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Abstract. Humans use learned knowledge to solve reaching tasks and to manipulate
objects and tools. We believe that representations of manipulation characteristics of
an object and of the reaching capabilities of a robotic arm can speed up low-level
planners, like grasp planners. They also enable sophisticated scene analysis and
reasoning for high-level planners, like task planners.

We present object-specific grasp maps to encapsulate an object’s manipulation
characteristics. A grasp planner is shown to use the grasps maps and a representation
of the reachable workspace. The exploitation of the provided knowledge focuses the
planning on regions of the object that are promising to yield high quality grasps.
Speed ups of factor 2-12 are reported.

1 Introduction

In the course of life a human learns to use his arms but also to grasp and use tools and
objects. Thus the human can rely on knowledge about the world and about himself to
decide which regions are reachable for him and how to approach objects. It could be
imagined that this knowledge is saved in the form of a model that can be referenced
in action planning. Our goal is to use models of a robotic arm’s capabilities and an
object’s manipulation properties to guide the task planning process at a high level
of abstraction. The models can furthermore be used to parameterize path and grasp
planners and enable them to solve a problem more quickly (Fig. 1). We introduced
a representation of a robotic arm’s reachable workspace [13] that characterizes re-
gions w.r.t. their reachability from various directions. Using this representation it
can easily be determined whether an object in the scene is reachable and from what
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directions. While an object may be reachable for the robotic arm, the question
whether stable grasps can be realized from the corresponding approach direction is

Fig. 1 Knowledge about the world and
about the robot is used to guide and pa-
rameterize planning processes.

still open. An object like a coffee pot for
instance is not graspable equally well in
all regions of its geometry model. Grasps
which are not suited to the hand kinemat-
ics (Fig. 2(a)) should be discarded early. Due
to the object’s orientation a prefered grasp
(Fig. 2(b)) may not alway be reachable and
other grasps (Fig. 2(c)) have to be used. Or
all grasps may be unreachable (Fig.2(d)). A
model of an object’s manipulation properties
should reflect these issues. A high-level plan-
ner could use this model to determine if good
approach directions are accessible. In case of
cluttered scenes, it could be analyzed whether
a rearrangement of the scene or a reposition-
ing of the mobile manipulator is required.
In path planning research, workspace knowl-
edge [14] and knowledge about the capabilities of a robotic arm [5] is used to
speed up planning. However to the authors’ knowledge neither current high-level
planners like a manipulation planner nor low-level planner like a grasp planner use
knowledge about an object’s manipulation characteristics or representations of the
reachable workspace. Instead state of the art grasp planners [9], [10], [7] integrate
additional algorithmic frameworks to ensure particular characteristics. For instance
a robotic arm’s inverse kinematics is directly integrated into the grasp planner to
ensure that grasps are reachable by the robot arm. In the long run this leads to huge
monolithic planning systems. The representation of good grasps has also received
attention. In manipulation planning often fixed manipulation points on the objects
[12], predefined grasps [1] or simple rules for grasp generation are used [2] instead
of versatile grasp planners. These methods discard a lot of manipulation possibili-
ties especially for multifingered hands. Pelossof et al. [11] use an SVM approach to
learn from a set of good grasps how to generate grasps for similar objects. Gienger

(a) (b) (c) (d)

Fig. 2 Various ways to reach for and grasp a coffee pot.
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et al. [6] represent a continuous set of power grasps by a Rapidly-exploring Ran-
dom Tree. The object-specific grasp information is used in motion optimization to
speed up motion planning. However, these representations where not designed to be
efficiently exploited by planners like grasp planners, or task planners.

In this paper we take a first step towards this goal and introduce a simple repre-
sentation of an object’s manipulation capabilities. We show how a grasp planner can
use this representation and a previously published representation of a robot arm’s
reachable workspace to avoid wasting planning efforts on regions of the object to be
grasped that do not participate in reachable high quality grasps.

2 Grasp Maps for Use in Grasp Planning

In this section we demonstrate the benefits of including object information into grasp
planning. We summarize the grasp planner introduced by Borst et al. [4]. We de-
scribe the derivation of simple grasp maps and adapt the grasp planner presented by
Borst et al. [4] to use this object knowledge. We assume that a geometric triangu-
lated model of an object is available. No preprocessing steps are necessary.

2.1 The Grasp Planning Algorithm

The main aspect for a planned grasp is to hold an object firmly and safely, also in the
presence of disturbances acting on the object, e.g. during transport motions. Grasps
that have this property are called force-closure grasps. Unbound forces in the con-
tact points are assumed. In this paper a grasp is composed of k point contacts with
friction, with one contact per finger (precision grasp). We focus on multi-fingered
force-closure precision grasps. Borst et al. [4] presented an intuitive measure for
evaluating the quality of a grasp. They furthermore proposed an efficient generate
and test algorithm to plan good but not optimal grasps for robotic hands independent
of a robotic arm in very short time.

