. Information model of tool 1

Fig. 3. Instance data corresponding to information model of tool 1

Figure 3 shows exemplary data instantiating the information model from
Figure 2. Analyzing this data, a statement, which business process is supported
by the Inventory Control System at the Subsidiary Munich cannot be made.

Besides the missing ternary relationship between business process, organiza-
tional unit, and support provider, the only concept carrying temporal informa-
tion – the project – is connected to the support provider via the relationship
affects. Thus, no time information for the business support provided can be
stored (cf. R3). In addition, planning variants of the landscape can only be
built based on the support providers instead of the business support provided
(cf. R4). Consequently, tool 1 only rudimentarily supports the management
of current, planned, and target landscapes. While such information might be
sufficient for future planning in a one dimensional manner, the requirements
concerning traceability and versioning cannot be addressed (cf. R5).

The information model of tool 2 (see Figure 4) incorporates the ternary rela-
tionship between the business processes, the organizational units, and the sup-
port providers by introducing a dedicated class and respective associations (cf.
R1). The association supportBy is further assigned life cycle parameters us-
ing a mechanism similar to an association class in UML. Thus, it is possible
to indicate that the business support provided by a specific instance of class
SupportProvider is at a certain point in time in a specific life cycle phase, e.g.
planned or active (cf. R2). This notion of life cycle is nevertheless disconnected
from the concept of the project, which is independently associated to the class
realizing the ternary relationship. While this association allows to model, that
the support for a specific business process executed at a specific location is af-
fected by a project, no mechanism to indicate, which SupportProvider actually
is changed by the project, is present (cf.R3 and R4)7. Further, the model does

7 This fact is caused by the * multiplicity on the SupportProvider end of the
supportBy association.

An Information Model for Landscape Management 371

Fig. 4. Information model of tool 2

Fig. 5. Information model of tool 3

not support the creation of different landscape scenarios, as it is not possible to
make projects or providers of business support belong together in one scenario.
A mechanism for marking a SupportProvider an element of a target landscape
is nevertheless provided via a flag attribute target in the association class sup-
portBy. Historization of planned application landscapes is not supported (cf.
R5) as no means for versioning instances corresponding to the model are given.

Finally, the information model of tool 3 is presented (cf. Figure 5), which is
only slightly different from the model of tool 2, provides additional support for
application landscape management – future state considerations are supported
similarly as in tool 2 (cf. R2). The information model contains a support rela-
tionship, which supports analyses regarding the business support provided for
a business process by a business application at an organizational unit (cf. R1).
Nevertheless, the information model as proposed by tool 3 also implements tem-
porality in a one dimensional manner by the project concept (cf. R3 and R4),
which affects the support relationship and contains temporal information, e.g.
start and end dates. Such information might be sufficient for planning the evo-
lution of the EA, but is somewhat limited concerning traceability of changes to
the plans (cf. R5), which would demand support for bitemporal modeling. As an
example, one might think of a plan for the EA regarding the year 2010, which
might look different as-of begin 2008 respectively begin 2009.

Table 1 provides an overview about the evaluation results of the tool sup-
port for landscape management. Thereby, the support provided by the different
approaches is indicated by symbols ranging from complete fulfillment of the
requirement (�) via partial fulfillment (��) to approaches, which totally lack
support for the analyzed requirement (�).

372 S. Buckl et al.

Table 1. Existing Approaches and Tools and their Fulfillment of the Requirements

[10] [11] [12] [5] [13] Tool 1 Tool 2 Tool 3
R1 � � � � � � � �
R2 �� �� �� � � � � �
R3 � � � �� � � �� �
R4 � � �� � �� �� � �
R5 � � � � � � � �

In order to discuss the constituents of an information model fulfilling the
requirements, we subsequently detail on related modeling techniques.

4 Discussing an Information Model for Landscape
Management

The question, how to incorporate aspects of time in a database system has been
repeatedly discussed in scientific literature (see e.g. [17,18]). A simple approach
is to introduce a time stamp attribute to the table, which should be enriched
with temporal information. This allows to specify that an entry of the table is
valid since the point in time specified by the time stamp. The approach has the
disadvantage that it is not possible to specify that the information stored in the
table row is valid for a certain period of time. In order to resolve this problem
another attribute can be introduced to define up to which point in time the
values are valid, thereby capturing the history of a changing reality.

If traceability should also be considered a so called transaction time has to
be specified additionally to the valid time, which has been described before.
According to [18] this can be done by introducing two additional attributes
defining a time interval for capturing the sequence of states of a changing table.
Such a table is than called a bitemporal table.

Similar discussions have taken place for object-oriented models. From these
discussions, a few design patterns, of which [19] gives a good overview, have
emerged. In addition, [19] introduces basic time concepts: event, time interval,
and duration, of which the latter ones can be considered of special importance for
our design issue, e.g. for modeling life cycle information of business applications.

Additionally useful in the context of creating temporality aware object-oriented
models are the temporal (design) patterns presented in [20]. The concept of the
temporal association introduced there can be utilized to model, that the objects
referenced in association can change over time. The actual realization of the
pattern introduces a class with a validity interval making the association explicit.
Other design patterns for addressing temporality exist, e.g. the edition [20], but
are not further discussed here.

In order to fulfill the requirements as mentioned in Section 2, especially R4
and R5, which have not been well addressed by the majority of tools, temporal
patterns, as alluded to above, could be utilized. This challenge can be met as
a central relationship of the landscape management models – the ternary one
relating support providers, business processes, and organizational units, which is

An Information Model for Landscape Management 373

explicated as an independent class, the SupportRelationship. Thereby, the pat-
tern of the temporal association [20] could be incorporated – the associated
projects could help to supply periods of validity for the SupportRelationship in-
stances, i.e. the referenced SupportRelationship becomes valid, once the endDate
of the project is reached.

If landscape plans for the same point in time created at different times should
be compared to each other (cf. R5), the information concerning the point, when
the project has been planned at, had to be considered. Consistently, the temporal
pattern edition (cf. [20]) could be used to implemented this mechanism.

5 Outlook

In this article, we discussed time-related issues of application landscape manage-
ment and how they relate to other tasks in EA management, especially project
portfolio management. Section 2 showed different approaches to landscape man-
agement as found in literature. Further, we discussed requirements for landscape
management, as gathered from EA management practitioners during an exten-
sive survey, and finally compared the findings from literature and practice. Sec-
tion 3 discussed the tool support for landscape management with an emphasis
on the underlying information models. From this, the drawbacks of the different
approaches were explained. Related fields of modeling were taken into account
in Section 4 discussing, how an information model could be created to fulfill the
requirements. Therein, especially temporal patterns for object oriented models
proved to be promising.

Two interesting directions of research result in continuation of the discus-
sions undertaken in this paper. At first, the ideas for constructing a temporal
information model for landscape management have yet not been validated. This
would nevertheless be an important step. Thereby, the creation of such a model
is likely to comprise additional difficulties, especially if considered in the context
of a larger EA information model. Second, a temporal information model is due
to its inherent complexity likely to be usable only via an appropriate tool. This
is especially true considering the temporal relationships to be maintained by a
user – constrastingly, currently no tool capable of managing such an information
model in a convenient way exists.

The other research direction emphasizes that landscape management is not
the only part of EA management that has strong related issues associated. Man-
aging the infrastructure of the enterprise might be also influenced by different
dimensions of time. Temporal aspects addressed in one part of EA management
may also exert certain influences to other parts of managing the EA, which in-
dependently might not be affected by temporality aspects. In order to address
this, the information model could be organized in patterns, which keep tempo-
rality related issues contained in one fragment of a larger model. A technique
potentially helpful in this context is the EA management pattern approach [1].

374 S. Buckl et al.

References

1. Buckl, S., Ernst, A., Lankes, J., and Matthes, F.: Enterprise Architecture Manage-
ment Pattern Catalog (Version 1.0, February 2008). Technical Report TB 0801,
Chair for Informatics 19, Technische Universität München (2008)

2. Lankhorst, M., et al.: Enterprise Architecture at Work – Modelling, Communica-
tion, and Analysis. Springer, Heidelberg (2005)

3. Winter, R., Bucher, T., Fischer, R., Kurpjuweit, S.: Analysis and Application Sce-
narios of Enterprise Architecture – An Exploratory Study. Journal of Enterprise
Architecture 33, 33–43 (2007)

4. The Open Group: The Open Group Architectural Framework Version 8.1.1 (cited
2008-10-03), http://www.opengroup.org/architecture/togaf8-doc/arch/

5. Dern, G.: Management von IT Architekturen (Edition CIO). Vieweg, Wiesbaden
(2006)

6. Fischer, R., Aier, S., Winter, R.: Enterprise Modelling and Information Systems
Architectures. In: Proceedings of the 2nd International Workshop EMISA 2007,
St. Goar, Rhine (2007)

7. Lankes, J., Schweda, C.: Using Metrics to Evaluate Failure Propagation in Ap-
plication Landscapes. In: Multikonferenz Wirtschaftsinformatik (MKWI) 2008,
München (2008)

8. Deming, W.: Out of the Crisis. Massachusetts Institute of Technology, Cambridge
(1982)

9. Shewart, W.: Statistical Method from the Viewpoint of Quality Control. Dover
Publication, New York (1986)

10. Braun, C., Winter, R.: A Comprehensive Enterprise Architecture Metamodel and
Its Implementation Using a Metamodeling Platform. In: Desel, J., Frank, U. (eds.)
Gesellschaft für Informatik 2005, Bonn (2005)

11. van der Torre, L., Lankhorst, M., ter Doest, H., Campschroer, J., Arbab, F.: Land-
scape Maps for Enterprise Architectures. In: Dubois, E., Pohl, K. (eds.) CAiSE
2006. LNCS, vol. 4001, pp. 351–366. Springer, Heidelberg (2006)

12. Garg, A., Kazman, R., Chen, H.-M.: Interface descriptions for enterprise architec-
ture. Science of Computer Programming 61, 4–15 (2006)

13. Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M., Richter, J.-P., Voss,
M., Willkomm, J.: Quasar Enterprise – Anwendungslandschaften serviceorientiert
gestalten. dpunkt Verlag, Heidelberg (2008)

14. Matthes, F., Buckl, S., Leitel, J., Schweda, C.: Enterprise Architecture Manage-
ment Tool Survey 2008. TU München, Chair for Informatics 19 (sebis), Munich
(2008)

15. Aier, S., Schönherr, M.: Enterprise Application Integration – Flexibilisierung kom-
plexer Unternehmensarchitekturen. Gito, Berlin (2007)

16. Krcmar, H.: Informations management, 4th edn. Springer, Berlin (2005)
17. Date, C.: An Introduction to Database Systems. Addison Wesley, Boston (2000)
18. Snodgrass, R.: Developing Time-Oriented Database Applications in SQL. Morgan

Kaufmann Publishers, San Francisco (2000)
19. Anderson, F.: A Collection of History Patterns. In: Harrison, N., Foote, B., Rohn-

ert, H. (eds.) Pattern Languages of Program Design. Addison Wesley, Boston
(1999)

20. Carlson, A., Estepp, S., Fowler, M.: Temporal Patterns. In: Harrison, N., Foote, B.,
Rohnert, H. (eds.) Pattern Languages of Program Design. Addison Wesley, Boston
(1999)

http://www.opengroup.org/architecture/togaf8-doc/arch/

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 375–387, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Lightweight Method for the Modelling of Enterprise
Architectures

Henk Koning, Rik Bos, and Sjaak Brinkkemper

Department of Information and Computing Sciences, University of Utrecht,
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

{h.koning,rik,s.brinkkemper}@cs.uu.nl

Abstract. This paper introduces an easy to learn method to describe enterprise
architectures with a limited focus on the relation between enterprise functions
and IT-systems. We have designed the Enterprise Architecture Modelling
method (EAM), driven by our teaching requirements and based on our ERP
modelling experience. EAM consists of these diagram types: the Supply Chain
Diagram, showing the business environment; the Enterprise Function Diagrams
for the interoperation of enterprise functions; the Scenario Overlay for
modelling the main business processes; the System Infrastructure Diagram,
depicting the technical infrastructure of IT systems and networks; and the
Application Overlay Diagram, showing which applications give support to
which enterprise functions. We satisfactorily conducted about 40 case studies
based on EAM. To solicit feedback we performed an enquiry among users of
EAM. A future step will be testing the use of EAM in managerial decision
taking in practice.

Keywords: Enterprise architecture, enterprise functions, applications, modelling
method, views, feedback.

1 Lightweight Enterprise Architecture

Several years ago we started at our computer science department of the Utrecht
University with a master course in Enterprise Architecture (EA). Since this is a vast
subject we were searching for an approach which at the one hand would give the
students a good overview of all the developments in EA and on the other hand would
enable the students to test their skills in this challenging field. We have sought a
limited area within the broad field of EA where the students could develop their skills
in communication, in the analysing, condensing and abstract modelling of lots of
information, and in mastering abstract concepts in the business and in information
technology. We have chosen to concentrate on the bridge between enterprise
functions and the IT-support for these functions, and to stay at a high abstraction
level. In this we are inspired by our experience in modelling ERP-applications. In that
area we have seen that a high level functional breakdown of an organisation is a stable
reference to chose ERP-modules. The questions we seek to answer in our EA
modelling method for a given enterprise are: what are the main functions the
enterprise performs? What are the relations of these functions to each other and to the

376 H. Koning, R. Bos, and S. Brinkkemper

outside world? What are, or should be in the future, the information systems that
support the enterprise functions? What infrastructure, in terms of computers and
network capabilities, is necessary, or will be necessary in the future, to operate these
information systems? The emphasis is on understanding the business in a break down
of business functions; from thereon the relations are uncovered to information
systems (applications) and infrastructure (network and computers). Our method only
touches the surface of application layer and infrastructure layer. Also the relations of
the business functions to the outside world are described only in general. We limit
ourselves to a top down analysis, creating overview and insight.

The word ‘lightweight’ in the title of this section should not be confused with
‘easy’ or ‘not to be taken serious’. It can be very difficult to enter an unknown
company and derive from all the information that is available a central, homogeneous,
balanced model of the enterprise functions. Information systems can have many
relations to each other, but not all relations are meaningful at the top, strategic
business level. Eppler [3] has studied the communication problems between experts
and managers, and has found, amongst others (page 15): “Summarizing these issues,
we can conclude that experts struggle with three major issues when transferring their
knowledge to managers: First, reducing or synthesizing their insights adequately,
second, adapting these trimmed insights to the management context without distorting
them, and third, presenting the compressed and adapted findings in a trust-building
style and reacting adequately to management questions and feedback." EAM provides
means in the synthesizing/compressing and adapting to management context, as will
be explained in the sections 2 and 3, and is by no means easy. Also, the ability in
EAM to decompose the Enterprise Function Diagrams (EFDs, see section 2) into
several layers of detail, means that, if necessary, a lot of complexity can be captured
in EAM.

1.1 Related Work

Several methods for developing enterprise architectures are available nowadays, e.g.
ArchiMate [6], SEAM [14] and ARIS [10][11]. Each method has its own strengths
and usually has its focus on one or more specific points, e.g. integration between
different models, alignment between business and IT, business processes,
communication etc. We mention some methods here briefly to compare them to our
goals. At this moment we have chosen not to use any of these methods (mostly
because of the time needed to learn the method) and to create our ‘own space’. In the
future, when our method has stabilized more, we may again look at this issue.

The ArchiMate project has produced an elaborate language for describing
enterprise architectures. The conceptual model consists of 29 entities with a
corresponding visual representation consisting of 40 symbols each having a specific
meaning. It takes a while to get to learn each of the symbols and, in our experience,
after some time of not working with the language one has to relearn the specific
meaning of each of the symbols. Because we have only a few basic concepts and stay
at a high abstraction level, we practically need no special icons in our method. The
authors of ArchiMate have proposed 16 diagram types (viewpoints) as a basic set to
work with the language, but many more could be constructed.

 A Lightweight Method for the Modelling of Enterprise Architectures 377

ARIS originated as a method for describing business processes in the context of
SAP implementation processes, but has developed into a thorough, general purpose
EA modelling tool. It is even more complex than ArchiMate. It has 5 basic views, but
numerous diagram types to populate the views. On the summary page [10], p. 78, we
count 23 ‘main’ diagram types. The business process meta-model contains 300
entities and relations (p. 48). For students the time needed to master the basics of
ARIS is not proportional to the analysis time needed to study the enterprise
architecture of a company.

