
Intuitive Robot Programming of Spatial Control
Loops with Linear Movements

Katharina Soller and Dominik Henrich1

Abstract. Programming by demonstration (PbD) is a promising approach to facili-
tate the use of robots. The bandwidth of PbD systems extends from simple play
back to artificial intelligence methods. Our approach is based on the former. This
paper aims to introduce and examine intuitive programming of spatial loops, i.e.
program loops whose body changes according to a spatial variable. The loop is
programmed by executing e.g. the first, the second, and the last run. The system
then determines all components of the loop so they can be used to generate a pro-
gram. The focus of this paper lies in automatic determination of the variables for
the start, the step and the end of spatial loops. This method of robot programming
has interesting applications in the field of industrial robotics, especially with re-
spect to small- and medium-sized enterprises, as well as for service robotics.

1 Introduction

One of the largest tasks involved in expanding the application range of robots (e.g.
for use in household applications or frequently changing applications in small en-
terprises) are the typically difficult and time-consuming methods of programming
them. The usual way to program an industrial robot is to write a program (either
offline or online) and teach the positions used in the program directly on the robot.
One major drawback of this procedure is that the programmer must have some
competence in the field of robot programming. In addition, this type of program-
ming does not support the typical work flow used in small enterprises or
households, because it is time-consuming and unwieldy.

For these reasons numerous efforts have been made to make robot program-
ming more intuitive. One approach is called “Programming by Demonstration”
(PbD). The idea behind this approach is to program a robot by executing the task
instead of programming it textually. The task demonstration is either performed in
the real environment or in a virtual environment [2]. The latter approach has some
disadvantages: it is not easy to navigate in a virtual environment and such pro-
gramming does not support the work flow. Data gloves and head-mounted dis-
plays are not typically tools cooks or carpenters want to deal with while working.
Alone the time needed to put on such devices restricts the applicability.

Katharina Soller · Dominik Henrich
Lehrstuhl für Angewandte Informatik III, Universität Bayreuth,
Universitätsstraße 30, 95447 Bayreuth, Germany,
e-mail: {katharina.soller,dominik.henrich}@uni-bayreuth.de

148 K. Soller et al.

A further distinction may be made with regard to whether the demonstration is
performed using the robot or not. In the former case, also called kinesthetic learn-
ing [5], the robot’s internal sensors can be used for measuring trajectories, other-
wise further sensors in the environment are required (e.g. cameras) or must be
worn by the programmer while performing the demonstration (e.g. data gloves).
The disadvantages of wearing sensors have already been mentioned above. Envi-
ronmental disadvantages of sensors are possible occlusions and a restricted trans-
portability. Our approach for PbD concentrates on the remaining alternative:
measuring trajectories using the (internal) sensors of the robot while the user
moves the robot via zero-force control. In general our approach is applicable to all
of these approaches, as long as they make use of trajectories. Table 1 shows an
overview of the different approaches and a small selection of references for each
of them. A description of a system utilizing a robot model in a simulated
environment for PbD could not be found in literature.

Table 1 Classification and evaluation of approaches to Programming by Demonstration
(PbD).

 With Robot Without Robot

In real
environment

[12]
[10]
[5]
This paper

[7]
[11]

– Need for highly structured
environment and/or good ob-
ject recognition techniques

In simulated
environment

Just simulation, no
PbD

[1]
[2]
[9]

– Need for integrating
knowledge into simulated
environment

– Unwieldy VR-hardware

 – Need for high
safety

+ Gives the user a
better feeling for
robot motions

– Need for adapting the
human demonstration
to the robot’s kine-
matic

+ Independence of robot

Work on PbD can also be classified with respect to the abstraction level [5].
High-level approaches regard complete actions and skills (see e.g. [7]), while low-
level approaches concentrate on trajectories and basic robot actions. A high-level
approach for loop structures can be found in [11].

Since the topic of our paper is the intuitive programming of spatial loops, com-
posed of trajectories, it clearly involves a low-level approach. Spatial loops are
repetitive movements of the robot that differ in one or more parameters (e.g. pa-
rameters for translation or rotation). For example, coating a surface consists of
many similar movements (strokes of the brush) distributed equally over the sur-
face. Such spatial loops may be programmed in a textual and ordinary manner by
specifying three values for the loop parameter and a body that makes use of this
loop parameter. Programming this task with the simple play back method, in

Intuitive Robot Programming of Spatial Control Loops with Linear Movements 149

which the robot directly repeats the demonstrated motion, requires one to perform
each individual repetition. In addition, such an approach will not lead to a uniform
loop due to demonstration insufficiency.

