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Abstract. Programming by demonstration (PbD) is a promising approach to facili-
tate the use of robots. The bandwidth of PbD systems extends from simple play 
back to artificial intelligence methods. Our approach is based on the former. This 
paper aims to introduce and examine intuitive programming of spatial loops, i.e. 
program loops whose body changes according to a spatial variable. The loop is 
programmed by executing e.g. the first, the second, and the last run. The system 
then determines all components of the loop so they can be used to generate a pro-
gram. The focus of this paper lies in automatic determination of the variables for 
the start, the step and the end of spatial loops. This method of robot programming 
has interesting applications in the field of industrial robotics, especially with re-
spect to small- and medium-sized enterprises, as well as for service robotics. 

1   Introduction 

One of the largest tasks involved in expanding the application range of robots (e.g. 
for use in household applications or frequently changing applications in small en-
terprises) are the typically difficult and time-consuming methods of programming 
them. The usual way to program an industrial robot is to write a program (either 
offline or online) and teach the positions used in the program directly on the robot. 
One major drawback of this procedure is that the programmer must have some 
competence in the field of robot programming. In addition, this type of program-
ming does not support the typical work flow used in small enterprises or  
households, because it is time-consuming and unwieldy. 

For these reasons numerous efforts have been made to make robot program-
ming more intuitive. One approach is called “Programming by Demonstration” 
(PbD). The idea behind this approach is to program a robot by executing the task 
instead of programming it textually. The task demonstration is either performed in 
the real environment or in a virtual environment [2]. The latter approach has some 
disadvantages: it is not easy to navigate in a virtual environment and such pro-
gramming does not support the work flow. Data gloves and head-mounted dis-
plays are not typically tools cooks or carpenters want to deal with while working. 
Alone the time needed to put on such devices restricts the applicability.  
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A further distinction may be made with regard to whether the demonstration is 
performed using the robot or not. In the former case, also called kinesthetic learn-
ing [5], the robot’s internal sensors can be used for measuring trajectories, other-
wise further sensors in the environment are required (e.g. cameras) or must be 
worn by the programmer while performing the demonstration (e.g. data gloves). 
The disadvantages of wearing sensors have already been mentioned above. Envi-
ronmental disadvantages of sensors are possible occlusions and a restricted trans-
portability. Our approach for PbD concentrates on the remaining alternative: 
measuring trajectories using the (internal) sensors of the robot while the user 
moves the robot via zero-force control. In general our approach is applicable to all 
of these approaches, as long as they make use of trajectories. Table 1 shows an 
overview of the different approaches and a small selection of references for each 
of them. A description of a system utilizing a robot model in a simulated  
environment for PbD could not be found in literature. 

 
Table 1 Classification and evaluation of approaches to Programming by Demonstration 
(PbD). 

 

 With Robot Without Robot  

In real  
environment 

[12] 
[10] 
[5] 
This paper 

[7] 
[11] 

– Need for highly structured  
environment and/or good ob-
ject recognition techniques 

In simulated 
environment 

Just simulation, no 
PbD 

[1] 
[2] 
[9] 

– Need for integrating  
knowledge into simulated  
environment 

– Unwieldy VR-hardware 

 – Need for high 
safety 

+ Gives the user a  
better feeling for 
robot motions 

– Need for adapting the 
human demonstration 
to the robot’s kine-
matic 

+ Independence of robot

 

 

Work on PbD can also be classified with respect to the abstraction level [5]. 
High-level approaches regard complete actions and skills (see e.g. [7]), while low-
level approaches concentrate on trajectories and basic robot actions. A high-level 
approach for loop structures can be found in [11]. 

Since the topic of our paper is the intuitive programming of spatial loops, com-
posed of trajectories, it clearly involves a low-level approach. Spatial loops are  
repetitive movements of the robot that differ in one or more parameters (e.g. pa-
rameters for translation or rotation). For example, coating a surface consists of 
many similar movements (strokes of the brush) distributed equally over the sur-
face. Such spatial loops may be programmed in a textual and ordinary manner by 
specifying three values for the loop parameter and a body that makes use of this 
loop parameter. Programming this task with the simple play back method, in 
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which the robot directly repeats the demonstrated motion, requires one to perform 
each individual repetition. In addition, such an approach will not lead to a uniform 
loop due to demonstration insufficiency. 