MEMO, Multi-perspective Enterprise Modelling, was developed by Frank [4]. He
proposes a framework of three so called perspectives - strategy, organization and
information system - each of which is structured by four aspects: structure, process,
resources and goals. MEMO contains three modelling languages: strategy modelling
language (MEMO-SML), organization modelling language (MEMO-OrgML) and
object oriented modelling language (MEMO-OML), which allow for detailed
modelling of the three perspectives. The EAM method we propose in this paper seems
to be a subset of MEMO’s strategy goals, organization structure and process, and
information system resources. MEMO has an interesting setup, but it falls short of our
wishes regarding ‘easy to create’ and ‘easy to understand’.

Braun and Winter [1] describe an Enterprise Architecture meta model which has
four layers: strategy, organization, application, software. The models of the first three
layers are shown in a slightly simplified manner, and the relationships between these
models are elaborated. A successful implementation of these models, using a meta
modelling tool, is reported. The three simplified models contain respectively 27, 27
and 22 concepts. So, in our view, they are not easy to learn, they entice into a lot of
detailing and underline the need we feel to start anew with a basic method containing
few concepts. We like the limited number of layers, with the focus on linking the
organization to the IT-support.

The well known framework of Zachman [12][14] has 36 different viewpoints to
give aid in categorizing the architectural information, but gives no guidance regarding
the modelling of the information. The same goes for an architecture process
description like TOGAF (Open group 2002). It gives guidance regarding the activities
of the architect, but does not have a modelling method. The 4+1 framework of
Kruchten [5] gives an architectural structure and modelling method, but is more
geared toward software architecture and not applicable to enterprise architecture.

The team of Wegmann of the École Polytechnique Fédérale de Lausanne has
developed an object-oriented enterprise architecture method, called “Systemic
Enterprise Architecture Methodology” (SEAM) [14]. As part of SEAM, they have
developed the CAD tool “SeamCAD” [7]. SeamCAD enables the modelling of
hierarchical systems (spanning from business down to IT) at different levels of detail
(e.g. from large business transaction to detailed interactions). It has a philosophical
underpinning which is not so easy to understand and doesn’t give guidance as to what
modelling concepts should be used or what levels should be distinguished. The
notation is UML-like and some training is needed to read the diagrams.

1.2 Outline of the Paper

In the next section we present an overview of the EAM method with the key concepts.
In section 3 we present each of the models of EAM and illustrate them with example

378 H. Koning, R. Bos, and S. Brinkkemper

diagrams from a case study. In section 4 we outline our efforts to receive usage
feedback by a large series of case studies and by a questionnaire. We finish the paper
with conclusions and future work.

2 Enterprise Architecture Modelling Method

2.1 Diagramming Tools for Enterprise Architectures

The EAM method consists of the following diagrams:

A Supply Chain Diagram (SCD) shows how the enterprise works together with
business partners to produce the goods or services for the customers (enterprise
context).

An Enterprise Function Diagram (EFD) gives a top level breakdown of the main
functions of an enterprise. The top diagram covering the complete enterprise is called
the corporate EFD, and the lower level EFDs are called function EFD.

A Scenario Overlay (SO) shows how the enterprise functions in an EFD interoperate
in a particular situation.

An Application Overlay Diagram (AO) shows which applications give support to
which enterprise functions.

A System Infrastructure Diagram (SID) shows the main network topology, the main
computers that function in the network and the main information systems that run on
these computers to support the enterprise functions.

Corporate EFD

Function EFD

Scenario Overlay
System
Infrastructure
Diagram

Enterprise
Function
Diagram

Supply
Chain
Diagram

Application Overlay

Corporate EFD

System
Infrastructure
Diagram

Enterprise
Function
Diagram

Supply
Chain
Diagram

Fig. 1. Overview of EAM models

In Fig 1 the overview structure of these models is shown. We will explain these
models each in turn in section 3. With each we give an example diagram taken from a
case study performed at the company Center Parcs.

 A Lightweight Method for the Modelling of Enterprise Architectures 379

2.2 Concepts of Enterprise Architectures

See Fig 2 for the meta-model of our modelling method. Note that this somewhat
simplified model does not contain all constraints as it only shows our key concepts
and how they are related.1

For enterprise we use The Open Group [8] definition “Any collection of
organizations that has a common set of goals and/or a single bottom line. In that
sense, an enterprise can be a government agency, a whole corporation, a division of a
corporation, a single department, or a chain of geographically distant organizations
linked together by common ownership”. For the sake of simplicity, when dealing with
external parties, we include in this definition any collection of individuals (e.g.
customers) that have a common set of goals and/or a single bottom line (and for
which the enterprise to be modelled develops products and services).

To model the context of an enterprise we use enterprises connected by flows
between their enterprise functions. For modelling the enterprise the key concept is the
enterprise function. We define an enterprise function as a collection of coherent
processes, continuously performed within an enterprise and supporting its mission. To
show the interoperation of the enterprise functions we also portray the flow (of
information or products & services). Scenarios indicate a sequence of flows. For
modelling the information systems and the infrastructure our key concepts are
computer, application and network (component). We use ‘computer’ as a general term
to indicate all sorts of processing units or executional components. Likewise
‘network’ stands for all sorts of connectivity components. In section 3 we will
describe the diagram types and indicate with each on what meta-model concepts they
are based.

Enterprise
Function

Enterprise

Application

Computer

Flow

Network

Scenario-
step

0..*

0..1

contains

contains 0..*0..1
supports

0..*

0..*
supports

1..*

connects
1..*

0..*

1 from

0..*

0..*
1 to0..*

0..*

0..*next
0..*

1

Fig. 2. The meta-model of the Enterprise Architecture Modelling method (EAM)

1 Additional textual constraints are for example ‘an enterprise function cannot send a flow to

itself’ and ‘an enterprise function cannot contain itself’.

380 H. Koning, R. Bos, and S. Brinkkemper

3 The EAM Models

In this section we present each of the models of EAM and illustrate them with
example diagrams from a case study at Center Parcs Europe. Center Parcs Europe
(CPE) is one of Europe’s largest companies in the accommodations rental for short
holidays. Its headquarters is in Rotterdam, the Netherlands and it offers about 10,000
bungalows and cottages in 20 parks.

3.1 Supply Chain Diagram (SCD)

The Supply Chain Diagram is a model of the enterprise context of the enterprise
together with its business partners and the exchange of products and services. Supply
Chain Diagrams create a quick overview of the enterprise as a whole and of the main
players in its enterprise contexts. The SCD is based on the meta-model concepts
‘enterprise’, ‘enterprise function’ and ‘flow’. In reality the flows connect enterprise
functions in the different enterprises, but in the graphical presentation of the SCD
these underlying enterprise functions are suppressed, see [2] for this technique. For
large companies business units can be treated as separate enterprises. An EA
description contains one SCD.

Fig. 3. SCD of Center Parcs

See Fig 3 for an example of an SCD. It shows how CPE and the Individual Parks
cooperate with Agents, Tour operators and Suppliers to accommodate Customers. The
boxes denote enterprises, the arrows the flow of products and services, or of
information. In this example the two main units of CPE are shown, the central Europe
headquarters and all the individual parks (in one box), and the main external parties.

3.2 Enterprise Function Diagram (EFD)

An Enterprise Function Diagram is a model from an enterprise function perspective.
EFDs give a top level breakdown of the main operations of an enterprise with their
information flows.

 A Lightweight Method for the Modelling of Enterprise Architectures 381

Fig. 4. EFD with the main enterprise functions of Center Parcs

See Fig 4 for an example of an EFD. The lighter grey boxes within ‘Center Parcs
Europe (HQ)’ and ‘Individual Parks’ denote enterprise functions. To the left and to
the right the external parties are portrayed. Arrows indicate the flow of information
(digital or on paper). The EFD is based on the meta-model concepts ‘enterprise’,
‘enterprise function’ and ‘flow’; this is the same as with the SCD but now the focus is
on the enterprise functions. This diagram shows these functions of Center Parcs
Europe (HQ): Call center, Handling, Finance, Management, and CRM. For the sake
of brevity these are not described here further. These are the main functions of the
Individual parks: Individual Departments, Finance and Operations.

Accounts
Receivable

Finance

Booking Batch

Commision
Payments from bookings

Financial ReportsReporting

Financial
Calculation

Financial
Booking
Details

Accounts Payable

Receivables Information

Payables
Information

Confirmation &
Invoice Package

Payment

Financial
Booking
Details

Fig. 5. Decomposition of the Finance function of Center Parcs Europe

382 H. Koning, R. Bos, and S. Brinkkemper

Functional EFD. Enterprise functions in an EFD can be decomposed in the same
diagram or in a separate EFD. See Fig 5 for an example of a decomposition. A tree
structure of EFDs can be set up to analyze the architecture of an enterprise. Case
study evidence (see section 4) shows that usually two levels are enough to get
sufficient grip on the complexity of an organization. We call the top level EFD a
corporate EFD (see Fig 4.) and a decomposition a functional EFD. The EFD of
Finance shows the following sub functions. Accounts Receivable , Accounts Payable,
Financial Calculation, and Reporting.

3.3 Scenario Overlay (SO)

A scenario is a continuous processing of a request trigger by various enterprise
functions, which results in one or more feedback triggers. A Scenario Overlay
provides insight in the interoperation of enterprise functions and in the completeness
of the EFD. A scenario is drawn as an extra diagram level on top of an EFD with a
proper explanation. Only essential flows are elaborated into a scenario (highest
frequency, large impact). The scenario overlay adds limited, but for our goal
sufficient, process information to the EFD. It gives fewer details than process models
that have been created with a (dedicated) process modelling language. See Fig 6 for
an example. Dark broad lines are drawn that touch EFD functions in the execution of
the process that is triggered. The extra information for the scenario, compared to the
underlying EFD, is based on the meta-model concept ‘scenario step’. Here we show
one scenario overlay for the Finance function. This scenario concerns a booking made
via the CPE call center. Scenarios are an optional part of an EA description. Typically
an EA description will contain several SOs.

Fig. 6. Example Scenario Overlay, the financial processing of a Booking Batch

3.4 System Infrastructure Diagram (SID)

A SID shows the information systems and information technology infrastructure of an
enterprise, or a well-defined part thereof. A SID shows the main network topology,

 A Lightweight Method for the Modelling of Enterprise Architectures 383

Individual Parc

WAN

LAN

WWW

B

RES (AS/400)

Agent Application
(JAVA)

Channel Application
(RPG)

Callcenter Application
(RPG)

FAC

PAP

REA COM

Data
Warehouse

JDEdwards
Accounting System

Finance Function

Handling Function

PARIS
(Leisure System)

ARPRO

LIMA

WEBRes
(JAVA)

Callcenter Function

GENTIA DDI

CRM Function

DE

Fig. 7. Example System Infrastructure Diagram, a mixture of platforms at CPE

the main computers that function in the network and the main information systems
(applications) that run on these computers to support the enterprise functions. The
SID is based on the meta-model concepts ‘application’, ‘computer’ and ‘network’.

The SID is not intended to manage the computers and network in their own right
(that would need much more information), but only to show the technical context of
the applications. For SIDs there are many popular notational variants. An EA
description typically contains one SID, corresponding to the abstraction level of the
corporate EFD. Complex parts in this SID can be exposed by creating a SID at a more
detailed level. See Fig 7 for an example. The computer icons depict hardware
systems, the adjoining acronyms stand for software systems (applications) that run on
them. The hardware systems are grouped by the enterprise functions they support.
The lines depict network connections. As can be seen in the infrastructure diagram,
CPE uses many different systems.

3.5 Application Overlay (AO)

To fill a gap that is felt between the Enterprise Function Diagram and the System
Infrastructure Diagram we later introduced a new type of diagram, comparable to the
Scenario Overlay, the Application Overlay (AO). The applications are drawn as an
extra diagram level on top of an EFD with a proper explanation. The AO deals with
information systems (applications) in their own right. Information systems (software
components) have a different lifecycle than computers and network (hardware
components). The AO is based on the meta-model concepts ‘enterprise function’ and
‘application’. See Fig 8 for an example.

This simple example was not part of the Centre Parcs case study, but was
constructed by the authors of this paper as an example. The AO shows clearly which
enterprise functions are supported, once or multiple times (possibly a sign of
redundancy or fragmentation), and which functions are not supported by IT. If an

384 H. Koning, R. Bos, and S. Brinkkemper

Accounts
Receivable

Finance

Booking Batch

Commision Payments from bookings

Financial ReportsReporting

Financial
Calculation

Financial
Booking
Details

Accounts Payable

Receivables Information

Payables
Information

Confirmation &
Invoice Package

Payment

Financial
Booking
DetailsCalculation Bookkeeping

Reporting Tool

Bookkeeping

Fig. 8. Example Application Overlay , applications that support the Finance enterprise functions
of Center Parcs Europe

application supports enterprise functions that are not adjacent in the underlying EFD
diagram, then the application will be drawn more than once (see Bookkeeping in Fig 8).

4 Usage Feedback

4.1 Course Enterprise Architecture

Each fall a master course on Enterprise Architecture (see [13] for a general
description) is given as a course in the international MSc program of Business
Informatics at Utrecht University. An important assignment in this course is to do a
case study in practice, meaning that the students, who already have a bachelor in
computer science, have to produce a complete EAM model for a real life company,
which includes all diagram types. A representative of the company has to consent to
the models, and declare they really represented the given situation at the company.
These representatives (contact persons) were mostly having a position in the IT-
department, reporting to business management. In the first year we had 40 students in
19 groups working at 15 different companies. In the second year we had 68 students
in 23 groups working at 18 different companies. Six companies participated for the
second time, making up a total of 27 different organizations. The students are placed
in groups of 2 or 3 each and before they visit the companies for the interviews, they
get lectures on our EAM technique together with some small exercises. Lectures and
exercises take about eight hours. Amongst these case studies we have seen many very
good and insightful high level descriptions of enterprises and their IT-support.

EAM was used in practice by former students in several projects in the industry.
Here we mention the following since these are published. First, at a municipality to
decide on a new e-government portal service to be launched [16]. Second, the
integration of enterprise applications at the Royal Netherlands Army was performed
by applying EAM. EAM was extended with some UML diagrams to design the
integrated business processes spanning multiple enterprise applications, see [9].

 A Lightweight Method for the Modelling of Enterprise Architectures 385

4.2 Questionnaire

We launched a questionnaire among the students who performed the case studies. See
Table 1 for a summary of the results. Six questions related to the ease of creation were
asked for each of the diagram types in EAM. The Application Overlay Diagram was
not taken into account in this questionnaire, as it was introduced later. The students
answered the questions immediately after performing the case study, and with respect
to their own work. We have no comparable figures concerning other modelling
methods and the students had no normative references for their answers. So we don’t
take the outcome of the survey as a vindication in an absolute sense, but we
subjectively find the average scores satisfying (in line with similar questionnaires
regarding other teaching subjects). We mainly look at relative differences in the
figures or at extreme values to point us to aspects of EAM that need attention.

The most problems students experience seem to be with the EFD: the readability,
the makeability and the correctness. We think this is understandable. The general
tendency to add to much information to a diagram and to not stay at a high abstraction
level is most felt with the EFD. Here also the intellectual effort needed to construct an
abstract balanced model is felt most heavily. We see the same line in the figures
pointing to “information lacking on all diagram types”. In the presentation of EAM
we need to stress more the limited scope e.g. the high abstraction level.

Table 1. Results of the questionnaire among students (n=23)

Question

Supply
Chain
Diagram

Enterprise
Function
Diagram

Scenario
Overlay

System
Infra-
structure
Diagram

Is the .. diagram easily readable? Rate on a scale
from 1 (very bad readable) to 5 (very good
readable) how good the .. diagram readable is.

4,3 3,2 3,7 3,8

Has the .. diagram the right level of abstraction?
Make a choice: a. less detail preferred / b. just right
the way it is / c. more detail preferred.

a 4%
b 74%
c 22%

a 9%
b 91%
c 0%

a 9%
b 86%
c 5%

a 14%
b 54%
c 32%

Is the correctness of the .. diagram easily
established (conformity with the reality within the
company)? Rate on a scale from 1 (very difficult)
to 5 (very easy) how well the .. diagram can be
checked.

