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Abstract. In this paper the lower levels of a biological inspired control architecture
for dynamically moving legged robots are presented. This architecture features a
hierarchical distributed reflex based high level controller as well as the possibility
to adjust the compliance of a stiff actuated joint. Furthermore the respective mecha-
tronical setup for that approach is presented, that includes the actuation and energy
storage in parallel springs. The approach is verified on a prototype leg mounted on
a vertical slider, that is capable of performing a cyclic squat jump. The reflex based
control concept is tested in a physics simulation environment. The experimental
validation shows that no series elastic elements are required to receive compara-
ble results with respect to the resulting motion. The low level stiffness controller
is implemented on a DSP-board and tested using an experimental setup with two
motors.

1 Introduction

Bipedal locomotion has been a field of high interest in robotics during the last
decades. This is among other things due to the fact that human environment fa-
vors this kind of locomotion over e.g. wheel based approaches. If mastered it offers
highly versatile and energy efficient movements that will allow the robot to advance
into areas that were not accessible to machines in the past.

Amongst the important aspects of a bipedal robot is a sound concept concerning
mechantronics and control aspects. The biological representatives of two-legged
locomotion show high energy efficiency and the ability to adapt to external dis-
turbances compared to state-of-the-art technical implementations. Thus, biological
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mechanisms seem to be promising as a guideline for the design process without try-
ing to copy them but rather make use of nature’s concepts. The short-term goal is
to deduce a system including mechanics, a reflex-based control architecture and a
suited actuator control approach that can be used in a walking machine later on.

To evaluate these basic concepts, the work presented here advances a single leg
prototype with biological motivated joints and control from an earlier project1 [15].
The demonstrator is to perform cyclic squat jumps stabilized in a vertical slider.
This highly dynamic motion is a meaningful benchmark as it poses considerable
demands on the mechatronics and the control system.

2 State of the Art

Contemporary bipedal robots can be classified into two major groups: On the one
hand the robots with fixed trajectory planning and no compliance, e.g. ASIMO,
LOLA [12] and on the other the robots with elastic actuation respectively passive
elastic elements inspired by the passive walkers by Tad McGeer et al. [16]. Those
ideas were employed in the actuated passive walkers by e.g. Collins et al. [5] and
Anderson et al. [2]. The second group tries to adapt more biological principles.
These principles are optimized by evolution for energy efficiency. Elastic actuated
robots can be divided once more in two basic approaches to acquire compliance. The
first one makes use of specialized hardware with elastic elements while the other
realizes the desired behavior using software with compliant control techniques.

A representative for the hardware approach is the Series elastic actuator (SEA)
[6, 19]. This method combines an inelastic actuator like DC motor or hydraulic ac-
tuator with a fixed elastic element. A drawback of SEAs is non-trivial control of the
desired stiffness. Other approaches that control the stiffness independently from the
position have to make use of more than one actuator. The mechanically adjustable
compliance and controllable equilibrium’s position actuator (MACCEPA) [7] uses
two separate servos. One servo controls the position and the second servo controls
the stiffness of the joint. The drawback of these approaches is that the energy of the
second actuator is lost in respect to movement. The fluidic muscles [10] use the an-
tagonistic principle as can be found in biology. The antagonistic principle makes use
of the nonlinearity of the elastic elements. Unfortunately this increases the control
overhead at the same time.

Their are two major approaches that use a software solution: Virtual Model Con-
trol [18] and Impedance Control Methods [1] . Common for all these approaches is
a stiff and retardant actuator. Obligatory for a software solution is a very fast sensor-
controller-actuator-loop. This is reachable by distributing the control architecture on
different CPUs.

