
W. Abramowicz (Ed.): BIS 2009, LNBIP 21, pp. 73–84, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Federated Product Search with Information Enrichment
Using Heterogeneous Sources

Maximilian Walther, Daniel Schuster, and Alexander Schill

TU Dresden, Department of Computer Science, Helmholtzstraße 10,
01062 Dresden, Germany

{walther,schuster,schill}@rn.inf.tu-dresden.de

Abstract. Since the Internet found its way into daily life, placing product
information at the user’s disposal has become one of its most important tasks.
As information sources are very heterogeneous concerning the provider as well
as the structure, finding and consolidating the information for generating an
all-embracing view on a product has become an important challenge. An auspi-
cious approach for resolving the emerged problems are federated search tech-
niques enriched with Information Extraction and Semantic Web concepts. We
investigate possibilities for federated product search combining heterogeneous
source types, i.e., structured and semi-structured sources from vendors, produc-
ers and third-party information providers. The developed approach is evaluated
with a Ruby on Rails implementation.

Keywords: Federated Search, Information Extraction, Ontology, Product
Information Management.

1 Introduction

Since the permeation of daily life by the WWW, product information search has be-
come one of the central tasks carried out on the Internet. Producers increasingly real-
ized the importance of presenting their products and associated information in an
appealing and informative way online. Additionally, several types of online malls
have emerged which today are widely used by consumers as starting points for col-
lecting product information. Due to the fact that providing information on the Internet
has become cheap and feasible, also average Internet users have started to enlarge the
basis of information by adding so-called user-generated content. As a consequence
the Internet now holds many different information sources created by different
authors and structured in many different ways. Regarding the amount and the hetero-
geneity of product information on the Web, the task of information retrieval for one
special product involves extensive research including the usage of different vendor,
producer and 3rd-party websites.

Unfortunately most sources hold assets and drawbacks considering information
quality. For instance, producer websites provide complete and correct information, but
use advertising text for promotion purposes. Lexica like Wikipedia contain goal-
oriented and fresh information, but are not immune to biased product characterizations.

74 M. Walther, D. Schuster, and A. Schill

As per description there are a lot of criteria for information sources to be called
ideal. Table 1 presents all conditions that an ideal information source should fulfill.

Table 1. Requirements for an ideal product information source

Obviously no current product information source on the Internet is able to fulfill all

of these criteria. Instead a combination of data from many different product informa-
tion sources could provide an opportunity for satisfying them.

Federated search is the keyword in this context, as it allows the user to gain an in-
tegral overview for the product of interest without requesting each information source
separately. Additionally, the federation enables access to information sources the user
would not have been searching himself. Current providers of applications for simulta-
neous search already allow the access of structured information sources typically
offered by Web Services. However, important additional information for a special
product is to be found in semi-structured and unstructured sources like producer web-
sites and websites consisting of user-generated content.

We contribute a reference architecture for the heterogeneous federated consumer
product search as well as methods for the extraction of semi-structured information
from different information source types. The introduced architecture consolidates
information from these sources to offer an all-embracing product view to the user.

The Fedseeko system is a research platform, which implements the described ar-
chitecture. It uses multiple vendors for building a searchable information basis and
enriches the given information automatically by details from other sources, such as
producer websites or 3rd-party information providers using information extraction (IE)
methods. Experimental results show the feasibility of the developed approach.

2 Related Work

In the field of federated product search, Shopbots [1] emerged already in the mid 90’s
and were the first step towards integration of multiple vendors in a federated product
search using screen scraping. Scraping vendor websites caused a number of problems
because it is error-prone and delivers incomplete information. The IPIS system [2]
overcomes these problems as it uses Web Service interfaces and ontology mapping as
key technologies. The user creates a semantic product query with the help of product
categories. Those categories are organized in ontologies to enable an easy mapping
between different information providers. As a main drawback, this approach relies on
the assumption that each shopping mall has Web Service interfaces and is able to

- Completeness All available information is included.
- Correctness All included information is correct.
- Freshness All included information is up-to-date.
- Neutrality The information is not biased.
- Goal Orientation All included information is relevant.
- Comparison Information from similar products is available.
- Verification Information is backed by corresponding references.