3,5 2,7 3,5 3,4

Is there information lacking on the .. diagram?
Chose y (yes, information is lacking) or n (no, no
information is lacking).

y 35%
n 65%

y 35%
n 65%

y 23%
n 77%

y 24%
n 76%

Is there redundant information in the .. diagram?
Chose y (yes, there is redundant information) or n
(no, there is no redundant information)

y 4%
n 96%

y 9%
n 91%

y 5%
n 95%

y 10%
n 90%

How easy is it to produce this kind of diagram on
the basis of available information? Rate on a scale
from 1 (very difficult) to 5 (very easy) how well
the .. diagram can be produced.

3,7 2,7 3,6 3,3

386 H. Koning, R. Bos, and S. Brinkkemper

Contacts with some of the contact persons for the students at the participating
companies, gave similar indications. Although they gave their consent that the
produced EAM models truly reflected the actual situation at their company, they liked
to have more information in the diagrams. We did not come round to asking more
precisely what more information was needed in their view. The readability of the
diagrams was considered good. No training was needed to read the diagrams.

5 Conclusions and Future Work

In this paper we have presented the Enterprise Architecture Modelling (EAM) method
consisting of five diagram types for modelling enterprise architectures at a high level
of abstraction in a fast and simple way. 40 Different case studies were performed
using EAM. We conducted a small scale questionnaire. We conclude that EAM is a
good means to express the essential functioning of an enterprise and it’s IT-support.
For authors EAM can be learned and trained in a short course of one day, but they
find it sometimes difficult to stay at the high abstraction level in the application of the
method. The resulting diagrams can be understood without any specific training.

Further research in practice is needed to assess the necessity and sufficiency of the
diagram types for, for instance, managerial decision making. It is required to
incorporate non-IT staff in future evaluations of EAM We want to continue
developing EAM and take into account the attention points coming out of
questionnaires. For the authors the creation of the EFD needs attention.

Besides these points we want to produce tool support for EAM (an alternative here is
possibly to use an existing tool in a customized manner), and, together with a partner
from industry, we want to develop the practical application of (an extended?) EAM.

What started as a mere conviction has now been tried out on a modest scale and
usage feedback has been received. We would like to see EAM used on a larger scale
in the teaching of EA and in practice, which will give us hopefully more feedback on
the strengths and weaknesses of EAM.

Acknowledgements

We thank Ronald Bos and Inge van de Weerd for conducting the case study at CPE.

References

1. Braun, C., Winter, R.: A Comprehensive Enterprise Architecture Metamodel and Its
Implementation Using a Metamodelling Platform. In: Desel, J., Frank, U. (eds.) Enterprise
Modelling and Information Systems Architectures, Proc. of the Workshop in Klagenfurt,
GI-Edition, Klagenfurt, 24.10.2005, Gesellschaft für Informatik, Bonn, P-75. Lecture
Notes (LNI), pp. 64–79 (2005)

2. Buuren, R., van, H., Jonkers, M.-E., Strating, P.: Composition of relations in enterprise
architecture models. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.)
ICGT 2004. LNCS, vol. 3256, pp. 39–53. Springer, Heidelberg (2004)

 A Lightweight Method for the Modelling of Enterprise Architectures 387

3. Eppler, M.J.: Knowledge Communication Problems between Experts and Managers. An
Analysis of Knowledge Transfer in Decision Processes, ICA Working Paper #1/2004,
University of Lugano, Lugano (2004)

4. Frank, U.: Multi-perspective Enterprise Modelling (MEMO) - Conceptual Framework and
Modelling Languages. In: Proceedings of the annual Hawaii international conference on
system sciences (2002)

5. Kruchten, P.: Architectural blueprints – The ‘4+1’ View Model of Software Architecture.
IEEE Software 12(6), 42–50 (1995)

6. Lankhorst, M., et al.: Enterprise Architecture at Work. Springer, Berlin (2005)
7. Le, L.S., Wegmann, A.: SeamCAD 1.x: User’s Guide (2008) (accessed July 5, 2008),

 http://infoscience.epfl.ch/getfile.py?mode=best&recid=55774
8. The Open Group. TOGAF "Enterprise Edition" Version 8.1 (2002) (accessed July 5,

2008), http://www.opengroup.org/architecture/togaf8-doc/arch/
9. Roques, J., Vader, H., Bos, R., Brinkkemper, S.: SAIM - A situational method for

application integration. UU-CS (Int. Rep. 2007-022). UU WINFI Informatica en
Informatiekunde (2007)

10. Scheer, A.W.: ARIS – Business Process Frameworks. Springer, Berlin (1998a)
11. Scheer, A.W.: ARIS – Business Process Modelling. Springer, Berlin (1998b)
12. Sowa, J.F., Zachman, J.A.: Extending and formalizing the framework for information

systems architecture. IBM Systems Journal, vol 31(3) (1992)
13. Utrecht University. Course Enterprise Architecture (2008) (accessed July 5, 2008),

 http://www.cs.uu.nl/education/vak.php?vak=INFOEIA&jaar=2007
14. Wegmann, A.: On The Systemic Enterprise Architecture Methodology(SEAM). In:

Proceedings ICEIS 2003 (2003)
15. Zachman, J.A.: A framework for information systems architecture. IBM Systems

Journal 26(3), 276–292 (1987)
16. Zuiderhoek, B., Otter, A., Bos, R., Brinkkemper, S.: Framework for Dutch Municipalities

to Ensure Business IT Alignment Using Enterprise Architecture. In: Proceedings of the 6th
European Conference on e- Government, pp. 457–466. Academic Conferences
International, Reading (2006)

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 388–399, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Contingency Approach to Enterprise Architecture
Method Engineering

Christian Riege and Stephan Aier

Institute of Information Management, University of St. Gallen,
Müller-Friedberg-Strasse 8

9000 St. Gallen, Switzerland
{christian.riege,stephan.aier}@unisg.ch

Abstract. Enterprise Architecture (EA) and methods for the design and em-
ployment of EA significantly contribute to the transparency, consistency and
eventually to the flexibility of an organization. However, there is hardly any
“one-size-fits-all” EA method that is equally effective for a broad range of
transformation projects or in a large number of different contexts. Based on an
empirical analysis, this paper identifies three relevant EA contingency factors as
well as three dominating EA application scenarios as a basis for a situational
EA method engineering taking these into account.

Keywords: Enterprise Architecture, Method Engineering, Contingency Factors.

1 Introduction

Enterprise architecture (EA) describes the fundamental structure of an enterprise [28,
33] and supports transformation by offering a holistic perspective on as-is as well as
to-be structures and processes [19].

EA is widely accepted as an approach to manage transformations and to foster
IT/business alignment [7, 22, 30]. In order to guide this transformation, EA methods
are needed. While there are a number of EA methods available, e.g. [21, 31], a classi-
fication of methods is needed in order to understand in which situation a certain
method is appropriate, how a method should be adapted to a certain situation, or for
which situations new methods have to be developed. This is based on the assumption
that there is no “one-size-fits-all” method, but that, depending on a certain situation,
different methods—or at least different configurations or adaptations of a method—
are needed. In order to develop an understanding of such situations, relevant contin-
gency factors need to be identified which have an impact on the realization of EA.

As a foundation for situational EA method engineering and to continue the discus-
sion started in [1] this paper further particularizes current realization approaches of
EA. EA method engineering is an evolving discipline, which additionally requires
outlining typical EA application scenarios. For this purpose our contribution is based
on an exploratory analysis shaping current EA approaches, EA contingency factors as
well as important EA application scenarios.

The remainder of this paper is organized as follows: Section two provides
an overview of the theoretical background and related work. The discussion of the

 A Contingency Approach to Enterprise Architecture Method Engineering 389

contingency factors in situational method engineering is reflected, and a short review
on the state-of-the-art of enterprise architecture is given. Section three describes the
details of the explorative empirical analysis aiming at identifying current EA realiza-
tion approaches and section four outlines typical EA application scenarios. The paper
ends with a conclusion and an outlook on future research activities in section five.

2 Theoretical Background and Related Work

Enterprise architecture literature provides a broad range of results that may be
grouped into three categories. Category one comprises enterprise architecture frame-
works. Popular examples are the Zachman Framework [35] and The Open Group
Enterprise Architecture Framework—TOGAF [28]. Category two is comprised of
publications by scientists as for example [8, 14, 19]. The third category is defined by
practitioner’s publications who predominantly publish for practitioners. Examples are
[24, 29]. However, the boundary between scientific and practitioner approaches (re-
garding authorship as well as readership) is often fluid. Examples are [3, 22, 27].

A fundamental method provided by almost all of the contributions cited above is
comprised of a basic approach for documenting the as-is and/or to-be EA. Some ap-
proaches provide a number of analyses that may be employed in an EA transforma-
tion method [19, 20] or a list of EA application scenarios for which methods may be
developed. However, this list is neither complete nor are its items disjunctive.

Discussion in the field of EA is highly concerned with questions as which artefacts
belong to EA, e.g. [2, 4, 15]. Only recently, it is discussed how to maintain EA mod-
els [7], how to use EA, or what benefits EA may provide to an organization [25].
Especially the latter issues require sound methods. Although there are isolated EA
methods taking the situation of application into account, e.g. [34], there is no overall
landscape of EA methods available.

A method may be defined as a systematic aid that guides the transformation of a
system from an initial state to a target state. It is unlikely that there is an EA method,
which fits to every problem situation in the field. Instead it is advisable to adapt an
existing method or to use dedicated parts, like method components or method frag-
ments. Approaches like this are discussed as situational method engineering [12, 18,
26]. It means that a method can be customized for the needs of a project or an organi-
sation. In order to customize a method for a situation contingency or situational fac-
tors are needed to facilitate the description of such a situation. Existing contingency
approaches are not tailored for EA and their contingency factors often lack empirical
evidence [13, 17, 26]. Therefore the aim of this paper is to identify contingency fac-
tors determining current EA realization approaches by means of empirical analysis.

3 Current Realization Approaches of EA

An exploratory analysis was conducted in order to identify different EA approaches in
practice [1]. The data was collected by means of a questionnaire filled in by partici-
pants of two practitioner conferences in 2007. Both conferences focused on EA in
particular. Attending were IT executives, IT service providers and consultants as well
as EA experts. In advance of the conferences, the questionnaire was subject to a pre-
test carried out by a group of enterprise architects.

390 C. Riege and S. Aier

3.1 Characteristics of the Data Set

A total of 69 questionnaires were returned. If the data set was incomplete regarding
one of the 15 items used in subsequent analysis, the questionnaire was discarded. After
applying this selection criterion, 55 valid questionnaires were analyzed. Although the
sample size is rather small, the data set is considered adequate to provide a basis for an
exploratory analysis.1 The observed organizations mainly represent mid-size and large
companies from the financial services sector as well as software vendors and IT con-
sultants. In addition to demographic characteristics the data set comprises variables
which can be divided into four groups and characterized as follows:

Constitution of EA: Architecture in general includes a set of IT artefacts like hardware
assets, software components, and applications and extends the focus to business re-
lated artefacts. To ensure that business/IT alignment is adequately supported, EA also
spans artefacts like business processes, products, customer segments, etc. Due to the
large number of potential artefacts, EA is requested to represent the essential parts of
the organization [35]. The data set contains information regarding the aforementioned
variables.

Application scenarios and analysis techniques of EA: The employment of EA in an
organization often refers to a substantial number of possible applications [19, 20, 32].
Applications however are external to the EA approach. The aim is to integrate EA
into the organization’s initiatives to secure that the organization develops in accor-
dance with the structures defined in EA. For this reason, the EA model is subject to a
range of analysis techniques. Techniques reveal dependencies between different EA
artefacts, identify gaps or redundancies (e.g. application support of certain business
processes), and reveal artefacts that might interfere with a homogeneous EA structure
[19, 20, 32].

Maintenance of EA: This part of the data set contains information to which extent EA
models are part of strategic planning, and to which extent EA models support trans-
formations. Furthermore it covers the approach how EA data is gathered and main-
tained within an organization. A central instance for EA-related information facilitates
a less complex and consistent EA improvement. In this holistic approach, a “leading”
EA model is maintained covering all artefacts used to describe the EA. A federated
approach puts more emphasis on specialized architectures and their models. The EA
model is then supplied with data through periodically performed replications. EA data
which is maintained via local repositories yields more flexibility, but also ensures that
the stored information is up-to-date [7].

Communication and organizational structure of EA: On the one hand, the data set
contains information on organizational roles which should be established to ensure
EA is adequately represented within the organization—e.g. the role of an expert in EA
modelling. On the other hand, EA offers benefits that take effect across IT and busi-
ness units. It is important to capture how the concept of EA spreads within the organi-
zation. According to the understanding that EA is also involved in management

1 What rule of thumb to use for factor analysis in determining an allowable ratio of cases to

variables is still a matter of research taste [23]. However, [5] suggests a 4-to-1 rule of thumb
for an allowable ratio of cases to variables.

 A Contingency Approach to Enterprise Architecture Method Engineering 391

activities and addresses business related objectives, it is of high importance how EA
is perceived [14]. The information in this part of the questionnaire also covers the
integration of EA processes into the organization’s governance structure. The respon-
dents were asked to assess the current degree of realization of each item in their
organization. Therefore, the questionnaire chooses a five-tiered Likert scale. The
minimum value (1) that was possible to check represents “nonexistent”, whereas the
maximum value (5) indicates an “optimized” realization.

3.2 Identifying Contingency Factors of EA

In order to identify contingency factors of EA, a factor analysis is applied. A factor
analysis involves extracting a small number of latent factors among the variables in
the data set. To form an adequate foundation, the data set has to meet two criteria. The
first criterion is derived from the variables’ anti image covariance. The anti image
covers the part of the variance which cannot be explained by the remaining variables
in the data set. As factor analysis aims at finding latent factors based on the data set, a
data set is suitable for factor analysis if the anti image is rather low. According to [6],
the percentage of none diagonal elements of the anti image covariance matrix, which
are non-zero (>0.09), should not exceed 25%. In the case presented here, this parame-
ter is about 17%. The second criterion involves the computation of the Kaiser-Meyer-
Olkin measure of sampling adequacy. In the data set at hand, the measure is 0.798.
According to [16], it puts a data set with a value of 0.7 or above into “middling”
range, bordering the “meritorious” range. In this case, the results proof that the data
set is generally appropriate for factor analysis. The factor analysis was performed
based on a reduced data set of 15 items. While some items which are excluded from
subsequent analyses relate to company properties such as staff size and industry sec-
tor, others were previously characterized as covering the constitution of EA within an
organization.

As extraction method the principal component analysis was applied. Principal
component analysis identifies few independent factors that contain the fundamental
aspects of the data. In order to identify the optimum number of factors, the eigenvalue
was computed which represents the amount of variance accounted for by a factor.
According to the Kaiser criterion a factor’s eigenvalue should exceed a value of one
[10]. As a result, three contingency factors that account for 64% of the total variance
were extracted. In order to better interpret the nature of the factors, the component
matrix was rotated applying the Varimax method with Kaiser normalization. Each of
the three factors consists of five items and can be described as follows.

Table 1. Factor 1—Adoption of advanced architectural design paradigms and modelling
capabilities

Item 1.1 EA is developed with regard to modularization as an architectural design paradigm.
Item 1.2 The principles of service orientation form a basis on which EA is designed.
Item 1.3 EA models represent the current structure of the organization.
Item 1.4 Documentation of EA models includes target architecture.
Item 1.5 EA models support transforming EA from as-is structure towards to-be structures.

392 C. Riege and S. Aier

The items that load on contingency factor 1 describe valuable ways to adopt the con-
cept of EA. On the one hand, it involves well established architecture design paradigms
which emphasize the layered structure of EA. The findings denote that developing EA
needs a certain degree of decoupling between the different EA layers as indicated by the
principles of service orientation and thus foster re-use of EA artefacts. On the other
hand, factor 1 points out that a further enhancement of EA also depends on the dimen-
sion of the EA documentation. To allow for a continuous development, not only loosely
coupled artefacts, but also an idea of how to approach a future development stage is
decisive. EA then contributes to business/IT alignment by offering simulation capabili-
ties, which presupposes different variants of its to-be structures.