1 The initial leg prototype has been developed within the program ‘Bionik - Innovationen
aus der Natur” of the German Federal Ministry of Education and Research (BMBF).
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3 Concept

Based on these biological motivated aspects a system should have the following
components:

• actuator that can deliver high torques
• gearbox that allows free swing of the legs
• parallel elastic elements to store energy
• no explicit series elastic elements
• controller to adjust the stiffness of the joints
• reflex layer based on neurological concept
• easy to distribute functional units
• distributed control components for enhanced scalability

3.1 Mechanical Design

In consideration of the fact that the biped performs highly dynamic movements, the
delivery of high torques is recommended. These high torques could be produced by
either pneumatic or hydraulic actuators as well as DC motors. Due to the autonomy
of the system the DC motors are the preferred solution. Another important detail is
the controllability of such actuators. The control of pneumatic actuators is highly
nonlinear and the antagonistic principle requires a second actuator.

In the swing phase of a walking gait the robot should use its mechanical dynamics
to save energy. Hence the gear ratio has to be low. That allows the joint to be non-
retardant in comparison to the commonly used harmonic drives.

For the energy storage during the squat phase parallel springs are attached to
each joint [4] . These springs may not be too heavy such that all the benefit is
compensated by their weight. There are three suitable kinds of springs. Two of these
are the mechanical linear and rotary springs. They are very light and easy to handle.
The third option is a pneumatic spring: they are slightly heavier and have a nonlinear
force response.

3.2 Joint Control

In a jumping sequence an elastic configuration is required to avoid hard impacts at
touchdown. Besides that in normal walking gaits the leg should use the mechanical
dynamics by just relaxing the joint. On the other hand the joint has to be very stiff
when the leg is in the support phase. These cases are nearly impossible to control
with passive series elastic elements. Due to that the joint controller adjusts the stiff-
ness of the joint. To perform these highly dynamic tasks the controller is built up
hierarchical. The innermost loop has to be a very fast current-controller. The current
is directly correlated to the output-torque of the motor. The current measurement is
the most difficult for that controller, because it has to be very fast and synchronized
to the PWM.
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Fig. 1 Schematic view of the hierarchical closed loop controller.

Based on this current controller a speed and a position controller are imple-
mented. A schematic layout and the interfaces of the controller are presented in
Fig 1. The speed controller has no interface to the higher reflex layer. Biology shows
that there is no need for an exact speed control. The desired position and torque im-
pact of the controller output can be set using respective weight parameters named
wpos and wtor. By decreasing wpos the stiffness at a desired position is reduced. wtor

is proportional to the influence of a desired torque. This is e.g. the case during the
pushoff phase: there is no need for an exact position since the maximum torque is
required. In this phase wpos is zero and wtor is one with the maximum desired torque.
To hold a fixed desired position wpos is one and wtor is zero.

3.3 Reflex Control

The joint control just mentioned presents the interface for the next layers of the con-
trol system. Complying with the biological motivation of this work, again concepts
transferred from nature should be employed. The system described in the next para-
graphs is based on a control approach for bipedal locomotion already published in
more detail [14, 13].

Neurological control of cyclic motions seems to be a result of feedback and feed-
forward components. Bizzi, Ivanenko, and others have analyzed synergies of muscle
activity during locomotion and suggest that the nervous system is of hierarchical
layout [3, 11, 8, 9]. Based on the current phase of locomotion, coordinated patterns
of activity are generated from a central unit and stimulate muscle groups to achieve
the desired motion. Depending on this phase, reflex responses are modulated from
spinal or supraspinal levels as well [21, 22].

