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Abstract. In Zero Moment Point (ZMP) bipedal walking, the conventional method
is to use the cart-table model for generating the reference trajectory [1]. However,
due to modeling and tracking errors and external disturbances, such as uneven ter-
rain, the generated trajectory must be adapted by a stabilizer that uses sensory inputs
from force and torque sensors placed in the robot’s feet. The problem with the cart-
table model is that it is non-minimum phase which causes a significant, undesirable
undershoot in the ZMP in order to cancel the effect of disturbances. In this paper,
a novel scheme is proposed for ZMP feedback stabilization that utilizes the upper
body to balance the humanoid robot. This method increases the performance and
robustness of walking by reducing the undershoot and maintaining a desired band-
width. The effectiveness of the proposed scheme is demonstrated using simulation
and open problems are discussed.

1 Introduction

A current and interesting robotics research area is walking bipedal robots. Study-
ing bipedal robots introduces interdisciplinary challenges in applied mathematics,
mechanical, computer and control engineering. During the past two decades, signif-
icant advances have been made in this area and current bipedal robots are capable of
walking in well structured environments, on flat and sloped terrains [2],[3],[4],[5].
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In bipedal locomotion, cyclic walkers have been a focus of recent attention. This
consists of energy shaping approaches which are based on nonlinear control theory
[6],[7] and hybrid control approaches based on the notion of virtual constraints [8].
However, both approaches have only been implemented for 2D robots and the ex-
tensions to 3D is still under study. In addition, versatility, where a robot walks on
discrete footholds and to turn or change its limb coordination, is an integral part of
locomotion that can not be achieved using a cyclic walking approach. One practical
scheme to control humanoid robots is based on the concept of Zero Moment Point
(ZMP)[9]. ZMP is defined as the point on the ground plane about which the total
moments due to ground contact forces become zero. For stability the ZMP must al-
ways reside in the convex hull of the ground contact points. In order to satisfy this
criterion, [10] considered the non-minimum phase problem of balancing and pro-
posed a nonlinear invariant control approach for planar robots. A conventional ZMP
based trajectory generation method that can be implemented in 3D is the cart-table
model that approximates the dynamics of a bipedal robot by a running cart on a
pedestal table which is a linear and intuitive model [1]. It should be noted that the
robots that fit in this scheme must be fully actuated and position controlled.

Due to the modeling and tracking errors, external disturbances such as the ground
type and unknown external forces the actual ZMP trajectory will be different from
the desired reference trajectory. The actual ZMP trajectory is obtained from mea-
surements, such as force and torque sensors placed on the foot. The deviation of the
actual ZMP trajectory from the desired reference trajectory has to be tracked by a
controller (stabilizer) to generate the required change in the joint torques. However,
these deviations can be large enough to destabilize the robot. HRP-1S can perform
stable walking in simulation, but falls in practice [12]. The addition of a feedback
stabilizer means that robot is also able to walk in experiments because it is able to
cope with (limited) unknown disturbances. The tracking of the desired horizontal
motion of Johnnie is suspended whenever the ZMP approaches an instability region
[13]. However, the cart-table model is non-minimum phase and hence the stabilizers
will have limited tracking performance of such errors, in terms of the bandwidth and
the amount of undershoot

In this paper, an overview of the cart-table model for ZMP trajectory generation
and its non minimum phase behaviour is given in section 2 and a two mass inverted
pendulum is introduced to model the robot’s upper body and introduce actuation
in the hip. In section 3 these two models are combined to solve the non-minimum
phase behaviour of the cart-table model, by including an upper body model. The dy-
namic performance is analyzed theoretically and in section 3.2, and an LQR optimal
controller is formulated for the new multi-variable system to generate the reference
walking trajectories. In section 3.3 a ZMP stabilizer is proposed to use the torso in
balancing the robot. Finally, the effectiveness of the proposed scheme is evaluated
by simulation and open problems are discussed.