Table 2. Factor 2—Deployment and monitoring of EA data and services

Item 2.1 EA is measured and/or reviewed on a regular basis.
Item 2.2 Processes concerning EA management are subject to regular reviews.
Item 2.3 The role of an EA quality manager is established fostering and communicating EA

concerns.
Item 2.4 EA is aiming to improve the overall homogeneity of architecture elements by apply-

ing heterogeneity analysis.
Item 2.5 EA is used to perform coverage analysis in order to illustrate redundancies or gaps

regarding EA artefacts.

Factor 2 describes the deployment of EA within the organization. It is required to es-

tablish a consistent monitoring of EA data and services to further enforce the deploy-
ment. This can be assisted by the role of an EA quality manager who is responsible for
observing periodic reviews of EA data and EA processes. A high degree of EA deploy-
ment puts the organization in the position to reduce its costs for maintenance activities,
software and hardware licenses, but also to ensure that similar concerns are treated
equally and according to the parameters of the EA roadmap. A high factor value also
points to the application of sophisticated EA analysis techniques within the organization.

Table 3. Factor 3—Organizational penetration of EA

Item 3.1 EA is perceived as being valuable to the business units.
Item 3.2 IT departments explicitly refer to EA as a helpful instrument.
Item 3.3 IT departments use EA data in broad range of use cases.
Item 3.4 Business units base their work on EA data.
Item 3.5 EA data is part of the decision support for management units.

The third contingency factor accounts for the penetration of EA in the organization.

The findings suggest that the overall level of penetration is influenced by the degree
EA results and EA documentation are used by a broad range of stakeholders. Accord-
ing to this analysis, EA is a suitable tool not only to support IT related work, but also
to serve the business units and to provide reliable information to management units.
The findings suggest that as the level of organizational penetration increases with the
organization’s capability to clearly communicate EA benefits to the potential stake-
holders—regardless if they actually operate on EA results or not. Therefore, the third
factor describes the way EA is perceived and utilized across the organization. A high

 A Contingency Approach to Enterprise Architecture Method Engineering 393

level of organizational penetration leads to a higher acceptance, and less misinterpre-
tation of EA within the organization, respectively.

3.3 Clustering EA Realization Approaches

In order to point out how EA is actually realized, the data set was partitioned into dif-
ferent subsets by means of a hierarchical cluster analysis. As input data, the factor
values of the three aforementioned contingency factors were used. Ward’s method has
been used as clustering algorithm. It combines the two clusters which lead to a minimal
increase in the within-cluster sum of squares with respect to all variables across all
clusters. The squared Euclidean distance was selected as distance measure to determine
the similarity of two clusters. Although the application of alternative measures may
lead to different clustering results, the squared Euclidean distance was chosen as it is
the most commonly recognized procedure [10] and moreover provides a comprehensi-
ble representation with respect to the sample’s data structure. To gain information
about the cohesiveness of clusters, a tree diagram—designated as dendrogram—serves
as visualization and helps to assess the appropriate number of clusters to keep. There is
no standard selection procedure to derive the number of clusters [10]. As the applied
fusion algorithm aims at minimizing the within-cluster sum of squares in each step, it
is appropriate to keep the number of clusters if the subsequent clustering step accounts
for the highest increase of the total sum of squares [9]. In the analysis at hand, this
heuristic suggests to distinguish between three clusters which in turn represent three
different EA approaches. Table 4 exhibits arithmetic means (x) and sample standard
deviations (s) of the calculated factor values for each of the three clusters. A high
value implies a high degree of realization among the cluster members regarding the
factor items that load on the respective factor.

Table 4. Arithmetic mean and standard deviation of factor values

 Contingency Factor 1 Contingency Factor 2 Contingency Factor 3
 x s x s x s
Cluster 1 (n =15) 1.24 0.74 0.26 1.11 0.29 0.95
Cluster 2 (n =10) -0.20 0.83 0.62 1.26 -1.33 0.53
Cluster 3 (n =30) -0.55 0.51 -0.34 0.70 0.30 0.77

Based on the information depicted in Table 4, the three clusters can be visualized

by positioning them in a three dimensional coordinate system (Fig. 1). The horizontal
axis of the coordinate system is represented by the factor adoption of advanced archi-
tectural design paradigms and modelling capabilities, the vertical axis displays factor
3 organizational penetration of EA. The Factor deployment and monitoring of EA
data and services spans the third dimension. The clusters are arranged according to
their arithmetic mean (cf. Table 4). To estimate the mean of the population when the
sample size is small it is suggested to calculate the confidence interval that is derived
from the Student's t-distribution [11]. For this purpose the confidence interval was
calculated for each cluster based on the respective mean factor values (cf. Fig. 1). As
a result the three cuboids visualize that each cluster differs significantly from another
cluster in at least one dimension.

394 C. Riege and S. Aier

n
sntx

n
sntx)1,

2
1(;)1,

2
1(

Fig. 1. Enterprise architecture realization approaches

Fig. 1 also exhibits the corresponding two-dimensional classification matrix, which
excludes factor 2 as it does not account for significant cluster distinction. The matrix
illustrates the distinct EA realization approaches considering factors 1 and 3. For both
dimensions, high and low level are distinguished, which refer to either high or low
parameter values. The realization approaches of EA can be characterized as follows:

Cluster 1: All 15 organizations which are assigned to this cluster, are characterized by
sophisticated implementation of architectural design paradigms. They understand EA
as instrument to represent a current structure of the organization, but also to deliver a
roadmap for a future structure. It is reasonable to assume that organizational penetra-
tion is rather advanced among the members of the cluster. They are using EA rather
as IT instrument, but also as a means of communication with the business. The or-
ganizations which belong to this cluster constitute an EA approach which may be
designated as “EA Engineers”. EA engineers understand EA as a valuable instrument
to develop and thus transform EA in its holistic understanding. They can also rely on
a progressive perception of EA within the business and management units. EA engi-
neers in its current state have an intermediate maturity regarding the employment and
monitoring of EA data and services (factor 2).

Cluster 2: The second cluster is made up of 10 organizations which have a low level
of both the organizational penetration of EA and the adoption of advanced architec-
tural design paradigms and modelling capabilities. This combination can be character-
ized as observant attitude regarding a holistic EA. In this case, EA focuses primarily
on IT architecture and, therefore, EA data is basically used in traditional IT project
development. The relatively high value regarding the second factor supports this
characteristic as it indicates a high deployment of (IT related) EA data. The EA ap-
proach represented by the organizations which are merged in the second cluster can
be designated as “IT Architects”. They are well anchored in the IT domain. However,

 A Contingency Approach to Enterprise Architecture Method Engineering 395

this limited architectural understanding is an obstacle in order to really leverage the
value of available IT understanding, models and methods. Rather advanced architec-
tural design paradigms—e.g. service orientation—are not much developed in this
cluster because they require a certain amount of organizational penetration.

Cluster 3: A total of 30 organizations are grouped into the third cluster. They are
characterized by a high level of organizational penetration of EA—comparable with
cluster 1. It is therefore reasonable to assume that the potential benefits of EA are
recognized among these organizations. EA is understood not only as IT architecture,
but also as an instrument to foster the alignment between IT and business. However,
EA primarily focuses on documentation. Organizations which belong to this cluster
can be designated as “EA Initiators”. EA initiators put emphasis on transparency as
the necessary precondition to realize benefits from EA application. Therefore, it
seems reasonable to conclude that EA initiators in particular are interested in imple-
menting relevant applications to demonstrate these benefits. This also explains the
need for more sophisticated analysis techniques—which EA initiators lack of. This
typically is a hint for a tool driven or model driven EA approach as opposed to an
application driven approach. Such a tool driven approach may be dangerous since it
requires significant efforts to survey and model the architectural data without a clear
idea of future application scenarios.

The size of the clusters (Table 4) leads to the assumption that most organizations
acknowledge the benefits of EA as EA initiators account for more than 50% of the
three EA scenarios. Still a minority of organizations represented by the cluster IT
architects is not able to convince potential stakeholders of EA benefits and thus is not
able to leverage advanced design or modelling capabilities. The EA scenario with the
currently most mature application of EA is represented by EA engineers.

4 EA Applications Scenarios

To adequately support EA method engineering, it is not sufficient to take contingency
factors (c.f. section 3) into account but also to describe future EA application scenar-
ios. In order to identify these scenarios, a second factor analysis has been performed
based on 12 EA applications. The set of EA applications is derived from [20, 32].
Factor analysis serves as a means to reduce the dimensionality of that number of EA
applications to a fewer number of factors. In contrast to the analysis in section 3.1, the
respondents were asked to asses the future importance of each of the 12 suggested EA
applications. As quality measures, the anti image covariance matrix as well as the
Kaiser-Meyer-Olkin criteria were computed. In the data set at hand the percentage of
none diagonal elements of the anti image covariance matrix is about 22%, well in
range with the limit of 25% [6]. The Kaiser-Meyer-Olkin measure of sampling ade-
quacy is about 0.828, putting the data set in the “meritorious” range [16]. The results
assure that the data set is appropriate for subsequent factor analysis. Principal compo-
nent analysis extracts three independent factors, which inherit the aspects of the
12 underlying EA applications. In total the three factors, representing three scenarios
for EA application, account for 67.6% of the variance. Factor 1 consists of 4 items
(Table 5) and can be characterized as follows.

396 C. Riege and S. Aier

Table 5. Factor 1—Support of Business Strategy Development

Item 1.1 Corporate Strategy Planning
Item 1.2 Business Process Optimization
Item 1.3 Quality Management and Improvement
Item 1.4 Business Continuity Planning

Factor 1 describes EA applications that affect the strategic development of an or-

ganization. EA supports decisions which e. g. demand reengineering business func-
tions due to a potential shift in market requirements like quality aspects or processing
time. Strategy development involves further analysis like a feasibility analysis to offer
certain product bundles. EA is used to identify market offers/products that will be
affected in case a specific application fails. In terms of business process optimization
EA is a means to discover redundant processes which contribute to the same market
offers/products. As an instrument being supportive for business strategy development,
EA will need to revert to certain artefacts within the organisation. It is therefore nec-
essary to have transparency e. g. regarding market segments, product catalogues, and
business functions of the organisation and their interdependencies.

Table 6. Factor 2—Support of IT Management

Item 2.1 IT Consolidation
Item 2.2 Application Portfolio Management
Item 2.3 IT/Business Alignment
Item 2.4 Adoption of COTS
Item 2.5 Architecture Compliance Assessment

Factor 2 comprises of 5 items, (Table 6). Items which load on factor 2 specifically

support IT Management within an organisation. Within this scenario EA is concerned
with e. g. the advancement of the application landscape. EA serves as a means for
analyzing the lifecycle of applications, and for example evaluate alternative replace-
ment decisions. This is particularly important, if COTS is going to replace existing
parts of the application landscape. Furthermore IT Management uses EA as a tool to
consolidate the application landscape e. g. by analyzing whether there are applications
without assigned users. Regarding IT Project Management, EA documents and pro-
vides an overview of compliance concerning technical or platform standards. EA
artefacts, which are necessary to facilitate IT Management include applications, soft-
ware components and hardware assets as well as the project portfolio. In this context
EA is understood as a complementing approach to CMDB or IT Project Management.

Table 7. Factor 3—Support of Business Operations

Item 3.1 Security Management
Item 3.2 Sourcing and Business Networking
Item 3.5 Compliance Management

 A Contingency Approach to Enterprise Architecture Method Engineering 397

Factor 3 describes EA applications, which support daily business operations
(Table 7). In contrast to factor 1 Support of Business Strategy Development EA is
more concerned with maintaining the conditions and quality attributes the business
requires to carry out its operations and only to a less extent with long term planning.
By e. g. analysing business process roles, their correct embedment within the authori-
zation structure of corresponding applications, EA ensures that the organization’s
identity management is aligned and consistent with business requirements. To support
sourcing decisions and maintain SLA, EA provides transparency regarding process
interfaces. This enables the organization to analyze whether such interfaces are com-
pliant to a service provider. In this scenario required artefacts range from business
processes, interfaces, and SLA to business networking partners.

5 Summary and Future Work

Based on the discussion in situational method engineering and the current EA state-
of-the-art, this paper suggests differentiating contingency factors of EA. The results of
the exploratory analysis confirm the assumption that there is no overall approach to
adapt to EA in practice, but to distinguish between three EA realization approaches.
They represent three different approaches on how to grasp EA in terms of its deter-
mining factors. The exploratory analysis (Fig. 2) shows that adoption of advanced
architectural design paradigms and modelling capabilities, and organizational pene-
tration of EA are significant factors to discriminate between different EA approaches
in practice. The fact that EA (as opposed to IT architecture) is a pretty novel topic is
addressed by an analysis of possible EA applications. The presented contingency
factors, resulting in different realization approaches and application scenarios provide
a basis on which EA methods can be adapted to a specific situation.

A possibility to consolidate and validate the findings of the analysis at hand is to
build EA methods employing these contingency factors, respectively the EA ap-
proaches and application scenarios, and evaluate these methods in real life case stud-
ies. This will help to further enhance the construction of methods for an effective
EA management, where methods specifically fit to the situations in which they are
applied.

Although we do not interpret the identified EA realization approaches as levels of
EA maturity, we expect the members of each cluster to further develop their EA. This
is an important starting point for further research activities, where the exploration,
description, and in particular the methodical support of such transformation or devel-
opment paths have to be covered.

References

1. Aier, S., Riege, C., Winter, R.: Classification of Enterprise Architecture Scenarios – An
Exploratory Analysis. Enterprise Modelling and Information Systems Architectures 3(1),
14–23 (2008)

2. Arbab, F., de Boer, F., Bonsangue, M., Lankhorst, M., Proper, E., van der Torre, L.: Inte-
grating Architectural Models. Symbolic, Semantic and Subjective Models in Enterprise
Architecture. Enterprise Modelling And Information System Architectures 2(1), 40–56
(2007)

398 C. Riege and S. Aier

3. Bernard, S.A.: An Introduction to Enterprise Architecture, 2nd edn. Authorhouse, Bloom-
ington (2005)

4. Buckl, S., Ernst, A.M., Lankes, J., Matthes, F., Schweda, C.M., Wittenburg, A.: Generat-
ing Visualizations of Enterprise Architectures using Model Transformations. Enterprise
Modelling and Information Systems Architectures 2(2), 3–13 (2007)

5. Cattell, R.B.: Factor Analysis: An Introduction and Manual for the Psychologist and Social
Scientist. Harper and Row, New York (1952)

6. Dziuban, C.D., Shirkey, E.C.: When is a correlation matrix appropriate for factor analysis?
Psychological Bulletin 81(6), 358–361 (1974)

7. Fischer, R., Aier, S., Winter, R.: A Federated Approach to Enterprise Architecture Model
Maintenance. Enterprise Modelling and Information Systems Architectures 2(2), 14–22
(2007)

8. Frank, U.: Multi-Perspective Enterprise Modeling (MEMO) – Conceptual Framework and
Modeling Languages. In: Proceedings of the Hawaii International Conference on System
Sciences (HICSS-35) (2002)

9. Gordon, A.D.: Hierarchical Classification. In: Arabie, P., Hubert, L.J., De Soete, G. (eds.)
Clustering and Classification, pp. 65–121. World Scientific Publishing, River Edge (1996)

10. Hair Jr., J.F., Black, B., Babin, B.: Multivariate Data Analysis, 6th edn. Prentice Hall,
Englewood Cliffs (2006)

11. Härdle, W., Simar, L.: Applied Multivariate Statistical Analysis. Springer, Berlin (2003)
12. Harmsen, A.F., Brinkkemper, S., Oei, H.: Situational Method Engineering for Information

System Project Approaches. In: Proceedings of the IFIP 8.1 Working Conference on Meth-
ods and Associated Tools for the Information Systems Life Cycle, pp. 169–194. North-
Holland, Amsterdam (1994)

13. Huisman, M., Iivari, J.: The individual deployment of systems development methodolo-
gies. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002.
LNCS, vol. 2348, pp. 134–150. Springer, Heidelberg (2002)

14. Johnson, P., Ekstedt, M.: Enterprise Architecture – Models and Analyses for Information
Systems Decision Making. Studentlitteratur, Pozkal (2007)

15. Jonkers, H., Lankhorst, M., van Buuren, R., Hoppenbrouwers, S., Bonsangue, M., van der
Torre, L.: Concepts for Modelling Enterprise Architectures. International Journal of Coop-
erative Information Systems 13(3), 257–287 (2004)

