
MMC-BPM: A Domain-Specific Language for

Business Processes Analysis

Oscar González1,2,�, Rubby Casallas1, and Dirk Deridder2,��

1 Universidad de los Andes, TICSw Group, Cra. 1 N◦ 18A 10, Bogotá, Colombia
{o-gonza1,rcasalla}@uniandes.edu.co

2 Vrije Universiteit Brussel, SSEL, Pleinlaan 2, 1050 Brussel, Belgium
dirk.deridder@vub.ac.be

Abstract. Business Process Management approaches incorporate an
analysis phase as an essential activity to improve business processes.
Although business processes are defined at a high-level of abstraction,
the actual analysis concerns are specified at the workflow implementation
level resulting in a technology-dependent solution, increasing the com-
plexity to evolve them. In this paper we present a language for high-level
monitoring, measurement data collection, and control of business pro-
cesses and an approach to translate these specifications into executable
implementations. The approach we present offers process analysts the
opportunity to evolve analysis concerns independently of the process im-
plementation.

Keywords: Business Process Analysis, Domain Specific Language, Mon-
itoring, Measurement, Control.

1 Introduction

Nowadays business process management (BPM) technologies are frequently used
by companies to model, automate, execute and analyze executable business pro-
cesses [1]. Business processes facilitate the integration of human and techno-
logical resources in an organization, according to a set of activities that fulfill
certain policy goals. BPM has evolved from traditional workflow management
systems (WFMS) including a Business Process Analysis (BPA) phase in its life-
cycle. BPA is crucial to recover detailed feedback about how business processes
are being executed to facilitate their effective improvement.

BPM evidences the difficulty of analyzing the execution of processes froma busi-
ness perspective [2]. Firstly, while the process models are automated from a busi-
ness perspective in a workflow implementation, the analysis specifications are
realized from an implementation perspective. Although there are many tools and
techniques to analyze business processes (e.g.,business activitymonitoring) [3] [4],
� Funded by the Flemish Interuniversity Council (VLIR) and COLCIENCIAS “Insti-

tuto Colombiano para el Desarrollo de la Ciencia y la Tecnoloǵıa“.
�� Funded by the Interuniversity Attraction Poles Programme - Belgian State Belgian

Science Policy.

W. Abramowicz (Ed.): BIS 2009, LNBIP 21, pp. 157–168, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

158 O. González, R. Casallas, and D. Deridder

typically these solutions use their own languages to encode analysis concerns in
the implementation of the workflow system (e.g., BPEL or java). Secondly, typ-
ically these analysis specifications result in tangled and scattered knowledge in
the process code. These low-level mechanisms decrease the maintainability and
reusability capabilities and increase the complexity because analysis concerns
have to be repeated or adapted every time the process change. On the other
hand, current BPA solutions typically only perform analysis in terms of pro-
cess execution information (e.g., time running, current state) but not in terms
of the inner definition of basic activities (data). However, it is necessary to be
aware immediately when a critical attribute value is assigned in order to take
complementary decisions (e.g., allow data modification) (Section 2).

In this paper we present our approach to realize analysis concerns from a
business perspective and to automatically add them to an existing process im-
plementation. Our work focuses on supporting the explicit description of the
monitoring of business processes, the related measurement data collection, and
the definition of control actions over this data. We realize this in such a way that
our approach is independent of a particular process implementation language.
This is done by working directly on BPMN, which is a high-level standard nota-
tion that can be used by process analysts to generalize the analysis specifications
independent of specific implementation details. We define a domain-specific lan-
guage to specify analysis concerns in terms of domain concepts (i.e., BPMN) and
a mechanism to express the data used by the process model to improve analysis
capabilities. (Section 3). We provide the execution semantics of our language
with a suitable aspect-oriented workflow language (Section 4).

The processes analyzed a posteriori and other kind of analysis problems such
as verification or validation of processes, automatic improvements to the process
model, and predictions are out of the scope of this work (Section 5). We conclude
by discussing promising pathways for improving our work (Section 6).

2 Business Process Analysis Scenario

BPM supports processes modeling and derivation of executable definitions us-
ing multiple languages. We adopted the Business Process Modeling Notation
(BPMN) [6] for the business perspective and the Business Process Execution
Language (BPEL) [7] for the technical perspective since they are currently the
de-facto standard in these areas. BPMN can be interpreted as a domain specific
language (DSL) to describe business processes at a conceptual level. It bridges
the communication gap that frequently occurs between the design of a business
process and its corresponding implementation. However, BPMN suffers from a
lack of support to specify data-flow and the implementation of activities required
to automate processes [8]. BPMN models can be translated into an executable
model such as BPEL, in which process instances are enacted by workflow engines.

