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Preface

The field of bioinformatics has two main objectives: the creation and mainte-
nance of biological databases, and the discovery of knowledge from life sciences
data in order to unravel the mysteries of biological function, leading to new drugs
and therapies for human disease. Life sciences data come in the form of biological
sequences, structures, pathways, or literature. One major aspect of discovering
biological knowledge is to search, predict, or model specific information in a
given dataset in order to generate new interesting knowledge. Computer science
methods such as evolutionary computation, machine learning, and data mining
all have a great deal to offer the field of bioinformatics. The goal of the 7th Eu-
ropean Conference on Evolutionary Computation, Machine Learning, and Data
Mining in Bioinformatics (EvoBIO 2009) was to bring together experts in these
fields in order to discuss new and novel methods for tackling complex biological
problems.

The 7th EvoBIO conference was held in Tübingen, Germany during April
15–17, 2009 at the Eberhard-Karls-Universität Tübingen. EvoBIO 2009 was
held jointly with the 12th European Conference on Genetic Programming (Eu-
roGP 2009), the 9th European Conference on Evolutionary Computation in
Combinatorial Optimization (EvoCOP 2009), and the Evo Workshops. Col-
lectively, the conferences and workshops are organized under the name Evo*
(www.evostar.org).

EvoBIO, held annually as a workshop since 2003, became a conference in
2007 and it is now the premiere European event for those interested in the inter-
face between evolutionary computation, machine learning, data mining, bioin-
formatics, and computational biology. All papers in this book were presented
at EvoBIO 2009 and responded to a call for papers that included topics of
interest such as biomarker discovery, cell simulation and modeling, ecological
modeling, fluxomics, gene networks, biotechnology, metabolomics, microarray
analysis, phylogenetics, protein interactions, proteomics, sequence analysis and
alignment, and systems biology. A total of 44 papers were submitted to the con-
ference for peer-review. Of those, 17 (38.6%) were accepted for publication in
these proceedings.

We would first and foremost like to thank all authors who spent the time
and effort to produce interesting contributions to this book. We would like to
thank the members of the Program Committee for their expert evaluation of the
submitted papers, Jennifer Willies, for her tremendous administrative help and
coordination, Ivanoe De Falco, for his fantastic work as the Publicity Chair, and
Marc Ebner for his outstanding work as the local organizer. Moreover, we would
like to thank the following persons and institutes: Andreas Zell, Chair of Com-
puter Architecture at the Wilhelm Schickard Institute for Computer Science at
the University of Tübingen for local support; Peter Weit, Vice Director of the
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Seminar for Rhetorics at the New Philology Department at the University of
Tübingen; the Tübingen Info Office, especially Marco Schubert for local tourism
and information; the German Research Foundation (DFG) for financial sup-
port of the EvoStar conference; and Marc Schoenauer and the MyReview team
(http://myreview.lri.fr/) for providing the conference review management
system and efficient assistance.

Finally, we hope that you will consider contributing to EvoBIO 2010.

February 2009 Clara Pizzuti
Marylyn D. Ritchie
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Abstract. A complex disease is usually characterized by a few rele-
vant disease phenotypes which are dictated by complex genetical factors
through different biological pathways. These pathways are very likely to
overlap and interact with one another leading to a more intricate net-
work. Identification of genes that are associated with these phenotypes
will help understand the mechanism of the disease development in a
comprehensive manner. However, no analytical model has been reported
to deal with multiple phenotypes simultaneously in gene-phenotype as-
sociation study. Typically, a phenotype is inquired at one time. The
conclusion is then made simply by fusing the results from individual
analysis based on single phenotype. We believe that the certain infor-
mation among phenotypes may be lost by not analyzing the phenotypes
jointly. In current study, we proposed to investigate the associations be-
tween expressed genes and multiple phenotypes with a single statistics
model. The relationship between gene expression level and phenotypes is
described by a multiple linear regression equation. Each regression coeffi-
cient, representing gene-phenotype(s) association strength, is assumed to
be sampled from a mixture of two normal distributions. The two normal
components are used to model the behaviors of phenotype(s)-relevant

� To whom all correspondence should be addressed.

C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.): EvoBIO 2009, LNCS 5483, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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genes and phenotype(s)-irrelevant genes, respectively. The conclusive
classification of coefficients determines the association status between
genes and phenotypes. The new method is demonstrated by simulated
study as well as a real data analysis.

Keywords: Association, classification, gene expression, multiple
phenotypes.

1 Introduction

Intensive efforts have been tried to identify genes that are associated with disease
phenotype of interest [1,2]. Sorting out the phenotype associated genes will help
understand the mechanism of the disease and develop efficient treatment to the
disease. However, a complex disease is usually characterized by more than one
phenotypes reflecting different facets of the disease. For example, Mini-Mental
State Examination (MMSE) and Neurofibrillary Tangle count (NFT) are often
used for quantifying the severity of the Alzheimer’s Disease. Another example
is that obesity is commonly defined as a body mass index (BMI, weight divided
by height squared) of 30kg/m2 or higher. However, other indices, such as waist
circumference, waist hip ratio and body fat percent, can also be applied as
obesity indicators. Some of the disease phenotypes may be well correlated to
one another but are not necessarily controlled by the same biological pathway.
The gene networks involved in the development of the phenotypes may overlap
and interact via the common genes shared by those networks. It is very useful
to uncover genes representing the involved pathways as well as the cross-talk
between those pathways.

The typical approach is to find the genes that are associated with individual
phenotype first, and then combine the findings based on separate analysis. Genes
shared by different phenotypes can be regarded as the ‘nodes’ between the par-
ticipating pathways. Several methods can be used for the single-trait association
analysis. The most simple way is to calculate the Pearson’s correlation for each
gene and the phenotype [1,3]. Genes are then sorted on the basis of the magni-
tude of the correlation coefficients. The genes on the top of the list are claimed to
be associated with the phenotype. [4] developed a simple linear regression model
to detect genes that are related to the phenotype. Subsequently, [5] and [6] en-
hanced the prototype to take into account the non-linear association between the
gene expression levels and the phenotypic values. In those model-based methods,
the gene expression level is described as a linear function of phenotypic value.
The significance level of the regression coefficient is suggestive of the strength
of the association between gene and phenotype. Classification approach is then
utilized to cluster genes based on the magnitude of the regression coefficients.
With the linear-model-based method, the association study has been turned into
a classification problem. To our best knowledge, no analytical model has been
reported to deal with multiple phenotypes simultaneously in such association
study. We consider that, to some extent, information among phenotypes may be
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lost in single-trait method since phenotypes are analyzed separately, and such
missing information is important for inferring the interaction between relevant
phenotypes.

In current study, we developed an advanced model which analyzes the asso-
ciation between genes and multiple phenotypes jointly. The expression level of
a gene is described as a linear regression function of the phenotypes and their
interactions. The gene specific regression coefficient, either main effect or inter-
action, is assumed to be sampled from a mixture of two normal distributions.
One normal component has mean zero and a very tiny variance; while the other
normal component also has mean zero but a much larger variance. If the co-
efficient is from the first normal component, then its size is close to zero and
there is no indication of association; otherwise, if the coefficient is from the sec-
ond normal component, the size of the coefficient is nontrivial suggesting the
association between the gene and the phenotype(s). Such mixture model setting
originated from the spike and slab distribution proposed by [7]. We compared
the new method with other single-trait approaches by synthesized data as well
as real data generated from microarray experiment. The new method appeared
to be more desirable for gene-phenotype association study.

2 Methods

2.1 Linear Regression Setting and Bayesian Modelling

Let Zjs be the standardized phenotypic value for trait j and subject s, where
j = 1, . . . , p and s = 1, . . . , n. Here all the phenotypes are normalized under the
same scale, i.e., [−1, 1]. For example, suppose Ψj = [Ψj1, . . . , Ψjn] is the original
measurements for trait j, and if Ψjs is a continuous variable, then

Zj = [Zj1, . . . , Zjn] = 2 × Ψj − Min(Ψj)
Max(Ψj) − Min(Ψj)

− 1.

If Ψjs is a categorical phenotype, we use Zjs = {−1, 1} for binary variable or
Zjs = {−1, 0, 1} for trinary variable. In current study, only binary or trinary
variable are considered for simplicity. Let Yi = [Yi1, . . . , Yin] be the expression
levels of gene i, where i = 1, . . . , m. We may use following linear model to
describe the relationship between the gene expression and phenotypes,

Yi = bi0 +
p∑

j=1

Zjbij + ei, (1)

where bi0 is the intercept, bij is the regression coefficient for Zj , and ei =
[ei1, . . . , ein] is random error with multivariate normal distribution N(0, Iσ2).
Note that the number of genes is usually much greater than that of pheno-
types. So, it is plausible to regress gene expression on phenotypes to reduce the
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dimension of parameters. If the interactions between the phenotypes are also
considered, model 1 can be rewritten as

Yi = bi0 +
p∑

j=1

Zjbij +
p−1∑
j=1

p∑
k>j

ZjZkbijk + ei. (2)

For simplicity, we only consider the 2-way interaction in current study. If we treat
the interaction terms as ordinary regression terms, there will be a total of (p2 +
p)/2 regression terms in the linear model. We can further rewrite model 2 as

Yi = βi0 +
(p2+p)/2∑

l=1

Xlβil + ei, (3)

where β’s represent b series, and X ’s represent Z series. Note that β0 is irrelevant
to the association study. It can be simply removed from model via a linear
contrasting scheme, i.e.,

yi =
(p2+p)/2∑

l=1

xlβil + εi, (4)

where
∑n

s=1 yis = 0 and
∑n

s=1 xjs = 0. After linear contrasting transformation,
the n pieces of information for each gene are no longer independent to one
another because the constraint of “sum-to-zero” has been imposed to yi and xl.
Therefore, the last element of vector yi should be removed and yi becomes an
N × 1 vector for N = n− 1. Accordingly, xl becomes an N × 1 vector, and εi is
now N(0, Rσ2) distributed with a known N ×N positive definite matrix R (see
[5] for more details).

To simplify the presentation, we use the following notation to express different
probability densities throughout the current study:

p(variable|parameter list) = DensityName(variable; parameter list).

We assume that each regression coefficient βij in model 4 is sampled from the
following two-normal-components-mixture distribution:

p(βil|ηil, σ
2
l ) = (1 − ηil)Normal(βil; 0, δ) + ηilNormal(βil; 0, σ2

l ), (5)

where the two normal distributions are both centered at zero but have different
levels of spread. Such mixture setting was originally suggested by [8]. We use the
first normal distribution to model trivial effects by enforcing a fixed tiny variance
δ = 10−2; while, for the second normal component, a larger variance σ2

l is uti-
lized to govern nonzero effects. The unobserved variable ηil = {0, 1} is used for
indicating whether βil is sampled from N(0, δ) or N(0, σ2

l ). Our goal is to infer the
posterior distribution of ηil and estimate the likelihood of association. We further
describe ηil by a Bernoulii distribution with probability ρl, denoted by

p(ηil|ρl) = Bernoulii(ηil; ρl). (6)
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The parameter ρl and its counterpart 1 − ρl, which can be viewed as mixing
proportion of the two-component mixture model, regulate the number of genes
that are connected with the lth regression term. This parameter ρl is per se
governed by a Dirichlet distribution, denoted by Dirichlet(ρl; 1, 1). The variance
components of the hierarchical model are assigned with scaled inverse chi-square
distributions, denoted by Inv − χ2(σ2

l ; d0, ω0). We chose d0 = 5 and ω0 = 50 for
σ2

l , and chose d0 = 0 and ω0 = 0 for σ2. The hyper-parameters were selected
based on our previous experience of similar analyses.

2.2 Markov Chain Monte Carlo

The inference of the parameters of interest is accomplished by using MCMC sam-
pling, which is a algorithm for sampling from probability distributions based on
constructing a Markov chain that has the desired distribution as its equilibrium
distribution. We initialize all the parameters at very first step. Then the proba-
bility distribution of any parameter given the other parameters is derived. The
value of the parameter is then replaced by a sample drawn from the obtained
distribution. Such process is repeated sequentially until all the parameters have
been updated. We call it a sweep if we finish updating all the parameters for one
time. A Markov chain is constructed by sweeping for many thousands of times.
The state of the chain after a large number of sweeps is then used as a sample
from the desired distribution. The detailed sampling scheme for each variable is
described as follows.

(1) Variable ηil is drawn from Bernoulli(ηil; πil), where

πil =
ρlN(βil; 0, σ2

l )
ρlN(βil; 0, σ2

l ) + (1 − ρl)N(βil; 0, δ)
(7)

(2) Variable βil is drawn from N(βil; μβ , σ2
β), where

μβ =
[
xT

l R−1xl +
σ2

ηilσ2
l + (1 − ηil)δ

]−1

xT
l R−1�yi, (8)

σ2
β =
[
xT

l R−1xl +
σ2

ηilσ2
l + (1 − ηil)δ

]−1

σ2 (9)

and

�yi = yi −
(p2+p)/2∑

l′ �=l

xl′βil′ . (10)

(3) Sample σ2
l from

Inv − χ2

(
σ2

l ;
m∑

i=1

ηil + 5,

m∑
i=1

ηilβ
2
il + 50

)
.
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(4) Sample σ2 from

Inv − χ2

⎛⎝σ2; mn,

m∑
i=1

(yi −
(p2+p)/2∑

l=1

xlβil)T R−1(yi −
(p2+p)/2∑

l=1

xlβil)

⎞⎠ .

(5) Sample ρl from

Dirichlet

(
ρl;

m∑
i=1

ηil + 1, m −
m∑

i=1

ηil + 1

)
.

Usually it is not hard to construct a Markov Chain with the desired properties.
The more difficult problem is to determine how many sweeps are needed to
converge to the stationary distribution within an acceptable error. Diagnostic
tool, such as the R package “coda” [9], can be used to estimate the required
length of the chain for convergency. Once the chain has converged, the burn-in
iterations from the beginning of the chain are discard; while for the remaining
portion of the chain, one sample in every 10 sweeps is saved to form a posterior
sample for statistical inference.

3 Experimental Analysis

3.1 Simulated Study

In simulated study, we generated three phenotypes (I, II and III) for 100 indi-
viduals. Of the three phenotypes, the first two are correlated while the third is
relatively irrelevant to the other two. The correlations between these pseudo-
phenotypes are given in Figure 1(a). Such setting was meant to mimic the situ-
ation we met with in real data analysis (see next subsection). We also generated
1000 genes for each individual based on the phenotypic values we simulated. Of
the 1000 genes, 20 are associated with phenotype I, 20 are associated with pheno-
type II, and 20 are associated with phenotype III. Note that the genes associated
with different phenotypes are not mutually exclusive. The relationship between
the genes associated with the three phenotypes are shown in Figure 1(a). For
simplicity, all main effects and interaction effects are set to 1, and the residual
variance is set to 0.01.

We first used the new method (denoted by method 1) to analyze the simulated
data. All of the 44 true associated genes were identified and placed in the right
positions of Venn Diagram (Figure 1(b)). We then used single-trait methods of
[4] (denoted by method 2) and [6] (denoted by method 3) to analyze the same
data set. The results are shown in Figure 1(c) and Figure 1(d), respectively.
Only 41 true associated genes were identified by single-trait methods 2 and
3. Besides, many spurious associations have been claimed by methods 2 and
3. For example, no simulated genes are associated with all three phenotypes;
however, methods 2 and 3 declared more than 10 genes shared by the three
phenotypes. We define a linkage as a true gene-phenotype association, and a
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Venn diagrams. (a) The numbers of genes related to the 3 simulated phenotypes
and the pairwise correlations of the 3 simulated phenotypes. (b) The numbers of genes
declared to be relevant to the 3 simulated phenotypes by method 1. (c) The numbers
of genes declared to be relevant to the 3 simulated phenotypes by method 2. (d) The
numbers of genes declared to be relevant to the 3 simulated phenotypes by method
3. (e) The numbers of genes declared to be relevant to the 3 obesity phenotypes by
method 1 and the pairwise correlations of the 3 obesity phenotypes. (f) The numbers
of genes declared to be relevant to the 3 obesity phenotypes by method 3.
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Table 1. Type I and type II error rates for three analytical methods in simulated
studies

Method
1 2 3

α 0.000 0.300 0.100
β 0.000 0.016 0.014

non-linkage if gene is not related to phenotype. Therefore, a total of 60 linkages
and 2940 (1000 × 3 − 60) non-linkages have been generated for the simulated
study. Numerically, the empirical Type I error is defined as

α =
Number of undetected linkages

Total number of linkages
,

and empirical Type II error is defined as

β =
Number of declared non-linkages

Total number of non-linkages
.

The type I and type II error rates for three methods are listed in Table 1.
The new method, which considers multiple traits jointly, appeared superior to
the single-trait methods 2 and 3. For single-trait analysis, we have one more
time proved that the model based on non-linear association outperforms the
model of simple linear association. (The comparison between methods 2 and
3 was originally presented in [6]). We additionally noted that, for single-trait
methods 2 and 3, many genes are in common for phenotypes I and II because
these two phenotypes are highly correlated (cor = 0.35 and p value = 0.00038).
Genes that are authentically linked to a phenotype are likely to be claimed
being associated with another correlated phenotype in single-trait analysis. This
reasoning can also be supported by the phenomena that the number of genes
shared by phenotypes II and III tended to be larger than the number shared by
phenotypes I and III and the correlation between phenotypes II and III (cor =
-0.14) is slightly larger than that between phenotypes I and III (cor = -0.11).

We simulated 19 more data sets with the same setting and repeated the anal-
ysis by 19 times. The results are almost identical to the presented one (data not
shown). We then varied the residual variance from 0.01 to 0.81, and used the
new method to analyze the additional simulated data sets. The analytical results
are given in Table 2. It seems that the type II error (β) inflates faster than type
I error (α) as residual variance increases.

3.2 Analysis of Mice Data

To demonstrate the new method, we used a mice data generated for obesity
study [2]. In this study, Affymetrix GeneChip Mouse Expression Array was used
to survey the expression levels of more than 40,000 transcript for 60 ob/ob mice.
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Table 2. Type I and type II error rates for the new method when different residual
variances were used for simulated studies

Residual variance σ2

0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81
α 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β 0.00 0.00 0.00 0.00 0.00 0.11 0.26 0.43 0.58

Table 3. The numbers of genes identified by method 1, method 3 and both

Method
1 3 1&3

Glu 74 126 60
Ins 69 50 19
Wt 96 54 33
All 114 155 79

A total of 25 obesity related phenotypes were collected for the experimental
units. The data is publicly available at gene expression omnibus (GEO) with
accession no. GSE3330. We first removed invariant genes to lessen the compu-
tational burden. About 5000 transcripts with variance greater than 0.05 were
saved for further analysis. Similar pre-screening scheme has been used for ar-
ray data analyses [10,11]. For the sake of convenience, we only considered three
phenotypes that have been often examined in related researches. These three
phenotypes were plasma glucose level (mg/dl), plasma insulin level (ng/ml) and
body weight. The phenotypic data were collected at eight weeks of age. In this
subsection, we only compared the new multiple-traits method (method 1) to
single-trait method 3, since method 3 has been repeatedly verified being more
efficient than other single-trait approaches, such as method 2. We used meth-
ods 1 and 3 to analyze this mice data and the results are shown in Figure 1(e)
and Figure 1(f), respectively. Note that glucose level (Glu) is correlated with
insulin level (Ins); while there is no obvious correlation between body weight
(Wt) and these two traits. The three phenotypes for simulated study (see previ-
ous subsection) were generated in concordance to this observation. Comparing
Figure 1(e) with Figure 1(f), we found that a lot more genes were declared to be
associated with both Glu and Ins by method 3, which is no wonder since these
two phenotypes are well correlated. Similar false linkages due to correlation be-
tween phenotypes have already been noticed in simulated study. We compared
the gene identity of genes identified by both methods (Table 3). The results from
two analyses are essentially consistent.

4 Discussion

Gene-phenotype association analysis is a pilot study for disclosing the biologi-
cal process of disease development. Typically, data on more than one trait are
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collected in disease-related studies. More often than not, these disease pheno-
types are correlated indicating commonality of the pathways responsible for those
phenotypes. However, the existing analytical tools solely deal with a phenotype
at one time; thus, potential information shared by multiple phenotypes are bound
to be lost. We consider that such missing information is important for inferring
the interaction between correlated phenotypes and it can be picked up only
through a joint analysis of multiple traits. For the first time, we proposed to
analyze the associations between gene expressions and multiple phenotypes in
a single statistical model. In simulated study, the new multiple-traits method
appeared superior to the single-trait methods.

In real data analysis, more genes have been detected by method 3 [6] than the
new method. This is because method 3 considers the gene-phenotype association
beyond linearity; while, for simplicity in current study, only main effects (first
order or linear association) and 2-way interaction are taken into account for
the new method. However, the new method can easily extend to include higher
order of main effects and interactions. The enhanced model should be more
powerful for discovering relevant genes. We contrasted our analytical findings
(by methods 1 and 3) with the obesity related genes obtained from NCBI. Only
a small portion of identified genes have been previously reported, leaving a large
number of newly detected genes worthy of a closer look in the future researches.

Mapping quantitative trait loci (QTL) has been widely used for inferring ge-
nomic loci that dictate phenotypes of interest [12,13,14,15,16,17,18,19]. However,
QTL analysis are different from gene-phenotype association analysis discussed
in the current study. Data for QTL analysis consist of phenotypic data and
genotypic data (markers and their genotypes); while gene-phenotype associa-
tion analysis involve gene expression data and phenotypic data. For quite a long
time, QTL mapping also has been limited to single-trait scheme. Recently, the
first multiple-traits QTL method was developed by using multivariate linear re-
gression models [20]. Nevertheless, this multiple-traits QTL method can not be
directly adopted by gene-phenotype association analysis. Usually, the dimension
of gene expression data is dramatically larger than that of genotypic data. It
seems impractical to regress phenotypes (at most of tens) on expression of many
thousands of genes. Such model, even if it worked for a simple regression setting,
would be very difficult to include higher order effects. It is natural to reverse the
roles of phenotypes and genes by regressing gene expression on phenotypes. With
the workable dimension of predictive variables, interactions between phenotypes
or underlying pathways can be easily appreciated by adding in cross-product
terms. On the other hand, clustering along gene coordinate allows effective in-
formation sharing between correlated genes.

If only gene expression data and genotypic data have been collected from bio-
logical experiment, one may carry out expression quantitative trait loci (eQTL)
mapping to find likely loci that account for the variations of expression traits or
gene expression [21,22,23]. Single-trait QTL approaches are typically utilized for
eQTL analysis since the numbers of expression traits is far beyond the capacity of
current multiple-traits analysis. Obviously, potential gene-gene correlations have
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been overlooked by analyzing each gene separately. To solve this problem, [24]
and [10] developed mixture models to restore the lost information by clustering
along gene coordinate. If phenotypic data, gene expression data and genotypic
data are all available, we may conduct genetical mapping for expression traits
and regular phenotypes jointly. Association between phenotype and expressed
gene is determined if they are mapped to the same locus on the genome. In
addition, gene-gene relationship, either cis- or trans-, will be clear at the same
time.
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Abstract. Nitrogen is an essential nutrient for all life forms. Like most
unicellular organisms, the yeast Saccharomyces cerevisiae transports and
catabolizes good nitrogen sources in preference to poor ones. Nitrogen
catabolite repression (NCR) refers to this selection mechanism. We pro-
pose an approach based on Gaussian graphical models (GGMs), which
enable to distinguish direct from indirect interactions between genes, to
identify putative NCR genes from putative NCR regulatory motifs and
over-represented motifs in the upstream noncoding sequences of anno-
tated NCR genes. Because of the high-dimensionality of the data, we use
a shrinkage estimator of the covariance matrix to infer the GGMs. We
show that our approach makes significant and biologically valid predic-
tions. We also show that GGMs are more effective than models that rely
on measures of direct interactions between genes.

1 Introduction

Nitrogen is an essential nutrient for all life forms. The emergence of cells able to
transport, catabolize and synthesize a wide variety of nitrogenous compounds has
thus been favored by evolutionary selective pressure [1]. As a consequence, the
yeast Saccharomyces cerevisiae can use almost 30 distinct nitrogen-containing
compounds [1]. Like most unicellular organisms, yeast transports and catabolizes
good nitrogen sources in preference to poor ones. Nitrogen catabolite repression
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(NCR) refers to this selection mechanism [1,2]. More specifically, NCR inhibits
the transcriptional activation systems of genes needed to degrade poor nitrogen
sources [2]. In this context, bioinformatics approaches offer the possibility to
identify a relatively small number of putative NCR genes [1,3]. Hence, biologists
need only to test a small number of “promising” candidates, instead of testing
all genes, saving time and resources.

In this paper, we use Gaussian graphical models (GGMs) [4] to infer putative
NCR genes from putative NCR regulatory motifs and over-represented motifs in
the upstream noncoding sequences of annotated NCR genes. The use of counts of
pattern occurrences in noncoding sequences has already been successfully used
for predicting gene co-regulation [5] and for the identification of putative NCR
genes [1,3]. GGMs have become increasingly popular to infer multivariate depen-
dencies among genes in functional genomics (see, e.g., [6]). These models encode
full conditional relationships between genes. Hence, they enable to distinguish
direct from indirect interactions.

Standard multivariate methods for structure learning of Gaussian graphical
models require the estimation of the full joint probability distribution. Unfor-
tunately, the data sets typically encountered in functional genomics describe a
large number of variables (on the order of hundreds or thousands) but only con-
tain comparatively few samples (on the order of tens or hundreds), which renders
this estimation an ill-posed problem. Hence, standard multivariate methods can-
not be applied directly. Two alternative approaches have thus been introduced:
one uses regularization techniques [7,6], while the other uses limited-order par-
tial correlations [8,9,10,11]. The former approach is discussed in this paper. More
specifically, we use a shrinkage covariance estimator that exploits the Ledoit-Wolf
lemma [12]. This estimator, which has been successfully used to infer genetic reg-
ulatory networks (GRN) from microarray data [6], is statistically efficient and
fast to compute [12].

We show that our approach makes significant and biologically valid predictions
by comparing these predictions to annotated and putative NCR genes, and by
performing negative controls. In particular, we found that the annotated NCR
genes form a coherent set of genes in terms of partial correlations. These results
suggest that our approach can successfully identify potential NCR genes in S.
cerevisiae. We also show the GGM is more effective than the independence graph
that relies on a measure of direct interaction between genes.

The outline of the paper is as follows. Section 2 briefly describes the sets of
genes identified as relevant/irrelevant to NCR in S. cerevisiae. Section 3 intro-
duces independence graph, Gaussian graphical models and the shrinkage covari-
ance estimator. Our approach to inferring putative NCR genes is introduced in
Sect. 4. The experimental setup is presented in Sect. 5. The results, followed by
a short discussion, are given in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Nitrogen Catabolite Repression in S. cerevisiae

Nitrogen catabolite repression (NCR) in S. cerevisiae consists in the specific
inhibition of transcriptional activation of genes encoding the permeases and
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catabolic enzymes needed to degrade poor nitrogen sources [2]. All known nitro-
gen catabolite pathways are regulated by four regulators (Gln3, Gat1, Dal80, and
Deh1) [13]. We will denote by RNCR the set of genes coding for these regulators.

We also have available a set of 37 annotated NCR genes (ANCR) [1,3],
and three sets of putative NCR genes, denoted by G, S and B, identified in
three genome-wide experimental1 studies [1,2,14], respectively. Note that the
sets RNCR and ANCR partially overlap as three of the four RNCR genes are
also targets of NCR. Finally, we also have a set of 89 manually-selected genes
known to be insensitive to NCR (NNCR) [3].

3 Independence Graph and Gaussian Graphical Models

3.1 Overview

In an independence graph [15] (also known as relevance network), pairs of genes
are connected (i.e., assumed to interact) if their respective correlation exceeds a
given threshold. Independence graphs therefore represent the marginal indepen-
dence structure of the genes. Although marginal independence is a strong indica-
tor for independence, it is a weak criterion for measuring dependence, since more
or less all genes will be marginally (i.e., directly or indirectly) correlated [6].

Gaussian graphical models (GGMs) [4,16,17] have become popular to infer
multivariate dependencies in the “small n, large p” data setting (i.e., when the
number of samples n is small compared to the number of genes p) commonly
encountered in functional genomics, especially for inferring genetic regulatory
networks from microarray data [6,8,18]. They have been introduced to overcome
the shortcoming of the independence graph. In these models, missing edges de-
note zero full-order partial correlations, and therefore, correspond to conditional
independence relationships.

Therefore, GGMs have an important advantage compared to independence
graphs: full-order partial correlation measures the association between two genes
while taking into account all the remaining observed genes. Hence, GGMs enable
to distinguish direct from indirect interactions between genes due to intermediate
genes or directly due to other genes.

3.2 Inferring Gaussian Graphical Models

However, computing full-order partial correlations requires the full joint distri-
bution of genes. This is problematic in the “small n, large p” data setting: the
maximum likelihood estimate of the population concentration matrix needed to
infer GGMs requires that the sample covariance matrix has full rank and this
holds, with probability one, if and only if n > p [19].

To circumvent this problem, two alternative approaches have been introduced:
one uses regularization techniques [7,6], while the other uses limited-order par-
tial correlations [8,9,10,11]. The former approach is used in this paper. More

1 The study by Godard et al. [1] also contains a bioinformatics validation part.
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specifically, we use a shrinkage covariance estimator that exploits the Ledoit-
Wolf lemma [12]. This estimator, which has been successfully used to infer GRN
from microarray data [6], is statistically efficient and fast to compute [12].

3.3 Unbiased Estimator

Let X denote a p × n matrix of n independent and identically distributed ob-
servations of p random variables with mean zero and covariance matrix Σ. Let
Ŝ denote the unbiased estimator of the covariance matrix Σ, i.e., the unbiased
sample covariance matrix: Ŝ = 1

n−1XXt, where Xt is the transpose of X .
This estimator exhibits high variance [12]. To decrease it, and thus also its

mean squared error (MSE), we use a shrinkage estimator [12] which seeks the
optimal trade-off between error due to bias and error due to variance by “shrink-
ing” the sample covariance matrix towards a low-dimensional estimator.

3.4 Shrinkage Estimator

Let T̂ denote the low-dimensional (biased) estimator of the covariance matrix Σ
whose (i, j)-th element is defined by t̂ij = ŝii if i = j, and t̂ij = 0 otherwise.

The number of parameters to be fitted in the constrained estimate T̂ is small
compared to that of the unconstrained estimate Ŝ (p parameters instead of
p (p + 1) /2). Hence, the constrained estimate T̂ will exhibit a lower variance
than its unconstrained counterpart Ŝ. On the other hand, the former will exhibit
considerable bias as an estimator of Σ (recall that the latter is unbiased).

The linear shrinkage estimator Σ̂ combines both estimators in a weighted
average, instead of choosing between one of these two extremes: Σ̂ = λT̂ + (1−
λ)Ŝ, where λ ∈ [0, 1] represents the shrinkage intensity. The optimal shrinkage
estimator Σ̂∗, which we will simply refer to as the shrinkage estimator, minimizes
the expected quadratic loss E

[
‖Σ∗ − Σ‖2

F

]
, where ‖·‖F denotes the Frobenius

norm, i.e., ‖M‖F =
√

tr (MM t), where tr (·) denotes matrix trace.
Ledoit and Wolf [12] showed that Σ̂∗ is both well-conditioned and more accu-

rate than the sample covariance matrix Ŝ asymptotically. They also showed ex-
perimentally that the asymptotic results tend to hold well in finite sample. Most
importantly, they derived an analytical solution (see also [6]) to the problem of
choosing the optimal value (under square loss) for the shrinkage parameter λ,
therefore avoiding computationally intensive procedures such as cross-validation,
bootstrap or MCMC.

The shrinkage estimator of the partial correlation matrix Ω̂∗ is simply the

inverse of Σ̂∗ [4]: Ω̂∗ =
(
Σ̂∗
)−1

.

4 Inferring Putative NCR Genes with GGMs

4.1 Introduction

Suppose we have a set C of genes known (or hypothesised) to be involved in
NCR. We will refer to it as the “core” set. It is either composed of the known
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NCR regulators, C = RNCR, or the set of annotated NCR genes, C = ANCR
(see Sect. 5).

Further suppose we have a p × n data matrix X , where p is the number
of genes (variables) and n is the number of samples (see Sect. 3.3). Hence, each
sample is a p-dimensional vector. The samples reflect properties which are known
(or hypothesised) to be relevant for NCR. In this paper, samples correspond to
motifs relevant for the NCR regulation [1] (see Sect. 4.2). Hence, the (i, j)-th
entry of matrix X , denoted xij , represents the number of occurrences of motif j
in the upstream noncoding sequence of gene i.

4.2 Data Set

Based on prior biological knowledge, we defined a set of 9 motifs as potentially
relevant for the NCR regulation (see [1]). We also used the program oligo-analysis
from RSAT [20] to detect over-represented oligonucleotides (for all sizes between
5 and 8) in the promoter sequences of the 37 ANCR genes, leading to a total
of 56 significantly over-represented oligonucleotides [1]. Since some annotated
motifs were also detected by oligo-analysis, we generated a non-redundant list
of n = 62 motifs of interest. Finally, the program dna-pattern [20] was used to
count the occurrences of the n = 62 motifs in each of the p = 5869 yeast gene
promoters (note that p � n).2

4.3 Method

The proposed approach consists in inferring (linear) dependencies between yeast
genes by computing (full-order) partial correlations from the data matrix X using
the shrinkage estimator presented in Sect. 3.4. These multivariate dependencies
are then exploited by selecting the genes that are correlated (in terms of partial
correlation) with at least one gene of the “core” set C.

More specifically, for a given threshold t, the set It of inferred NCR genes is
given by:

It =
{

j ∈ A \ C : max
i∈C
∣∣ω̂∗

ij

∣∣ ≥ t

}
, (1)

where A denotes the set of all yeast genes, and
∣∣ω̂∗

ij

∣∣ is the absolute value of
the “shrinked” estimate of the partial correlation between genes i and j (i.e.,
the absolute value of the (i, j)-th entry of matrix Ω̂∗; recall Sect. 3.4). Hence,
It is composed of the genes (not in C) for which the partial correlation with at
least one gene of C is greater (in absolute value) than the threshold t. In other
words, genes which are dependent (i.e., not independent) of at least one gene
in C (given the remaining genes in the genome) are inferred as NCR-sensitive.
Inversely, genes which are independent of all genes in C are not included in It.

2 The data matrix X is available from http://rsat.scmbb.ulb.ac.be/~jvanheld/

NCR_regulation_2006/gata_boxes_techreport.html

http://rsat.scmbb.ulb.ac.be/~jvanheld/NCR_regulation_2006/gata_boxes_techreport.html
http://rsat.scmbb.ulb.ac.be/~jvanheld/NCR_regulation_2006/gata_boxes_techreport.html
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Concerning the threshold t, we vary its value and use measures of perfor-
mance related to receiver operator characteristic (ROC) curves (see Sect. 5.1).
Of course, the number of inferred genes diminishes with increasing threshold
values.

The proposed method can be seen as a (supervised) two-class classifier. For
a given threshold t, the genes in It are classified as “positive”, i.e., inferred as
NCR-sensitive, and the genes not in It (i.e., genes in A \ (C ∪ It)) are classified
as “negative”.

Note that the partial correlation matrix Ω̂∗ only depends on the input data
matrix X . Hence, the Ω̂∗ only needs to be computed once when considering
different “core” sets and/or different threshold values as long as the same data
set is used.

In terms of performance, executing the proposed method (i.e., inferring the
partial correlation matrix and building the set It) using the statistical software
R requires less than 1 minute of CPU time on a 2.2 GHz Intel Core 2 Duo laptop
with 2 GB RAM running Mac OS X.

5 Experimental Setup

Our approach requires a set C of “core” genes to be defined (see Sect. 4.3).
Given the available data (see Sect. 2), we use the set of known regulatory genes,
C = RNCR, in Sect. 5.2, and the set of annotated NCR genes, C = ANCR, in
Sect. 5.3. In both cases, positive and negative validation sets, denoted by P and
N , respectively, are defined to assess the predictive power of our approach using
the performance measure presented in Sect. 5.1. Note that we perform negative
controls to evaluate the significancy of our results in Sect. 5.4. Eventually, we
present the procedure for the “final” predictions in Sect. 5.5.

5.1 Performance Measure

As explained in Sect. 4.3, our method can be seen as a two-class classifier. Hence,
we use the area under the receiver operator characteristic (ROC) curve (AUC)
as performance measure.

A ROC curve is a graphical plot of the true positive rate (TPR) versus the false
positive rate (FPR) for different values of the threshold. These two quantities
are defined, respectively, as TPR = TP/(TP + FN) and FPR = FP/(FP + TN),
where TP, FP, TN, FN represent the numbers of true and false positives, and
true and false negatives, respectively. The use of ROC curves is recommended
when evaluating binary decision problems in order to avoid effects related to the
chosen threshold [21,22].

The AUC reduces ROC performance to a single scalar value representing
expected performance [22]. It corresponds to the “probability that the classifier
will rank a randomly chosen positive instance higher than a randomly chosen
negative instance” [22]. Note that a random classifier produces the diagonal line
between (0, 0) and (1, 1), hence achieving an AUC of 0.5.
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However, our interest does not lie in the entire range of FPRs, but rather on
very low false positive rates such as FPR < 0.05. We therefore also compute the
partial area under the ROC curve (pAUC) [23,24], which is a summary measure
of the ROC curve used to make statistical inference when only a region of the
ROC space is of interest. It is defined as the area between two FPRs. Here,
we focus on FPR ∈ (0, u] with u = 0.05 and denote the corresponding area by
pAUCu. Because the magnitude of pAUCu depends on u, it is standardized by
dividing it by u [24].

Since (p)AUC measures are sample-based estimates, we report jackknife esti-
mates of standard deviations [25] to be able to compare the (p)AUC values [22].

5.2 Known Regulators

We assess the ability of our approach to recover the annotated NCR genes
(ANCR) from the set RNCR of known regulators. We thus take C = RNCR
and P = ANCR. Concerning the negative validation set N , we consider two al-
ternatives. As already mentioned, we can reasonably assume most of the ∼ 6 000
yeast genes not to be targets of NCR. Hence, we first take N = A \ {C ∪ P}
(recall that A denotes the set of all yeast genes). Next, we consider the set of 89
manually-selected genes known to be insensitive to NCR, i.e., N = NNCR.

5.3 Annotated NCR Genes

We now run our method with C = ANCR. The inferred genes are first validated
with P = ANCR through a leave-one-out procedure. Next, we use the gene sets
G, S and B steeming from the aforementioned experimental studies [1,2,14].

Leave-One-Out. The ANCR genes form a biologically meaningful set since
they are all targets of NCR. Hence, we can expect that any given gene i ∈ ANCR
is strongly correlated (in terms of partial correlation) to at least one other gene
in ANCR. If not, this would imply that gene i interacts indirectly (i.e., through
other genes) with the other ANCR genes (by definition of partial correlation)
and would be in contradiction with the hypothesis that the ANCR genes form
a biologically coherent set.

If our approach to inferring NCR genes is sound, then for each gene i ∈ ANCR
the maximal partial correlation (in absolute value) of gene i with a gene in
ANCR \ {i}, ωmax

i (ANCR) = maxj∈ANCR\{i}
∣∣ω̂∗

ij

∣∣ should be high, relative to
the same quantity computed for all genes k not in ANCR (k ∈ A \ ANCR):
ωmax

k (ANCR) = maxj∈ANCR

∣∣∣ω̂∗
kj

∣∣∣.
To assess the usefulness of our approach, we thus estimate the p-value pi,

which represents the probability of randomly obtaining a score at least as high
as ωmax

i , for all i ∈ ANCR, by the empirical p-value:

p̂i =
Card ({k ∈ A \ ANCR : ωmax

k (ANCR) ≥ ωmax
i (ANCR)})

Card (A \ ANCR)
, (2)

where Card (Z) denotes the cardinality of set Z.
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Experimental Studies. We also use the genes identified in the aforementioned
experimental studies [1,2,14] to validate our approach. Of course, these genes
are only putative NCR genes and the three sets identified only partially overlap.
Still, in absence of any other validation data, we use these sets to complement
the leave-one-out validation procedure described previously. More specifically,
we consider all possible combinations of intersections and unions of these three
sets (see Sect. 6).

5.4 Negative Control

We perform negative controls to determine whether the results are significant
or not. More specifically, for the experiments described in Sects. 5.2 and 5.3
(Paragraph Experimental Studies), respectively, we run our method with 1 000
randomly chosen “core” sets Ci

r ⊂ A of cardinality Card
(Ci

r

)
= Card (C), i =

1, . . . , 1 000. We then perform the validation procedure as described in Sects. 5.2
and 5.3, respectively, and report the mean and standard deviation of the AUC
values obtained.

5.5 Final Predictions

Finally, we consider as “core” set C the known NCR regulators (RNCR) and
the annotated NCR genes (ANCR), i.e., C = RNCR ∪ ANCR, to predict the
genes’ NCR-sensitivity. Specifically, we compute for each gene j ∈ A its maximal
partial correlation (in absolute value), denoted by ωmax

j , with a gene in the core
set (except with itself), C \ {j}, formally:

ωmax
j = ωmax

j (RNCR ∪ ANCR) = max
i∈C\{j}

∣∣ω̂∗
ij

∣∣ , ∀j ∈ C. (3)

This ωmax
j quantity is the “inferred NCR-sensitivity” of gene j.

6 Results and Discussion

Due to space restrictions, we only show the AUC values and have omitted the
pAUC0.05 values (see Sect. 5.1). However, the conclusions drawn from the AUC
values in this section also apply to the pAUC0.05 values.

6.1 Known Regulators

Table 1 presents the results for C = RNCR, both for the GGM and the indepen-
dence graph (see Sect. 5.2). First, we note that all results are significant given
the AUC values obtained in the negative control cases. Next, we note the rela-
tively high values (> 0.9) for the GGM compared to the independence graph,
which demonstrate the ability of the proposed method to successfully recover
the annotated NCR genes from the four known NCR regulators. This suggests
that our method is able to identify genes relevant to NCR more efficiently than
with the independence graph.
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Table 1. AUC values (and jackknife estimates of standard deviations) for C = RNCR
and P = ANCR are given in the “AUC” columns. The first row corresponds to N =
A\ {C ∪ P} and the second one to N = NNCR. The “negative control” column shows
the mean and standard deviation of the AUC over 1 000 repetitions.

GGM Independence graph

Negative set N AUC Neg. control AUC Neg. control

A \ {C ∪ P} 0.910 (0.034) 0.501 (0.049) 0.678 (0.11) 0.499 (0.049)
NNCR 0.909 (0.039) 0.501 (0.059) 0.668 (0.14) 0.501 (0.059)

6.2 Annotated NCR Genes

Results for C = ANCR and N = A\{C ∪ P} are shown in Table 2 (see Paragraph
Experimental Studies in Sect. 5.3). Results for C = ANCR and N = NNCR are
similar to those in Table 2 and have been omitted due to space restrictions. As
previously, we note that all results are significant given the AUC values obtained
in the negative control cases. We also note that the best AUC values are obtained
for sets P that contain genes found in at least two of the aforementioned studies
[1,2,14] (i.e., for intersections of at least two of the sets G, S and B). In other
words, the stronger is the “consensus” on the NCR-sensitivity of a gene, the
higher is the probability of this gene to be identified as such by our approach.
However, we note that, in this case, the GGM only slightly outperforms the
independence graph.

Table 2. AUC values (and jackknife estimates of standard deviations) for C = ANCR
and N = A\{C ∪ P} are given in the “AUC” columns. For P , we consider all possible
combinations (in terms of unions and intersections) of the sets G, S and B (from which
we remove genes in C). The “negative control” column shows the mean and standard
deviation of the AUC over 1 000 repetitions.