2 Literature Review

In this section, an overview of the cart-table trajectory generation model is provided.
This includes analyzing the model’s unstable zero which causes the non-minimum
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phase behaviour and discussing the implications for control design. Next, a simple
two mass inverted pendulum model of the robot’s hip and torso is reviewed, and its
benefits and limitations are mentioned [17]. This is to motivate the combination of
the two models in section 3.2.

2.1 Linear Inverted Pendulum and Cart-Table Model

In [14] a 3D linear inverted pendulum model for bipedal walking trajectory gen-
eration was introduced. The 3D inverted pendulum is constrained to move along a
plane which results in linear state space equations as illustrated in figure 1. In [1]
it was shown that this directly corresponds to the dynamics of a running cart on a
pedestal table and the cart-table dynamics are:

px = x− zc
g ẍ

py = y− zc
g ÿ

(1)

where px,py are the zero moment points in X and Y directions, respectively, zc is the
height of the cart and g is gravity. In this paper, the problem is studied in the frontal
plane (i.e. ZMP in X direction is considered) but under certain assumptions the
motion in both frontal and lateral planes can be decoupled. Therefore, the models in
this section and the proposed model in section 3 are also valid for 3D walking [14].
Equation 1 can be represented in state space form using a new variable ux which is
the time derivative of the horizontal acceleration (jerk) of center of mass, d

dt ẍ = ux:

ẋ =

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦x +

⎡
⎣

0
0
1

⎤
⎦ux , px = [1 0 −zc

g ]x (2)

where x = (x, ẋ, ẍ)T . The cart-table model provides a convenient framework to
generate a reference trajectory for the bipedal robot. However, in ZMP feedback
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Fig. 1 In (a) constrained linear inverted pendulum is shown that assumes that ZMP is in the
origin (0,0,0) (origin corresponds to the robot’s ankle) and the ankle torque is zero. In (b) the
cart-table model is shown for ZX (frontal) plane where the ZMP can move in the foot (table’s
contact with the ground) and the ankle’s torque is not necessarily zero.
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stabilization a problem arises from the non-minimum phase behaviour of equation 2.
The transfer function of the equation 2 is:

G(s) =
px(s)
ux(s)

=
1− (−zc

g )s2

s3 =
(−zc

g

) (−g
zc

)− s2

s3 (3)

This is unstable because it has three poles at the origin (triple integrator) but this can
be overcome using pole placement. However, equation 3 also has two zeros. Using
feedback will not affect the positions of the zeros and this will cause problems in the
control design. The left half plane zero has a scaling effect on the response which
can be solved by dc gain adjustment, but the right half plane zero will limit the
achievable bandwidth of the system and produces an undesirable undershoot [15]
as the inverse is unstable. For ZMP feedback stabilization, consider the case where
the desired ZMP is in front of the actual ZMP of the robot. The hip must accelerate
in the positive direction and according to equation 2 the ZMP will initially move
backward and hence diverge as illustrated in figure 2. Therefore, it is important to
investigate methods for minimizing/overcoming this behaviour in order to increase
the robustness to disturbances such as uneven surfaces.

In general, perfect tracking control of such systems without future information
of the tracking signal is not possible and it is necessary to approximate the non-
minimum phase system with a minimum phase system to design controllers with
bounded tracking error [16]. In addition, controller design based on right half plane
pole-zero cancelation is fundamentally flawed, due to the loss of internal stability
as such designs rely on unstable pre-filters. Therefore, performance limitations, due
to the right half plane zeros, will be present in any design leading to inevitable
compromises between the speed of response and the amount of undershoot in the
system’s step response. In figure 2 this is shown for the cart-table model which is
stabilized using pole-placement.
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Fig. 2 Cart-table model step response with poles placed at pole1=[-2,-4,-6], pole2=[-4,-6,-
10]. In the first case (dotted line) the ZMP rise time is 1.04s and ZMP undershoot is 27%
(notice the slow response of center of mass) while in the second case (solid line) the ZMP
rise time is 0.275s and ZMP undershoot is 84% (in this case the center of mass quickly
approaches the steady state). This shows the trade off in bandwidth and undershoot criteria.
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2.2 Two Mass Inverted Pendulum Model