Based on these and other results from biomechanics and neurology, the approach
followed in this work suggests a hierarchical network of control modules to gen-
erate dynamic locomotion of legged robots. Control units are distributed and local
to reduce the modelling effort and the complexity. Reflexes introduce a tight sen-
sor/actor coupling for fast responses to stimuli and can be inhibited or modulated
depending on the phase or mode of locomotion as it is the case in biological con-
trol. Motor patterns allow for temporal synergies of cooperating joints by generating
synchronized torque impulses. No explicit joint trajectories are used so the natural
system dynamics can be exploited and natural and energy-efficient motions emerge.
Figure 2 illustrates the structure of the proposed approach. Skills represent control



Biological Motivated Control Architecture and Mechatronics 183

Brain Spinal Cord

Muscle Groups

Robot

stimulation
modulation

feedback

torques, positions, forces

sense of
balance

Locomotion
Modes

High Level
Skills

Skills

Skills

Skills

Reflexes

Motor
Patterns

Joint Control
Somato-
sensory
System

Vestibular
System (INS)

torque, posi-
tion, stiffness

Fig. 2 The proposed control approach is structured as a hierarchical network of skill, reflexes
and motor patterns.

units hierarchically above reflexes and motor patterns. The actual control compo-
nents selected and designed to achieve the aspired motion are based on reflexes,
muscle synergies and EMG data found in biological research and adapted to the
technical system. The control network is implemented using a behavior-based con-
trol framework that was successfully used before on various robots by the authors
and others and allows to implement the characteristics just mentioned [20].

4 Prototype

4.1 System Description

The single leg prototype is comprised of two actuated joints (hip, knee) and two
limbs (thigh,shank). The hip joint is fixed to a vertical slider that allows for free
movement in z-direction while restricting lateral change of position as well as ro-
tation. In order to emulate the very sparse biological sensor concept the prototype
is only equipped with two positional encoders located at each actuated joint and a
load cell mounted in the middle of the lower limb. The construction is intended to be
highly modular in order to be able to replace components or expand the kinematic
setup with e.g. a passive foot construction. The dimension of the leg is human like.
The height of the leg is nearly one meter and the weight is around 16 kg.

In order to acquire valid simulation results a dynamic model of the leg is needed
to represent the actual one as closely as possible while allowing to introduce a few
simplifications to reduce the computational overhead. Thus, the weight points as-
sumed for each part are located in a position that represents the actual load distribu-
tion in the best possible way. The model is presented in figure 3(a).

The actuated joints consist of a DC motor, a gearbox with low gear ratio and
parallel elastic elements. Finding a suited actuator for this kind of application is not
an easy task since the restrictions in respect of dynamic properties can only be met
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Fig. 3 Schematic model used for simulation purposes (left) and a photograph of the prototype
leg (right).

by very few actuators. A motor with a rotor disc seems to be ideal here since it
offers very good dynamic properties due to its low inertia and high peak torque. The
selected model offers a zero motion torque of approximately 13.72 Nm. Employing
a gear ratio of 32 : 1 and neglecting the loss at the gearbox this would result in a
maximum obtainable torque of 439 Nm. Unfortunately this can only be achieved for
a very short time interval before the hardware would be destroyed due to a resulting
current of more than 100 A. Thus, the sustainable peak torque is assumed to be 150
Nm for the simulation process.

4.2 Low Level Closed Loop Controller

The low level closed loop controller is implemented on a DSP-board. The DSP-
board is connected via CAN-bus to the PC. Because of the encapsulation of the
different reflexes there is no realtime capability required. The reflexes which need
fast sensor informations, like touchdown reflex, can be directly implemented on the
DSP.

The hip and the knee motor are connected to one DSP-board. For the speed and
position measurement an optical-encoder is attached to the motor shaft. The en-
coders are connected via the CPLD to the DSP. The current measurement for each
motor is realized by a shunt. Because of the non-continuous current due to the PWM
the synchronisation of the measurement is a big problem. The solution is a timer that
is synchronized in the DSP-hardware with the PWM and the AD-converter. The
direction of the current is dedicated by the sign of the default PWM.
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To reduce the noise of the measured current a simple lowpass-filter is imple-
mented. The cycletime of the standard PI-controller is 1ms. That is fast enough to
have an average risetime of about 8ms for a given desired current. This is concur-
rently the limiting setpoint setting of the speed controller and the desired torque.
These two values are fusioned in a weighted sum (see equation 1). The fusion of the
desired torque and the desired speed influences the stiffness of the joint. To avoid
damage of the hardware the desired current is limited.

currentdes =
w2

pos ∗ torspeed + w2
tor ∗ tordes

wpos + wtor
(1)

The speed controller is also a classic PI-controller. The integral-portion is limited
to avoid windup-effects when the weight of the position is very low. The third hier-
archical controller is a position controller. Due to the integral portion of controlled
system the position controller has no need for an integral portion. The acceleration
of the speed controller is also limited. This is required to ensure the stability of the
system (see [17]).