16. Kaiser, H.F., Rice, J.: Little Jiffy, Mark IV. Educational and Psychological Measure-
ment 34(1), 111–117 (1974)

17. Kettinger, W.J., Teng, J.T.C., Guha, S.: Business Process Change: A Study of Methodolo-
gies, Techniques, and Tools. MISQ 21(1), 55–80 (1997)

18. Kumar, K., Welke, R.J.: Methodology Engineering – A Proposal for Situation-specific
Methodology Construction. In: Cotterman, W., Senn, J.A. (eds.) Challenges and Strategies
for Research in Systems Development, pp. 257–269. John Wiley & Sons, New York
(1992)

19. Lankhorst, M.: Enterprise Architecture at Work: Modelling, Communication and Analysis.
Springer, Berlin (2005)

20. Niemann, K.D.: From Enterprise Architecture to IT Governance. Elements of Effective IT
Management. Vieweg, Wiesbaden (2006)

21. Pereira, C.M., Sousa, P.: A Method to Define an Enterprise Architecture using the Zach-
man Framework. In: Proceedings of the 2004 ACM Symposium On Applied Computing,
pp. 1366–1371. ACM Press, New York (2004)

22. Ross, J.W., Weill, P., Robertson, D.C.: Enterprise Architecture as Strategy. Creating a
Foundation for Business Execution. Harvard Business School Press, Boston (2006)

 A Contingency Approach to Enterprise Architecture Method Engineering 399

23. Rummel, R.J.: Applied Factor Analysis. Northwestern University Press, Chicago (1970)
24. Schekkerman, J.: How to Survive in the Jungle of Enterprise Architecture Frameworks:

Creating or Choosing an Enterprise Architecture Framework, 2nd edn. Trafford Publish-
ing, Victoria (2004)

25. Schelp, J., Stutz, M.: A Balanced Scorecard Approach to Measure the Value of Enterprise
Architecture. Journal of Enterprise Architecture 3(4), 8–14 (2007)

26. van Slooten, K., Hodes, B.: Characterizing IS Development Projects. In: Proceedings of
the IFIP TC8, WG8.1/8.2 Working Conference on Method Engineering, pp. 29–44.
Springer, Berlin (1996)

27. Spewak, S.H., Hill, S.C.: Enterprise Architecture Planning – Developing a Blueprint for
Data, Applications and Technology. John Wiley & Sons, New York (1993)

28. The Open Group, The Open Group Architecture Framework TOGAF – 2007 Edition (In-
corporating 8.1.1). Van Haren, Zaltbommel (2007)

29. Theuerkorn, F.: Lightweight Enterprise Architectures. Auerbach Publishers, Boca Raton
(2004)

30. Veasey, P.W.: Use of enterprise architectures in managing strategic change. Business
Process Management Journal 7(5), 420–436 (2001)

31. Wegmann, A.: The Systemic Enterprise Architecture Methodology (SEAM) – Business
and IT Alignment for Competiveness, École Poytechnique Fédérale de Lausanne (2002)

32. Winter, R., Bucher, T., Fischer, R., Kurpjuweit, S.: Analysis and Application Scenarios of
Enterprise Architecture – An Exploratory Study. Journal of Enterprise Architecture 3(3),
33–43 (2007)

33. Winter, R., Fischer, R.: Essential Layers, Artifacts, and Dependencies of Enterprise Archi-
tecture. Journal of Enterprise Architecture 3(2), 7–18 (2007)

34. Ylimäki, T., Halttunen, V.: Method engineering in practice: A case of applying the Zach-
man framework in the context of small enterprise architecture oriented projects. Informa-
tion Knowledge Systems Management 5(3), 189–209 (2006)

35. Zachman, J.A.: A Framework for Information Systems Architecture. IBM Systems Jour-
nal 26(3), 276–292 (1987)

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 400–413, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards a Common Terminology in the Discipline of
Enterprise Architecture

Marten Schöenherr

Deutsche Telekom Laboratories (T-Labs), Technical University of Berlin, Germany
marten.schoenherr@telekom.de

Abstract. This paper presents a literature analysis considering 126 references to
support a common terminology in the discipline of Enterprise Architecture
(EA). In a first step, it surveys EA-Drivers, addressed architectural layers and
the differentiation of contributions focusing on architectural descriptions and
architectural development.

Keywords: Enterprise Architecture, Terminology, Drivers, Architecture Layers.

1 Motivation

An increasing number of publications refer to the term or even the discipline of En-
terprise Architecture (EA). Some authors point out that there is no common under-
standing of the term [28, 66, 82]. Especially in science, an un-reflected usage of
buzzwords hinders experts to discuss relevant issues in an appropriate way. This con-
tribution will deliver dimensions to differentiate approaches based on a literature
analysis. The following sections will show results of a neutral comparative survey to
find possible dimensions to describe the focus of an EA-contribution. The paper starts
with some basic facts as timeline of the chosen literature, the authors backgrounds,
main issues focused in the contributions and the handling of definitions and terminol-
ogy. Afterwards three dimensions are described: EA-Drivers, addressed architectural
layers and the differentiation between architectural descriptions and architectural
development. It closes with a conclusion.

2 Research Methodology

The following thoughts are based on a literature analysis using 126 references from
academic and pragmatic sources. This includes research publications (journals, con-
ference proceedings), books and websites. The considered references have been
surveyed via the internet.1 Primer search-criteria have been the explicit usage of the
term Enterprise Architecture. After a brief survey of the identified contributions,
many non-research references needed to be excluded because they are marketing
material. Furthermore, a next search covering aspects as Business-IT-Alignment,

1 Google Scholar, SpringerLink, Google Web Search.

 Towards a Common Terminology in the Discipline of Enterprise Architecture 401

IT-Architecture Management, Enterprise Modeling and Interoperability was per-
formed to include work that is relevant but not explicitly labeled as EA-literature.
After choosing the contributions to be considered the paper differentiates simple facts
as time of publication, background of the author and how the authors deal with termi-
nology and definitions of EA which are collected by reading the papers and summa-
rizing the content without interpretation of implicit issues. In a second step the main
points of interest as drivers for EA-considerations, addressed architectural layers and
whether the focus is more on architectural description or architectural development
will be surveyed with a little more effort. First, the contributions that explicitly men-
tion an aspect (e.g. driver) have been evaluated and as a result, a scale of the dimen-
sion has been derived (e.g. internal vs. external drivers). Using the result from the first
step the rest of the contributions were interpreted in the context of the deeper under-
standing of the dimension.

3 Literature Analysis

This chapter starts with the basic facts mentioned in the research methodology fol-
lowed by examinations of EA-drivers, addressed architectural layers and the differen-
tiation between aspects of architectural description and development.

3.1 Basic Facts, Distributions and Correlations

Since 2003, more and more authors are using the term EA explicitly in their publica-
tions. Most of the newer contributions are coming from an academic background.
Especially after 2005, a lot of consultancies and IT-companies are adopting their
products and strategies to an extended architectural understanding hence Enterprise
Architecture. Based on the data sample there is no significant correlation between the
time of a publication and the background of the author(s). There is a notion that pa-
pers from non-academic authors published before 2000 often fulfill at least basic
academic or even scientific requirements. Considering that after 2004-2005 a lot of
companies started to use the term EA and since then have connected it somehow to
their products and strategies a huge amount of superficial marketing material has been
distributed. Table 1 and Table 2 show the distribution of all references.

Considering the maturity and the focus of the contributions there is no core topic or
even a theory in the discipline of EA. Almost half of the approaches discussed in the
papers are still coming with a low maturity level (Concept Phase) in the context of
readiness to be used in an organization. Only a third of the authors are delivering
some kind of best practice (Implementation/Adoption). Differentiating the focus of
EA-authors there are two specific topics only (EA-Frameworks and Enterprise
Modeling) the majority is dealing with rather general aspects. A correlation between
early maturity levels (Concept Phase) and modeling approaches is existing, mainly
delivered by researchers. Many authors from the Public Sector are addressing EA-
Frameworks in a descriptive way, but on an academic standard (e.g. FEAF, DoDAF
etc.) – see Table 3 and 4.

402 M. Schöenherr

Table 1. Publication timeline

Year Contribution #
1987 [123] 1
1988 0
1989 0
1990 0
1991 0
1992 [103] 1
1993 0
1994 [75], [88] 2
1995 [40] 1
1996 [30], [62], [65], [71], [77], [121], [124] 7
1997 [104] 1
1998 [10] 1
1999 [3], [8], [9], [13], [16], [125] 6
2000 [4], [19], [24], [83] 4
2001 [5], [20], [31], [35], [39], [81], [112], [120] 8
2002 [6], [23], [28], [101], [106], [108], [119] 7
2003 [7], [15], [25], [33], [44], [46], [48], [49], [55], [56], [64], [74], [84], [89], [91], [92], [93], [109], [114], [117] 20
2004 [12], [17], [26], [29], [45], [51], [54], [59], [63], [67], [70], [72], [73], [79], [82], [94], [95], [97], [105], [107], [113], [115] 22
2005 [2], [47], [57], [61], [69], [78], [87], [98], [102], [116] 10
2006 [1], [14], [27], [42], [43], [52], [66], [76], [85], [86], [90], [99], [111], [126] 14
2007 [11], [18], [21], [22], [34], [36], [37], [38], [41], [50], [53], [58], [60], [68], 80], [96], [100], [110], [118], [122] 20
2008 [32] 1

Table 2. Author´s background

Origin Contribution #
Academics [1], [2], [4], [10], [11], [13], [15], [17], [18], [21], [22], [23], [24], [26], [27],

[29], [30], [31], [32], [37], [38], [39], [40], [42], [44], [46], [47], [51], [52], [53],
[54], [55], [56], [60], [62], [63], [64], [65], [68], [69], [73], [79], [80], [83], [88],
[89], [90], [92], [93], [95], [96], [97], [98], [101], [102], [104], [105], [106],
[107], [108], [110], [111], [114], [115], [117], [118], [120], [121], [122], [126]

70

PublicSector [5], [6], [7], [8], [9], [12], [19], [57] 8
Consulting Company [16], [20], [28], [33], [35], [36], [48], [50], [58], [59], [67], [70], [71], [75], [76],

[78], [82], [85], [87], [91], [94], [99], [109], [112], [113], [124], [125]
27

IT Company [3], [34], [41], [49], [66], [81], [103], [119], [123] 9
various [14], [25], [43], [45], [61], [72], [74], [77], [84], [86], [100], [116] 12

Table 3. Maturity level of contributions focused issues

Maturity Contribution #
ConceptPhase [4], [5], [17], [18], [21], [22], [23], [24], [26], [27], [29], [30], [32], [37], [38], [40], [42], [43],

[44], [47], [50], [51], [52], [53], [54], [55], [56], [57], [59], [60], [63], [65], [68], [69], [71],
[72], [73], [77], [79], [83], [85], [88], [89], [91], [92], [97], [98], [102], [103], [106], [107],
[111], [114], [115], [117], [118], [120], [123], [126]

59

Towards some kindof Product [1], [3], [7], [12], [20], [28], [31], [39], [48], [64], [66], [67], [75], [76], [78], [84], [86], [87],
[93], [94], [95], [96], [99], [108], [109], [121]

26

Implementation/Adoption [2], [6], [8], [9], [10], [11], [13], [14], [15], [16], [19], [25], [33], [34], [35], [36], [41], [45],
[46], [49], [58], [61], [62], [70], [74], [80], [81], [82], [90], [100], [101], [104], [105], [110],
[112], [113], [116], [119], [122], [124], [125]

41

While the first relevant publications go back to the End of the 1980s and the topic
has been heavily discussed for the last ten years, only a third deals with validated best
practice. Only 6% of the considered publications do give its own definition of the
term EA and at the same time differentiate it to others by referring to their definitions
(see Table 5). A small percentage is defining the term Enterprise because the term
Architecture is not being used often in the context of domains as Managerial and
Organizational Science (but with a long history in Computer Science- see Table 6).

 Towards a Common Terminology in the Discipline of Enterprise Architecture 403

Table 4. Focused issue of contribution

Adressed Issues Contribution #
Overview onEA [4], [5], [8], [15], [23], [28], [29], [32], [33], [34], [44], [47], [49], [50], [61], [66], [71],

[72], [74], [77], [79], [84], [87], [88], [93], [98], [99], [105], [107], [108], [114], [115],
[120], [125]

34

BestPractice [2], [6], [9], [10], [11], [12], [13], [14], [16], [19], [20], [25], [26], [27], [31], [35], [37],
[39], [41], [43], [45], [46], [48], [52], [54], [58], [63], [64], [68], [70], [75], [78], [80],
[81], [89], [90], [94], [95], [100], [101], [106], [109], [110], [112], [116], [122]

46

EA Frameworks [1], [24], [36], [38], [40], [60], [67], [73], [76], [82], [83], [92], [97], [103], [104], [113],
[121], [123], [124], [126]

20

EnterpriseModeling [3], [7], [17], [21], [42], [51], [53], [55], [56], [59], [65], [69], [102], [111], [117], [119] 16
various [18], [22], [30], [57], [62], [85], [86], [91], [96], [118] 10

Table 5. Proprietary EA-definitions and references to other authors definitions

EA Definition Contribution #
ProprietaryDefinition, no further
References

[4], [5], [6], [8], [9], [15], [16], [20], [23], [25], [28], [30], [33], [39], [41], [43], [45], [47],
[48], [53], [65], [66], [67], [68], [72], [74], [76], [77], [78], [80], [81], [84], [86], [88], [89],
[90], [94], [95], [101], [105], [119], [124]

42

ProprietaryDefinition in the context of
furtherdefiningReferences

[1], [44], [58], [93], [99], [116], [126]
7

DefinitionbyReferences, noproprietary
Definition

[2], [14], [17], [19], [26], [32], [34], [37], [38], [42], [46], [49], [50], [51], [52], [54], [57], [60],
[61], [63], [69], [82], [87], [92], [96], [97], [98], [102], [108], [113], [114], [115], [117]

33

NoDefinitionat all [3], [7], [10], [11], [12], [13], [18], [21], [22], [24], [27], [29], [31], [35], [36], [40], [55], [56],
[59], [62], [64], [70], [71], [73], [75], [79], [83], [85], [91], [100], [103], [104], [106], [107],
[109], [110], [111], [112], [118], [120], [121], [122], [123], [125]

44

Table 6. Including the term Enterprise to an extended architectural understanding

Defining the termEnterprise Contribution #
yes [1], [3], [5], [9], [15], [44], [47], [65], [68], [79], [81], [88], [91], [93], [94], [108], [117], [119] 18
no Restof 126 consideredReferences 108

50% of the authors are technology-driven. 36% are following a systemic approach
towards a wider and integrated architectural understanding, which includes at least
another architectural layer apart from the IT-Architecture. 14% tend to use a method-
driven terminology. Some of the authors even combine the three main directions (see
Table 7 and Table 8). To summarize the first section: there is a lack of theoretical
foundation, stringent definitions or a common understanding within the authors, who
publish in the context of EA. The majority of authors are publishing with a research
background, they are technology-oriented and most of the introduced approaches are
still in a concept phase and have not proven neither their real world value nor their
feasibility.

Table 7. Term-Definitions main focus

Term-definitions main focus Contribution #
systemic [1], [4], [8], [9], [25], [30], [66], [67], [72], [74], [76], [80], [81], [88], [90], [94], [95], [99], [105], [119], [126] 21
technology-driven [1], [5], [8], [9], [20], [23], [28], [33], [39], [43], [44], [45], [48], [53], [58], [65], [68], [74], [78], [80], [84], [86],

[89], [93], [101], [116], [119], [124], [126]
29

method-driven [1], [6], [15], [16], [41], [47], [77], [116] 8

404 M. Schöenherr

Table 8. Combinations of focused issues

Combinations Contribution #
systemic [4], [25], [30], [66], [67], [72], [76], [81], [88], [90], [94], [95], [99], [105] 14
technology driven [5], [20], [23], [28], [33], [39], [43], [44], [45], [48], [53], [58], [65], [68],

[78], [84], [86], [89], [93], [101], [124]
21

method driven [6], [15], [16], [41], [47], [77] 6
systemic&techn. driven [8], [9], [74], [80], [119], [126] 6
systemic&method driven 0
techn. &method driven [116] 1
sys.&techn. &meth. driven [1] 1

3.2 Drivers for Enterprise Architecture Approaches

A central part of a common understanding could be the reasons why organizations are
supposed to gain advantages from EA-approaches. Therefore, the drivers mentioned
in the considered contributions have been surveyed. Just a small minority of authors
are discussing drivers, why organizations are interested in EA. They differentiate
internal and external drivers (see details in Table 9). In the category of internal drivers
Business-IT-Alignment (by far) and Cost-Reduction are the most common entries.
External drivers are legal requirements that push organizations to improve their Busi-
ness-IT-Alignment.