GGM Independence graph

P AUC Neg. control AUC Neg. control

G \ C 0.696 (0.021) 0.499 (0.028) 0.638 (0.028) 0.499 (0.027)
S \ C 0.709 (0.030) 0.499 (0.039) 0.650 (0.052) 0.500 (0.040)
B \ C 0.656 (0.034) 0.498 (0.038) 0.637 (0.049) 0.501 (0.036)

{G ∪ S} \ C 0.690 (0.018) 0.501 (0.024) 0.635 (0.026) 0.501 (0.025)
{G ∪ B} \ C 0.671 (0.017) 0.500 (0.023) 0.628 (0.026) 0.502 (0.023)
{S ∪ B} \ C 0.671 (0.026) 0.501 (0.028) 0.634 (0.036) 0.500 (0.027)

{G ∪ S ∪ B} \ C 0.669 (0.017) 0.500 (0.021) 0.624 (0.024) 0.500 (0.021)
{G ∩ S} \ C 0.792 (0.053) 0.500 (0.064) 0.703 (0.071) 0.499 (0.069)
{G ∩ B} \ C 0.836 (0.034) 0.501 (0.085) 0.779 (0.078) 0.498 (0.084)
{S ∩ B} \ C 0.867 (0.032) 0.499 (0.107) 0.805 (0.073) 0.499 (0.109)

{G ∩ S ∩ B} \ C 0.855 (0.047) 0.493 (0.144) 0.736 (0.103) 0.503 (0.145)
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Concerning the leave-one-out procedure (see Paragraph Leave-One-Out in
Sect. 5.3), 22, 24 and 31 out of 37 ANCR genes are significantly identified as
such, with P -val. ≤ 0.05, P -val. ≤ 0.10 and P -val. ≤ 0.15, respectively. This is
to be compared with the 26, 28, 17 and 16 ANCR genes identified as such in
the aforementioned experimental studies [1,2,14] and by the independence graph
(P -val. ≤ 0.10), respectively.

6.3 Final Predictions

We ranked all genes by decreasing “inferred NCR-sensitivity” (see Sect. 5.5).
Out of the 38 genes which are NCR regulators (RNCR) and/or targets of NCR
(ANCR), 13, 22 and 24 are in the top 50, 100, and 600 genes (∼ 10% of all
genes) of the ranking (omitted due to space restrictions), respectively. Among
the 14 genes not appearing in the top 600 genes, one (PUT4) is known to be a
“difficult case” because its two GATA-boxes are non-canonical [1].

Further, using the feature-map program from RSAT [20], we note that the 24
RNCR and/or ANCR genes appearing in the top 600 genes have a high density
of GATA boxes in their upstream noncoding sequences, while the remaining 14
genes have a comparatively lower density (figures not shown because of space
restrictions).

Finally, 4, 9 and 12 of the 16 genes identified in each of the three aforemen-
tioned studies [1,2,14] (i.e., the intersection of the sets G, S and B) appear in the
top 50, 100, and 600 genes of the ranking, respectively. In other words, putative
genes having the largest “consensus” are relatively well ranked by our approach.

7 Conclusion

We proposed an approach based on Gaussian graphical models (GGMs) to
identify putative NCR genes from putative NCR regulatory motifs and over-
represented motifs in the upstream noncoding sequences of annotated NCR
genes. Because of the high-dimensionality of the data, we used a shrinkage esti-
mator of the covariance matrix to infer the GGMs, which is statistically efficient
and fast to compute.

We showed that our approach made significant and biologically valid predic-
tions by comparing these predictions to annotated and putative NCR genes, and
by performing negative controls. We also showed that the GGM is more effec-
tive than the independence graph. These results suggest that our approach can
successfully identify potential NCR genes in S. cerevisiae.

Preliminary results obtained by applying the proposed approach to the Sac-
charomyces, Saccharomycetaceae, Saccharomycetes, Ascomycota and Fungi taxa
suggest that the annotated NCR genes of S. cerevisiae also form a biologically
coherent set in each of these taxa. Future work will extend the counting of motifs
in upstream nonconding sequences of orthologs of S. cerevisiae genes for these
taxonomical levels to improve the prediction of NCR genes.

Note that the proposed approach can readily be adapted to any type of data
(e.g., expression data), and to any biological process of interest in any sequenced
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organism. Finally, note that we do not endorse the GGM as the “true model”
of multivariate dependencies between genes. Rather, we see it as a useful ex-
ploratory tool.
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18. Schäfer, J., Strimmer, K.: An empirical Bayes approach to inferring large-scale
gene association networks. Bioinformatics 21, 754–764 (2005)

19. Dykstra, R.: Establishing the positive definiteness of the sample covariance matrix.
The Annals of Mathematical Statistics 41, 2153–2154 (1970)

20. van Helden, J.: Regulatory sequence analysis tools. Nucleic Acids Research 31,
3593–3596 (2003)

21. Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy estimation for
comparing induction algorithms. In: Proceedings of the Fifteenth International
Conference on Machine Learning, pp. 445–453. Morgan Kaufmann, San Francisco
(1998)

22. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27,
861–874 (2006)

23. McClish, R.J.: Analyzing a portion of the ROC curve. Medical Decision Making 9,
190–195 (1989)

24. Jiang, Y.L., Metz, C.E., Nishikawa, R.M.: A receiver operating characteristic par-
tial area index for highly sensitive diagnostic tests. Radiology 201, 745–750 (1996)

25. Efron, B.: Nonparametric estimates of standard error: the jackknife, the bootstrap
and other methods. Biometrika 68, 589–599 (1981)



Chronic Rat Toxicity Prediction of Chemical
Compounds Using Kernel Machines

Georg Hinselmann, Andreas Jahn, Nikolas Fechner, and Andreas Zell

Wilhelm-Schickard-Institute for Computer Science, Dept. Computer Architecture,
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Abstract. A recently published study showed the feasibility of chronic
rat toxicity prediction, an important task to reduce the number of animal
experiments using the knowledge of previous experiments. We bench-
marked various kernel learning approaches for the prediction of chronic
toxicity on a set of 565 chemical compounds, labeled with the Lowest Ob-
served Adverse Effect Level, and achieved a prediction error close to the
interlaboratory reproducibility. ε-Support Vector Regression was used in
combination with numerical molecular descriptors and the Radial Ba-
sis Function Kernel, as well as with graph kernels for molecular graphs,
to train the models. The results show that a kernel approach improves
the Mean Squared Error and the Squared Correlation Coefficient using
leave-one-out cross-validation and a seeded 10-fold-cross-validation aver-
aged over 10 runs. Compared to the state-of-the-art, the Mean Squared
Error was improved up to MSEloo of 0.45 and MSEcv of 0.46 ± 0.09
which is close to the theoretical limit of the estimated interlaboratory
reproducibility of 0.41. The Squared Empirical Correlation Coefficient
was improved to Q2

loo of 0.58 and Q2
cv of 0.57 ± 0.10. The results show

that numerical kernels and graph kernels are both suited for predicting
chronic rat toxicity for unlabeled compounds.

1 Introduction

Chronic toxicity prediction (the prediction of toxic long-term effects of some
drug) is a fundamental problem in pharmaceutical and food industry. The diffi-
culty of this problem arises from the different types of toxicity (e.g. renal, hepatic
or gastrointestinal). The experimental toxicity is obtained by expensive and eth-
ically problematic animal experiments. Therefore, a need for in silico prediction
systems exists to filter out toxic compounds based on the knowledge of previous
experiments [3,25].

Several studies attempting to predict chronic toxicity have been published
[12,13,20,22,23]. Recently, Mazzatorta et al. [11] published a model based on lin-
ear regression using two-dimensional molecular descriptors, selected by a Genetic
Algorithm, to predict the Lowest Observed Adverse Effect Level (LOAEL). The
LOAEL is a convenient measure to indicate long-term toxic effects. A dataset
with 567 chemical compounds was compiled from various studies containing
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chemical compounds and their LOAEL values for chronic rat toxicity. The pro-
posed model uses 20 two-dimensional descriptors computed by the software
dragon 5.4 and has a MSEloo of 0.53 and a Q2

loo of 0.5.
To the best of our knowledge, our paper is the first attempt using kernel ma-

chines to predict chronic toxicity. We extend the experimental setup to three-
dimensional methods and make use of graph kernels. A recent development in
machine learning in cheminformatics is the use of graph kernels, i.e. pairwise sym-
metric, positive semidefinite similarities on molecular graphs [4,8,10,14,15,16].
Graph kernel based methods can learn on molecular graphs without explicitly
defining features.

We applied ε-Support Vector Regression in combination with different kernel
functions to predict the LOAEL. Support Vector Machines solve learning tasks
by mapping input data into a high-dimensional feature space. This projection
is not conducted explicitly, but implicitly by a similarity preserving embedding.
A regularization term is included in the formulation ensuring the complexity of
the generated model, i.e. the tendency of over-fitting is penalized. This usually
results in a good generalization performance.

The results on the benchmark set of Mazzatorta et al. [11] indicate the kernel
approaches are at least comparable in most cases. The MSEloo of competing
methods ranges from 0.45 to 0.51 with a Q2

loo between 0.52 and 0.58. Addi-
tionally, we benchmarked the methods with a seeded 10-fold cross-validation
averaged over 10 runs with comparable results.

We reduced the MSEloo of the chronic rat toxicity problem presented in [11]
with an expected prediction quality close to the MSE of the interlaboratory re-
producibility of 0.41. Q2

loo was also improved from 0.50 to 0.58. The resulting
models are expected to have good generalization capabilities because no fea-
ture selection was used, the models have far less variables and use non-linear
mappings.

2 Materials and Methods

2.1 Chronic Toxicity Data Set

The original data set published by Mazzatorta et al. [11] is a compilation of
567 chemical compounds, each labeled with a LOAEL value. The LOAEL is a
measure for the minimum dose of a drug in mg per body weight (in kg) per day
where a toxic response is observable.

To compile a consistent data set, Mazzatorta et al. [11] chose a subset from
different sources [13,23,22] which contains compounds for oral chronic toxicity
studies for Rattus norvegicus that were observed at least for more than 180 days.
Due to the different sources of the data, a squared interlaboratory reproducibility
of 0.41 was estimated using samples with at least two valid LOEAL values [11].

We converted the canonical SMILES strings of the original data into three-
dimensional structures using CORINA3D [6]. Two structures with a corrupted
SMILES string representation (ID 299 and 997) were removed from the data set.
The LOAEL value was transformed to a logarithmic (log10) scale.
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2.2 Support Vector Regression

A supervised machine learning algorithm infers a model by learning a set of
labeled samples. In the case of chemical compounds, for example, a sample is
labeled with its activity against a specific target, a physicochemical property or,
in this case, a toxicity level. The aim is to train a model with good predictive
performance on unknown instances.

Machine learning techniques have been successfully applied in cheminfor-
matics and Support Vector Machines (SVMs) are among the most important
methods in this field. A suitable source of information on SVMs is the book of
Schölkopf and Smola [17]. SVMs use a kernel function k which has to be symmet-
ric and positive semi-definite for similarity-based learning. The ε-Support Vector
Regression (ε-SVR) problem is formulated as the minimization of the following
functional:

H (f) =
m∑

i=1

C

m
|yi − f (xi)|ε +

1
2
‖f‖2

k︸ ︷︷ ︸
complexity penalty

where |yi − f (xi)|ε = max {0, |yi − f (xi)| − ε} (the ε-insensitive loss). ‖f‖2
k is

the norm of f in some Hilbert Space. The constant C can be regarded as a
penalty term. High values for C indicate a potential overfitting, small values
could indicate underfitting. Only samples outside a tube of 2ε around the re-
gression function contribute to the cost function. The parameters ε and C have
to be optimized for each problem. yi is the label of the ith sample xi, m is the
size of the training set. The solution f(x), i.e. the regression function, of the
Quadratic Programming (QP) dual formulation is

f (x) =
m∑

i=1

(αi − α∗
i )︸ ︷︷ ︸

weight

k (x, xi) + β0︸︷︷︸
bias

where αi, α
∗
i ∈ [0, C] are the Lagrange multipliers, k is the kernel function and β0

the bias.
m∑

i=1
(αi − α∗

i ) = 0, so the sum over all weights has to be zero. A support

vector has a non-zero weight. Hence, the prediction of the label of an unknown
sample is computed by its weighted similarity to the set of support vectors.

2.3 Kernels for Molecular Graphs

This section gives an overview of the kernel functions that were used in the ex-
perimental section. We start with basic numerical kernels, followed by topology-
based approaches and end up with graph kernels deriving information from
three-dimensional coordinates.
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Radial Basis Function Kernel. The Radial Basis Function (RBF) Kernel
is suitable for the pairwise comparison of two samples xi,xj with a vectorial

representation. It is defined as kRBF (xi,xj) = exp
(
− ‖xi−xj‖2

2σ2

)
, the σ parame-

ter gives the standard deviation of the Gaussian. The descriptors for this study
were computed with dragonX 1.4 [19]. Most of the descriptors are delineated
in the Handbook of Molecular Descriptors [21]. Since version 1.4 of dragonX,
two descriptor blocks (780 · 2) have been added, describing atom pairs with a
binned topological occurrence and their corresponding frequency. Thus, a drag-
onX 1.4 descriptor vector is a combination of classical descriptors and an atom
pair fingerprint. The software provides about 3200 molecular descriptors in total
divided into 22 descriptor blocks.

The descriptors can be divided into four classes. 0D descriptors describe sim-
ple counts like atom types or bonds. 1D descriptors are fragment counts, 2D
descriptors are topology-related. 3D descriptors are based on geometrical co-
ordinates and therefore require a valid conformation. We chose four descriptor
configurations for the RBF Kernel: (1) RBF-ALLBLOCKS used the complete set
of descriptors, (2) RBF-DESCONLY used all descriptors except the atom pair
information, (3) RBF-2DDESC used all blocks of descriptors that do not need
three-dimensional coordinates, (4) RBF-APFP used the two blocks of atom pair
information only. Hydrogens were included for the computation. Each descrip-
tor di was standardized by dij ← dij−μ

σ , where μ denotes the mean of the ith
descriptor of j molecules and σ its standard deviation. All constant attributes
were filtered out and any feature with a missing value was excluded from the
kernel computation.

Marginalized Graph Kernel. The Marginalized Graph Kernel (MARG) de-
termines the similarity of two molecular graphs by means of common labeled
random walks. Thus, it is defined as the expectation of a kernel of all pairs of
walks of two graphs [8].

Tanimoto Kernel on Depth-First Search Fingerprints. The Tanimoto
Kernel compares arbitrary nominal feature sets Fi = {fi1, fi2, · · · , fim} and
Fj = {fj1, fj2, · · · , fjn}. Ralaivola et al. [14] introduced the Tanimoto Kernel
and the MinMax Kernel for the prediction of chemical properties. A further
study was carried out by Azencott et al. [1]. The Tanimoto Kernel is a valid
kernel function [7,14]. It is defined as kTM (Fi, Fj) = |Fi∩Fj |

|Fi∪Fj | .
The Tanimoto Kernel compares the distance of two feature sets in their joint

space, without defining this space explicitly. An useful property is that new
features lead to an increased dissimilarity. The features that are not contained in
both structures are simply omitted. Intuitively, this representation corresponds
to a fingerprint of unlimited size.

In this study, the Tanimoto Kernel was used on paths obtained from a depth-
first search (DFS) with depth d from all atoms. In our implementation the fin-
gerprint algorithm from the Chemistry Development Kit [18] was modified, so
that the complete list of canonical paths of depth d ∈ N is returned.



Chronic Rat Toxicity Prediction Using Kernel Machines 29

Optimal Assignment Kernel. The idea of the Optimal Assignment Kernel
(OAK) is to compute an optimal weighted assignment on two sets of objects and
to use the resulting similarity as kernel function. The underlying problem is to
solve a matching on a complete bipartite graph with respect to max w (M) =
max

∑
e∈M w (e), where w (M) is the sum of the weights of the matching edges

e(i, j), between two objects i, j of two disjoint sets. Each feature of the smaller
set has to be assigned to exactly one feature of the other set. The OAK was
introduced by Fröhlich et al. and successfully applied to attributed molecular
graphs [5]. The kernel function of the optimal weighted assignment is defined as
follows:

kOA(x,x′) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
maxπ∈Π(x′)

|x|∑
i=1

κ
(
xi, x

′
π(i)

)
, if |x′| > |x|

maxπ∈Π(x)

|x′|∑
j=1

κ
(
xπ(j), x

′
j

)
, otherwise

where x := (x1, x2, . . . , x|x|) and x′ := (x′
1, x

′
2, . . . , x

′
|x′|) are the sets of atoms

which compose the corresponding molecular graph. Π(x) denotes all possible
permutations of x and Π(x′) of x′, respectively. The atom-wise similarity is de-
termined by κ which can be any suitable kernel function on atomic attributes.
The OAK uses a local atom environment which encodes the molecular neighbor-
hood up to a defined depth using nominal and numerical features. kOA(x,x′)
computes the maximum score of all possible permutations.

Optimal Assignment Kernels are pseudo-kernels [24]. Therefore, each kernel
matrix has to be fixed by the transformation K ← K − λminI, where λmin rep-
resents the lowest negative eigenvalue of the kernel matrix K and I the identity
matrix. A closely related variant of the OAK is the Optimal Assignment Kernel

Fig. 1. Example of an optimal assignment between two molecules where the color of
the matching edges is determined by its quality (green: optimal matching, red: bad
matching)
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on Reduced Graphs (OARG) which uses featured subgraphs, for example rings,
as vertices instead of the full atom set. This reduces memory requirements and
computation time, but decreases the information content of the featured graph.

OAK with Flexibility Extension. This modification of the original OAK
(OAKflex, manuscript accepted at the Journal of Chemical Information and
Modeling, 2009) incorporates a flexibility extension into the atom-wise similarity
calculation. The flexibility of the local neighborhood of an atom is encoded as
a list of flexibility objects. Each object has a fixed number of parameters de-
scribing the space in which the neighboring atom can be found. A RBF Kernel
calculates the similarity between two flexibility objects using the parameters of
the spaces. The overall similarity of the flexibility between two atoms is com-

puted as follows: kflex =

|a|∑
i=1

krot(ai,bπrot(i)
)

√
|a||b| , w.l.o.g. |a| < |b|, where a and b

are the lists of the flexibility objects, krot is the RBF Kernel and bπrot(i) is the
i-th element of a subset of b so that the sum of all pairwise similarities is maxi-
mized. This problem is equal to the optimal assignment problem but due to the
computational cost it is solved by a greedy heuristic. The final similarity of the
flexibility is added to the respective edge in the bipartite graph of the OAK.

p-Point-Pharmacophore Kernel. From an abstract point of view, a pharma-
cophore is a three-dimensional relationship between pharmacophore interaction
features in a molecule responsible for an interaction with a pharmaceutical tar-
get. Pharmacophore Kernels [10] between two molecules m, m′ are defined as
k (m, m′) =

∑k
i=0
∑l

j=0 κ (pi, pj).

(a) Spatial three-point-pharmacophore (b) The ”spectrum” of all three-point
relationships

Fig. 2. The Pharmacophore Kernel extracts all spatial p-point relationships of two
structures (in this case p = 3) and compares the set of all linear patterns efficiently
using a tree search

The total similarity is determined by summing up all pairwise kernel sim-
ilarities between all pharmacophores pi, pj in two molecules. The information
of a pharmacophore is defined by its distances and pharmacophore features.
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Table 1. Overview of applied kernel functions. Possible feature types are: 0D = atom
and bond counts, 1D = fragment counts, 2D = topological and related descriptors, 3D
= descriptors using geometrical coordinates.

Kernel Parameters Features Type

RBF-ALLBLOCKS σ All descriptor blocks 0D to 3D
RBF-2DDESC σ All descriptor blocks, except 3D 0D to 2D
RBF-DESCONLY σ All descriptors, except atom pair block 0D to 3D
RBF-APFP σ Topological atom pairs with frequency 2D
Tanimoto d Linear fragments from DFS search 2D
OAK Local atom environments (LAE) 0D to 2D
OARG LAE in reduced graph 2D
MARG Linear fragments (random walks) 2D
OAKflex x, y LAE with flexibility information 0D to 3D
Pharmacophore w Spatial three-point patterns 3D

Mahé et al. [10] proposed a general kernel function of the form κ (pi, pj) =
kI (pi, pj)×kS (pi, pj), where the intrinsic kernel kI provides a similarity measure
for two pharmacophore features and the spatial kernel kS a measure for their
distance.

In this study, the vertices of the molecular graph are colored by the hash
code of the binned Gasteiger-Marsili partial charges plus the atomic symbol.
The bonds are labeled by a discrete linear binning function with bin size of w
in Ångstrom, following the work of Mahé et al. [10]. Thus, the distances and
the atom types can be compared by the Dirac Kernel. For a fast computation it
is convenient to apply a p-spectrum kernel-like approach [9] using search trees
to compare the p-point-pharmacophores of two structures. The ensemble of all
p-point-pharmacophores is compared in linear computation time by a recursive
comparison using tries.

2.4 Availability of Source Code, Tools and Datasets

The benchmark data set used in this paper is a supplement of the study published
by Mazzatorta et al. [11]. Available kernel implementations are OAK, OARG and
MARGK1. The source code of the Pharmacophore Kernel and Tanimoto Ker-
nel including all preprocessing steps and the modification of the LIBSVM with
various enhancements for rapid benchmarking of kernels can be obtained from
the authors upon request. The implementations of the Pharmacophore Kernel
and Tanimoto Kernel use parts of the CDK2 [18], an open source cheminformat-
ics toolbox. The OAK, OARG and MARGK implementations use parts of the
JOELib23 library. dragonX 1.4 is commercial software. Nonetheless, the descrip-
tor files and the structures with optimized geometry can be obtained from the
authors.
1 http://www.dkfz.de/mga2/people/froehlich/
2 http://sourceforge.net/projects/cdk
3 http://joelib.sourceforge.net/
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2.5 Experimental Setup

The parameters of the kernel functions were set as follows. The search depth
d of the Tanimoto Kernel was optimized in {2, 3, · · · , 12}, the bin width w of
the distance labels of the Pharmacophore Kernel in {0.25, 0.50, · · · , 5.75}, the σ
parameter of the RBF Kernel in {1.0, 2.0, · · · , 9.0}. OAKflex uses two parameters
x and y determining the influence of the flexibility similarity on the OAK. They
were both optimized in {0.00, 0.05, · · · , 1.00}. The remaining kernels were used
with their default parametrization.

For each learning problem, defined by the kernel matrix and the vector of la-
bels, the relevant ε-SVR parameters were optimized by model selection. The pa-
rameter grid was set to log2C ∈ {−4,−3, · · · , 10} and log2ε ∈ {−8,−7, · · · ,−1}.

To learn and validate the models and to compare the different methods, a
modified version of LIBSVM 2.85 [2] was applied. All parameter combinations
were evaluated by a 10-fold-cross-validation with random folds. This process
was repeated 10 times for each kernel matrix to avoid overfitting. The folds
were generated with a seeded random number generator resulting in equal folds
for different kernels on the same problem. Additionally, a leave-one-out cross-
validation was applied.

3 Results

Table 2 summarizes the results of the benchmark runs using an averaged 10-fold
cross-validation over 10 runs and leave-one-out cross-validation. The leave-one-
out cross-validation enables a fair comparison with the literature results. The
statistical quality measures are Mean Squared Error (MSE), Averaged Absolute
Error (AAE) and Squared Correlation Coefficient (Q2).

The results are sorted according to the MSEcv. The MSEcv ranges from
0.46 ± 0.09 (RBF-ALLBLOCKS) to 0.60 ± 0.13 (OARG). MSEloo ranges from
0.45 (RBF-ALLBLOCKS, RBF-DESCONLY) to 0.58 (OARG). The Pharmaco-
phore Kernel, OAKflex and Tanimoto Kernel achieve a similar MSEloo ranging

Table 2. Benchmarks obtained by 10 averaged runs of a 10-fold cross-validation and
leave-one-out cross-validation

Method MSEcv AAEcv Q2
cv MSEloo AAEloo Q2

loo

RBF-ALLBLOCKS 0.46 ± 0.09 0.51 ± 0.05 0.56 ± 0.09 0.45 0.50 0.56
OAKflex 0.46 ± 0.09 0.52 ± 0.06 0.56 ± 0.09 0.46 0.52 0.58
RBF-DESCONLY 0.46 ± 0.10 0.51 ± 0.06 0.57 ± 0.10 0.45 0.50 0.58
RBF-2DDESC 0.47 ± 0.12 0.51 ± 0.06 0.56 ± 0.10 0.46 0.50 0.56
RBF-APFP 0.48 ± 0.10 0.53 ± 0.05 0.54 ± 0.11 0.47 0.52 0.56
Tanimoto 0.49 ± 0.10 0.53 ± 0.06 0.54 ± 0.09 0.47 0.52 0.55
Pharmacophore 0.49 ± 0.11 0.53 ± 0.06 0.54 ± 0.10 0.48 0.53 0.55
OAK 0.52 ± 0.10 0.56 ± 0.06 0.51 ± 0.11 0.50 0.55 0.52
MARG 0.52 ± 0.11 0.56 ± 0.06 0.51 ± 0.08 0.51 0.55 0.52
OARG 0.60 ± 0.13 0.59 ± 0.07 0.43 ± 0.12 0.58 0.58 0.45
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(a) Pharmacophore Kernel, w = 0.25 (b) Tanimoto Kernel, d = 10

(c) RBF Kernel, All Blocks, σ = 4.0 (d) RBF Kernel, Atom Pairs, σ = 4.0

(e) Marginalized Graph Kernel (f) OAKflex

Fig. 3. Regression plots with error bars regarding the mean and standard deviation of
the MSEcv for the prediction of the log LOAEL (on a log10 scale) of each sample
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from 0.46 to 0.48. Q2
cv is between 0.43 ± 0.12 (OARG) and 0.56 ± 0.09 (RBF-

DESCONLY), the Q2
loo is at least equal.

Figure 3 illustrates the prediction performance. The mean prediction of each
sample and its standard deviation is plotted for six different kernels. The plots
show that the LOAEL can be predicted for low and large doses. The mean per-
centage of structures predicted with an AAE larger than one order of magnitude
is in the range 12.4% (RBF-2DDESC) and 19.4% (OARG). The best graph
kernel is the Tanimoto with 13.5% regarding the AAEcv.

We computed eigenvalue decompositions of all kernel matrices using JAMA4

to ensure that all kernel matrices are positive semi-definite. All matrices passed
this test. A pairwise comparison using the MSE values obtained from the mul-
tirun cross-validations in a paired-sample Wilcoxon test revealed that OAK,
MARG and OARG were significantly worse than all methods ranked above in
Table 2.

4 Discussion and Conclusion

In this paper, the prediction of chronic toxic effects of chemical compounds on
rats was addressed using kernel machines. An accurate in silico prediction of the
LOAEL helps to reduce the number of animal experiments, cost, time and to
increase sustainability.

By using ε-SVR and various kernel functions, the prediction error as well as
the empirical correlation between prediction and measurements could be im-
proved compared to the state-of-the-art. Numerical kernels and graph kernels
are well-suited methods to solve this task. The simplest configuration, the RBF
Kernel with 2D descriptors, gives satisfying results. This is in agreement with
the work of Mazzatorta et al. [11]. Flexibility information improves the predic-
tive performance of the OAK. This may be due to the impact of the flexibility of
a molecule on the bioavailability of a drug. Graph kernels are a good alternative
to model the LOAEL. 3D descriptors and the consideration of geometrical phar-
macophores do not improve the predictive performance, this is also in agreement
with [11].

In general, the MSEloo of 0.53 [11] could be improved to 0.45 and Q2
loo from 0.5

to 0.58 using an RBF Kernel with all descriptors. The RBF Kernel with reduced
descriptor blocks or atom pair information only also works well. Models obtained
by using the OAKflex, the Tanimoto Kernel or the Pharmacophore Kernel have
a comparable quality. The good performance of the these kernels may be due to
the consideration of fragment-like patterns which are regarded for the similarity
computation. Many compounds turn toxic when they are metabolized revealing
the actual toxic compound. The reduced graph representation of the OARG
resulted in decreased performance in this application.

An advantage of the application of the kernel machine in this study is the
low number of free parameters (between two and four, including the kernel).

4 http://math.nist.gov/javanumerics/jama/
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Therefore, we expect a suitable generalization of the models. A disadvantage is
the lack of interpretability of models inferred by a Support Vector Machine.

We were able to improve the MSE as well as the Q2 on the LOAEL bench-
mark problem with various setups. The number of free parameters is low for all
approaches (two for ε-SVR and a maximum of two for the kernel function).

We presented a method for the prediction of chronic rat toxicity based on ker-
nel machines. The benchmarks show that several of the tested methods with an
error close to the estimated interlaboratory reproducibility of the animal exper-
iments, which can be regarded as theoretical limit, are well-suited for predicting
such data.
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Abstract. Genetic algorithms are generally quite easy to understand
and work with, and they are a popular choice in many cases. One area
in which genetic algorithms are widely and successfully used is artifi-
cial life where they are used to simulate evolution of artificial creatures.
However, despite their suggestive name, simplicity and popularity in ar-
tificial life, they do not seem to have gained a footing within the field
of population genetics to simulate evolution of real organisms – possibly
because genetic algorithms are based on a rather crude simplification of
the evolutionary mechanisms known today. However, in this paper we
report how a standard genetic algorithm is used to successfully simulate
evolution of ebony mutants in a population of Drosophila melanogaster
(D.melanogaster). The results show a remarkable resemblance to the evo-
lution observed in real biological experiments with ebony mutants, indi-
cating that despite the simplifications, even a simple standard genetic
algorithm does indeed capture the governing principles in evolution, and
could be used beneficially in population genetics studies.

Keywords: Genetic algorithms, simulation, population genetics.

1 Introduction

Darwin’s book ”On the Origin of the Species” was published in 1859 and even
though evolution was already generally a recognized phenomenon amongst sci-
entists at the time, Darwin offered a new way to explain evolution that has since
been broadly accepted by the scientific community.

Genetic algorithms can generally be thought of as a formalization of Darwin’s
evolutionary theory. Originally formulated by John Holland in the 1960’s, genetic
algorithms are a set of heuristics that are perhaps mostly known for their ability
to find optimal or near-optimal solutions in large (possibly infinitely large) search
spaces [4,7] and their use in artificial life [5]. They come in many different shapes
and forms, but the underlying framework involving an encoding-, selection- and
breeding-strategy is the same for all of them.
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In this experiment we use a genetic algorithm to simulate a population of
Drosophila melanogaster (D.melanogaster), also known as the common fruit fly.
The fly is with its approximately 13.600 genes a relatively complex animal with a
fairly short life cycle of roughly 30-40 days [3], although flies kept in laboratories
usually have a slightly shorter life span[3]. This makes the fruit fly ideal for
studies of population genetics and it is indeed widely used for just that [10].

One of the genes that has been throughly studied is the ebony gene [10],
which aside from being associated with the color of the fly, influences both vision
and movement and has a direct influence on the breeding success of the fly.
Furthermore, only approximately 80% of ebony mutants ever hatch giving the
mutants a natural disadvantage [10].

Each fly has two instances of each chromosome, which gives rise to three dis-
tinct ebony genotypes: the mutant genotype (e/e) has a mutation in the ebony
gene on both chromosomes, the heterozygous genotype (+/e) has a mutation in
the ebony gene on only one of the chromosomes while the wild type genotype
(+/+) has no mutation in the ebony gene. The ebony gene is a recessive gene,
which generally means that only flies with the mutant genotype will show the
mutant characteristics. In practice, however, many of the heterozygous flies can
easily be distinguished upon visual inspection and mating studies also shows
that the flies are definitely able to distinguish between all three genotypes[8].
From a population geneticist’s point of view, the ebony gene is interesting be-
cause hatching along with the ability to successfully move around and breed are
generally considered extremely important for a fly, if the genes are to be pre-
served in future generations. Aside from their lower hatching success, the ability
of the ebony mutant to move around is also impaired compared to both the wild
type fly and especially the heterozygous fly, just as the mutants eyesight is quite
limited [10]. A male fly’s ability to move around quickly is thought to be an
attractive characteristic among female flies, and good vision will naturally allow
the flies to spot the most attractive mating partner from a longer distance.

However, the male mutant fly has a larger mating capacity (it can inseminate
more females in a 24 hour period) than the wild type counter part [8,9] and the
female mutant flies tend to be less selective when being courted by a male fly –
possibly because of their impaired vision. Heterozygous male flies have the largest
mating capacity of all the genotypes, which would seem to give this genotype an
advantage, but the heterozygous female flies on the other hand accepts the fewest
mating invitations, thereby apparently canceling out the advantage. Biological
experiments, wherein the initial population contains 25%, 50% and 75% mutants
respectively, have shown that the frequency of mutants always drop rapidly
during the first 5-10 generations, but then stabilizes (see [8,9] and Figure 1 A).

A number of systems for simulating and predicting allele frequencies of genes
exists. Very simple systems based on Wright-Fisher populations assume neutral
development and are thus too imprecise for studying real systems. Other non-
neutral systems that use Markov chains have been applied [2] but to our knowl-
edge genetic algorithms have for some reason, despite their otherwise suggestive
name, not previously been used in population genetics simulations. The appeal
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of using a genetic algorithm for a population geneticist is that the terminology
is highly familiar and thus very intuitive. We realize that genetic algorithms
have been developed and extended much over the years as our understanding of
evolution has increased [1], but this type of experiment relates to the very fun-
damentals of evolution and we thus believe that, aside from being very simple,
the original genetic algorithm is quite adequate.

2 Methods

The genetic algorithm used for the simulation is constructed such that each in-
dividual (fly), referred to as a D.simulation, has two chromosome pairs explicitly
modeled. The chromosome 3 pair, which includes the ebony gene, and the sex
chromosome pair (X/Y), which determines the sex of the fly. All flies possess the
following basic characteristics: they can fly, walk, see and breed. Furthermore, we
have introduced a ”resting period” for the male D.simulation, which is triggered
by the mating procedure, to ensure that the simulated fly has the same mating
capacity as the real fly. Female flies do not have a resting period, but they do
have the ability to lay eggs. How far they can fly, walk or see depends on the
genotype of the fly (see Table 1) just as it is the case for the real fly and likewise
for the required resting period of the male flies and the selectivity of the female
flies. During the resting period the male fly is unable to mate, but it may still
move around. How many cells the simulated flies can move and see is based on
our interpretation of how the different genotype compared to each other.

D.melanogaster goes through several stages before it becomes a real fly [3].
However, the egg stage, larval stage and pupa stage are for the most part un-
interesting when looking at population genetics and D.simulation thus only has
one stage (the egg stage) before it becomes a fly. Development from egg to fly
for D.melanogaster take roughly 14 days and the length of the egg stage for
D.simulation is thus chosen randomly between 12 and 16 days. The egg never
moves. Like the D.melanogaster ebony mutant, a D.simulation ebony mutant
egg has only a 80% chance of ever hatching. Eggs that do not hatch are removed
from the world. After hatching the D.simulation flies are sexually active after 12
hours and the female flies start laying eggs after 2 days. These values are equal to

Table 1. For each genotype (+/+ = wild type, +/e = heterozygous and e/e = mutant)
is indicated the maximum flying and walking distance, how far they can see, the mating
capacity of the males and the courtship acceptance frequency of the females

+/+ +/e e/e
Walk (cells) 5 5 4
Fly (cells) 12 12 8
Sight (cells) 5 5 3
Mating capacity (24 hours) 3 6 4
Courtship acceptance (%) 60 50 65
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those observed in real experiments [3]. Real female flies may lay several hundreds
of eggs – whether they are fertilized or not – over a period of approximately 10
days, but in order to control population size a female D.simulation lays only
between 1 and 6 eggs. All unfertilized eggs are removed immediately from the
environment. The complete life cycle of D.simulation including the egg stage is
chosen randomly between 28 and 32 days. The initial population contains 100
flies and 20 eggs (50% of each sex). If the population grows to include more than
250 flies, a 1% chance of ”sudden death” is introduced.

The simulation uses a 3-dimensional world containing 50 x 50 x 50 cells. Each
cell can only hold one fly or egg. Each time step is equivalent to one hour and
the flies can perform one movement per time step. How far a fly moves in each
time step is chosen randomly, although it never exceeds the distance stated in
Table 1. If a cell is already occupied by another fly a new movement and distance
is chosen. Mating occurs at the end of each time step. Female flies are selected
with a frequency that match their ”courtship acceptance” and for each selected
female fly a male fly is chosen by using a fitness-proportionate selection strategy
known as a ”roulette wheel” on the non-resting male flies that occupy cells within
eyesight distance of the female. The Roulette Wheel ensures that male flies with
higher fitness values are chosen more frequently than male flies with lower fitness
values.

The breeding strategy uses only mutation (not crossover), as the simulation is
only focused on the ebony gene. Spontaneous mutation of the ebony gene occurs
with a frequency of 8x10−4. The mutation frequency is set 40 times higher than
what is typically observed in real life to compensate for the inclusion of only one
type of ebony mutants, as opposed to the 40 different mutations to the ebony
gene that has been identified in the real fly.

3 Results

The fitness values upon which these results are based are listed in Table 2.
They are the result of simply adding the values from Table 1, except ”courtship
acceptance”, which is purely a female trait that does not influence the male
fitness value. The simulation is run 10 times of 50000 time steps (≈ 5.7 years)
for each start population of 25%, 50% and 75% mutants respectively. Due to
the stochastic aspect of genetic algorithms, different results may be obtained for
each run and running the algorithm multiple times was thus done.

Table 2. Each of the fly’s characteristics contributes to the overall fitness value, but
varies for every genotype (+/+ = wild type, +/e = heterozygous and e/e = mutant)

Fitness
+/+ 25
+/e 28
e/e 19
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A B

Fig. 1. The results taken from the real experiments compared to the results from the
simulation. The simulated result shown for each start population of 25%, 50% and 75%
mutants is the average of the 10 runs.

Both the results from real experiments with D.melanogaster and the results
from the simulation are presented in Figure 1. The results from the real ex-
periment are taken directly from [10]. The figure shows that the frequency of
mutants in both the D.melanogaster and D.simulation population drop very
rapidly initially and then stabilizes after roughly 10-15 generations. As can be
seen, development of the gene in the simulated population matches the real
experiment close to perfectly.

It should of course be emphasized that selection of flies are based on the very
simple rules that are defined in section 2 and they remain the same throughout
the simulation. The composition of genotypes in the population at a given time
is not considered and does not in any way affect which flies are selected for
breeding. In other words, we do not have any special rules that are applied if
mutants appear to either take over the population or die out.

4 Discussion

The main focus of this experiment is to determine if a standard genetic algorithm
is able to successfully capture the fundamental aspects of evolution as can be
observed in population genetics experiments. By inspecting the mutant frequency
from experimental results with D.melanogaster (Figure 1 A), two things stand
out: the initial drastic drop in mutant frequency and the following stabilization.
Both traits are clearly observed in the simulated population (Figure 1 B). One
could fear that the mutants would either completely take over the population
or alternatively simply die out, as indeed seems very likely when observing the
initial drastic drop, but the pattern resembles the pattern observed in nature.
With the settings given in Table 1 and 2 the genetic algorithm does thus appear
to very successfully capture the governing aspect of evolution and would in fact
seem to be an obvious choice for simulating population genetics.
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Another interesting observation is that, in Søndergaard [9] they describe how
females tend to pick differently depending on the male compositions in the popu-
lation, but we do not actually have to explicitly consider that in the simulation.
The females follow that same rules at all times during the simulation regard-
less of the male composition in the population, and the behavior thus seem to
emerge naturally simply from each individual following a few simple rules. This
phenomenon is also known in swarm intelligence where simulation have clearly
demonstrated that the seemingly intelligent movement of flocking animals in fact
emerges from the simple set of rules that each animal follow [6].

When genetic algorithms are as accurate, as seen here, they can be used not
only to simulate evolution but also to investigate underlying biological aspects. It
is for example quite interesting to note that although the ebony gene is recessive,
and one would thus expect that the heterozygous fly and the wild type fly should
be viewed as equal, it proved to be imperative for the accuracy of the simulation
to distinguish between the two genotypes. If such a distinction was not made the
drop in mutant frequency was generally more linear, and most often the mutants
died out before 50000 time steps.

We wish to emphasize that we do not suggest that simulation with a standard
genetic algorithm can be used to simulate evolution of, say, the effect of a new
mutation - the genetic algorithm relies heavily on prior knowledge that is relevant
for calculating fitness of the fly. However, the effect of changing for instance
the start compositions of flies (such as more mutants or fewer males) or even
introducing impairments (such as restrictions on walking distance) could easily
be studied using a simulation as this. Also, an analysis of exactly how much the
fitness values can be varied while maintaining the characteristic development
pattern could be done to help us understand how robust nature really is and
indicate how big an advantage or disadvantage each genotype can have without
altering the population development pattern. Running the computer simulation
for 50.000 time steps (corresponding to ≈5.7 years or 70 generations) with our
parameter settings takes just under 5 minutes on a 2.2GHz Intel processor.

As a final note, it should be mentioned, that this simulation is rather simple,
as it involves only mutation as a biological operator. The other major biologi-
cal operator, crossover, is not really used in this experiment, and we are thus
not able to draw any conclusions about how well genetic algorithms would for
instance simulate evolution of couple genes, but given the good results we have
achieved here with relatively little effort, we are quite optimistic, and it would
be interesting to attempt a more complicated simulation.

5 Conclusion

The results from experiments with D.melanogaster and the results from the
simulated fly, D.simulation, bear a remarkable resemblance. Despite being based
on a simplification of evolution as we know it, genetic algorithms do appear to
be quite able to capture the fundamental aspects of evolution. The prospect of
using genetic algorithms in population genetics where some knowledge about
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fitness have already been established thus look very good and further investi-
gation into more complicated simulations of, for instance, coupled genes in the
D.melanogaster, would be interesting to carry out.
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Abstract. In this paper, a new memetic approach that integrates a Multi-
Objective Evolutionary Algorithm (MOEA) with local search for microarray 
biclustering is presented. The original features of this proposal are the consid-
eration of opposite regulation and incorporation of a mechanism for tuning the 
balance between the size and row variance of the biclusters. The approach was 
developed according to the Platform and Programming Language Independent 
Interface for Search Algorithms (PISA) framework, thus achieving the possibil-
ity of testing and comparing several different memetic MOEAs. The perform-
ance of the MOEA strategy based on the SPEA2 performed better, and its  
resulting biclusters were compared with those obtained by a multi-objective ap-
proach recently published. The benchmarks were two datasets corresponding to 
Saccharomyces cerevisiae and human B-cells Lymphoma. Our proposal 
achieves a better proportion of coverage of the gene expression data matrix, and 
it also obtains biclusters with new features that the former existing evolutionary 
strategies can not detect.  

Keywords: Gene regulation, biclustering, evolutionary algorithms, PISA. 

1   Introduction 

The study of complex interactions between macro-molecules during transcription and 
translation processes constitutes a challenging research field, since it has a great impact 
in various critical areas. In this context, the microarray technology arose as a fundamen-
tal tool to provide information about the behavior of thousands of genes. The informa-
tion provided by this technology corresponds to the relative abundance of the mRNA of 
genes under a given experimental condition. The abundance of the mRNA is a metric 
that can be associated to the expression level of the gene. This information can be  
arranged into a matrix, namely gene expression data matrix, where rows and columns 
correspond to genes and experiments respectively. Each matrix entry is a real number 
that represents the expression level of a given gene under a given condition.  

An important issue in gene expression data analysis consists in grouping genes that 
present a similar, or related, behavior according to their expression levels. The 
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achievement of this task helps in inferring the functional role of genes during protein 
transcription. Therefore, based on the data about the relations between genes and their 
products, the gene regulatory networks (GRNs) can be discovered.   

In general, during the process of identifying gene clusters, all of the genes are not 
relevant for all the experimental conditions, but groups of genes are often co-regulated 
and co-expressed only under some specific conditions. This important observation has 
leaded the attention to the design of biclustering methods that simultaneously group 
genes and samples [1]. In this context, a satisfactory bicluster consists in a group of 
rows and columns of the gene expression data matrix that satisfies some similarity 
score [2] in conjunction with other criteria.  

In this paper, we propose a memetic multi-objective evolutionary approach imple-
mented in the context of the PISA platform to solve the problem of microarray bicluster-
ing. Our technique hybridizes traditional multi-objective evolutionary algorithms 
(MOEAs) with a new version of a well-known Local Search (LS) procedure. To the best 
of our knowledge, this methodology introduces two novel features that were never ad-
dressed, or partially dealt-with, by other evolutionary techniques designed for this prob-
lem instance. The first contribution consists in the design of the individual representation 
that contemplates the mechanisms of opposite regulation. The other new characteristic is 
the incorporation of a mechanism that controls the trade-off between size and row vari-
ance of the biclusters. The rest of the paper is organized as follows: in the next section 
some concepts about microarray biclustering are defined; then, a brief review on existing 
evolutionary methods used to tackle this problem is presented; in Section 4 our proposal 
is introduced; then, in Section 5, all the experimental framework and the results are put 
forward; finally some conclusions are discussed.  

