
Implementation of a Trusted Ticket System

Andreas Leicher1, Nicolai Kuntze2, and Andreas U. Schmidt3

1 Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
leicher@cs.uni-frankfurt.de

2 Fraunhofer–Institute for Secure Information Technology, Rheinstraße 75, 64295
Darmstadt, Germany

nicolai.kuntze@sit.fraunhofer.de
3 CREATE-NET Research Center, Via alla Cascata 56/D, 38100 Trento, Italy

andreas.schmidt@create-net.org

Abstract. Trusted Computing is a security technology which enables the
establishment of trust between multiple parties. Previous work showed
that Trusted Computing technology can be used to build tickets, a core
concept of Identity Management Systems. Relying solely on the Trusted
Platform Module we will demonstrate how this technology can be used in
the context of Kerberos for an implementation variant of Identity
Management.

1 Introduction

Trusted Computing (TC) as defined by the Trusted Computing Group (TCG)
is usually seen as a protection technology centred on single devices. Yet, viewed
as a platform-neutral security infrastructure, TC offers ways to establish trust
between entities that are otherwise separated by technical boundaries, e.g., dif-
ferent access technologies and access control structures. Not surprisingly, some
concepts of TC are rather similar to Identity management (IDM) and federation.

In previous work we have presented a concept for how to use TC within ticket
systems such as Kerberos [1], and have also shown that identity federation be-
tween different provider domains can be supported by TC [9]. The present paper
reports on the progress in this field, in particular a concrete realisation and inte-
gration in an existing authentication system, namely Kerberos. The combination
of attestation of a client system’s trustworthiness with user authentication and
authorisation is a key issue. We show that this combination is efficient in a generic
demonstration environment for TC-based applications. Part of this work is done
within the EU FP7 project NanoDataCenters as a base for trust in distributed
environments.

Section 2 provides some essential background on TC technology. Section 3
describes the demonstration environment we put together building on and com-
bining available open source projects. Section 4 details the concepts for a TC-
enabled ticket system architecture and describes the most important use cases,
while Section 5 sketches the concrete integration into the Kerberos framework.
We conclude with Section 6.

D. Gritzalis and J. Lopez (Eds.): SEC 2009, IFIP AICT 297, pp. 152–163, 2009.
© IFIP International Federation for Information Processing 2009



Implementation of a Trusted Ticket System 153

2 Trusted Computing Essentials

The idea of building security into open, connected systems by using computing
platforms enhanced by security-relevant functionality in protected places has a
long history, rooted in the study by the Rand Corporation [13].

The TCG is the main industrial effort to standardise TC technology. Trust
as defined by the TCG means that an entity always behaves in the expected
manner for the intended purpose. The trust anchor, called Trusted Platform
Module (TPM), offers various functions related to security. Each TPM is bound
to a certain environment and together they form a trusted platform (TP) from
which the TPM cannot be removed.

To prove trustworthiness of a TP to an external party, or verifier, processes
called (remote) attestation and according protocols have been envisaged. They
transport measurement values and data necessary to retrace the system state
from them, so called measurement logs, to the verifier. The data is uniquely and
verifiable bound to a particular platform, e.g. by a digital signature. Remote
attestation can be supported by a PKI structure for instance to protect a plat-
form owner’s privacy by revealing the platform identity only to a trusted third
party. The following technical details are taken from [17]. More can also be found
in [14].

For the TPM to issue an assertion about the system state, two attestation pro-
tocols are available. As the uniqueness of every TPM leads to privacy concerns,
they provide pseudonymity, resp., anonymity. Both protocols rest on Attestation
Identity Keys (AIKs) which are placeholders for the EK. An AIK is a 1024 bit
RSA key whose private portion is sealed inside the TPM. The simpler protocol
Remote Attestation (RA) offers pseudonymity employing a trusted third party,
the Privacy CA (PCA), which issues a credential stating that the respective
AIK is generated by a sound TPM within a valid platform. The system state
is measured by a reporting process with the TPM as central reporting author-
ity receiving measurement values and calculating a unique representation of the
state using hash values. For this, the TPM has several Platform Configuration
Registers (PCR). Beginning with the system boot each component reports a
measurement value, e.g., a hash value over the BIOS, to the TPM and stores it
in a log file. During RA the communication partner acting as verifier receives
this log file and the corresponding PCR value. The verifier can then decide if
the device is in a configuration which is trustworthy from his perspective. Apart
from RA, the TCG has defined Direct Anonymous Attestation. This involved
protocol is based on a zero knowledge proof but due to certain constraints of the
hardware it is not implemented in current TPMs.

