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Abstract. In this paper, a new memetic approach that integrates a Multi-
Objective Evolutionary Algorithm (MOEA) with local search for microarray 
biclustering is presented. The original features of this proposal are the consid-
eration of opposite regulation and incorporation of a mechanism for tuning the 
balance between the size and row variance of the biclusters. The approach was 
developed according to the Platform and Programming Language Independent 
Interface for Search Algorithms (PISA) framework, thus achieving the possibil-
ity of testing and comparing several different memetic MOEAs. The perform-
ance of the MOEA strategy based on the SPEA2 performed better, and its  
resulting biclusters were compared with those obtained by a multi-objective ap-
proach recently published. The benchmarks were two datasets corresponding to 
Saccharomyces cerevisiae and human B-cells Lymphoma. Our proposal 
achieves a better proportion of coverage of the gene expression data matrix, and 
it also obtains biclusters with new features that the former existing evolutionary 
strategies can not detect.  
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1   Introduction 

The study of complex interactions between macro-molecules during transcription and 
translation processes constitutes a challenging research field, since it has a great impact 
in various critical areas. In this context, the microarray technology arose as a fundamen-
tal tool to provide information about the behavior of thousands of genes. The informa-
tion provided by this technology corresponds to the relative abundance of the mRNA of 
genes under a given experimental condition. The abundance of the mRNA is a metric 
that can be associated to the expression level of the gene. This information can be  
arranged into a matrix, namely gene expression data matrix, where rows and columns 
correspond to genes and experiments respectively. Each matrix entry is a real number 
that represents the expression level of a given gene under a given condition.  

An important issue in gene expression data analysis consists in grouping genes that 
present a similar, or related, behavior according to their expression levels. The 
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achievement of this task helps in inferring the functional role of genes during protein 
transcription. Therefore, based on the data about the relations between genes and their 
products, the gene regulatory networks (GRNs) can be discovered.   

In general, during the process of identifying gene clusters, all of the genes are not 
relevant for all the experimental conditions, but groups of genes are often co-regulated 
and co-expressed only under some specific conditions. This important observation has 
leaded the attention to the design of biclustering methods that simultaneously group 
genes and samples [1]. In this context, a satisfactory bicluster consists in a group of 
rows and columns of the gene expression data matrix that satisfies some similarity 
score [2] in conjunction with other criteria.  

In this paper, we propose a memetic multi-objective evolutionary approach imple-
mented in the context of the PISA platform to solve the problem of microarray bicluster-
ing. Our technique hybridizes traditional multi-objective evolutionary algorithms 
(MOEAs) with a new version of a well-known Local Search (LS) procedure. To the best 
of our knowledge, this methodology introduces two novel features that were never ad-
dressed, or partially dealt-with, by other evolutionary techniques designed for this prob-
lem instance. The first contribution consists in the design of the individual representation 
that contemplates the mechanisms of opposite regulation. The other new characteristic is 
the incorporation of a mechanism that controls the trade-off between size and row vari-
ance of the biclusters. The rest of the paper is organized as follows: in the next section 
some concepts about microarray biclustering are defined; then, a brief review on existing 
evolutionary methods used to tackle this problem is presented; in Section 4 our proposal 
is introduced; then, in Section 5, all the experimental framework and the results are put 
forward; finally some conclusions are discussed.  

2   Microarray Biclustering  

As it was aforementioned, expression data can be viewed as a matrix Ε that contains 
expression values, where rows correspond to genes and columns to the samples or  
conditions, taken at different experiments. A matrix element eij contains the measured 
expression value for the corresponding gene i and sample j. In this context, a bicluster is 
defined as a pair (G, C) where G ⊆ {1, …, m} is a subset of genes (rows) and C ⊆ {1, 
…, n} is a subset of conditions (columns) [2]. In general, the main goal is to find the 
largest bicluster that does not exceed certain homogeneity constrain. It is also impor-
tant to consider that the variance of each row in the bicluster should be relatively 
high, in order to capture genes exhibiting fluctuating coherent trends under some set 
of conditions. The bicluster size is the number of rows f(G) and the number of col-
umns g(C). The homogeneity h(G,C) is given by the mean squared residue score, 
while the variance k(G,C) is the row variance [2]. Therefore, our optimization  
problem can be defined as follows: 
maximize  