This section introduces a Loan Approval Process as a running example [7].
In addition, we present a concrete scenario describing a number of analysis re-
quirements, and the problems that users face to realize such requirements.

MMC-BPM: A Domain-Specific Language for Business Processes Analysis 159

2.1 Case Study: A Loan Approval Process

The Loan Approval process starts with a loan request, where the client uses the
bank′s webpage to introduce personal information and the amount requested.
After this, the process executes three activities to decide if the request is ap-
proved or rejected. The first activity in the series is a task that invokes a Web
service, which evaluates the information provided by the client. This activity is
based on a set of business rules defined by the bank. For example, if the client in-
come is less than 10% of the requested amount then the loan request is rejected;
if the amount is less than $5000 then the loan request is approved. The second
activity, which is executed in parallel with the previous one, is a subprocess that
validates the loan viability by evaluating the risk associated with the requester.
This subprocess seeks advice from a credit entity and validates the authenticity
of the data provided by the client. The third activity merges the outputs of the
previous two activities and consults a loan expert who defines the approval deci-
sion, which is stored in a variable named requestState. The process is depicted in
Figure 1 using BPMN notation. This example introduces process elements such
as a split, a merge, a subprocess, a set of activities, and two decision gateways.

Lo
an
A
pp
ro
va
l

Fig. 1. Loan Request and Approval Process

This BPMN model can be translated into an executable process implementa-
tion (e.g., BPEL), thus the process can be automated [11].

2.2 Business Process Analysis Requirements

Once the loan process is automated, the process analysts require feedback during
process execution to enable its improvement. For example, based on feedback
they could maximize the number of approved loan requests by adapting the
business process constraints used by the EvaluateRequest activity. In order to
support analysis activities, the following requirements are applicable:

1. Monitoring events during process execution. It is for example necessary to
obtain the state of the loan request variable (requestState) for each loan pro-
cess instance when the request is approved or rejected. This behavior occurs
when the loan request variable is updated in the NotifyDecision activity.

160 O. González, R. Casallas, and D. Deridder

2. Creating new measurement data associated with process execution concepts
and domain-specific concepts. Measurement data is constructed by using pro-
cess execution data as well as existing measurement data. For example, the
process analysts require constructing new domain-specific metrics such as
accepted/rejected requests, total requests, accepted/rejected requests ratio.

3. Defining control rules using measurement data to understand process exe-
cution. For example, the process analysts define a control rule to compute
the defined measurement data and to verify when the rejected requests rate
is higher than 50%, which means that the causes for rejection need to be
verified (e.g., the requested amount is too high). As soon as this behavior is
present in the process, a control action can be taken. For example by noti-
fying this situation to the quality assurance manager to allow for manually
taking the corrective actions to improve the process (e.g., adapt a business
to define that the requested amount to automatically approve a request is
$4500, instead of $5000) .

3 The MMC-BPM Language

MMC-BPM is a Domain Specific Language to complement business process mod-
els with monitoring, measurement and control (MMC) concerns. The language
offers a declarative specification in which analysts describe what the analysis
concern does instead of describing how it is implemented.

An MMC model defines the analysis concern associated with a target pro-
cess from a specific observation point defined by the analysts. For example, an
administrative stakeholder can be interested in analyzing the process using met-
rics such as rejected loan rates, while a quality control stakeholder could be
interested in analyzing the process using time-related metrics such as average
processing time. An MMC specification contains three main blocks to group the
language constructs: the Data block, the Event block, and the MMCRule block.
The code in Figure 2 illustrates how to specify the requirements presented in
the case study using our MMC-BPM language. This specification corresponds
to a specific observation point of a loan expert (line 1). We refer to this analysis
specification throughout the section to illustrate our language elements.

3.1 Data Block

A process analyst uses the data block to define a) the data manipulated in the
process and their types, and b) new measurement data required to analyze the
process (Figure 3).