 Federated Product Search with Information Enrichment Using Heterogeneous Sources 75

process semantic queries. A more lightweight approach is the shopinfo.xml standard
[3]. Shop operators may define a shopinfo.xml that can be downloaded by any shop-
ping portal easily, providing both RESTful Web Services as well as downloading an
XML product file for shop federation. Unfortunately, information relevant for buying
decisions is not restricted to multiple vendors, but also comprises information on
producer websites as well as third-party information, additional data, knowledge or
services [4].

The approaches pictured above offer means to consolidate vendor product informa-
tion, i.e., information provided by online malls like Amazon. Concerning the vendor
sources, our approach combines and dilates these works, as we extend the federated
product search from integration of different shops with similar interfaces to federation
of heterogeneous vendor sources. An adapter-like approach offers the possibility to
integrate sources accessible by Web Services as well as Web front ends. Therefore we
introduce a generic wrapper adopting specific Web information extraction techniques.
Additionally we allow the integration of 3rd-party websites by offering means of in-
formation extraction from these sites.

Product information on producer websites often is presented in a semi-structured
manner. Extracting and modeling this information is subject to many research ap-
proaches as well. Wong et al. [5] describe an unsupervised framework enabling both
the extraction and normalization of product attributes from web pages containing
semi-structured product information. A number of algorithms are adopted to catego-
rize extracted text fragments and map found attributes to corresponding reference
attributes depending on the current product domain. Lermann et al. [6] also picture
techniques for extracting semi-structured product information from websites.
The developed algorithms are based on AUTOCLASS [7] and ALERGIA [8] and are
able to identify page templates and detect table structures to extract information from
any semi-structured web page, if only some pages using the same template were given
before. Unlike [5], table contents are not directly normalized, that is, the extracted
attributes are not matched with reference attributes. Brunner et al. [9] present possi-
bilities to overcome the problem of redundant data management. They describe an
architecture for integrating general business object information in ontology entities
using different layers of the MOF-model. A highly performant maintenance of ontol-
ogy information in databases is described as well.

The described approaches offer different possibilities to extract and normalize
product information from websites. We introduce alternative methods, especially for
the extraction of semi-structured information from producer websites, enabling the
extension of the user’s product information base with highly relevant and precise
information directly from the manufacturer.

The federation of heterogeneous sources using different types of information
extraction described in this paper is first presented in [10], providing enrichment of
information from online shopping malls with information from product detail pages of
producers. We extend this approach to a more generic architecture in this paper.
While [10] is restricted to structured vendor information and semi-structured producer
information, the work presented in this paper is able to integrate structured as well as
semi-structured information from vendors, producers and 3rd-parties in the federated
search process.

76 M. Walther, D. Schuster, and A. Schill

3 Architecture

Fedseeko’s general system architecture is shown in Figure 1. As can be seen on the
right side of the figure, Fedseeko is able to query three different types of information
sources. These sources are offered by vendors, producers and 3rd-parties. Vendors are
online malls like Amazon.com or Buy.com that are able to deliver some basic infor-
mation about products. Producers are the corresponding manufacturers of the investi-
gated product. They deliver technical specifications of products with a high degree of
credibility. 3rd-parties are information providers delivering product information that is
often generated by average Internet users. This includes forums, blogs, and test pages.
3rd-party providers also include any dynamic source of product information that is not
maintained by vendors or producers, such as search engines. Thus 3rd-parties offer
content of varying structure and quality.

Fig. 1. Architecture of Fedseeko

Consumers access the system through a browser mostly asking for a product list or
a product detail page. These requests are executed using the “search” and the
“look_up” method respectively. The search method allows providing appropriate
parameters, such as a search string, a category, a sort type, etc. The look_up method
depends on a corresponding product ID that must be delivered to find the product in
the current vendor catalogue. For executing these methods Fedseeko queries one or
more adapters that translate the query into a request, which can be understood by the
respective vendor.

Using the vendor API the request is sent. When the vendor response arrives, the
information is mapped to an internal model and presented to the user. Fedseeko then
automatically tries to enrich the vendor information with producer and 3rd-party
information. Therefore the Localization API finds out product pages on producer
websites using search engines. The information from these pages is extracted, mapped
to an internal model using mapping ontologies and added to the user’s information
base. All tied 3rd-party sources are also queried and available information is presented
to the user as well.