( ) GGf =  . (1) 

( ) CCg =  . (2) 
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is the mean expression value over all the cells that are contained in the bicluster 
(G,C). The user-defined threshold δ represents the maximum allowable dissimilarity 
within the cells of a bicluster. In other words, the residue quantifies the difference 
between the actual value of an element egc and its expected value as predicted for the 
corresponding row mean, column mean, and bicluster mean. If a bicluster has a mean 
square residue lower than a given value δ, then we call the bicluster a δ-bicluster. The 
problem of finding the largest square δ-bicluster is NP-hard [2]. The high complexity 
of this problem has motivated researchers to apply various approximation techniques 
to generate near optimal solutions. In particular, evolutionary algorithms (EAs) are 
well-suited for addressing this class of problems [3, 4, 5]. 

3   Microarray Biclustering with Evolutionary Algorithms 

The first reported approach that tackled microarray biclustering by means of an EA 
was proposed by Bleuler et al. [5]. In this work, several variants are presented. They 
analyze the use of a single-objective EA, an EA combined with a LS strategy [2] and 
the LS strategy alone [2]. In the case of the EA, one novelty consists in a form of 
diversity maintenance that can be applied during the selection procedure. For the case 
of the EA hybridized with a LS strategy, they consider whether the new individual 
yielded by the LS procedure should replace the original individual (Lamarckian ap-
proach) or not (Baldwinian approach). As regards the LS as a stand alone strategy, 
they propose a new non-deterministic version, where the decision on the course of 
execution is made according to some probability.  

Regarding the EA, a binary representation for the individuals where each individual 
stands for a given bicluster is adopted, and independent bit mutation and uniform cross-
over are used. For the definition of the fitness function, they distinguish two cases: 
whether the EA operates alone or if it works together with the LS strategy. For the first 
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situation a better fitness value, obtained from the size of the bicluster, is assigned to 
those individuals that comply with the residue restriction. If the bicluster has a residue 
over a given threshold, namely δ, then a value greater than 1 is set. For the second case, 
as the residue constraint is considered by the LS strategy, they only look at the size of 
the biclusters for the fitness assignment. For the experiments, two datasets were used: 
Yeast [6] and Arabidopsis thaliana [7, 8]. The study of the results is organized consider-
ing whether the aim is to get a unique bicluster or a set of biclusters. For the analysis of 
a single bicluster, the evaluation is focused on the size of the biclusters, and the algo-
rithm that performed better was the EA combined with the LS method by means of an 
updating policy. For the second case of analysis, a comparison of the results as regards 
the covering of matrix E is performed, and the hybridized EA with diversity mainte-
nance combined with LS did better in this sense.  

Another approach, called SEBI for Sequential Evolutionary BIclustering, was later 
proposed by Divina and Aguilar-Ruiz [4]. In this work, an EA is presented where the 
individuals represent biclusters by means of binary strings. The main idea of this 
sequential technique is that the EA is run several times. From each run, the EA yields 
the best bicluster according to its size, row variance and overlapping factors. If its 
residue value (as defined by Chung and Church [2]) is lower than δ, then the bicluster 
is added into an archive that they call Results. Whenever this is the case, the method 
keeps track of the elements of the bicluster so as to use this information to minimize 
overlapping during the next run of the EA.  

As regards the details of the EA, the fitness function combines the aforementioned 
objectives by means of a non-Pareto aggregative function. Tournament selection is 
chosen and several options for the recombination operators were implemented. For 
the experimental studies, the EA was executed for two datasets: Yeast [6] and Human 
B-cells [9]. The comparison is performed against the biclusters found by Chung and 
Church as regards the covering of the whole gene expression matrix E. For the Yeast 
dataset, SEBI manages to cover 38% of E, while Chung and Church’s covers 81%. 
Regarding the Human dataset, SEBI covers 34% while Chung and Church’s biclusters 
cover 37%. The authors consider that these results can be explained as a consequence 
of the overlapping factor, since the consideration of this objective naturally goes in 
detriment of the other goals. 