The non-minimum phase problem of one-mass inverted pendulum model which rep-
resents the center of mass of a robot was first analyzed in [17] and a two mass
inverted pendulum was proposed that results in a multi-variable minimum phase
system, as illustrated in figure 3. Linearization about the origin produces the follow-
ing state space equations:

ẋ =
[

0 I2×2

0 0

]
x +

[
0

I2×2

]
u , px = [c1 c2 0 0]x +[d1 d2] u

c1 = (m1+m2)l1+m2l2
m1+m2

, c2 = m2l2
m1+m2

, d1 = −m1l2
1+m2(l1+l2)2

(m1+m2)g , d2 = −m2(l1+l2)l2
(m1+m2)g

(4)

where x = (θ1,θ2, θ̇1, θ̇2)T and u = (u1,u2)T = (θ̈1, θ̈2)T and px are the input vector
and scalar output of the two mass inverted pendulum, respectively. It can be shown
that this has no right half plane zeros provided the second link’s length is non-zero.
The transfer function matrix of two mass inverted pendulum can be obtained as
following:

G(s) = C(sI −A)−1B + D = [
c1 + d1s2

s2

c2 + d2s2

s2 ] (5)

It should be noted that the zeros in multi-variable systems are different from their
SISO counterparts, and they are associated with the directions of input and out-
put of the system. To obtain the zeros of equation 5, the transfer function, G(s), is
epxressed as:

G(s) =
Π(s)
DG(s)

, Π(s) = [c1 + d1s2 c2 + d2s2] , DG(s) = s2 (6)

The roots of greatest common divisor of Π(s) determines the zeros of the transfer
function matrix G(s), which in this case does not have a root.

Therefore, the transfer function does not have any zeros and hence the double
inverted pendulum is minimum phase. However, as mentioned earlier, this scheme
has limitations due to the linearization of the two masses around the vertical line.
This can produce large errors as the robot’s hip is required to move in a large op-
erating range that cannot be approximated by linearizing about a single operating

Fig. 3 The two mass in-
verted pendulum model
relies on linearization of
both upper and lower pen-
dulum links. This is not the
case for the robot as the mo-
tion of the hip is completely
nonlinear and it can lead to
large modeling errors for the
trajectory generation.

m1

m2

l1

l2

q1
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point [11]. In addition, the inverted pendulum models assume ZMP in the ankle and
ankle torque is zero, while in the cart-table model, the ZMP is located in the foot
and ankle torque is not necessarily zero. In section 3, a new model is proposed that
combines the advantages of cart-table model and two mass inverted pendulum.

3 Generalized Two Link Inverted Pendulum

In this section firstly a new model is proposed which combines the advantages of
the cart-table and the two mass inverted pendulum models. The new model does not
assume linearization of the lower mass that corresponds to the robot’s hip motion.
Secondly, a trajectory generation for the model based on preview control of ZMP
is described in section 3.2 . Thirdly, a solution to ZMP stabilization is proposed in
section 3.3.

3.1 Modeling

Consider the pendulum-cart-table model shown in figure 4. The equation for torques
around the ZMP gives:

τzmp = −Mg(x− px)+ Mẍzc − (mg + mz̈2)(x2 − px)+ mẍ2(zc + z2) = 0 (7)

where z2 = l cos(θ ), x2 = x + l sin(θ ), and l is the pendulum’s length. . Assuming
small deviation on the torso and linearizing around the vertical axis where z2 = l
and x2 = x + lθ , this results in the following linear relationship:

px = x +
ml

(M + m)
θ − Mzc + m(zc + l)

(M + m)g
ẍ− ml(zc + l)

(M + m)g
θ̈ = (1,c1,0,0,c2,c3)x (8)