2   Microarray Biclustering  

As it was aforementioned, expression data can be viewed as a matrix Ε that contains 
expression values, where rows correspond to genes and columns to the samples or  
conditions, taken at different experiments. A matrix element eij contains the measured 
expression value for the corresponding gene i and sample j. In this context, a bicluster is 
defined as a pair (G, C) where G ⊆ {1, …, m} is a subset of genes (rows) and C ⊆ {1, 
…, n} is a subset of conditions (columns) [2]. In general, the main goal is to find the 
largest bicluster that does not exceed certain homogeneity constrain. It is also impor-
tant to consider that the variance of each row in the bicluster should be relatively 
high, in order to capture genes exhibiting fluctuating coherent trends under some set 
of conditions. The bicluster size is the number of rows f(G) and the number of col-
umns g(C). The homogeneity h(G,C) is given by the mean squared residue score, 
while the variance k(G,C) is the row variance [2]. Therefore, our optimization  
problem can be defined as follows: 
maximize  

( ) GGf =  . (1) 

( ) CCg =  . (2) 
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is the mean expression value over all the cells that are contained in the bicluster 
(G,C). The user-defined threshold δ represents the maximum allowable dissimilarity 
within the cells of a bicluster. In other words, the residue quantifies the difference 
between the actual value of an element egc and its expected value as predicted for the 
corresponding row mean, column mean, and bicluster mean. If a bicluster has a mean 
square residue lower than a given value δ, then we call the bicluster a δ-bicluster. The 
problem of finding the largest square δ-bicluster is NP-hard [2]. The high complexity 
of this problem has motivated researchers to apply various approximation techniques 
to generate near optimal solutions. In particular, evolutionary algorithms (EAs) are 
well-suited for addressing this class of problems [3, 4, 5]. 

3   Microarray Biclustering with Evolutionary Algorithms 

The first reported approach that tackled microarray biclustering by means of an EA 
was proposed by Bleuler et al. [5]. In this work, several variants are presented. They 
analyze the use of a single-objective EA, an EA combined with a LS strategy [2] and 
the LS strategy alone [2]. In the case of the EA, one novelty consists in a form of 
diversity maintenance that can be applied during the selection procedure. For the case 
of the EA hybridized with a LS strategy, they consider whether the new individual 
yielded by the LS procedure should replace the original individual (Lamarckian ap-
proach) or not (Baldwinian approach). As regards the LS as a stand alone strategy, 
they propose a new non-deterministic version, where the decision on the course of 
execution is made according to some probability.  

Regarding the EA, a binary representation for the individuals where each individual 
stands for a given bicluster is adopted, and independent bit mutation and uniform cross-
over are used. For the definition of the fitness function, they distinguish two cases: 
whether the EA operates alone or if it works together with the LS strategy. For the first 
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situation a better fitness value, obtained from the size of the bicluster, is assigned to 
those individuals that comply with the residue restriction. If the bicluster has a residue 
over a given threshold, namely δ, then a value greater than 1 is set. For the second case, 
as the residue constraint is considered by the LS strategy, they only look at the size of 
the biclusters for the fitness assignment. For the experiments, two datasets were used: 
Yeast [6] and Arabidopsis thaliana [7, 8]. The study of the results is organized consider-
ing whether the aim is to get a unique bicluster or a set of biclusters. For the analysis of 
a single bicluster, the evaluation is focused on the size of the biclusters, and the algo-
rithm that performed better was the EA combined with the LS method by means of an 
updating policy. For the second case of analysis, a comparison of the results as regards 
the covering of matrix E is performed, and the hybridized EA with diversity mainte-
nance combined with LS did better in this sense.  

Another approach, called SEBI for Sequential Evolutionary BIclustering, was later 
proposed by Divina and Aguilar-Ruiz [4]. In this work, an EA is presented where the 
individuals represent biclusters by means of binary strings. The main idea of this 
sequential technique is that the EA is run several times. From each run, the EA yields 
the best bicluster according to its size, row variance and overlapping factors. If its 
residue value (as defined by Chung and Church [2]) is lower than δ, then the bicluster 
is added into an archive that they call Results. Whenever this is the case, the method 
keeps track of the elements of the bicluster so as to use this information to minimize 
overlapping during the next run of the EA.  

As regards the details of the EA, the fitness function combines the aforementioned 
objectives by means of a non-Pareto aggregative function. Tournament selection is 
chosen and several options for the recombination operators were implemented. For 
the experimental studies, the EA was executed for two datasets: Yeast [6] and Human 
B-cells [9]. The comparison is performed against the biclusters found by Chung and 
Church as regards the covering of the whole gene expression matrix E. For the Yeast 
dataset, SEBI manages to cover 38% of E, while Chung and Church’s covers 81%. 
Regarding the Human dataset, SEBI covers 34% while Chung and Church’s biclusters 
cover 37%. The authors consider that these results can be explained as a consequence 
of the overlapping factor, since the consideration of this objective naturally goes in 
detriment of the other goals. 

Finally, Mitra and Banka [3] present a MOEA combined with a LS [2] strategy. 
This method constitutes the first approach that implements a MOEA based on Pareto 
dominancy for this problem. The authors base their work on the NSGA-II, and look 
for biclusters with maximum size and homogeneity. The individual representation is 
the same as in the previously introduced methods; and uniform single-point crossover, 
single-bit mutation and crowded tournament selection are implemented. The LS strat-
egy is applied to all of the individuals with a Lamarkian approach, at the beginning of 
every generational loop. The method is tested on microarray data consisting of two 
benchmark gene expression datasets, Yeast and Human B-cell Lymphoma. For the 
analysis of the results, a new measure called Coherence Index (CI) is introduced. CI is 
defined as “the ratio of mean squared residue score to the size of the formed biclus-
ter”. The biclusters are compared to those reported by Chung and Church and, in all 
the cases, Mitra and Banka’s results indicate a better performance in terms of the 
bicluster size, while satisfying the homogeneity criterion in terms of δ. However, as 
regards coverage, Chung and Church’s work produces better results.  
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4   Our Proposal 

The aim of our study is to use a MOEA for approximating the Pareto front of bi-
clusters from a given gene expression matrix, as this approach gives the best tradeoff 
between the objectives that we want to optimize. However, in view of the fact that the 
Pareto front also includes biclusters that do not satisfy the homogeneity restriction, we 
need to guide the search to the area where this restriction is accomplished. In that 
context, we apply a LS technique based on Chung and Church’s procedure after each 
generation, thus orienting the exploration and speeding up the convergence of the 
MOEA by refining the chromosomes. Besides, the results achieved by other authors 
[3, 5] reveal that MOEAs alone obtain poor biclusters. 

In order to consider inverted rows, we have extended the classical representation of 
a bicluster and we have also modified the genetic operators. Then, our proposal per-
forms over a double-sized search space, in contrast with the evolutionary biclustering 
methods found in the literature [3, 4, 5]. The importance of including these inverted 
rows resides in that they form mirror images of the rest of the rows in the bicluster, 
and can be interpreted as opposite co-regulated [2]. In this way, our proposal is able to 
find biclusters that the former evolutionary methods cannot detect. 

As regard to the implementation, the multi-objective strategy was built on the base of 
a platform called PISA [10]. PISA is a text-based interface for search algorithms. It 
splits an optimization process into two modules. One module contains all the parts that 
are specific to the optimization problem (e.g., evaluation of solutions, problem represen-
tation, and variation of solutions) and is called the Variator. The other module contains 
the parts of an optimization process which are independent of the optimization problem 
(mainly the selection process). This part is called the Selector. These two modules are 
implemented as separate programs which communicate through text files.  

For this work, we have designed a Variator specific for the microarray biclustering 
application, and we have combined it with the Selectors corresponding to the IBEA [11], 
NSGAII [12] and SPEA2 [13] optimization algorithms. The reason for the selection of 
these MOEAs is that they are the most recommended evolutionary optimizers in the 
literature. In this way, we will assess the MOEA that exhibits the best performance for 
the problem. In the following sections, we will describe the main features of the imple-
mented Variator and how the LS is incorporated into the search process.  

Individual’s Representation 
Each individual represents one bicluster, which is encoded by a fixed size string built 
by appending a string for genes with another bit string for conditions. The individual 
corresponds to a solution for the problem of optimal bicluster generation. If a string 
position (locus) is set to 1, it means that the relative row or column belongs to the 
encoded bicluster, otherwise it does not. To take into account the inverted rows we 
also considerer the addition of negative values in the string for genes. That is to say, a 
locus of the string is set to -1 when the relative inverted row belongs to the encoded 
solution. Figure 1 shows an example of such encoding for a random individual. 

-1 1 0 0 -1 1 -1 1 0 …………… 1 0 0 1 0 0 1 0 1 1 0 …………… 0 0
Genes Conditions  

Fig. 1. An encoded individual representing a bicluster 
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Genetic Operators 
It is important to give a brief description of the genetic operators, since they have a 
key influence in how the search is performed by the MOEA. 

Mutation. This operator is implemented in the following way: first it is determined 
if the individual needs to be mutated by means of the probability assigned to the op-
erator. In such case, a position of the string is selected at random, then proceeding to 
alter the locus in question. If the resulting position is a column, the corresponding 
locus is simply complemented. On the other hand if the resulting position is a row, 
then we have two cases: if the locus is set to 0 then it is set to 1, and the sign is deter-
mined with a probability of 0.5. If the locus is in on (1 or -1) we simply change the 
value to 0. 

Recombination. A two-point crossover was implemented with a little restriction: 
one random point is selected on the rows and the other random point is selected on the 
columns. In this way, we ensure that the recombination is performed over both the 
genes and the conditions subspaces. Then, when both children are obtained combining 
each one of the two parents’ parts (i.e. the ends and the center), the individual that is 
selected to be the only descendant is the non-dominated one. If both are non-
dominated, one of them is chosen at random. 

Multi-Objective Fitness Function 
As regards the objectives to be optimized, we observed that it was necessary to generate 
maximal sets of genes and conditions, while maintaining the “homogeneity” of the 
bicluster with a relatively high row variance. These bicluster features, conflicting to 
each other, are well-suited for multi-objective modeling. In that context, we decided to 
optimize the objectives defined by equations 1- 4 (see Section 3): the quantity of genes, 
the quantity of conditions, the row variance, and the mean squared residue. The first 
three objectives are maximized, while the last one is minimized.  

Local Search 
This subsection describes the LS procedure that hybridizes the selected MOEAs. The 
LS is applied into the Variator side to the biclusters that are selected by the Selector 
as the resulting individuals of each generation. Adding the LS to the Variator is the 
only way to hybridize a MOEA without altering the basic principles of PISA [10]. 
The greedy approach is based on Chung and Church’s work [2], with some modifica-
tions introduced in order to consider the row variance and the overall efficiency of the 
proposal. The algorithm starts from a given bicluster (G,C). The genes or conditions 
having mean squared residue above (or below) a certain threshold are selectively 
eliminated (or added) according to Algorithm 1. 

The main differences with Chung and Church’s implementation are the following:  

• In Step 3, we remove multiple nodes considering a different threshold, α.δ in-
stead of α.h(G,C). As a consequence, Step 5 is performed a smaller number of 
times with respect to the original proposal. This is useful because, with a proper 
setting of the parameter α, the CPU time needed to optimize a bicluster is de-
creased. This is possible without loosing significant precision of the algorithm.  

• In Step 9, we incorporated the row variance, adding the rows that will increase 
in a certain proportion the overall row variance of the individual.  
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• Finally, in the Steps 7-9, the original algorithm tries to add each row, each col-
umn and each inverted row, in that order. In our case, we first attempt to add 
each condition. This increases (on average) the amount of conditions of the re-
sulting bicluster since a column, in general, has more probability of being in-
serted in the solution if it contains less quantity of rows.  

Beside δ, two additional parameters need to be set for this algorithm. α determines 
how often multiple gene deletion is used. A higher α leads to less multiple gene dele-
tion and thus, in general, requires more CPU time. The other parameter is μ that es-
tablishes a relationship between the number of genes and the row variance of the 
bicluster. A bigger μ results in individuals with a higher row variance and a smaller 
size. If μ = 0, this step results equivalent to that of the original proposal. 

 

5   Experimental Framework and Results 

Two different goals were established for our study. First we need to determine which 
of the memetic MOEAs performs better in this class of problem. The analysis will be 
performed with the tools provided in Knowles et al. [14]. Then, we will compare the 
selected memetic evolutionary algorithm with the approach of Mitra and Banka [3] 
since, to the best of our knowledge, this is the only multi-objective evolutionary 
method for microarray biclustering found in the literature. 

Performance Assessment 
As it was aforementioned, the choice of the best memetic MOEA will be based on the 
results of the tools provided in Knowles et al. [14], which are well recognized in the 
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area of multi-objective optimization. The metrics applied in the evaluation of the 
MOEAs are the Dominance Ranking [14], the Hypervolumen Indicator −

HI  [15], the 
multiplicative version of the Unary Epsilon Indicator 1

εI  [16], and the R2 Indicator 
1

2RI  [17]. The Dominance Ranking is useful in the assessment of quite general state-
ments about the relative performance of the considered optimizers, since it merely 
relies on the concept of Pareto dominance and some ranking procedure. The Quality 
Indicator I measures the number of goals that have been attained for the optimizers 
being under consideration. Each one of the indicators empathize a different aspect in 
the preference of the solutions obtained. For the details of the previous metrics please 
be referred to Knowles et al. [14].  

If a significant difference can be demonstrated using the Dominance Rank, the only 
purpose of the Quality Indicators is to characterize further differences in the ap-
proximation sets. On the other hand, if we cannot establish significant differences by 
means of the Dominance Rank, then the Quality Indicators can help us in the decision 
of which one of the optimizers is better. However, these results do not confirm that 
the selected method generates the better approximation sets. In order to make infer-
ences about the results of the previous metrics we will apply the kruskal-wallis test 
[18], since more than two methods are tested [14]. 

For this analysis, we have used two microarray datasets, the Saccharomyces cere-
visiae cell cycle expression data from [6] and the human B-cells Lymphoma expres-
sion data from [9]. The yeast data contain 2.884 genes and 17 conditions, and the 
expression values denote relative mRNA abundance. All values are integers in the 
range between 0 and 600 replacing the missing values by 0. The Lymphoma dataset 
contains 4.026 genes and 96 conditions. The expression levels are integers in the 
range between -750 and 650, where the missing values were also replaced by 0. These 
datasets have been directly used as in [2]. 

First Experimental Phase 
The three memetic MOEAs, IBEA, NSGA-II and SPEA2, have been evaluated with 50 
runs and 75 generations over the two datasets. The Table 1 summarizes the parameters 
used in this benchmark. These values were selected from a few preliminary runs. In the 
case of the LS setup, δ was set with the same value as in [2], μ was set for the best 
tradeoff between size and row variance, and α was set considering the overall effi-
ciency on each dataset. All the executions were controlled by the Monitor module [10]. 
In the case of the IBEA algorithm, we chose the Additive Epsilon Indicator, and the 
rest of the parameters were set to the default values. Since PISA assumes that all the 
objectives are minimized, the four objectives of our approach (see equations 1-4) were 
adapted accordingly. For the parameters of the indicators, we maintained the default 
values of the nadir and ideal points (appropriately extended to four objectives), since 
the objectives are automatically normalized to the interval [1..2] by the tools.  

Table 1. Parameter’s settings for this study 

Generations Mutation Prob. Crossover Prob. δ α μ
Yeast 300 1,8 0,998

Lymphoma 1200 1,5 0,999

α μ λ
100 50 50

PISA

75 0,3 0,9Our variator
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Table 2. Kruskal-wallis test over the Quality Indicators −
HI (left), 1

εI  (middle) and 1
2RI (right) 

IBEA SPEA2 NSGA-II IBEA SPEA2 NSGA-II IBEA SPEA2 NSGA-II
IBEA - 1 0,99 IBEA - 0,99 0,99 IBEA - 1 0,99

SPEA2 1,50E-07 - 0,16 SPEA2 2,10E-04 - 0,61 SPEA2 8,00E-09 - 0,09
NSGA2 1,09E-05 0,84 - NSGA2 2,10E-04 0,39 - NSGA2 4,00E-06 0,91 -

R2 IndicatorHypervolumen Indicator Multiplicative Epsilon Indicator

 

Table 3. Average of the objective’s values of IBEA, SPEA2 and NSGA-II on the Yeast dataset 
(above) and on the  Lymphoma dataset (below). 

average 
rows

average 
columns

average 
residue

average 
variance

average 
size 

IBEA 1047,63 12,52 261,61 296,35 13116,33
SPEA2 794,59 10,37 224,31 296,47 8239,898
NSGA-II 646,34 9,92 204,75 236,04 6411,693

Yeast dataset

  

average 
rows

average 
columns

average 
residue

average 
variance

average 
size

IBEA 655,93 60,71 1089,61 1135,93 39821,51
SPEA2 727,74 52,63 1048,91 1112,03 38300,96
NSGA-II 583,8 54,34 1046,68 1061,7 31723,69

Lymphoma dataset

   

As regards the experimental results, the kruskal-wallis test can not detect signifi-
cant differences on the Dominace Ranking of the three MOEAs, assuming a statisti-
cally significant level α = 0.05. This situation is equal for both datasets. In fact, all the 
results of the executions are assigned to the higher rank, showing that none of the 
MOEAs generates better approximation sets with respect to the others. This demon-
strates the high influence in the search process of the LS and how it guides the 
MOEAs to the same areas on the search space. Table 2 shows, for the Yeast dataset, 
the results of the kruskal-wallis test over three Quality Indicators. The table contains, 
for each pair of optimizers OR (row) and OC (column), the p-values with respect to the 
alternative hypothesis that the Quality Indicator I is significantly better for OR than 
for OC. For the Lymphoma dataset, differences between the algorithms are discovered, 
but none of them are statistically significant (α = 0.05).   

As it is shown in Table 2, both SPEA2 and NSGA-II perform better than IBEA un-
der all the indicators, but the differences between SPEA2 and NSGA-II are not statis-
tically significant. In view of these results, no asseveration can be made with respect 
to which one of the hybridized MOEAs performs better in this context.  

At this point, we advised the need of applying an ad hoc strategy in order to select 
one of the algorithms, i.e., we will play the role of a decision maker. The Table 3 shows 
the average of the objective’s values for the biclusters found by each memetic MOEA 
executed with the parameters shown in Table 1. It is clear that IBEA obtains biclusters 
of a bigger size (on average) with respect to those obtained by SPEA2 and NSGA-II. 
Moreover, NSGA-II constitutes the approach that obtains the most homogeneous bi-
clusters and SPEA2 is the one that obtains the best relation between residue and row 
variance. This behavior becomes more evident for the Yeast dataset than for the Lym-
phoma dataset. It is important to notice that, in general, biclusters with higher size have 
higher residue and lower row variance; whereas biclusters with small residue have sizes 
that tend to be smaller, independently of the row variance. The row variance is at least 
bigger in value than the residue in all the cases.  
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Fig. 2. Average row variance (left) and average size (right) for IBEA, NSGA-II and SPEA2 on 
the Yeast dataset when � parameter varies between 0.99 and 1.7   

Another characteristic of the MOEAs that can help on the selection of the method 
is constituted by how well the search can be oriented by means of the μ parameter on 
the LS. The Figure 2 shows, for the Yeast dataset, the average row variance (left) and 
the average size (right) of the biclusters obtained by each hybrid method when the μ 
parameter varies between 0.99 and 1.7. This threshold is related with the values of μ 
that have more effect over the results. As we can see, both SPEA2 and NSGA-II are 
well suited for being guided by the μ parameter, since as we increase the value of μ, 
the resulting biclusters have higher row variance in detriment of the size. In this re-
gard, the SPEA2 is the algorithm with best performance. On the other hand, the only 
effect that can be observed on IBEA is the reduction of the size of the biclusters, since 
we can not observe any effect on the row variance. Perhaps this is due to the fact that 
IBEA is an Indicator-based MOEA whereas SPEA2 and NSGA-II are Pareto-based 
MOEAs. Therefore, a conjecture is that the small changes introduced by the μ  
parameter in the population in each generation are not well perceived by IBEA; 
probably because the concept of non-dominated solution set is not supported by the 
algorithm. The behavior observed on the Lymphoma dataset is similar. 

For the comparative study of the next sub-section, we chose the memetic SPEA2 
since it is more sensitive to the μ parameter than the others, whereas the average sizes of 
the biclusters are similar to those found by the memetic IBEA. Although IBEA can find 
some greater biclusters than SPEA2, it is not sensitive to the μ parameter.   

All the testing has been made on a Mobile Sempron with 2 GB of RAM. The run-
ning time (on average) for the Yeast dataset was of 150s whereas for the Lymphoma 
dataset was of 660s. Since the execution time is mainly influenced by the LS proce-
dure, the three MOEAs obtained these values. 

Second Experimental Phase 
A comparison between the memetic SPEA2 and Mitra and Banka’s algorithm [3] is 
presented here. For this analysis, we used the results published by [3] in the paper. 
The parameter setups of our approach are those of the Table 1. The Table 4 shows the 
average results of the objective’s values for the Yeast dataset for both approaches. The 
size of the largest bicluster found by each method and the coverage of the gene ex-
pression data matrix E are also shown. The row variance is not shown because in [3] 
it is not reported. As we can see, our proposal can obtain more homogeneous bi-
clusters (on average) whereas the biclusters of Mitra and Banka’s algorithm are big-
ger in size (on average). The largest bicluster found by the two methods is similar in 
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Table 4. Average objective’s values for the bicluster found in the Yeast dataset by our memetic 
SPEA2 and Mitra and Banka’s approach 

average 
rows

average 
columns

average 
residue

average 
size 

largest 
bicluster 

size

coverage of 
cells

memetic SPEA2 794,59 10,37 224,31 8239,89 14602 72,50%
M&B's approach [3] 1095,43 9,29 234,87 10176,54 14828 51,34%  

size. When we consider the coverage of E, our proposal obtains a significantly better 
coverage of cells with respect to Mitra and Banka’s algorithm. It is important to re-
mark that the biclusters found by our approach also include the inverted rows; there-
fore, the search is carried out over a doubled-size search space with regard to the 
other evolutionary methods for microarray biclustering found in the literature. 

As regards to the Lymphoma dataset, in [3] the average results of the objective’s 
values are not reported in the paper. For this dataset, they simply show the largest 
bicluster and the average coverage of E. In this regard, our proposal can find a biclus-
ter greater than the one reported for Mitra and Banka’s algorithm. This bicluster has 
1009 genes, 63 conditions, a mean squared residue of 1181.06, a row variance of 
1295.05, and a size of 63567; whereas the greatest bicluster that is reported in [3] is of 
a size of 37560. We can argue that, to the best of our knowledge, this bicluster is 
greater than any other bicluster found by any method reported in the existing litera-
ture. Also, the coverage of E achieved by our memetic SPEA2 is (on average) about 
33.58% of cells; significantly better than the average of 20.96% obtained by Mitra 
and Banka’s algorithm. 

6   Conclusions 

In this paper, we have introduced a general multi-objective framework for microarray 
biclustering hybridized with a LS procedure for finer tuning. In a first experimental 
phase, we have hybridized and compared three well known MOEAs (IBEA, SPEA2 and 
NSGA-II) based on the PISA platform, in order to establish which one obtains the best 
results. Since no conclusive result was obtained from this evaluation, we selected the 
SPEA2 since it was able to obtain relatively large biclusters with a high sensitivity to 
the μ parameter. Then, during a second experimental phase, we have demonstrated that 
the quality of the outcomes of the memetic SPEA2 outperformed the results reported by 
Mitra and Banka. The comparative assessment was carried out on two benchmark gene 
expression datasets to demonstrate the effectiveness of the proposed method.  

Moreover, we provide to the biological scientists with an extra parameter to deter-
mine which biclusters they consider more relevant, giving them the possibility of 
adjusting the size and the row variance of the biclusters. Furthermore, the evolution-
ary approaches for biclustering found in the literature do not consider the inclusion of 
inverted rows, perhaps for efficiency reasons since the search space is duplicated. 
However, these inverted rows are very important because, they can be interpreted as 
co-regulated by receiving the opposite regulation. In this context, we have also dem-
onstrated that it possible to take into account these “extra rows” thus improving the 
quality of the biclusters, without loss of efficiency. 
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Abstract. F-score is a widely used filter criteria for gene selection in
multiclass cancer classification. This ranking criterion may become bi-
ased towards classes that have surplus of between-class sum of squares,
resulting in inferior classification performance. To alleviate this problem,
we propose to compute individual class wise between-class sum of squares
with Pareto frontal analysis to rank genes. We tested our approach on
four multiclass cancer gene expression datasets and the results show im-
provement in classification performance.

1 Introduction

DNA microarray technology has enabled us to measure gene expressions of thou-
sands of genes simultaneously. However, due to high cost of experiments, sample
sizes of gene-expression measurements remain in hundreds. Extraction of useful
information from such high dimensional datasets are hindered by curse of di-
mensionality as well as computational instabilities. Hence, selection of relevant
genes is extremely important in microarray gene-expression analysis. Various
gene selection methods, with both filter and wrapper approaches, have been de-
veloped for two-class problem [1,2,3,4,5]. But as the number of classes increases,
two-class gene selection methods may not be applicable and special attention is
needed for gene selection considering the complexity of the problem.

Li et al. has given excellent comparative review on multiclass classification and
feature selection methods [6]. F-score is a popularly applied filter approach for
multiclass gene selection [7]. It is based on classical F-statistics, a generalization
of T-test for two sample comparison. F-statistic presumes equal variance and
to relax such an assumption, Chen et al. proposed to use Brown-Forsythe test
statistic and Welch test statistic [8]. Other widely used feature selection methods
include mutual information and correlation coefficients, in which, the relevance
of a gene to class labels is measured by either of these scores. Based on these
filter criteria, specialized algorithms like minimum redundancy maximum rele-
vancy (MRMR) [2] and differential degree of prioritization (DDP) [3] have been
proposed to reduce redundancy among top-ranked genes. In another heuristic
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approach, genes are ranked by using mean and standard deviation with the as-
sumption that they have short distances from class centroids and simultaneously
have small within class variations [9].

In wrapper approaches, Zhou and Tick have recently proposed multiclass
support vector machine - recursive feature elimination (MSVM-RFE) method
for multiclass cancer gene selection, which is an extension of two class SVM-
RFE [10]. Similarly, Duan and Rajapakse proposed extension of multiple SVM-
RFE for multiclass gene selection [11]. Apart from these, few evolutionary algo-
rithms based methods have been developed for multiclass gene selection [12], [13].

As seen above, many of the multiclass gene selection methods are extensions
of two class problems. The widely used F-score criterion is a ratio of the between-
class sum of squares to within class sum of squares of individual genes. As this
is a generalization of two class T-test, this ranking criterion will be biased to-
wards strongly predictive genes of some classes due to surplus component of the
between-class sum of squares, while ignoring the genes required to discriminate
difficult classes. This may lead to poor representation of a few classes and over-
representation of other classes, resulting in poor classification performances. To
overcome such problem, Xuan et al. designed a two-step strategy, in which, in-
dividually discriminatory genes were identified based on one dimensional Fisher
criterion, and subsequently, jointly discriminatory genes were selected based on
multidimensional weighted Fisher criterion [14]. But estimating weights is a dif-
ficult problem in such an approach. To solve a similar problem, Forman pro-
posed round robin algorithm using Infogain as a feature selection method for
multi-class text classification [15]. Hero and Fleury [16] proposed a pareto-front
analysis based method to rank time-series gene-expression profiles.

In this paper, we propose to compute individual classwise between-class sum
of squares with Pareto-front analysis to rank genes. In the proposed approach, F-
score is decomposed for an individual class in one vs all approach and treated as
a muti-objective criterion. Pareto-front analysis, widely used in multi-objective
evolutionary optimization, is applied to rank genes with multi-objective criteria.
We test our approach on four multiclass cancer gene expression datasets and
the results show significant improvement in classification accuracy. This paper
is organized as follows: in following section, we present a detailed description
of F-score and the proposed method with algorithms. Numerical experimental
procedures and results are discussed in the next section and finally, the last
section concludes the paper with a discussion.

2 Method

Let D = {xij}n×m denotes the microarray gene expression dataset where xij is
gene expression of ith gene in jth sample; Here, n represents total number of
genes and m denotes number of samples. Let xj = (x1j , x2j , . . . , xnj) be the gene
expressions measured in the jth sample and the target class label of jth sample
be yj ∈ Γ = {1, 2, . . . , �}, taking from � different tissue classes.
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F-score is based on statistical F-test and is used for filtering genes with near-
constant expression across all tumour samples from important genes [7]. Intu-
itively, F-score will be large for a gene whose expression varies relatively small
within a class compared to large variations between other classes. For gene i,
F-score is computed by

F (i) =

∑
j

∑
� δ(yj = �)(xi� − xi.)2∑

j

∑
� δ(yj = �)(xij − xi�)2

(1)

Here, xi. is average expression level of gene i across all samples, xi� is the average
expression level of gene i across samples belonging to �-th class, and δ(.) denotes
indicator function, equal to 1 if the arguement is true and 0 otherwise. High
F-score of a gene represents high importance of that gene in classification.

As seen in Eq. 1, F-score is the ratio of between-class sum of squares to within
class sum of squares. For any gene, if between-class sum of squares is very high
for few classes, it may blind the discriminating effect needed for other difficult
class separation. As a result, many genes will be selected for such strong classes
and a very few will be top-ranked for difficult classes.

We look at this problem from a multiobjective perspective. Instead of sum-
ming up all between-class sum of square components in numerator, we take each
component as one objective. After computing individual components, we apply
standard Pareto-front analysis, used in multi-objective evolutionaty optimization
algorithms, for ranking genes. Mathematically, proposed objective functions (i.e.
class-wise F-score) are

max F�(i) =
(xi� − xi.)2∑

j

∑
� δ(yj = �)(xij − xi�)2

, ∀� ∈ Γ (2)

In above formulation, we will have � objective functions for � classes. Higher F�

is desired in each class for overall better classification performance. For Pareto-
front analysis, we define following gene dominance definitions based on multi-
objective optimization theory.

Definition 1. A gene i is said to dominate the other gene i′, if both the following
conditions 1 and 2 are true:

(1) The class-wise F-score (F�) of gene i is no worse than that of gene i′ in all
classes

(2) At least one of the class-wise F-score (F�) of gene i is better than that of
gene i′

Definition 2. Among a set of genes S, the non-dominated set of genes S′ are
those genes that are not dominated by any gene of the set S.

After Pareto-front analysis, we obtain P number of ranked fronts, each front
containing several number of genes. To rank genes within a front, we sum all
the F-score values and sort it in descending order. The detailed method of the
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Algorithm 1. F-score with Pareto-Front Analysis (F-PFA)
Begin : Gene subset S = [1, 2, . . . , n]

Compute class-wise F-score (F�) for all genes in S using Eq. 2
Determine Pareto-fronts using genes non-dominated sorting algorithm

while genes in each front are ranked do
In each front, sum all class-wise F-score in each gene i with F (i) =

∑
� F�(i)

Sort F values and rank genes in each front
end while
output : Ranked Genes

gene ranking is described in Algorithm 1. For Pareto-front analysis of given
genes with their class-wise F-score, we can perform all pair-wise comparisons and
determine non-dominated genes. If these genes are non-dominated by any other
genes in the whole set, they forms Pareto-optimal set. In gene selection context,
Pareto-optimal set represents genes which are more important for classification
than genes outside this set. NSGA-II is one of the very popular algorithms
to obtain Pareto-optimal set [17]. We present this algorithm in gene selection
context (with minimization of −F� as objective), as shown in Algorithm 2.

The for -loop in Algorithm 2 determines how many number of genes dominates
a particular gene i, and subset of genes which are dominated by gene i (If there
are no genes which dominates the gene i, then gene i belongs to first Pareto-
front). The second loop (while) is then used to separate genes in subsequent
Pareto-fronts. [See [17] for further details].

It is important to note that microarray gene expression data contains thou-
sands of genes. Due to high computational complexity of Pareto-ranking meth-
ods, it is not feasible to use all genes in the analysis. In this paper, we only use
top 1000 genes ranked by F-score methods for subsequent Pareto-front analysis.

3 Experiments and Results

3.1 Data

To evaluate the performance of the proposed F-PFA method, we performed
extensive experiments on four microarray gene expression datasets, namely,
GCM [18], Lung [19], MLL [20], and NCI Ross [21]. These are widely used
benchmark datasets to evaluate gene ranking methods with varying number of
classes and genes. Except GCM dataset, there is no separate testing set available
for other datasets. Hence, we divided the original dataset into separate training
set and testing set in Lung, MLL, and NCI Ross datasets. Further, all datasets
need pre-processing for gene expression values.

3.2 Preprocessing

All four datasets contain a large number of genes, out of which many genes have
constant gene expression levels. Therefore, it becomes necessary to pre-process
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Algorithm 2. Genes non-dominated sorting (modified from [17])
Begin : Gene subset S with corresponding F-scores {−F�}
for each gene i ∈ S do

Zi = ∅
ni = 0
for each gene i′ ∈ S do

if (i ≺ i′) then
Zi = Zi ∪ {i′}

else if (i′ ≺ i) then
ni = ni + 1

end if
end for
if ni = 0 then

irank = 1
F1 = F1 ∪ {i}

end if
end for
r = 1
while Fr �= ∅ do

Q = ∅
for each gene i ∈ Fr do

for each gene i′ ∈ Zi do
ni′ = ni′ − 1
if ni′ = 0 then

i′rank = r + 1
Q = Q ∪ {i′}

end if
end for

end for
r = r + 1
Fr = Q

end while
output : Genes separated in different Pareto fronts

data. For NCI Ross dataset, we employed pre-process dataset as given by the
supplementary information of [22]. For other datasets, we employ the following
steps for pre-processing:

1. Absolute gene expression values were thresolded with floor values of 100 and
ceiling of 16000.

2. From training dataset, we excluded genes with absolute gene expression value
change less than 100 across all training samples.

3. Transformation with log10 base.

We used above pre-processed datasets for F-score ranking and F-PFA. For clas-
sification performance evaluation, genes were further standardized to zero mean
and one standard deviation in all datasets. The number of samples and genes
before and after pre-processing are given in Table 1.
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Table 1. Sample Sizes of Four Multiclass Gene-Expression Datasets

Dataset # Class # Training # Testing # Genes after preprocessing

GCM 14 144 54 13842
MLL 3 59 13 10848

NCI(Ross) 8 46 12 5642
Lung 5 168 35 5220

3.3 Performance Evaluation

Ranking of genes in each dataset was obtained using F-score and proposed
F-PFA method. Only training data was used to rank the genes. Using the gene
ranking list, we tested gene subsets starting from top ranked gene and then suc-
cessively adding one gene at a time in the testing subset till the total number of
genes in subset equals 200.

As seen from Table 1, the number of samples in training and testing sets are
small and it can cause a peculiar problem while dividing into training and test-
ing sets. The performance evaluation is not reliable if only one set of testing set
is used. To avoid bias in performance evaluation, test errors were evaluated on
bootstraped samples by merging the training and testing datasets, and then, em-
ploying stratified sampling to partition the total samples into separate training
and testing sets by maintaing number of samples in each set as before. The clas-
sifier is then trained on the training set and tested on the corresponding testing
set. This process is followed for 100 times and performance measure such as, test
accuracy and Gorodkin Correlation Coefficient(GCC), were computed for these
100 trials. The mean and standard deviation of these performance measures are
shown in Table 2 and Table 3.

In datasets with small sample size with unbalanced class distribution, it is not
reliable enough to evaluate performance based on accuracy only. In such cases,
Matthew’s correlation coefficient (MCC) is used for binary classification. We em-
ploy GCC performance measure, which is generalization of MCC for multiclass
classification problem [23], [24] .

Assuming the actual observation matrix O and prediction matrix P are two
m × � matrices (with m number of samples and � number of classes), GCC
computes correlation between both matrices. An element in Ojl is equal to 1 if
jth sample belongs to class l and 0 otherwise. Similarly in prediction matrix Pjl,
an element is 1 if jth sample is predicted to belong to class l and 0 otherwise.
GCC is defined as

GCC =
COV (O, P )√

COV (O, O)
√

COV (P, P )
(3)

where COV (O, P ), COV (O, O), and COV (P, P ) are covariances of the cor-
responding matrices, defined as arithmetic average of the covariance of corre-
sponding columns of the matrices. Similar to Pearson’s correlation coefficient
and MCC, GCC values vary between [-1,1] range. Higher the GCC value, better
the prediction is.
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Table 2. Performance of F-score and F-PFA method on Various Cancer Datasets

Dataset Measurement F-score F-PFA

GCM Gene 77 96
Accuracy 67.72 ± 4.50 72.43 ± 4.72

GCC 0.66 ± 0.05 0.71 ± 0.05

MLL Gene 29 18
Accuracy 99.20 ± 2.31 99.00 ± 2.60

GCC 0.99 ± 0.03 0.99 ± 0.04

NCIRoss Gene 51 57
Accuracy 78.75 ± 9.65 78.50 ± 9.03

GCC 0.77 ± 0.11 0.77 ± 0.10

Lung Gene 89 18
Accuracy 95.34 ± 2.86 96.57 ± 2.87

GCC 0.91 ± 0.05 0.94 ± 0.05

Table 3. Comparison of proposed method with MSVM-RFE method on top 400 genes
with η = 0.1 and 4-fold cross validation

Dataset Measurement F-score MSVM-RFE F-PFA

GCM Accuracy 72.35 ± 5.55 83.25 ± 1.48 77.20 ± 5.19
GCC 0.70 ± 0.06 . . . 0.76 ± 0.06

MLL Accuracy 98.40 ± 2.94 97.67 ± 0.83 98.55 ± 2.77
GCC 0.98 ± 0.04 . . . 0.98 ± 0.04

NCIRoss Accuracy 79.86 ± 9.70 71.31 ± 3.45 81.73 ± 9.32
GCC 0.78 ± 0.11 . . . 0.80 ± 0.10

Lung Accuracy 95.08 ± 2.67 94.9 ± 0.83 95.39 ± 2.57
GCC 0.90 ± 0.05 . . . 0.91 ± 0.05

To compare performance of proposed method with the results of recently pro-
posed multiclass SVM-RFE method [10], we merged all training and testing
samples in each dataset. Four fold cross-validation accuracy was measured 100
times with all samples and 400 top ranked genes in each dataset. We only com-
pared our results with MSVM-RFE with one vs all (OVA) SVM formulation
with sensitivity parameter η = 0.1. In all testing methods, we used LIBSVM -
2.84 software [25] with OVA formulation. We employed linear SVM for testing
top ranked gene subsets. Performance of linear SVM depends on sensitivity pa-
rameter η values, hence for results shown in Table 2, η was tuned from finite set{
2−20, . . . , 20, . . . , 215

}
.

3.4 Results

Table 2 shows maximum accuracy achieved and GCC values for 100 times
random stratafied testing on all four datasets. For GCM and lung cancer
datasets, classification performance were significantly improved compared to F-
score method. Though results in Table 2 did not show any improvement of
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Fig. 1. Trend of misclassification error rate for F-PFA and F-score based gene ranking
methods on GCM Cancer Dataset against the number of genes

Fig. 2. Trend of misclassification error rate for F-PFA and F-score based gene ranking
methods on MLL Cancer Dataset against the number of genes

performance in MLL and NCI Ross datasets, performance improves consider-
ably with top 400 genes and four fold cross validation, as shown in Table 3.
Considering the top ranked genes, the proposed method has good performance
than F-score ranking in all four datasets. Number of genes required for classifi-
cation are determined using ”one-standard error rule” [26]. Figure 1,2,3, and 4
represent the test misclassification error curve in each of four dataset. As seen
from Figure 2 and 4, F-PFA method needs significantly less number of genes to
reach plateau in misclassification curve.

To compare with recently developed MSVM-RFE method, we performed hun-
dred times 4-fold cross-validation to measure classification performance with top
400 genes. Performance comparison results of both the methods are shown in
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Fig. 3. Trend of misclassification error rate for F-PFA and F-score based gene ranking
methods on NCI Ross Cancer Dataset against the number of genes

Fig. 4. Trend of misclassification error rate for F-PFA and F-score based gene ranking
methods on Lung Cancer Dataset against the number of genes

Table 3. Except GCM dataset, F-PFA improves four fold cross-validation per-
formance compare to MSVM-RFE method. It is important to note that accu-
racy with MSVM-RFE method were reported using 100 times four fold external
cross-validation [Supplement Info, [10]], compare to simple 100 times four-fold
cross-validation with F-PFA and F-score. The advantage of proposed F-PFA
method is that it is computationally fast compared to MSVM-RFE, which is a
wrapper method and hence, computationally very expensive.

4 Discussion and Conclusion

We presented Pareto-front analysis based F-score ranking method for gene se-
lection in multiclass problem. Here, the hypothesis is that easy class separation
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Fig. 5. (a) Bar chart of normalized objective value for each objective in Lung Cancer
Dataset with F-score (b) Bar chart of normalized objective value for each objective in
Lung Cancer Dataset with F-PFA

of one class from others can affect gene ranking, and may reduce overall classifi-
cation performance as genes responsible for difficultly separable classes may not
be represented adequately.

Above phenomenon is depicted in Fig. 5. Here, we plotted normalized ob-
jective value of top 100 genes ranked by F-score and F-PFA method in Lung
cancer dataset. As seen from the figure, there are no genes representing class
4 with standard F-score based ranking. At the same time, class 1 and 5 are
over-represented. On the other hand, similar plots for proposed F-PFA method
shows equal representation for every class. In fact, there is reduction in number
of genes for class 1 and 5 while an increase in number of genes for class 2 and 4.
This resulted in significant improvement in the classification performance.

As discussed in [17], non-dominated sorting with NSGA-II has computational
complexity of O

(
�n2
)
, where � is number of objectives and n is population size. In

gene ranking context, n is number of genes in dataset. Though another fast algo-
rithm with computational complexity of O

(
n log�−1 n

)
had been proposed [27],

because of very large number of genes in microarray datasets, the computational
complexity still remains very high with proposed method. In present work, we
have applied Pareto-front analysis on only top 1000 genes ranked from standard
F-score.

In proposed method, increase in number of classes, i.e. number of objectives,
may result in large number of genes in first front itself. To avoid it, we used
one-vs-all approach for individual class wise objective computation. If there are �
classes, one-vs-all approach will result in � objective values, compare to �(�−1)/2
objective values with one-vs-one approach. Due to this strategy, we were able to
reduce number of genes in each front.

In conclusion, we have presented a new Pareto-front based F-score method
for gene ranking in multiclass problem. This method was developed by treating
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class-wise F-score as multiple objectives and comparing genes with Pareto anal-
ysis. Though the performance was not consistent across all datasets, it seems to
select less number of genes and/or performs better on most datasets.
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Abstract. This paper proposes a novel Ant Colony Optimisation algo-
rithm for the hierarchical problem of predicting protein functions using
the Gene Ontology (GO). The GO structure represents a challenging
case of hierarchical classification, since its terms are organised in a di-
rect acyclic graph fashion where a term can have more than one parent —
in contrast to only one parent in tree structures. The proposed method
discovers an ordered list of classification rules which is able to predict all
GO terms independently of their level. We have compared the proposed
method against a baseline method, which consists of training classifiers
for each GO terms individually, in five different ion-channel data sets
and the results obtained are promising.

Keywords: Hierarchical classification, ant colony optimisation, protein
function prediction.

1 Introduction

The large amount of uncharacterised protein data available for analysis has lead
to an increased interest in computational methods to support the investigation
of the role of proteins in an organism. Protein classification schemes, such as
the Gene Ontology [1] are organised in a hierarchical structure, allowing the
annotation of protein at different levels of detail. In a hierarchical protein clas-
sification scheme, nodes near the root of the hierarchy represent more general
functions while nodes near the leaves of the hierarchy represent more specific
functions. The hierarchy also defines parent-child relationships between nodes
were the child node is a specialisation of the parent node. From a data mining
perspective, hierarchical classification is more challenging than single-level ‘flat
classification’ [2]. Firstly, it is generally more difficult to discriminate between
classes represented by leaf nodes than more general classes represented by in-
ternal nodes, since the number of examples per leaf node tends to be smaller
compared to internal nodes. Secondly, an example may have more than one class
predicted depending of its level in the class hierarchy and these predictions must
satisfy hierarchical parent-child relationships.

This paper focuses on hierarchical protein function prediction using the Gene
Ontology (GO) ‘molecular function’ domain. Note that the GO has a complex
hierarchical organisation, where nodes are arranged in a directed acyclic graph
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(DAG) structure and a particular node can have more than one parent — in
contrast to only one parent in tree structures. We propose a new Ant Colony
Optimisation (ACO) [3] classification algorithm, named hAnt-Miner (hierarchi-
cal classification Ant-Miner), for the hierarchical problem of protein function
prediction using the GO structure. The proposed method discovers classification
rules that predict functions at all levels of the GO hierarchy, and at the same
time, which are consistent with the parent-child hierarchical relationships.

The remainder of this paper is organised as follows. Section 2 reviews related
work. Section 3 describes the proposed hierarchical classification method using
ACO. Section 4 describes the methodology used for the data preparation. Section
5 presents the computational results of the proposed method. Finally, Section 6
draws the conclusion of this paper and discuss future research directions.