AIKs are crucial for applications since they can not only be used, according
to TCG standards, to attest the origin and authenticity of a trust measurement,
but also to authenticate other keys and data generated by the TPM. Before an
AIK can testify the authenticity of any data, a PCA has to issue a credential for
it. This credential together with the AIK can therefore be used as an identity for
this platform. Using the AIK as a signing key for arbitrary data is not directly
possible but we have shown elsewhere how to circumvent this limitation [14,12].



154 A. Leicher, N. Kuntze, and A.U. Schmidt

3 Trusted Demonstration Environment

In order to develop and test various ideas and concepts of TC, we set up a
Trusted Demonstration Environment. The goal was to design a system in which
it is possible, without the need of a physical TPM, to access all desired TPM
functions. In order to emulate a TPM in software, we used the TPM emulator
from [5]. To simulate a complete system we decided to build upon Virtualisa-
tion. Therefore we established a connection between the emulated TPM and
QEMU [3], thus enabling virtual machines to execute TPM applications and
commands.

The TPM emulator enables to access and review the internal operations in
the TPM, which made it a very powerful tool for analysis, testing and debugging.
The emulator consists of three parts: an implementation of the TPM Device
Driver Library (TDDL), a kernel module (tpmd_dev) and the TPM emulator
daemon. As specified by the TCG, TDDL provides a convenient way to access
the TPM from applications. By substituting this library, applications that use
the TDDL are forced to use the TPM emulator instead of a hardware TPM. For
those applications and libraries that access the TPM directly, the kernel module
tpmd_dev simulates a hardware TPM by forwarding all messages directly to
the TPM emulator daemon, which is the main component of the emulator. The
tpmd listens on a Unix socket and waits for incoming commands. At current,
most of the commands specified by the TCG are supported by the emulator.
The installation of the TPM emulator is quite straightforward, compiling from
source version 0.5.1. To prevent that QEMU gets disconnected from the emulator
before the guest OS is up, as long as no TPM commands are issued during the
boot process, we decided to change TPM_COMMAND_TIMEOUT in tpmd.c
to a higher value (3000, default: 30).

To establish the connection between the tpmd and QEMU to gain a virtu-
alised client environment we used a patch from [4]. We modified the patch to
work with the current QEMU source version 0.9.1 [2]. The patch allows QEMU
to connect to the Unix socket created by tpmd via command line option, and
registers a new IO port inside QEMU and forwards all commands to the socket
and thus to the TPM emulator.

We set up a virtual machine in QEMU using a standard debian distribution
(etch). To communicate with the TPM the kernel (version 2.6.24-3) was recom-
piled, adding the IMA patch from IBM [6]. We configured the kernel to support
TPMs In addition we enabled IMA.

IMA stands for Integrated Measurement Architecture and enables measure-
ment and logging of every file that the kernel loads. Measurement is done
in two steps: before execution, the SHA-1 hash of every file and library is
measured and written to PCR 10 of the TPM using ”extend” as in equa-
tion 1. Additionally the measured file and its SHA-1 hash gets logged in the
/sys/kernel/security/ima/ascii_runtime_measurements file.

PCR10 = SHA-1 (PCR10||SHA-1 (file)) (1)



Implementation of a Trusted Ticket System 155

As a main concept of authenticated boot, measurement through IMA allows for
a later attestation to a remote system. It should be noted that every file gets
measured only once, upon first execution. While the measurement list contains all
files that executed since the system boot, it is not a list of the current running
configuration of the system. Thus IMA cannot implement an actual run-time
measurement. Using emulation of both, the TPM and the machine connecting to
it, enabled us to set up on a single host multiple clients each of them with its own
TPM. Integrated in this framework is QEMU’s capability to connect the clients
to a virtual network and thus enabling a complete client/server infrastructure.