The MMC-BPM language provides a set of constructs to describe the data
associated with the process model and with the elements in it (e.g., Activities).
This data model facilitates the use of process information within the analysis
specification. For example, an analyst can describe that the requestState vari-
able is associated to the NotifyDecision activity. Note that the data model is
specified externally to the MMC model. As a consequence it can be reused in

MMC-BPM: A Domain-Specific Language for Business Processes Analysis 161

1 MMCspec QualityView process LoanApproval
2 //Data
3 import dataTypes LoanProcess.xsd;
4 include data LoanProcess.pdata;
5
6 int AR; int RR; int TR; double RRA; double RRR;
7 //Events
8 event requestStateChange parameters boolean request;
9
10 onChange data.NotifyDecision.requestState
11 generates requestStateChange using data.NotifyDecision.requestState;
12 //Rules
13 mmcrule UpdateRequestState onEvent requestStateChange do
14 TR = TR + 1;
15 if !(event.request) then
16 RR = RR + 1; RRR = RR / TR;
17 else
18 AR = AR + 1; RRA = AR / TR;
19 endif
20 if RRR*100 > 50 then
21 notify 'quality@bank.com' 'RRR is too high' 'review the log.';
22 endif
23 endRule
24 endMMC

Fig. 2. Monitoring, Measurement and Control Specification for the Loan Process

Data ::= ProcessDataTypes ProcessData (MeasureConcept)*;
ProcessDataTypes::= "import" "dataTypes" dataTypesFile=ID ".xsd" ";";
ProcessData ::= "include" "data" dataFile=ID ".pdata" ";" ;
MeasureConcept ::= type=DataType measureName=ID ";";
DataType ::= (SimpleType | ComplexType | CollectionType);
SimpleType ::= ("string" | "boolean" | "int" | "float" | "double");
ComplexType ::= complexDataType=ID;
CollectionType ::= "<" (simpleType=SimpleType | complexType=ComplexType)">";

Fig. 3. EBNF specification of the Data Block

multiple analysis specifications. The MMC-BPM language references the data
model using the include data <dataFile> clause (Line 4 in Figure 2).

In addition to the data model there is also a data type model, which de-
termines the data types associated with the process data. We assume that the
process data type model is defined using an XML Schema language. For ex-
ample, the schema representing process data types can contain a complex data
definition named Client containing a sequence of elements such as name, iden-
tification, and gender with their associated primitive data types. The data type
model is referenced by using the import dataTypes <dataTypesFile> clause
(Line 3 in Figure 2).

Measurement data defined in this specification is general to all the process
instances. A measurement concept (MeasureConcept) is defined describing the
name of the measurement data (measureName) and its data type (DataType).
The MMC-BPM language provides a set of primitive data types (SimpleType)
such as: string, int, float, boolean and double. For example, line 6 in Figure 2
illustrates the definition of the accepted request (AR) measurement concept using
an int data type. Since business processes contain more complex data structures
(e.g., Loan, Client), the MMC language facilitates associating complex data
types (ComplexType) and collections (CollectionType) to the measurement data.

162 O. González, R. Casallas, and D. Deridder

A complex data type is related to one of the structures defined in the process data
types model. Our DSL supports the definition of generic metrics (e.g., duration,
count, and resource) that are useful for any kind of process analysis and domain-
specific metrics (e.g., total number of rejected loans) that are only useful in a
particular business domain.

3.2 Event Block

The Event block represents elements of the process domain used in the definition
of analysis rules (for the purpose of monitoring) and the specific points where
these rules are connected to the process model (Figure 4). A ProcessEvent is used
to define the moment when a rule must be triggered as a result of an expected
behavior (e.g., an activity started) in the process execution. The MMC-BPM
language allows grouping multiple process events in a concept named LogicEvent.
This defines the information required to execute a rule.

Logic events detach rules from events, which fosters reuse. Thus, multiple pro-
cess events can be associated with the same rule. For example, a process analyst
can define two process events to retrieve the start and end time of all process
activities. Thus, creating a rule for each process event, the code for computing
the total processing time will be scattered in the analysis specification. The logic
event makes it possible to modularize the rule code, which avoids putting cross-
cutting code in the analysis specification. This feature of the language separates
what users want to do from how to do it.