Finally, Mitra and Banka [3] present a MOEA combined with a LS [2] strategy. 
This method constitutes the first approach that implements a MOEA based on Pareto 
dominancy for this problem. The authors base their work on the NSGA-II, and look 
for biclusters with maximum size and homogeneity. The individual representation is 
the same as in the previously introduced methods; and uniform single-point crossover, 
single-bit mutation and crowded tournament selection are implemented. The LS strat-
egy is applied to all of the individuals with a Lamarkian approach, at the beginning of 
every generational loop. The method is tested on microarray data consisting of two 
benchmark gene expression datasets, Yeast and Human B-cell Lymphoma. For the 
analysis of the results, a new measure called Coherence Index (CI) is introduced. CI is 
defined as “the ratio of mean squared residue score to the size of the formed biclus-
ter”. The biclusters are compared to those reported by Chung and Church and, in all 
the cases, Mitra and Banka’s results indicate a better performance in terms of the 
bicluster size, while satisfying the homogeneity criterion in terms of δ. However, as 
regards coverage, Chung and Church’s work produces better results.  
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4   Our Proposal 

The aim of our study is to use a MOEA for approximating the Pareto front of bi-
clusters from a given gene expression matrix, as this approach gives the best tradeoff 
between the objectives that we want to optimize. However, in view of the fact that the 
Pareto front also includes biclusters that do not satisfy the homogeneity restriction, we 
need to guide the search to the area where this restriction is accomplished. In that 
context, we apply a LS technique based on Chung and Church’s procedure after each 
generation, thus orienting the exploration and speeding up the convergence of the 
MOEA by refining the chromosomes. Besides, the results achieved by other authors 
[3, 5] reveal that MOEAs alone obtain poor biclusters. 

In order to consider inverted rows, we have extended the classical representation of 
a bicluster and we have also modified the genetic operators. Then, our proposal per-
forms over a double-sized search space, in contrast with the evolutionary biclustering 
methods found in the literature [3, 4, 5]. The importance of including these inverted 
rows resides in that they form mirror images of the rest of the rows in the bicluster, 
and can be interpreted as opposite co-regulated [2]. In this way, our proposal is able to 
find biclusters that the former evolutionary methods cannot detect. 

As regard to the implementation, the multi-objective strategy was built on the base of 
a platform called PISA [10]. PISA is a text-based interface for search algorithms. It 
splits an optimization process into two modules. One module contains all the parts that 
are specific to the optimization problem (e.g., evaluation of solutions, problem represen-
tation, and variation of solutions) and is called the Variator. The other module contains 
the parts of an optimization process which are independent of the optimization problem 
(mainly the selection process). This part is called the Selector. These two modules are 
implemented as separate programs which communicate through text files.  

For this work, we have designed a Variator specific for the microarray biclustering 
application, and we have combined it with the Selectors corresponding to the IBEA [11], 
NSGAII [12] and SPEA2 [13] optimization algorithms. The reason for the selection of 
these MOEAs is that they are the most recommended evolutionary optimizers in the 
literature. In this way, we will assess the MOEA that exhibits the best performance for 
the problem. In the following sections, we will describe the main features of the imple-
mented Variator and how the LS is incorporated into the search process.  

Individual’s Representation 
Each individual represents one bicluster, which is encoded by a fixed size string built 
by appending a string for genes with another bit string for conditions. The individual 
corresponds to a solution for the problem of optimal bicluster generation. If a string 
position (locus) is set to 1, it means that the relative row or column belongs to the 
encoded bicluster, otherwise it does not. To take into account the inverted rows we 
also considerer the addition of negative values in the string for genes. That is to say, a 
locus of the string is set to -1 when the relative inverted row belongs to the encoded 
solution. Figure 1 shows an example of such encoding for a random individual. 