 Federated Product Search with Information Enrichment Using Heterogeneous Sources 77

The most convenient way for retrieving information is querying Web Services pro-
vided by the information sources. As not all sources offer a Web Service, Fedseeko
alternatively uses a web scraping wrapper to extract vendor, producer and 3rd-party
information. The following chapters will explain the query mechanisms in more detail.

3.1 Integration of Vendor Information

The vendor adapters have to define the before mentioned methods “search” and
“look_up” to be included into the system. Then, Fedseeko automatically realizes the
integration of a new source and extends the user interface with additional tabs to
make the new vendor information accessible. Thus, adding a vendor that provides its
product information through a Web Service is made as comfortable as possible, as the
adapter is the only thing that has to be created by a user.

An example for a substantial Web Service providing vendor information is the
Amazon Associates Web Service (AAWS) [11]. Fedseeko includes the AAWS by
providing an adapter that integrates the information through mapping mechanisms
allowing the consistent access to product information by controller and model.

Web Scraping Wrapper. For all sources that do not offer Web Services, like Con-
rad.com or ELV.com, a powerful wrapper was designed that allows Fedseeko to ac-
cess online malls through web scraping mechanisms. A general purpose adapter for
querying these vendor sources offers the functionalities described above. Different
parameter values of this special adapter allow the dynamic integration of scraped
vendor sources into Fedseeko. These values are saved to the database and consist of
details like the structure of the online mall’s URL, the parameters available for the
product information source and where to add those parameters to the source URL.
The database also holds information about the structure of the result page, which is
described by regular expressions, that are better suitable for scraping online malls
than XPath-queries, as the HTML-code of online malls is not always 100% clean.

Every user should be able to extend the system’s vendor source pool by adding ad-
ditional vendor descriptions. As the users cannot be expected to be well versed in the
exposure to URL structures and regular expressions, the web interface offers an easy
modality to describe the layout of new vendor URLs and result pages. The process is
presented in the following.

To create a generic URL for querying a particular vendor, the user has to provide
four different values. The first two values consist of URLs generated by the vendor
when querying the corresponding web page for a product with a product name con-
sisting of two words, e.g. “ipod nano”. The provided URLs must differ in the page
number, e.g. page one and two. The other two values are the used query words, in this
case “ipod” and “nano”. Then, by comparing the provided URLs and query words,
Fedseeko is able to generate a generic request URL with special flags at all points of
interest, being the page spot (where to add the page number), the product spot (where
to add the product query) and the separator (used for separating query words in the
URL). This generic URL is saved to the database for later use.

The result page is described by regular expressions. To create the regular expressions, the
user has to provide some attribute values. These values consist of the attribute name (e.g.
“price”), a unique string in front of the attribute value (e.g. “<td class=\"imageColumn\"

78 M. Walther, D. Schuster, and A. Schill

width=\"123\">”) and a unique string behind the attribute value (e.g. "<span
class=\"aliasName\">"). Additionally the block containing the total set of attributes
for one result product has to be described in the same way. Holding these values,
Fedseeko creates a set of regular expressions that enable the system to extract all
product information from result pages as long as the vendor’s layout is not changed.
However, studies showed that the description of vendor layouts by regular expres-
sions makes the system more resistant to layout variations than for instance XPath
queries would.

3.2 Integration of Producer Information

After fetching the vendor information from an arbitrary information source, the prod-
uct can be presented to the user. As the vendor information only consists of few de-
tails, Fedseeko is able to enrich this data with details from producer websites.

For dynamically locating additional information sources like product information
pages on the websites of corresponding producers, the following algorithm was im-
plemented in the Localization API:

producer_page = query(producer_name + " site:com")[0].root_domain
product_page = nil
while(!product_page) do
 product_page = query(product_name + " site:" + producer_page)[0]
 product_name.vary
end

In the first step a search engine is queried for the producer’s website by using its

name, which is known from the vendor information, and a restriction to the domain
“com”. For instance, if searching for a Nikon camera, the query would look like
“Nikon site:com”. The first result in this case is “http://www.nikonusa.com”. The
system then removes all parts of the URL except the root domain, resulting in
“nikonusa.com”. In the second step the search engine is queried for the product name
using the previously retrieved producer website to make a hard restriction on the
search results. For instance a query for a Nikon camera could look like this: “Nikon
D40 6.1MP Digital SLR Camera Kit with 18-55mm site:nikonusa.com”. By this
means the system finds the product website among all the producer’s websites. As the
product title may not be spelled correctly, Fedseeko tries out different variations of
the title elements until it discovers the right page. The producer homepage as well as
the product presentation page from the producer are delivered to the user interface.