Fig. 4 The new pendulum-
cart-table model in 2D.
The cart represents the hip
and the actuated pendulum
represents the torso.
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where x = (x,θ , ẋ, θ̇ , ẍ, θ̈ )T is the state vector and the control input vector is u =
(u1,u2)T where u1 = d

dt ẍ and u2 = d
dt θ̈ . Therefore, the system for control of ZMP

can be defined as:

ẋ =
[

0 I4×4

0 0

]
x +

[
0

I2×2

]
u , y = px =

[
1 c1 0 0 c2 c3

]
x (9)

The transfer function matrix for this system is given by:

G(s) = C(sI −A)−1B =
1
s3

[
1 + c1s2 c2 + c3s2

]
(10)

and in a similar fashion to section 2.2 the system does not have any zeros. Therefore,
one can design a multi-variable controller to achieve the desired bandwidth required
for the purpose of feedback stabilization.

3.2 Trajectory Generation Using Preview Control of ZMP

Consider the dynamics of pendulum-cart-table model given by equation 9. The dis-
crete time dynamics can be expressed by:

x(k + 1) = Ax(k) + B u(k), y(k) = Cx(k) (11)

where x(k) = (x(k),θ (k), ẋ(k), θ̇ (k), ẍ(k), θ̈ (k))T , u(k) = (u1(k) u2(k))T and A,B
are the discrete time versions of equation 9 with sample time T . To add robust-
ness to the control, integral action is introduced by using incremental control,
Δu(k) = u(k)−u(k−1), and state, Δx(k) = x(k)−x(k−1), [19]. The state vector
is augmented as x̃(k) = (px(k),Δx(k))T and the dynamics now become:

Ã =
[

I CA
0 A

]
B̃ =

[
CB
B

]
C̃ =

[
1 01×6

]
(12)

An optimal control problem is formulated by minimizing:

J =
∞

∑
i=k

[eT (i)Qee(i)+ ΔxT (i)QxΔx(i)+ ΔuT (i)RΔu(i)] (13)

where e(i) = px(i)− pre f (i), and the optimal control is given by [19]:

uo(k) = −GI

k

∑
i=0

e(k) − Gxx(k)−
NL

∑
i=1

Gd(i)pre f (k + i) (14)

where pre f is the reference ZMP trajectory in x direction. The parameter NL deter-
mines the horizon of the future desired ZMP. The optimal gain is determined by
solving the discrete time algebraic Riccati equation:

P̃ = ÃT P̃Ã− ÃT P̃B̃(R + B̃T P̃B̃)−1B̃T P̃Ã + Q̃ (15)
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where, Q̃ = diag{Qe,Qx}. Hence the optimal gain is defined by:

K̃ = [GI Gx] = (R + B̃T P̃B̃)−1B̃T P̃Ã (16)

and the optimal preview gain is calculated using the recursive formula:

Gd(l) = (R + B̃T P̃B̃)−1B̃T X̃(l −1),
X̃(l) = Ãc

T
X̃(l −1), l = 2, ...,NL,

(17)

where Ãc = Ã− B̃K̃, Gd(1) = GI and X̃(1) = −Ãc
T

P̃[1 01×6]T . A numerical ex-
ample is given in the section 4 where the generator is producing the desired motion
of center of mass. In the next section, the stabilization issue associated with ZMP
based walking is considered.

3.3 Stabilizer Design

In section 3.2, a walking reference trajectory generator based on the new pendulum-
cart-table model was introduced. However, due to imperfect ground conditions,
modeling errors and unknown disturbances, a real time feedback stabilizer must
be used to adapt the generated trajectories based on the sensor information. This
section proposes a ZMP feedback stabilization scheme to increase the robustness in
bipedal walking.