-1 1 0 0 -1 1 -1 1 0 …………… 1 0 0 1 0 0 1 0 1 1 0 …………… 0 0
Genes Conditions  

Fig. 1. An encoded individual representing a bicluster 
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Genetic Operators 
It is important to give a brief description of the genetic operators, since they have a 
key influence in how the search is performed by the MOEA. 

Mutation. This operator is implemented in the following way: first it is determined 
if the individual needs to be mutated by means of the probability assigned to the op-
erator. In such case, a position of the string is selected at random, then proceeding to 
alter the locus in question. If the resulting position is a column, the corresponding 
locus is simply complemented. On the other hand if the resulting position is a row, 
then we have two cases: if the locus is set to 0 then it is set to 1, and the sign is deter-
mined with a probability of 0.5. If the locus is in on (1 or -1) we simply change the 
value to 0. 

Recombination. A two-point crossover was implemented with a little restriction: 
one random point is selected on the rows and the other random point is selected on the 
columns. In this way, we ensure that the recombination is performed over both the 
genes and the conditions subspaces. Then, when both children are obtained combining 
each one of the two parents’ parts (i.e. the ends and the center), the individual that is 
selected to be the only descendant is the non-dominated one. If both are non-
dominated, one of them is chosen at random. 

Multi-Objective Fitness Function 
As regards the objectives to be optimized, we observed that it was necessary to generate 
maximal sets of genes and conditions, while maintaining the “homogeneity” of the 
bicluster with a relatively high row variance. These bicluster features, conflicting to 
each other, are well-suited for multi-objective modeling. In that context, we decided to 
optimize the objectives defined by equations 1- 4 (see Section 3): the quantity of genes, 
the quantity of conditions, the row variance, and the mean squared residue. The first 
three objectives are maximized, while the last one is minimized.  

Local Search 
This subsection describes the LS procedure that hybridizes the selected MOEAs. The 
LS is applied into the Variator side to the biclusters that are selected by the Selector 
as the resulting individuals of each generation. Adding the LS to the Variator is the 
only way to hybridize a MOEA without altering the basic principles of PISA [10]. 
The greedy approach is based on Chung and Church’s work [2], with some modifica-
tions introduced in order to consider the row variance and the overall efficiency of the 
proposal. The algorithm starts from a given bicluster (G,C). The genes or conditions 
having mean squared residue above (or below) a certain threshold are selectively 
eliminated (or added) according to Algorithm 1. 

The main differences with Chung and Church’s implementation are the following:  

• In Step 3, we remove multiple nodes considering a different threshold, α.δ in-
stead of α.h(G,C). As a consequence, Step 5 is performed a smaller number of 
times with respect to the original proposal. This is useful because, with a proper 
setting of the parameter α, the CPU time needed to optimize a bicluster is de-
creased. This is possible without loosing significant precision of the algorithm.  

• In Step 9, we incorporated the row variance, adding the rows that will increase 
in a certain proportion the overall row variance of the individual.  
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• Finally, in the Steps 7-9, the original algorithm tries to add each row, each col-
umn and each inverted row, in that order. In our case, we first attempt to add 
each condition. This increases (on average) the amount of conditions of the re-
sulting bicluster since a column, in general, has more probability of being in-
serted in the solution if it contains less quantity of rows.  

Beside δ, two additional parameters need to be set for this algorithm. α determines 
how often multiple gene deletion is used. A higher α leads to less multiple gene dele-
tion and thus, in general, requires more CPU time. The other parameter is μ that es-
tablishes a relationship between the number of genes and the row variance of the 
bicluster. A bigger μ results in individuals with a higher row variance and a smaller 
size. If μ = 0, this step results equivalent to that of the original proposal. 

 

5   Experimental Framework and Results 

Two different goals were established for our study. First we need to determine which 
of the memetic MOEAs performs better in this class of problem. The analysis will be 
performed with the tools provided in Knowles et al. [14]. Then, we will compare the 
selected memetic evolutionary algorithm with the approach of Mitra and Banka [3] 
since, to the best of our knowledge, this is the only multi-objective evolutionary 
method for microarray biclustering found in the literature. 