2 Related Work on Gene Ontology Term Prediction

Much work on hierarchical classification of protein functions using the Gene On-
tology has been focused on training a classifier for each GO term independently,
using the GO hierarchy to determine positive and negative examples associated
with each classifier [4], [5], [6]. Predicting each GO term individually has several
disadvantages [7]. Firstly, it is slower since a classifier need to be trained n times
(where n is the number of GO terms in the GO being predicted). Secondly, some
GO terms could potentially have few positive examples in contrast to a much
greater number of negative examples, particularly GO terms at deeper levels
of the hierarchy. Many classifiers have problems with imbalanced class distri-
butions [8]. Thirdly, individual predictions can lead to inconsistent hierarchical
predictions, since parent-child relationships between GO terms are not imposed
automatically during the training. However, more elaborate approaches can cor-
rect the individual predictions in order to satisfy hierarchical relationships —
e.g. a Bayesian network is used to correct the inconsistent predictions of a set of
SVM classifiers in [9]. Fourthly, the discovered knowledge identifies relationships
between predictor attributes and each GO term individually, rather than rela-
tionships between predictor attributes and the GO hierarchy as a whole, which
could give more insight about the data.

In order to avoid the aforementioned disadvantages of dealing with each GO
term individually, a few authors have proposed classification methods that dis-
cover a single global model which is able to predict GO terms at any level of
the hierarchy. Kiritchenko et al. [10] present an approach where the hierarchical
problem is cast as a multi-label problem by expanding the label set (GO terms)
of an example with all ancestor labels (ancestor GO terms). Then, a multi-label
classifier is applied to the modified data set. For some examples, there is still
need for a post-processing step to resolve inconsistencies in the GO terms pre-
dicted. Clare et al. [11] presented an adapted version of C4.5, which is able to
deal with all GO term at the same time. They focused on discovering only a
subset of very good rules for human analysis, rather than building a complete
classification model for classifying the whole data set.
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3 Proposed Method

The target problem of the proposed hAnt-Miner method is the discovery of hi-
erarchical classification rules in the form IF antecedent THEN consequent. The
antecedent of a rule is composed by a conjunction of predictor attribute condi-
tions (e.g. LENGTH > 25 AND IPR00023 = ‘yes’) while the consequent of a
rule is composed by set of class labels (GO terms) in potentially different lev-
els of the GO hierarchy (e.g. GO:0005216, GO:0005244 — where GO:0005244
is a subclass of GO:0005216). IF-THEN classification rules have the advantage
of being intuitively comprehensible to biologists. hAnt-Miner divides the rule
construction process into two different ant colonies, one colony for creating rule
antecedents and one colony for creating rule consequents, which work in a co-
operative fashion. Due to this paper’s size restrictions this section assumes the
reader is familiar with standard Ant Colony Optimisation (ACO) algorithms [3].

In order to discover a list of classification rules, a sequential covering approach
is employed to cover all (or almost all) training examples. Algorithm 1 presents
a high-level pseudo-code of the sequential covering procedure. The procedure
starts with an empty rule list (while loop) and adds a new rule while the num-
ber of uncovered training examples is greater than a user-specified maximum
value (MaxUncoveredCases parameter). At each iteration, a rule is created by
an ACO procedure (repeat-until loop). Given that a rule is represented by trails
in two different construction graphs, antecedent and consequent, two separated
colonies are involved in the rule construction procedure. Ants in the antecedent
colony create trails on the antecedent construction graph while ants in the con-
sequent colony create trails on the consequent construction graph. In order to
create a rule, an ant from the antecedent colony is paired with an ant from
the consequent colony, so that the construction of a rule is synchronized be-
tween the two ant colonies. Therefore, it is a requirement that both colonies
have the same number of ants (ColonySize parameter). The antecedent and

Algorithm 1. High level pseudo-code of the sequential covering procedure.
begin

training set ← all training examples;
rule list ← ∅;
while |training set| > max uncovered examples do

rulebest ← ∅;
i ← 1;
repeat // ACO procedure

rulei ← CreateRule(); // use separate ant colonies for antecedent and
consequent
Prune(rulei);
UpdatePheromones(rulei);
if Q(rulei) > Q(rulebest) then

rulebest ← rulei;
end
i ← i + 1;

until i ≥ max number iterations OR rule convergence;
rule list ← rule list + rulebest;
training set ← training set − Covered(rulebest, training set);

end
end
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consequent trails are created by probabilistically choosing a vertex to be added
to the current trail (antecedent or consequent) based on the values of the amount
of pheromone (τ) and a problem-dependent heuristic information (η) associated
with vertices. There is a restriction that the antecedent of the rule must cover at
least a user-defined minimum number of examples (MinCasesPerRule parame-
ter), to avoid overfitting. Once the rule construction procedure has finished, the
rule constructed by the ants is pruned to remove irrelevant terms from the rule
antecedent and consequent.Then, pheromone levels are updated using a user-
defined number of best rules (UpdateSize parameter) and the best-so-far rule is
stored. The rule construction procedure is repeated until a user specified num-
ber of iterations has been reached (MaxIterations parameter), or the best-so-far
rule is exactly the same in a predefined number of previous iterations (Conver-
genceTest parameter). The best-so-far rule found, based on a quality measure
Q, is added to the rule list and the covered training examples (examples that
satisfy the rule’s antecedent conditions) are removed from the training set.

The proposed hAnt-Miner is an extension of the ‘flat classification’ Ant-Miner
[12] in several important ways, as follows. Firstly, it uses two separate ant colonies
for constructing the antecedent and the consequent of a rule. Secondly, it uses a
hierarchical classification rule evaluation measure to guide pheromone updating.
Thirdly, it uses a new rule pruning procedure. Fourthly, it uses heuristic functions
adapted for hierarchical classification.

3.1 Construction Graphs

Antecedent Construction Graph. Given a set of nominal attributes X =
{x1, . . . , xn}, where the domain of each nominal attribute xi is a set of values
Vi = {vi1, . . . , vin}, and a set of continuous attributes Y = {y1, . . . , yn}, the an-
tecedent construction graph is defined as follows. For each nominal attribute xi

and value vij (where vij is the j-th value belonging to the domain of xi) a vertex
is added to the graph representing the term (xi = vij). For each continuous
attribute yi a vertex is added to the graph representing the continuous attribute
yi. Since continuous attribute vertices do not represent a complete term (condi-
tion) to be added to a rule, when an ant visits a continuous attribute vertex, a
threshold value is selected to create a term using ‘<’ or ‘≥’ relational operators
(e.g. yi < value). The selection of this value is deterministic and incorporates
task-specific knowledge, increasing the effectiveness of the algorithm [13].

Then, vertices representing an attribute term (nominal or continuous) are
connected to every other vertex referring to another attribute term, with the
restriction that there are no edges between nominal attribute vertices referring
to the same attribute (to avoid terms such as ‘IPR00023 = yes’ and ‘IPR00023
= no’ being included in the same rule). As a result, attribute term vertices
are almost fully-connected. In addition, a dummy vertex ‘start ’ is added and
unidirectionally connected to all vertices in the construction graph. This vertex
represents the starting point for creating trails.

Consequent Construction Graph. Since the class labels are hierarchically
structured as a directed acyclic graph (DAG), this structure can be directly used
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to represent the consequent construction graph as follows. For each class label
li ∈ L, where L is the hierarchy of class labels, a vertex is added to the graph.
Subsequently, for every child vertex lj of li where lj , li ∈ L, a directed connection
from li to lj is added to the graph. As a result, the consequent construction graph
is a DAG, which is exactly the DAG of classes of the target problem, containing
all classes and all parent-child class relationships in the target problem. Ants
traverse the graph from the root vertex towards a leaf vertex. A created trail
represents a set of predicted class labels, consistent with the hierarchy (satisfying
parent-child relationships).

3.2 Rule Evaluation

Since the target problem of hAnt-Miner is the discovery of hierarchical classifi-
cation rules, a variation of the hierarchical measure proposed in [10] is used to
evaluate rules constructed by ants. The measure is a combination of both preci-
sion and recall hierarchical measures, and it takes into account the fact that an
example belongs not only to its more specific class label, but also to all ancestor
class labels according to the class hierarchy (except the root class label, since all
examples trivially belong to the root class label by default).

As discussed earlier, the consequent of a rule is represented by a complete
trail from the root class vertex to a leaf class vertex. In DAG structures, multiple
paths between a given pair of class labels can exist. Therefore, immediately after
an ant finishes building the consequent for rule r, the set of predicted class labels
Pr of rule r is extended with the corresponding ancestor labels (Pr

′) as

Pr
′ = Pr ∪ {∪li∈PrAncestors(li)} − lroot , (1)

where Ancestors(li) corresponds to all ancestor class labels of the class label li
and lroot is the root class label of the hierarchy. The hierarchical macro-averaged
measures of precision (hP) and recall (hR) are computed as

hP =

∑
i∈Sr

|Ti∩Pr
′|

|Pr
′|

|Sr| hR =

∑
i∈Sr

|Ti∩Pr
′|

|Ti|
|Sr| , (2)

where Sr is the set of all examples covered by (satisfying the rule antecedent of)
rule r and Ti is the set of true class labels of the i-th example. The hierarchical
precision (hP) is the average number of true class labels that are predicted by
rule r divided by the total number of predicted class labels across the examples
covered by rule r. The hierarchical recall (hR) is the average number of true class
labels that are predicted by rule r across the examples covered by rule r divided
by the total number of true class labels which should have been predicted across
the examples covered by rule r.

The rule quality measure Q is defined as a combination of the hP and hR
measures, equivalent to the hierarchical F-measure, given by Equation (3)

Q = hF =
2 · hP · hR

hP + hR
. (3)
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3.3 Rule Pruning

The rule pruning procedure aims at improving the rule quality by removing
irrelevant terms that might have been added during the rule construction process
and it is applied as soon as the rule construction is completed. Recall that a rule
is composed by antecedent and consequent parts, which in turn are represented
by different ant trails that might contain irrelevant vertices.

A rule undergoes the pruning procedure as follows. At the first step, the
quality of the rule is computed using the quality measure Q as given by Equation
(3). In the second step, the rule is submitted to an iterative removal of the last
term added to its antecedent while the quality of the rule is improved. At each
iteration, the consequent of a candidate rule is also submitted to an iterative
removal of the last added class label in an attempt to improve the generalization
behaviour of the candidate rule. Note that, for the purpose of both these iterative
removal procedures, the terms and classes (in the antecedent and consequent,
respectively) are considered as an ordered list, and terms and classes are removed
in an order inverse to the order in which they were added to the rule.

Algorithm 2 describes the rule pruning. Let ruler be the rule undergoing the
pruning procedure and qr be the quality measure of ruler. At each iteration
of the outer repeat loop in Algorithm 2, a candidate rule rulei is created by
removing the last term of the antecedent of ruler and its quality measure qi

is computed. Subsequently, j (0 < j < |rulei.consequent|) candidate rules are
sequentially created by removing the last j class label(s) of the consequent of
rulei. This is implemented by the inner repeat loop in Algorithm 2. If the quality
measure of a rulej is higher than qi, rulei is substituted by rulej. Finally, rulei

substitutes ruler if qr ≤ qi, completing an iteration of the pruning procedure.
This procedure is repeated until ruler has just one term left on its antecedent
or a candidate rule rulei does not improve the quality over ruler (i.e. qr > qi).

Algorithm 2. Rule pruning procedure pseudo-code.
begin

rulebest ← rule;
qbest ← Q(rulebest);
repeat

antecedent ← rulebest.antecedent − last term(rulebest.antecedent);
rulei ← antecedent + rulebest.consequent;
qi ← Q(rulei);
consequentj ← rulebest.consequent;
repeat

consequentj ← consequentj − last class(consequentj );
rulej ← antecedent + consequentj ;
if (Q(rulej) > qi) then

rulei ← rulej ;
qi ← Q(rulej);

end
until |consequentj | = 1 ;
if (qi ≥ qbest) then

rulebest ← rulei;
qbest ← qi;

end
until qi < qbest OR |rulebest.antecedent| = 1 ;

end
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3.4 Pheromone Trails

Pheromone Initialisation. In order to reinforce trails followed by ants that
constructed good rules, pheromone values are associated with edges in the an-
tecedent and consequent construction graphs. For each vertex i of both an-
tecedent and consequent construction graphs, the initial amount of pheromone
deposited at each edge is inversely proportional to the number of edges originat-
ing at vertex i, computed as

τedgeij (t = 0) =
1

|Ei| , (4)

where Ei is the set of edges originating at vertex i, edgeij is the edge that
connects vertex i to its j-th neighbour vertex and t is the time index. As a result
of Equation (4), the same amount of pheromone is initially associated with every
edgeij coming out from vertex i.

Pheromone Updating. The pheromone trails followed by ants are updated
based on the quality of the rule that they represent, which in turn guides future
ants towards better trails. Since a rule is composed by antecedent and consequent
trails, the pheromone update procedure is divided in two steps.

In the first step, the trail that represents the antecedent of a rule r is updated
as follows. Starting from the dummy ‘start’ vertex (0-th vertex), the pheromone
value of the edge that connects the i-th vertex to the (i + 1)-th vertex (0 ≤ i <
|rule.antecedent|) is incremented according to

τedgeij (t + 1) = τedgeij (t) + τedgeij (t) · qr , (5)

where i and j are the i-th and j-th vertices of an edge from i to j in the trail
being updated (edgeij) and qr is the quality measure of rule r — Equation (3).

In the second step, the pheromone value of every edge of the consequent of rule
r that connects the i-th vertex to the (i+1)-th vertex (0 < i < |rule.consequent|)
is incremented according to Equation (5). Note that, before computing the rule
quality, the consequent is expanded to include all ancestor class labels of the
class labels originally added to the rule’s consequent by an ant, since there can
be multiple paths between class labels, as detailed in subsection 3.2. However,
during pheromone updating, only the actual trail that was followed to create
the original consequent is updated. This avoids reinforcing trails that did not
directly contribute to the consequent construction.

Pheromone Evaporation. This is implemented by normalizing the pheromone
values of edges of each construction graph G (antecedent and consequent). The
normalization procedure indirectly decreases the pheromone of unused edges,
since the pheromone of used edges has been increased by Equation (5). This
normalization is given by

τedgeij =
τedgeij∑

τedgeij
∈G

τedgeij

. (6)
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3.5 Heuristic Functions

Antecedent Heuristic Function. The heuristic function used in the an-
tecedent construction graph is based on information theory, more specifically,
it involves a measure of the entropy associated with each term (vertex) of the
graph. In the case of nominal attributes, where a term has the form (xi = vij),
the entropy for the term is computed as

entropy(termxi=vij ) =
|L|∑
k=1

−p(lk | termxi=vij ) · log2 p(lk | termxi=vij ) , (7)

where p(lk | term(xi=vij)) is the empirical probability of observing class label lk
conditional on having observed xi = vij (attribute xi having the specific value
vij) and |L| is the total number of class labels. The entropy is a measure of the
impurity in a collection of examples, hence higher entropy values correspond to
more uniformly distributed classes and smaller predictive power for the term
in question. Equation (7) is a direct extension of the heuristic function of the
original Ant-Miner [12] (for ‘flat classification’) into the problem of hierarchical
classification.

In the case of continuous attributes, where a vertex represents just an attribute
(and not an attribute-value pair), a threshold value v is chosen to dynamically
partition the continuous attribute yi into two intervals: yi < v and yi ≥ v. hAnt-
Miner chooses the threshold value v that minimizes the entropy of the partition,
given by

entropy(yi, v) =
|Syi<v|
|S| · entropy(yi < v) +

|Syi≥v|
|S| · entropy(yi ≥ v) , (8)

where |Syi<v| is the total number of examples in the partition yi < v (partition
of training examples where the attribute yi has a value less than v), |Syi≥v| is
the total number of examples in the partition yi ≥ v, |S| is the total number of
training examples, and entropy(yi < v) and entropy(yi ≥ v) are the entropy of
the terms represented by (yi < v) and (yi ≥ v) as given by Equation (7).

After the selection of the threshold vbest, the entropy of the term representing
the continuous attribute yi corresponds to the minimum entropy value of the
two partitions and it is defined as

entropy(termyi) = min (entropy(yi < vbest), entropy(yi ≥ vbest)) . (9)

Equations (8) and (9) are derived from the Ant-Miner version for coping
with continuous attributes, described in [13]. In this current paper the heuristic
function is straightforwardly extended to hierarchical classification as follows.
Since the entropy of the ith-term (nominal or continuous) of the antecedent
construction graph varies in the range 0 ≤ entropy(termi) ≤ log2(|L|−1) (where
|L| − 1 is the number of class labels in the class hierarchy without considering
the root class label) and lower entropy values are preferred over higher values,
the heuristic function is computed as

ηtermi = log2(|L| − 1) − entropy(termi) , ∀ termi ∈ GA , (10)
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where termi is the ith-term of the antecedent construction graph GA. Equation
(10) will give a higher probability of being selected to terms with lower entropy
values, which corresponds to terms with higher predictive power.

Consequent Heuristic Function. The heuristic function used in the conse-
quent construction graph is based on the frequency of training examples for each
class label of the hierarchy, given by

ηli = |TRli |, ∀ li ∈ GC , (11)

where |TRli| is the number of training examples that belong to class label li and
GC is consequent construction graph. Note that the heuristic function has a bias
towards class labels that have a greater number of examples, which therefore will
initially favour the discovery of rules with these class labels in the consequent.
However, due to the use of a sequential covering procedure, rules predicting less
frequent classes will be eventually discovered as well.

4 Bioinformatics Data Preparation

In order to evaluate the proposed method, we have created five data sets invol-
ving ion-channel protein functions. Ion channel proteins are present in all living
cells and they form a pore across the cell membrane [14]. The function of ion
channels is to allow specific inorganic ions (e.g. Na+, K+, Ca2+, Cl−) to cross
the cell membrane. They play an essential role in many cell functions, such as in
functions related to the nervous system, muscle contraction and T-cell activation.

The selection of the protein examples was divided into three steps. In
the first step we selected a subset of the Gene Ontology hierarchy to represent the
hierarchical classes to be predicted. As we focus on ion channel proteins, all the
ancestor and descendant terms of the GO:0005216 (ion channel activity) term
were selected. In the second step, we retrieved protein interaction data from the
IntAct database (release 15/12/2007). Records with database cross-references
to the GO terms selected in the previous step were retrieved. Since many GO
terms (classes) selected in the previous step did not have a reasonable number of
proteins associated with them, we discarded GO terms with less than 10 protein
examples. In the third step, for each protein example retrieved in the previ-
ous step we selected the amino acid sequence and InterPro pattern references
from the UniProt database (release 12.0), using the database cross-reference to
UniProt found in IntAct protein records. We ended up with 147 protein exam-
ples involving 17 GO terms, which were used to create three different data sets.
The first data set (‘DS1 AA’) used the amino acid composition information as
predictor attributes, consisting of the percentage of the sequence composition
relative to each of the 20 different amino acids. The second data set (‘DS1 Inter-
Pro’) used the InterPro pattern information as predictor attributes, consisting of
boolean attributes representing the presence or absence of a particular InterPro
pattern. The third data set (‘DS1 IntAct’) used the IntAct protein interaction
data as predictor attributes, consisting of boolean attributes representing the
presence or absence of a particular interaction.
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Using a similar approach, without the restriction of selecting proteins with
protein interaction data available, we increased the number of proteins to 359 ex-
amples to create two additional data sets. The first data set (‘DS2 AA’) used the
amino acid composition information as predictor attributes. The second data set
(‘DS2 InterPro’) used the InterPro pattern information as predictor attributes.

5 Computational Results

The proposed hAnt-Miner method was compared against a baseline approach,
which consists of training a classifier for each GO term of the hierarchy indi-
vidually. The J48 classifier (Weka [15] implementation of the well-known C4.5
decision tree algorithm [16]) was chosen in this approach. In this case, the GO
hierarchy was used to determine the set of positive/negative examples for every
individual classifier as follows. For each classifier associated with a particular GO
term (the classifier which predicts if an example belongs or not to the particular
GO term), the set of positive examples consists of all examples that belong to
the GO term in question (as the most specific GO term as an ancestor of their
most specific GO term); the set of negative examples consists of all the remain-
ing training examples. After training the individual classifiers, a test example is
classified in a top-down fashion. First, the example is classified only by the child
classifiers of the root GO term. For each child classifier, if the classifier predicts
the positive class (the example is predicted to belong to the GO term associated
with the classifier), then the example is ‘pushed downwards’ and classified by
its children classifiers. This procedure goes on until a classifier does not predict
the GO term (the example is predicted as a negative example) or when a leaf
classifier is reached. At the end of this procedure, the set of predicted class labels
is consistent with the GO hierarchy.

We compare the performance of hAnt-Miner and J48 in terms of the hierar-
chical measures of precision, recall and F-measure, since standard classification
accuracy measures are not suitable for hierarchical classification (i.e. they do
not account for misclassification errors at different levels of the hierarchy). The
hierarchical measures of precision, recall and F-measure are defined in Equations
(2) and (3) respectively, with the difference that all test examples are considered
as we are evaluating a classification model and not a rule (which is the case in
subsection 3.2). The experiments were conducted running the well-known 10-fold
cross-validation procedure [15] and the results are reported as average values with
standard deviation computed over the 10 different iterations. In all experiments,
the parameters of hAnt-Miner were set to: ‘ColonySize = 20’, ‘MinCasesPerRule
= 5’, ‘MaxUncoveredCases = 10’, ‘ConvergenceTest = 10’, ‘MaxIterations = 500’
and ‘UpdateSize = 1’. We have made no attempt to optimise these parameters
for the data sets used in the experiments. The results comparing the proposed
hAnt-Miner method against J48 are shown in Table 1.

Overall hAnt-Miner achieved better results than J48 in our set of experiments.
J48 was significantly outperformed (according to a Student’s t-test — see Table
1) in two out of five data sets, namely ‘DS1 InterPro’ and ‘DS1 IntAct’. These
data sets can be considered ‘difficult’ based on their small size (147 proteins)
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Table 1. Hierarchical measures of precision (hR), recall (hR) and F-measure (hF) val-
ues (mean ± standard deviation) obtained with the 10-fold cross-validation procedure
in the five data sets. An entry in the ‘hF’ column is shown in bold if the hierarchical
F-measure value obtained by one of the methods was significantly greater than the
other method — according to a two-tailed Student’s t-test with 99% confidence.

J48 (top-down)
hP hR hF

DS1 AA 0.73 ± 0.04 0.55 ± 0.03 0.63 ± 0.03

DS1 InterPro 0.69 ± 0.04 0.68 ± 0.05 0.69 ± 0.04

DS1 IntAct 0.69 ± 0.03 0.37 ± 0.04 0.47 ± 0.03

DS2 AA 0.71 ± 0.02 0.61 ± 0.02 0.65 ± 0.02

DS2 InterPro 0.91 ± 0.01 0.84 ± 0.02 0.87 ± 0.01

hAnt-Miner
hP hR hF

DS1 AA 0.56 ± 0.06 0.55 ± 0.06 0.56 ± 0.06

DS1 InterPro 0.82 ± 0.04 0.81 ± 0.04 0.81 ± 0.04

DS1 IntAct 0.77 ± 0.04 0.54 ± 0.03 0.63 ± 0.03

DS2 AA 0.63 ± 0.02 0.59 ± 0.02 0.61 ± 0.01

DS2 InterPro 0.83 ± 0.01 0.75 ± 0.01 0.79 ± 0.01

and distribution of examples in the GO hierarchy (GO terms at deeper levels
of the hierarchy have few examples). Therefore, the poor performance of J48
could be the result of the problem that there are many more negative examples
than positive examples for each GO node, particularly at deeper level in the GO
hierarchy, which shows that hAnt-Miner is more robust than J48 when dealing
with unbalanced hierarchical class distributions. This problem was not observed
in the experiments concerning the data sets with a greater number of protein
examples, were J48 significantly outperformed hAnt-Miner in the ‘DS2 InterPro’
data set. In the remaining two data sets, namely ‘DS1 AA’ and ‘DS2 AA’, there
were no significant difference between both methods.

6 Conclusion

This paper has presented a new Ant Colony Optimisation algorithm, named
hAnt-Miner, for the hierarchical classification problem of predicting protein func-
tions using the Gene Ontology (GO). The proposed hAnt-Miner discovers a
single global classification model in the form of an ordered list of IF-THEN
classification rules which can predict GO terms at all levels of the GO hierarchy,
satisfying the parent-child relationships between GO terms. Experiments com-
paring hAnt-Miner with a baseline method based on J48, where one classifier
is trained individually for each GO term of the hierarchy, have shown positive
results: hAnt-Miner was significantly more accurate that J48 in two (out of five)
data sets, with the reverse being true in just one data set.

There are several possible avenues for future research. It would be interesting
to investigate different rule evaluation measures in order to optimise the quality
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of constructed rules. Different variations of the rule pruning procedure could
prove to be more effective. Producing an unordered rule set instead of an or-
dered rule list could give more flexibility to the algorithm. Finally, it would be
interesting to apply hAnt-Miner to more bioinformatics data sets.
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Hierarchical Multilabel Classification: A Case Study in Functional Genomics. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI),
vol. 4213, pp. 18–29. Springer, Heidelberg (2006)

8. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. In-
telligent Data Analysis 6, 429–450 (2002)

9. Barutcuoglu, Z., Schapire, R.E., Troyanskaya, O.G.: Hierarchical multi-label pre-
diction of gene function. Bioinformatics 22(7), 830–836 (2006)

10. Kiritchenko, S., Matwin, S., Famili, A.F.: Functional annotation of genes using
hierarchical text categorization. In: BioLINK SIG: Linking Literature, Information
and Knowledge for Biology (2005)

11. Clare, A., Karwath, A., Ougham, H., King, R.: Functional bioinformatics for Ara-
bidopsis thailana. Bioinformatics 22(9), 1130–1136 (2006)

12. Parpinelli, R., Lopes, H., Freitas, A.: Data mining with an ant colony optimization
algorithm. IEEE Transactions on Evolutionary Computation 6(4), 321–332 (2002)

13. Otero, F., Freitas, A., Johnson, C.: cAnt-Miner: an ant colony classification algo-
rithm to cope with continuous attributes. In: Dorigo, M., Birattari, M., Blum, C.,
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Abstract. Evolutionary algorithms such as genetic programming and gram-
matical evolution have been used for simultaneously optimizing network archi-
tecture, variable selection, and weights for artificial neural networks. Using an 
evolutionary algorithm to perform variable selection while searching for  
non-linear interactions is akin to searching for a needle in a haystack. There is, 
however, a considerable amount of correlation among variables in biological 
datasets, such as in microarray or genetic studies. Using the XOR problem, we 
show that correlation between non-functional and functional variables alters the 
variable selection fitness landscape by broadening the fitness peak over a wider 
range of potential input variables. Furthermore, when sub-optimal weights are 
used, local optima in the variable selection fitness landscape appear centered on 
each of the two functional variables. These attributes of the fitness landscape 
may supply building blocks for evolutionary search procedures, and may pro-
vide a rationale for conducting a local search for variable selection. 

Keywords: Neural networks, machine learning, gene-gene interaction, correla-
tion, linkage disequilibrium, fitness landscape. 

1   Introduction 

1.1   Artificial Neural Networks 

Artificial neural networks (ANNs) are a robust and flexible modeling technique that 
attempt to mimic the basic structure and function of biological neurons to solve com-
plex problems. ANNs have been applied to a plethora of research fields, including 
robotics, speech recognition, optical character recognition, task scheduling, and indus-
trial processing among many others. ANNs have also been widely applied to various 
problems in biological science, including microarray data analysis [1], human linkage 
analysis [2;3], genetic association studies [4], medical expert systems [5-7], survival 
analysis [8], and protein folding [9]. 

The traditional approach for applying ANNs to a classification problem is to  
specify a network architecture, select which variables are included as inputs to the 
network, and fit network weights using a gradient-descent based approach such as 
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backpropagation [10]. When applied to biological data sets, this approach is problem-
atic for several reasons. First, the proper network architecture is often unknown and 
must be specified arbitrarily by the user. Secondly, a collection of input variables 
must be selected. In many engineering applications, this set of variables is small, but 
in biological data, many thousands of variables are collected and it is impractical to 
include all variables as input for the ANN. Therefore, only a subset of the collected 
variables are included as input. Thirdly, the weight space for fitting noisy biological 
data with inconsistent signals may contain local optima that will trap gradient-descent 
weight optimization algorithms.  

Recently, numerous evolutionary search strategies have been applied to ANN  
classification problems to reduce the issues associated with the traditional ANN ap-
proach[11]. Genetic Programming Neural Networks [12;13] and Grammatical Evolu-
tion Neural Networks [14] use genetic programming [15] or grammatical evolution 
[16] to evolve populations of neural networks for human genetics classification prob-
lems. These populations are a heterogeneous mix of architectures, weights, and input 
variables which undergo mating, crossover, and recombination to ultimately identify 
an optimum ANN solution. These approaches use a single search strategy to explore a 
broad composite space of architectures, weights, and input variables. Particle swarm 
optimization [17] and simulated annealing [18] search algorithms have been applied 
to fitting neural network weights as an alternative to backpropagation. Others [19-21] 
have used a hybrid search strategy, applying an evolutionary computing technique to 
search input variable space and doing some degree of weight fitting using backpropa-
gation or other techniques to explore the weight space. 

Variable selection, however, still remains a major obstacle for evolutionary algo-
rithms when there are a large number of possible input variables to choose from and 
only few are functionally related to the outcome of interest. In human genetic studies, 
for example, collecting information on over 1 million genetic variants per individual 
is becoming a common practice. Furthermore, it is widely accepted that gene-
environment interactions and epistasis, or gene-gene interactions, are ubiquitous given 
the complex biomolecular interactions that are essential for regulation of gene expres-
sion and complex metabolic networks [22], and are likely to play a role in influencing 
human disease [23]. As such, the complex diseases being studied are most likely 
driven by an intricate architecture of multiple genetic and environmental variables. 
The number of possible combinations of 1 million genetic variants is enormous, yet 
only a very small fraction of these may be truly involved in influencing a disease 
outcome. Finding genetic variants or interactions between them that contribute to 
disease risk determination has been likened to a needle in a haystack problem [24]. 
Since it is a common practice in human genetics to only test for interactions among 
variables with significant main effects, the difficulty of the problem is especially 
worse when individual variants have no detectable effect alone [25]. Such would be 
the case in an example problem where disease risk is increased for an individual who 
has a particular form of a variant at one of two genetic loci, but not both [26], repre-
senting an exclusive-OR (XOR) function of the two genetic variants. In this case, it 
would be difficult for an evolutionary algorithm such as GP or GE to select the func-
tional variables as inputs to an ANN because the variable selection fitness landscape 
would not have contours upon which the algorithm could learn.  
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1.2   Correlation among Input Variables Due to Linkage Disequilibrium 

The properties of evolutionary optimization and neural networks have largely been 
evaluated in an engineering context, typically for well characterized problem-solving 
tasks with many available training samples. Biological data sets, in particular those 
that contain human biomarker readings, are expensive to collect and generally have 
comparatively few samples. One other common property of biological marker sets is 
that they likely contain some degree of correlation between the markers. Microarray 
data, for example, captures the transcriptional activity of a collection of genes, and 
because multiple genes bind the same sets of regulatory co-factors, there is often a 
high degree of co-regulation among gene transcripts [27]. Genetic marker sets contain 
patterns of linkage disequilibrium formed as groups of nearby markers are transmitted 
together through multiple generations of human sub-populations [28,29]. Figure 1 is a 
plot showing linkage disequilibrium among pairs of genetic markers in a 50 kilobase 
region on human chromosome 6 in a Caucasian population.  

 

Fig. 1. Linkage disequilibrium among pairs of genetic markers in a 50 kilobase region on hu-
man chromosome 6 in a Caucasian population. Black indicates perfect correlation (r²=1), white 
indicates no correlation (r²=0) and shades of gray between white and black represent increasing 
correlation between genetic variants. 

It is this correlation, in fact, that makes population-based disease gene mapping 
possible, since most studies rely on an indirect association of a neutral variant (which 
is correlated to an influential variant) to a disease state [30]. When all variables in the 
dataset are independent, using an evolutionary algorithm to search for interactions 
among genetic variants that contribute to disease risk is likely a needle in a haystack 
problem. However, we hypothesize that correlation between nonfunctional input vari-
ables to the functional variables will spread the signal over a wider range of inputs, 
making the problem more suitable for an evolutionary approach to variable selection. 
We will address this question by examining the surface of the variable selection fit-
ness landscape when there are multiple variables with varying degrees of correlation 
to the functional variables.  



 Conquering the Needle-in-a-Haystack 83 

2   Methods 

Data simulation was implemented using the Perl scripting language. Two functional 
input variables were drawn randomly from a binomial distribution with p=0.5 for 
1000 samples. The outcome variable y is the logical XOR function of the two relevant 
variables x1 and x2. 98 other nonfunctional variables were simulated with varying 
degrees of correlation to the functional variables x1 and x2. Correlation between the 
functional variables and other variables in the dataset is given by the square of the 
correlation coefficient [31]:  
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where nij is the number of training examples with a particular combination of values 
for each variable, mij is the expected number of training examples if there were no 
correlation, and p is the proportion of individuals with a value of “1” for the ith or jth 
factor (0.5 in these experiments). When the frequency of xi=1 is 0.5, solving for pij 
equation (1) simplifies to: 
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This indicates the joint probability of any other variable xi=1 when the functional 
variable to which it is correlated is also equal to 1. Therefore, the conditional prob-
ability is given by:  
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We define correlation magnitude as the maximum correlation between each of the 
functional variables to two other nonfunctional variables in the dataset. In the results 
presented in Figure 3, this correlation extends to the 20 surrounding variable pairs 
decreasing exponentially to zero.   

We implemented the 2-2-1 ANN shown in Figure 2 with sigmoid activation func-
tions using Perl. The output y of each node in the network is given by: 

⎟
⎠

⎞
⎜
⎝

⎛ += ∑
=

n

i
iiis wxwfy

0
0

. (4) 

where ( ) Rw ∈= nwww ,...,, 21
 is a vector of weights applied to the input variables xi, 

and where w0 is the bias weight to each node, and fs is the sigmoid activation function 
given by: 
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The network in figure 2 was initialized with the weights shown to be capable of fitting 
an XOR function, adapted from [32], as shown in Figure 2 and in Table 1. Mean 
square error was calculated as: 
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where yp is the outcome as predicted by the network, and yt is the target value of the 
XOR function of the two functional variables, and n is the total number of individu-
als. Fitness shown in Figure 3 was calculated as 1-MSE. 
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Fig. 2. 2-2-1 neural network to solve the XOR problem 

Figure 1 was produced in Haploview [33] using HapMap data [29]. Figure 3 was 
created using the Fields package [34] in R [35]. All Perl and R code used in these 
experiments as well as a high resolution color version of Figure 3 are available at 
http://chgr.mc.vanderbilt.edu/ritchielab/projects/XOR/fitness_landscape.zip. 

3   Results 

We first examined the variable selection fitness landscape for all possible 
combinations of 100 variables when all variables in the dataset were independent. 
These results are illustrated in the top left panel of Figure 3. The plot represents the 
surface of the fitness (1-MSE) landscape as a function of the combination of predictor 
variables included as inputs to the 2-2-1 neural network depicted in Figure 2. The two 
functional variables are indicated by arrows in the top panels. When there is no 
correlation present, the correct solution that includes the two functional variables is 
the only model with high fitness, and appears as a spike in the variable selection 
fitness landscape surface (top panel in column A). As the correlation magnitude 
increases, the fitness of solutions in the variable selection fitness landscape transforms 
from a sharp spike into a cone-shaped hill that stretches over a larger part of the 
landscape (column A). 

We also investigated the variable selection fitness landscape with increasing corre-
lation magnitude when weights were not optimized to solve the XOR problem. Each 
optimized weight in the network was increased or decreased by a value randomly 
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Optimized Weights ——————— Random Weights ———————

Max
r²=0.5

Max
r²=0.2

Max
r²=1

Max
r²=0

A B C

 
Fig. 3. Variable selection fitness landscapes with fitted weights (left column) and random 
weights (right 3 columns) with increasing levels of correlation magnitude 

 
drawn between 0 and 5. 20 different sets of random weight combinations were evalu-
ated, and we observed a common pattern in the variable selection fitness landscape. 
Two different representative sets of landscapes are shown in columns B and C of 
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Table 1. Values for optimized and random weights in networks used in Figure 3.  

Column w11 w12 w21 w22 wh1 wh2 w01 w02 w0out 

A (optimal) 5 -5 5 -5 5 5 -2.5 7.5 -7.5 

B (random) 5 -3.1 6.3 -4 5.2 5.8 -1.5 7.9 -5.6 

C (random) 7 -4.5 5.6 -4.9 5.5 6.1 -2.2 9 -6.9 

 
Figure 3. These plots represent the variable selection fitness landscape of a 2-2-1 
network with weights not optimal for the XOR problem. Values for the XOR-
optimized and randomly perturbed weights used to generate Figure 3 are shown in 
Table 1. All 20 random weight combinations and their variable selection fitness land-
scapes are available at: 
http://chgr.mc.vanderbilt.edu/ritchielab/projects/XOR/fitness_landscape.zip. 

When all 100 variables are independent, a gain in fitness is seen only when both 
functional variables are inputs to the network, regardless of the weights (Figure 3, top 
left panel). Having non-optimal weights (Figure 3, top row) reduces the network fit-
ness, but the functional combination is still the only peak in the fitness landscape.  

As correlation magnitude increases, non-optimal weights in the network produce 
local optima in the variable selection fitness landscape. These optima arise at points 
where both input variables are correlated to the same single functional variable (auto-
correlated). In some cases, these optima, due to autocorrelation, have similar fitness to 
the combination of inputs containing both functional variables. For random weight 
combination B when r²=1 (Figure 3, column B, bottom row), the fitness of the global 
optima and local optima differ by only 0.0133. It is also notable that the local optima 
of some random weight combinations have higher fitness than the global optimum for 
other weight combinations. For example, with random weight combination C when 
r²=1 (Figure 3, column C, bottom row), the MSE of the local optima is 0.72, which is 
higher than MSE of the global optimum (0.60) in combination B when r²=1 (Figure 3, 
column B, bottom row). For all other weight combinations, the amplitude of this ef-
fect was different but the general shape and contour of the landscape was fundamen-
tally similar. These results clearly show that correlation among variables in the dataset 
has a significant impact on the fitness landscape of the XOR problem.  

4   Discussion 

We investigated the variable selection fitness landscape for a neural network solution 
to the XOR problem with and without correlation of other variables to functional 
variables that determine the outcome. We have shown that when all variables in the 
dataset are independent, the network that contains both functional variables has very 
high fitness, representing a spike in the surface of the fitness landscape. All other 
combinations of variables have low fitness. We have also shown that as correlation 
magnitude increases, the fitness of networks containing those correlated variables also 
increases proportionally. The resulting fitness landscape transforms from a sharp 
spike to a broad hill as correlation magnitude increases. 
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These results have immediate implications for methods that employ evolutionary 
algorithms for variable selection. In fields where many attributes may be collected but 
only a few are truly associated to the outcome, correlation among the variables can 
potentially aid the search. The outcome in our simulations involved an interaction 
between 2 variables in a total set of only 100 variables. In human genetics studies, for 
example, it is very common to have data on over 1 million genetic markers. If all of 
these markers were independent, using an evolutionary algorithm to search for inter-
active effects would truly be a search for a needle in haystack, and would require 
excessive training before an acceptable solution is attained. In biological data how-
ever, correlation inevitably exists between variables. In human genetics, correlation is 
observed due to linkage disequilibrium, because sets of polymorphic variants that are 
physically linked to each other are likely inherited together through generations in a 
population. This correlation is very strong among closely linked markers, and weak 
correlation can extend long range to hundreds or thousands of other variants. Fur-
thermore, if a genetic variant is under positive selection (e.g. a protective variant), 
very strong linkage disequilibrium will extend long range to many other neutral vari-
ants surrounding it [36-38]. This phenomenon has been observed in several human 
genes, including monoamine oxidase A [39], the multidrug resistance gene MDR1 
[40], and the dopamine receptor D4 [41]. In cases such as these, when neutral vari-
ables are correlated to functional variables, the fitness landscape is likely to contain a 
broad peak much more amenable to an evolutionary approach to variable selection. 

Furthermore, another recent study provided some empirical evidence that linkage 
disequilibrium improves the sensitivity of grammatical evolution neural networks to 
detect a purely interactive effect embedded in a larger pool of non-associated vari-
ables [42]. In this procedure, the input variables, architecture, and weights of the NN 
are all optimized simultaneously by the grammatical evolution process. Our observa-
tions may explain the benefit that linkage disequilibrium provides to the GE search 
procedure. 

In our examination of the variable selection space, increasing amounts of correla-
tion to the functional variables produced local optima when the optimal NN weights 
are randomly perturbed. These optima correspond to points of autocorrelation of each 
of the two relevant variables in the XOR function. While local optima are generally 
considered detrimental to a search procedure, in this circumstance, the elevated fitness 
of NNs containing autocorrelated variables may provide building blocks to the gram-
matical evolution procedure.  

When there is no correlation in the variable selection space, an evolutionary search 
procedure must include both functional variables in the network in order to see an 
increase in fitness, regardless of NN weights. With increasing amounts of correlation 
in the variable space, local optima exist in the joint variable-weight space that center 
around each of the two functional variables. Effectively, the evolutionary procedure 
can explore the weight space to find a NN function that provides elevated fitness to 
variables correlated to one of the two XOR functional variables. This would allow 
NNs containing only one of the two functional variables to be propagated in the solu-
tion population where it could eventually be crossed with a NN containing the other 
functional variable. As such, correlation in the variable selection space provides 
building blocks for the XOR function. 
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With a needle in the haystack problem like the XOR, the likelihood of finding the 
global optimum depends on the ability of the search algorithm to pair the two func-
tional variables together in the NN solution. Correlation can induce the formation of 
local optima that center around one of the functional variables under some weight 
combinations. Therefore, correlation provides building blocks to evolutionary proce-
dures that explore the joint variable-weight space. Although not explicitly tested here, 
it is likely that this phenomenon is not limited to the XOR function alone, and may 
extend to other complex non-linear problems.  

Finally, these results may lead to innovations in searching the variable selection 
space when correlation is present. In genetics studies, correlation is highest among 
genetic variants in close physical proximity due to linkage disequilibrium. This cre-
ates a correlation structure that is tied to spatial relationships between variables.  

Current hybrid search strategies use a combination of evolutionary algorithms to 
select input variables and architectures, and local optimization routines such as back-
propagation to fit NN weights. Our observations in this study suggest that when there 
is correlation between variables, contours appear in the variable selection space which 
a local optimization routine could exploit, even when NN weights are non-optimal. 
When a spatial relationship exists, this local search could be accomplished by explor-
ing neighboring variables using a fixed set of weights. When there is no natural spa-
tial relationship between variables, variable position can be artificially defined based 
on correlation structures within the data. Search routines that supplement evolutionary 
algorithms with local optimization in both weight fitting and variable selection may 
have an advantage when correlation exists.  

This study is a qualitative examination of the variable selection fitness landscape 
for the XOR problem. Future work should include quantitative examination of local-
ity and problem hardness for this as well as other nonlinear problems in addition to 
the XOR. Furthermore, this study examines datasets with very uniform patterns of 
correlation. As seen in Figure 1, realistic correlation structures in biological data are 
much less uniform, and include long range correlation as well as gaps in strong, short 
range correlation. Finally, fitness landscapes we show in figure 3 are three-
dimensional slices of a much larger, higher dimensional landscape that cannot easily 
be visualized. However, the local optima that appear among correlated variables cen-
tered around one of the two functional variables as shown in figure 3 are still present 
even in higher dimensional model space. More statistically quantitative power studies 
should be performed to actually test different evolutionary algorithms on problems 
such as these with varying degrees and distribution of correlation among the inde-
pendent variables. This should reveal how different correlation structures relate to 
increases in sensitivity/specificity or decreases of training time, and will help deter-
mine which evolutionary search strategies are optimal for biological applications with 
characteristic data correlation structures. 
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Abstract. The availability of chip-based technology has transformed
human genetics and made routine the measurement of thousands of DNA
sequence variations giving rise to an informatics challenge. This chal-
lenge is the identification of combinations of interacting DNA sequence
variations predictive of common diseases. We have previously developed
Multifactor Dimensionality Reduction (MDR), a method capable of de-
tecting these interactions, but an exhaustive MDR analysis is exponen-
tial in time complexity and thus unsuitable for an interaction analysis of
genome-wide datasets. Therefore we look to stochastic search approaches
to find a suitable wrapper for the analysis of these data. We have pre-
viously shown that an ant colony optimization (ACO) framework can
be successfully applied to human genetics when expert knowledge is in-
cluded. We have integrated an ACO stochastic search wrapper into the
open source MDR software package. In this wrapper we also introduce
a scaling method based on an exponential distribution function with a
single user-adjustable parameter. Here we obtain expert knowledge from
Tuned ReliefF (TuRF), a method capable of detecting attribute inter-
actions in the absence of main effects, and perform a power analysis at
different parameter settings. We show that the expert knowledge dis-
tribution parameter, the retention factor, and the weighting of expert
knowledge significantly affect the power of the method.