Now the producer adapter tries to extract product information from a list or table in
the product page using the scRUBYt!-API [12]. For being able to do this, correspond-
ing XPath-queries are required. The query set consists of an absolute base query for
locating the table in the page and several relative queries for each column of the table.
Most producers present their products in a uniform manner. Thus a set of queries is
only required once per producer. To generate the XPaths, Fedseeko demands one set
of example data for a random product of this producer from the user. For example, if
the user examines a Nikon camera, he follows the product page link provided by
Fedseeko to go to Nikon’s detail page. There he extracts the items “Image Sensor

 Federated Product Search with Information Enrichment Using Heterogeneous Sources 79

Fig. 2. Extracting and mapping product information

Format” and “DX” from the website and posts this information together with the
address of the producer’s mapping ontology into a form provided by Fedseeko. Then
the system analyzes the page and finds the provided strings.

To avoid problems of different encodings between example data in the website and
Fedseeko, the Levenshtein distance [13] is used to compare the extracted data with
the different elements of the examined website. After the example data set was found,
Fedseeko calculates the corresponding set of XPath-queries and saves them to the
local database.

The next time a user investigates a product from Nikon, Fedseeko automatically
finds the table information and extracts it. If no table is found (structured product
information is often presented in an extra tab of the product page) the system is able
to follow some links from the found product page to increase its hit rate. The proce-
dure is displayed on the left side of Figure 2.

For having a consistent view on all product features from different producers, a
mapping ontology is used to map Nikon’s terminology to Fedseeko’s terminology.
The ontology holding this mapping information can reside anywhere on the Internet,
preferably on the respective producer website. It consists of a taxonomy of product
types with corresponding attribute names. Every attribute is extended with a
“owl:equivalentProperty”-clause that describes how to map found attribute names to
the internal terminology defined by Fedseeko’s product ontology. After providing the

80 M. Walther, D. Schuster, and A. Schill

address of the mapping ontology to the program, Fedseeko translates the producer’s
attributes into ontology-compliant terms. In a third step the attributes are translated
into Fedseeko’s terminology and finally used for creating an ontology containing all
extracted product information in a consistent format. The described algorithm is
shown on the right side of Figure 2. The created product ontology is stored in a public
folder to be used by external information systems such as search engines. It is also
analyzed by Fedseeko to include the generated product information in the web inter-
face (Figure 3).

Fig. 3. Product information on nikonusa.com and Fedseeko

3.3 Integration of 3rd-Party Information

The 3rd-party API enables Fedseeko to scrape static websites as well as querying and
scraping dynamic websites. Similar to the adapter pattern for vendor information
providers, a 3rd-party information adapter can be added for every source to query. The
adapter has to provide a method called “query” that accepts a product name, a
producer name and a category name, which then can be used in the adapter’s sole
discretion. The adapter should finally return a list of hashes with the query results that
is provided to the view. The view tries to extract a hash value with the key “url” for
every list element, which is visually put in the end of each data set. All other hash
keys are used as titles for their corresponding values. 3rd-party information adapters
can make use of the web form poster, which is a component to automatize the re-
trieval of information from dynamic web pages. Like the producer information
adapter, the web form poster uses scRUBYt! to enable efficient web scraping.

As an example, TextRunner [14] was tied to Fedseeko. TextRunner is a facts-based
search engine that is able to deliver assertions stated on different websites all over the
Web. These assertions often belong to field reports submitted by users that already
possess the product of interest. Thus, Fedseeko uses the adapter to provide the current
product’s name to TextRunner, which then generates a corresponding list of asser-
tions related to the product. The assertions as well as their source URLs are extracted

 Federated Product Search with Information Enrichment Using Heterogeneous Sources 81

Fig. 4. Screenshot of Fedseeko

and put into the results list. As the TextRunner adapter defines that every contained
hash has the two elements “review” and “url”, one data set presented in the view
consists of a description and a specifically marked source URL (Figure 4).

3.4 Incremental Page Reproduction

Fedseeko was implemented as a prototype providing all features described in this
paper. A screenshot of the current system is shown in Figure 4. The figure demon-
strates that the different steps of information consolidation are noticeable to the user,
because intermediate data is directly inserted into the web interface using Ajax tech-
nologies. This way a consumer does not need to wait for the completion of all tasks
before examining the additional information.