Event ::= (logicEvent=LogicEvent)+ (processEvent=ProcessEvent)+;
LogicEvent ::= "event" eventName=ID "parameters" ParameterSet ";";
ParameterSet ::= parameter=Parameter("," parameter=Parameter)*;
Parameter ::= type=DataType parameterName=ID;
ProcessEvent ::= executionEvent = (ControlFlowEvent|DataFlowEvent)
 "generates" eventName=ID "using" ParameterValueSet ";";
ControlFlowEvent ::= executionEvent=ControlExecutionEvent BPMNModelIdentifier;
ControlExecutionEvent::= ("onStart" | "onFinish")
BPMNModelIdentifier ::= "process""."bpmnElementName=ID;
DataFlowEvent ::= executionEvent=DataExecutionEvent DataModelIdentifier;
DataExecutionEvent ::= ("onChange" | "onMessage" | "onAlarm");
DataModelIdentifier ::= "data"["."bpmnElementName=ID]"."attributeName=ID;
ParameterValueSet ::= ParameterInvocation(","ParameterInvocation)*;
ParameterInvocation ::= (DataModelIdentifier | MonitorInvocation | Literal |
 SystemInvocation | EventInvocation);
MonitorInvocation ::= "MonitorModel""."measureName=ID [InvocationType
 parameterValueSet=ParameterValueSet];
InvocationType ::= (invocationType="setValue"| invocationType="getValue");
SystemInvocation ::= (service="TimeSystem");

Fig. 4. EBNF specification of the Event Block

Event blocks must contain at least one logic event and at least one pro-
cess event. A logic event is defined using the event <eventName> parameters
<ParameterSet> clause. The eventName identifies the event that will be used
by a rule. The ParameterSet holds the information the logic event requires. Each
Parameter contains a name and its corresponding DataType. Line 8 in Figure 2
illustrates a logic event named requestStateChange, which has a boolean param-
eter called request.

MMC-BPM: A Domain-Specific Language for Business Processes Analysis 163

A process event describes a specific point in the process execution where it is
necessary to a) capture process information, and b) generate a logic event assign-
ing the retrieved information to the logic event parameters. This is done in the
MMC-BPM language using the <executionEvent> generates <eventName>
using <ParameterValueSet> clause. Figure 2 (lines 10-11) illustrates a process
event that generates the logic event mentioned above when the variable request-
State (associated with the activity NotifyDecision) is updated. The parameter
of the logic event takes the value of this variable.

a) Capture Process Information. The MMC-BPM language offers the concept
of an executionEvent to describe a relevant process execution behavior that we
want to be aware of (i.e., onStart, onFinish, onChange, onMessage, onAlarm).
These execution events are defined in terms of process domain concepts without
any specific implementation dependency. Our MMC-BPM language uses a subset
of the vocabulary provided by the process domain model (BPMNModelIdenti-
fier) or the process data model (DataModelIdentifier) to specify elements that
the execution events monitor (i.e., Activity, Data, IntermediateMessage). Pro-
cess elements can be referenced using the process.<bpmnElementName> clause,
where the bpmnElementName element can reference a unique process element
(e.g., NotifyDecision). Process data elements can be referenced using the data.
[<bpmnElementName>].<attributeName> clause, where the attributeName ref-
erences an attribute associated with a process element. Although we describe
only some of the possible process elements and execution events available, the
monitoring specification can be easily extended.

b) Generate a Logic Event. Once the process information is captured, a process
event indicates which logic event must be generated (eventName). The param-
eter values (ParameterValueSet) of the logic event are assigned indicating a set
of parameter invocations (ParameterInvocation). These parameter invocations
can assign a value directly (e.g., number, string), retrieve information from the
process data model (DataModelIdentifier) or the monitoring data model (Moni-
torInvocation), or capture information from a system service (SystemInvocation).
A monitor invocation facilitates accessing measurement data stored in the MMC
data model. This is done using the MonitorModel.<measureName> clause with
an optional set of parameter invocations (ParameterValueSet).

3.3 Rule Block

The rule block enables analysts to define actions to measure the process and to
control its execution.

In our language, the mmcrule <ruleName> onEvent <eventName> do clause
allows specifying the name of the rule and the logic event that will trigger the
rule. The body of a rule can contain a) a set of actions, and b) a set of condition-
action statements (Figure 5). Figure 2 (lines 13-23) illustrates the rule code for
the case study.