The system should be programmable via the following program flow structures,
which are more than enough for writing general computer programs [3]: sequence,
choice, loop, subroutine and break. The goal is to transfer the essential parts of
general programming languages to intuitive robot programming, thus, inheriting
the potential of computational completeness. In this paper, we concentrate on
loops. With our approach it is possible to program a spatial loop in an intuitive
way by demonstrating a portion of the desired task, for example the first, the sec-
ond and the last cycle. The system then identifies the parameters of the loop, the
values (start, step width and end) and the body, freeing the user from calculating
or measuring these values. In addition such programming of loops makes sense
even for applications which are required just once but contain many repetitions or
for which the precision of the robot is needed to attain an exact distribution of the
repetitive movements.

The rest of this paper is organized as follows: The next section gives an over-
view of the research related to PbD, especially low-level approaches. The third
section briefly describes the proposed approach, where the component for loop
programming should be embedded. The loops themselves and different ways to
demonstrate them are covered in the fourth section. The fifth section formally de-
fines the problem of deriving plausible spatial loops from a demonstration and
presents a simple implementation. Based on this, we programmed translational
spatial loops, and describe them in the sixth section.

2 Related Work

Our approach to PbD directly builds upon the playback (walk-through) method.
This method is well known but its application was mainly restricted to early
painting robots. Since these robots were heavy and dangerous, this kind of pro-
gramming fell into misuse, but thanks to new technologies and standards these
problems have been resolved [12].

Other problems associated with this method are demonstrations made insuffi-
cient by tremor and noise and high storage space requirements. [13] suggests
smoothing of piecewise linear paths by removing unimportant points. Other ap-
proaches comprise B-Spline smoothing, Fourier transformation or Kalman-based
smoothing (e.g. [6]). In [12] and [4] systems are described in which the user can
modify the trajectory after demonstrating. Another approach to get rid of the in-
sufficiency of a single demonstration is to interpolate several demonstrations. All
these techniques just modify the trajectories and no interpretation of the user’s in-
tention can be drawn from them.

Some research addresses generalization of several demonstrations, allowing the
robot to cope with uncertainties such as differing object positions. For example,
the system described in [5] extracts the relevant features of trajectories (i.e. rela-
tive and absolute position constraints) from several varying demonstrations. The
positions of the objects are obtained by a vision system. This way, the robot can

150 K. Soller et al.

apply the learned program to situations with new object positions. While this is a
powerful method to generalize demonstrations, the number of needed demonstra-
tions is dependent on the user’s experience. In contrast to our work, this approach
concentrates on the learning of task-specific constraints, while we concentrate on
the kinesthetic definition of a loop structure.

To our knowledge, there is no approach that allows programming of looping
movements by demonstrating just two or three movements. The idea is to give the
user the possibility to implicitly define the variables and values needed for the
execution of a loop structure.

3 Overview of System Concept

This section gives a brief overview of the system concept. The programmer uses the
robot and a control panel to demonstrate the task he wants the robot to assume. For
this purpose the demonstrator must be able to move the robot, e.g. via zero-force
control, a joystick or a tracking device (for the latter, see e.g. [8]). Together with the
signals from optional external sensors, this information forms the demonstration.
The system then analyzes and interprets the demonstration and generates a corre-
sponding robot program. The analysis and generation of the program are based on
sets of control structures, movement primitives and variable types. The user then ob-
tains a visualization of the spatial loop and can review the result.

4 Spatial Loops and Demonstration Types

The classical types of loops are condition-controlled loops (while loops), infinite
loops and count-controlled loops (for loops)2. In the case of a condition-controlled
loop, a Boolean variable or function is required that indicates e.g. if a button is
pressed or a certain amount of time has passed. A loop is called infinite loop if
there is no such condition or if this can never be met. In contrast to this kind of
loops, count-controlled loops are stopped, when a variable – the counter – reaches
a given end value. In all cases, the body of the loop either can be unchanged, i.e.
the execution is a repetition of exactly the same behavior, or it can contain varia-
tions based on variables. In the case of condition-controlled and infinite loops,
there is no general possibility to derive the break condition from the demonstration
of two or three loop cycles, so for these loop types it is enough to determine the
type and size of the step that is done between two consecutive cycles. In contrast,
for count-controlled loops the number of cycles also has to be determined. For this
reason we only regard count-controlled loops. The ideas are transferable to the
other types.