The system should be programmable via the following program flow structures, 
which are more than enough for writing general computer programs [3]: sequence, 
choice, loop, subroutine and break. The goal is to transfer the essential parts of 
general programming languages to intuitive robot programming, thus, inheriting 
the potential of computational completeness. In this paper, we concentrate on 
loops. With our approach it is possible to program a spatial loop in an intuitive 
way by demonstrating a portion of the desired task, for example the first, the sec-
ond and the last cycle. The system then identifies the parameters of the loop, the 
values (start, step width and end) and the body, freeing the user from calculating 
or measuring these values. In addition such programming of loops makes sense 
even for applications which are required just once but contain many repetitions or 
for which the precision of the robot is needed to attain an exact distribution of the 
repetitive movements.  

The rest of this paper is organized as follows: The next section gives an over-
view of the research related to PbD, especially low-level approaches. The third 
section briefly describes the proposed approach, where the component for loop 
programming should be embedded. The loops themselves and different ways to 
demonstrate them are covered in the fourth section. The fifth section formally de-
fines the problem of deriving plausible spatial loops from a demonstration and 
presents a simple implementation. Based on this, we programmed translational 
spatial loops, and describe them in the sixth section.  

2   Related Work 

Our approach to PbD directly builds upon the playback (walk-through) method. 
This method is well known but its application was mainly restricted to early  
painting robots. Since these robots were heavy and dangerous, this kind of pro-
gramming fell into misuse, but thanks to new technologies and standards these 
problems have been resolved [12]. 

Other problems associated with this method are demonstrations made insuffi-
cient by tremor and noise and high storage space requirements. [13] suggests 
smoothing of piecewise linear paths by removing unimportant points. Other ap-
proaches comprise B-Spline smoothing, Fourier transformation or Kalman-based 
smoothing (e.g. [6]). In [12] and [4] systems are described in which the user can 
modify the trajectory after demonstrating. Another approach to get rid of the in-
sufficiency of a single demonstration is to interpolate several demonstrations. All 
these techniques just modify the trajectories and no interpretation of the user’s in-
tention can be drawn from them. 

Some research addresses generalization of several demonstrations, allowing the 
robot to cope with uncertainties such as differing object positions. For example, 
the system described in [5] extracts the relevant features of trajectories (i.e. rela-
tive and absolute position constraints) from several varying demonstrations. The 
positions of the objects are obtained by a vision system. This way, the robot can 
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apply the learned program to situations with new object positions. While this is a 
powerful method to generalize demonstrations, the number of needed demonstra-
tions is dependent on the user’s experience. In contrast to our work, this approach 
concentrates on the learning of task-specific constraints, while we concentrate on 
the kinesthetic definition of a loop structure. 

To our knowledge, there is no approach that allows programming of looping 
movements by demonstrating just two or three movements. The idea is to give the 
user the possibility to implicitly define the variables and values needed for the  
execution of a loop structure. 

3   Overview of System Concept 

This section gives a brief overview of the system concept. The programmer uses the 
robot and a control panel to demonstrate the task he wants the robot to assume. For 
this purpose the demonstrator must be able to move the robot, e.g. via zero-force 
control, a joystick or a tracking device (for the latter, see e.g. [8]). Together with the 
signals from optional external sensors, this information forms the demonstration. 
The system then analyzes and interprets the demonstration and generates a corre-
sponding robot program. The analysis and generation of the program are based on 
sets of control structures, movement primitives and variable types. The user then ob-
tains a visualization of the spatial loop and can review the result.  

4   Spatial Loops and Demonstration Types 

The classical types of loops are condition-controlled loops (while loops), infinite 
loops and count-controlled loops (for loops)2. In the case of a condition-controlled 
loop, a Boolean variable or function is required that indicates e.g. if a button is 
pressed or a certain amount of time has passed. A loop is called infinite loop if 
there is no such condition or if this can never be met. In contrast to this kind of 
loops, count-controlled loops are stopped, when a variable – the counter – reaches 
a given end value. In all cases, the body of the loop either can be unchanged, i.e. 
the execution is a repetition of exactly the same behavior, or it can contain varia-
tions based on variables. In the case of condition-controlled and infinite loops, 
there is no general possibility to derive the break condition from the demonstration 
of two or three loop cycles, so for these loop types it is enough to determine the 
type and size of the step that is done between two consecutive cycles. In contrast, 
for count-controlled loops the number of cycles also has to be determined. For this 
reason we only regard count-controlled loops. The ideas are transferable to the 
other types.  

In classical programming languages, a count-controlled loop consists of four 
components: three values for the loop parameter (initial value, boundary value and 
step size) and the body. 

                                                           
2  Modern programming languages utilize further types of loops, e.g. for-each loops. We 

neglected these because they do not apply to the context of pure trajectories without fur-
ther sensory input. 
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Table 2 Overview of loop types and their components. 
 