1 Introduction

Human geneticists are now capable of measuring over one million DNA sequence
variations across thousands of individuals. Which of these sequence variations de-
termine an individual’s susceptibility to common human diseases such as cancer
or cardiovascular disease? Making the problem more difficult, susceptibility to
disease is likely determined not by a single gene but instead by the joint action
of a number of interacting genes. Moore argues that these interactions, known
as epistasis, are likely to be ubiquitous in common human diseases [1]. Moore’s
argument is based on four key pillars. These pillars are: the idea and concept of
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epistasis is grounded in almost 100 years of literature [2,3], interactions between
biomolecules are ubiquitous in living systems, many single locus results from link-
age and association studies have not replicated [4,5], and that when people search
for epistasis using powerful methods they are frequently able to find examples of
it [6,7]. Analysis methods which embrace the complexity present in biological sys-
tems are needed if we are to find predictors of common human diseases.

This complexity gives rise to a noisy environment and rugged fitness land-
scape. These data are frequently noisy as two individuals with the same values
at the relevant attributes may have different disease states. This may be due to
stochastic processes or environmental effects, e.g. someone unable to properly
metabolize a fatty acid is likely to exhibit a disease state if they eat a diet high in
that fatty acid but may not exhibit symptoms otherwise. The fitness landscape
is rugged because models that contain some but not all of the relevant attributes
may not have an accuracy greater than that of the surrounding noise.

Combining the difficulty of modeling nonlinear attribute interactions with
the challenge of attribute selection yields, for this domain, what Goldberg calls
a needle-in-a-haystack problem [8]. Under these models the learning algorithm is
truly looking for a genetic needle in a genomic haystack. A recent report from the
International HapMap Consortium suggests that approximately 300,000 care-
fully selected SNPs (i.e. single nucleotide polymorphisms which are frequently
used measurements of genetic variation) may be necessary to capture all com-
mon variation across the Caucasian human genome [9]. Assuming this is true,
though it is probably a lower bound, we would need to scan 4.5 × 1010 pair-
wise combinations of SNPs to find a genetic needle. The number of higher order
combinations is astronomical. We look to biological systems for inspiration and
methods which can solve these problems, not just because of the connection be-
tween method and application, but also because many of the problems natural
systems cope with are share similarities with biological data.

Here we look to the system of ant colonies for inspiration. Ants search rugged
and noisy landscapes for food and are able to rapidly take advantage of food
sources when found. Our algorithm here should also balance this exploration
and exploitation effectively. The idea to use algorithms inspired by ant colonies
is not new. Indeed Dorigio, in 1991, discussed using ants as a metaphor for
driving a positive feedback approach to search [10]. Furthermore we have shown
that these ant systems can also work for this problem in human genetics when
effective expert knowledge is provided to the algorithm [11]. Here we rigorously
examine the presence and scaling of expert knowledge within these systems. We
provide a thorough statistical analysis of the parameters using logistic regression,
and suggest good parameters for use in genome-wide genetic analyses.

2 Ant Systems

Ant systems use a positive feedback approach to search which is modeled on the
behavior of ants. This ant colony based approach is attractive for the area of
human genetics because it is a straightforward population based approach which
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is easily parallelizable and the method is conceptually simple. While the ant
colony metaphor is most straightforward for spatial problems like the traveling
salesman problem to which it was first applied [10], it has since been applied to
areas from scheduling [12] to rule mining and discovery in biological data [13].
Dorigo and Stützle provide an introduction to ant systems and thorough review
of the literature [14].

In an ant system, ants explore the search space and leave pheromone in quan-
tities relative to the quality of their discoveries. Over time the pheromone evapo-
rates. The quantity of this pheromone determines the chance that ants will explore
similar regions in the future. With this addition and evaporation of pheromone,
ant systems balance exploration of new areas and exploitation of areas that have
previously contained good solutions. While there are new ant systems which ex-
ploit the behaviors of different types of ants [15], we utilize a traditional ant system
here. We discovered in our work with genetic programming that expert knowledge
is critical if machine learning algorithms are to succeed on this problem [16]. We
have previously discovered with ant systems that an effective approach is to in-
clude this expert knowledge as heuristic information [11]. We use this heuristic
information to change how pheromone is deposited across the search space. More
detail on our specific ant system is provided in section 5.

3 Building Blocks from Tuned ReliefF (TuRF)

For our ant system we require a source of outside knowledge capable of pre-
processing the input data and weighting attributes (SNPs) on how well they, in
the context of other SNPs, are able to differentiate individuals with disease from
those without. Kira and Rendell developed Relief which is capable of detect-
ing attribute dependencies [17]. The approach Relief uses to detect interactions
is conceptually simple. SNPs that distinguish genetically similar individuals in
different classes are likely to be of interest. For any random individual, Ri, the
nearest individual of the same class (Hi) and the nearest individual of the other
class (Mi) are found. For each SNP, A, if Ri shares a value with Hi but not
with Mi, the weight of A is increased. If Ri shares A with Mi but not with Hi,
the weight of A is decreased. If Ri shares A with or differs from both Hi and
Mi, the weight remains unchanged. This process of weighting attributes can be
repeated for all individuals in the dataset. This neighbor-based process allows
Relief to discover attribute dependencies when an interaction with no main ef-
fect exists. The algorithm produces weights for each attribute ranging from -1
(worst) to +1 (best). Kononenko improved upon Relief by choosing n nearest
neighbors instead of just one [18]. This new algorithm, ReliefF, has been shown
to be more robust to noisy attributes and missing data and is widely used in
data mining applications [19]. Unfortunately the power of ReliefF is reduced in
the presence of a large number of noisy attributes. This drove the development
of Tuned ReliefF (TuRF) for situations where the number of noisy attributes
is large. The TuRF algorithm systematically removes attributes that have low
weights so that the weights of the remaining attributes can be re-estimated.
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TuRF is significantly better than ReliefF in the domain of human genetics [20].
The ant system we examine uses TuRF as its source of expert knowledge.

4 Multifactor Dimensionality Reduction (MDR)

Here we develop an ACO framework to be available in version 2.0 of the Multifac-
tor Dimensionality Reduction (MDR) software package. This package provides
a user friendly cross-platform Java GUI appropriate for genome-wide genetic
analysis. The MDR method has been developed as a nonparametric and model-
free genetic data mining strategy for identifying combinations of SNPs that are
predictive of a discrete clinical endpoint [21]. The MDR method has been success-
fully applied to detecting gene-gene interactions in a variety of common human
diseases. At the core of the MDR approach is an attribute construction algo-
rithm that creates a new attribute by pooling genotypes from multiple SNPs.
Constructive induction using the MDR kernel is accomplished in the following
way. Given a threshold T, a multilocus genotype combination is considered high-
risk if the ratio of cases (subjects with disease) to controls (healthy subjects)
exceeds or equals T, otherwise it is considered low-risk. Genotype combinations
considered to be high-risk are labeled G1 while those considered low-risk are
labeled G0. This process constructs a new one-dimensional attribute with levels
G0 and G1. It is this new single variable that is returned as the quality measure
in the ACO approach (Section 5). The MDR method is described in more detail
by Moore et al. [22].

The MDR method is implemented in an open-source java software package
which is freely available from www.epistasis.org. This MDR software package
features a user-friendly GUI and is widely used for epistasis analysis in human
genetics research (e.g. [23,24] among many others). This new version of MDR
features an ant system based on the prototype described by Greene et al. [11].
Here we test this framework under a variety of parameter settings and assess
the performance under different settings. We develop an exponential probabil-
ity selection function. This method facilitates user controlled scaling of expert-
knowledge weights to probabilities. The MDR software package also includes
an implementation of TuRF which can calculate weights to be used as expert
knowledge. What we learn here can be directly applied to an analysis of epistasis
in human genetics using this MDR software package.

5 The MDR Ant Colony Optimization (ACO) Approach

In the ant system implemented in the MDR software, the goal is to select SNPs
which effectively, in concert, determine an individual’s risk of disease. We use
TuRF weights (Section 3) as expert knowledge. This TuRF weighting algo-
rithm is implemented within the software package. TuRF weights are distributed
from -1 to 1 and must be transformed to selection probabilities for use in the
algorithm. Using an exponential distribution function and a user-adjustable pa-
rameter, θ, the algorithm transforms TuRF weights to SNP selection probabili-
ties. Specifically, order the attributes A1, A2, . . . , AN so that their TuRF scores
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Fig. 1. In our ACO metaheuristic ants explore a pair of SNPs. From that pair of
SNPs the amount of new pheromone, Δτi, is calculated. Δτi is a combination of the
quality of the pair, Q, and the expert knowledge score for that SNP, E. Shading here
is representative of the strength of pheromone, τ , which begins as a probability from
expert knowledge and changes based upon the attributes ants have chosen with each
update, (i).

are increasing, and let si − 1 be the TuRF score of the ith attribute, Ai. The
si are the TuRF scores, but normalized so that they lie between 0 and 2. The
probability that attribute Ai is selected, as given by the exponential function, is
then

P (Ai is selected) =
1∑N

k=1 θ−sk

θ−si ,

where θ, the user-adjustable distribution parameter, satisfies 0 < θ ≤ 1. Note
that

P (Ai is selected) = θsi+1−si P (Ai+1 is selected).

Thus if θ is near 1, attributes with higher scores are only slightly more likely to be
selected than those with lower scores. Whereas if, for instance, θ = 1

2 , attributes
with higher scores are much more likely to be selected than those with lower
scores. Furthermore, this function respects the intervals between TuRF scores.
Larger intervals will produce larger differences between initialized SNP selection
probabilities. These probabilities direct subsequent generations of ants by mod-
ifying the quantity of pheromone deposited. The weight of this information is
determined by a parameter, β, in the pheromone update rule.

Equation 1 and Figure 1 show the pheromone update procedure. Δτa,i is the
change in pheromone between updates.

Δτa,i =
m∑

k=1

Qa,b × Ea
β (1)

Here Qa,b is the MDR accuracy of a model containing that attribute a and
the other attribute, b, chosen by ant k. Ea is the expert knowledge information
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from TuRF for attribute a, and β is a parameter that determines the weighting
of the expert knowledge, E. This update rule is used through u total updates.

6 Data Simulation and Analysis

Here we wish to explore the power of this stochastic search wrapper. Here power,
expressed as a percentage, is the number of times out of 100 that the algorithm
finds the relevant SNPs. To determine whether the algorithm is able to find these
attributes, we simulate data where we know which SNPs determine disease risk.
Here we generate thirty models of disease risk with each containing two relevant
epistatic SNPs. These models span six broad sense heritabilities (0.025, 0.05, 0.1,
0.2, 0.3, and 0.4). For each heritability we generate five models. The heritability
of a model determines how much an individual’s genotypes at the functional
SNPs affect that individual’s disease status. The heritabilities we have chosen
range from very low (0.025) to large (0.4). In all cases these models exhibit no
main effects when the functional SNPs have minor allele frequencies of 0.4, the
conditions we use for our dataset simulation. This means that the entire genetic
effect will be due to the joint action of both SNPs and not due to information
from a single SNP.

This provides a worst-case scenario for our machine learning algorithm, as
it must search for the needle in the haystack. From these models we generate
both 800 individuals with disease (cases) and 800 without disease (controls). We
combine these into a single dataset and add an additional 998 noisy SNPs for a
total of 1000 SNPs. We generate 100 of these datasets for each model. It is on
these datasets where we know the relevant SNPs that we can effectively gauge
the power of our method under various parameters.

Here we use results from the machine learning method TuRF (See section 3)
as our source of expert knowledge. TuRF returns a weighting for each SNP
which we can provide to our algorithm. We run TuRF using all 1600 individuals
from the dataset. TuRF is a nearest neighbor approach, and we use the 200
nearest neighbors to provide weighting information. TuRF outperforms ReliefF
in this domain by removing noisy attributes, i.e. those with the lowest weights,
at each iteration. We choose to remove, at each iteration of the algorithm, the 50
(5%) attributes with the lowest weights before re-estimating the weights for the
remaining attributes. We then provide the final TuRF weights to the ant system,
which converts these weights into selection probabilities using our exponential
distribution function.

Here we explore four major parameters of the MDR ant system. These are θ, β,
a retention factor, and the number of ants and updates. The user-adjustable pa-
rameter for the exponential distribution function, θ, controls how expert knowl-
edge is converted to probabilities (see Section 5). Here θ is varied from 0.9 to
1 in increments of 0.01 and, then from 0.99 to 1 in increments of 0.001. β de-
termines the weight given to expert knowledge during the pheromone update
procedure. Here we examine β = 0, 1, and 2. The retention factor determines
how much weight information from previous iterations is given relative to infor-
mation gained in the most recent iteration. Here we examine retention factors
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of 0.1, 0.5, and 0.9. The number of ants and updates are controlled so that
a maximum of 5000 total interactions can be explored. This is approximately
equal to 1% of the total possible 2-way interactions in the dataset. We examine
ant/update combinations of 10/500, 100/50, 250/20, and 500/10. In subsequent
sections we refer to these combinations by the number of ants used. The number
of updates is simply 5000/ants.

To assess statistical significance we employ logistic regression. Logistic regres-
sion is attractive for these types of analyses because it allows for the statistically
rigorous examination of how one or a number of continuous factors (e.g. param-
eters) influence a proportion (e.g. the number of correct answers for all total
answers or power). In addition to allowing us to examine the significance of
single parameters, logistic regression also allows us to determine whether inter-
actions between parameters are statistically significant or simply due to chance.
For more detailed information about logistic regression, the authors recommend
Sokal and Rohlf [25] or Hastie, Tibshirani and Friedman [26]. Here we use the
Design package [27] for the R statistical computing language [28] to perform
logistic regression. We test all single parameter and pairwise interaction effects
and assess significance. Here we use a singularity criterion of 1 × 10−20 and a
maximum of 75 iterations for model fitting. We consider results significant when
p ≤ 0.05. This p-value can be thought of as the likelihood that chance alone
explains the results. Therefore with this significance threshold of p ≤ 0.05, we
would only declare parameters significant one time out of twenty when there is
no real effect.

7 Results

Not surprisingly, the performance of the algorithm varies greatly with the pa-
rameters chosen. Logistic regression shows that all single-parameter effects are
significant at the (p < 0.001) level except for the number of ants and thus also
the number of updates (p > 0.05). The expert-knowledge weighting factor, θ,
had the greatest impact upon success. Figure 2 shows, for a single heritability,
how the setting of θ affects power. Settings for θ from 0.99 to 1 are examined
more closely because of the large change in power from 0.99 to 1.

The increased variability at higher values of θ is due to interactions between
parameters (see Figure 4). Figure 3 shows that results are consistent across all six
heritabilities. The great deal of consistent variability in these single-parameter
results despite the large number of samples suggests that other parameters also
play an important role in determining the likelihood of success of the algorithm
and is indicative of interaction effects. Indeed logistic regression results indicate
that β and the retention factor also have a statistically significant effect on
power (p < 0.0001). Additionally, all two-way interactions between θ, β, and the
retention factor are also statistically significant (p ≤ 0.05).

In order to evaluate these interactions, we utilize interaction plots (Figure 4).
These plots show how power varies with respect to a combination of two param-
eters. Here we examine interactions between θ and β and between β and the
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Fig. 2. θ shows the greatest single-parameter effect as measured by logistic regression.
Here we show how power changes for a heritability of 0.1 as θ is varied from 0.9 to 1.
Because the change in power between 0.99 and 1 is so great we have added additional
points each 0.001 between those points. For visualization purposes the θ axis is not
shown to scale. Each box extends between the 25th and 75th percentiles with a bold
lines at the median (50th percentile). The whiskers of the plot extend through all
non-outliers.

retention factor. We can see in the β and θ plot that with β = 0, power drops off
rapidly beyond θ = 0.992 but that with β = 2 power does not drop off rapidly
until θ = 0.997. Moreover we can see that while β = 2 seems to be the most
reliable setting with regards to θ, it also leads to lower power than β = 1 when
retention is 0.5 or 0.9.

Based on these results we suggest parameter settings of θ = 0.99, β = 1,
and a retention factor of 0.9. These parameters use a moderate weight for ex-
pert knowledge, retain much of the information learned by prior generations,
and balance exploration and exploitation of expert knowledge. This value of θ
provides a useful setting for the distribution parameter when TuRF is used as
an expert knowledge source. While the combination of ants and updates is not
a significant predictor, using 500 ants for 10 updates performs well and should
be an appropriate setting. Greater numbers of ants and updates should be used
when feasible given computational constraints.

8 Discussion

These results make clear that expert knowledge will be a crucial component if
studies aimed at analyzing large scale association studies for interactions are
to succeed. Furthermore the importance of developing an understanding of the
expert knowledge source and the algorithm in conjunction are highlighted. Fu-
ture studies should focus on using biological expert knowledge, in addition to
statistical expert knowledge, in these search methods. We now possess a wealth
of biological information about protein-protein interactions through databases
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Fig. 3. Here that the change in power across heritabilities as θ changes from 0.99 to 1
is consistent. At different heritabilities there is still a great amount of variation at high
values. Much of this variability comes from the effects of parameters other than theta
on the power of the algorithm.

like String [29], the functions and processes genes are involved in with the Gene
Ontology [30], and knowledge of biochemical pathways from KEGG [31]. When
integrating these sources expert knowledge it will be critical to examine their role
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Fig. 4. In interaction plots parallel lines are indicative of additive parameter effects
while non-parallel or intersecting lines are indicative of interaction effects. Here we
see strong interaction effects. These are consistent with logistic regression which shows
statistically significant pairwise interactions between these parameters.

with methods similar to those used here. We see numerous interactions between
ant system parameters and the expert knowledge exponential distribution pa-
rameter. We therefore suggest logistic regression as a method of analyzing these
types of results. Logistic regression gives the ability to answer detailed questions
about parameters that lead to algorithm success and interactions between these
parameters in a statistically defensible manner.

Further work in this area will require expert knowledge if these approaches are
to discover predictors of common human diseases. Now the charge is to develop
simple and efficient methods for attribute selection, to evaluate low parameter
approaches for attribute selection and epistasis modeling, and to improve and
develop sources of expert knowledge. Developing systems with few parameters
and high power will make the application of these systems to real biomedical
problems more routine. While the system here has four parameters, we are able
to suggest θ = 0.99, β = 1, and a retention factor of 0.9 as defaults when TuRF is
used. The number of ants and updates should be maximized given computational
constraints. Easy to use software packages and powerful methods will help put
this class of methods in the modern geneticist’s toolbox.

We can improve the expert knowledge component by improving our pre-
processing methods or by using information derived from other biological data.
Improvements to the power of ReliefF or TuRF will play a crucial role in our
ability to find answers using nature inspired algorithms. Additionally, using bi-
ological expert knowledge from protein-protein interaction databases, the Gene
Ontology, or known biochemical pathways we should be able to identify SNPs
predictive of disease risk. Pattin et al. argue that once we successfully develop the
methods to extract expert knowledge from protein-protein interaction databases,



102 C.S. Greene et al.

we will improve our ability to identify important epistatic interactions in genome-
wide studies [32]. By using biological knowledge to drive this search, the potential
exists to enhance our comprehension of common human diseases. Eventually this
should lead to an improvement in the prevention, diagnosis, and treatment of
these diseases.
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Abstract. Evolutionary approaches to molecular docking typically hy-
bridize with local search methods, more specifically, the Solis-Wet
method. However, some studies indicated that local search methods
might not be very helpful in the context of molecular docking. An evo-
lutionary algorithm with proper genetic operators can perform equally
well or even outperform hybrid evolutionary approaches. We show that
this is dependent on the type of local search method. We also propose an
evolutionary algorithm which uses the L-BFGS method as local search.
Results demonstrate that this hybrid evolutionary outperforms previ-
ous approaches and is better suited to serve as a basis for evolutionary
docking methods.

1 Introduction

In general terms, molecular docking is a search problem that aims to find the best
conformation and orientation of a molecule relative to the active site of a second
target molecule with the lowest energy [1]. The typical case is to have a protein
as a receptor, fixed in a three-dimensional coordinate system, and a ligand, which
can be repositioned and rotated to dock it with the receptor. The docking prob-
lem is very difficult since the relative orientation and conformations of the two
molecules must be considered. With both molecules flexible, usually the active
site of the protein and the ligand, the problem becomes harder. In fact, a higher
degree of flexibility implies a considerable increase of the search space size.

Evolutionary algorithms have recently become one of the dominant search
techniques for docking methods [2] and proved to be very successful. Despite the
fact that numerous applications of evolutionary algorithms exist, the
number of studies which focus on understanding why the algorithm’s compo-
nents are successful is scarce. To the best of our knowledge, the first attempt
made concerning this important topic can be found in [3]. Several parameters
(e.g., population size) and some genetic operators are empirically investigated,
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as well as the efficiency of the use of a local search method. Some of our previous
work reflects this concern of studying the effect of the components of an evolu-
tionary algorithm on the search process [4,5]. However, in [3] it is concluded that
local search methods might not be very helpful in the context of molecular dock-
ing. The several experiments provided there show that an evolutionary algorithm
without local search but with proper genetic operators can perform equally well
or even outperform the best evolutionary algorithms with local search for this
problem, e.g., [6,2].

In this paper, we perform an empirical analysis on the evolutionary algorithm
model usually adopted for molecular docking optimization [6,2]. We show, con-
trary to [3], that local search methods can be useful for this problem, when the
appropriate method is selected, regardless of the genetic operators used. Results
confirm that the popular Solis-Wets algorithm is not an ideal local search method
for molecular docking since the solution’s quality and the algorithm’s efficiency
is similar to evolutionary algorithms without auxiliary methods. In contrast,
an evolutionary algorithm with the L-BFGS method, a powerful quasi-Newton
conjugate gradient method, improves the results attained by an evolutionary
algorithm tailored to molecular docking considerably.

The rest of the paper is structured as follows. Section 2 contains an overview of
the evolutionary algorithm’s components used in our experimentation. In section
3 we present the experiments and their results. Finally, section 4 contains the
main conclusions.

2 Evolutionary Algorithms and Molecular Docking

Since 1993, evolutionary algorithms for the molecular docking problem can be
found in the literature [7]. A comprehensive review of these efforts can be found
in [8,2]. One of the most important works is the evolutionary algorithm proposed
in [6], which is part of the package named AutoDock. The evolutionary algorithm
is a conformational search method which uses an approximate physical model
to evaluate possible protein-ligand conformations. It incorporates flexibility by
allowing the ligand to change its conformation during the docking simulation. In
addition, pairwise interactions between atoms are pre-calculated, which consid-
erably speeds up the docking simulation. The approach uses an evolutionary al-
gorithm with a local search method to search the space of possible protein-ligand
conformations. When this method is applied, the genotype of the individuals is
replaced with the new best solution found. This process is usually referred to as
Lamarckian evolution. In our work, we adopt an experimental model which uses
the main components from [6,3]. The main reason is that AutoDock serves as a
basis for the large majority of evolutionary-inspired approaches (e.g., see[2]) and
thus, the attained results here can be useful on a larger degree.

2.1 Encoding

During the docking process the protein remains rigid whilst the ligand is
flexible. An individual represents only the ligand. The encoding is an indirect
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representation. A genotype of a candidate solution is encoded by a vector of real-
valued numbers which represent the ligand’s translation, orientation and torsion
angles [6]. Cartesian coordinates represent the translation which is defined by
three variables in the vector. The orientation is determined by four variables in
the vector, which define a quaternion. A quaternion can be considered to be a vec-
tor (x, y, z) which specifies an axis of rotation with an angle θ of rotation for this
axis. For each flexible torsion angle one variable is used. The phenotype of a candi-
date solution is composed of the atomic coordinates that represent
the three-dimensional structure of the ligand. The atomic structure is built from
the translation and orientation coordinates in the ligand crystal structure with
the application of the torsion angles.

2.2 Evaluation

An energy evaluation function is used to evaluate each individual. The fitness
for each candidate solution is given by the sum of the intermolecular interaction
energy between the ligand and the protein, and the intramolecular energy that
arises from the ligand itself [6]. AutoDock uses an empirical free energy potential
composed of five terms. The first three terms are pairwise interatomic potentials
that account for weak long-range attractive forces and short-range electrostatic
repulsive forces. The fourth term measures the unfavorable entropy of a ligand
binding due to the restriction of conformational degrees of freedom. The fifth
and last term uses a desolvation measure. Further details of the energy terms
and how the potential is derived can be found in [6].

2.3 Genetic Operators

Common crossover and mutation operators are applied on the population. In
AutoDock a standard two-point crossover is used. Cut points only occur be-
tween related genes, i.e., separating translational values, orientation values and
rotation torsion angles into separate blocks. This is done to avoid disruption of
useful parts of the solution [6]. However, for real-valued encodings it is recom-
mended that operators designed to deal with this type of encoding are used. In
our previous work [5], we analyze several common crossover operators, such as
Simple Arithmetical crossover, Whole Arithmetical crossover, Discrete crossover,
Simulated Binary Crossover and Blend-α crossover, in terms of their effect on
representation properties, i.e., locality, heritability and heuristic bias. Results
showed that Whole Arithmetical crossover is a good operator for molecular dock-
ing, which confirms some experimentations discussed in [3].

Since the encoding is a real-valued vector, mutation is performed by using
operators based on evolutionary strategies. The genetic operator acts in the
following way: when undergoing mutation, the new value for a gene x′ is obtained
from the old value x by adding a random real number sampled from a distribution
U(0, 1):

x′ = x + σ × N(0, 1) (1)
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where N(0, 1) is the standard Gaussian distribution. Here. an important aspect is
determining the value for parameter σ. If it is set too low, exploitation overcomes
exploration and if set too high vice versa. The value can be fixed or self-adapted
(e.g., if an evolutionary strategy approach is used). In [3], the use of annealing
schemes to control σ as a function of time, i.e., the number of generations, is
proposed. The following scheme is used, scaled with 0.1:

σ(t) =
1√

1 + t
(2)

In the same manner as crossover, in [4,5] we also show that this kind of mutation
operator is best suited for molecular docking, especially when comparing it with
operators based on Cauchy distributions.

2.4 Local Search

In this work, we study the impact of two local search methods. The first technique
is the algorithm used in [6]: the Solis-Wets method. The Solis-Wets algorithm is
a direct search method with an adaptive step size, which performs a randomized
local minimization of a given candidate solution. The process starts with a can-
didate solution x ∈ �n and for each step a deviate ε ∈ � is chosen from a normal
distribution. In the case a better solution is found by adding or removing ε from
x, the current solution is replaced with the new one. Depending on whether a
new solution if found or not, a success or a failure is recorded. If several successes
occur in a row, the variance of the normal distribution is adapted for the search
to move more quickly. If the opposite occurs, the variance is adapted to focus the
search. This is accomplished through a parameter, ρ. Moreover, a bias term is
applied to drive the search in successful directions. The method terminates when
a certain lower-bound threshold for ρ is passed or when a maximum number of
steps is reached.

The second method used is the Broyden-Fletcher-Goldfarb-Shanno method
(L-BFGS) [9]. L-BFGS is a powerful quasi-Newton conjugate gradient method,
where both the function to minimize and its gradient must be supplied, but no
a priori knowledge about the corresponding Hessian matrix is required. During
local search, the maximum number of iterations that can be performed is spec-
ified by a parameter of the algorithm. However, the method stops as soon as it
finds a local optimum, so the real number of iterations may be smaller than the
specified value.

In a previous work concerning the analysis of local search methods for this
problem [10], we analyzed the Solis-Wets algorithm and the simplex local search
algorithm described by Nelder and Mead (NMS) for nonlinear, continuous func-
tion optimization [11]. The analysis was made in terms of locality and the at-
tained results showed that both methods had a similar high impact on locality.
As such, the performance of an evolutionary algorithm, as well as the solutions
quality, is not considerably different when using one of these two methods. For
this reason, the NMS method is not considered in this paper.
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3 Experimentation and Analysis

Several instances from the AutoDock test suite are used to perform our opti-
mization tests. The suite is composed of eight protein-ligand complexes. Each
complex contains a macromolecule (the protein) and a small substrate or in-
hibitor molecule (the ligand). The structures of these molecular complexes have
been obtained from the Protein Data Bank (PDB). Table 1 provides information
about the complexes names as well as their PDB identification.

Table 1. X-ray crystal structures used in the docking experiments

Protein-ligand complex PDB Resolution Torsion Size
Alcohol dehydrogenase 1adb 2.4 14 21
Alpha-Thrombin 1bmm 2.6 12 19
Beta-Trypsin 3ptb 1.7 0 7
Carbonic anydrase 1nnb 2.3 9 16
Trypsin 1tnh 1.80 2 9
IGG1-KAPPA DB3 FAB 2dbl 2.9 6 13
L-Arabinose-binding protein 7abp 1.67 4 11
HIV−1 Protease 1hvr 1.80 10 17

To evaluate a resulting ligand conformation we compare it with the experimen-
tal structures using the standard Cartesian root-mean-square deviation (RMSD):

RMSDlig =

√∑n
i=1 dx2

i + dy2
i + dz2

i

n
(3)

where n is the number of atoms in the comparison and dx2
i , dy2

i and dz2
i are the

deviations between the crystallographic structure and the corresponding coordi-
nates from the predicted structure lig on Cartesian coordinate i. RMSD values
below or near 2.0Å can be considered to be a success and the ligand is classified
as being docked. On the other hand, a structure with a RMSD just less than
3.0Å is classified as partially docked. Thus, lower values mean that the observed
and the predicted structures are similar.

We consider three versions of a standard evolutionary algorithm for our exper-
imentation. The only difference between them is the local search method. The
first variant does not include any type of local search, mimicking the algorithm
presented in [3]. The second variant includes the Solis-Wets algorithm as local
search, thus being equivalent to the algorithm contained in the AutoDock pack-
age [6]. The last evolutionary algorithm is our own proposal, which includes the
L-BFGS method as local search. As for the rest of the evolutionary algorithm
components, the basic algorithm for our experiments follows what was described
in the previous sections in terms of representation, fitness function and genetic
operators. The representation and evaluation is the one used by AutoDock. The
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genetic operators used are the Whole Arithmetic crossover and the Gaussian-
based mutation operator described in the previous section. Moreover, the
evolutionary algorithm is a standard generational algorithm with stochastic tour-
nament selection and weak elitism.

3.1 Settings

The parameter values were set heuristically, even though we did some additional
tests and verified that, within a moderate variation, there was no significant dif-
ference in the outcomes. In any case, we did not perform a comprehensive study
on the influence of different parameter settings and it is possible that a care-
ful fine-tuning of some values could bring slight improvements to the achieved
results. For all experiments, the settings of the tested algorithms are the follow-
ing: Number of runs: 30; Population size: 150; Selection rate: 0.8; Crossover rate:
0.9; Mutation rate: 0.5; Tournament selection rate: 0.95; Tournament replace-
ment rate: 0.9; Number of local search steps: 1000; Maximum number of fitness
evaluations: 10 000 000. We should note that, although the maximum number
of fitness evaluations is high, in the case where no improvement is found after
10 000 fitness evaluations, the algorithm stops. For both local search methods,
a step counts as a single fitness evaluation.

3.2 Experiments

In table 2 we present an overview of the optimization results according to the
energy fitness function. Each line displays the results for a complex, identified by
the PDB label, with a given size. For each of three variants of the evolutionary
algorithm, i.e., no local search (No LS), with the Solis-Wet algorithm (Solis-
Wets) and the L-BFGS method (L-BFGS), a column is presented with three sub-
columns. These contain the best energy value found during the 30 runs (Best),
the average of the best energy values for 30 runs (Avg) and the corresponding
standard deviation (Std). Bold values indicate the best values found.

A first observation of table 2 indicates a very important result: the evolution-
ary algorithm with the L-BFGS local search method achieves the best results for
all instances. Moreover, it also attains the best results in terms of average and
standard deviation. This clearly shows that the use of this local search method
provides competitive results when compared to the alternative configurations.
In fact, a closer look at the results reveals that the quality of the solutions found
can be considerably. For the larger and more difficult complexes (1adb, 1bmm,
and 1hvr) the order of magnitude can be the double, at least, when compared to
the second best algorithm. For the large instance, 1adb, the L-BFGS attains an
energy score of −18.30 whilst the variant without local search, the second best,
only achieves −6.59. For the remaining complexes, especially the ones with a
smaller size, the differences are not that striking. The complex 3ptb, which has
the smaller size of the eight tested complexes, demonstrates this. The L-BFGS
evolutionary algorithm has a best energy value of −6.33. The algorithm with
the worst value is the no local search version with −5.49. In this case, there is a
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Table 2. Summary of optimization results according to energy evaluation

Complex No LS Solis-Wets L-BFGS
Label Size Best Avg Std Best Avg Std Best Avg Std
1adb 21 -6.59 335.34 953.64 -3.85 192.36 559.51 -18.30 -14.00 4.80
1bmm 19 -3.94 5.00 11.68 -4.66 5.04 18.84 -11.99 -5.52 2.73
1hvr 17 -15.79 -8.67 9.39 -13.81 -10.13 4.07 -32.43 -32.13 0.28
1nnb 16 -4.53 -2.48 1.69 -5.18 -2.16 1.57 -6.25 -4.63 1.50
1tnh 9 -5.39 -2.73 1.36 -5.37 -2.49 1.14 -6.06 -5.54 1.09
2dbl 13 -10.03 -4.66 3.47 -11.43 -4.26 3.06 -12.14 -10.04 2.99
3ptb 7 -5.49 -3.66 1.02 -5.99 -4.16 1.18 -6.33 -6.22 0.25
7abp 11 -7.97 -6.78 0.90 -7.90 -6.84 1.14 -9.12 -8.67 0.37

difference of only 13.27% while for the larger complex (1adb), for the two same
algorithms, the difference is 63.98%. This pattern is consistent when compar-
ing the L-BFGS method to the other two. The larger the complexes, the larger
the difference in results. The evolutionary algorithm with the L-BFGS clearly
outperforms the other algorithms.

Another relevant aspect is the difference of performance between the two local
search methods. As previously reported [3], an evolutionary algorithm without
the Solis-Wets local search method can be efficient and competitive. Looking at
table 2 we can agree with this conclusion since only in four instances (half the
tested complexes) the Solis-Wets algorithm attains better results than without
local search. Furthermore, the exact same behavior is exhibited in terms of the
average of the best solutions found. This is an indication that these two variants
of the evolutionary algorithm are more sensitive to the multi-modal landscape
of the problem. The L-BFGS local search method enables the evolutionary al-
gorithm to overcome the multiple local minima more easily.

In addition, the evolutionary algorithm with the L-BFGS method provides
another indication that it is superior to the other versions. The column that
displays the averages of the best solutions found during the 30 runs, shows for
the L-BFGS method closer values to the best. Four instances have a proximity
of values very small (0.92% for 1hvr, 1.7% for 3ptb, 4.99% for 7abp and 8.6%
for 1tnh). The remaining ones have a small moderate distance (17.28% for 2dbl,
23.5% for 1adb and 25.88% for 1nnb) with the exception of 1bmm (distance of
53.97%). The proximity values between the best and the average are not reported
for the other methods. The evolutionary algorithms without local search and
with the Solis-Wets method show larger distances, the majority of them between
45% and 65% approximately. Although this indicates a more efficient local search
method for the L-BFGS algorithm, it is important to point out that the method
also reduces the population diversity substantially.

To establish if these differences are statistically significant, we performed the
Wilcoxon rank sum test with significance value α = 0.01. As expected, there
are no significant differences between the evolutionary algorithms without local
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Table 3. Summary of optimization results according to RMSD values

Complex No LS Solis-Wets L-BFGS
Label Size Best Best-En Avg Best Best-En Avg Best Best-En Avg
1adb 21 1.47 1.53 2.78 1.34 1.50 2.79 0.30 0.51 1.64
1bmm 19 2.06 2.06 4.18 1.29 1.29 3.89 0.67 1.10 3.63
1hvr 17 0.29 0.29 0.96 0.53 0.65 0.90 0.50 0.71 0.61
1nnb 16 0.44 0.76 1.84 0.62 0.64 2.76 0.39 0.74 1.84
1tnh 9 0.70 0.73 2.94 0.34 0.34 3.38 0.20 0.94 1.16
2dbl 13 0.57 0.78 2.42 0.53 0.53 2.64 0.35 0.35 1.40
3ptb 7 0.42 0.54 2.07 0.31 0.31 1.45 0.24 0.51 0.93
7abp 11 0.22 0.61 0.65 0.26 0.45 0.86 0.35 0.82 0.76

search and the Solis-Wets method. Significant differences are found between the
evolutionary algorithm with the L-BFGS local search method and the other two
algorithms.

It is important now to relate the energy results with the RMSD values. Table 3
displays the overview of these values. In the same way as before, each line displays
the results for a complex. For each of three variants of the evolutionary algorithm,
a column is presented with three sub-columns. These are: the best RMSD value
found during the 30 runs (Best), the RMSD value correspondent to the best
energy value found during the 30 runs (Best-En) and the average of the RMSD
values for 30 runs (Avg). Bold indicates the best displayed values.

In terms of the RMSD values, the differences between the three approaches
are not as distinctive as in the energy case. An overview of table 3 reveals that
the L-BFGS method does not contain all the best values. Nevertheless, it still
contains the majority of the best RMSD values. However, this table contains two
important pieces of information. The first one indicates how well the algorithm
is able to perfom in terms of RMSD, i.e., can the evolutionary algorithm attain
low RMSD values? The answer is given by the Best and Avg columns. From the
table, it is possible to conclude that all algorithms can discover solutions with
low RMSD values. For example, 0.22 without local search for the 7abp complex,
0.34 with Solis-Wet method and 0.20 with L-BFGS method for the 1tnh com-
plex. Moreover, the Best column reveals that the three evolutionary algorithms
are able to reach consistently good values. With the exception of the evolution-
ary algorithm without local search for the 1hvr complex, every other value is
lower than 1.5 and for most cases, even lower than 1.0. This performance is re-
inforced by the Avg column since the RMSD average of the best solutions found
during the 30 runs is low. However, in this case the L-BFGS method attains
a better performance compared to the remaining algorithms. The RMSD av-
erage on the eight tested instances is 1.5 for the L-BFGS method. The Solis-
Wets method has an average of 2.33 and without local search we have a slight
improvement: 2.23.
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Fig. 1. Scatter plot of an optimization run for the 1adb complex with all variants



On the Efficiency of Local Search Methods 113

Table 4. Full runs for the 1adb and 1hvr instances, sorted by best Energy values

1adb 1hvr
Runs No LS Solis-Wets L-BFGS No LS Solis-Wets L-BFGS

Energy RMSD Energy RMSD Energy RMSD Energy RMSD Energy RMSD Energy RMSD
1 -6.59 1.53 -3.85 1.50 -18.30 0.51 -15.79 0.29 -13.81 0.65 -32.43 0.71
2 -1.51 2.23 -0.28 2.06 -18.25 0.48 -15.58 0.73 -13.70 0.66 -32.42 0.62
3 -1.19 1.81 2.50 1.34 -18.18 0.40 -15.52 0.48 -13.36 0.65 -32.34 0.62
4 0.04 1.47 7.30 1.98 -18.15 0.30 -15.30 0.67 -13.26 0.68 -32.31 0.70
5 8.25 2.21 8.67 2.75 -18.08 0.45 -15.22 0.71 -13.16 0.53 -32.30 0.58
6 9.42 2.35 9.44 3.50 -18.27 0.41 -14.42 0.86 -13.11 0.61 -32.27 0.55
7 12.08 2.64 9.45 3.18 -18.15 0.55 -14.17 0.89 -12.96 0.66 -32.26 0.55
8 22.59 1.85 14.13 3.28 -17.92 0.49 -13.96 0.75 -12.92 0.66 -32.26 0.60
9 32.85 3.29 14.25 1.40 -17.84 0.39 -13.88 0.84 -12.81 0.66 -32.25 0.59
10 36.87 2.39 15.43 2.10 -17.79 0.48 -13.75 0.85 -12.80 0.88 -32.25 0.69
11 37.38 2.79 16.30 2.40 -17.72 0.49 -13.26 0.80 -12.59 0.57 -32.20 0.63
12 40.45 1.71 16.45 1.39 -17.58 0.44 -12.98 0.92 -12.41 0.73 -32.19 0.69
13 47.21 1.83 17.55 2.76 -17.43 0.42 -12.90 0.89 -12.36 0.86 -32.08 0.56
14 55.59 2.86 24.19 2.32 -15.97 0.89 -12.73 1.01 -12.04 1.23 -32.03 0.50
15 56.95 4.32 43.29 2.21 -15.58 3.71 -12.72 0.93 -11.58 0.72 -31.97 0.56
16 63.86 1.99 49.75 2.22 -15.55 1.36 -12.51 0.77 -11.48 0.76 -31.35 0.72
17 64.04 2.89 59.49 4.12 -15.32 2.94 -12.51 1.18 -11.09 0.98 -32.34 0.60
18 65.29 2.56 76.65 1.91 -13.89 1.59 -12.37 1.20 -10.85 0.93 -32.21 0.65
19 72.67 3.60 88.04 3.19 -13.86 1.61 -12.26 0.94 -10.66 1.12 -32.20 0.56
20 91.42 4.18 93.40 2.29 -12.76 2.16 -9.31 1.05 -10.10 1.16 -32.15 0.58
21 115.83 2.81 98.69 7.91 -12.37 2.39 -8.28 0.95 -10.07 0.94 -32.13 0.58
22 162.20 2.85 100.14 3.24 -12.05 2.27 -7.90 1.06 -9.82 0.86 -31.28 0.67
23 169.17 2.80 101.90 2.58 -11.92 1.90 -7.05 0.93 -9.70 1.16 -32.30 0.57
24 213.00 2.87 137.47 2.76 -11.03 2.78 -5.89 1.06 -9.62 1.06 -32.23 0.58
25 252.60 3.76 154.18 2.08 -9.16 2.85 -4.50 1.52 -7.24 1.38 -32.17 0.60
26 257.58 2.75 225.49 2.14 -8.02 3.92 -2.32 0.93 -5.76 1.30 -32.06 0.58
27 299.62 2.56 301.42 3.69 -7.65 2.80 1.89 1.49 -3.40 1.07 -32.22 0.58
28 423.42 3.42 314.32 3.21 -6.83 2.97 6.15 1.07 -1.21 1.12 -32.20 0.60
29 2900.60 4.21 721.81 3.84 -2.25 3.52 14.49 1.42 -0.57 1.29 -32.07 0.59
30 4558.50 4.85 3053.11 4.42 -2.13 3.83 24.45 1.55 0.61 1.17 -31.44 0.74

Avg 335.34 2.78 192.36 2.79 -14.00 1.64 -8.67 0.96 -10.13 0.90 -32.13 0.61
Std 953.64 0.87 559.51 1.26 4.80 1.26 9.39 0.28 4.07 0.25 0.28 0.06

The second important information gathered from this table is the relation
between the RMSD value attained with the best energy. The lowest energy found
is only good if it corresponds to a low RMSD value. For the best energy values
in table 2, we present the corresponding RMSD values in the column Best-En.
From this column it is possible to conclude that the distribution of the best
values is more balanced between the two algorithms with local search methods.
The Solis-Wets method has the best values for four instances and the L-BGFS
algorithm for three instances. The remaining best value is for the evolutionary
algorithm without local search. The first conclusion we can draw from this is that
the L-BFGS method is more capable to optimize in terms of energy minimization
while the other methods, although with higher energies, can reach solutions with
a more similar structure to the optimal case. Nevertheless, the function being
optimized is in terms of energy and the L-BFGS method shows that it is capable
to reach more efficiently the desired area to search.

This is shown by the scatter plots in figure 1 and the full optimization runs
presented in table 4. The plots display for the 1adb complex (without major
differences, the same pattern is observed in the remaining instances) the position
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of the discovered solutions the relation between energy and RMSD for an opti-
mization run. The closer to the origin of the axis the better. Common patterns
can be detected on all the plots: there is a clear approximation flow to the origin
and there is a concentration between RMSD values of 2 and 4 with an energy
level below 500000. The main differences between the plots are: 1) the degree
of the concentration is higher for the L-BFGS method; 2) the majority of the
initial solutions for the L-BFGS method have a RMSD below 8, thus they are
presented in the plot; 3) although the Solis-Wet algorithm shows a small focus
of solutions in the RMSD level below 2, this effect is stronger with the L-BFGS
method. The main information from the these plots is that an optimization run
with the L-BFGS method drives more solutions with lower energy and RMSD
values closer to the desired point.