164 O. González, R. Casallas, and D. Deridder

MMCRule ::= "mmcrule" ruleName=ID "onEvent" eventName=ID "do"
 actionSet=ActionSet (conditionActions=ConditionAction)*
 "endRule";
ActionSet ::= (actionStatement=ActionStatement)*;
ActionStatement ::= Assignment | ManagementAction;
Assignment ::= measureName=ID "=" domainExpression=DomainExpression ";";
DomainExpression::= invocation+=Invocation(Oper invocation+=Invocation)*;
Invocation ::= (ParameterInvocation | EventInvocation);
EventInvocation ::= "event""." parameterName=ID;
ManagementAction::= NotifyAction | StoreAction | TraceAction ;
NotifyAction ::= "notify" destinatary=STRING subject=STRING content=STRING";";
StoreAction ::= "store" monitorInvocation=MonitorInvocation ";";
TraceAction ::= "trace" log=STRING path=STRING ";";
ConditionAction ::= "if" ifStatement=ConditionSet "then" thenStatement=ActionSet
 ["else" thenStatement=ActionSet] "endif";

Fig. 5. EBNF Specification of the Rule Block

a) Actions. The ActionSet denotes a combination of action statements that
can invoke an assignment (Assignment) to compute measurement data or take
a management action (ManagementAction) to improve the process.

The measurement data is built using the <measureName> = <Domain
Expression> clause. The measureName corresponds to a measurement data pre-
viously defined in the data block. The DomainExpression represents the arith-
metical relation between a ParameterInvocation set or an EventInvocation set.
The event.<parameterName> clause defines an event invocation. The event ex-
tracts the information required by the rule from a logic event definition. This
measurement data facilitates process analysis in the particular business domain
since these specifications are data-centric. The process execution data and mea-
surement data are made persistent in the MMC data model for further analysis.
Figure 2 illustrates the assignments to the measurement data using metrics stored
in the MMC data model and other domain-specific metrics previously defined.

Process analysts can define management actions such as 1) storing monitoring
concepts in the MMC model for visualization or query purposes (store), 2) the
creation of a Log with the information retrieved and constructed in the applica-
tion of the rule (trace), and 3) the notification of certain events to other external
entities as for example the notification via mail (notify). Line 21 in Figure 2 il-
lustrates a management action code for the case study, which notifies the quality
assurance area when the rejected requests rate is higher than 50%.

b) Condition-Action statements. Process analysts can indicate the special
behavior and the corresponding action to be taken in the Rule block to analyze
the process. This is done with Condition-Action statements.

A control specification describes the ConditionSet that must be satisfied to
execute some ActionSet. A set of conditions denotes a logic combination of ex-
pressions (DomainExpression). These represent an arithmetical relation between
ParameterInvocation set or an EventInvocation set. The set of expressions involve
a boolean expression, which triggers the set of management actions accordingly.

The language supports process analysis using evaluation statements over 1)
the measurement data, 2) the process execution information, and 3) the process
data. For example, Figure 2 (lines 15, 17, 20) illustrates the evaluation statements

MMC-BPM: A Domain-Specific Language for Business Processes Analysis 165

to verify the state of the loan request and the rejected requests rate percentage
to apply some actions. Other examples, for analyzing the process, involve the
classification of generic Service Level Agreement (SLA) metrics [9]. A business
SLA can state that loan requests with an amount over a certain threshold must
be rejected, and an IT SLA can state that 95% of the loan request must complete
within 72 hours.

4 Integrating MMC Concerns with the Business Process

This section briefly presents our approach to transform the MMC model into an
executable implementation. We transform the MMC model into (BPEL) aspects,
which are later merged with the BPEL base process [10]. We base our approach
on Model-Driven Engineering (MDE) technology [12].

4.1 Padus: An Aspect-Oriented Workflow Language

We use Padus, an aspect-oriented extension to BPEL, which allows introducing
crosscutting behaviour to an existing BPEL process in a modularized way [13].

The Padus language facilitates the definition of specific points during the
process execution where additional behaviour has to be added. These points
can be selected using a logic pointcut language, and the Padus weaver can be
used to combine the behaviour of the core process with the specified behaviour.
The new behaviour can be introduced by inserting it before or after certain
joinpoints defined by the pointcut, or it can replace existing behaviour by using
an around advice. The Padus language introduces the concept of in advice to add
new behaviour to existing process elements and provides an explicit deployment
construct to specify aspect instantiation in specific processes. The advice code
contains the extra behaviour that should be inserted, which is specified using
standard BPEL elements.