The grasp quality measure is based on the two concepts of the grasp wrench space
GWS and the object wrench space OWS. A wrench is composed of the forces and
torques acting in a contact point. The GWS of a given grasp describes disturbances
that a grasp can counterbalance. The OWS of a given object describes which distur-
bances may occur. The largest factor by which the OWS can be scaled to just fit in
the GWS was identified as an intuitive physically motivated measures of a grasp’s
quality. Based on this measure a generate and test grasp planner was introduced. It
includes the following steps:

1. Contact points are generated by randomly sampling a face of the triangulated
object model (uniform distribution).

2. Heuristic fast prefiltering steps roughly check force closure and gripper con-
straints. The tests are conservative since no solutions are discarded.

3. Grasp quality and robustness is evaluated
4. Gripper configuration is determined
5. Collision checks of the hand with the object to grasp are performed
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All combined the grasp planner can produce good grasps for arbitrary 3D objects
online. Depending on the object complexity to generate a grasp the planner needs
between 20 ms-180 ms on an Intel Pentium D 3 GHz with 2 GB main memory.

2.2 Grasp Maps

A grasp planner based on random sampling strategies produces high and low quality
grasps. We believe that some regions of an object’s geometry contribute to high qual-
ity grasps more than others. When thinking of objects like the coffee pot (Fig. 2),
a martini glass or a cup this immediately becomes obvious. In the grasp map, we
intend to represent how specific regions of an object participate in manipulation.
The geometric object model will be attributed with region specific aspects. Did a
specific region participate in force closure grasps? What quality did these grasps
have? The grasp planner presented in the last section places contact points on the
object without any knowledge of the kinematics of the robotic hand. Therefore a lot
of grasps are sampled that are kinematically infeasible or cause collisions between
the object and the hand. The object-specific grasp maps will provide this knowledge
to the grasp planner at the earliest stage. Using these grasp maps a grasp planner
can automatically bias the generation process to concentrate the search for grasps in
regions promising to yield higher quality force-closure grasps faster.

We illustrate the grasp map generation using an object constructed of primitive
shapes (Fig. 3). A cube, a cylinder and a cone are concatenated. Using the grasp
planner described in the preceding section we generate a number of n grasps per
geometric object model. For each face we register its participation in valid force
closure grasps. Furthermore we iteratively compute for each face the minimum, the
maximum and the mean of the grasp quality measure for the grasps it participated
in. Using these attributes important manipulation characteristics can be visualized.
Fig. 3 shows two views of the grasp map for our example object. In Fig. 3 (left)
the color encodes the absolute frequency of a face participating in a force closure
grasp. Regions that were often part of grasps are light gray. Those that were seldom
used are dark gray. In Fig. 3 (right) the color encodes the mean grasp quality value
from low quality (dark gray) to high quality (light gray). This object shows a clear
regional preference w.r.t. where high quality grasp can be found i.e. they are most
often found on the cube part. Combining the information in both pictures it can be
seen that high quality grasps are also found on the cylinder but seldom.

Fig. 3 (Left) Absolute frequency of a face participating in a grasp. (Right) Mean quality per
face.
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2.3 Feeding the Grasp Planner with Object Information

As a first step the object specific manipulation knowledge represented by the grasp
maps will be used in a modified version of the grasp planner presented in section 2.1.
We will show that by integrating the grasp map into the grasp planning algorithm
higher quality grasp can be generated significantly faster, especially for complex
objects. Borst et all. showed that for 4 or 5 finger grasps on a glass only 8% to 15
% of the sampled grasps were force closure grasps. Research in motion planning
has already discovered workspace biasing methods and resulting non-uniform sam-
pling distributions to lead to significant speedup in planning [3], [14]. Therefore we
will modify the contact generation step of the grasp planner presented in section
2.1. Here contact points were placed on randomly sampled faces using a uniform
distribution. Using the object’s grasp map, we bias this sampling process to prefer
regions of an object that promise to yield good force-closure grasps. We use the bi-
asing method presented in [14]. Specifically we bias the distribution to favor faces
that have a high max grasp quality measure and were often part of valid grasps.
These two characteristics need to be combined. Otherwise given a high max grasp
quality measure a face that e.g. participated only in one grasp would be treated the
same as a face that was often part of valid grasps.