Table 9. Distribution on internal and external EA-Drivers

Driver Contribution #

Internal

Business-IT Alignment [5], [18], [42], [49], [57], [60], [61], [87], [115], [118], [122] 11

CostReduction [19] , [20] , [84], [86] 4

Standardization/Consolidation [84], [86] 2

Management/Governance [32], [84] 2

various [5], [14], [37], [46], [57], [84] 6

External

Clinger-Cohen Act [5], [47], [18], [57], [58], [61], [99], [119] 8

Sarbanes-Oxley Act [34], [37], [58], [61], [78], [118] 6

Basel II [37], [58], [61], [118] 4

Solvency II [37], [58], [78] 3

various [5], [34], [42], [58] 4

3.3 Architectural Layers Addressed in EA-Contributions

An extended architectural understanding should consider elements apart from IT-
Architectures. The authors are naming their layers on many different ways. The used
categorization (Strategy, Organization, Information, Integration/Interoperability, Ap-
plication/Appl.-Landscape and Infrastructure) has been derived considering all contri-
butions that explicitly name an architectural layer concept and their generalization. Just
counting the layers described, more papers deal with non-technical layers (Strategy,
Organization and Information) than technical layers (the others). More than half of the
authors are not addressing some kind of architectural layer or just one single layer

 Towards a Common Terminology in the Discipline of Enterprise Architecture 405

hence not even half of the authors are dealing with two or more architectural layers,
which would be expected in the context of an EA-approach (see Table 10 and 11).

Differentiating the focused layer within the contributions that address one layer
only, by far most of the authors are dealing with organizational issues. The architec-
tural layer Organization can be divided into business processes, organizational
structures and a mixture of both. More than half of the authors speak about business
processes in the context of Organization. Hence a majority addresses business process
aspects. Second common is the issue Applications and/or Application Landscape (see
Table 12 and 13).

Table 10. Distribution of addressed architectural layers

EA Layer Contribution #
Strategy [14], [15], [16], [19], [28], [35], [53], [54], [58], [70], [78], [84], [89], [90], [112], [116] 16
Organization [3], [6], [7], [11], [14], [15], [17], [18], [20], [25], [26], [32], [39], [40], [42], [44], [48], [49], [50], [53],

[55], [58], [59], [60], [61], [63], [65], [68], [69], [73], [74], [75], [78], [82], [83], [87], [90], [91], [93],
[94], [96], [98], [99], [101], [105], [110], [115], [116], [118], [120], [121], [122]

52

Information [6], [7], [20], [34], [39], [46], [48], [49], [50], [53], [56], [59], [60], [61], [62], [68], [69], [73], [74],
[82], [83], [94], [102], [106], [115], [117], [121], [122], [123]

29

Integration [2], [20], [26], [31], [46], [63], [101], [113] 8
Applications/Appl. Landscape [4], [10], [16], [21], [24], [25], [26], [27], [33], [40], [43], [44], [45], [48], [49], [51], [56], [58], [61],

[70], [74], [79], [87], [93], [98], [104], [105], [106], [111], [113], [114], [122], [124]
33

Infrastructure [10], [12], [16], [25], [33], [34], [43], [44], [62], [75], [84], [87], [104], [108], [109], [110], [123], [124] 18

Table 11. Distribution on the overall number of considered layers

of adressed Layers Contribution
0 [1], [5], [8], [9], [13], [22], [23], [29], [30], [36], [37], [38], [41], [47], [52], [57], [64], [66], [67], [71], [72], [76], [77],

[80], [81], [85], [86], [88], [92], [95], [97], [100], [103], [107], [119], [125], [126] 37

1 [2], [3], [4], [11], [12], [17], [18], [19], [21], [24], [27], [28], [31], [32], [35], [42], [45], [51], [54], [55], [65], [79], [89],
[91], [96], [99], [102], [108], [109], [111], [112], [114], [117], [118], [120] 35

2 [6], [7], [10], [14], [15], [33], [34], [39], [40], [43], [46], [50], [56], [59], [60], [62], [63], [68], [69], [70], [73], [75], [78],
[82], [83], [84], [90], [93], [94], [98], [101], [104], [105], [106], [110], [113], [115], [116], [121], [123], [124] 41

3 [16], [20], [25], [26], [44], [48], [49], [53], [58], [61], [74], [87], [122] 13

Table 12. Distribution of addressed architectural layers (one layer addressed only)

Single layer adressed Contribution #
Strategy [19], [28], [35], [54], [89], [112] 6
Organization [3], [11], [17], [18], [32], [42], [55], [65], [91], [96], [99], [118], [120] 13
Information [102], [117] 2
Integration/Interoperability [2], [31] 2
Application/Appl.-Landscape [4], [21], [24], [27], [45], [51], [79], [111], [114] 9
Infrastructure [12], [108], [109] 3

Table 13. Distribution of architectural layer Organization

Organizational issues Contribution #
Organizational Structures [68], [91], [94], [122] 4
Business Processes [19], [28], [35], [54], [89], [112] , [3], [7], [11], [17], [20], [26], [39], [40], [42], [48], [49], [50], [55], [59], [63], [65],

[69], [78], [87], [93], [96], [98], [99], [105], [115], [116], [120] 27

Structures & Processes [6], [14], [15], [18], [25], [32], [44], [53], [58], [60], [61], [73], [74], [75], [82], [83], [90], [101], [110], [118], [121] 21

406 M. Schöenherr

After a deeper look on the combined architectural layers (when two layers are ad-
dressed), by far most approaches do combine organizational issues with the informa-
tion layer. The information layer includes all aspects towards business and technology
matter of information systems as well as data models.

Summarizing the surveyed architectural layers, too few authors are addressing
hence integrating multiple layers. When multiple layers are focused on, the most
common constellation combines business process artifacts with more conceptional
issues of information systems. Hence, the understanding of Business-IT-Alignment
does not consider enterprise strategy and technical details from the mostly technical
architectural layers (Integration/Interoperability, Applications/Application Landscape
and Infrastructure).

Considering similar scientific disciplines, neither Managerial and Behavioral Sci-
ence nor Computer Science or even Electrical Engineering is suitable for that focus.
The only domain that discusses this combination (incl. the topic Enterprise Modeling)
is Information Systems Research (ISR).

Furthermore there is no significant accumulation to identify another bundle of top-
ics, hence the EA-Community does not have a common targeted issue.

3.4 Architecture Description vs. Architecture Development

The last considered differentiation between the chosen contributions is based on the
ISO 15704 [129]. The norm defines two types of addressing an extended architectural
understanding. Type 1 is summarizing all approaches that focus on aspects to describe
the state of an AS IS and/or TO BE architecture (incl. static and dynamic issues).
Type 2 extends the Type 1 considerations with methodologies how to develop an AS
IS state towards a planned TO BE. Many of the EA-Frameworks can be called Type 2
approaches. Type 1 and Type 2 Architectures are complementary. Without the de-
scription of AS IS and TO BE, there is no such thing as a meaningful methodology to
derive a better TO BE Architecture. ISO 15704 does not define the scope (or layer) of
an architectural consideration; therefore, it can be used in the context of EA. It is
explicitly addressing Enterprise Reference Architectures.

Within the surveyed contributions there is no majority towards some kind of archi-
tectural type. Hence, the authors deal with documenting issues as well as with meth-
odologies (or the combination of both).

Table 14. Distribution architectural description vs. architectural development

Type of Architectural
Consideration

Contribution #
Typ 1 [2], [3], [7], [10], [13], [17], [21], [26], [30], [39], [42], [49], [51], [53], [54], [55], [56],

[59], [63], [65], [87], [94], [102], [105], [106], [108], [111], [113], [114], [119], [120] 31

Typ 2 [1], [5], [8], [9], [12], [14], [18], [19], [28], [32], [36], [45], [47], [67], [69], [73], [76],
[79], [80], [82], [83], [84], [90], [92], [93], [95], [97], [101], [107], [110], [116], [117],
[121], [122], [126]

35

Typ 1+2 [6], [11], [15], [16], [24], [25], [34], [37], [48], [50], [58], [66], [74], [81], [86], [100],
[103], [104], [115], [123], [124] 21

No Typ [4], [20], [22], [23], [27], [29], [31], [33], [35], [38], [40], [41], [43], [44], [46], [52], [57],
[60], [61], [62], [64], [68], [70], [71], [72], [75], [77], [78], [85], [88], [89], [91], [96], [9
8], [99], [109], [112], [118], [125]

39

 Towards a Common Terminology in the Discipline of Enterprise Architecture 407

It is possible to differentiate the contributions along these criteria very well, but
except from [15] the explicit usage is not seen in any of the contributions. It seems to
be quite a useful differentiation because it is simple and disjunctive.

4 Conclusion

As stated in the introduction: this is not about yet another EA-Definition. It is about a
lack of a common terminology. It is not possible to consider all EA-Publications.
Many of the results are based on interpretation of implicit statements. That makes it
difficult to call this literature analysis scientific.

Nevertheless, there is no doubt about the horrible mess looking at the usage of the
term Enterprise Architecture! The only way to improve the situation is to start think-
ing about a common structure, developing a core theory and please: define and differ-
entiate your aims, methods and addressed issues. This paper would like to give some
first orientation and maybe start a discussion in the EA-community.

Another result of the survey is the still blur but developing picture, that authors can
be differentiated into descriptive and descriptive-normative positions. Descriptive
approaches see EA as a result of a planning process. The descriptive-normative au-
thors of contributions consider the planning process as an integrative part of an EA-
Approach.

References

1. TOGAF Version 8.1.1,
 http://www.opengroup.org/architecture/togaf8-doc/arch

2. Anaya, V., Ortiz, A.: How enterprise architectures can support integration. In: Proceed-
ings of the First international workshop on Interoperability of heterogeneous information
systems. ACM, Bremen (2005)

3. Anonymous, Enterprise Modeling: Aligning Business and IT, Popkin Software (1999)
4. Anonymous, IEEE Recommended Practice for Architectural Description of Software-

Intensive Systems (IEEE Std 1471-2000), The Institute of Electrical and Electronics En-
gineers, Inc. (2000)

5. Anonymous, A Practical Guide to Federal Enterprise Architecture. Chief Information Of-
ficer Council (2001)

6. Anonymous, Enterprise Architecture (2001)
7. Armour, F., et al.: A UML-Driven Enterprise Architecture Case Study. In: Proceedings of

the 36th Annual Hawaii International Conference on System Sciences (HICSS 2003).
IEEE Computer Society, Los Alamitos (2003)

8. Armour, F.J., Kaisler, S.H., Liu, S.Y.: A Big-Picture Look at Enterprise Architectures. IT
Professional 1(1), 35–42 (1999)

9. Armour, F.J., Kaisler, S.H., Liu, S.Y.: Building an Enterprise Architecture Step by Step.
IT Professional 1(4), 31–39 (1999)

10. Bahrami, A., Sadowski, D., Bahrami, S.: Enterprise architecture for business process
simulation. In: Proceedings of the 30th conference on Winter simulation. IEEE Computer
Society Press, Washington (1998)

408 M. Schöenherr

11. Barjis, J., Barjis, I.: Business Process Modeling as a Blueprint for Enterprise Architec-
ture. In: Saha, P. (ed.) Handbook Of Enterprise Systems Architecture In Practice, pp.
114–128. Information Science Reference, London (2007)

12. Bass, T., Mabry, R.: Enterprise Architecture Reference Models: A Shared Vision for Ser-
vice-Oriented Architectures. In: Proceedings of the to IEEE MILCOM 2004 (2004) (for
submission)

13. Belle, J.-P.V.: Moving Towards Generic Enterprise Information Models: From Paciolo to
Cyc. In: Proceedings of the Australian Conference on Information Systems (1999)

14. Berg, M.v.d., Steenbergen, M.v.: Building An Enterprise Architecture Practice. Springer,
Heidelberg (2006)

15. Bernus, P., Nemes, L., Schmidt, G.: Handbook on Enterprise Architecture. Springer, Hei-
delberg (2003)

16. Boar, B.H.: Constructing blueprints for Enterprise IT Architectures. John Wiley & Sons,
Inc., Chichester (1999)

17. Boer, F.S.d., et al.: A Logical Viewpoint on Architectures. In: Proceedings of the Enter-
prise Distributed Object Computing Conference, Eighth IEEE International. IEEE Com-
puter Society, Los Alamitos (2004)

18. Bommel, P.v., et al.: Architecture principles – A regulative perspective on enterprise ar-
chitecture. In: Proceedings of the 2nd International Workshop on Enterprise Modelling
and Information Systems Architectures. Gesellschaft für Informatik, Köllen, St. Goar
(2007)

19. Brown, D.P.: Enterprise Architecture for DoD (Department of Defense) Acquisition. Ac-
quisition Review Quarterly, 121–130 (2000)

20. Buchanan, R.D., Soley, R.M.: Aligning Enterprise Architecture and IT Investments with
Corporate Goals, Meta Group (2002)

21. Buckl, S., et al.: Generating Visualizations of Enterprise Architectures Using Model
Transfomations. In: Proceedings of the 2nd International Workshop on Enterprise Model-
ling and Information Systems Architectures. Gesellschaft für Informatik, St. Goar (2007)

22. Cane, S., McCarthy, R.: Measuring The Impact Of Enterprise Architecture, pp. 437–442
(2007)

23. Chung, H.M., McLeod, G.: Enterprise Architecture, Implementation, and Infrastructure
Management. In: Proceedings of the 35th Hawaii International Conference on System
Sciences (2002)

24. Dedene, G., Maes, R.: On the integration of the Unified Process Model in a framework
for software architecture. In: Proceedings of the Landelijk Architectuur Congress (2000)

25. Dern, G.: Management von IT-Architekturen. Vieweg & Sohn Verlag, Firdr (2003)
26. Doest, H.t., Lankhorst, M.: Tool Support for Enterprise Architecture – A Vision (2006)
27. Dreyfus, D., Iyer, B.: Enterprise Architecture: A Social Network Perspective. In: Pro-

ceedings of the 39th Annual Hawaii International Conference on System Sciences,
vol. 08. IEEE Computer Society, Los Alamitos (2006)

28. Drobik, A.: Enterprise Architecture: The Business Issues and Drivers. Gartner, Inc.
(2002)

29. Ekstedt, M.: Enterprise Architecture as a Means for IT Management (2004)
30. Ellis, W., et al.: Toward a Recommended Practice for Architectural Description. In: Pro-

ceedings of the 2nd IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS 1996). IEEE Computer Society, Los Alamitos (1996)

31. Emmerich, W., Ellmer, E., Fieglein, H.: TIGRA: an architectural style for enterprise ap-
plication integration. In: Proceedings of the 23rd International Conference on Software
Engineering. IEEE Computer Society, Toronto (2001)

 Towards a Common Terminology in the Discipline of Enterprise Architecture 409

32. Espinosa, J.A., Armour, F.: Geographically Distributed Enterprise Architecting: Towards
a Theoretical Framework. In: Proceedings of the Proceedings of the 41st Annual Hawaii
International Conference on System Sciences. IEEE Computer Society, Los Alamitos
(2008)

33. Evernden, R., Evernden, E.: Third-generation information architecture. Commun.
ACM 46(3), 95–98 (2003)

34. Feurer, S.: Enterprise Architecture – An Overview, SAP AG (2007)
35. Finkelstein, C.: Enterprise Portal Succes: Enterprise Architecture. DM Review Enterprise

Column (2001)
36. Finkelstein, C.: Introduction to Enterprise Architecture (2007)
37. Fischer, R., Aier, S., Winter, R.: A Federated Approach to Enterprise Architecture Model

Maintenance. In: Proceedings of the 2nd International Workshop on Enterprise Modelling
and Information Systems Architectures. Gesellschaft für Informatik, Köllen, St. Goar
(2007)