A perusal of table 4 helps to consolidate this view. The table presents the
data from two complexes, 1adb and 1hvr, which show the best energy and cor-
responding RMSD for the 30 runs, for the three tested algorithms. The runs
are sorted by the energy values. Important differences between the evolutionary
algorithms are found. First, the L-BFGS method is able to consistently reach
good energy values. This is very clear when compared to any of the other two
methods, especially for the later runs. The L-BFGS method still provides good
energy values while the Solis-Wets method and no local search display unac-
ceptable energy values. In addition, the same kind of behavior is displayed when
observing the RMSD columns. Although less strong in comparison to energy, the
L-BFGS method is able to provide lower RMSD values for a longer number of
runs. In the case of the 1hvr complex, the L-BFGS algorithm presents values al-
ways below 1.0 while for the remaining algorithms this is not true. Furthermore,
for the 1adb complex, L-BFGS is the only method capable of attaining RMSD
values below 1.0 and for almost half the runs (14 out of 30). Similar patterns
are also observed in the remaining complexes optimization runs.

4 Conclusions

We investigated the use of local search methods when applied to the molecu-
lar docking problem. Previous research on this topic indicated that the most
widely used local search method for docking could be inefficient and, with care-
fully selected genetic operators, an evolutionary algorithm is sufficient [3]. Our
investigation partially supports this view. Although the Solis-Wets algorithm
might not be the most suitable local search component in an evolutionary al-
gorithm, other local search methods could prove to be efficient. In this paper,
we proposed a standard generational evolutionary algorithm hybridized with the
L-BFGS method, a powerful quasi-Newton conjugate gradient method. Results
show that an evolutionary algorithm with this method as local search is superior
to previous approaches [6,3]. The optimization results are considerably better in
terms of energy and RMSD values. The differences between this algorithm and
the other tested approaches are statistically significant.
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Abstract. The modelling of biochemical systems requires the knowledge of sev-
eral quantitative parameters (e.g. reaction rates) which are often hard to measure
in laboratory experiments. Furthermore, when the system involves small numbers
of molecules, the modelling approach should also take into account the effects of
randomness on the system dynamics. In this paper, we tackle the problem of es-
timating the unknown parameters of stochastic biochemical systems by means of
two optimization heuristics, genetic algorithms and particle swarm optimization.
Their performances are tested and compared on two basic kinetics schemes: the
Michaelis-Menten equation and the Brussellator. The experimental results sug-
gest that particle swarm optimization is a suitable method for this problem. The
set of parameters estimated by particle swarm optimization allows us to reliably
reconstruct the dynamics of the Michaelis-Menten system and of the Brussellator
in the oscillating regime.

1 Introduction

The modelling of biological systems requires the knowledge of many numerical factors,
like molecular species concentrations and reaction rates, which represent an indispens-
able quantitative information to perform computational investigations of the system
behavior. Unfortunately, the experimental values of these factors are often not avail-
able or inaccurate, since carrying out their measurements in vivo can be tangling or
even impossible [16]. In a few cases, the values of some parameters of a given sys-
tem can be estimated either from in vitro experiments (by fitting the dynamics derived
through equations based on mass-action law against the concentration time series that
result from these measurements), or by assuming some analogies with similar processes
or organisms for which more experimental data are available. In general, the lack and
the inaccuracy of these information bring about the challenging problem of assigning
the correct values to all parameters in order to reproduce the expected dynamics in the
best possible way. Optimization methods can be used to tackle the calibration prob-
lem of parameter estimation by minimizing a cost function (e.g. a distance measure)
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which quantitatively defines how good is the system behavior using the predicted val-
ues, with respect to the experimental dynamics. Several global optimization techniques
(see [16,14] and references therein) have already been adopted for parameter estima-
tion of biochemical and biological systems. A peculiarity of our approach, with respect
to other methods previously investigated for this problem, is that it embeds the (for-
ward) problem of performing stochastic simulations of a system dynamics, into the
(inverse) problem of estimating its unknown parameters. This leads to the development
of a method that exploits the outcome of stochastic simulation algorithms – usually used
to generate the temporal dynamics of the system’s chemicals – to effectively define the
fitness function used by the optimization techniques here investigated. In particular, we
compare the performances of genetic algorithms (GAs) and particle swarm optimiza-
tion (PSO) for the parameter estimation of two simple biochemical schemes which are
well representative of the dynamics of many biological systems: a basic catalytic ki-
netics (the Michaelis-Menten system), a sustained oscillating behavior and a dumped
oscillating behavior (both based on the Belousov-Zhabotinskii reaction).

The motivation for considering stochastic processes comes from several experimen-
tal investigations, which have evidenced the role of “biological noise” in living cells
that can drive cellular processes, involving small populations of reactant species, into
stochastic behaviors [7,2]. Works of this type show the inadequacy of the traditional
deterministic modelling to describe phenomena such as signalling pathways, especially
when gene expression is involved, therefore supporting the need for stochastic mod-
elling approaches. Systems of biochemical reactions have been traditionally analyzed
by means of deterministic methods, corresponding to sets of coupled ordinary differ-
ential equations (ODEs), where one equation is drawn for each molecular species in-
volved in the system, specifying all the transformations this species undergoes as either
a reagent or a product (this leads to the so called reaction-rate equation). On the other
hand, a different investigation of biochemical systems can be carried out by means of
computational simulations, as molecular dynamics methods, where one follows the dis-
crete time evolution of the system, and the quantities of the species are given by the copy
numbers of their molecules. One of the pioneering work behind the latter approach is
the stochastic simulation algorithm (SSA), proposed by Gillespie in [8]. In the present
work we consider the tau leaping stochastic simulation algorithm [4], which is an ap-
proximate and faster version of SSA. In both SSA and tau leaping, the probabilistic
choice of the tossed reactions and of their application time depends on both the type
of the reactions and the current amounts of reagents inside the volume (i.e. the state of
the system). Furthermore, they share the characteristic that repeated (independent) ex-
ecutions of the algorithm will produce different temporal dynamics, even starting from
the same initial configuration, thus reflecting the inherent noise (this is in contrast to
ODEs, which always reproduce exactly the same dynamics starting from the same ini-
tial conditions). In practice, in order to define the fitness function, which is one of the
main problems in applying heuristics like GAs or PSO to this kind of problems, we
evaluate the individuals by considering, for each molecular species in the system, the
similarity/dissimilarity between two dynamics: the target (experimentally known) dy-
namics on one side, and the estimated dynamics on the other side. The first dynamics



118 D. Besozzi et al.

is here reconstructed by solving the reaction-rate equation of the biochemical system,
while the latter is generated by running (some executions of) the tau leaping algorithm.

The paper is structured as follows. In Section 2 we provide some basic notions of
biochemical reactions, and describe the two simple systems (Michaelis-Menten reaction
and the Brussellator) that we will consider for parameter estimation. In Section 3 we
present the versions of GAs and PSO that we have used and, in particular, we give a
suitable definition of fitness function, taking into account the stochastic nature of the
estimated dynamics. The experimental results are presented in Section 4, while further
applications of these methods and some open problems are discussed in Section 5.

2 Systems of Biochemical Reactions

Any generic (bio)chemical reaction can be written in the form r :
∑N1

i=1 αiRi →∑N2
j=1 βjPj , where R1, . . . , RN1 are distinct reactant molecular species and P1, . . . ,

PN2 are distinct products, for some N1, N2 ≥ 0. The non-negative integers αi, βj

are the stoichiometric coefficients of the reaction r; they specify how many molecules
of each reagent species are necessary to trigger the reaction, and how many product
molecules are formed after the reaction has occurred. Each reaction is also character-
ized by a numerical factor, called the rate constant, which determines – together with
the amount of reagents – the rate, or velocity, of the reaction itself. When a system of
reactions is analyzed by means of a stochastic algorithm, the rate of each reaction is
determined by the so called stochastic constant (usually denoted by c, and having unit
of a reciprocal time), a value that encompasses the physical and chemical properties
of the reaction. The kinetics of a reaction is influenced by many factors, such as tem-
perature, pressure, amounts of reactants, molecular crowding, etc. As a consequence,
the experimental determination of rate constants for a given biochemical system is not
a trivial task, and the situation gets even harder when considering more complex bio-
logical systems, like metabolic pathways or cellular processes in general. For further
notions about biochemical reactions and chemical kinetics we refer to [5,15].

Michaelis-Menten system. The first chemical system we consider, the Michaelis-
Menten (MM) kinetics, describes the catalytic transformation of one-reacting substrate
(denoted by S) into a final product (P ) mediated by an enzyme (E), passing through
the (relatively fast) reversible formation of the enzyme-substrate intermediate complex
(ES). The role of E is to lower the energy required by S for its interconversion to P ;
the enzymatic kinetics assumes that S and E are in a fast equilibrium with the com-
plex they form, which then dissociates to yield the product while releasing the enzyme
free. The set of chemical reactions corresponding to MM is: E + S

c1−→ ES, ES
c2−→

E+S, ES
c3−→ E+P . The initial amounts of the substrate and the enzyme used to gen-

erate the target dynamics, shown (with solid line) in Fig. 5(a), are S = 1000, E = 750
molecules, while the stochastic constant values (that we want to estimate with GAs and
PSO) are c1 = 2.5 · 10−3, c2 = 0.1, c3 = 5.

Brussellator system. The second chemical system we consider, called Brussellator
[17], is a simplified scheme for the Belousov-Zhabotinskii reaction, a family of inor-
ganic redox reaction systems that exhibit macroscopic temporal oscillations and spatial
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patterns formation. This theoretical scheme is recognized as the prototype of nonlinear
oscillating (open and well-stirred) systems, proving the significance and variety of both
spatial organizations and complex rhythms occurring in many biological systems. Here,
we give a description of the Brussellator that slightly differs from the original one: with
respect to the formulation given in [17], we leave out the presence of two products
(since they are not directly involved in the formation of the oscillating limit cycle), and
we consider the following set of reactions: A

c1−→ X, B + X
c2−→ Y, 2X + Y

c3−→
3X, X

c4−→ λ, where A, B are two chemicals that are given as input and always kept
at a constant amount, X, Y are the intermediate product chemicals that exhibit oscilla-
tions, and λ represents the degradation of species X . The initial amounts of molecules
used for generating the dynamics are A = X = 200, B = 600 and Y = 300. We con-
sider two distinct sets of values for the reaction constants {c1, c2, c3, c4} to be estimated
using GAs and PSO. The set {1, 5 · 10−3, 2.5 · 10−5, 1.5} gives rise to sustained and
periodic oscillations in the species X, Y , while the set {1, 5 ·10−3, 2.5 ·10−4, 1.5} gives
rise to dumped oscillations and quickly drives the system dynamics to a steady-state.
The corresponding dynamics are shown (with solid and dashed lines) in Fig(s). 5(b)
and 5(c), respectively.

3 Genetic Algorithms and Particle Swarm Optimization

In this paper, we compare the performances of two different optimization algorithms:
GAs [9] and PSO [11]. This choice is motivated by the fact that the presented appli-
cations are an example of dynamic optimization problems, meaning that the fitness
function may change (more precisely, each individual can have slightly different fitness
values each time it is evaluated) and a number of contributions exist about the use of
GAs and PSO for this kind of problems (see, e.g., [12,10]).

Both GAs and PSO formulations used in this work evolve individuals of the same
shape: n-length vectors of floating point numbers, where n is the number of rate con-
stants to optimize. The experimental settings and the related choices that we have done
for GAs and PSO are described below.

Genetic Algorithms. The most commonly used GAs formulation evolves fixed length
strings over a finite alphabet, while in our case each allele can contain any floating
point value from a limited range. This GAs version is often called real-valued or real-
coded GAs (see, e.g., [19]). Even though we are aware that many sophisticated genetic
operators for real-coded GAs have recently been defined (like, for instance, Laplace
Crossover, Makinen, Periaux and Toivanen Mutation, Non-Uniform Mutation [6]), in
this study, that represents a first step in our investigation, we prefer to use simpler op-
erators, like the ones originally defined in [19], more precisely: one point and average
crossover, gaussian mutation, range mutation and reinitialization.

One point crossover is similar to the standard GAs crossover defined by Holland
in [9]: parents are aligned, one crossover point is selected and substrings are inverted
to generate offspring. Average crossover returns one offspring that contains at each
position the average values of the parents chromosomes. In this work, crossover is exe-
cuted with a 0.95 rate. In case crossover is not executed, parents are copied in the next
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population with no modification (reproduction). Otherwise, one operator among one
point crossover and average crossover is chosen with uniform probability distribution.

Gaussian mutation perturbs an allele with a number drawn from a normal distribution
with mean μ equal to the current value of that allele and σ = 0.05 · μ. Range mutation
increments or decrements an allele of a prefixed quantity (equal to 5% of its admissible
range size in this work). Reinitialization changes the value currently contained in an
allele with an uniformly distributed random number in the admissible range. For each
individual in the spring, mutation is applied to each allele with probability 1/n, where
n is its length. If an allele has to be mutated, one operator among gaussian mutation,
range mutation or reinitialization is chosen with uniform probability distribution.

The other parameters that we have used are: population size of 100 individuals; max-
imum number of generations equal to 100; tournament selection of size 5; elitism (i.e.
copy of the best individual unchanged in the next population at each generation).

Particle Swarm Optimization. PSO [11] is a population based optimization heuristic,
inspired by social behavior of bird flocking or fish schooling. In PSO the potential
solutions, called particles, are identified by their coordinates in the problem space and
are also characterized by a velocity that allows them to update their current positions.
The PSO concept consists in changing, at each iteration, the velocity of each particle
towards some attractors, typically the global and local best positions that have been
found so far. The swarm behavior is influenced by two parameters, C1 and C2, that
control global exploration and local exploitation, and try to prevent the particles from
prematurely converging to local minima.

Starting from the work presented in [18], several papers have been recently pub-
lished which aim at improving the performances of the PSO with different settings,
by focusing on the optimization of parameters, such as constants C1, C2 (see, e.g.
[3,1,18]). Among these contributions, we are particularly interested in [3] where the
co-evolutionary PSO algorithm, aimed at optimizing the values of constants C1 and C2
first proposed by Miranda and Fonseca in [13], is investigated. Authors of [3] study this
co-evolutionary PSO version for a large set of well-known theoretically hand-tailored
problems and hint that it may outperform standard PSO for complex problems. For this
reason, in this paper we study two versions of the PSO: the canonical PSO formula-
tion (indicated with PSO1 from now on) and the co-evolutionary Miranda and Fonseca
model (PSO2 from now on).

The other experimental settings that we have used for both these PSO versions are:
swarm size of 20 particles; maximum number of iterations equal to 500 (so doing, GAs
and PSO will have executed the same number of fitness evaluations at the end of a
run); the inertia weight w has been linearly decremented from 0.9 to 0.2 with gaussian
noise with average equal to the current w value and σ = 0.05 (as reported in [18]).
In addition, in PSO2 we add a gaussian noise to C1 and C2 with σ = 0.1. For both
PSO versions, we have considered velocity ranges of half the size of the rate constants
ranges and when a particle reaches a bound of the admissible interval, its velocity is
halved and its direction inverted.

Fitness Function. We give here a novel definition of fitness based on the idea that,
in order to optimize the rate constants of a stochastic biochemical system, we have
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Fig. 1. Area evaluation between TD and ED series for the fitness function

to compare the given experimental outcome (the target dynamics) with the estimated
dynamics generated by the tau leaping algorithm, which will run using the parameter
values codified in the individuals of GAs or PSO. To this aim, we have to manage some
troublesome properties, hereby discussed, that are inherent to stochastic simulations.
The fitness of each individual will be evaluated by calculating the area between the
target dynamics (TD) and the estimated dynamics (ED) of each molecular species with
known behavior. In this work, pseudo-experimental TD are generated by means of an
ODEs solver, according to the values assumed for the rate constants and reported in
Section 2. The conversion between the deterministic and the stochastic parameters has
been done according to the relations given in [8], and assuming a reaction volume equal
to 1.6 · 10−17L for MM and to 3.2 · 10−22L for the Brussellator.

To be more precise, the fitness function is defined as follows. Let L ⊆ {1, . . . , M} be
the set of molecular species whose dynamics is assumed to be experimentally known,
t0 and tN the initial and final time instants of the given TD. We denote by x′

l(t0), . . . ,
x′

l(tN ) the TD time series of species l, l ∈ L, and by xl(τ0), . . . , xl(τÑ ) its ED time
series, where τ0 = t0 and τÑ

∼= tN . Note that, in general, all the time instants (except
the initial one) of the ED series will be distinct from those sampled in the TD series,
since the two methods use different time samplings and, above all, each simulation by
means of tau leaping generates a different time series (hence, it does not correspond to
the constant-step temporal sampling of TD). In addition, the time interval between any
couple of consecutive time instants of the ED series will be generally distinct from every
other time interval in the same series. As the evaluation of the fitness function requires
to determine the difference between the TD and the ED, we need to pick up couples of
values, one in the TD series and the other one in the ED series, that correspond to an
identical time instant. Therefore, for each simulated time instant τi, i = 0, . . . , Ñ (filled
circles in Fig. 1), we consider the two consecutive time instants in the TD series tj , tj+1,
j = 0, . . . , N − 1 (empty diamonds in Fig. 1), which satisfy the following conditions:
(1) tj ≤ τi ≤ tj+1; (2) there exist no other time instants t′j , t

′
j+1, j = 0, . . . , N − 1,

such that tj ≤ t′j ≤ τi ≤ t′j+1 ≤ tj+1. Then, by performing a linear interpolation
between the given TD series values x′

l(tj) and x′
l(tj+1), we derive the element x′

l(τi)
(filled squares in Fig. 1) in the TD series corresponding to the element xl(τi) in the ED
series, and we evaluate their distance, |x′

l(τi) − xl(τi)|. We then compute the fitness
fz (for each independent execution z of the tau leaping algorithm) by summing up,
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for each simulated time instant τi and for each molecular species l ∈ L, the areas of
the trapezoids (thick lines in Fig. 1) having as basis the distances |x′

l(τi) − xl(τi)| and
|x′

l(τi+1) − xl(τi+1)|, and as height the length of the time interval [τi, τi+1], that is:

fz =
∑Ñ−1

i=1
∑

l∈L
1
2 (|x′

l(τi) − xl(τi)| + |x′
l(τi+1) − xl(τi+1)|)(τi+1 − τi). Finally,

the fitness function is defined as f = 1
Z

∑Z
z=1 fz , where Z is the total number of

independent runs of the tau leaping algorithm executed for each individual of GAs and
PSO.

4 Experimental Results

In this section we discuss the application of our proposed GAs and PSO versions,
presented in Section 3, for the estimation of rate constants of the systems described
in Section 2, for which we have used the following admissible ranges: c1 ∈ [2.5 ·
10−5, 2.5 · 10−1], c2 ∈ [1 · 10−3, 10], c3 ∈ [5 · 10−2, 5 · 102] for the MM system
(three further ranges have been tested for this system, obtaining qualitatively similar
results to the ones presented here); c1 ∈ [0.1, 10], c2 ∈ [5 · 10−4, 5 · 10−2], c3 ∈
[2.5·10−6, 2.5·10−4], c4 ∈ [0.15, 15] for the Brussellator system with oscillating regime
and c1 ∈ [0.1, 10], c2 ∈ [5 · 10−4, 5 · 10−2], c3 ∈ [2.5 · 10−5, 2.5 · 10−3], c4 ∈ [0.15, 15]
for the Brussellator system with dumped oscillations. Each range has been chosen such
that the lower and upper bounds are two (resp. one) orders of magnitude below and
above the target value for MM (resp. Brussellator).

For both GAs and PSO, and for each individual in the population, fitness is evaluated
by performing a fixed number Z of independent executions of the tau leaping stochastic
algorithm, chosen according to the system dynamics. For each system we report the
Average Best Fitness (ABF) against fitness evaluations, and the accumulated number of
successful runs at each considered value of the fitness evaluations. Given that it is unlike
to obtain a fitness equal to zero (see discussion in Section 5), a run has been considered
successful if at least one individual (that we improperly call an optimal solution) has
been found with a fitness value smaller than 1.1 · f , where f is the best fitness value
obtained among any one of the three algorithms and any one of the executed runs (50
in the following examples).

Michaelis-Menten. Figure 2 presents the experimental results returned by GAs, PSO1
and PSO2 for the MM system. These results have been obtained with 50 independent
runs of GAs, PSO1, PSO2, and Z = 10 tau leaping simulations. In Fig. 2(a) we report
the ABF and in Fig. 2(b) we report the number of successful runs. Figure 2(a) shows
that GAs have returned a better ABF than the two PSO variants at each value of the
fitness evaluations that we have studied, while Fig. 2(b) shows that PSO1 has obtained
the largest number of successful runs, in particular after 6,000 fitness evaluations. This
different behavior between GAs and PSO1 hints that PSO1 has found optimal solutions
more frequently than GAs, but when an optimal solution has not been found, GAs
have returned individuals of better quality. We also point out that the ABFs of PSO1
and PSO2 are similar to each other (in particular after 9,000 fitness evaluations), while
PSO1 has been able to find optimal solutions more often than PSO2.
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Fig. 2. Experimental results returned by GAs, PSO1 and PSO2 for the Michaelis-Menten system,
obtained by executing 50 independent runs of each algorithm. (a): Average Best Fitness against
fitness evaluations. (b): Accumulated number of successful runs against fitness evaluations.

In Fig. 5(a) we report the dynamics of the MM system generated by tau leaping using
the constants found by the best solution generated by PSO1 over the considered 50 runs,
which are c1 = 0.00245, c2 = 0.02691, c3 = 5.03552. We compare this dynamics
(dots) with the target curves (solid lines), pointing out that it very well approximates
the targets for each one of the four chemicals involved in the reaction (E, S, ES, P ).

Brussellator with oscillating regime. Figure 3 reports the experimental results re-
turned by GAs, PSO1 and PSO2 for the Brussellator system with oscillating regime.
In particular, Fig. 3(a) reports the ABF and Fig. 3(b) reports the number of successful
runs. These results have been obtained with 50 independent runs of GAs, PSO1, PSO2;
in this case, only one tau leaping execution (Z = 1) has been performed because, if we
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Fig. 3. Experimental results returned by GAs, PSO1 and PSO2 for the Brussellator system with
oscillating regime, obtained by executing 50 independent runs of each algorithm. (a): Average
Best Fitness against fitness evaluations. (b): Accumulated number of successful runs against fit-
ness evaluations.
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execute more than one run and we calculate their average behaviors, we would risk to
flatten the oscillations that characterize this dynamics.

In this case, it is clear that PSO outperforms GAs both from the ABF and success rate
viewpoints. In particular, we point out that neither GAs nor PSO2 have been able to find
an optimal solution in none of the 50 independent executions that we have performed,
while PSO1 has found an optimal solution in only a single run after a number of fitness
evaluations approximately equal to 3,500. We conclude that PSO1 can be considered
the most suitable algorithm, among the ones that we have studied, for this particular
Brussellator dynamics.

Figure 5(b) reports the dynamics (dots) over one period of the Brussellator system
with oscillating regime that we have obtained using the constants found by the best so-
lution generated by PSO1 over the 50 runs that we have executed. We also observe that
the target behavior (lines) has been reliably approximated with the estimated constants,
that are c1 = 1.23966, c2 = 0.00634, c3 = 4.37171 · 10−5, c4 = 2.71063.

Brussellator with dumped oscillations. The experimental results returned by GAs,
PSO1 and PSO2 for the Brussellator system with steady-state attractor are reported
in Fig. 4. As for the other cases, in Fig. 4(a) we report the ABF and in Fig. 4(b) the
accumulated number of successful runs, obtained with 50 independent runs of GAs,
PSO1, PSO2, and Z = 5 tau leaping simulations.

Also in this case, as for the Brussellator system with oscillating regime, PSO clearly
outperforms GAs both for ABF and success rate. In this case, PSO1 and PSO2 show
a similar behavior for both these statistics. GAs have not been able to find an opti-
mal solution in none of the 50 independent executions that we have performed, while
both PSO variants have found an optimal solution in all the 50 runs after a number of
evaluations approximately equal to 5,500.

Given that PSO1 has been able to obtain a success rate equal to 1 with a
slightly lower number of fitness evaluations than PSO2, also in this case we report the
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Fig. 4. Experimental results returned by GAs, PSO1 and PSO2 for the Brussellator system with
dumped oscillations, obtained by executing 50 independent runs of each algorithm. (a): Aver-
age Best Fitness against fitness evaluations. (b): Accumulated number of successful runs against
fitness evaluations.
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Fig. 5. Dynamics of the studied systems using the constants found by the best solution generated
by PSO1. (a): Michaelis-Menten system; (b): Brussellator with oscillating regime; (c): Brussel-
lator with dumped oscillations.

dynamics obtained using the constants contained in the best solution found by PSO1
(c1 = 9.9571, c2 = 0.00616, c3 = 0.00033, c4 = 15). These dynamics are shown in
Fig. 5(c). This time the estimated dynamics (dots) of the two chemicals do not approx-
imate targets (lines) in a satisfactory way. In particular, we evidence that the estimated
dynamics approximates the target at the steady-state, while the first part of the target
dynamics, with dumped oscillations, is not reliably reconstructed. We hypothesize that
this problem could be solved by assigning to the second (non-oscillatory) part of the
dynamics a lower weight than to the first (oscillatory) one in the fitness calculation.

5 Discussion

The problem of estimating the rate constants of two well known biochemical systems has
been tackled in this paper, using GAs and two different versions of PSO. The experimen-
tal results that we have obtained hint that canonical PSO is a suitable
optimization method for this problem, since it outperforms both GAs and the PSO ver-
sion that co-evolves parameters C1 and C2. The values of the constants returned by PSO
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have allowed us to faithfully reconstruct the behavior of the MM system and of the oscil-
lating Brussellator. Nevertheless, for the dumped Brussellator even the best set of con-
stants found by PSO has not allowed us to reconstruct the target dynamics in a suitable
way. Thus, even though interesting, the presented results deserve further investigations.

Some possible improvements to the proposed optimization methods include the use
of further GAs genetic operators, for instance, Laplace Crossover, Makinen, Periaux
and Toivanen Mutation, Non-Uniform Mutation [6], and other PSO models, like PSO
with structured populations, with various different neighborhood structures or with
more than two basins of attraction (in addition to the local and global best positions).

Another possible improvement concerns the fitness function. The definition of a suit-
able fitness function is an intrinsically difficult task for parameter estimation of bio-
chemical systems, for several reasons. First of all, if we exploit stochastic simulation
algorithms for the fitness calculation, then it is very unlike to reach the (ideal) value
of zero because of the stochastic fluctuations of the estimated time series. Moreover,
the same individual will generally have different fitness values each time it is evalu-
ated. These drawbacks could be mitigated by, for instance, executing many times the
tau leaping algorithm and calculating averages, but this might be very time consuming
in some cases and it could raise serious problems when the target dynamics shows an
oscillating behavior (averages may flatten oscillations).

In addition, regarding the fitness function, our choice of using tau leaping to gen-
erate the dynamics corresponding to a given set of constants (and thus to evaluate the
fitness of an individual) has suggested us to consider the area between the target and
the estimated curves, instead of calculating their point-to-point mutual distance. In fact,
since the tau leaping algorithm samples points at arbitrary time instants, we have to
deal with irregular timing patterns; furthermore, some portions of the dynamics might
be more frequently sampled than others. If we use the point-to-point distance to calcu-
late fitness, all sampled points would receive the same importance, thus overrating the
dynamics portions that have been more frequently sampled. On the other hand, the area
calculation allows us to better evaluate the dynamics also in regions that have not been
sampled by tau leaping, and thus approximate more faithfully the (ideal) situation in
which we have information for each possible time instant.

To try and solve these problems, this fitness definition could be further improved,
for instance, in two ways. The first consists in partitioning the time axis into subin-
tervals, and performing the optimization by incrementally extending the time interval
considered for the fitness calculation. The second consists in giving different weights
to regions of the dynamics that show distinct behaviors, according to some previous
knowledge of the system. Finally, a different weight could be assigned to the various
species involved in the chemical reactions under consideration according, for instance,
to the relevance they hold within the system.
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Abstract. Biomedical datasets pose a unique challenge to machine learning and
data mining algorithms for classification because of their high dimensionality,
multiple classes, noisy data and missing values. This paper provides a compre-
hensive evaluation of a set of diverse machine learning schemes on a number of
biomedical datasets. To this end, we follow a four step evaluation methodology:
(1) pre-processing the datasets to remove any redundancy, (2) classification of
the datasets using six different machine learning algorithms; Naive Bayes (proba-
bilistic), multi-layer perceptron (neural network), SMO (support vector machine),
IBk (instance based learner), J48 (decision tree) and RIPPER (rule-based induc-
tion), (3) bagging and boosting each algorithm, and (4) combining the best ver-
sion of each of the base classifiers to make a team of classifiers with stacking and
voting techniques. Using this methodology, we have performed experiments on
31 different biomedical datasets. To the best of our knowledge, this is the first
study in which such a diverse set of machine learning algorithms are evaluated
on so many biomedical datasets. The important outcome of our extensive study
is a set of promising guidelines which will help researchers in choosing the best
classification scheme for a particular nature of biomedical dataset.

Keywords: Classification, Machine Learning, Biomedical Datasets.

1 Introduction

Recent advancements in the field of machine learning and data mining have enabled
biomedical research to play a direct role in improving the general quality of health
care. This fact is supported by a large number of applications developed in the field
of biomedical informatics to provide solutions to a number of real-world problems.
The modern research on mass spectrometry based proteomics, genome-wide associa-
tion, DNA sequencing and microarrays is made possible by the efficient processing of
high-dimensional biomedical data. The trend of keeping permanent medical records in
the health management information systems is becoming a standard practice in many
countries of the world. Moreover, modern medical equipments and diagnostic tech-
niques generate heterogenous and voluminous data [1]. The ill-structured nature of the
biomedical data, thus, require intelligent machine learning and data mining algorithms
for automated analysis in order to make logical inferences from the stored raw data.

C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.): EvoBIO 2009, LNCS 5483, pp. 128–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A diverse set of machine learning and data mining algorithms have been previously
used to extract useful information from the biomedical data. These algorithms usually
perform regression, clustering, visualization or classification of the biomedical data
in order to assist the medical consultants in the decision making process1. The well-
known machine learning and data mining based classification algorithms use proba-
bilistic methods, rule-based learners, linear models such as neural networks and support
vector machines, decision trees and instance-based learners. Further, a combination of
different classification algorithms can result in improved classification accuracy [5].
The commonly used ensemble techniques are bagging, boosting, voting and stacking.
The use of evolutionary algorithms in recent years is also gaining popularity for dis-
covering knowledge in medical diagnoses [2]. However, their evaluation is beyond the
scope of this paper.

Despite the great work and diversity in the existing machine learning schemes, no
significant work is done so far to assist a researcher in selecting a suitable classification
technique for a particular nature of biomedical dataset. In this paper, we provide a com-
prehensive empirical study on classification of 31 different biomedical datasets using a
diverse set of machine learning schemes. We adopt a four step methodology to ensure a
comprehensive evaluation of different machine learning schemes: (1) preprocessing the
dataset using attribute selection, (2) providing the preprocessed features’ set to six well-
known classification algorithms, (3) bagging and boosting each of these classifiers, and
(4) creating an ensemble of classifiers by using stacking and voting.

The main subject of this paper is to provide a systematic and unbiased evaluation of
the existing machine learning schemes to resolve the uncertainties associated with the
choice of classifier and the nature of biomedical data. We follow a question oriented
research methodology to resolve a number of pertinent questions like: (1) Can the pre-
dictive results of classification be improved by diversity in machine learning schemes
or is it largely a function of the dataset under consideration?, (2) What is the signifi-
cance of the nature of biomedical dataset on classification accuracy?, (3) How various
parameters of the dataset (instances, classes, missing values, number of attributes, type
of attributes) affect the accuracy of classification?, (4) How the choice of a machine
learning scheme affects the classification accuracy?, and (5) Which machine learning
schemes are more useful and in what cases? The answers subsequently lead us to pro-
pose a number of guidelines that we believe will provide valuable support to researchers
working on the classification of biomedical datasets.

Organization of the Paper. In the next section, we provide a brief review of the related
work. In Section 3, we discuss the biomedical datasets used in our study. We present a
review of our classification schemes in Section 4. In Section 5, we report the results of
our experiments which are followed by the standard guidelines. Finally, we conclude
the paper with an outlook to our future work in Section 6.

2 Related Work

We now provide a brief overview of recent research done to analyze the accuracy of
different machine learning schemes on various biomedical domains. In [3], the authors

1 The scope of this paper is confined to the classical classification problem for prognosis.
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study the impact of feature selection on the classification accuracy using an email and
a drug discovery dataset. The authors in [4] present an empirical study of bagging and
boosting techniques using neural networks and decision trees on 23 randomly cho-
sen datasets. The results of their study suggest that bagging provides relatively better
accuracy compared with each of the individual classifiers whereas boosting produces
inconsistent results. The work in [5] evaluates the accuracy of different ensemble com-
binations of six classification algorithms (LDA, 1-NN, Decision Tree, Logistic Regres-
sion, Linear SVMs and MLP) on high-dimensional cancer proteomic datasets. In [6],
the authors compare the performance of data mining schemes with the logistic and re-
gression techniques on a clinical database of cancer patients. Their results show that
pre-processing the data by attribute selection significantly improves the performance
of a classifier while meta-learning is of little value. The study of machine learning
methods on Atherosclerosis in [7] involves testing of different categories of machine
learning schemes to predict future disorders and death causes. A comprehensive survey
of biomedical applications utilizing machine learning schemes is done in [8].

The commonly observed methodology among medical researchers in various papers
is to experiment on the dataset with only limited number of algorithms from the ma-
chine learning repository and select the one which gives relatively better results for
their particular domain. The selection of machine learning algorithms for a particular
domain appears to be inclined towards their own view of a particular scheme. Conse-
quently, no guidelines are available to select the best classifier for a particular type of
data. In our study, we provide a set of guidelines that will help a researcher in choosing
an appropriate classifier based on a particular type of dataset.

3 Biomedical Datasets

Biomedical datasets are generally associated with high-dimensional features and multi-
ple classes. The datasets obtained from clinical databases contain various systemic and
human errors [9]. The noisy nature, sparseness and missing values hamper the classi-
fication accuracy of the machine learning schemes. These inconsistencies demand to
treat the classification problem of biomedical datasets as a separate domain. To com-
prehensively evaluate the performance of various classification schemes on biomedical
datasets, we have selected as many as 31 biomedical datasets publicly available from
the UCI Machine Learning repository [10] and Center for Cancer Research [11]. Our
selection criterion is to choose well-known datasets from a number of different biomed-
ical domains. The summary of the datasets used in our study is shown in Table 1.

Our repository contains high-dimensional datasets (Ovarian 8-7-02 has a total of
15, 154 attributes), multi-class datasets (Thyroid0387 has a total of 32 classes followed
by Cardiac Arrhythmia with 16 classes), imbalanced datasets (class distribution of Hy-
perthyroid, Cardiac Arrhythmia and Cleveland Heart is highly uneven), datasets with
many instances (Protein Data contains 21, 618 instances), datasets with missing val-
ues (Hungarian Heart and Horse Colic contains up to 20 percent missing values) and
datasets of DNA sequencing and mass spectrometry. We believe that the chosen datasets,
therefore, encompass all important domains of biomedicine and bioinformatics.
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Table 1. The summary of used datasets: The table shows the name of datasets in the alphabetical
order; their year of donation; total number of instances; total classes; number of continuous,
binary and nominal attributes; and the percentage of missing values in the attributes

Dataset Year Instances Classes Attributes Missing
Continuous Binary Nominal Values (%)

Ann-Thyroid 1987 7200 3 6 15 0 0
Breast Cancer 1992 699 2 1 0 9 0.23
Breast Cancer Diagnostic 1995 569 2 31 0 0 0
Breast Cancer Prognostic 1995 198 2 33 0 0 0.06
Cardiac Arrhythmia 1998 452 16 272 7 0 0.32
Cleveland-Heart 1990 303 5 10 3 0 0.15
Contraceptive Method 1997 1473 3 2 3 4 0
Dermatology 1998 366 6 1 1 32 0.06
Echocardiogram 1989 132 2 8 2 2 4.67
E-Coli 1996 336 8 7 0 1 0
Haberman’s Survival 1999 306 3 3 0 0 0
Hepatitis 1988 155 2 6 0 13 5.67
Horse Colic 1989 368 2 8 4 15 19.39
Hungarian Heart 1991 294 5 10 3 0 20.46
Hyper Thyroid 1989 3772 5 7 21 1 2.17
Hypo-Thyroid 1990 3163 2 7 18 0 6.74
Liver Disorders 1990 345 2 6 0 0 0
Lung Cancer 1992 32 3 0 0 56 0.28
Lymph Nodes 1988 148 4 3 9 6 0
Mammographic Masses 2007 961 2 1 0 4 3.37
New Thyroid 1992 215 3 5 0 0 0
Ovarian 8-7-02 2002 253 2 15154 0 0 0
Pima Indians Diabetes 1990 768 2 8 0 0 0
Post Operative Patient 1993 90 3 0 0 8 0.44
Promoters Genes Sequence 1990 106 2 0 0 58 0
Protein Data - 21618 3 0 0 1 0
Sick 1989 2800 2 7 21 1 2.24
Statlog Heart - 270 2 7 3 3 0
Switzerland Heart 1991 123 5 10 3 0 17.07
Thyroid0387 1992 9172 32 7 21 1 5.50
Splice-Junction Gene Sequence 1992 3190 3 0 0 61 0

4 A Review of Classification Schemes

We adopt a four step evaluation methodology to ensure an unbiased evaluation of differ-
ent machine learning schemes: (1) preprocessing the dataset using attribute selection to
remove redundant and useless features, (2) providing the preprocessed features’ set to
six well-known classification algorithms, (3) bagging and boosting each of these classi-
fiers to analyze their merits in improving the accuracy, and (4) finally creating a team of
classifiers by combining the the best version (individual, bagged and boosted) of each
of the six base classifiers using stacking and voting in order to further enhance the ac-
curacy. We use the standard implementations of these schemes in Wakaito Environment
for Knowledge Acquisition (WEKA) [12].

4.1 Data Pre-processing

The attribute selection technique [13] is used as a pre-processing filter to remove the
redundant or useless features in the dataset. We use Best First algorithm for the attribute
selection that performs greedy hill climbing with a backtracking search method [12].
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4.2 Base Classifiers

Naive Bayes. Naive Bayes (NB) utilizes a probabilistic method for classification by
multiplying the individual probabilities of every attribute-value pair [14]. This simple
algorithm assumes independence among the attributes and even then provides excellent
classification results.

Neural Networks using Multi Layer Perceptron. The Multi Layer Perceptron (MLP)
consists of input layer (attributes), output layer (classes) and hidden layer(s) that are
interconnected through various neurons. The back propagation algorithm tends to op-
timize the weights of these connections through training instances of the dataset [15].
We have used default parameters for MLP in WEKA. The number of epochs is equal to
500, the learning rate is 0.3 and the momentum of updating weights is 0.2.

Support Vector Machines using Sequential Minimal Optimization. The Support
Vector Machine (SVM) algorithm builds a hyperplane to separate different instances
into their respective classes [18]. A pairwise classification scheme is used to do multi-
class classification. We use Sequential Minimal Optimization (SMO) which is a fast
and an efficient version of SVM implemented in WEKA.

Instance Based Learner. The Instance Based Classifier (IBk) is the simplest among
the algorithms used in our study [16]. The classification is done on the basis of a ma-
jority vote of k neighboring instances. We have used k=5 while taking default values
of WEKA for rest of the parameters. The window size is zero that allows maximum
number of instances in the training pool without replacements.

Decision Tree. The decision tree (J48) is an implementation of C4.5 in WEKA. The
tree comprises of nodes (attributes) at every stage that are structured with the help of
training examples [17].

Inductive Rule Learner. Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) is a propositional rule learner that defines a rule based detection model and
seeks to improve it iteratively by using different heuristic techniques [19]. The con-
structed rule set is then used to classify new instances. We have implemented this rule
based system in WEKA using JRIP with default parameters.

4.3 Resampling Based Ensembles

Bagging. Bagging combines the multiple models generated by training a single algo-
rithm on random sub-samples of a given dataset [20]. Unbiased voting is used during
the fusion process.

Boosting. Boosting, in contrast to bagging, uses weighted voting to generate more mis-
classified instances in its successive models [21].

4.4 Meta-learning Based Ensembles

Stacking. Stacking combines the outputs of two or more base-level classifiers by train-
ing them with a meta-learner [22]. In all of our experiments, we use Naive Bayes as
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a standard meta-learner while the ensemble comprises of the best version (individual,
bagging and boosting) of each of the six different base classifiers.

Voting. Voting is a meta-learning technique that uses different combinations of prob-
ability estimates of base classifiers for classification [23]. The selection criteria for
choosing the six base learners for voting is same as that of stacking. We have imple-
mented voting in WEKA using an average of the probabilities as the combination rule.

5 Experiments, Results and Guidelines

We now report the results of our experiments that we have done to analyze the classi-
fication accuracy of 20 different types of machine learning algorithms on 31 different
biomedical datasets. We use Area Under an ROC (Receiver Operating Characteristic)
Curve (AUC) (0 ≤ AUC ≤ 1) metric to quantify the classification accuracy of an al-
gorithm. AUC is known to be a ‘more complete’ performance metric as compared to
other traditionally used metrics [24], [25]. The ROC curves are generated by varying
the threshold on output class probability. AUC = 100% represents the best accuracy
while AUC = 0% represents the worst accuracy. The results in Table 2 show the mean
AUCs of the machine learning algorithms used in our comparative study on biomedical
datasets. Some of the experiments could not be completed even after running for sev-
eral days and are indicated by blank spaces in our results. We now present our analysis
and important insights on the basis of the results obtained from these experiments. Our
primary motivation is to to investigate the factors that can potentially affect the clas-
sification accuracy of a particular machine learning scheme. The main variables that
determine the classification accuracy are categorized by: (1) the nature of a dataset, (2)
the pre-processing filter, and (3) the choice of a classification scheme.

5.1 How Does the Nature of a Dataset Affect the Classification Accuracy?

The classification accuracy of a given algorithm is largely dependent on the nature
of dataset rather than the algorithm itself. The main characteristics of a dataset are its
attributes, classes and number of instances. We answer the following pertinent questions
to systematically study the nature of a dataset.

Role of Attributes. The attributes of a dataset vary in terms of their quality, number and
type (continuous, binary or nominal). The quality of information that attributes can pro-
vide is an important factor that determines the classification potential of a dataset. The
quality of information can be quantified using well-known parameters like information
gain, entropy, gain ratio etc. We use information gain in our study. The results of our
experiments demonstrate that the classification accuracy is directly proportional to the
information gain of a dataset. The low information gain of datasets like Protein Data,
Liver Disorders and Haberman’s Survival etc is mainly responsible for relatively poor
classification accuracy of all algorithms on them. For example, the Protein Data dataset
has only one attribute with an information gain of just 0.0647 which results in the best
mean AUC value of only 63.27% among all the applied machine learning schemes.
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Table 3. Classification differences with and without attribute selection as pre-processor. Bold
entries in every row represent the best accuracy.

Dataset
With Pre-Processing Without Pre-Processing

Total Net Information Best Mean Total Net Information Best Mean
Attributes Gain AUC Attributes Gain AUC

Liver Disorder 1 0.051 61.00 6 0.057 75.40
Haberman’s Survival 1 0.072 69.70 3 0.072 71.20

Guideline 1: Use information gain to quantify the quality of attributes in order to
determine the classification potential of a dataset.

Role of output Classes. The multiple output classes lead to imbalanced datasets when
the class distribution is not even. Our experiments reveal that the multiclass imbalanced
datasets pose a significant challenge in terms of the classification accuracy. For exam-
ple, the class distributions of Cardiac Arrhythmia (16 classes) and Cleveland Heart (5
classes) datasets are highly imbalanced in favor of one class that logically results in
their relatively low mean AUC values. However, the accuracy significantly improves if
we deploy a team of classifiers. For example, in case of Cardiac Arrhythmia dataset, the
classification accuracy improves from best mean AUC value of 84.92% obtained with
all the individual classifiers to 94.78% when the meta-learning technique of voting is
used. In comparison, for Cleveland Heart dataset, the best mean AUC value increases
from 76.4% to 79.02% when stacking is used.
Guideline 2: Use a team of classifiers for multi-class imbalanced datasets.