4.3 Reflex Control for Jumping

The jump is controlled by units on both the spinal cord and the muscle level. The
spinal cord is the coordinating instance while the reflexes on the muscle level gen-
erate the actual commands for the joint controllers. The functionality on the spinal
cord level is achieved through a behavior based module that acts as finite state ma-
chine (FSM) while the four reflexes are closely coupled with the hardware (see
figure 4).

The Push off Reflex is intended to start in a squatted position that is reached using
either the spinal cord level function to initialize the jump or the squat reflex during
repetitive jumping. Once the reflex is stimulated, the leg is stretch out by applying
torque to either actuated joints. Experiments have shown that the naive approve
of applying the maximum momentum at both joints is contraindicated by the fact
that this would cause undesired lateral force due to the closed kinematic chain of
the leg. Thus the hip is relaxed almost entirely while the main share of the work is
performed by the knee actuator. Torque is applied until leg remains slightly bend and
is the entirely withdrawn to reduce the lateral movement in negative x-axis direction
after the liftoff. Besides eliminating undesired movement this also helps to reduce
the energy consumption of a jump motion. Once the foot point loses contact to the
ground the activity of the reflex is withdrawn by the coordination function.

The Inflight Reflex is activated after lift-off. The intention behind the inflight re-
flex is on the one hand the necessity to ensure a proper landing posture in order to
minimize the mechanical stress on the joints and segments and on the other hand
to maintain favorable joint angles to maximize the amount of impact energy that
can be restored in the subsequent push off attempt. The approach taken here is the
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combination of both by using two concurrent reflexes: the already mentioned inflight
reflex and a touchdown reflex that will be introduced in the next section. The activity
of this reflex (and therefore the stiffness of the joint angle controller) decreases the
closer the sensed joint configurations approaches the desired one (slightly bend).
Once the target configuration is reached within a certain threshold the activity is
kept at a level of approx. 30 % to ensure the posture remains roughly the same. The
reduction of the activity has proven to be very useful at the moment of touchdown
since a desired amount of joint compliance can be realized this way. The stimula-
tion is entirely withdrawn from the reflex as soon as a ground contact is detected
and thus the landing can be assumed.

The Touchdown Reflex as mentioned above is pre-stimulated at a certain point
in time while the leg is still in the air. Once ground contact is detected the reflex
intends to gradually slow down the drop until the leg comes to a complete rest at
a defined position. The former is achieved through the touchdown reflex while the
latter is managed by the squat reflex to be described in the next section. The activity
of this reflex is adjusted in respect to the angular velocity. The higher the angular
velocity the more counter momentum (i.e. torque) is applied to the actuated joints.

The Squat Reflex is once stimulated at the beginning of the landing phase. The
squat reflex is as already stated responsible for controlling the legs configuration
into a defined resting position (hip angle ≈ 30◦, knee angle ≈ 60◦ ) by means of
position control. By co-activating the touchdown reflex one can be sure to reach
that position with only rather low velocity and thus tolerable mechanical stress for
the hardware.



Biological Motivated Control Architecture and Mechatronics 187

The Touchdown Preflex is intended to reduce the impact stress. The idea is to
adjust the speed of the contact point to the ground. This results in adduction of the
leg after the peak of the airborne phase is passed. The timing is very critical. If the
preflex is activated too early it is no longer active during the impact since the inflight
reflex is trying to maintain a safe landing position and thus useless. If it is activated
too late it can not unfold its full effect.