In classical programming languages, a count-controlled loop consists of four
components: three values for the loop parameter (initial value, boundary value and
step size) and the body.

2 Modern programming languages utilize further types of loops, e.g. for-each loops. We

neglected these because they do not apply to the context of pure trajectories without fur-
ther sensory input.

Intuitive Robot Programming of Spatial Control Loops with Linear Movements 151

Table 2 Overview of loop types and their components.

Count-controlled loop

Condition-
controlled
loop

Infinite
loop Demonstration

Type 1
Demonstration
Type 2

Demonstration
Type 3

Demon-
stration
Type 4

Condition
Boolean
expression

– – – – –

Start
value

First trajectory First trajectory First trajectory (auto)

Step

For vary-
ing the
body

For
vary-
ing the
body

Second
trajectory

Second
trajectory

(auto)
First
trajectory

Number
of steps

Numerical
input

(auto)
Numerical
input

Numerical
input

End
value

Break by
condition

–
(auto)

Third
trajectory

Third
trajectory

Second
trajectory

In the case of spatial loops, the three values consist of spatial variables (e.g. co-

ordinates). The start value and end value of such a spatial loop can be defined by
movements. Such a movement is called a sub-trajectory. The size of the step can
be regarded as transformation on these sub trajectories. The body includes some
robot commands that use the spatial variable and create the motion. There are ba-
sically four3 alternatives for specifying a count-controlled spatial loop (Table 2).
Depending on some circumstances, which we will examine next, it is possible to
determine the last of the four values (start value s, step size δ, number of steps k
and end value e) using the other three. The idea is outlined in 2D in Figure 1: The
left side shows the different Demonstration Types 1 to 4. They all define the same
spatial loop shown on the right. It is easy to see that in this case three of the four
values are enough to determine the fourth with the following formula: k · δ = e – s.

Fig. 1 Four alternatives for programming a translational
loop consisting of six linear sub trajectories.

Fig. 2 Two possible spatial loops
(dark grey and light grey) for
Demonstration Type 3.

3 Of course it would be possible to use all four components or even more sub-trajectories for

the demonstration to increase robustness of the loop calculation, but we want to keep the
demonstration as short as possible and focus on the minimum number of needed values.

152 K. Soller et al.

We now look at the transformations that can be used for spatial loops. We do
not consider the orientation of the tool center point here, i.e., we regard the orien-
tation as fixed. In the context of this paper the transformation that describes how a
trajectory for loop cycle i + 1 is derived from a trajectory for loop cycle i, can be
translation and rotation, i.e. rigid body transformations. We do not regard reflec-
tion or scaling. Affine transformations that are more complex than the chosen
transformations (e.g. shear) are also neglected because we regard them as less in-
tuitive. We also restrict ourselves to linear interpolation for the generation of the
loop, i.e. the steps between the cycles are all of the same size δ.

Considering the Demonstration Types 1, 3 and 4, we see that for translational
transformations there is a unique mapping of the demonstrations to the spatial
loops since a straight line is defined by two constraints. This does not hold for cir-
cular transformations, where three constraints are needed for a unique definition.
Figure 2 shows an example with Demonstration Type 3. The input consists of two
demonstrations (start value and end value) and the number of steps. Two spatial
loops that both fit the demonstration are shown. Each rotation of a matching spa-
tial loop around the axis defined by the start and end value leads to another match-
ing spatial loop.

The situation is similar regarding the question whether a demonstration should
be mapped to a translation or a rotation. Since a straight line can be considered as
a circle with infinite radius, this distinction can not always be made with Demon-
stration Types 1, 3 and 4 without further knowledge.

On the one hand, since the use of always the same modality (e.g. position input)
is more intuitive than multiple modalities (e.g. position and alphanumerical input),
we suggest that Demonstration Type 2 is more intuitive than the other types. On the
other hand, the other demonstration types have advantages as well. If the number of
steps is essential for a certain application one of them might be the better choice.

5 From Demonstrations to Program Loops

In this section, the procedure of programming a spatial loop by Demonstration
Type 2 and translational transformation is described. After instructing the system

Fig. 3 Trajectory of Demonstration Type 2,
divided into its sub-trajectories.

Fig. 4 The interpretation of the loop
body depends on the set of motion
primitives.

Intuitive Robot Programming of Spatial Control Loops with Linear Movements 153

that a spatial loop is desired (e.g. via the control panel), the user demonstrates the
first, the second and the last run of the loop and marks the beginning and the end
of each cycle on the control panel, leading to a segmented trajectory that will then
be analyzed.