38. Foorthuis, R.M., Brinkkemper, S.: A Framework for Project Architecture in the Context
of Enterprise Architecture. In: Proceedings of the 2nd Workshop on Trends in Enterprise
Architecture Research 2007 (2007)

39. France, R.B., Ghosh, S., Turk, D.E.: Towards a Model-Driven Approach to Reuse. In:
Proceedings of the OOIS 2001, Calgary, Canada (2001)

40. Fraser, J., Tate, A.: The Enterprise Tool Set An Open Enterprise Architecture. In: Pro-
ceedings of the The 1995 International Joint Conference on AI (1995)

41. Gerber, S., Meyer, U., Richert, C.: EA Model as central part of the transformation into a
more flexible and powerful organisation. In: Proceedings of the 2nd International Work-
shop on Enterprise Modelling and Information Systems Architectures. Gesellschaft für
Informatik, St. Goar (2007)

42. Gils, B.v., Vojevodina, D.e.: The effects of exceptions on enterprise architecture. Rad-
boud University Nijmegen, Nijmegen (2006)

43. Greefhorst, D.: Service Oriented Enterprise Architecture. In: Proceedings of the 2nd
Workshop on Landelijk Architectuur Congres 2006 (2006)

44. Gronau, N.: Wandlungsfähige Informationssystemarchitekturen - Nachhaltigkeit bei or-
ganisatorischem Wandel. GITO-Verlag, Berlin (2003)

45. Hafner, M., Schelp, J., Winter, R.: Architekturmanagement als Basis effizienter und ef-
fektiver Produktion von IT-Services (2004)

46. Hamilton, J.A., Catania, M.G.A.: A Practical Application of Enterprise Architecture for
Interoperability. In: Proceedings on The 2003 International Conference on Information
Systems and Engineering (ISE 2003), Quebec, Canada (2003)

47. Harmon, K.: The “Systems” Nature of Enterprise Architecture. In: Proceedings of the
2005 International Conference on Systems, Man, and Cybernetics (2005)

48. Harmon, P.: Business Process Trends: Developing an Enterprise Architecture. Popkin
Software (2003)

49. Hayes, H.: Demystifying Enterprise Architecture (2003)
50. Iacob, M.-E., et al.: Capturing Architecture for the Adaptive Enterprise (2007)
51. Iacob, M.-E., Leeuwen, D.v.: View Visualization For Enterprise Architecture. In: Pro-

ceedings of the 6th International Conference on Enterprise Information Systems (2004)
52. Janssen, M., Kuk, G.: A Complex Adaptive System Perspective of Enterprise Architec-

ture in Electronic Government. In: Proceedings of the 39th Annual Hawaii International
Conference on System Sciences, vol. 04. IEEE Computer Society, Los Alamitos (2006)

53. Johnson, P., Ekstedt, M.: Enterprise Architecture - Models and Analyses for Information
Systems Decision Making (2007)

410 M. Schöenherr

54. Johnson, P., et al.: Proceedings of the Using Enterprise Architecture For CIO Decision-
Making: On The Importance Of Theory (2004)

55. Jonkers, H., et al.: Towards a Language for Coherent Enterprise Architecture Descrip-
tions. In: Proceedings of the 7th International Conference on Enterprise Distributed Ob-
ject Computing. IEEE Computer Society, Los Alamitos (2003)

56. Jonkers, H., et al.: Concepts for Modelling Enterprise Architectures. In: Proceedings of
the Landelijk Architectuur Congres, Nieuwegein, The Netherlands (2003)

57. Kaisler, S.H., Armour, F., Valivullah, M.: Enterprise Architecting: Critical Problems. In:
Proceedings of the 38th Annual Hawaii International Conference on System Sciences
(HICSS 2005). IEEE Computer Society, Los Alamitos (2005)

58. Keller, W.: IT-Unternehmensarchitektur. dpunkt Verlag (2007)
59. Khoury, G.R., Simoff, S.J.: Enterprise architecture modelling using elastic metaphors. In:

Proceedings of the First Asian-Pacific conference on Conceptual modelling, vol. 31. Aus-
tralian Computer Society, Inc., Dunedin (2004)

60. Kourdi, M.E., Shah, H., Atkins, A.: A Proposed Framework for Knowledge Discovery in
Enterprise Architecture. In: Proceedings of the 2nd Workshop on Trends in Enterprise
Architecture Research 2007 (2007)

61. Lankhorst, M., et al.: Enterprise Architecture at Work: Modelling, Communication, and
Analysis. Springer, Heidelberg (2005)

62. Laudato, N.C., DeSantis, D.J.: Managing the Implementation of an Enterprise-wide In-
formation Architecture. In: Proceedings of the Cause annual conference (1996)

63. Leeuwen, D.v., Doest, H.t., Lankhorst, M.: A Tool Integration Workbench For Enterprise
Architecture. In: Proceedings of the 6th International Conference on Enterprise Informa-
tion Systems, Porto, Portugal (2004)

64. Leganza, G.: Project Governance and Enterprise Architecture Go Hand in Hand. Forrester
Research, Inc. (2003)

65. Liles, D.H., Presley, A.R.: Enterprise modeling within an enterprise engineering frame-
work. In: Proceedings of the 28th conference on Winter simulation. IEEE Computer So-
ciety, Coronado (1996)

66. Lillehagen, F., Karlsen, D.: Enterprise Architectures – Survey of Practices and Initiatives.
In: Proceedings of the First International Conference on Interoperability of Enterprise
Software and Applications, Geneva, Switzerland (2006)

67. Macaulay, A.: Enterprise Architecture Design and the Integrated Architecture Frame-
work. Microsoft Architect Journal, 4–9 (2004)

68. Magalhaes, R., Zacarias, M., Tribole, J.: Making Sense of Enterprise Architectures as
Tools of Organizational Self-Awareness (OSA). In: Proceedings of the 2nd Workshop on
Trends in Enterprise Architecture Research 2007 (2007)

69. Magee, C., et al.: Successful Modelling of the Enterprise (2005)
70. Malan, R., Bredemeyer, D.: Architecture as Business Competency, Bredemeyer Consult-

ing (2004)
71. Malhotra, Y.: Enterprise Architecture: An Overview (1996)
72. Malveau, R.: Bridging the Gap: Business and Software Architecture, Part 2 (2004)
73. Martin, R.A., Robertson, E.L., Springer, J.A.: Architectural Principles for Enterprise

Frameworks: Guidance for Interoperability. In: Proceedings on the International Confer-
ence on Enterprise Integration Modelling and Technology 2004 (ICEIMT 2004), Toronto,
Canada (2004)

74. McGovern, J., et al.: A Practical Guide To Enterprise Architecture (2003)
75. Melling, W.P.: Enterprise information architectures: they’re finally changing. SIGMOD

Rec. 23(2), 493–504 (1994)

 Towards a Common Terminology in the Discipline of Enterprise Architecture 411

76. Mulholland, A., Macaulay, A.L.: Architecture and the Integrated Architecture Framework
(2006)

77. Nell, J.G.: Architectures and Frameworks (1996)
78. Niemann, K.D.: IT Governance and Enterprise Architecture - Impact of IT cost reduction

on innovation power. The Journal of Enterprise Architecture 1, 31–40 (2005)
79. Nightingale, D.J., Rhodes, D.H.: Enterprise Systems Architecting: Emerging Art and Sci-

ence within Engineering Systems. In: Proceedings of the ESD External Symposium
(2004)

80. O’Neill, T., et al.: Managing Enterprise Architecture Change. In: Saha, P. (ed.) Handbook
Of Enterprise Systems Architecture In Practice, pp. 192–205. Information Science Refer-
ence, London (2007)

81. Osvalds, G.: Definition of Enterprise Architecture-centric Models for the Systems Engi-
neer. In: Proceedings of the 11th Annual International Symposium of the International
Council on Systems Engineering (INCOSE), Melbourne, Australia (2001)

82. Pereira, C.M., Sousa, P.: A method to define an Enterprise Architecture using the Zach-
man Framework. In: Proceedings of the 2004 ACM symposium on Applied computing.
ACM, Nicosia (2004)

83. Peristeras, V., Tarabanis, K.: Towards an enterprise architecture for public adminstration
using a top-down approach. European Journal for Information Systems 9(4), 252–260
(2000)

84. Perks, C., Beveridge, T.: Guide To Enterprise IT Architecture. Springer, New York
(2003)

85. Reekum, E.V.-V., et al.: An Instrument for Measuring the Quality of Enterprise Architec-
ture Products. In: Proceedings of the 2nd Workshop on Landelijk Architectuur Congres
2006 (2006)

86. Rico, D.F.: A Framework for Measuring the ROI of Enterprise Architecture (2006)
87. Rohloff, M.: Enterprise Architecture – Framework and Methodology for the Design of

Architectures in the Large. In: Proceedings of the 13th European Conference on Informa-
tion Systems, Regensburg, Germany (2005)

88. Rood, M.A.: Enterprise Architecture: Definition, Content and Utility. In: Proceedings of
the IEEE Third Workshop on Enabling Technologies: Infrastructure for Collaborative En-
terprises. The MITRE Corporation (1994)

89. Ross, J.W.: Creating a Strategic IT Architecture Competency: Learning in Stages, Massa-
chusetts Institute of Technology, USA (2003)

90. Ross, J.W., Weill, P., Robertson, D.: Enterprise Architecture As Strategy: Creating a
Foundation for Business Execution. Harvard Business School Press (2006)

91. Rudawitz, D.: Why Enterprise Architecture Efforts Often Fall Short, Antevorte Consult-
ing, LLC (2003)

92. Saha, P.: Analyzing The Open Group Architecture Framework from the GERAM Per-
spective (2003)

93. Schekkerman, J.: Enterprise Architecture Validation (2003)
94. Schekkerman, J.: Another View at Extended Enterprise Architecture Viewpoints. In: Pro-

ceedings of the Landelijk Architectuur Congres 2004 (2004)
95. Schekkerman, J.: Enterprise Architecture Scorecard (2004)
96. Schelp, J., Stutz, M.: A Balanced Scorecard Approach To Measure the Value of Enter-

prise Architecture. In: Proceedings of the 2nd Workshop on Trends in Enterprise Archi-
tecture Research 2007 (2007)

97. Schönherr, M.: Enterprise Architecture Frameworks, Enterprise Application Integration –
Serviceorientierung und nachhaltige Architekturen, Gito, Berlin, pp. 3–48 (2004)

412 M. Schöenherr

98. Schönherr, M., Aier, S.: Sustainable Enterprise Architecture - Central (EAI) vs. Dezentral
(SOA) Approaches To Define Flexible Architectures (2005)

99. Sessions, R.: A Better Path To Enterprise Architectures (2006)
100. Sliva, R.: Enterprise Architecture by a Small Unit in a Federated Organization. In: Saha,

P. (ed.) Handbook Of Enterprise Systems Architecture In Practice, pp. 320–330. Informa-
tion Science Reference, London (2007)

101. Smith, D., et al.: A Roadmap for Enterprise Integration. In: Proceedings of the 10th Inter-
national Workshop on Software Technology and Engineering Practice. IEEE Computer
Society, Los Alamitos (2002)

102. Sousa, P., et al.: Enterprise Architecture Modeling with the Unified Modeling Language.
In: Enterprise Modeling and Computing with UML. IRM Press (2005)

103. Sowa, J.F., Zachman, J.A.: Extending and formalizing the framework for information
systems architecture. IBM Syst. J. 31(3), 590–616 (1992)

104. Srinivasan, K., Jayaraman, S.: Integration of simulation with enterprise models. In: Pro-
ceedings of the 29th conference on Winter simulation. IEEE Computer Society, Atlanta
(1997)

105. Steen, M.W.A., et al.: Supporting Viewpoint-Oriented Enterprise Architecture. In: Pro-
ceedings of the Enterprise Distributed Object Computing Conference, Eighth IEEE Inter-
national. IEEE Computer Society, Los Alamitos (2004)

106. Stojanovic, Z., Dahanayake, A.: Components and Viewpoints as Integrated Separations of
Concerns in System Designing. In: Aspect oriented Design (AOD), Workshop, Delft Uni-
versity of Technology (2002)

107. Tang, A., Han, J., Chen, P.: A Comparative Analysis of Architecture Frameworks. In:
Proceedings of the 11th Asia-Pacific Software Engineering Conference. IEEE Computer
Society, Los Alamitos (2004)

108. Tarcisius, G., Al-Ekram, R., Ping, Y.: Enterprise Architecture – An Overview (2002)
109. Taylor, K., Palmer, D.: Applying enterprise architectures and technology to the embedded

devices domain. In: Proceedings of the Australasian information security workshop con-
ference on ACSW frontiers 2003. Australian Computer Society, Inc., Adelaide (2003)

110. Thornton, S.: Understanding and Communicating with Enterprise Architecture Users. In:
Saha, P. (ed.) Handbook Of Enterprise Systems Architecture In Practice, pp. 145–159. In-
formation Science Reference, London (2007)

111. van der Torre, L.W.N., Lankhorst, M.M., ter Doest, H., Campschroer, J.T.P., Arbab, F.:
Landscape maps for enterprise architectures. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006.
LNCS, vol. 4001, pp. 351–366. Springer, Heidelberg (2006)

112. Tuft, B.: The Changing Role of IT Strategy: Enterprise Architecture Strategies, Meta
Group (2001)

113. Vasconcelos, A., et al.: An Information System Architectural Framework for Enterprise
Application Integration. In: Proceedings of the 37th Annual Hawaii International Confer-
ence on System Sciences (HICSS 2004) - Track 8, vol. 8. IEEE Computer Society, Los
Alamitos (2004)

114. Vasconcelos, A., Sousa, P., Tribolet, J.: Information System Architectures (2003)
115. Vasconcelos, A., Sousa, P., Tribolet, J.: Open Issues On Information System Architecture

Research Domain: The Vision. In: Proceedings of the 6th International Conference on
Enterprise Information Systems (ICEIS 2004) (2004)

116. Wagter, R., et al.: Dynamic Enterprise Architecture. How to make it work. John Wiley &
Sons, Inc., Chichester (2005)

 Towards a Common Terminology in the Discipline of Enterprise Architecture 413

117. Wegmann, A.: The Systemic Enterprise Architecture Methodology (SEAM). In: Proceed-
ings of the International Conference on Enterprise Information Systems 2003. Angers,
France (2003)

118. Wegmann, A., et al.: Teaching Enterprise Architecture And Service-oriented Architecture
in Practice. In: Proceedings of the 2nd Workshop on Trends in Enterprise Architecture
Research 2007 (2007)

119. West, D., Bittner, K., Glenn, E.: Ingredients for Building Effective Enterprise Architec-
tures (2002)

120. Whitman, L., Ramachandran, K., Ketkar, V.: A taxonomy of a living model of the enter-
prise. In: Proceedings of the 33nd conference on Winter simulation. IEEE Computer So-
ciety, Arlington (2001)

121. Williams, T.J.: The Purdue Enterprise Reference Architecture (PERA). In: Proceedings of
the JSPE/IFIP TC5/WG5.3 Workshop on the Design of Information Infrastructure Sys-
tems for Manufacturing. North-Holland Publishing Co., Amsterdam (1993)

122. Wognum, N., Ip-Shing, F.: Maturity of IT-Business Alignment: An Assessment Tool. In:
Saha, P. (ed.) Handbook Of Enterprise Systems Architecture In Practice, pp. 221–236. In-
formation Science Reference, London (2007)

123. Zachman, J.A.: A framework for information systems architecture. IBM Systems Jour-
nal 26, 276–292 (1987)

124. Zachman, J.A.: Enterprise Architecture: The Issue Of The Century (1996)
125. Zachman, J.A.: Enterprise Architecture: Looking Back and Looking Ahead (1999)
126. Zarvic, N., Wieringa, R.: An Integrated Enterprise Architecture Framework for Business-

IT Alignment. In: Proceedings on BUSITAL 2006 - A workshop on Business/IT Align-
ment and Interoperability, Luxembourg (2006)

127. Langenberg, K., Wegmann, A.: EA: What aspects is current research targeting?, EPFL
Technical Report (2004)

128. Esswein, W., Weller, J.: Unternehmensarchitekturen, Grundlagen, Verwendung und
Frameworks, Praxis der Wirtschaftsinformatik (2008)