Count-controlled loop 

 
Condition-
controlled 
loop 

Infinite 
loop Demonstration 

Type 1 
Demonstration 
Type 2 

Demonstration 
Type 3 

Demon-
stration 
Type 4 

Condition 
Boolean 
expression 

– – – – – 

Start 
value 

First trajectory First trajectory First trajectory (auto) 

Step 

For vary-
ing the 
body 

For 
vary-
ing the 
body 

Second  
trajectory 

Second  
trajectory 

(auto) 
First  
trajectory 

Number 
of steps 

Numerical  
input 

(auto) 
Numerical  
input 

Numerical  
input 

End  
value 

Break by 
condition 

– 
(auto) 

Third  
trajectory 

Third  
trajectory 

Second  
trajectory 

 
In the case of spatial loops, the three values consist of spatial variables (e.g. co-

ordinates). The start value and end value of such a spatial loop can be defined by 
movements. Such a movement is called a sub-trajectory. The size of the step can 
be regarded as transformation on these sub trajectories. The body includes some 
robot commands that use the spatial variable and create the motion. There are ba-
sically four3 alternatives for specifying a count-controlled spatial loop (Table 2). 
Depending on some circumstances, which we will examine next, it is possible to 
determine the last of the four values (start value s, step size δ, number of steps k 
and end value e) using the other three. The idea is outlined in 2D in Figure 1: The 
left side shows the different Demonstration Types 1 to 4. They all define the same 
spatial loop shown on the right. It is easy to see that in this case three of the four 
values are enough to determine the fourth with the following formula: k · δ = e – s.  

  

Fig. 1 Four alternatives for programming a translational 
loop consisting of six linear sub trajectories. 

Fig. 2 Two possible spatial loops 
(dark grey and light grey) for 
Demonstration Type 3. 

                                                           
3  Of course it would be possible to use all four components or even more sub-trajectories for 

the demonstration to increase robustness of the loop calculation, but we want to keep the 
demonstration as short as possible and focus on the minimum number of needed values. 
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We now look at the transformations that can be used for spatial loops. We do 
not consider the orientation of the tool center point here, i.e., we regard the orien-
tation as fixed. In the context of this paper the transformation that describes how a 
trajectory for loop cycle i + 1 is derived from a trajectory for loop cycle i, can be 
translation and rotation, i.e. rigid body transformations. We do not regard reflec-
tion or scaling. Affine transformations that are more complex than the chosen 
transformations (e.g. shear) are also neglected because we regard them as less in-
tuitive. We also restrict ourselves to linear interpolation for the generation of the 
loop, i.e. the steps between the cycles are all of the same size δ. 

Considering the Demonstration Types 1, 3 and 4, we see that for translational 
transformations there is a unique mapping of the demonstrations to the spatial 
loops since a straight line is defined by two constraints. This does not hold for cir-
cular transformations, where three constraints are needed for a unique definition. 
Figure 2 shows an example with Demonstration Type 3. The input consists of two 
demonstrations (start value and end value) and the number of steps. Two spatial 
loops that both fit the demonstration are shown. Each rotation of a matching spa-
tial loop around the axis defined by the start and end value leads to another match-
ing spatial loop.  

The situation is similar regarding the question whether a demonstration should 
be mapped to a translation or a rotation. Since a straight line can be considered as 
a circle with infinite radius, this distinction can not always be made with Demon-
stration Types 1, 3 and 4 without further knowledge.  

On the one hand, since the use of always the same modality (e.g. position input) 
is more intuitive than multiple modalities (e.g. position and alphanumerical input), 
we suggest that Demonstration Type 2 is more intuitive than the other types. On the 
other hand, the other demonstration types have advantages as well. If the number of 
steps is essential for a certain application one of them might be the better choice.  

5   From Demonstrations to Program Loops 

In this section, the procedure of programming a spatial loop by Demonstration 
Type 2 and translational transformation is described. After instructing the system  

 

 

Fig. 3 Trajectory of Demonstration Type 2, 
divided into its sub-trajectories. 

Fig. 4 The interpretation of the loop 
body depends on the set of motion 
primitives. 
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that a spatial loop is desired (e.g. via the control panel), the user demonstrates the 
first, the second and the last run of the loop and marks the beginning and the end 
of each cycle on the control panel, leading to a segmented trajectory that will then 
be analyzed. 

At first the system has to decide whether the demonstration is a valid demon-
stration of Type 2. Since for Type 2 there have to be three demonstrated sub-
trajectories, there must be six cuts, otherwise the system shows an error message. 