At first the system has to decide whether the demonstration is a valid demon-
stration of Type 2. Since for Type 2 there have to be three demonstrated sub-
trajectories, there must be six cuts, otherwise the system shows an error message.

5.1 Problem Description

A trajectory r = (p1, …, pn) is a sequence of n coordinates pl ∈ ℝd, l ∈ {1, …, n},
where d is the dimension of the coordinates. As mentioned above, we also have m
− 1 cutting points cj, 1 ≤ j ≤ m − 1, on the trajectory, which divide the trajec-
tory in sub-trajectories r1,…rm. Let m(i) be the number of cuts needed for demon-
stration type i.4 Then there are m(i) + 1 sub-trajectories r1,…,rm(i)+1 in a valid dem-
onstration for Demonstration Type i. The trajectories we are interested in are those
with an even index. All other trajectories are just transfer movements, which are
neglected in this paper. Figure 3 shows an example with Demonstration Type 2.

Let R be the set of all trajectories in a given representation and T a set of trans-
formations on these trajectories: T = T = {f | f: R R}. Let : RRℝ≥0

 be a
measure for the difference between two trajectories in R. Then the problem of
finding a corresponding spatial loop to these trajectories can be stated as follows
for Demonstration Type 2:5

].1,0[)),),(()1()),(((withminarg 6242
N; 2

∈−+
≥∈∈

αλαλα rrfrrf k

kTf

With the first term of the formula, the loop r2 is fitted to the second sub-
trajectory r4 and with the other to the last one (r6). With the parameter α, it is pos-
sible to change the weighting between these terms.

There are many degrees of freedom in this problem formulation: The represen-
tation of the trajectories, the set of transformations and the measures. The concrete
transformation of a demonstration to a spatial loop is dependent on the choice of
those. Since the purpose of this paper is to introduce the idea of spatial loop
programming, we restrict ourselves to comparatively simple representations
(Section 5.2), transformations and measures (Section 5.3).

5.2 Representation of Sub Trajectories

There are various options for representing trajectories. The most obvious possibil-
ity is to let them as they are – an ordered list of points. They also can be repre-
sented for example as parameterized primitives (e.g. straight lines, circles …), as
Splines of different degrees or in Fourier space.

4 m(2) = 6, m(i) = 4, i ∈{1,3,4};
5 In the case of other demonstration types, this problem formulation differs slightly.

154 K. Soller et al.

The body of a loop can consist of a single primitive motion or may be com-
posed of different consecutive primitive motions. Of course, for a given sub-
trajectory it depends on the set of primitive motions of the given system, whether
it is atomic or composed.

The trajectory in Fig. 4 consists of three demonstrations for a loop (Demonstra-
tion Type 2). It is easy to see, that every sub-trajectory has a bulge in its center.
Depending on the system’s representation of sub-trajectories, this body can either
be interpreted as one primitive (e.g. as a parameterized curve) or as composition
(e.g. linear movements and a circle segment).

In this paper we start with the simplest loop bodies that consist of one single
straight line represented by its two end points.

5.3 Transformations and Measures

The choice of the transformation is highly dependent on the representation of the
sub-trajectories. If a sub-trajectory is defined via some points, the transformation
can be any transformation that is applicable to points. Such a transformation might
treat the different points of a sub-trajectory in a different manner or in the same
way. The former allows the scaling of lines. In this paper we concentrate on trans-
lations and rotations.

For comparing two sub-trajectories, a measure is needed to describe the degree
of similarity of the sub-trajectories. In the case of straight lines the most obvious
measure is the sum of the Euclidean distances between the two pairs of corre-
sponding end points. Like the transformations, the measure is also highly depend-
ent on the representation of the sub-trajectories. Both have to be compatible with
the representation.

5.4 Implementation

The concept was implemented on the industrial robot Stäubli RX130. The robot is
equipped with a force/torque sensor (JR3 KMSi 90M31-63) on its wrist, allowing
the user to demonstrate the trajectory. The cuts are set with a button on the teach
pendant.

Given the trajectory and the cuts, the system has to decide what type of trans-
formation fits best. Since we restrict ourselves to translation and rotation and do
not consider combinations of them, we classify according to geometrical criteria.
This section concentrates on transformations that work on the whole trajectory and
not on the individual points.

Translation and rotation are rigid body transformations, so a common criterion
for them is that the length of the strokes does no vary except for the user’s impre-
cision.