In order to access the TPM inside the client, we developed several applications
in Java, based on the framework TPM/J from [7] implementing a client-server
infrastructure. Around various little tools for creating and storing keys for later
use, we implemented the complete process of Remote Attestation. In particular
our environment can create an arbitrary number of AIKs and, by connecting to
our PCA, realised as a single module written in Java, we can certify our AIKs.

The process of AIK certification is shown in figure 1. First, the client creates
a new AIK using the TPM_MakeIdentity command. This creates the key and
the TPM_IDENTITY_CONTENTS structure which contains the public AIK.
This structure is then signed with the AIK and sent to the PCA together with
the public EK and its certificate.

Our realisation of the PCA creates a random nonce and encrypts both, the
public AIK and the nonce with the EK. The client then has to load the AIK into
the TPM, decrypt the nonce using TPM_ActivateIdentity, and finally checks if
the decrypted public AIK corresponds to the loaded AIK. Then the decrypted
random nonce is sent back to the PCA. This is used as a handshake operation
— extending the TCG’s specification of this protocol — to ensure that the PCA
communicates with the TPM that generated the AIK. The corresponding secu-
rity weakness in the TCG’s specified protocol was noted in [8], and we followed
the solution proposed there. The handshake operation generates a reliable link
between the EK (stored in the TPM) and the AIK. Omitting the handshake
poses several risks. If an attacker can get hold of a public EK and the creden-
tials, he can request PCA credentials for arbitrary RSA keys. These keys are not
necessarily bound to the TPM and can be created without a TPM. Thus, one
can imagine DoS attacks on the PCA. If a policy enables the PCA to issue only
a limited amount of certificates for a certain TPM, or users are charged for the
issuance of the certificates, this leads to further attacks. Note that the attacker
will not be able to decrypt the credentials for the given AIK, as they can only
be decrypted by the private EK which will not leave the TPM.

The PCA then verifies the correctness of the EK certificate and validates
the AIK signature on the TPM_IDENTITY_CONTENTS. After generating
the AIK certificate cert(AIK,PCAcert), the PCA encrypts it using a symmetric
key K. To ensure that only the requesting client can access the certificate, the
key K, together with the hash of the public AIK is encrypted with the public
EK in the TPM_EK_BLOB structure. The encrypted certificate and the en-
crypted TPM_EK_BLOB are then sent back to the client. The client’s TPM can



156 A. Leicher, N. Kuntze, and A.U. Schmidt

Fig. 1. Flow of the AIK certification protocol

Fig. 2. Flow of the RA protocol

decrypt the symmetric key K using the TPM_ActivateIdentity command and
can thus decrypt the cert(AIK,PCAcert) which is stored for further use. With
these certified AIKs it is possible to connect to our Remote Attestation (RA)
server. The client sends the IMA measurement list together with the current
value of PCR 10 signed with the AIK to the server. The RA server then checks
if the AIK certificate is valid and issued by a trusted PCA. The RA server
validates the measurement list in the following way: first, every entry in the
measurement list is checked if it is contained in a database of known hash-values
for programs defined as trusted. If the client executes a program that is con-
sidered untrusted, the hash will not be found in the database or in case of a
virus/malware modifying a trusted program, the hash will be different. In this
case, the client is considered untrusted and the attestation fails. If the hash value
matches the known (trusted) value, a virtual PCR is extended as described in
equation 1. After examining all entries in the measurement list, the RA server
checks if the virtual PCR matches the submitted value from client’s TPM. This



Implementation of a Trusted Ticket System 157

procedure ensures that the submitted measurement list has not been tampered
with. The client receives a certificate from the RA server with a timestamp. This
certificate can then be used in a following connection to a service provider. The
RA process is shown in figure 2. In the current demonstration environment we
are not yet able to access the TPM emulator through the QEMU BIOS, pre-
venting a measurement of the boot process. A patched version of the boot loader
GRUB [10] exists and is installed in the client. As soon as a working patch for
the QEMU BIOS exists, we will be able to establish a chain of trust starting at
boot time of the virtual machine.