Performance Assessment 
As it was aforementioned, the choice of the best memetic MOEA will be based on the 
results of the tools provided in Knowles et al. [14], which are well recognized in the 
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area of multi-objective optimization. The metrics applied in the evaluation of the 
MOEAs are the Dominance Ranking [14], the Hypervolumen Indicator −

HI  [15], the 
multiplicative version of the Unary Epsilon Indicator 1

εI  [16], and the R2 Indicator 
1

2RI  [17]. The Dominance Ranking is useful in the assessment of quite general state-
ments about the relative performance of the considered optimizers, since it merely 
relies on the concept of Pareto dominance and some ranking procedure. The Quality 
Indicator I measures the number of goals that have been attained for the optimizers 
being under consideration. Each one of the indicators empathize a different aspect in 
the preference of the solutions obtained. For the details of the previous metrics please 
be referred to Knowles et al. [14].  

If a significant difference can be demonstrated using the Dominance Rank, the only 
purpose of the Quality Indicators is to characterize further differences in the ap-
proximation sets. On the other hand, if we cannot establish significant differences by 
means of the Dominance Rank, then the Quality Indicators can help us in the decision 
of which one of the optimizers is better. However, these results do not confirm that 
the selected method generates the better approximation sets. In order to make infer-
ences about the results of the previous metrics we will apply the kruskal-wallis test 
[18], since more than two methods are tested [14]. 

For this analysis, we have used two microarray datasets, the Saccharomyces cere-
visiae cell cycle expression data from [6] and the human B-cells Lymphoma expres-
sion data from [9]. The yeast data contain 2.884 genes and 17 conditions, and the 
expression values denote relative mRNA abundance. All values are integers in the 
range between 0 and 600 replacing the missing values by 0. The Lymphoma dataset 
contains 4.026 genes and 96 conditions. The expression levels are integers in the 
range between -750 and 650, where the missing values were also replaced by 0. These 
datasets have been directly used as in [2]. 

First Experimental Phase 
The three memetic MOEAs, IBEA, NSGA-II and SPEA2, have been evaluated with 50 
runs and 75 generations over the two datasets. The Table 1 summarizes the parameters 
used in this benchmark. These values were selected from a few preliminary runs. In the 
case of the LS setup, δ was set with the same value as in [2], μ was set for the best 
tradeoff between size and row variance, and α was set considering the overall effi-
ciency on each dataset. All the executions were controlled by the Monitor module [10]. 
In the case of the IBEA algorithm, we chose the Additive Epsilon Indicator, and the 
rest of the parameters were set to the default values. Since PISA assumes that all the 
objectives are minimized, the four objectives of our approach (see equations 1-4) were 
adapted accordingly. For the parameters of the indicators, we maintained the default 
values of the nadir and ideal points (appropriately extended to four objectives), since 
the objectives are automatically normalized to the interval [1..2] by the tools.  

Table 1. Parameter’s settings for this study 

Generations Mutation Prob. Crossover Prob. δ α μ
Yeast 300 1,8 0,998

Lymphoma 1200 1,5 0,999

α μ λ
100 50 50

PISA

75 0,3 0,9Our variator
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Table 2. Kruskal-wallis test over the Quality Indicators −
HI (left), 1

εI  (middle) and 1
2RI (right) 

IBEA SPEA2 NSGA-II IBEA SPEA2 NSGA-II IBEA SPEA2 NSGA-II
IBEA - 1 0,99 IBEA - 0,99 0,99 IBEA - 1 0,99

SPEA2 1,50E-07 - 0,16 SPEA2 2,10E-04 - 0,61 SPEA2 8,00E-09 - 0,09
NSGA2 1,09E-05 0,84 - NSGA2 2,10E-04 0,39 - NSGA2 4,00E-06 0,91 -

R2 IndicatorHypervolumen Indicator Multiplicative Epsilon Indicator

 

Table 3. Average of the objective’s values of IBEA, SPEA2 and NSGA-II on the Yeast dataset 
(above) and on the  Lymphoma dataset (below). 