4.2 Encapsulating Executable MMC Rules

Figure 6a illustrates the transformation process from the high-level analysis spec-
ification to the executable implementation.

The input for the transformation is a) the analysis specification defining the
MMC rules, b) the BPMN process model representing the domain elements that
we want to refer in our language, c) the XML schema describing the data types
model associated with the process, and d) the process data model that describes
the data attributes associated with each process element.

The output of the transformation is a) the Padus aspects that represent the
MMC crosscutting concerns, b) the aspect deployment specification indicating
how the aspects are instantiated and composed to the base process, c) the weaver
java class that composes the base process and the aspects, d) the web services for
supporting management actions, accessing the monitoring data model, or access-
ing to system services, and e) the XML schema that describes the measurement
data defined in the language.

166 O. González, R. Casallas, and D. Deridder

BPMN
Process
Model

MMC
rule

Process
Data Types

Model

Process
Data

Model

Transformation

Aspect
Deployment
Description

Aspect
DefinitionAspect

DefinitionAspect
Definition

MMC
ruleMMC

rule

Aspect
DefinitionWSDL

Descriptor

a) MMC Model Transformation

Aspect
Deployment
Description

Aspect
DefinitionAspect

DefinitionAspect
Definition

Resulting
BPEL

process

Standar BPEL
Execution Engine

Static
weaver

BPEL
Process

b) Padus Weaver Architecture

Fig. 6. Transformation Process for the High-level Analysis Specification

Table 1. Analysis Specification into an Aspect Implementation

MMC-BPM language construct Output : Padus Implementation

MMC model
- Aspect defining the analysis specification
- Reference to the process model (BPEL code)

Data Reference to data definitions (BPEL code)

LogicEvent Joinpoint

ProcessEvent Pointcut

onStart Before advice

onFinish After advice

onChange, onMessage In advice

MMCRule Advice (BPEL code)

Table 1 details the relevant mappings from our analysis language to the aspect-
oriented programming implementation elements.

Figure 6b illustrates the Padus weaver architecture. The resulting artefact,
after applying the aspect deployment description, is a BPEL process that can
be deployed on a BPEL execution engine. We created an Eclipse plugin that
serves as an editor to define the MMC rules and to execute the transformation
process. The proposed MMC-BPM language and the model transformations rely
on the OpenArchitectureWare [14] environment as metamodeling framework.

5 Related Work

Several commercial BPM products offer solutions for business activity monitor-
ing (BAM) [15] [3] [4]. Typically, BAM solutions extract the information from
audit trails, in which process metrics are added to the process architectures for
analysis. In contrast, we propose a high-level language to describe, from a busi-
ness perspective and independently of specific implementation languages, the
process activities we want to monitor, the process and domain-specific metrics
we want to build, and rules we want to apply over this information.

MMC-BPM: A Domain-Specific Language for Business Processes Analysis 167

Other approaches use data mining and data warehouse techniques to cap-
ture the process execution information and to discover structural patterns for
identifying the characteristics (explanations) that contribute to determine the
value of a metric [16]. Our DSL allows end users to define evaluation state-
ments making explicit the behavior that they are interested in and providing
an implicit explanation of such situation. Moreover, our DSL allows defining
the relations between monitoring and process data to built new domain-specific
measures.

Other works [2] [5] [16] [17] introduce the idea to perform business process
management using taxonomies and ontologies to capture semantic aspects. The
authors of these works, as we do, consider analysis capabilities at the knowl-
edge level, the definition of domain-specific metrics, and subsumption relations
between concepts. The main difference is that our approach is focused on the
analysis of business process activities instead of using process mining techniques.
Process Mining aims at automatically discovering analysis information about
processes based on event logs. Our approach facilitates to perform a similar
performance analysis (measures) to the ones using a mining approach. Our ap-
proach can also be used to support the process mining approaches specializing
the management action trace to provide the facilities necessary for logging the
process and monitoring trail data in a structured way.

6 Conclusions and Future Work

Our approach helps in making the measurement variables and the associated
rules more transparent to the end user by explicitly modeling them with a do-
main specific language and within an integrated process data model. In contrast
to other approaches, domain-related metrics are easier to support because of the
data model that we use to describe data associated with the process elements
and the capabilities to define new measurement data. This high-level of abstrac-
tion facilitates the transformation of the analysis specifications into multiple
workflow implementations. Our aspect-oriented approach in the definition and
implementation of the analysis concerns offers process analysts the opportunity
to evolve them independently of the process implementation.