4 Usage Concepts

Our goal is to integrate the TC concepts in an IDM Environment. IDM is
concerned with the management of user credentials and the means by which
users use them to access different (online) services. A real life person’s identity
is formed of all attributes that belong to the individual such as name, address,
hobbies, banking accounts. The identity can be split into partial identities which
consist only of a subset of information, e.g. a drivers license contains name,
date of birth, a picture and the type of vehicle a person is entitled to drive,
whereas a credit card account contains name, account number and a list of
last purchases. Internet usage increases the number of identities, represented by,
e.g., different accounts for mail, online-shops, auctions and so on. Every identity
contains different types of information about the subject.

One goal is the establishment of trust domains where participants can trust
each other. In traditional scenarios trust is based on the fact that the partici-
pants know each other, e.g., because they belong to the same company. As the
customer-business relation shifts from physical to electronic means it is neces-
sary to develop and establish new ways of trust relationships between enterprises
and their customers.

In general, IDM covers several aspects: (i) Trust is linked to a set of identity
credentials, allowing an individual to be part of a trust domain. (ii) Anonymity
and pseudonymity play an important role in IDM. The level of identity needed
for a relationship in a trusted domain has to be considered. (iii) Authentication
is needed to prove that a claimed identity really belongs to the agent. Examples
are passwords, biometric devices or smartcards. (iv) Authorisation describes
the process of either granting or denying access to a certain service or resource.
(v) Integrity ensures that a message cannot be changed once it has been sent.
(vi) Non-repudiation means the evidence for the existence of a certain message
can be provided.

Several use cases of IDM can be imagined and are currently being widely
promoted. In most web based services, the user needs to sign in for an account
in order to access the service. This implies the need for an account management
on behalf of the service provider. In an IDM scenario, the provider only has to
care about authorisation and has to establish a trust relationship to an identity
provider. The client only has to retrieve a ticket incorporating his identity from



158 A. Leicher, N. Kuntze, and A.U. Schmidt

the identity provider. He then uses the obtained ticket and presents it to the
provider without the need of an additional registration. This lowers entry barriers
for users that want to access the service.

In existing IDM solutions one security concern is the phishing of the login
information needed to sign up with the identity provider. Once this information
gets stolen, all login information to services will be exposed. With our solution,
the tickets will be build on the client’s hardware TPM. As the tickets get bound
to the user’s device, an interception of login information is rendered useless. In
addition, the spread of different, somehow loosely linked partial information leads
to certain risks. As users tend to use same login information when registering
with different services, gathering and linking informations contained in different
identities can lead to a complete profile of an individual. This poses huge pri-
vacy concerns potentially enables further attacks such as identity theft where
an attacker obtains enough key pieces of personal information to impersonate
someone else [15].

We take an approach of trust, such that by transmitting authentication data,
an agent enters the domain of trust of a principal. Within authentication, the
trustworthiness of the agent can be attested, thus making a statement about
the agent’s identity and its state. The token used for authentication and attes-
tation is called credential. In existing IDM solutions such as Kerberos, these
credentials are embodied in (software) tickets. Using TC concepts we will build
trust credentials that rely on the agent’s TPM. By the means of mutual agree-
ments trust can be established across different domains. In such an architecture
every domain consists of (at least one) identity provider and multiple service
providers. An acquired ticket can only be used inside the particular domain. In
order to enable ticket usage across multiple domains, either cross certification
(one CA signing the public key of the other CA) or a spanning CA can be used.
This leads to a high technical overhead if many domains are involved. With the
approach of using TC architecture we are be able to establish trust between
different domains.