In Figure 4 five vendor adapters are plugged into Fedseeko, which caused the sys-
tem to generate five tabs for accessing each vendor respectively. Additionally the all-
tab offers the possibility to query all vendor information providers simultaneously.
The final product detail page shows producer information, which was extracted from
Nikon’s website using the generated XPath queries. Below are additional information
snippets from 3rd-party sources. Like the vendor adapters, Fedseeko automatically
detected all 3rd-party adapters and queried them for product information.

4 Evaluation

To get an idea of the system performance, the success rate of the information extrac-
tion from producer websites was evaluated (Table 2). To generate significant test

1 2 3

82 M. Walther, D. Schuster, and A. Schill

results, Fedseeko was used to query over one hundred products from the Amazon
catalogue. A gold standard was created for the whole product set to be able to bench-
mark the results generated by the system. The gold standard consisted of sets each
containing a product name, the corresponding producer name, the address of the pro-
ducer’s website, the websites presenting the product (if available) and a flag describ-
ing the existence of a semi-structured element on this website presenting product
details. For instance, if talking about digital cameras, a gold standard set consists of
the product name “D40”, the producer name “Nikon”, Nikon’s website “http:/
/www.nikonusa.com”, the product detail page address “http://www.nikonusa.com/
Find-Your-Nikon/ProductDetail.page?pid=25420” and a flag set to “true”, as the page
contains a table presenting technical information about the D40. The categories ana-
lyzed in this evaluation were “Technical” (e.g. Digital Cameras), “Leisure” (e.g. Bi-
cycles), “Body Care” (e.g. Shampoos) and “Media” (e.g. Books). All information was
gathered by hand. Then we queried Fedseeko for each of the products and checked, if
the gold standard could be fulfilled. The implemented algorithms showed good re-
sults, as 71% of existing product information tables could be found and analyzed.
Details of the evaluation are presented below.

Table 2. System performance concerning product information

 apage rlocalize atable rextract rtotal rlocalize*rextract
Technical 93% 82% 89% 84% 58% 69%
Leisure 83% 76% 68% 94% 41% 71%
Body
Care

99% 70% 40% 100% 28% 70%

Media 75% 87% 40% 100% 26% 87%
All 88% 78% 64% 91% 40% 71%

Following data was evaluated: the product page availability apage, which describes

how many products have a presentation page; the localization recall rlocalize, which
describes how many of the existing product pages were found by Fedseeko; the prod-
uct table availability atable, which describes how many of the existing product pages
own semi-structured information; the extraction recall rextract, which describes how
many of the existing information tables the system was able to analyze.

For system users it is interesting to know, in how many cases the system is actually
able to enhance the product information basis with information extracted from pro-
ducer pages. Thus, the total recall rtotal of the extraction procedure was calculated
using the following formula:

 rtotal = apage * rlocalize * atable * rextract . (1)

Obviously technical products are most appropriate for extending their information

base with the Fedseeko system (rtotal = 58%), while only 40% of randomly chosen
products can be enriched with producer information. This is mainly rooted in the high
amount of available product pages and semi-structured data for products of this kind.
Hence the system performance would receive a strong boost, if more producers offered

 Federated Product Search with Information Enrichment Using Heterogeneous Sources 83

product pages and product information tables. This is proven by the value rlocalize*rextract,
which describes the system performance independent from the immutable values apage
and atable. Here Fedseeko shows a noticeable performance, as more than 2/3 (71%) of
available producer information is found and extracted.

The remaining errors (29%) are caused by the system’s algorithms. For example, the
product’s producer website is not always localized correctly. This especially happens
when retrieving web pages of relatively unknown producers or companies with ambigu-
ous names. In this case the product page cannot be localized as well. If the producer’s
website could be localized correctly, sometimes the localization of the product page still
fails, as other websites on the producer’s domain may contain the product title and are
ranked higher by the queried search engine. Improvements in the localization algorithm
would meliorate the success rates considerably as the extraction process already shows
excellent results.

Nonetheless the evaluation shows that the overall recall is high enough to offer
valuable information to the user. Fedseeko is able to facilitate the creation of an
all-embracing view on a product of interest and thus supports the user in taking his
buying decision.