5 Experiments and Results

5.1 Compliant Controller

In order to be able to test the implemented controller under the best possible condi-
tions, the second actuator is mounted on the same shaft as the first one. This results
in a direct and stiff connection of the two gearboxes. One of the motors is controlled
using the hierarchical controller while the other is used to simulate a controlled load
by directly applying the PWM ratio. To test the desired compliant properties, the
controller was set to a ”soft” position control (wpos < 1, wtor = 0) and the second
motor was used to generate a sudden and heavy distortion. The results can be found
in figure 5.

As expected the tolerance to deviation in position increases with decreasing wpos.
In figure 5(a) and 5(b) the controller is stiff enough to compensate the position
deviation nearly completely. A very small deviation is left in the intermediate case.
The compliant controller is not able to hold the desired position. With a higher wpos

setting the controller reacts more aggressive (in respect to magnitude and time) to an
occurring distortion. With a lower value the behavior is more relaxed and the current
overshoot is way smaller. The applied counter momentum in the static case is equal
for all parameter setups. The time delay between the load jump and the reaction of
the position is caused by the loose connection between the two motors.

(a) stiff (b) intermediate (c) compliant

Fig. 5 Qualitative performance of the real compliant position controller based on the stiffness
weight. The dotted line represent the current measured in Ampere, the solid one stand for the
current position denoted in degree while the dashed graph indicates the load applied by the
second motor in voltage.
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5.2 Simulated Jump Cycles

In order to be able to optimize the jumping process without putting the actual hard-
ware in jeopardy a simulation environment consisting of an hardware abstraction
layer and the physics simulation engine Newton was employed. The results of an
undisturbed jump cycle can be found in figure 6.

Fig. 6 Sensor data recorded during one jump sequence.

The dashed graphs (top) denote the hip torque and angle, while the dotted ones
(middle) stand for the respective knee values. On the bottom the load cell data (left,
solid) and the hip-joints z-position (right, dot-dashed) are marked. The cycle starts
with the pushoff phase t = 1.9 s until the liftoff is reached at t = 2.1 s. The impact
occurs at t = 2.5 s as visible in the load cell data. The recording continues until the
initial squatted position is reached again after a cycle time of t = 1.1 s. The acquired
jump height is approximately 15 cm. The lion’s share of the work in the phase prior
to liftoff is performed by the knee, because the hip actuator is only able to apply
vertical forces to the leg. The ratio shifts after the leg is airborne. In this phase the
hip motor has the role to bring the leg in the landing position. Due to the inertia of
the tibia, the knee motor can be relaxed to reach the desired knee angle. The preflex
helps to reduce the impact force of formally over 350 N to approx. 230 N. We have
compared the hip and the knee angle with such of humans. Although it was not our
goal to copy the trajectory of humans the behavior is approximately equal.

6 Conclusion and Outlook

In this paper the lower layers of a biologically motivated control architecture for
biped robots were derived. The approach features compliant behavior and dis-
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tributed control. The performance of the reflex-like control was evaluated using sim-
ulated cyclical jumps of a single leg with passive elastic elements. The biological
motivated actuator controller was implemented and tested within an experimental
setup of the prototype leg.

As can be seen in the experimental results, a behavior similar to a SEA could
be obtained with a standard DC motor. This is possible by employing a low-friction
gearbox and a fast hierarchical compliant controller. However the actively controlled
stiffness can be altered by changing a single parameter. This might lead to an en-
tirely stiff joint behavior on the one side or an unrestrained limb movement on the
other. The approach has shown its potential during repetitive jumping in a simulated
environment.

The next step will be to execute jumping motions with the prototype leg. Fur-
thermore experiments concerning the effectiveness of a passive ankle joint will
be pursued. After that the physical distribution of the reflexes will be taken into
consideration.
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