2.4 Discussion of Results

We evaluate the impact of using object-specific grasp maps in the grasp genera-
tion process using the objects in Fig. 4. For each object we generated the grasp
map offline based on a set of 20000 grasps. The grasps were generated with the
original grasp planner described in section 2.1. It should be noted that the cof-
fee mug and the martini glass have interior regions which are also considered by
the grasp planner. To measure the improvement we computed the time to gener-
ate one grasp and the mean grasp quality measure (Tab. 1). Since the grasp plan-
ner incorporates a random-sampling process the values were averaged using 1000
grasps. As expected using grasp maps for objects of rotational symmetry achieves
practically no improvement. The reason for this is that valid force closure grasps
are uniformly distributed across the object surface. However, a clear improvement
w.r.t. time and quality was achieved for the martini glass and especially for the
coffee mug. Here our assumption that not every region of an object participates in
valid grasps is intuitive and valid. The object-specific grasp map prevents the grasp
planner from exploring unpromising regions. For the coffee mug these regions are

Fig. 4 Objects for testing
the enhanced grasp planner.
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Table 1 Time (in ms) and grasp quality measurements for all objects.

original planner grasp map planner
time mean quality time mean quality

sphere 22 0.59 26 0.575
banana 17 0.09 24 0.098

martini glass 75 0.085 35 0.1
coffee mug 119 0.127 21 0.164

the inner regions and the handle. For the martini glass the regions on the stem are
found to be rather insignificant for force closure grasps.

3 Reachable Grasps

Up to now it could be argued that a set of valid force closure grasps could equally
well be generated for each object and saved in a database instead of biasing the
grasp planner using grasp maps and computing grasps online. However as soon as
the hand is attached to a robotic arm the advantages of using the grasp map strategy
become evident. Reachable grasps cannot be saved for each object since they de-
pend on the object’s position w.r.t. the robot. Assuming a database of grasps for an
object is available two strategies could be pursued. In the first strategy each grasp
in the database would need to be checked for reachability using the robotic arm’s
inverse kinematics. They would furthermore have to be checked for collisions with
the environment. Especially for cluttered scenes and complex objects that are diffi-
cult to grasp this can be an expensive process. A second strategy could be similar
to that presented by Berenson et al. [1]. Here a database of grasps for each ob-
ject is assumed to exist. The grasps are then ranked by combining several heuristic
values that take the robot kinematics and the environment into account. However
each grasp has to be tried out and evaluated till a valid reachable and collision-
free configuration of arm and hand is found. In this section we show that reach-
able grasps can be generated without introducing heuristics. We generate grasps
online by using the grasp map approach. By using a representation of a robot arm’s
reachable workspace we decouple the grasp planner from the inverse kinematics of
the arm.

3.1 Ensuring Modularity by Using the Capability Map

Humans use internal models to solve reaching tasks [8], to infer which regions are
reachable from what directions. Possessing a similar abstraction of a robot arm’s
capabilities in its workspace is important for task planning. We previously intro-
duced a model that can be used for this purpose [13] and will summarize its main
points.
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3.1.1 The Capability Map of the Robot

(a) (b) (c)

Fig. 6 Sphere inscribed into the cube (a), ex-
emplary frames for a point on the sphere (b),
valid inverse kinematics solutions on a sphere
(c).

The theoretically possible robot arm
workspace is enveloped by a cube and
subdivided into equally-sized smaller
cubes. Into each cube a sphere is in-
scribed and on this sphere n points are
uniformly distributed (Fig. 6 (a), (c)).
Frames are generated for each point
and serve as the target tool center point
(TCP) for the inverse kinematics of the
robot arm (Fig. 6 (b)). The point on the
sphere determines the z-axis of the TCP
frame. The orientation of the x-axis and
y-axis is subsampled. The result of the
inverse kinematics is registered in the data structure that is visualized by the sphere.
Reachable points on the sphere are visualized as black lines. The spheres visual-
ize the reachability for a region and are therefore called reachability spheres. Fig. 6
(c) shows a sphere where only some points are reachable. The reachability sphere
map is the aggregation of all spheres. It can be used to visualize and inspect the
reachability across the workspace and to approximate the shape of the robot arm
workspace. It was shown that the reachability sphere map of the DLR robot arm is
regularly structured [13]. The lines on the reachability spheres form cone-like struc-
tures in outer workspace regions. These cones then open out and become cylinders
in the center of the workspace. Towards the inner workspace regions the cylinders
change into cones again. Due to this observation, cones and cylinders were fitted to
the reachability spheres to capture the data. The quality of the fit was measured by

Fig. 5 The capability map for the right arm of the humanoid robot Justin.
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Fig. 7 Gradient of the SFE in grayscale for the capability map for the right arm of the
humanoid robot Justin.

the relative error of an approximation, called the shape fit error (SFE). The capa-
bility map of the robot arm is a representation of the reachability sphere map. It is
derived by replacing every sphere by the best fitting shape. Fig. 5 shows the capa-
bility map for the right arm of the DLR robot Justin. The location where the hand
was attached to the robot arm serves as TCP for the map computation. It is marked
by a coordinate system. The SFE is represented in grayscale in Fig. 7. Here cubes
replace the cones and cylinders to allow the isolated inspection of the gradient of
the SFE. Light gray indicates low error (0) and dark gray indicates high error (100).
The mean SFE of 8.33 shows that the capability map is a valid representation of the
reachability sphere map.