5 Conclusions

We have investigated an approach for federating multiple resources of disparately
structured types for consolidating product information from all over the Web. Design
patterns for integrating vendor information sources of different kinds were shown as
well as methods for the dynamic extension of this information by finding and query-
ing information sources from producers and 3rd-parties at runtime to create an
all-embracing view for the user. Evaluation showed the success of the approach.

Considering the criteria for an ideal information source mentioned in the beginning
of this paper, we have facilitated a noticeable improvement in the field of product
information search. The system is not yet delivering complete information about any
product of interest, but it collects a high amount of information from different
sources. The collected information can be seen as correct in the sense that enough
sources are queried to enable the user of the system to compare the retrieved informa-
tion and filter out conflicts. The information is fresh, as all sources are queried at
runtime. Still caching functionalities are envisioned for future versions to allow a
better performance when many users access the system simultaneously. The informa-
tion in its whole is neutral, as information snippets from different sources can be
compared with each other. The information is goal-oriented, because no advertise-
ment is included in the view. The comparison of viewed products with automatically
retrieved alternative products is not possible yet, as the system needs to be able to
identify exact product types for offering this feature. Verification in turn is given,
because every information snippet is delivered along with its source URL.

Future works should concentrate on the improvement of the localization algorithm
to gain a higher recall concerning the producer information. Additionally, the algo-
rithm for extracting information from product pages should be further automatized.
Another important feature would be the personalization of Fedseeko to increase the
usability of the system. At the moment an arbitrary amount of information sources

84 M. Walther, D. Schuster, and A. Schill

can be offered to the user, which could overcharge his receptivity. Instead, the system
should suggest some relevant information sources to first-time users and provide the
possibility to add and remove information sources in a simple manner for registered
users. A fair enhancement would also be the automatic adoption of source suggestions
according to recorded usage statistics.

References

1. Fasli, M.: Shopbots: A Syntactic Present, A Semantic Future. IEEE Internet Comput-
ing 10(6), 69–75 (2006)

2. Kim, W., Choi, D., Park, S.: Intelligent Product Information Search Framework Based on
the Semantic Web. In: 3rd ISWC, Hiroshima, Japan (2004)

3. Wolter, T., Schumacher, J., Matschi, M., et al.: Der shopinfo. XML-Standard. XML-Tage,
Berlin (2006)

4. Hepp, M.: The True Complexity of Product Representation in the Semantic Web. In: 14th
ECIS, Göteborg, Sweden (2006)

5. Wong, T., Lam, W., Wong, T.: An Unsupervised Framework for Extracting and Normaliz-
ing Product Attributes from Multiple Web Sites. In: 31st SIGIR, Singapore City (2008)

6. Lermann, K., Knoblock, C., Minton, S.: Automatic Data Extraction from Lists and Tables
in Web Sources. In: IJCAI, Seattle, USA (2001)

7. Cheeseman, P., Stutz, J.: Bayesian Classification (AUTOCLASS): Theory and results. In:
Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Cambridge (1996)

8. Carrasco, R., Oncina, J.: Learning Stochastic Regular Grammars by Means of a State
Merging Method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862.
Springer, Heidelberg (1994)

9. Brunner, J., Ma, L., Wang, C., et al.: Explorations in the Use if Semantic Web Technolo-
gies for Product Information Management. In: WWW, Banff, Canada (2007)

10. Schuster, D., Walther, M., Braun, I.: Towards Federated Product Search From Heteroge-
neous Sources. In: WWW/Internet, Freiburg, Germany (2008)

11. Amazon: Associates Web Service (2008), http://www.amazon.com/E-Commerce-
Service-AWS-home-page/b?ie=UTF8&node=12738641

12. Szinek, P.: scRUBYt! - A Simple to Learn and Use, yet Powerful Web Scraping Toolkit
Written in Ruby (2008), http://scrubyt.org

13. Sulzberger, C.: The Levenshtein-Algorithm (2008), http://www.levenshtein.net
14. Banko, M., Cafarella, M., Soderland, S., et al.: Open Information Extraction from the Web.

In: IJCAI, Hyderabad, India (2007)

	Federated Product Search with Information Enrichment Using Heterogeneous Sources
	Introduction
	Related Work
	Architecture
	Integration of Vendor Information
	Integration of Producer Information
	Integration of 3rd-Party Information
	Incremental Page Reproduction

	Evaluation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