129. ISO 15704, ISO. ISO 15794 - Industrial Automation Systems – Requirements for Enter-
prise Reference Architectures and Methodologies (2000), http://www.iso.org

Author Index

Agarwal, Sudhir 304
Aier, Stephan 313, 316, 388
Aı̈t-Bachir, Ali 79
Alagar, Vasu 221
Alrifai, Mohammad 190
Arsanjani, Ali 41
Augustin, Stefan 242

Bannerman, Paul L. 298
Bartsch, Christian 53
Basu, Sujoy 256
Bernhardt, Jan 327
Bitsaki, Marina 103
Bos, Rik 375
Brebner, Paul 187
Brinkkemper, Sjaak 375
Broberg, James 178
Buckl, Sabine 363
Buyya, Rajkumar 178

Chung, Yen-Jao 3
Cleland-Huang, Jane 41
Cook, Nick 270

D’Andrea, Vincenzo 241
Danylevych, Olha 103
Deters, Ralph 166
Dolog, Peter 190
Dorn, Christoph 91
Duddy, Keith 5
Dumas, Marlon 79
Dustdar, Schahram 91, 284

Ekstedt, Mathias 351
Emmerich, Wolfgang 3
Eriksson, Evelina 339
Ernst, Alexander 363

Fauvet, Marie-Christine 79
Feuerlicht, George 15
Flores, Waldo Rocha 339
Foster, Ian 118
Frisoni, Monica 155

Gangadharan, G.R. 241
Gleichauf, Bettina 316
Graupner, Sven 256

Han, Jun 28
Hirzalla, Mamoun 41
Holschke, Oliver 339
Hoyer, Volker 148

Iannella, Renato 241

Johnson, Pontus 313

Kaschner, Kathrin 66
Kern, Robert 304
Koning, Henk 375
Koutras, George D. 103

Leymann, Frank 103
Liu, Dong 166
Lohmann, Niels 66

Madduri, Ravi 118
Mancioppi, Michele 103
Matthes, Florian 363
Maximilien, E. Michael 133
May, Nicholas R. 211
Mevius, Marco 53
Missier, Paolo 118
Molina-Jimenez, Carlos 270
Mos, Adrian 189
Müller, Ingo 28

Närman, Per 339, 351
Nejdl, Wolfgang 190
Nikolaou, Christos N. 103

O’Brien, Liam 187
Oberweis, Andreas 53
Ortiz, Guadalupe 3
Ozonat, Kivanc 256

Papazoglou, Mike P. 103
Pautasso, Cesare 133, 155
Piao, Jingtai 200

Raderius, Jakob 351
Riege, Christian 388
Risse, Thomas 190

416 Author Index

Schall, Daniel 91
Scheithauer, Gregor 242
Schelp, Joachim 313
Schneider, Jean-Guy 28
Schönherr, Marten 339, 400
Schweda, Christian M. 363
Seese, Detlef 327
Shrivastava, Santosh 270
Singhal, Sharad 256
Stanoevska-Slabeva, Katarina 148

Tai, Stefan 133
Tan, Wei 118
Tari, Zahir 178
Tosic, Vladimir 237

Treiber, Martin 284
Truong, Hong-Linh 91, 284

van den Heuvel, Willem-Jan A.M. 103
Versteeg, Steven 28

Wan, Kaiyu 221
Weiss, Michael 241
Wirtz, Guido 242
Woodard, C. Jason 136

Yan, Jun 200
Young, Donald 256
Yu, Shuli 136

Zhu, Liming 298
Zirpins, Christian 3, 304

	Title Page
	Preface
	Organization
	Table of Contents
	Fourth International Workshop on Engineering Service-Oriented Applications (WESOA 2008)
	Introduction: Fourth International Workshop on Engineering Service-Oriented Applications (WESOA 2008)
	Workshop Goals and Contents
	Workshop Organisation

	What Would Smart Services Look Like
	The Speaker, and His Journey “Up the Stack”
	What Is a Smart Service?
	Metadata
	Recursive Process Orientation
	Service Selection and Substitution
	Constraint Enforcement
	Metering and Billing

	Traders, Directories and Brokers
	How Does All This Relate to Web Services Standards?
	What about the Web Services Success Stories?
	What Other Challenges Do We Face?
	Business Process Management
	Quality of Service

	Some Practical Initiatives to Overcome Challenges
	Service Description Meta-models
	Domain Specific Languages
	KISS Initiative

	Conclusion
	References

	Design of Composable Services
	Introduction
	Considerations of Service Reuse and Composability
	Identifying Composable Services
	Decomposition of the Travel Booking Service
	Data Analysis of Service Interfaces

	Describing Service Assembly Using Relational Algebra Operations
	Conclusions and Related Work
	References

	A Conceptual Framework for Unified and Comprehensive SOA Management
	Introduction
	SOA Governance and Management
	Conceptual Management Framework
	Outline of Management Activities
	Trends in Industry and Research
	Summary and Future Work
	References

	A Metrics Suite for Evaluating Flexibility and Complexity in Service Oriented Architectures
	Introduction
	Background Information
	SOA Design-Time Metrics
	SOA Run-Time Metrics
	Case Study
	Future Work
	References

	Simulation of IT Service Processes with Petri-Nets
	Introduction
	Related Work
	Petri-Nets and IT Service Processes
	Availability Modeling and Simulation of IT Service Processes
	Evaluation
	Conclusion and Outlook
	References

	Automatic Test Case Generation for Interacting Services
	Introduction
	Testing Interacting Services
	Verification vs. Testing
	Testing Services by Partner Services

	Generating Test Cases
	Characterizing Conformant Services
	Selecting Test Cases

	Related Work
	Conclusion
	References

	Detecting Behavioural Incompatibilities between Pairs of Services
	Introduction
	Motivation
	Modeling Service Behaviour
	Detection of Changes
	Deletion of an Operation
	Addition of an Operation
	Modification of an Operation
	Detection Algorithm

	Related Work
	Conclusion and Future Work
	References

	On Supporting the Design of Human-Provided Services in SOA
	Introduction
	Collaboratively Designing HPS
	Overview HPS Framework
	HPS Interface Transformation and Generation
	Design Process
	Interface Mappings

	Recommendations for HPS Design
	Implementation
	Related Work
	Conclusion and Future Work
	References

	Model Transformations to Leverage Service Networks
	Introduction
	The SN4BPM Architecture
	The Service Network Notation
	Transformations in the Enhanced BPM Lifecycle
	The Transformation Approach
	Model Mappings for SNN and BPMN Model Transformation
	Business Interaction Patterns under the Lens
	The BottomUp Transformation: Extracting SNN Models from Abstract Process Models
	The TopDown Transformation: Creating Abstract Process Models from SNN Model

	Future Work and Conclusions
	References

	Building Scientific Workflow with Taverna and BPEL: A Comparative Study in caGrid
	Introduction
	A caGrid Use Case
	The Lifecycle and Features of Scientific Workflows
	Support for Service Discovery
	Service Composition and Workflow Execution
	Data-Driven vs. Control-Driven Modeling
	Implicit vs. Explicit Definition of Data
	Implicit vs. Explicit Iteration on Data

	Workflow Result Analysis
	Conclusion and Future Work
	References

	Second International Workshop on Web APIs and Services Mashups (Mashups 2008)
	Introduction: Second International Workshop on Web APIs and Services Mashups (Mashups 2008)
	Overview
	Organization

	Innovation in the Programmable Web: Characterizing the Mashup Ecosystem
	Introduction
	Data: The Programmable Web
	Graphical Network Structure
	Degree Distributions
	A Power Law: The Rich Get Richer
	A Long Tail? Yes, But a Short One

	Social Network Statistics
	API Affiliation Metrics
	Small-World Analysis
	Importance of Peripheral APIs

	Conclusion
	References

	The Changing Role of IT Departments in Enterprise Mashup Environments
	Introduction and Motivation
	Related Work
	Enterprise Mashups – Definition and Characteristics
	Enterprise Mashup Platforms

	St. Gallen Media Reference Model for Enterprise Mashup Environments
	Community View
	Interaction View
	Service View
	Infrastructure View

	Conclusion
	References

	The Mashup Atelier
	Introduction
	Methodology
	Mashup Examples
	Survey Results
	Background
	Overall Impression
	Was the Mashup Tool Intuitive?
	Positive Feedback
	Negative Feedback
	Will You Keep Using PopFly in the Future?

	Related Work
	Conclusion
	References

	The Reverse C10K Problem for Server-Side Mashups
	Introduction
	The C10K Problem
	I/O
	Concurrency

	Design for the RC10K Problem
	Evaluation
	Analysis
	Experiments and Results

	Related Work
	Conclusions
	References

	Creating a ‘Cloud Storage’ Mashup for High Performance, Low Cost Content Delivery
	Introduction
	The MetaCDN System
	Overall Design and Architecture of the System
	Integrating ‘Cloud Storage’ Providers
	Content Deployment Options
	Integration of Geo-IP Services and Google Maps
	Load Balancing via DNS and HTTP Redirection

	Conclusion
	References

	First International Workshop on Quality-of-Service Concerns in Service Oriented Architectures (QoSCSOA 2008)
	Introduction: First International Workshop on Quality of Service Concerns in Service Oriented Architectures (QoSCSOA 2008)
	Workshop Description
	Workshop Objectives
	Motivation
	Workshop Format

	Challenges in Integrating Tooling and Monitoring for QoS Provisioning in SOA Systems
	A Scalable Approach for QoS-Based Web Service Selection
	Introduction
	Related Work
	System Model and Problem Statement
	Abstract vs. Concrete Composite Services
	QoS Criteria
	QoS Computation of Composite Services
	Utility Function
	Problem Statement

	A Scalable QoS Computation
	Decomposition of Global QoS Computation
	Decomposition of Global Constraints
	Distributed Optimization of the QoS Computation

	Experimental Evaluation
	Performance Evaluation
	Optimality Evaluation

	Conclusion and Future Work
	References

	Towards QoS-Based Web Services Discovery
	Introduction
	Related Work
	QoS Information Description
	QoS Information Advertisement
	Storage of QoS information
	QoS Requirement
	A Sample of QoS Requirement

	Matching and Ranking Algorithms
	Matching Algorithm
	Ranking Algorithm

	Conclusion and Future Work
	References

	A Redundancy Protocol for Service-Oriented Architectures
	Introduction
	Background
	Service-Oriented Architecture
	Fault Tolerance
	Redundancy
	Related Work

	Protocol
	Conclusions
	References

	A Context-Aware Trust Model for Service-Oriented Multi-Agent Systems
	Introduction
	Awareness and Context
	Trust
	Contributions

	Context Formalism
	Syntax and Semantics
	Modeling Contact Awareness

	An Overview of Trust Model for Service-Oriented Systems
	Choice of Trust Domain
	Context-Aware Trust Measurement
	Trust Model vs. Trusting Behavior

	MAS Model of Service
	Agent Types
	Service Protocol

	Conclusion
	References
	Appendix – Type Conversion and Homomorphism

	Three Common Mistakes in Modeling and Analysis of QoS of Service-Oriented Systems

	Enabling Service Business Ecosystems (ESBE 2008)
	Introduction: First International Workshop on Enabling Service Business Ecosystems (ESBE 2008)
	Describing Services for Service Ecosystems
	Introduction
	Service Ecosystems
	Zachman Framework
	Perspectives
	Descriptions

	Service Properties
	Functionality
	Financial
	Legal
	Marketing
	Quality of Service

	Service Description for the Zachman Framework
	Conclusion and Future Work
	References

	Service Selection in Business Service Ecosystem
	Introduction
	Related Work
	Assumptions
	Problem Statement
	Approach
	Techniques and Experiments
	Extracting Significant Words for Service Requirements
	Finding Service Candidates
	Identify Service Properties of Service Candidates
	Rank Service Candidates
	Discussion

	Conclusion and Future Work
	References

	On the Feasibility of Bilaterally Agreed Accounting of Resource Consumption
	Introduction
	Resource Accounting Services
	Trust Assumptions and Root of Trust

	Bilateral Resource Accounting
	Collection of Metering Data
	Agreement on Mutually Trusted Accounting Outcomes
	Models for Bilateral Accounting

	On the Feasibility of Bilateral Accounting for Amazon’s S3 Storage
	Related Work
	Concluding Remarks
	References

	On Analyzing Evolutionary Changes ofWeb Services
	Introduction
	Related Work
	The Anatomy ofWeb Service Changes
	Web Service Requirements Changes
	Interface Changes
	Web Service Implementation Changes
	Web Service QoS Changes

	Discussion and Outlook
	References

	Standardization as a Business Ecosystem Enabler
	Introduction
	Issue Analysis
	The Business of a Standards Organization
	Nature of a Non-prescriptive But Compliance-Checkable Standard

	Case Illustrations
	The Business of a Standards Organization
	Nature of a Non-prescriptive But Compliance-Checkable Standard

	Conclusions
	References

	Managing Quality of Human-Based eServices
	Introduction
	Human-Based Electronic Services
	Requirements Analysis
	Platform Considerations
	Summary and Outlook
	References

	Third Workshop on Trends in Enterprise Architecture Research (TEAR 2008)
	Introduction: Third Workshop on Trends in Enterprise Architecture Research (TEAR 2008)
	Introduction
	Contributions
	Results of the Workshop
	Programme Committee

	Towards a Sophisticated Understanding of Service Design for Enterprise Architecture
	Introduction
	Related Work
	Case Studies
	Company A
	Company B
	Company C

	Differentiating Services and Guidelines for Service Construction
	Service Oriented Software Architecture
	Service Oriented Integration Architecture
	Service Oriented Process Architecture

	Discussion
	References

	A Conceptual Framework for the Governance of Service-Oriented Architectures
	Introduction
	Related Work
	A Reference Model for SOA Governance
	Organizational Structure
	Policies
	Governance Processes
	Metrics
	SOA Governance Infrastructure

	Conclusion
	References

	Using Enterprise Architecture Models and Bayesian Belief Networks for Failure Impact Analysis
	Introduction
	Bayesian Belief Networks and Diagnostic Analysis
	Bayesian Belief Networks
	Diagnostic Analysis

	Using a BBN for Decision Support in Failure Impact Analysis
	Management Process for Failure Analysis Using a Decision Support System
	Creating the Decision Support System for Failure Analysis Based on BBN

	Scenario-Based Analysis: Creating the Decision Support System
	Using the Decision Support System for Failure Impact Analysis
	Conclusion
	References

	Assessing System Availability Using an Enterprise Architecture Analysis Approach
	Introduction
	Related Works
	A Quality of Service Evaluation Framework
	Using the Framework

	Quality of Service
	Quality of the Maintenance Organization
	Reliability
	Recoverability
	Serviceability and Manageability
	A Metamodel for Availability Assessments

	Case Study – Evaluating the Availability of a Data Warehouse
	Instantiating the Models
	Results

	Analysis
	Conclusion
	References

	An Information Model for Landscape Management – Discussing Temporality Aspects
	Motivation and Introduction
	Requirements for and Current Approaches to Landscape Management
	Tool Support for Landscape Management
	Discussing an Information Model for Landscape Management
	Outlook
	References

	A Lightweight Method for the Modelling of Enterprise Architectures
	Lightweight Enterprise Architecture
	Related Work
	Outline of the Paper

	Enterprise Architecture Modelling Method
	Diagramming Tools for Enterprise Architectures
	Concepts of Enterprise Architectures

	The EAM Models
	Supply Chain Diagram (SCD)
	Enterprise Function Diagram (EFD)
	Scenario Overlay (SO)
	System Infrastructure Diagram (SID)
	Application Overlay (AO)

	Usage Feedback
	Course Enterprise Architecture
	Questionnaire

	Conclusions and Future Work
	References

	A Contingency Approach to Enterprise Architecture Method Engineering
	Introduction
	Theoretical Background and Related Work
	Current Realization Approaches of EA
	Characteristics of the Data Set
	Identifying Contingency Factors of EA
	Clustering EA Realization Approaches

	EA Applications Scenarios
	Summary and Future Work
	References

	Towards a Common Terminology in the Discipline of Enterprise Architecture
	Motivation
	Research Methodology
	Literature Analysis
	Basic Facts, Distributions and Correlations
	Drivers for Enterprise Architecture Approaches
	Architectural Layers Addressed in EA-Contributions
	Architecture Description vs. Architecture Development

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