average 
rows

average 
columns

average 
residue

average 
variance

average 
size 

IBEA 1047,63 12,52 261,61 296,35 13116,33
SPEA2 794,59 10,37 224,31 296,47 8239,898
NSGA-II 646,34 9,92 204,75 236,04 6411,693

Yeast dataset

  

average 
rows

average 
columns

average 
residue

average 
variance

average 
size

IBEA 655,93 60,71 1089,61 1135,93 39821,51
SPEA2 727,74 52,63 1048,91 1112,03 38300,96
NSGA-II 583,8 54,34 1046,68 1061,7 31723,69

Lymphoma dataset

   

As regards the experimental results, the kruskal-wallis test can not detect signifi-
cant differences on the Dominace Ranking of the three MOEAs, assuming a statisti-
cally significant level α = 0.05. This situation is equal for both datasets. In fact, all the 
results of the executions are assigned to the higher rank, showing that none of the 
MOEAs generates better approximation sets with respect to the others. This demon-
strates the high influence in the search process of the LS and how it guides the 
MOEAs to the same areas on the search space. Table 2 shows, for the Yeast dataset, 
the results of the kruskal-wallis test over three Quality Indicators. The table contains, 
for each pair of optimizers OR (row) and OC (column), the p-values with respect to the 
alternative hypothesis that the Quality Indicator I is significantly better for OR than 
for OC. For the Lymphoma dataset, differences between the algorithms are discovered, 
but none of them are statistically significant (α = 0.05).   

As it is shown in Table 2, both SPEA2 and NSGA-II perform better than IBEA un-
der all the indicators, but the differences between SPEA2 and NSGA-II are not statis-
tically significant. In view of these results, no asseveration can be made with respect 
to which one of the hybridized MOEAs performs better in this context.  

At this point, we advised the need of applying an ad hoc strategy in order to select 
one of the algorithms, i.e., we will play the role of a decision maker. The Table 3 shows 
the average of the objective’s values for the biclusters found by each memetic MOEA 
executed with the parameters shown in Table 1. It is clear that IBEA obtains biclusters 
of a bigger size (on average) with respect to those obtained by SPEA2 and NSGA-II. 
Moreover, NSGA-II constitutes the approach that obtains the most homogeneous bi-
clusters and SPEA2 is the one that obtains the best relation between residue and row 
variance. This behavior becomes more evident for the Yeast dataset than for the Lym-
phoma dataset. It is important to notice that, in general, biclusters with higher size have 
higher residue and lower row variance; whereas biclusters with small residue have sizes 
that tend to be smaller, independently of the row variance. The row variance is at least 
bigger in value than the residue in all the cases.  
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Fig. 2. Average row variance (left) and average size (right) for IBEA, NSGA-II and SPEA2 on 
the Yeast dataset when � parameter varies between 0.99 and 1.7   

Another characteristic of the MOEAs that can help on the selection of the method 
is constituted by how well the search can be oriented by means of the μ parameter on 
the LS. The Figure 2 shows, for the Yeast dataset, the average row variance (left) and 
the average size (right) of the biclusters obtained by each hybrid method when the μ 
parameter varies between 0.99 and 1.7. This threshold is related with the values of μ 
that have more effect over the results. As we can see, both SPEA2 and NSGA-II are 
well suited for being guided by the μ parameter, since as we increase the value of μ, 
the resulting biclusters have higher row variance in detriment of the size. In this re-
gard, the SPEA2 is the algorithm with best performance. On the other hand, the only 
effect that can be observed on IBEA is the reduction of the size of the biclusters, since 
we can not observe any effect on the row variance. Perhaps this is due to the fact that 
IBEA is an Indicator-based MOEA whereas SPEA2 and NSGA-II are Pareto-based 
MOEAs. Therefore, a conjecture is that the small changes introduced by the μ  
parameter in the population in each generation are not well perceived by IBEA; 
probably because the concept of non-dominated solution set is not supported by the 
algorithm. The behavior observed on the Lymphoma dataset is similar. 

For the comparative study of the next sub-section, we chose the memetic SPEA2 
since it is more sensitive to the μ parameter than the others, whereas the average sizes of 
the biclusters are similar to those found by the memetic IBEA. Although IBEA can find 
some greater biclusters than SPEA2, it is not sensitive to the μ parameter.   