We build our trusted ticket system upon the identities embodied in the AIKs
certified by a PCA. The tickets are generated locally on the user’s device and
the process of ticket acquisition and redemption is bound to the user’s hard-
ware TPM chip. The tickets are only be usable from the user’s device, and thus
prevent attacks that rely on copying the ticket (e.g. phishing). We establish an
access control scheme allowing the user to access multiple services by maintain-
ing non-repudiation (by the chain of trust), accountability (by the PCA) and
pseudonymity (by the separation of duties), see [12,11].

As described in [14] we create the trusted tickets using an indirection. We
use the notation cert(entity, certificate) for the credential of the certified
entity. It is the union of the entity signed with the certificate’s private key and
the public key certificatepub. The credential is verified by checking the signature.

First, the AIK representing a certain identity is certified by a PCA,
yielding the AIK certificate cert(AIK,PCAcert). As AIKs cannot be used
to sign arbitrary data, we create a new RSA key pair in the TPM using



Implementation of a Trusted Ticket System 159

Fig. 3. Creation of the Certified Signing Key (CSK)

the TPM_CMK_CreateKey command. The resulting key pair is loaded
into the TPM via the TPM_LoadKey command and then certified by the
TPM_CertifyKey command. Using this indirection we are able to create for
each AIK a certified key. This so called certified signing key (CSK) can then
be used to sign arbitrary data. In order to access a service, a service request
R is signed with the CSK and cert(R,CSK) is obtained. The service request
R, together with cert(R,CSK), cert(CSK,AIK) and cert(AIK,PCAcert) build the
credential chain which is transferred to the Service Provider. This data embod-
ies the ticket. By verifying the chain an authorisation decision can be made and
access to the service can be granted. The process of CSK generation is detailed
in [14] and sketched in Figure 3.

5 Trusted Tickets in Kerberos

This section exhibits how the CSKs can be generated in a Kerberos IDM envi-
ronment and how the obtained tickets can be integrated into Kerberos.

The Kerberos authentication consists of three phases. First, the client re-
quests a ticket granting ticket (TGT) from the Authentication Server (AS). The
AS sends the TGT together with an encrypted session key back to the client.
Only the client can decrypt the session key with his password. In the next phase,
the client uses the TGT to request a service ticket (ST) from the Ticket Granting
Server (TGS). The response contains the ST together with a second session key
encrypted with the first session key. Finally the client uses the ST to access an
application server providing the service. The whole process is shown in Figure 4.

The Kerberos protocol provides the authorization-data field which can be used
to embed authorisation information into a Kerberos ticket. Referring to [16, p.
57], the usage of the authorization-data field is optional. We take advantage of
this field and use it to include the information needed to build the trusted ticket.
The type of this field is set to AD-IF-RELEVANT, so that servers, that don’t
understand the embedded information will be able to ignore the included data.

In our design, the AS takes the PCA functionality of signing and thus cer-
tifying AIKs. Therefore the client initiates the session by sending the request
including authorisation data, the public part of the AIK, the EKC and the
cert(AIK,EK) to the AS. By including the cert(AIK,EK) the client states that
the AIK has been generated by the TPM hardware the EKC belongs to. The



160 A. Leicher, N. Kuntze, and A.U. Schmidt

Fig. 4. Flow of the Kerberos protocol

Fig. 5. Protocol of a TC enabled Kerberos Infrastructure

AS then checks the authorisation data provided by the client. By verifying the
EKC, the AS verifies that the TPM is implemented by a trustworthy (at least
known) manufacturer. Further, by checking the cert(AIK,EK) it can be veri-
fied that the AIK belongs to that single TPM. Upon success, the AS issues
a certificate cert(AIK,AScert), binding the AIK to the respective identity. The
certificate is encapsulated in the authorization data field of the TGT. When the
client receives the TGT, he can extract the cert(AIK,AScert) from the ticket. By
using the AIK certificate, the client is able to create a CSK belonging to this
AIK by using the process described in Section 4.