3.1.2 Filtering Grasps Using the Capability Map

Using the capability map, it can easily be determined whether an object of the scene
is reachable and from which directions. Fig. 8 (a) shows a bottle placed near the
outer border of the workspace. In this region cones are used to represent the direc-
tions from which the areas can be reached. Fig. 8 (b) shows the same bottle placed
at the center of the robot arm workspace. Here cylinders are predominantly used to
capture the reachability data. The possibilities to approach and manipulate the ob-
ject are more numerous as is directly evident from the capability map. We provide
the grasp planner with the capability map as a model of the robot arm’s reachable
workspace. The grasp planner then uses this model to predict the reachability of a
grasp. A grasp is composed of 4 finger contact points on the object, 4 surface nor-
mals at these contact points and a frame TH defining the position and orientation
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(a) (b) (c)

Fig. 8 (a,b) A bottle in different areas of the workspace, (c) test for reachability.

of the hand in a reference coordinate system. This frame TH is tested against the
capability map to determine the reachability of the grasp. The frame is mapped to a
region of the capability map. To test its reachability the inner product between the z-
axis of the TCP frame and the axis of the respective shape is computed. This is then
compared to the opening angle of the shape (Fig. 8 (c)). If the test fails the grasp
is discarded as unreachable. The filtering step using the capability map is added to
the Fast Prefiltering step of the grasp planner. To evaluate the achieved improve-
ment we measure the time to generate one reachable grasp with the original system
and our improved grasp planner that uses grasp maps and the capability map of the
robot arm. The original grasp planner does not determine a grasp’s reachability by
a robotic arm. Therefore we first create a grasp using the original grasp planner and
check it for reachability using the arm’s inverse kinematics. If it is not reachable a
new grasp is generated. The execution times averaged over 1000 grasps are listed in
table 2. A clear improvement is visible. The objects were placed in the center of the
reachable workspace. The speed up ranged from factor 2 to 6 depending on object
geometry. For different positions and orientations of the objects in the workspace
speed ups up to factor 12 were observed. The effect was more pronounced in the
bordering workspace regions since here fewer grasps are actually reachable. Orien-
tation dependency can be observed for objects like the coffee cup. The orientation
of the handle in the workspace influences the speed up to range from factor 3 to 12
given the object position is kept.

Table 2 Time (in ms) and grasp quality measurements for all objects.

original improved
time mean quality time mean quality

sphere 120 0.58 95 0.576
banana 91 0.067 94 0.074

martini glass 306 0.075 158 0.084
coffee mug 395 0.130 68 0.157
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4 Outlook and Future Work

In this paper we introduced the idea of object-specific grasp maps. We presented the
capability map and the grasp maps as resources for a grasp planner. The random-
ized grasp planer was able to exploit the provided knowledge to bias the exploration
towards the most promising regions. In the best cases a good grasp was found 12
times faster than before. In most cases also the mean grasp quality was significantly
improved w.r.t. to the original planner. Thus the grasps produced with the grasp map
based system have a higher quality than grasps produced with the original planner.
In the long run we expect the capability map and the object-specific grasp maps
to be a valuable resource for a number of planning subsystems (Fig. 1). Future ver-
sions of the grasp maps will contain not only information w.r.t. good finger positions
but also identify good approach directions. In a cluttered environment a reasoning
component could use the representations to determine whether an object is reach-
able and graspable at all. Using this information, a scene could be judged to be too
difficult if a lot of approach directions are obstructed for the object manipulation. A
rearrangement planner [12] could be triggered to simplify the scene setup and make
it possible to achieve the task goal.

The quality of the grasps produced using the grasp maps is dependent on the
features chosen, e.g. max quality measure, and their corresponding weights. To ob-
tain an even better performance these weighting factors could be learned using the
method described in [14]. If a robot often handles a specific object or if it does
not know an object before hand and is able to build a geometric model online it is
also imaginable to learn the grasp maps iteratively online and thereby improve the
grasping process. This is a clear advantage compared to relying on a database of
grasps.
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