Role of Instances. The number of instances, however, have little role on the classifi-
cation accuracy of algorithms. It is the quality of instances quantified with the help of
information gain, which determines the classification potential of a dataset. For exam-
ple, the Lung Cancer dataset has only 32 instances compared to 21, 618 instances of
Protein Data dataset. However, the best mean AUC for the former is 95.95% while for
the later it is just 63.27%. The information gain for both the datasets are respectively
1.521 and 0.0647. This proves our thesis that the large AUC for Lung Cancer dataset
even with small instances is due to the large information gain of its attributes.
Guideline 3: Do not contemplate on the classification potential of a dataset on the
basis of its number of instances only.

5.2 When to Use the Pre-processing Filter?

The attribute selection is used as a pre-processer to remove the redundant and useless
attributes in a dataset. The pre-processing filter in most of the cases improves the clas-
sification accuracy of datasets with the exception of few ones. Therefore, it is important
to identify when to use a pre-processing filter. Our study again suggests that the deci-
sion should be based on the information gain of attributes. If the net information gain
of a dataset is small or the number of attributes become too less after pre-processing,
then the pre-processing filter should not be used. In Table 3, we report the results with
and without pre-processing filter on two of the datasets (Liver Disorder and Haberman’s
Survival) which are relatively challenging for classification. The results prove our hy-
pothesis that we should not use a pre-processing filter if it further degrades the quality
of attributes.
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Table 4. Mean AUCs and standard deviations of six base classifiers over all datasets used in this
study. Bold entries in every row represent the best accuracy.

Classification NB MLP SMO IBk J48 JRIP Mean
Scheme

Individual 83.34 ± 16.99 83.62 ± 15.19 73.25 ± 17.15 81.35 ± 16.54 76.32 ± 17.68 75.1 ± 17.47 78.83 ± 16.84
Bagging 83.52 ± 16.05 84.85 ± 14.57 74.88 ± 16.89 81.78 ± 16.32 81.95 ± 17.18 80.67± 18.73 81.28 ± 16.62
Boosting 80.57 ± 22.88 81.90 ± 21.67 80.57 ± 22.26 76.79 ± 22.05 82.03 ± 22.83 80.98 ± 22.95 80.48± 22.44

Mean 82.48 ± 18.64 83.46 ± 17.14 76.23 ± 18.77 79.97 ± 18.31 80.10 ± 19.23 78.92 ± 19.72 80.20± 18.63

Guideline 4: Do not use attribute selection as a pre-processor filter on the datasets if :
(1) they have low quality information attributes, or (2) the remaining attributes after
the preprocessing are too less to be of any value.

5.3 How Does the Machine Learning Scheme Affect the Classification
Accuracy?

In this section, we analyze the effect of different machine learning algorithms on clas-
sification accuracy of a dataset.

Resampling based Ensembles vs Individual Classifiers? Resampling Based Ensem-
ble techniques are preferable over individual classifiers because the final classification
is done by training the algorithm on different regions of the sample space. As a re-
sult, these ensembles reduce the over fitting bias of an algorithm. Table 4 provides the
net mean AUC’s of six base classifiers with resampling based ensembles over all the
datasets. It is clear that combining multiple resampling methods for classifier enhance-
ment (such as bagging or boosting) are generally more effective than the individual
classifier. Moreover, it is only 30 out of 174 times (17.24%) when a single classifier
produced better accuracies than the respective bagging and boosting models of the clas-
sifiers. Our results show that the overall mean AUC of resampling based ensembles is
80.86% compared to that of 78.83% for individual classifiers.
Guideline 5: Use resampling based classifier enhancement techniques (bagging and
boosting) over individual classifiers.

When is Bagging particularly useful? Bagging neutralizes the instability of algo-
rithms by using unbiased voting procedure for combining multiple samples [12]. This
explains the reason behind the better average AUCs of bagging for all the individual
classifiers. We can see in Table 4 that average AUC for bagging is 81.28% compared
with 80.48% of boosting and 78.83% of the individual classifiers. Moreover, our results
show that 130 out of 179 times (72.63 %) bagging has improved the accuracy of indi-
vidual classifiers. These insights support our argument bagging is a particularly useful
technique for classifier enhancement.
Guideline 6: Use bagging as classifier enhancement to improve the classification ac-
curacy of the individual algorithms.

When is Boosting particularly useful? The biased voting and weighted selection of
instances in boosting often gives inconsistent results compared with those of bagging or
individual classification schemes. The reason is that boosting over fits on noisy datasets
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[4]. The unpredictable behavior of boosting often leads to significantly low AUCs for
unstable algorithms. For example, boosted IBk in Hepatitis dataset decreases the mean
AUC value of individual IBk from 81.96% to 72.05%. Similarly, for the Hyperthyroid
dataset, the mean AUC value of boosted IBk is 70.84% compared with AUC value of
88.84% for the individual classifier. In comparison, boosting significantly improves the
AUC values for stable algorithms. For example, boosted SMO in Sick dataset increases
the AUC of SMO from 49.98% to 91.42%; boosted JRIP in Cardiac Arrhythmia dataset
increases the AUC of JRIP from 64.36% to 83.27%; and boosted J48 in Hyperthyroid
dataset increases the mean AUC value of J48 from 78.58% to 94.80%. We can see in
Table 2 that the improvements due to boosting on SMO, JRIP and J48 are scalable to
other datasets as well. Boosting is particulary suited for SMO because its average AUC
values are 80.57% compared with 74.88% of bagged SMO and simple SMO of 73.25%.
Guideline 7: Use boosting on stable algorithms like SMO, JRIP, and J48 and do not
use it on unstable algorithms like MLP and IBk.

Bagging Naive Bayes vs Individual Naive Bayes? Naive Bayes results are excellent
for datasets like Haberman, Hepatitis, Ovarian 8-7-02, Pima Indian Diabetes and Splice
Junction Gene Sequencing. The classification accuracy of bagging and simple Naive
Bayes is in general better than the boosted Naive Bayes. Therefore, it becomes relevant
to have a guideline when to enhance Naive Bayes with bagging? The problem can be
analyzed by dividing the significant attributes (the attributes after the attribute selection
phase) in two groups: (1) continuous and multinominal attributes having more than n
values, and (2) multinominal attributes having less than n values. If the net information
gain of the first group is greater than that of the second group, then use bagging Naive
Bayes. This conjecture works well with n = 4. For example, the significant attributes in
Hyperthyroid dataset comprise of 3 continuous and 2 binary valued attributes and the
information gain distribution is: (1) total information gain of multinominal attributes
with less than 4 values = 0.0335, and (2) total information gain of other remaining
attributes = 0.14. The results in Table 2 show that the classification accuracy increases
from 92.28% to 92.46% in favor of bagging Naive Bayes compared to the individual
Naive Bayes. In a similar way, the information gain distribution of Cleveland Heart
dataset after attribute selection is: (1) total information gain of multinominal attributes
with less than 4 values = 0.847, and (2) total information gain of other remaining at-
tributes = 0.347. It can be seen in Table 2 that individual Naive Bayes proved to be bet-
ter in this case with a mean AUC of 76.4% compared to 76.3% obtained from bagging
Naive Bayes. The datasets like Breast Cancer Prognostic, Breast Cancer Diagnostic,
Lung Cancer, Contraceptive Method etc. all support this conjecture.
Guideline 8: Use bagged version of Naive Bayes instead of individual one only if
after attribute selection, the net information gain of continuous and multinominal
attributes with more than n values (n = 4) is greater than the information gain of
multinominal attributes with less than n values.

Meta-Learning Based Ensembles - Voting vs Stacking? The criterion that we use
to select the base classifiers for making a good team of classifiers is based on both
their diversity and accuracy. We choose the best version among individual classifier,
their bagged and boosted version for each of the six different individual classifiers, and
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use Naive Bayes as a meta-learner to produce a meta-learning ensemble. Our experi-
ments demonstrate that stacking in general do not improve the classification accuracy
of medical datasets. The mean AUC values of stacking are comparable with those of
other techniques. On the other hand, the classification accuracy of voting is much better
than those of all other classification techniques with an overall average AUC value of
85.08%.
Guideline 9: Use voting instead of stacking for meta-learning ensembles to achieve
better AUC values.

Which classification algorithm is the best? We choose the best classification algo-
rithm on two parameters: (1) overall classification accuracy, and (2) variance in accu-
racy that determines the stability and consistency of an algorithm. We can see from
Table 4 that Bagging MLP not only gives on the average the best overall classification
accuracy with an AUC value of 84.85% but also the least standard deviation of 14.57.
Guideline 10: Use bagging MLP for classification if the nature of a biomedical
dataset is unknown.

6 Conclusion

In this paper, we have presented a comprehensive empirical study of a diverse set of
machine learning algorithms on a large number of biomedical datasets. The diversity
is added by using resampling based ensemble methods of bagging and boosting and
meta-learning techniques of stacking and voting. We conclude that the nature of a given
dataset plays an important role on the classification accuracy of algorithms; therefore,
it is imperative to choose an appropriate algorithm for a particular dataset. We have
identified some general characteristics of a dataset that can be useful in selecting the
most suitable algorithm as per the nature of underlying dataset. We have also evaluated
the performance of various machine learning schemes under different scenarios to study
the effect of diversity on the classification results. The results of our experiments show
that voting in general is the most powerful technique among the compared machine
learning schemes. On the basis of our study, we have been able to formulate 10 generic
guidelines that can help researchers of biomedical classification community to select an
appropriate classifier for their particular problem. In future, we would like to devise a
metaheuristic framework that can recommend the most suitable classifier for the dataset
by analyzing the patterns in the dataset.
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Abstract. One of the purposes of Systems Biology is the quantitative
modeling of biochemical networks. In this effort, the use of dynamical
mathematical models provides for powerful tools in the prediction of the
phenotypical behavior of microorganisms under distinct environmental
conditions or subject to genetic modifications.

The purpose of the present study is to explore a computational en-
vironment where dynamical models are used to support simulation and
optimization tasks. These will be used to study the effects of two distinct
types of modifications over metabolic models: deleting a few reactions
(knockouts) and changing the values of reaction kinetic parameters. In
the former case, we aim to reach an optimal knockout set, under a defined
objective function. In the latter, the same objective function is used, but
the aim is to optimize the values of certain enzymatic kinetic coefficients.
In both cases, we seek for the best model modifications that might lead to
a desired impact on the concentration of chemical species in a metabolic
pathway. This concept was tested by trying to maximize the production
of dihydroxyacetone phosphate, using Evolutionary Computation ap-
proaches. As a case study, the central carbon metabolism of Escherichia
coli is considered. A dynamical model based on ordinary differential equa-
tions is used to perform the simulations. The results validate the main
features of the approach.

1 Introduction

Systems Biology represents a new approach to research in Biology. It aims to
achieve the understanding of the complex interactions in biological systems under
an integrative approach, where the ultimate goal is to simulate these systems
under different scenarios and perturbations [20]. One of the main purposes of
this work is to provide tools for the dynamical modeling and optimization of
biological processes, under a Metabolic Engineering perspective. Indeed, we aim
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to provide tools to identify optimal or near-optimal sets of genetic changes in
microorganisms under dynamical conditions to achieve a given industrial aim.

Mathematical dynamical models allow to study the interaction of biological
compounds in cells. There are several types of dynamic models [13][2], but the
most common approach is to represent metabolic networks as a system of or-
dinary differential equations (ODEs). One of the major drawbacks with these
types of models is how to reliably estimate model parameters. Another perti-
nent question is how these values can change and the biological meaning of those
modifications. In this work, we face the question of how to evolve a dynamical
model based on predefined goals.

We take a new approach by using dynamical models and Evolutionary Com-
putation to identify a set of knockouts or variations in some kinetic parameters
that will optimize the production of a certain metabolite. Each configuration
is evaluated resorting to a simulation using the dynamical model. This type of
information can help to assess on how to engineer a metabolic network in order
to enhance the production of a given metabolite and can also be used to infer
regulatory data.

It is important to bear in mind that finding a knockout set can be seen as a
change in the model structure and the corresponding problem belongs to the class
of combinatorial optimization. On the other hand, the second task involves finding
the best values for a number of parameters, thus a numerical optimization task.
Thus, although the two tasks are quite different from the point of view of opti-
mization, a similar and general purpose strategy will be followed in both cases.

Indeed, to study the described scenarios the concept of dynamical model evo-
lution is introduced. In our proposal, a model will evolve based on a fitness
function that is defined considering a given industrial aim (e.g. to maximize the
concentration of a given metabolite along the time of the experiment). In alter-
native, although this is not shown in this work, the fitness can also be based on
an error function, if some experimental data to fit is available.

An optimization framework was built around this concept, where the major
design concern was the loose coupling between the optimization and the simu-
lation modules. This allows us to optimize any model component independently
of the optimization algorithm and of the simulation method.

The framework was applied in this work to the dynamical model of the central
carbon metabolism of Escherichia coli [2]. This model links the sugar transport
system with the reactions of glycolysis and pentose-phosphate pathway. The
case study was chosen because it includes most of the reactions of the central
carbon metabolism and has been validated experimentally. Moreover, E. coli has
been the organism of choice to test novel Metabolic Engineering tools, given the
simplicity in performing genetic modifications, among other factors.

The optimization of knockout sets to enhance the production of metabo-
lites has been approached before in literature [14][16]. These studies focused in
finding a knockout set using stoichiometric models, performing the simulations
using steady-state approaches such as Flux Balance Analysis [4]. Rather less
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attention has been paid to optimizing a knockout set based on dynamical models,
using as a fitness function the concentration of a certain metabolite in a defined
time interval.

Several methods have also been proposed to estimate parameter values based
on experimental data [12]: Wang [19] applied an extra focus in how to use genetic
algorithms to optimize model parameters. In [10], the authors describe the use
of Evolutionary Algorithms (EAs) to reconstruct a metabolic network using
functional Petri Nets. In the work developed by Haunschild [6], the concept of
automatic generation/evolution of multiple metabolic models is introduced to
try to explain some biochemical network phenomena. However, rate equations
are defined by the user and are not evolved themselves. These approaches are
orthogonal to the one presented in this paper, since in our problem context there
is no need of using experimental data to find parameter values.

The rest of this paper is organized as follows: the description of our framework
for dynamical model evolution is given in section 2; in section 3, the case study
is presented; afterwards, in section 4 the results are presented and discussed;
finally, section 5 provides the conclusions and the future work.

2 A Framework for Dynamical Model Evolution

This section describes our general framework for dynamical model evolution. As
said before, a dynamical model can evolve based on a given fitness function that
can be defined in a flexible way, i.e. no restrictions are imposed over the definition
of the fitness function (it can be nonlinear, non differentiable, discontinuous,
etc.). It can, for instance, be an error function that takes into account known
experimental data and thus the aim will be to estimate the parameters that
best fit the data. On the other hand, the fitness function can be based on the
concentration of one or several metabolites, along the simulation period. In this
last case, the fitness can be measured by the integral (area under the curve) of
the objective function.

Our framework is divided into two logical parts: model simulation and opti-
mization (Figure 1). The simulation part is based on the numerical integration
of the ODEs of the model, specifying a time interval and considering a fixed
model structure with pre-defined values for the model parameters. A set of ini-
tial values (e.g. representing environmental constraints) can also be defined by
the user for the state variables of the model.

The optimization part allows modifications both in the model structure and
in several types of parameters, including kinetic formulas and corresponding
parameters. The purpose is to reach model configurations that optimize a given
fitness function. A user can impose changes over the model in order to simulate
specific cases. Furthermore, optimization algorithms can be defined to search
over the space of potential solutions, given the type of allowed changes, that can
be summarized in the following:

– Changes in the initial values of the variables (e.g. initial metabolite
concentrations);



Evolutionary Approaches for Strain Optimization Using Dynamic Models 143

Fig. 1. Framework for dynamical model evolution

– Changes in the kinetic parameters (e.g. global model parameter or parame-
ters of a specific kinetic expression);

– Changes in the structure of the reaction kinetics (e.g. algebraic expression);
– Changes in the overall model structure (e.g. reaction participant metabo-

lites).

In this paper, the main focus will be on the kinetic parameter variation and
model structure, considering the possible deletion of a number of reactions from
the model.

In our framework, an optimization process is represented by a model, an
optimization algorithm and corresponding parameters, a decoder and an override
model, while a simulation is only characterized by a model and the override
model component. The algorithm and the parameters represent the optimization
method and the variables that will be used during a optimization run.

The model integrates all components that describe the dynamical system (the
ODEs, the kinetic laws and parameters, etc.). For this purpose, a unified model
representation is built, called model mapper, that will answer any queries about
the model components (e.g. about the model structure or parameter values).
This model view is composed by three layers in the following order (Figure 2):
(3) the original model, (2) the decoder and (1) the override model. When a query
is made it is passed along the chain of entities (in the order 1,2,3) until one of
them can answer the query.

Therefore, the decoder and the override model are fractional model represen-
tations. The decoder gives a partial model view based on a specific encoding.
This layer is used mainly to provide a way to decode the solutions of possible op-
timization algorithms from their internal representations, namely decoding the
genome of an EA. The override model can be used to redefine a set of model
components, thus enabling to set conditions that remain constant throughout
the optimization process.
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Fig. 2. Framework layers for dynamical model evolution

In more detail, a model is composed by the following elements:

– A set of parameters. Each parameter is denoted by a name and has a nu-
merical value.

– A set of variables. A variable is defined by an upper and a lower limit, an
initial value and an ODE, that is represented by a sum of terms, where each
term has a multiplicative coefficient and a function.

– A set of functions. A function can be any mathematical entity that receives
as its parameters the current time and a model representation, returning
a numerical result. Functions can also have a local parameter space that
overrides the model global parameter scope.

Regarding the optimization layer, several algorithms can be employed, pro-
viding they are able to deal with the type of fitness functions described be-
fore. Given the complexity of the underlying problems, the available options are
meta-heuristics that range from Multistart Local Search to Simulated Anneal-
ing, contemplating also several evolutionary approches, such as EAs, Genetic
Programming or Differential Evolution (DE). In this work, EAs will be used to
perform combinatorial optimization and a DE will perform the numerical opti-
mization task. The specific features of these algorithms will be presented in the
next section.

Besides running the simulation and optimization of dynamical models, the
framework also allows to input models using the Systems Biology Markup Lan-
guage (SBML) [7] format (a standard in these kind of models). The results of
a simulation or optimization process can also be saved in a text file. A number
of visualization tools are also available to allow the user to perform a graphical
analysis over the outputs.
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Regarding its implementation, the software for the proposed framework was
developed using the Java programming language and the following additional
libraries: a library for EAs developed by the authors, CVODE [3] using JNI that
solves systems of ODEs, JFreeChart [9] that displays graphical simulation results
and LibSBML [1] that parses SBML encoded files.

3 Case Study

3.1 Dynamical Model of the Central Carbon Metabolism of E. coli

In this paper, a case study on the dynamical model of glycolysis and the pentose-
phoshate pathway in Escherichia coli[2] was used. One of the main ambitions in
Metabolic Engineering is the re-engineering of biological pathways with the aid
of mathematical models. The model was delineated and corroborated based in
metabolite concentration measurements obtained at transient conditions. This
model allows to explore this network as supplier of precursors. For example,
dihydroxyacetone phosphate (DHAP) can be produced and used in the lipid
synthesis pathway. The maximization of the production of this compound was
used as case study since it has several industrial applications, including synthetic
chemistry using the enzymatic Aldol Syntheses[5][18].

The model of the central carbon metabolism of Escherichia coli consists of
mass balance equations for extra-cellular glucose and for intracellular metabo-
lites. The mass balances take the following form:

dCi

dt
=
∑

j

vijrj − μCi (1)

Where Ci represents the concentration of metabolite i, μ is the specific growth
rate and vij is the stoichiometric coefficient for this metabolite in reaction j, the
rate of which is rj .

3.2 Optimization Tasks and Algorithms

In this section, the optimization tasks and techniques employed are described.
Two distinct scenarios were studied in this work, both using the model afore-
mentioned. In the first, the problem at hand consists in determining the optimal
knockout set that maximizes the production of a given metabolite (in this case
DHAP) along a given time interval (in this case is was set to [0, 20] seconds).
Therefore, the fitness function consists on the numerical integration of the target
metabolite’s concentration. The integration of the ODE is performed using the
method provided by CVODE (that is suitable for both stiff and non-stiff ODE
problems) with a step size of 0.1. In the simulations, the initial values for the
model variables (i.e. initial concentrations) were set to the values supplied by [2].

In both cases, since the algorithms are stochastic, the optimization process
was run for 30 times and the results are the means, presented within a 95%
confidence interval.
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In the first task, an EA with a set-based representation was used [16], where an
individual encodes a subset of the full set of reactions in the model. To evaluate
each solution, a simulation is run where the model is changed by removing all
reactions encoded in the individual’s genome. The fitness function is therefore
calculated using this modified model.

It should be mentioned that the representation used in the EA employs a
variable-sized genome, therefore allowing the competition of knockout sets with
distinct cardinalities within the same population. Within this EA, the following
reproduction operators are used to breed new individuals [16]:

– Grow mutation: consists in the introduction of a number of new elements
into the set, whose values are randomly generated within the available range,
avoiding duplicates;

– Shrink mutation: a number of randomly selected elements are removed from
the set;

– Random mutation: replaces an element of the set by another, randomly
generated in the allowed range; and,

– Modified Uniform crossover: it is inspired on the traditional uniform crossover
operator and works as follows: the genes that are present in both parent
sets are kept in both offspring; the genes that are present in only one of
the parents are sent to one of the offspring, selected randomly with equal
probabilities.

The following steps present the general structure of the EA:

1. Generate a population of NP individuals. Each individual represents a po-
tential solution to the problem, initially created randomly.

2. For each individual in the population, evaluate its fitness by running the
correspondent model simulation and computing the fitness function. If the
stopping criteria is met, the algorithm stops and returns the best solution
found.

3. Selection: First the set of E best individuals is copied to the next generation
(elitism). Afterwards, a pool of NP/2 individuals (parents) is created using
a roulette wheel scheme.

4. Reproduction: The set of available reproduction operators (crossover and
mutation) are applied to the selected pool of parents, in order to generate the
offspring (NP/2 new individuals are created that are inserted into the new
generation). All reproduction operators available have the same probability
of being chosen to breed each new individual.

5. The new population is completed by selecting NP/2 − E individuals from
the original population (a substitution rate of 50% is adopted). Return to
step 2.

The EA was ran for 500 iterations with a population of 100 individuals. An
elitism value of E = 1 is used.

In the second scenario, a similar approach was taken, but instead of find-
ing a knockout set, the purpose is to modify the value of one of the kinetic



Evolutionary Approaches for Strain Optimization Using Dynamic Models 147

parameters of each reaction, in this case the vmax. The vmax parameter repre-
sents the maximum enzyme reaction rate under the conditions of the experiment.
This value can be changed in a wet lab by changing the level of expression of
certain enzymes in the re-engineered microbial strains.

In this second scenario, a DE algorithm was employed. The individuals encode
the level of change for the vmax parameter of each reaction, when compared to
the base value present in the original model. The level of change can vary between
0 and 2; a value of 1 means the parameter remains unchanged.

In this work, a variant of the DE algorithm called DE/rand/1 was considered
that uses a binomial crossover [17]. In this case, the following scheme is followed,
in every generation, for each individual i in the population:

1. Randomly select 3 individuals r1, r2, r3 distinct from i;
2. Generate a trial vector based on: t = r1 + F · (r2 − r3);
3. Incorporate coordinates of this vector with probability CR;
4. Evaluate the candidate and use it in the new generation if it is at least as

good as the current individual.

The DE was ran for 500 iterations with a population of 20 individuals. The
F parameter was set to 0.5 and CR to 0.6.

4 Results

4.1 Gene Deletion Scenario

In Table 1 we show the results for the gene deletion task. The mean and confi-
dence interval of the fitness function value (DHAP production) obtained for the
best solution in each run is shown, as well as the mean number of knockouts.
On the other hand, Figure 3 shows the histogram of the reaction knockouts, i.e.
the number of times a given reaction is knocked-out in the best solution for the
30 runs.

Table 1. Results for the gene deletion task

Total Number Of Runs 30
Mean of fitness function (mM.s) 36.268 ± 2.8E-14

Mean Number Of Knockouts 15.2 ± 3.6
Confidence Level 95%

4.2 Kinetic Parameter Optimization

In Table 2 the results obtained for the vmax parameter optimization scenario
are shown. Figure 4 shows the boxplot concerning the level of change in the
vmax parameter for a number of reactions. To better compare with the previous
experiment, this set is composed of the reactions that were most frequently the
target of a knockout.
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Table 2. Results for the kinetic parameter optimization task

Total Number Of Runs 30
Mean of fitness function (mM.s) 77.011 ± 3.88

Confidence Level 95%

4.3 Discussion

Regarding the first task, it is interesting to note that none of the main reactions
that lead to the production of DHAP (PTS, PGI, PFK and ALDO) are knocked
out in any of the best solutions for each run. The reactions that may impact
negatively in the production of DHAP, even if not directly, have a higher chance
of being knocked out as it can be seen in Figure 3. This result validates the
proposed approach.

However, it is important to mention that the obtained knockout sets are not
likely to produce viable mutants due to the fact that there are no restrictions
regarding the set of possible reactions to inactivate. The reaction set composed
by G6PDH, TIS, G3PDH and R5PI is always deleted in all the best individuals,
thus inhibiting metabolic pathways like nucleotide and glycerol synthesis and
thus suppressing biomass formation.

During the vmax parameter optimization, the best solutions lead to an in-
creased production of DHAP. This is explained by the fact that, when tuning
the vmax parameter for each reaction, we are allowing the reactions to have a
reduced activity (if the reduction factor is 0 the reaction can even be knocked
out as before) or an increased activity (the vmax value can be doubled). This
provides much more flexibility and leads to higher values of the fitness function.
Also, in contrast with the previous scenario, the mutants are more likely to be
viable because most of the metabolic pathways are not completely inactivated.

Fig. 3. Knockout frequency graph: only the reactions that have a frequency of at least
10 are shown
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Fig. 4. Level of change for the vmax parameter in a selected set of reactions (selected
from the set of reactions that were frequently knocked out in the previous experiment)

The vmax values obtained in the best solutions typically show an inactivation
of the reactions unnecessary to the production of DHAP, resembling the knock-
out sets produced in the first scenario, as it is obvious comparing the results
of Figure 4 and Figure 3. The vmax parameter value for the PGM reaction is
the only one that increases its base level value. This is due to the fact that it
is the only parameter that lies in the denominator of the kinetic expression. All
other parameters under optimization are being multiplied by the numerator of
the reaction rate laws.

The optimization results for the studied scenarios emphasize the complex
interactions involved, even in this very simple model. The methods presented
merely serve as a proof of concept, since most of the solutions are likely to be
biologically non-viable. Those limitations of the approach are mainly due to
the nature of the models (the used model is known to be incomplete) and the
constraints imposed over the solutions in these experiments.

If a more complete model is used and the constraints are biologically correct, the
proposed framework can be used to reach biologically meaningful results. For ex-
ample, is this case, to use this approach in a real metabolic engineering approach,
some of the reactions would have to be constrained not to be a target for deletion
and the limits over the vmax parameters would have to be carefully imposed.

5 Conclusions and Further Work

In recent years, several methods have been developed in silico with the purpose
of identifying and characterizing microrganisms’ metabolic functioning. So far,
research has been mostly confined to explore parameter estimation problems,



150 P. Evangelista et al.

based on fitting experimental data. On the other hand, Metabolic Engineering
related approaches are based in steady state models. This study focus on study-
ing novel ways of exploring dynamical models to optimize model modifications
(e.g. model structure or parameter values) in different settings using as objective
function the maximization of the production of a given metabolite of industrial
interest.

The modular architecture of the proposed framework allows to replace any
component of the dynamical model. For instance, when the rate law of a reaction
has an unknown mathematical expression for a given model it can be replaced
by a model built based on experimental data (e.g. a trained neural network).

In future work, the main issues to be tackled are the validation of this frame-
work with other real-world case studies and also to make the computational tools
available to the research community by integrating them in a proper platform
with appropriate graphical user interfaces.

Regarding the optimization layer, a number of other algorithms have to be
integrated in the framework, namely Genetic Programming [11] and Artificial
Immune Systems [8] should be considered. The use of multi-objective optimiza-
tion algorithms [15] in the optimization layer is also a promising route.
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Abstract. This paper proposes a new knowledge-based method for clus-
tering metagenome short reads. The method incorporates biological
knowledge in the clustering process, by means of a list of proteins associ-
ated to each read. These proteins are chosen from a reference proteome
database according to their similarity with the given read, as evaluated
by BLAST. We introduce a scoring function for weighting the result-
ing proteins and use them for clustering reads. The resulting clustering
algorithm performs automatic selection of the number of clusters, and
generates possibly overlapping clusters of reads. Experiments on real-life
benchmark datasets show the effectiveness of the method for reducing
the size of a metagenome dataset while maintaining a high accuracy of
organism content.

1 Introduction

The rapidly emerging field of metagenomics seeks to examine the genomic con-
tent of communities of organisms to understand their roles and interactions
in an ecosystem. Given the wide-ranging roles microbes play in many ecosys-
tems, metagenomics studies of microbial communities will reveal insights into
protein families and their evolution. Because most microbes can not grow in
the laboratory using current cultivation techniques, scientists have turned to
cultivation-independent techniques to study microbial diversity.

At first shotgun Sanger sequencing was used to survey the metagenomic con-
tent, but nowadays massive parallel sequencing technology like 454 or Illumina, al-
low random sampling of DNA sequences to examine the genomic material present
in a microbial community [5]. Using metagenomics, it is now possible to sequence
and assemble genomes that are constructed from a mixture of organisms.

While it is common to refer to the genome sequence as if it were a single,
complete and contiguous DNA string, it is in fact an assembly of billions of
small, partially overlapping DNA fragments.

For a given sample, one would like to determine the phylogenetic provenance
of the obtained fragments, the relative abundance of its different members, their
metabolic capabilities, and the functional properties of the community as a
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whole. To this end, computational analyses are becoming increasingly indis-
pensable tools [11,14].

Sophisticated computer algorithms (assemblers and scaffolders) merge these
DNA fragments into contigs, and place these contigs into sequence scaffolds
using various methods and tools (cf., e.g., [2,6,4]). Clustering methods are used
for rapid analysis of sequence diversity and internal structure of the sample [8],
for discovering protein families present in the sample [3], and as a pre-processing
set for performing comparative genome assembly [13], where a reference closely
related organism is employed to guide the assembly process.

In this paper we focus on the problem of clustering metagenome short reads
[3,8]. Our approach is inspired by a recent work by Dalevi et al [3], where a
method for clustering reads is proposed based on a set of proteins, called prox-
ygenes, obtained by BLASTx of the reads against the protein sequences of a
reference database. However, the results of the method proposed in [3] depend
on the read selected at the beginning of the procedure, and reads clusters are
not allowed to overlap.

We propose a new robust method for clustering metagenome short reads based
on weighted proteins. The method generates a set of clusters, where each clus-
ter is represented by one proxygene. This method has the following desirable
features:

– It incorporates biological knowledge in the clustering process;
– It performs automatic selection of the number of clusters;
– It generates potentially overlapping clusters of reads.

Specifically, the proposed method consists of three main steps.
First, it uses a specialized version of BLAST (Basic Local Alignment Search

Tool), called BLASTx, for associating a list of hits to each read. Each hit consists
of one protein, two score values, called bit and identities, which measure the
quality of the read-protein matching, and one confidence value, called E-value,
which amounts to a confidence measure of the matching.

Next, a maximum of K proteins for each read, among those having E-value
smaller than a given threshold α are selected. The selected proteins are weighted
by means of a novel measure based on the bit- and identity- scores, which assigns
small weights to proteins of high average quality.

Finally, the reads are clustered by translating the clustering problem into an
instance of the weighted set covering problem (WSC). The WSC is a popular con-
strained optimization problem used in many real-life applications. Given a set
of weighted columns and a set of rows, where each row is covered by at least
one column, the WSC problem amounts to find a set of columns covering all the
rows and having minimum total weight. In our context, columns are proteins and
rows are reads. A protein covers a read if it belongs to the set of the selected
hits of that read. We employ a publicly available fast heuristic algorithm for the
weighted set covering problem [10]. The resulting clustering method generates a
set of clusters, where each cluster is represented by one protein called proxygene.
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While in [3] the proxygenes of a cluster is selected within a set of proteins
associated to it, in our method clustering and proxygene selection are performed
at the same time.

In order to assess the effectiveness and benefits of the proposed clustering
method, we consider the metagenomic datasets recently introduced in [3]. We
measure the quality of the resulting clusters by means of the organism content
of the clusters [8], their size, number and overlapping.

Specifically, we analyse the behavior of the clustering algorithm when varying
its parameters K and α. Results show that the number of clusters decreases when
bigger values of K are chosen while their overlapping increases. The organism
content of the clusters does not change substantially for higher values of K and
small α (0.01), indicating the effectiveness of the proposed approach in reducing
the size of a metagenome dataset while maintaining a high accuracy of organism
content.

The proposed method can therefore be used for reducing the size of the
dataset while maintaining accuracy of functional and taxonomic content of a
metagenome, and for discovering knowledge related to the protein content and
the taxonomic organization of the organisms contained in the sample.

In general, the results substantiate the effectiveness of the proposed clustering
method for mining metagenomic datasets.

2 Clustering Metagenome Short Reads

Clustering analysis for metagenomics amounts to group similar partial sequences,
such as raw sequence reads, or candidate ORF (Open Reading Frame) sequences
generated by an assembly program into clusters in order to discover information
about the internal structure of the considered dataset, or the relative abundance
of protein families. Different methods for clustering analysis of metagenomic
datasets have been proposed, which can be divided into two main approaches:
sequence- and evidence-based methods. Sequence-based methods compare di-
rectly sequences using a similarity measure either based on sequence overlapping
[8] or on extracted features such as oligonucleotide frequency [2]. Evidence-based
methods employ knowledge extracted from external sources in the clustering
process, like proteins identified by a BLASTx search (proxygenes) [3].

Here we use the latter approach for clustering short reads. Specifically, we
propose a clustering method consisting of the following main steps:

1. Run BLASTx on the reads;
2. Assign weights to proteins resulting from BLASTx;
3. Cluster the reads using the weighted proteins obtained from the previous

step as candidate cluster prototypes.

The result is a set of possibly overlapping clusters of reads, where each cluster
is represented by a protein. The number of clusters is automatically determined
by the algorithm. The proposed method has just two parameters: the maximum
number K of hits selected for each read, and the E-value threshold α. Below the
steps of the method are described in detail.
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3 Run BLASTx on the Reads

The knowledge used by the proposed clustering algorithm is extracted by a
reference proteome database by matching reads to that database by means of
BLASTx, a powerful search program. BLASTx belongs to the BLAST (Basic
Local Alignment Search Tool) family, a set of similarity search programs de-
signed to explore all of the available sequence databases regardless of whether
the query is protein or DNA [7,9]. BLASTx is the BLAST program designed
to evaluate the similarities between DNA sequences and proteins; it compares
nucleotide sequence queries dynamically translated in all six reading frames to
peptide sequence databases. The scores assigned in a BLAST search have a sta-
tistical interpretation, making real matches easier to distinguish from random
background hits. In the following we summarize the main features of BLAST.

BLAST uses a heuristic algorithm that seeks local as opposed to global align-
ments and is therefore able to detect relationships among sequences that share
only isolated regions of similarity [1]. When a query is submitted, BLAST works
by first making a look-up table of all the words (short subsequences, three letters
in our case) and neighboring words, i.e., similar words in the query sequence. The
sequence database is then scanned for these strings; the locations in the databases
of all these words are called word hits. Only those regions with word hits will
be used as alignment seeds. When one of these matches is identified, it is used
to initiate gap-free and gapped extensions of the word. After the algorithm has
looked up all possible words from the query sequence and extended them maxi-
mally, it assembles the statistically significant alignment for each query-sequence
pair, called High-scoring Segment Pair (HSP).

The matching reliability is evaluated trough Bit Score, denoted by SB, and
E-value, denoted by E. The bit score of one HSP is computed as the sum of the
scoring matrix values for that segment pair. The E-value is the number of times
one might expect to see such a query-sequence match (or a better one) merely
by chance.

Another score very important for BLASTx is Identities score, defined as the
proportion of the amino-acids in the database sequence that are matched by the
amino-acids translation of the current query frame.

We refer to [7] for a formal description of these measures.
In our method, the E-value is used to constrain the number of output hits,

while the bit and identities scores are used to weight proteins as follows.

4 Assign Weights to Proteins

From each hit that BLASTx outputs for a given read r, we extract a 4-dimensional
vector h = (p,SB , Id ,E ) where p is the matched protein, SB the bit score, Id the
identities score, and E the E-value of that match. With abuse of notation we refer
to such a vector as ’the hit of r’.

For a read r let Hitα,r be the sequence, sorted in increasing order of E-values,
of its hits having E-value smaller than a given threshold α. Denote by r1, . . . , rm
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the set of reads r with non-empty Hitα,r. Let Kα,ri be the sequence of the first
K elements of Hitα,ri (the entire sequence if K exceeds the sequence’s length).
We write Ki instead of Kα,ri when no ambiguity arises.

Let P = {p1, . . . , pn} be the set of proteins occurring in ∪m
i=1Ki. For each

protein p ∈ P define the set

Hp := {h ∈ ∪m
i=1Ki | h(1) = p},

where h(1) denotes the first component of the hit vector h. Thus Hp consists of
the selected hits containing p.

Define the weight of p as follows:

wp := 1 +� 1
|Hp|

∑
h∈Hp

(100
max score− SB(h)

max score− min score
+ 100 − Id(h)) �,

where �v� denotes the smallest integer bigger or equal than v, SB(h) and Id(h)
are the bit- and identity-score of h, respectively, and |Hp| the cardinality of Hp.
By construction weights are positive integers between 1 and 201.

The bit score has been used e.g. in [3] to define a measure of protein relevance.
Our approach for scoring proteins differs from e.g. the one used in [3] in two

main ways. First, we score proteins using also the identities score. Second, we
score each protein globally, by considering all the hits involving that protein,
while in [3] proteins are score locally after the reads have been clustered. Specif-
ically, in the latter approach, first reads and proteins are clustered together, and
only at the end of the clustering process, each protein of a cluster is scored by
means of the cumulative bit score of its alignment to the reads within the same
cluster.

5 Clustering Reads Using Weighted Proteins

The clustering algorithm selects a set of cluster representatives from P , whose
union covers all the considered reads, and with minimum total weight. The
clusters are generated by a fast heuristic algorithm for the weighted set covering
problem [10] applied to the m selected reads and the set P of proteins weighted
as described above. The number of clusters is automatically computed by the
procedure.

Formally, consider the vector of protein weights w ∈ N
n and the matrix A ∈

{0, 1}m×n whose elements aij are such that:

aij =

{
1, if column j covers row i,
0, otherwise.

So a row i is covered by a column j if aij is equal to 1. In the context of our
application aij = 1 if protein pj occurs in the set Ki of selected hits of read ri.
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The weighted set covering problem (WSC, in short) can be formulated as a
constrained optimization problem as follows:

min
x∈{0,1}n

n∑
j=1

xjwj , such that
n∑

j=1

aijxj ≥ 1, for i = 1, . . . , m. (WSC)

The variable xj indicates whether column j belongs to the solution (xj = 1) or
not (xj = 0). The m constraint inequalities are used to express the requirement
that each row i be covered by at least one column (that is, for each read ri, at
least one protein in Ki is chosen). The weight wj specifies the cost of column j.

The Weighted Set Covering problem is one of the oldest and best studied NP-
hard problems. It has been successfully employed to tackle real-life problems in
diverse domains, including biology (cf., e.g., [15]). Here we use a fast heuris-
tic algorithm for WSC1 originally developed for tackling airline crew scheduling
problems [10].

A solution corresponds to a subset of P consisting of those proteins pj such
that xj = 1. Each of the selected proteins is a proxygene. It represents a cluster
containing those reads r having that protein in Kr.

Example 1. We illustrate this process by means of a toy example (cf. Figure
1). Suppose given a set of five reads {r1, . . . , r5} and suppose that the proteins
occurring in the selected hits of these reads are:

– {p1, p3, p5} for read r1;
– {p1, p3, p6} for read r2;
– {p2, p5} for read r3;
– {p2} for read r4;
– {p2, p3, p6} for read r5.

Assume for the sake of simplicity that all proteins have equal weight. Then Figure
1 (left part) shows the corresponding 5-row, 6-column matrix aij . The WSC-
clustering algorithm applied to this problem instance outputs the set {p2, p3} of
columns, having total weight equal to 2 (see Figure 1 right part). The selected
columns correspond to the two clusters {r3, r4, r5} and {r1, r2, r5}, respectively.

6 Experiments

We consider three complex metagenome datasets introduced in [3], called in the
following M1, M2 and M3. These datasets were generated, respectively, from 9,
5 and 8 genome projects, sequenced at the Joint Genome Institute (JGI) using
the 454 GS20 pyrosequencing platform that produces ∼ 100 bp reads. From
each genome project, reads were sampled randomly at coverage level 0.1X. The
coverage is defined as the average number of times a nucleotide is sampled. This
resulted in a total of 35230, 28870 and 35861 reads, respectively.

Table 1 shows the names of the organisms and the number of reads generated
for the M1 dataset. The reader is referred to [3] for a detailed description of all
the datasets.
1 Publicly available at http://www.cs.ru.nl/~elenam

http://www.cs.ru.nl/~elenam
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Fig. 1. Left: input covering matrix; position (i,j) contains a 1 if protein pj occurs in
the set of selected hits of read ri, otherwise it contains a 0. Right: the proteins selected
by the WSC-clustering algorithm are indicated by arrows.

Table 1. Characteristics of the organisms used in the experiments: the identifier and
name of the organism, the size of its genome and the total number of reads sampled
(M1 dataset).

Id. Organism genome size (bp) reads sampled
a Clostridium phytofermentans ISDg 4 533 512 4638
b Prochlorococcus marinus NATL2A 1 842 899 1866
c Lactobacillus reuteri 100-23 2 174 299 2371
d Caldicellulosiruptor saccharolyticus DSM 8903 2 970 275 2950
e Clostridium sp. OhILAs 2 997 608 2934
f Herpetosiphon aurantiacus ATCC 23779 6 605 151 6937
g Bacillus weihenstephanensis KBAB4 5 602 503 4158
h Halothermothrix orenii H 168 2 578 146 2698
i Clostridium cellulolyticum H10 3 958 683 3978

In our experiments we use the NR2 (non-redundant) protein sequence database
as reference database for BLASTx. The parameters of the external software we
used are set as follows. For BLASTx the default parameters were used. In all
experiments WSCP was run with pre-processing (−p), number of iterations equal
to 1000 (−x1000), one tenth of the best actual cover used as starting partial
solution (−a0.1), and 150 columns to be selected for building the initial partial
cover at the first iteration (−b150). For lack of space, we refer to [10] for a
detailed description of the WSCP program.

6.1 Evaluation

First of all we set α to a reasonable value, equal to 0.01, and disregard all the
reads with E-value greater than α, resulting in the selection of 21236 reads for
M1, 21064 for M2 and 24043 for M3, respectively. We analyse the clusterings
obtained by varying the value of K by means of the following characteristics.

– The number of clusters obtained, their size and overlapping;
2 Publicly available at ftp://ftp.ncbi.nlm.nih.gov/blast/db.
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Table 2. Summary of the results of experiments for α=0.01 and varying K (M1
dataset)

K 1 2 10 50 1000
number of proteins selected 13594 19967 66005 174110 360578
number of clusters 13594 13197 12599 12091 11763
number of singleton clusters 9003 8334 7420 6666 6145
maximum size of clusters 17 21 23 28 32
total size of overlapping 0 273 877 1640 2979

– The reduction factor, defined as the number of selected reads divided by the
number of clusters;

– The homogeneity of the clusters as measured by the so-called cluster pu-
rity, defined as the maximum fraction of its elements belonging to the same
organism, that is

purity(C) :=
1
|C| max

i=1,...,norg

(|C|organism=i),

where |C|organism=i denotes the number of elements of cluster C belonging
to organism i, and norg the number of organisms.

A similar analysis is performed by fixing K to a reasonable value, equal to
50, and varying the threshold α.

Figure 2 shows in more detail the trends of the cluster homogeneity and of
the reduction factor.

6.2 Results: Fixed Value of α=0.01 and Varying K Values

Table 2 summarizes the results with this parameter setting for dataset M1. The
number of selected proteins increases when K increases, while the number of
clusters decreases, indicating effectiveness of the method to select few proxy-
genes. Furthermore, the number of singleton clusters also decreases for higher
values of K, indicating a stronger bias towards the grouping of reads. A similar
trend can be observed for datasets M2 and M3 (results omitted for lack of space).