When the client wants to access a certain service, he requests an ST. The client
signs the request message R with the CSK and can thus build the credential chain
cert(R,CSK), cert(CSK,AIK), cert(AIK,AScert). This credential chain is called
TC-Ticket (TCT). Verifying the TCT means to check if the chain resolves to a
trustworthy issuer (which is in our case the AS). In order to make a statement
about the platform configuration, the client retrieves the IMA measurement list
and a TPM quote of the PCR-10, signed with the AIK. The client then sends
the service request R, the TCT, the IMA list and the quote enclosed in the TGT
to the Ticket Granting Server.

Upon receipt, the TGS first verifies the TGT. If it is issued by a trustworthy
AS, the TGS verifies the TCT. Therefore policies for authorisation and agree-
ments on trust have to be established between AS and TGS in advance. Then
the TGS will go on with the process of remote attestation as detailed in 3. The
TGS can then create the certificate cert(TCT,TGScert), stating that the TCT
comes from a valid client in a trustworthy state. Note that the certificate has to
be equipped with a timestamp, making it valid only for a short period of time.



Implementation of a Trusted Ticket System 161

Otherwise, the system state could change in a significant way. In order to ren-
der eavesdropping useless, the TGS will encrypt the certificate with the public
part of the CSK via the Tspi_Data_Bind Operation. Only the client that is in
possession of the CSK (and the TPM it was created with) can then decrypt the
certificate via the Tspi_Data_Unbind method.

In the case of a successful verification, the TGS issues the ST in which the
encrypted cert(TCT,TGScert) is included. The TGS can resolve the credential
chain to a single AIK that is certified by the AS. This allows for anonymity of
the person using the TGS, as the identity is only known by and revealed to the
AS. Only AS is able to de-anonymise users as the platform credentials provide
the necessary information. In case of misbehaving users, AS could reveal the
personal identity to the TGS.

After decrypting the received certificate from the TGS, the client is able to
use the obtained ST together with its own created TCT and the newly received
cert(TCT,TGScert) to access a service. The service provider has to verify if (i)
the ST is issued by a trustworthy TGS, (ii) the TCT resolves to a trustworthy
issuer and (iii) the cert(TCT,TGScert) belongs to the TCT and comes from a
trustworthy TGS. The service is then provided to the client.

Note that the cert(TCT,TGScert) contains the signed service request as well
as a timestamp. This also allows for protection against double spending of the
ticket. The service provider therefore has to keep track of redeemed tickets. As
they do not contain any data about the personal identity of the client, only a
limited amount of information can be gathered. The client is able to generate a
new AIK for every identity he wants to use.

6 Conclusions

We have shown how to integrate the concept of trusted tickets in the Kerberos
protocol as an existing IDM solution. The complete process, from authentication
over ticket generation to ticket redemption at the service provider is shown. A
proof of concept integration into the Kerberos protocol is given. By integrating
PCA functionality into the Kerberos AS and remote attestation done by the
TGS, we are able to issue tickets bound to the client platform. By the sepa-
ration between AS and TGS we showed how pseudonymity for the client can
be achieved. In some scenarios it might be required to charge the client for ac-
cessing a certain service. As mentioned in [14], an additional charging for the
use of certain services could easily be implemented by extending the protocol
on the part of the AS and TGS entities. Upon issuing a ST for a certain ser-
vice, the TGS then requests a charging for this ticket at the AS. The AS in
turn can then initiate the charging for this ticket at a third party charging ser-
vice. Upon charging, the charging provider must be able to identify the user
by credit card account or similar means. Data protection laws can prevent the
charging provider from disclosing identity related information. While this offers
a protection for several identity based attacks, such as profiling, identity theft,
phishing attacks, TC-based tickets additionally enable a binding of the tickets



162 A. Leicher, N. Kuntze, and A.U. Schmidt

to the client’s hardware. This is an important key in providing security against
eavesdropping. The tickets are completely built on the TPM’s basic functions.
As in other TC applications like Digital Rights Management (DRM), the usage
of a certain service is bound to the TPM. If the client’s TPM fails, the tickets
are no longer be valid. Thus there is no (financial) loss on the side of the service
provider. In contrary to DRM where protected content is rendered unprotected
and can cause monetary loss to the owner.