5.1   Problem Description 

A trajectory r = (p1, …, pn) is a sequence of n coordinates pl ∈ ℝd, l ∈ {1, …, n}, 
where d is the dimension of the coordinates. As mentioned above, we also have m 
− 1 cutting points cj, 1 ≤ j ≤ m − 1, on the trajectory, which divide the trajec-
tory in sub-trajectories r1,…rm. Let m(i) be the number of cuts needed for demon-
stration type i.4 Then there are m(i) + 1 sub-trajectories r1,…,rm(i)+1 in a valid dem-
onstration for Demonstration Type i. The trajectories we are interested in are those 
with an even index. All other trajectories are just transfer movements, which are 
neglected in this paper. Figure 3 shows an example with Demonstration Type 2. 

Let R be the set of all trajectories in a given representation and T a set of trans-
formations on these trajectories: T = T = {f | f: R R}. Let : RRℝ≥0

  be a 
measure for the difference between two trajectories in R. Then the problem of 
finding a corresponding spatial loop to these trajectories can be stated as follows 
for Demonstration Type 2:5 

].1,0[)),),(()1()),((( withminarg 6242
N; 2

∈−+
≥∈∈

αλαλα rrfrrf k

kTf

 

With the first term of the formula, the loop r2 is fitted to the second sub-
trajectory r4 and with the other to the last one (r6). With the parameter α, it is pos-
sible to change the weighting between these terms.  

There are many degrees of freedom in this problem formulation: The represen-
tation of the trajectories, the set of transformations and the measures. The concrete 
transformation of a demonstration to a spatial loop is dependent on the choice of 
those. Since the purpose of this paper is to introduce the idea of spatial loop  
programming, we restrict ourselves to comparatively simple representations  
(Section 5.2), transformations and measures (Section 5.3).  

5.2   Representation of Sub Trajectories 

There are various options for representing trajectories. The most obvious possibil-
ity is to let them as they are – an ordered list of points. They also can be repre-
sented for example as parameterized primitives (e.g. straight lines, circles …), as 
Splines of different degrees or in Fourier space.  

                                                           
4  m(2) = 6, m(i) = 4, i ∈{1,3,4}; 
5  In the case of other demonstration types, this problem formulation differs slightly. 
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The body of a loop can consist of a single primitive motion or may be com-
posed of different consecutive primitive motions. Of course, for a given sub-
trajectory it depends on the set of primitive motions of the given system, whether 
it is atomic or composed. 

The trajectory in Fig. 4 consists of three demonstrations for a loop (Demonstra-
tion Type 2). It is easy to see, that every sub-trajectory has a bulge in its center. 
Depending on the system’s representation of sub-trajectories, this body can either 
be interpreted as one primitive (e.g. as a parameterized curve) or as composition 
(e.g. linear movements and a circle segment). 

In this paper we start with the simplest loop bodies that consist of one single 
straight line represented by its two end points. 

5.3   Transformations and Measures 

The choice of the transformation is highly dependent on the representation of the 
sub-trajectories. If a sub-trajectory is defined via some points, the transformation 
can be any transformation that is applicable to points. Such a transformation might 
treat the different points of a sub-trajectory in a different manner or in the same 
way. The former allows the scaling of lines. In this paper we concentrate on trans-
lations and rotations.  

For comparing two sub-trajectories, a measure is needed to describe the degree 
of similarity of the sub-trajectories. In the case of straight lines the most obvious 
measure is the sum of the Euclidean distances between the two pairs of corre-
sponding end points. Like the transformations, the measure is also highly depend-
ent on the representation of the sub-trajectories. Both have to be compatible with 
the representation. 

5.4   Implementation  

The concept was implemented on the industrial robot Stäubli RX130. The robot is 
equipped with a force/torque sensor (JR3 KMSi 90M31-63) on its wrist, allowing 
the user to demonstrate the trajectory. The cuts are set with a button on the teach 
pendant. 

Given the trajectory and the cuts, the system has to decide what type of trans-
formation fits best. Since we restrict ourselves to translation and rotation and do 
not consider combinations of them, we classify according to geometrical criteria. 
This section concentrates on transformations that work on the whole trajectory and 
not on the individual points.  

Translation and rotation are rigid body transformations, so a common criterion 
for them is that the length of the strokes does no vary except for the user’s impre-
cision. 

For pure translations with Demonstration Types 1, 3 or 4 it must be checked, 
whether the two strokes have the same orientation.  