Consider equation 9 with outputs modified as:

ẋ =
[

0 I4×4

0 0

]
x +

[
0

I2×2

]
u , y =

[
p1

p2

]
=

[
1 0 0 0 c2 0
0 c1 0 0 0 c3

]
x (18)

where p1 and p2 are the ZMP outputs corresponding to hip and torso, respectively.
Reference tracking using feedback can then be implemented by considering the sys-
tem defined in equation 18 in compact format as:

ẋ = Ax + Bu , y = Cx (19)

Define the integral of error, z, between reference vector r and the system’s output
vector y, ie. ż = r−y, then the new state space system is:

[
ẋ
ż

]
=

[
A 0
−C 0

][
x
z

]
+

[
B
0

]
u+

[
0
I

]
r , y =

[
C 0

][
x
z

]
(20)

Since the system in equation 20 is controllable, it is possible to use feedback u =
−[K1 K2]x to stabilize the system and track the reference vector r. As a result of
feedback the closed loop system is:

[
ẋ
ż

]
=

[
A−BK1 −BK2

−C 0

][
x
z

]
+

[
0
I

]
r , y =

[
C 0

][
x
z

]
(21)

A numerical example for the ZMP stabilization is given in section 4 and the results
are compared with the old cart-table model.
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Fig. 5 An illustration of the reference ZMP trajectory generation using the new pendulum-
cart-table model. The location of torso is kept in the vertical direction, however it can be
moved depending on the ground slope. The control input signals are shown in the lower
figure.
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Fig. 6 An illustration of the use of torso in minimizing the amount of undershoot, for the
purpose of stabilization and balancing.
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Fig. 7 An illustration of the state evolution in the pendulum-cart-table model. Note that the
upper body is moving by maximum of 0.24rad.

4 Comparison and Simulation Results

In order to implement ZMP based walking, a stable trajectory of center of mass
that satisfies the desired ZMP must be generated and during trajectory following a
real time stabilization mechanism must be used to adapt the trajectories and react
to unknown disturbances. Therefore, the results of this paper are two fold. Firstly,
a numerical example is provided to illustrate the reference trajectory generation
introduced in section 3.2. Simulation results of ZMP tracking and the location of
center of mass (robot’s hip) associated with the pendulum-cart-table model is given
in figure 5, and the controller and model parameters are given as follows: g = 9.81,
zc = 0.6m, m = 8Kg, M = 12.5Kg, l = 0.3m, T = 0.005s; preview time T prev = 2s,
Qe = I 2×2, Qx = I 6×6, R = 10−3 × I 2×2 and the simulation time is 8sec. Secondly,
a numerical example of the real time feedback scheme that was introduced in sec-
tion 3.3 is illustrated in figure 6. Note that the step height is 0.1 m and the system
poles are placed at [−6−6−8−8−10−10−12−12]. The undershoot correspond-
ing to the hip is reduced from 5.6cm to 2.4cm by using the upper body movement,
which is a 57% reduction in the total ZMP of the new pendulum-cart-table model.
At the same time the settling time in cart ZMP step response is 0.53s and in the
total ZMP response the settling time is 0.74s. That is the new model can achieve a
reasonable tracking speed, and avoid the undesired undershoot. In addition, due to
practical limitations, the range of upper body movement must be as small as possi-
ble. This is achieved and demonstrated in figure 7.
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5 Conclusions and Future Work

In this paper, the non-minimum phase problem associated with using the cart-table
model for ZMP reference trajectory generation has been described and a solution
has been proposed based on actuating the torso. The new pendulum-cart-table model
combines the advantages of existing models and makes use of the torso to compen-
sate the unknown ZMP deviations. The effectiveness of this model has been shown
by numerical examples both for pattern generation and for ZMP feedback stabiliza-
tion. In ZMP stabilization the torso is used for reducing or ideally canceling the
undesired effects of undershoots and bandwidth limitations. However, this method
can be used in combination with existing stabilization schemes that use ankle actua-
tion. All the results mentioned in this paper are valid for the three dimensional case
where the sagittal and lateral motions can be decoupled. The future, work should
combine the ankle and torso actuation for the purpose of stabilization, as it can be
observed in human walking.
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