All the testing has been made on a Mobile Sempron with 2 GB of RAM. The run-
ning time (on average) for the Yeast dataset was of 150s whereas for the Lymphoma 
dataset was of 660s. Since the execution time is mainly influenced by the LS proce-
dure, the three MOEAs obtained these values. 

Second Experimental Phase 
A comparison between the memetic SPEA2 and Mitra and Banka’s algorithm [3] is 
presented here. For this analysis, we used the results published by [3] in the paper. 
The parameter setups of our approach are those of the Table 1. The Table 4 shows the 
average results of the objective’s values for the Yeast dataset for both approaches. The 
size of the largest bicluster found by each method and the coverage of the gene ex-
pression data matrix E are also shown. The row variance is not shown because in [3] 
it is not reported. As we can see, our proposal can obtain more homogeneous bi-
clusters (on average) whereas the biclusters of Mitra and Banka’s algorithm are big-
ger in size (on average). The largest bicluster found by the two methods is similar in 
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Table 4. Average objective’s values for the bicluster found in the Yeast dataset by our memetic 
SPEA2 and Mitra and Banka’s approach 

average 
rows

average 
columns

average 
residue

average 
size 

largest 
bicluster 

size

coverage of 
cells

memetic SPEA2 794,59 10,37 224,31 8239,89 14602 72,50%
M&B's approach [3] 1095,43 9,29 234,87 10176,54 14828 51,34%  

size. When we consider the coverage of E, our proposal obtains a significantly better 
coverage of cells with respect to Mitra and Banka’s algorithm. It is important to re-
mark that the biclusters found by our approach also include the inverted rows; there-
fore, the search is carried out over a doubled-size search space with regard to the 
other evolutionary methods for microarray biclustering found in the literature. 

As regards to the Lymphoma dataset, in [3] the average results of the objective’s 
values are not reported in the paper. For this dataset, they simply show the largest 
bicluster and the average coverage of E. In this regard, our proposal can find a biclus-
ter greater than the one reported for Mitra and Banka’s algorithm. This bicluster has 
1009 genes, 63 conditions, a mean squared residue of 1181.06, a row variance of 
1295.05, and a size of 63567; whereas the greatest bicluster that is reported in [3] is of 
a size of 37560. We can argue that, to the best of our knowledge, this bicluster is 
greater than any other bicluster found by any method reported in the existing litera-
ture. Also, the coverage of E achieved by our memetic SPEA2 is (on average) about 
33.58% of cells; significantly better than the average of 20.96% obtained by Mitra 
and Banka’s algorithm. 

6   Conclusions 

In this paper, we have introduced a general multi-objective framework for microarray 
biclustering hybridized with a LS procedure for finer tuning. In a first experimental 
phase, we have hybridized and compared three well known MOEAs (IBEA, SPEA2 and 
NSGA-II) based on the PISA platform, in order to establish which one obtains the best 
results. Since no conclusive result was obtained from this evaluation, we selected the 
SPEA2 since it was able to obtain relatively large biclusters with a high sensitivity to 
the μ parameter. Then, during a second experimental phase, we have demonstrated that 
the quality of the outcomes of the memetic SPEA2 outperformed the results reported by 
Mitra and Banka. The comparative assessment was carried out on two benchmark gene 
expression datasets to demonstrate the effectiveness of the proposed method.  

Moreover, we provide to the biological scientists with an extra parameter to deter-
mine which biclusters they consider more relevant, giving them the possibility of 
adjusting the size and the row variance of the biclusters. Furthermore, the evolution-
ary approaches for biclustering found in the literature do not consider the inclusion of 
inverted rows, perhaps for efficiency reasons since the search space is duplicated. 
However, these inverted rows are very important because, they can be interpreted as 
co-regulated by receiving the opposite regulation. In this context, we have also dem-
onstrated that it possible to take into account these “extra rows” thus improving the 
quality of the biclusters, without loss of efficiency. 
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