Our concept allows to implement multiple service access using one identity
(AIK) to retrieve multiple STs. Every instance in the protocol is able to verify
the chain of trust upwards to a trustworthy issuer. This concept maintains non-
repudiation throughout the whole protocol. In order to enable usage of the tickets
in different identity domains there have to be agreements on trust between the
service providers and the respective AS and TGS servers. In this usage scenario,
protection against multiple spending has to be implemented. Further usage of
TC concepts could include an adaption of the attestation protocol which allows
service providers to report their status to the clients. Such usage could prevent
malicious service providers from stealing customer data, further increasing the
security of online transactions.

References

1. Kerberos: The Network Authentication Protocol, http://web.mit.edu/Kerberos/
2. Nanodatacenters / Results / Security Experimentation Environment, http://

nanodatacenters.eu/
3. QEMU, http://bellard.org/qemu/
4. [Qemu-devel] [PATCH] Add TPM support, http://www.mail-archive.com/

qemu-devel@nongnu.org/msg13408.html
5. Software-based TPM Emulator, http://tpm-emulator.berlios.de/
6. SourceForge.net: Integrity Measurement Architecture (IMA),

http://sourceforge.net/projects/linux-ima
7. TPM/J Java-based API for the Trusted Platform Module (TPM),

http://projects.csail.mit.edu/tc/tpmj/
8. Gürgens, S., Rudolph, C.: AIK Certification. Technical report, Fraunhofer SIT /

BSI. 13 (April 2006) (unpublished)
9. Trusted Computing Group: Home, https://www.trustedcomputinggroup.org/

home
10. Trusted GRUB, http://trousers.sourceforge.net/grub.html
11. Fichtinger, B.: Trusted infrastructures for identities. Master’s thesis, Fach-

hochschule Hagenberg, Austria (May 2007)
12. Fichtinger, B., Herrmann, E., Kuntze, N., Schmidt, A.U.: Trusted infrastructures

for identities. In: Grimm, R., Hass, B. (eds.) Proc. 5th Internat. Workshop Virtual
Goods, Koblenz, Hauppauge, New York, October 11-13, 2007. Nova Publishers
(2008)

13. Gasser, M., Goldstein, A., Kaufman, C., Lampson, B.: The Digital Distributed Sys-
tem Security Architecture. In: Proc. 12th NIST-NCSC National Computer Security
Conference, pp. 305–319 (1989)

http://web.mit.edu/Kerberos/
http://nanodatacenters.eu/
http://nanodatacenters.eu/
http://bellard.org/qemu/
http://www.mail-archive.com/qemu-devel@nongnu.org/msg13408.html
http://www.mail-archive.com/qemu-devel@nongnu.org/msg13408.html
http://tpm-emulator.berlios.de/
http://sourceforge.net/projects/linux-ima
http://projects.csail.mit.edu/tc/tpmj/
https://www.trustedcomputinggroup.org/home
https://www.trustedcomputinggroup.org/home
http://trousers.sourceforge.net/grub.html


Implementation of a Trusted Ticket System 163

14. Kuntze, N., Mähler, D., Schmidt, A.U.: Employing Trusted Computing for the
forward pricing of pseudonyms in reputation systems. In: Proc. Axmedis 2006,
Atti del Convegno, pp. 145–149. Firenze University Press (2006)

15. Liberty Alliance. Whitepaper: Identity Theft Primer (December 2005)
16. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: The Kerberos Network Authenti-

cation Service (V5). RFC 4120, updated by RFCs 4537, 5021
17. TCG. TCG TPM Specification Version 1.2 Revision 103. Technical report, tcg

(2007), Trusted Computing Group (retrieved February 29, 2008), https://www.
trustedcomputinggroup.org/groups/tpm/

https://www.trustedcomputinggroup.org/groups/tpm/
https://www.trustedcomputinggroup.org/groups/tpm/

	Implementation of a Trusted Ticket System
	Introduction
	Trusted Computing Essentials
	Trusted Demonstration Environment
	Usage Concepts
	Trusted Tickets in Kerberos
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