For pure translations with Demonstration Types 1, 3 or 4 it must be checked,
whether the two strokes have the same orientation.

For a Demonstration of Type 2 we regard the angle between the cutting points
at the beginning and at the end of the sub-trajectories and the distance between

Intuitive Robot Programming of Spatial Control Loops with Linear Movements 155

them. Let j be the point of a sub-trajectory that emerged from cut cj and
1, 2, , 3 ∈ [0,1] be pre-set thresholds. To be classified as translation, a dem-
onstration has to comply with the following conditions:6

12615 |||||||| Θ≤−−− γγγγ ; 12413 |||||||| Θ≤−−− γγγγ ;

2
13

13

15

15

||||
,

||||
Θ≥>

−
−

−
−

<
γγ
γγ

γγ
γγ

; 3
24

24

26

26

||||
,

||||
Θ≥>

−
−

−
−

<
γγ
γγ

γγ
γγ

;

The threshold 1 should be near zero while the others should be near one. The
first two formulas assure that both points are translated equally. If they were not,
the transformation can not be a translation. The other two formulas measure the
angles ∢(5,1,3 γγγ) respectively ∢(6,2,4 γγγ). If

round ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

||||

||||

13

15

γγ
γγ

 = round ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

||||

||||

24

26

γγ
γγ

 = k,

there are k + 1 loop passes altogether. The new points of the spatial loop can now
be calculated easily from the direction of 15 γγ − and k. A similar condition can

be established for rotations but it is skipped here for lack of space.
As soon as a demonstration is assigned to a transformation, the points for all

loop cycles can be calculated and used for the generation of the robot movement.
The transfer movements consist of an approach to the first point of a line and a
depart movement from the second point.

6 Experiments and Results

We demonstrated translational spatial loops with this system with Demonstration
Types 1 to 3. We skipped Demonstration Type 4, since it is symmetrical to Dem-
onstration Type 1. The robot was programmed to draw six straight lines with a re-
silient ball pen. The demonstrations were carried out via the zero-force control and
the cutting points were set via the teach pendant. Figure 5 schematically shows the
strokes the robot should be programmed to draw. At first, the robot drew a master
on a fixed piece of paper. This provided the basis for measuring the deviation of
the intuitively programmed loop from the textually programmed loop used for the
master. We took the Euclidean distance in x- and y-direction (i.e. the points were
projected onto a plane parallel to the table and perpendicular to the axis of the
pen) as measure. The deviation in the z-direction was not included because of
the compliance of the pen. The user then programmed the loop by repeating the
strokes as accurately as possible by grabbing the pen (see Figure 6). For measur-
ing the deviation we calculated the mean of all deviations of corresponding points
of the ideal loop and the programmed loop. For each experiment and demonstra-
tion type, six experiments were conducted.

6 The symbol ||•|| denotes the Euclidean norm and <•,•> is the inner product.

156 K. Soller et al.

Fig. 5 Three experiments: pure point-based translation, pure transla-
tion working on the whole line and scaling of the lines by point-based
translation.

Fig. 6 The user
grabs the pen and
moves the robot.

In the first two experiments the strokes are simply translated. The first experi-
ment was conducted with a point-based transformation, i.e. the translations for the
start points and the end points are deduced separately. For the second experiment
an implementation was chosen that calculated the translation vector from the mean
of the two vectors derived with the implementation from the first experiment. The
third experiment was conducted only for point-based transformation. With each
cycle, the stroke becomes shorter, the points approach each other. This is a kind of
scaling, but it is the result of the point-based transformation. This could not be
achieved by a rigid body transformation that works on the whole line.

The diagrams in Figure 7 show the mean error of all points of each experiment.
It is in evidence that Demonstration Type 1 is much more error-prone, since the
error in the demonstration accumulates with the number of cycles while for Type
3 the error of the execution is limited by the error in the demonstrations. Demon-
stration Type 2 is dependent on the choice of parameter α. In our experiment, α =
0.5, since we take the mean of the two vectors. For α = 0, Demonstration Type 2 is
like Demonstration Type 3 except that sub-trajectory 4 is used to derive the num-
ber of cycles instead of numerical input. For α = 1 the same holds with Demon-
stration Type 1 and sub-trajectory 6. This explains why Demonstration Type 2 lies
in between the other two demonstration types in most cases.

Fig. 7 The mean deviation in mm for the three experiments and for Demonstration Types
1, 2 and 3, measured in the x-y-plane.