Using our MMC-BPM language increases the level of abstraction of the busi-
ness process analysis specifications at a conceptual level. In the future we plan
to advance our work in several areas. Firstly, we require a way to assess how
the MMC rules interfere with the process being executed. Secondly, it is neces-
sary to find a mechanism to instrument the process for supporting the analysis
specification done in terms of process data events. Third, we require defining a
mechanisms to tackle or at least manage co-evolution issues between of MMC
rules and the BPMN process model they refer to. Finally, as we consider that
multiple users can analyze the same process, we should investigate ways to detect
and resolve possible inconsistencies and conflicts that may arise.

168 O. González, R. Casallas, and D. Deridder

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process man-
agement: A survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.
(eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

2. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business
process management: A vision towards using semantic web services for business
process management. In: Lau, F.C.M., Lei, H., Meng, X., Wang, M. (eds.) ICEBE,
pp. 535–540. IEEE Computer Society, Los Alamitos (2005)

3. Miers, D., Harmon, P., Hall, C.: The 2007 bpm suites report – a detailed analysis
of bpm suites version 2.1, Business Process Trends (2007), http://www.bptrends.
com/

4. Lau, C., Peddle, S., Yang, S.: Gathering monitoring metrics to analyze your busi-
ness process, IBM (December 2007), http://www.ibm.com/us/

5. de Medeiros, A.K.A., Pedrinaci, C., van der Aalst, W.M.P., Domingue, J., Song,
M., Rozinat, A., Norton, B., Cabral, L.: An outlook on semantic business process
mining and monitoring. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS
2007, Part II. LNCS, vol. 4806, pp. 1244–1255. Springer, Heidelberg (2007)

6. OMG: Business process modeling notation specification - final adopted specification
(February 2006), http://www.bpmn.org

7. IBM: Business process execution language for web services (July 2002), http:

//www.ibm.com/developerworks/library/specification/ws-bpel/

8. Dubray, J.J.: The seven fallacies of business process execution, InfoQ (December
2004), http://www.infoq.com/

9. Castellanos, M., Casati, F., Dayal, U., Shan, M.C.: Intelligent management of slas
for composite web services. In: Bianchi-Berthouze, N. (ed.) DNIS 2003. LNCS,
vol. 2822, pp. 158–171. Springer, Heidelberg (2003)

10. González, O., Casallas, R., Deridder, D.: Modularizing monitoring rules in business
processes models. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM Workshops.
LNCS, vol. 5333, pp. 22–23. Springer, Heidelberg (2008)

11. Giner, P., Torres, V., Pelechano, V.: Bridging the gap between bpmn and ws-bpel.
m2m transformations in practice. In: Koch, N., Vallecillo, A., Houben, G.J. (eds.)
MDWE. CEUR Workshop Proceedings, vol. 261, CEUR-WS.org (2007)

12. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE Com-
puter 39(2), 25–31 (2006)

13. Braem, M., Verlaenen, K., Joncheere, N., Vanderperren, W., Straeten, R.V.D.,
Truyen, E., Joosen, W., Jonckers, V.: Isolating process-level concerns using padus.
In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
113–128. Springer, Heidelberg (2006)

14. OpenArchitectureWare (oAW) website, http://www.openarchitectureware.org
15. von den Driesch, M., Blickle, T.: Operational, Tool-Supported Corporate Perfor-

mance Management with the ARIS Process Performance Manager. Aris in practice
edn. (2006)

16. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.C.: Business
process intelligence. Computers in Industry 16(3), 321–343 (2004)

17. Pedrinaci, C., Domingue, J., Brelage, C., van Lessen, T., Karastoyanova, D., Ley-
mann, F.: Semantic business process management: Scaling up the management of
business processes. In: ICSC, pp. 546–553. IEEE Computer Society, Los Alamitos
(2008)

	MMC-BPM: A Domain-Specific Language for Business Processes Analysis
	Introduction
	Business Process Analysis Scenario
	Case Study: A Loan Approval Process
	Business Process Analysis Requirements

	The MMC-BPM Language
	Data Block
	Event Block
	Rule Block

	Integrating MMC Concerns with the Business Process
	Padus: An Aspect-Oriented Workflow Language
	Encapsulating Executable MMC Rules

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