For a Demonstration of Type 2 we regard the angle between the cutting points 
at the beginning and at the end of the sub-trajectories and the distance between  
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them. Let j  be the point of a sub-trajectory that emerged from cut cj and 
1, 2, , 3 ∈ [0,1]  be pre-set thresholds. To be classified as translation, a dem-
onstration has to comply with the following conditions:6 

12615 |||||||| Θ≤−−− γγγγ ;    12413 |||||||| Θ≤−−− γγγγ ; 
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The threshold 1  should be near zero while the others should be near one. The 
first two formulas assure that both points are translated equally. If they were not, 
the transformation can not be a translation. The other two formulas measure the 
angles ∢( 5,1,3 γγγ )  respectively ∢( 6,2,4 γγγ ). If  
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there are k + 1 loop passes altogether. The new points of the spatial loop can now 
be calculated easily from the direction of 15 γγ −  and k. A similar condition can 

be established for rotations but it is skipped here for lack of space.  
As soon as a demonstration is assigned to a transformation, the points for all 

loop cycles can be calculated and used for the generation of the robot movement. 
The transfer movements consist of an approach to the first point of a line and a 
depart movement from the second point.  

6   Experiments and Results 

We demonstrated translational spatial loops with this system with Demonstration 
Types 1 to 3. We skipped Demonstration Type 4, since it is symmetrical to Dem-
onstration Type 1. The robot was programmed to draw six straight lines with a re-
silient ball pen. The demonstrations were carried out via the zero-force control and 
the cutting points were set via the teach pendant. Figure 5 schematically shows the 
strokes the robot should be programmed to draw. At first, the robot drew a master 
on a fixed piece of paper. This provided the basis for measuring the deviation of 
the intuitively programmed loop from the textually programmed loop used for the 
master. We took the Euclidean distance in x- and y-direction (i.e. the points were 
projected onto a plane parallel to the table and perpendicular to the axis of the 
pen) as measure. The deviation in the z-direction was not included because of  
the compliance of the pen. The user then programmed the loop by repeating the 
strokes as accurately as possible by grabbing the pen (see Figure 6). For measur-
ing the deviation we calculated the mean of all deviations of corresponding points 
of the ideal loop and the programmed loop. For each experiment and demonstra-
tion type, six experiments were conducted. 

                                                           
6  The symbol ||•|| denotes the Euclidean norm and <•,•> is the inner product. 
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Fig. 5 Three experiments: pure point-based translation, pure transla-
tion working on the whole line and scaling of the lines by point-based 
translation. 

Fig. 6 The user 
grabs the pen and 
moves the robot. 

In the first two experiments the strokes are simply translated. The first experi-
ment was conducted with a point-based transformation, i.e. the translations for the 
start points and the end points are deduced separately. For the second experiment 
an implementation was chosen that calculated the translation vector from the mean 
of the two vectors derived with the implementation from the first experiment. The 
third experiment was conducted only for point-based transformation. With each 
cycle, the stroke becomes shorter, the points approach each other. This is a kind of 
scaling, but it is the result of the point-based transformation. This could not be 
achieved by a rigid body transformation that works on the whole line. 

The diagrams in Figure 7 show the mean error of all points of each experiment. 
It is in evidence that Demonstration Type 1 is much more error-prone, since the 
error in the demonstration accumulates with the number of cycles while for Type 
3 the error of the execution is limited by the error in the demonstrations. Demon-
stration Type 2 is dependent on the choice of parameter α. In our experiment, α = 
0.5, since we take the mean of the two vectors. For α = 0, Demonstration Type 2 is 
like Demonstration Type 3 except that sub-trajectory 4 is used to derive the num-
ber of cycles instead of numerical input. For α = 1 the same holds with Demon-
stration Type 1 and sub-trajectory 6. This explains why Demonstration Type 2 lies 
in between the other two demonstration types in most cases. 

 
 

   

   
Fig. 7 The mean deviation in mm for the three experiments and for Demonstration Types 
1, 2 and 3, measured in the x-y-plane. 
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7   Conclusions 

We introduced the concept of intuitive spatial loop programming, where the pa-
rameters of a loop are derived automatically. We identified four demonstration 
types and compared them according to the uniqueness of the demonstration and 
the intuitiveness. Demonstration Type 2 turned out to be less ambiguous than the 
other types. After the comparison we analyzed the different components needed 
for spatial loop programming and presented possible candidates to be used. We 
implemented the concept and showed the applicability with an experiment. 

Future work will focus on further kinds of transformations, particularly on 
combined transformations. Pushing a button to segment the sub-trajectories turned 
out to be annoying and error-prone, so an automatic segmentation will be consid-
ered. Since spatial loop programming was only tested on pure trajectories we  
intend to augment the concept with further sensor data such as forces.  
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