Intuitive Robot Programming of Spatial Control Loops with Linear Movements 157

7 Conclusions

We introduced the concept of intuitive spatial loop programming, where the pa-
rameters of a loop are derived automatically. We identified four demonstration
types and compared them according to the uniqueness of the demonstration and
the intuitiveness. Demonstration Type 2 turned out to be less ambiguous than the
other types. After the comparison we analyzed the different components needed
for spatial loop programming and presented possible candidates to be used. We
implemented the concept and showed the applicability with an experiment.

Future work will focus on further kinds of transformations, particularly on
combined transformations. Pushing a button to segment the sub-trajectories turned
out to be annoying and error-prone, so an automatic segmentation will be consid-
ered. Since spatial loop programming was only tested on pure trajectories we
intend to augment the concept with further sensor data such as forces.

References

1. Acker, J., Kahl, B., Henrich, D.: Environment Guided Handling of Deformable Linear
Objects: From Task Demonstration to Task Execution. In: 37th International Sympo-
sium on Robotics (ISR, 4th German Conference on Robotics), Robotik, München,
Germany (2006)

2. Aleotti, J., Caselli, S., Reggiani, M.: Toward Programming of Assembly Tasks by
Demonstration in Virtual Environments. In: 12th IEEE Workshop Robot and Human
Interactive Communication, San Francisco, CA, October 31, November 2 (2003)

3. Böhm, C., Jacopini, G.: Flow diagrams, turing machines and languages with only two
formation rules. Communications of the ACM 9(5), 366–371 (1966)

4. Brageul, D., Vukanovic, S., MacDonald, B.A.: An Intuitive Interface for a Cognitive
Programming By Demonstration System. In: IEEE International Conference on Robot-
ics and Automation (ICRA), pp. 3570–3575 (May 2008)

5. Calinon, S., Guenter, F., Billard, A.: On Learning, Representing, and Generalizing a
Task in a Humanoid Robot. IEEE Trans. on Systems, Man and Cybernetics, Part
B 37(2), 286–298 (2007)

6. Croitoru, A., Agouris, P., Stefanidis, A.: 3D Trajectory Matching By Pose Normaliza-
tion. In: ACM international workshop on Geographic Information Systems, pp. 153–
162 (November 2005)

7. Dillmann, R., Rogalla, O., Ehrenmann, M., Zöllner, R., Bordegoni, M.: Learning Ro-
bot Behaviour and Skills based on Human Demonstration and Advice: the Machine
Learning Paradigm. In: 9th International Symposium of Robotics Research (ISSR
1999), Snowbird, UT, USA, October 1999, pp. 229–238 (1999)

8. Hein, B., Hensel, M., Wörn, H.: Intuitive and Model-based On-line Programming of
Industrial Robots: A Modular On-line Programming Environment. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 3952–3957 (May 2008)

9. Kahl, B., Henrich, D.: Virtual Robot Programming for Deformable Linear Objects:
System concept and Prototype Implementation. In: 12th International Symposium on
Measurement and Control in Robotics (ISMCR 2002), Bourges/France (June 2002)

158 K. Soller et al.

10. Mayer, H., Burschka, D., Knoll, A., Braun, E.U., Lange, R., Bauernschmitt, R.: Hu-
man-Machine Skill Transfer Extended by a Scaffolding Framework. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2866–2871 (May 2008

11. Pardowitz, M., Glaser, B., Dillmann, R.: Learning Repetitive Robot Programs From
Demonstrations Using Version Space Algebra. In: The 13th IASTED International
Conference on Robotics and Applications (2007),

 http://wwwiaim.ira.uka.de/data/File/Publications/RA07-
VSA.pdf

12. Schraft, R.D., Meyer, C.: The Need for an Intuitive Teaching Method for Small and
Medium Enterprises. In: ISR 2006 - ROBOTIK 2006: Proceedings of the Joint Con-
ference on Robotics, May 15-17, Munich (2006)

13. Waringo, M., Henrich, D.: Efficient Smoothing of Piecewise Linear Paths with Mini-
mal Deviation. In: IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 3867–3872 (August 2006)

	Intuitive Robot Programming of Spatial Control Loops with Linear Movements
	Introduction
	Related Work
	Overview of System Concept
	Spatial Loops and Demonstration Types
	From Demonstrations to Program Loops
	{\it Problem Description}
	{\it Representation of Sub Trajectories}
	{\it Transformations and Measures}
	{\it Implementation}

	Experiments and Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