Figures 2 (a), (c) and (f) show, for each datasets, the percentage of non-
singleton clusters having purity greater or equal than a given value p, for selected
values of p in [0.4, 1]. For all the datasets, the curve at K = 1 dominates all
other ones, justified by the fact that the corresponding clustering contains many
clusters of small size, which are likely to have higher purity. For instance, for the
M1 dataset with K = 1 and 1000, about 75% and 35% of the clusters have size
equal to 2, respectively.

Figures 2 (b,d and f) show, for each dataset, the reduction factor for different
values of K. As expected, a larger value of K results into a higher reduction
factor.

Finally, Figure 3 shows, for dataset M1, how the number of reads occurring
in more than k clusters varies for different choices of K. For a small value of K
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a),(c),(e): plots of percentage of non-singleton clusters with purity ≥ p for
different values of K, for M1, M2 and M3, respectively. (b),(d),(f): plots of the reduction
factor for different values of K, for M1, M2 and M3, respectively. Right: plot of the
number nr of non-singleton clusters of size s for K = 1, 1000.
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Fig. 3. Plot of the number nr of reads occurring in k clusters (M1 dataset)

(equal to 5) a read occurs in at most 3 clusters, while for a very high value of
K (equal to 1000) a read occurs in at most 15 clusters. Indeed, as reported in
Table 2, the total overlapping shows a substantial increase for high values of K,
where by total overlapping we mean the sum of cardinality of the clusters minus
the number (21236) of selected reads. These results can be justified by the fact
that K is an upper bound on the maximum number of clusters one read may
belong to. Similar results, not showed for lack of space, were obtained using M2
and M3 datasets.

6.3 Results: Fixed Value of K = 50 and Varying α Values.

Table 3 summarizes the results with this parameter setting for dataset M1.
Higher values of α result into the selection of an higher number of reads and of
proteins. Moreover, clusters of bigger size and overlapping are obtained.

The plots of Figure 4 show that on the M1 dataset, small α values lead
to clusterings where 90% of the clusters are very accurate, in terms of organism

Table 3. Summary of the results of experiments for K = 50 and varying α (M1
dataset)

α 0.1 0.01 0.001 0.0001 1e-006
number of reads selected 22219 21236 20300 19085 16736
number of proteins selected 208443 174110 146524 116682 72149
number of clusters 12283 12091 11850 11534 10660
number of singleton clusters 6464 6666 6772 6889 6801
maximum size of clusters 30 28 27 23 19
total size of overlapping 2026 1640 1326 1066 528
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(a) (b)

Fig. 4. a) plot of percentage of non-singleton clusters with purity ≥ p for different
values of α. b) plot of the reduction factor for different values of α (M1 dataset)

content, and a reduction factor of about 1.6. For higher values of α clusters purity
decreases reaching a minimum of about 75%, while reduction factor increases
reaching a maximum of about 1.8. Similar results are obtained for datasets M2
and M3. Thus, the user can decide a tradeoff between purity and reduction,
depending on the specific research question to be addressed.

7 Conclusion and Future Work

This paper introduced a new evidence-based method for clustering metagenome
short reads and analysed its performance on benchmark metagenome datasets.
Results indicated effectiveness of the proposed method as a tool for mining
metagenome data.

We focussed on the experimental analysis of the two parameters of the pro-
posed clustering method, K and α. As for the computational cost, the WSC-
clustering algorithm is very efficient, due to the fast heuristic employed to search
for an optimal set cover. However, the extraction of the hits from the initial
dataset of reads is computationally expensive. Nevertheless, the latter process
can be parallelized by partitioning the reads and running BLASTx independently
on each group of the partition.

In the future, we intent to investigate in more depth the biological meaning
of the resulting clusters, in particular their functional and taxonomic content,
in order to discover knowledge related to the protein content and the taxonomic
organization of the organisms contained in metagenomes.

Furthermore, it is interesting to investigate if the clusterings obtained by
varying the value of such parameters could be used for analyzing the dynamics
of organism grouping, as modeled by the protein-based clustering, in particular
whether such model of organism-grouping dynamics is related to the taxonomic
evolution of the corresponding metagenome sample.
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Moreover, similar experiments on data with higher coverage will be performed,
and analysis with more sophisticated measures of cluster homogeneity, like Nor-
malized Mutual Information and Entropy Correlation Coefficient [12].

Acknowledgements. We would like to thank Mavrommatis Konstantinos for
providing the datasets in [3] as well as useful information about such data.
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Abstract. The Maximum Parsimony problem aims at reconstructing a
phylogenetic tree from DNA, RNA or protein sequences while minimiz-
ing the number of evolutionary changes. Much work has been devoted
by the research community to solve this NP-complete problem and many
algorithms and techniques have been devised in order to find high qual-
ity solutions with reasonable computational resources. In this paper we
present a memetic algorithm (implemented in the software Hydra) which
is based on an integration of an effective local search operator with a
specific topological tree crossover operator. We report computational re-
sults of Hydra on a set of 12 benchmark instances from the literature
and demonstrate its effectiveness with respect to one of the most pow-
erful software (TNT). We also study the behavior of the algorithm with
respect to some fundamental ingredients.

Keywords: Maximum Parsimony, phylogeny, progressive descent, tree
crossover, memetic algorithm.

1 Introduction

Phylogenetics, also known as Phylogenetic Systematics, is the formal name for
the field within Biology that reconstructs evolutionary history of species. Phy-
logenetics studies the connections between groups of species (as understood by
an ancestor / descendant relationships) which are represented by a phylogenetic
tree. In such a phylogenetic tree, the leaves represent contemporary or extinct
species and internal nodes correspond to hypothetical ancestors.

Recent advances in genomics, including whole-genome sequencing have mainly
influenced phylogenetics. In the past, morphological characters (like size, color,
number of legs, etc...) were used for inferring phylogenies. With today’s data
obtained from the sequencing programs, we can compare organisms from the in-
formation extracted from their genetic material (DNA, RNA) or their proteome
(protein sequences). This is particularly useful when dealing with prokaryote or-
ganisms like bacteria or viruses for which morphological characters are difficult to
define or identify. Molecular phylogenetics has then become an important field in
Bioinformatics and finds many applications in biology and medicine like genetic
evolution, taxonomy and classification, or virus detection and mutation [13].

C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.): EvoBIO 2009, LNCS 5483, pp. 164–175, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Much work has been devoted to the problem of phylogeny reconstruction
since the 1960s. The general principle behind phylogenetic methods is to find a
tree that minimizes sequence changes or mutations. We can bring three different
approaches to light:

– Distance methods, inspired by the work of Sokal and Sneath on clustering
[19], introduced in 1967 by [2] or by [6] rely on a matrix of distances observed
between species. The most popular algorithm of this class of methods is
probably the Neighbor-Joining from [17], improved by [8]. Those methods
are very efficient for they rely on an algorithm of polynomial complexity but
they sometimes lack robustness.

– Probabilistic methods are based on a model of evolution of characters. The
Maximum Likelihood (ML), introduced by [4] in 1981 provides a general
framework that consists in inferring the most probable phylogeny that max-
imizes the likelihood of observed sequences. Although ML is popular for
phylogenetic inference because it is considered as a robust method, it is
more computationally expensive than other methods.

– Cladistic methods are based on a matrix of given characters. The most well-
known method of this class relies on the Maximum Parsimony (MP) criterion
[3] as it is quite simple to apprehend. Such a method aims at building a binary
tree that minimizes the number of changes without resorting to a particular
model of evolution. The cost of a tree can be computed in polynomial time
[5]. However, the search for an optimal tree is computationally intractable.
Indeed, the Maximum Parsimony problem is extremely difficult to solve since
it is equivalent to the NP-complete Steiner problem in the hypercube [7]. This
is why heuristics methods constitute the main alternative in order to obtain
a near optimal tree with reasonable computation time [12,15].

In this article, we are interested in finding high quality solutions for the phy-
logeny reconstruction problem with Maximum Parsimony under Fitch’s crite-
rion. We present a memetic algorithm which combines a local searcher using
a parametric neighborhood relation and a specific tree crossover based on a
topological distance. The crossover operator aims at creating new phylogenetic
trees by conserving topological distance properties of parent trees while the
local searcher improves the quality of each newly created offspring by a multi-
neighborhood descent algorithm.

In order to accelerate the fitness evaluation of potential solutions (phyloge-
netic trees) which is a critical issue in our context, we introduce a vectorization
technique to fully take advantage of some characteristics offered by modern x86
processors. To our knowledge, this technique was never described in the litera-
ture and helps decrease the computation time by about 80% on any x86 modern
processor.

To assess the performance of the proposed memetic algorithm, we report
computational results on a set of 12 benchmark instances from TreeBase, a well-
known database on phylogenetic information and compare these results with
those obtained by TNT, which is considered to be the most efficient software for
the MP problem.
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The rest of the paper is organized as follows. In the next section we for-
mally introduce the MP problem. We then describe the main components of
our memetic algorithm (Section 3). Computational results and comparisons are
shown in Section 4 where an analysis is also given to study the influence of some
basic ingredients on the performance of the algorithm (Section 4.4).

2 Phylogeny Reconstruction and Maximum Parsimony

Phylogeny generally takes as input a multiple alignment which is a matrix of
characters composed of n lines (related to a set S of species, where |S| = n)
and k columns which represent the characters of the sequences. Each sequence
is also called a taxon (or taxonomic unit, plural taxa). Each character of the
matrix belongs to an alphabet Σ. The aim of the Maximum Parsimony problem
is to find a phylogenetic tree (i.e. generally a binary tree, rooted or unrooted)
that minimizes the number of changes (or mutations) between sequences. Each
leaf of the tree is associated to one of the n species and the cost (or the number
of mutations) of the overall tree can be estimated by building hypothetical se-
quences of parsimony from the leaves toward the root of the tree. More precisely
we can formulate the following definitions:

Definition 1 (Sequence of parsimony - see [5]). Given two sequences S1
and S2 of length k characters such that S1 = x1 · · ·xk, S2 = y1 · · · yk with
∀i ∈ {1..k}, xi, yi belong to the power set P(Σ), the sequence of parsimony of S1
and S2, noted F (S1, S2) = z1 · · · zk is obtained by :

∀i, 1 ≤ i ≤ k, zi =
{

xi ∪ yi, if xi ∩ yi = ∅
xi ∩ yi, otherwise

The cost (or number of mutations) of a sequence of parsimony is defined by:

φ(F (S1, S2)) =
k∑

i=1

ci where ci =
{

1, if xi ∩ yi = ∅
0, otherwise

Definition 2 (Rooted Binary Tree of Parsimony). Let S be a set of n
aligned sequences of length k where each character of the sequence is expressed
over a given alphabet Σ. Let T = (V, E) be a binary tree, where V = {v1, . . . , vr}
is the set of nodes and E ⊆ {(u, v)/u, v ∈ V } is the set of edges. T is called a
binary tree of parsimony of S if :

– there exist r = 2 × n − 1 nodes partitioned in two subsets:
• I : a set of internal nodes composed of n − 1 nodes each having 2 de-

scendants,
• L : a set of leaves composed of n nodes with no descendant.

– there exists a bijection from the set of sequences S to the set of leaves L,
– each internal node w of I is assigned to a (hypothetical) sequence of parsi-

mony Sw = F (Su, Sv).
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Definition 3 (Cost of a Tree of Parsimony). Let T be a binary tree of
parsimony of a set of sequences S. The cost (or score) of T , φ(T ) is equal to∑

φ(Sw), ∀w ∈ I.

Remark: For a given phylogenetic tree, its parsimony score can be efficiently (in
polynomial time) calculated by the Fitch’s algorithm given in [5]. However, it is
primordial to accelerate the scoring process as much as possible within a search
algorithm when a great number of potential trees must be evaluated.

Definition 4 (Maximum Parsimony Problem - MP). Given a set S of n
sequences of length k, expressed over an alphabet Σ, find the most parsimonious
tree T � of S such that the score of parsimony of T � is minimum.

For a set of S of sequences, there are
∏|S|

i=3(2i−3) possible parsimony trees. The
MP problem is thus a highly combinatorial search problem.

3 A Memetic Algorithm for the MP

3.1 Outline of the Hydra Algorithm

The Hydra algorithm presented in this paper follows a simple, yet powerful
memetic schema. From an initial population of solutions, the algorithm carries
out a number of evolution cycles. At each cycle, two parents are selected and a
crossover operator is applied to the parents to create a new solution (Section 3.2).
Each newly created offspring undergoes some local improvements (Section 3.4)
before being inserted into the population. Other issues to be considered concern
among others fitness evaluation (Section 3.3), parents selection and insertion
condition. Parents selection operates with a tournament selection strategy. Two
groups of 20% of the individuals are first constituted and two individuals that
represent the best individuals of each group are then selected. A new individual
T is inserted into the population if it is not already present in the population.
The individual that will be removed from the population can be the oldest or
the closest to the new one. The outline of the Hydra algorithm is given on
Algorithm 1. We describe below the basic ingredients of this memetic algorithm
for the MP.

3.2 Initial Population

The population is composed of phylogenetic trees (individuals) for the given set
of taxa. The individuals of the initial population are generated with a greedy
algorithm. At each step of the algorithm, an isolated taxon (future leaf) is ran-
domly selected and inserted on a branch of the current tree such that this in-
sertion position minimizes Fitch’s score. This corresponds to the 1stRotuGbr
heuristics used in [1]. Notice that each initial individual undergoes improvements
using the local searcher (Section 3.4).
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Algorithm 1. Hybrid Genetic and Local Search algorithm (Hydra) for the MP
input: A : a set of aligned taxa, N : the population size, M number of LS iterations
output: The most parsimonious tree found

P = GeneratePopulation(A,N)
for a given number of generations do

(T1, T2) ← ChooseParents(P )
T ← Recombination(T1, T2) // to generate a new tree
T ← Local search improvement(T ,M) // to improve an offspring
P ← Replace(P ,T ) // To insert the new offspring

end for
return the best tree found

3.3 Fitness Evaluation

Each individual of the population is evaluated according to Definition 1 and by
Fitch’s algorithm. Such an evaluation assigns to the individual a parsimony score.
Given that the fitness evaluation is one of the most time consuming elements
of the algorithm, we use a specific implementation technique to accelerate this
evaluation (see Section 3.6)

3.4 Local Search with Progressive Neighborhood

Our local searcher is based on a descent algorithm using a powerful neighborhood
called Progressive Neighborhood (PN) introduced in [10]. Similar to the VNS
(Variable Neighborhood Search) heuristic, PN modifies the size of the neighbor-
hood during the search. But, contrary to VNS, PN starts from a medium (or
large) size neighborhood like SPR or TBR [20] and progressively reduces it to the
small size NNI [21] neighborhood using a parametric neighborhood relation that
evolves during the search. Experiments presented in [10] showed the efficiency of
this progressive neighborhood in comparison with other existing neighborhoods
for phylogenetic reconstruction. The basic rational behind PN is that important
tree transformations must be performed at early stages of the search using a
medium or large size neighborhood (like SPR or TBR) and only minor refine-
ments are necessary at the end of the local search process where a neighborhood
like NNI is sufficient.

In order to make the neighborhood evolve, a topological distance on trees is
defined in [10] that enables to build a distance matrix for a set of taxa given a
tree topology. This distance is also used to control the size of the neighborhood
(i.e. the distance between a pruned edge and its inserted edge is at most equal
to a given distance).

Definition 5 (Topological distance). Let i and j be two taxa of a tree T . The
topological distance δT (i, j) between i and j is defined as the number of edges of
the path between parents of i and j, minus 1 if the path contains the root of
the tree.
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Fig. 1. Example of topological distance δT

For example, on figure 1, A and B have the same parent f , so δT (A, B) = 0,
and δT (A, D) = 3 because the number of edges between f and g is 4 (f → k →
j → h → g), and as we pass through the root node k, we decrease the value of one
unit. Note that for the topological distance, we consider trees as unrooted, this
is why we remove one unit when passing through the root node. The reduction
process used in Hydra takes into account a parameter M which corresponds to
a maximum number of LS iterations. Using this distance definition, a parameter
d is introduced to control the size of the neighborhood and is defined as the
distance between a pruned edge and the edge where it is reinserted (i.e. distance δ
between their two descendant nodes). As such, changing d leads to neighborhoods
of different sizes which are explored with a descent algorithm.

3.5 Distance-Preserving Crossover Operator DiBIPX

For phylogeny reconstruction, the individuals are trees. To create new solutions
by recombination, we need a tree crossover operator. Traditionally, crossovers
on phylogenetic trees follow the subtree cutting and regrafting strategy which
consists in removing a subtree T ′

1 from a parent T1 and to reinsert T ′
1 in the

second parent T2. Duplicated sequences (leaves) are removed from T2. However,
this process suffers from a major drawback. The topological information of trees,
which are responsible of their parsimony score, is not entirely used to improve
the tree. In that sense those crossovers perform a blind search and it would then
be necessary to be able to pass in review millions of trees per second to keep up
with the search efficiency.

For the purpose of creating meaningful offspring, we use the Distance-Based
Information Preservation tree crossover (DiBIPX) introduced in [9]. DiBIPX is
different from conventional tree crossover operators in that it explicitly takes into
account the topological distance of parents trees. The key idea behind DiBIPX is
the preservation of semantic information shared by the parents: if two sequences
are topologically close (or far) in both parent trees, then this property should
be conserved for the child. Moreover, this crossover enables to diversify the
search: the child is fully rebuilt from these information. More precisely, DiBIPX
is composed of three steps. First, using the topological distance (Section 3.4),
the parents trees are first transformed into two distance matrices M1 and M2
(see Figure 1). These matrices are then combined into a new distance matrix
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M3 by a matrix operation ⊕. Finally, this new matrix M3 is used to built the
offspring tree using a distance-based clustering method like UPGMA [18]. In
this paper, M3 = αM1 ⊕ (1 − α)M2 such that ∀δ1(i, j) ∈ M1 and δ2(i, j) ∈
M2, δ3(i, j) = α × min {δ1(i, j), δ2(i, j)} + (1 − α) × max {δ1(i, j), δ2(i, j)} with
α ∈ [0, 1].

3.6 Acceleration of the Fitness Evaluation

During the resolution of the MP, the basic operation that is extensively used is
Fitch’s function (see Definition 1), which is implemented figure 2 (in C-like style).
This function takes as input two taxa t1 and t2. The output is the hypothetical
taxon t3 and the number of changes returned by the function. The alphabet of
the DNA sequences is generally composed of 6 different symbols : −, A, C, G, T, ?.
Where − represents a gap and ? an undefined character.

int fitch(char t1[], char t2[], char t3[]) {

int changes=0;

for (int i=0;i<k;++i) {

t3[i]= t1[i] & t2[i];

if (t3[i]==0) { t3[i]= t1[i] | t2[i]; ++changes; }

}

return changes;

}

Fig. 2. Parsimony function traduction of Definition 1

Our implementation of this function takes full advantage of some relevant
features offered by modern x86 processors. More precisely, the core of modern
x86 processors has a SSE (SIMD Streaming Extension) unit which enables to
vectorize the code. A SSE register is 128 bits long and can contain 16 bytes.
In order to efficiently perform the union and intersection of Definition 1, each
character is represented by a power of 2, from 20 = 1 (−) to 24 = 16 (T ), except
for ? which can represent any other character and is then coded by the value
31 = 1 + 2 + · · · + 16. The union can be performed by the binary-OR (|) and
the intersection by the binary-AND (&). The vectorization of Fitch’s function
gives a 90% improvement on Intel Core 2 Duo processors, while other architec-
tures (pentiumII/III/4, pentium-M, Athlon 64, Sempron) provide 70 to 80 %
improvement. This improvement enabled us to divide the overall computation
time of our program by a factor of 3 to 4.

4 Computational Results and Comparisons

In this section, we show computational results on a set of 12 benchmark in-
stances. To assess their quality, they are compared with the results of the very
popular software TNT [11] (Tree analysis using New Technology). (TNT is per-
haps today’s most powerful software for phylogenetic reconstruction under PM
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criterion). The code of TNT is not an open source, but is known to be highly
optimized to be able to evaluate millions of trees per second. TNT integrates a
large number of search strategies such as tree drifting, parsimony ratchet, sec-
torial search and more others. The reference software TNT was used with its
default parameters specified in the documentation.

4.1 Benchmarks

A set of 12 medium to large instances (more than 100 taxa) from the TreeBase
site (www.treebase.org) are used. TreeBase is a relational database of phyloge-
netic information which stores phylogenetic trees and the data matrices used to
generate them from published research papers. For these instances, no optimum
parsimony score is known.

Table 1. Parameters of the Hydra algorithm

Parameters Values
population size 40

number of crossovers (generations) 50
local search iterations per crossover 200 000

neighborhood progressive
α for DiBIP crossover 0.70

4.2 Parameters Tuning

In order to carry out the comparisons as fair as possible, we use for Hydra a
set of standard (not fine-tuned) parameters values as follows for all the tested
instances. With these parameters, each run of the algorithm undergoes (40+50)×
200, 000 = 18×106 iterations (fitness evaluations with Fitch’s algorithm). As we
shall see later on, this number is much less than the one reached by the reference
software TNT with its default parameters. According to the problem instance,
the running time of one execution of Hydra goes from one to ten minutes on
a Core 2 at 2.5MHz computer. Nevertheless, TNT consumes less computation
time due to its extremely optimized code.

4.3 Results and Comparisons

On table 2 we report the results obtained with Hydra. For each instance, we
report the following information for 20 executions: best parsimony score, max-
imum parsimony score, average score and standard deviation. For TNT, the
software gives only two information: the best parsimony score and the total
number of iterations (which corresponds to the number of evaluated candidate
trees in millions).

The results show that except for one instance, Hydra obtains results of equal
or better quality than TNT. Hydra reaches these results with much smaller iter-
ations (much fewer evaluations of candidate trees) except for problems m0972,
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Table 2. Comparison between Hydra and TNT on TreeBase instances.

Hydra TNT
problem #taxa length min max avg std # iter score

(millions)
m0808 178 3453 23,777 23,794 23,782.22 4.62 40 23,782
m0972 155 355 1,528 1,529 1,528.44 0.50 14 1,532
m1038 297 2021 12,370 12,375 12,371.22 2.19 99 12,376
m1902 209 977 6,124 6,129 6,126.22 1.52 44 6,131
m1987 134 618 2,073 2,075 2,073.67 0.92 30 2,073
m2055 299 2064 2,597 2,604 2,599.00 2.37 47 2,598
m2123 198 1426 1,925 1,925 1,925.00 0.00 46 1,925
m2725 210 8245 157,354 157,772 157,570,56 95.29 63 157,093
m2780 119 2020 11,488 11,494 11,490.78 1.90 11 11,490
m3275 117 5098 21,935 21,936 21,935.11 0.30 9 21,935
m3452 116 1157 3,602 3,603 3,602.33 0.49 23 3,602
m3453 137 995 3,904 3,908 3,904.78 1.42 24 3,904

m2780 and m3275 for which the number of iterations of Hydra is greater than
TNT. Nevertheless the experiments we have carried out show that by fixing M
to 50,000 or 100,000 (i.e. 4.5 or 9 millions iterations), we could obtain the
same scores.

Note that the computation time of TNT is less important than Hydra because
TNT implements highly specific optimization techniques to avoid a complete
evaluation of the overall tree when looking for a neighbor of lower cost. Such
technique is not yet implemented in Hydra.

4.4 Analysis and Discussion

In this section, we investigate and analyze the influence of some elements of the
Hydra algorithm on its performance.

First, we verify how the length of the LS improvement after each crossover
impacts on the convergence of the algorithm. To avoid a possible bias due to the
structure of problem instance, we chose to use two random instances (tst01 and
tst20) from [16]. We run the Hydra algorithm with three different values of local
search iterations per crossover: 10 000, 50 000 and 100 000. Figure 3 (a-b) shows
on a logarithmic scale, the result of the evolution of the best score averaged over
5 independent runs, each run being limited to 108 iterations. One observes that
if the computational resources are limited, the algorithm converges faster with
short local search than with long local search iterations. The influence of the
local search iterations seems to decrease when the search progresses.

Second, we check the performance of DiBIPX if the topological distance de-
fined in Section 3.4 is replaced by another distance metric. For this purpose,
we use another distance which is the length of the path between two nodes of
the tree taking into account the parsimony distance between each pair of neigh-
boring nodes. Figure 3 (c-d) shows the result of the evolution of the best score
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Fig. 3. Study of influence of local search length and distance

under the same condition as above. One observes there is no clear dominance of
a distance metric over the other one, but the convergence with the topological
distance is sometimes faster for a short number of LS iterations.

5 Conclusion

In this paper, we have presented the Hydra memetic algorithm for the phy-
logenetic tree inference problem with the Maximum Parsimony criterion. The
algorithm uses a local search procedure which is based on a parametric progres-
sive neighborhood, a specific distance-based topological tree crossover, as well as
a specific implementation technique in order to accelerate the fitness evaluation.

Experimentations on a number of real benchmark instances from TreeBase
show that Hydra competes very well when compared to TNT. Indeed, Hydra
is able to find phylogenetic trees of better Parsimony score with much fewer
evaluations of candidate trees.

However, Hydra needs more computation time than TNT. This last point
constitutes an important issue to be addressed in the future. On the other hand,
the techniques presented in this paper may be integrated into TNT to increase
its search power.
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6 Availability

Hydra is distributed with C++ source code, benchmarks and documentation and
is freely available from the website of the authors. It runs under all Unix/Linux
platforms. There is also a binary for Windows platforms (http://www.info.univ-
angers.fr/pub/richer/rec.php).

Acknowledgements

This work was partially suported by the French Ouest Genopole R© and by the
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Abstract. We apply evolutionary computation to calibrate the param-
eters of a morphogenesis model of Drosophila early development. The
model aims to describe the establishment of the steady gradients of Bi-
coid and Caudal proteins along the antero-posterior axis of the embryo
of Drosophila. The model equations consist of a system of non-linear
parabolic partial differential equations with initial and zero flux bound-
ary conditions. We compare the results of single- and multi-objective
variants of the CMA-ES algorithm for the model the calibration with
the experimental data. Whereas the multi-objective algorithm computes
a full approximation of the Pareto front, repeated runs of the single-
objective algorithm give solutions that dominate (in the Pareto sense)
the results of the multi-objective approach. We retain as best solutions
those found by the latter technique. From the biological point of view, all
such solutions are all equally acceptable, and for our test cases, the rela-
tive error between the experimental data and validated model solutions
on the Pareto front are in the range 3% − 6%. This technique is general
and can be used as a generic tool for parameter calibration problems.

1 Introduction

The ultimate validation of mathematical or computational models of real Com-
plex Systems can only be achieved by comparing the outcomes of the models
with those of the actual system. Such models generally depend on several pa-
rameters that must be identified using experimental data. System calibration is
the search for the set of parameters such that the output of the model best fits
the available data. Ideally, in order to avoid possible over-fitting of the model
to the data, system calibration should be performed using a data set, and the
validation of the model should be done using other data sets not used during
the calibration.

C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.): EvoBIO 2009, LNCS 5483, pp. 176–190, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Validation of a Morphogenesis Model of Drosophila Early Development 177

This paper deals with the validation and calibration of a reaction-diffusion
model for the spatial distribution of proteins during the early stage of morpho-
genesis of Drosophila. This model incorporates the regulatory repression mech-
anism of Bicoid protein over caudal mRNA. In this case, several experimental
data sets for both Bicoid and Caudal proteins are available.

Model calibration from experimental data can be formulated as an opti-
mization problem — find the model that minimizes the difference between its
outputs and the experimental data [MSM97]. Such optimization problems are
usually highly multi-modal, and classical methods (e.g. gradient-based tech-
niques) fail to give reliable solutions. Therefore, Evolutionary Algorithms (EAs)
are a better choice.

In the case analyzed here, we have experimental data for the distribution of
both Bicoid and Caudal proteins along the antero-posterior axis of the embryo
of Drosophila. An ideal set of parameters for the perfect model would reach
the best possible fit for both distribution, and the calibration problem could be
turned into a standard optimization problem involving both fits by minimization
of the sum of the Mean Square Errors (MSEs) of both models calculated with the
data for both distributions. However, we are looking for meaningful biological
parameters rather than for the best set of parameters. Moreover, it is likely that
the orders of magnitude or the experimental errors on both proteins differ, and a
simple linear aggregation of MSEs might give unbalanced results between both
proteins. Therefore, a multi-objective approach seems more appropriate for our
gols of model calibration and validation. On the other hand, it has been shown
that the multi-objectivization of a fitness function can reduce the number of
local optima [HLK08].

In order to validate these arguments, we compare the results of a single-
objective approach (minimizing some weighted sums of both MSEs) to those of
a multi-objective algorithm. Each trial of single-objective minimization allows us
to identify one point close to the Pareto front, and hence several trials, together
with good guesses for the weights of the aggregation, are necessary to sample the
Pareto front reliably. The multi-objective approach lead to a full set of solutions
that are hopefully close to the Pareto front. However, it turns out that for
this calibration problem, a simple single-objective strategy seems to outperform
better than the multi-objective approach.

This paper is structured as follows. Section 2 gives a brief description of the
meaningful biological mechanisms involved in the Drosophila early development.
Section 3 derives the reaction-diffusion model describing the production of Bicoid
and Caudal from mRNAs. The parameters in the reaction-diffusion equations are
to be calibrated with the experimental data. Initial conditions are given as piece-
wise constant functions and will be also fitted with the evolutionary algorithm.
Section 4 introduces the evolutionary single- and multi-objective optimization
algorithms. Section 5 applies both algorithms to the calibration of the model
and compares the results. Finally, in section 6, we discuss the main conclusions
of the paper.
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2 Biological Background

Morphogenesis in Drosophila early development begins with the deposition of
bicoid mRNA of maternal origin near one of the poles of the embryo [NV96].
During the first two hours of development, a sequence of 14 mitotic nuclear
replication cycles occurs without the formation of cellular membranes around
the nuclei. The early formed nuclei of the embryo lie in a single cell — the
syncytial blastoderm. The nuclear membranes only appear at the end of the
14th mitotic cycle.

The absence of cellular membranes facilitates the diffusion of substances in
the embryo and, during the syncytial stage, stable gradients of proteins are
established. In later stages of development, the formation of the head, of the
thorax and of the abdomen are associated with the patterns of distribution of
proteins that took place during the previous syncytial stage of development.

After fertilization of the egg, the localized bicoid mRNA is translated into
Bicoid protein and this protein regulates the transcription of the other zygotic
genes. Other proteins of maternal origin as Caudal, Nanos or Hunchback, are
produced in the early syncytial stage and are regulated by Bicoid.

Fig. 1. Localization of Bicoid (blue) and Caudal (green) proteins near the nuclear
membrane of the embryo of Drosophila after mitotic cycles number 11 (a) and 12 (b).
This picture was taken from the datasets ab18 (a) and ab17 (b) of the FlyEx database
(http://flyex.ams.sunysb.edu/flyex/, [MKRS99] and [MSKSR01]). From 1a to 1b, the
nuclei have divided by mitosis, but the proteins remain sticked to the region around
the nuclear membranes. In c), we show the steady state concentrations of proteins
Bicoid (BCD) and Caudal (CAD) along the antero-posterior axis (x) of the embryo
of Drosophila. This distribution has been extracted from the data set ad13 (FlyEx
database), corresponding to a late stage of the mitotic cycle number 14. The horizontal
axis has been scaled to the embryo length L = 1, and the vertical scale corresponds to
light intensity arbitrary units.
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During mitotic cycles 11 to 14, the observed distribution of proteins along the
antero-posterior axis of Drosophila shows a high concentration near the nuclear
membranes and a low concentration in the space between nuclei, Figure 1a and 1b.

In order to explain the observed protein gradients, a mRNA diffusion model
has been proposed [DM09]. In this model, mRNA diffuses along the embryo
and the produced protein stay localized near the nuclei of the mebryo. As the
developmental process proceeds in time, proteins reach a steady gradient-like
distribution.

Developmental processes are in general associated with the production of a
cascade of regulatory processes involving genes, mRNAs and proteins. In nowa-
days experiments, these regulatory dependencies are specifically addressed. The
simplest example is the repression effect of protein Bicoid over caudal mRNA,
[RPJ96], Figure 1c). In this paper, we model the relationship between Bicoid
and Caudal through the repression mechanism, and we further calibrate it with
experimental data.

3 The Mathematical Model

During the first stage of development of Drosophila, the processes occurring in
the embryo can be modelled in an one-dimensional domain of length L, rep-
resenting the antero-posterior axis of the embryo. The bicoid (bcd) and caudal
(cad) mRNA of maternal origin have initial distributions given by,

bcd(x, t = 0) =
{

A > 0, if 0 < L1 < x < L2 < L
0, otherwise

cad(x, t = 0) =
{

C > 0, if 0 < L3 < x < L4 < L
0, otherwise

(1)

where L1, L2, L3 and L4 are constants defining the intervals of localization
of the corresponding mRNA, and A and C are concentration constants. These
distributions of mRNAs correspond to a precise initial localization as shown in
experiments.

During the first stage of development, bicoid and caudal mRNAs are trans-
formed into proteins with rate constants abcd and acad. This transformation occurs
in the ribosomes, in general localized near nuclear membranes. The presence of the
protein Bicoid prevents the expression of Caudal through a repression mechanism
([RPJ96]) that can be described by the mass action type transformation,

BCD + cad
r→ BCD (2)

where r is a rate of degradation.
Introducing the hypothesis that mRNA diffuses and proteins stay localized in

the embryo, and with the additional repression mechanism (2), the concentration
of proteins and mRNAs in these processes evolves in time according to the model
equations,
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∂bcd

∂t
= −abcdbcd(x) + Dbcd

∂2bcd

∂x2

∂BCD

∂t
= abcdbcd(x)

∂cad

∂t
= −acadcad(x) − rBCD.cad + Dcad

∂2cad

∂x2

∂CAD

∂t
= acadcad(x)

(3)

where Dbcd and Dcad are the diffusion coefficients of bicoid and caudal mRNAs,
respectively. Capital letter symbols refer to protein concentrations, and lower
case italic letters to mRNA concentrations.

In order to calibrate the model equations just derived in (3) with the ex-
perimental profiles, as the ones in Figure 1c), we have to identify the parame-
ters of protein production (abcd and acad), the parameter of repression (r), the
initial distribution of mRNAs (1), the ratio between the diffusion coefficients
(Dbcd/Dcad, see [DJ98]), and the time, considered here as a parameter.

An ideal set of parameters calibrating an exact model with ideal experimental
data would reach the best possible fit for both distributions (a zero-error fit), the
calibration problem could simply be turned into a standard optimization problem
involving both fits through the minimization of the sum of Mean Square Errors
for both distributions. However, as in general the model is not exact, the data
are noisy, and the experimental errors of both proteins might differ even by some
orders of magnitude, the simple weighted sums of MSEs might give unbalanced
results between both proteins.

The goal here is to find a set of parameters whose fit for both proteins has an
error under a reasonable error margin, and to select an ensemble of parameters
that are equivalent and well distributed inside this set of parameters. Such a goal
can be rigorously defined in the setting of multi-objective or Pareto optimization.

In the following, we fit the parameters of model equations (3) for the distribu-
tion of proteins Bicoid and Caudal, with single- and multi-objective approaches.
We compare the errors and computational efforts of both approaches.

4 The Algorithms

In this section, we introduce the algorithms that have been used to calibrate
the model derived in the previous section. Both are based on the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) algorithm [HO01], an Evolu-
tionary Algorithm for black-box continuous optimization. The first algorithm is
for single-objective optimization, and will be referred as CMA-ES. The second
algorithm is a multi-objective version of CMA-ES, and uses embedded CMA-ES
processes, together with a global Pareto-dominance based selection [IHR07].
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4.1 Single-Objective Optimization: CMA-ES

Since we are dealing here with continuous optimization, the best choice of an
evolutionary method is the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES), first introduced in the mid-90s by Hansen and Ostermeier [HOG95,
HO96], and that has reached maturity in the early 00’s [HO01, HMK03, AH05].
Results from the CEC 2005 competition [Han05] and further systematic com-
parisons [HRM08], have shown that, thanks to its ES invariance properties,
CMA-ES outperforms better than most other methods on artificial benchmarks
with tunable difficulties, as well as on many real-world problems from different
scientific domains.

CMA-ES is a (μ, λ)−Evolution Strategy [Sch81], in the sense that it is an EA
that uses a population of μ parents to generate λ offspring, and deterministically
selects the best μ of those λ offspring for the next generation. As in all Evolution
Strategies (ES), the offspring are generated by sampling a Gaussian distribution.
However, in CMA-ES, this distribution is centered on a weighted recombination
of the μ parents. Moreover, multidimensional Gaussian distributions are deter-
mined by their covariance matrix, a positive definite symmetrical matrix, and
the art of ES lies in the way the parameters of this Gaussian mutation (i.e. the
covariance matrix) are adapted on-line: CMA-ES uses the notion of cumulated
path, i.e. modifies the matrix such that previous good moves become more likely
(for further details see [HO01]). One of the important properties of CMA-ES is
that it is independent of the coordinate system (rotation-invariant).

4.2 Evolutionary Pareto Optimization

Pareto optimality is a concept introduced by Vilfredo Pareto to evaluate the
efficiency of an economic system, with applications in game theory, engineering
and social sciences. It is at stake in the process of simultaneously optimizing
several conflicting objectives subject to certain constraints. Pareto optimization
is concerned in finding the set of optimal trade-offs between conflicting objectives,
i.e., solutions such that the value of one objective cannot be improved without
degrading the value of at least another objective. Such best compromises are
what is called the Pareto set of the multi-objective optimization problem.

Pareto optimization is based on the notion of dominance. Consider a min-
imization problem with M real valued objective functions f = (f1, . . . , fM ),
defined on a subset X ⊂ R

N , f : X ⊂ R
N → R

M . A solution x ∈ X is said to
dominate x̄ ∈ X , (denoted by x ≺ x̄), if,

(∀m ∈ {1, . . . , M} : fm(x) ≤ fm(x̄)) ∧ (∃m ∈ {1, . . . , M} : fm(x) < fm(x̄)) .

The goal of Pareto optimization is to find a good approximation to the Pareto
set, the set of non-dominated points of the search space, generating a set of
solutions in such a way that the objective values are as uniformly distributed as
possible on the Pareto front, the image of the Pareto set in the objective space.

The classical approach of reducing the multi-objective problem into a mono-
objective one by linearly aggregating all the objectives in a scalar function might
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provide only a subset of the Pareto optimal solutions, as for instance it does not
allow to sample the concave regions of the Pareto front [DD97]. A better idea
is to use the Pareto dominance relation to select the most promising individu-
als within an evolutionary algorithm. Unfortunately, the dominance relation is
only a partial order relation, i.e., in many cases, neither A dominates B, nor
B dominates A. A secondary selection criterion is hence needed in order to get
a total order relation over the search space. Many different approaches have
been proposed in the last decade (see e.g. [Deb01] and [CVL02] for recent text-
books), and Evolutionary Multi-Objective Optimization is considered today a
stand-alone branch of Evolutionary Algorithms with specialized workshops and
conference series.

Because Covariance Matrix Adaptation was proven so successful for (single-
objective) evolutionary continuous optimization, and because a multi-objective
version of the algorithm has been recently proposed [IHR07], it seemed a good
choice for the calibration problem at hand here.

4.3 Multi-objective CMA-ES

The Multi-Objective CMA-ES (MO-CMA-ES) [IHR07] is based on a specific
(1+1)-CMA-ES algorithm, a simplified version of CMA-ES where the number
of parents is set to 1, and the update of the stepsize uses a simple rule based
on Rechenberg’s well-known 1/5th rule [Rec73]. λMO (1+1)-CMA-ES are run in
parallel, each with its own stepsize and covariance matrix. At each generation,
each parent generates one offspring, and updates its mutation parameters. Then
the set of λMO parents and their λMO offspring are ranked together according to
the chosen selection criterion, and the best λMO carry on to the next generation.

The selection criterion goes as follows. The first sorting criterion, based on
the Pareto dominance, is the non-dominated sorting proposed with NSGA-II
algorithm [DPA02]: all non-dominated individuals are given rank one, and re-
moved from the population. Amongst remaining individuals, the non-dominated
ones are given rank 2, and the procedure continues until the number of required
individuals is reached (λMO here). With a fast non dominated sorting approach
the computational time needed to rank a population of size N can be kept of
the order of MN2 where M is the number of the objectives (see [DPA02]).

However, a second criterion is necessary, firstly in order to rank the solutions
within the same rank of non-dominance, but also (and more importantly here)
to guarantee a distribution as uniform as possible in the region of the objective
space occupied by the Pareto front. In [IHR07] two criteria are examined: the
crowding distance and the contributing hypervolume.
The crowding distance has been proposed by [DPA02] for the NSGA-II algo-
rithm, and ranks the solutions depending on their distances to their immediate
neighbors in the objective space.

Another approach is to use a metric called S-metric or hypervolume measure
introduced by Zitler and Thiele [ZT98] which gives the “size of the objective value
space which is covered by a set of non-dominated solutions”. More precisely, it
is the Lebesgue measure Λ of the union of the hypercubes ai defined by the
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Fig. 2. The hypervolume measure is “the size of the objective value space which is
covered by a set of non-dominated solutions”from a reference point (r). In light and
dark grey the hypervolume measure of three non-dominated individuals I1, I2, I3. In
dark grey the contributing hypervolume of the individual I2.

non-dominated points mi and a reference point xref (see Figure 2):

S(D) := Λ
({#D⋃

i=1

ai : mi ∈ D}) = Λ
( ⋃

m∈D

{
x : m ≺ x ≺ xref

})
where D is the set of the non-dominated points.

In [Fle03], Fleischer proved that the maximization of S constitutes a necessary
and sufficient condition for the objectives to be maximally diverse Pareto opti-
mal solutions of discrete, multi-objective, optimization problem, and proposed
an algorithm to evaluate the hypervolume measure of a set in a polynomial
time O(K3M2), where K is the number of solutions in the Pareto set and M
is the number of objectives. This algorithm can be efficiently implemented by
an archiving strategy [KCF03]. In such a way the multi-objective problem is re-
duced to the single-objective one of maximizing the hypervolume measure. This
measure also provides a unary indicator on the degree of success of the algorithm
enabling the comparison with the results of other multi-objective algorithms.

According to [IHR07], after several tests on both criteria with two unary
indicators, namely the hypervolume and the ε-indicator, “selection based on the
hypervolume seems to be superior”.

5 Experimental Calibration of the Model

5.1 The Objectives

We have applied and compared two multi-objective strategies for the calibra-
tion of the parameters in model equations (3). The experimental data has been
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taken from the FlyEx database, [MKRS99] and [MSKSR01]. We have tested
two algorithms on the distributions of the proteins Bicoid and Caudal along
the antero-posterior axis of the embryo of Drosophila during cleavage cycle 14
(embryo ad13, see Figure 1). We describe these distributions by the numerical
solutions of equations (3), determined by the techniques developed in [DJ98]. In
order to keep the calibration as little biased as possible, we have set the number
of integration steps as an unknown parameter. In this case, we are not assuming
that Bicoid and Caudal protein distributions are in a steady state.

We denote by BCD(x, α) and CAD(x, α) the results of the numerical inte-
gration of equations (3), where x ∈ [0, 1] and α = (α1, . . . , αm) is the set of
parameters to be determined. The parameter search space is a hyper-rectangle
in R

m, and we denote by {(xi, BCDexp(xi))}n
i=1 and {(xi, CADexp(xi))}n

i=1 the
experimental data points. The calibration of the parameters for the model equa-
tion (3) is thus reduced to a bi-objective optimization problem, minimizing the
fitness functions,

FitBCD(α) =
1
n

n∑
i=1

(BCD(xi, α) − BCDexp(xi))2

FitCAD(α) =
1
n

n∑
i=1

(CAD(xi, α) − CADexp(xi))2

5.2 The Strategies

The multi-objective strategy uses MO-CMA-ES (Section 4.3) with a popula-
tion size of λMO = 100. However, as we are not interested in the extreme parts
of the Pareto Front, that have very low error value for one protein at the cost of
a very high error on the other, we added a penalization to gradually eliminate
large error values. More precisely, the target was to sample the Pareto front in
the range [0, 40] × [0, 80] (bounds chosen after some preliminary runs), and we
penalized FitBCD (resp. FitCAD) by the amount by which FitCAD (resp.
FitBCD) overpassed its upper bound.

In total, the algorithm has been run 100 times, then the non-dominated points
were extracted from the 100 populations, grouped together, leading to what can
be seen as the best approximation of the Pareto Front by MO-CMA-ES.

As for the single-objective strategy, we used a standard aggregation tech-
nique: We have repeatedly executed CMA-ES for a family of single-objective
fitness functions defined by a set of lines in the objective space with slopes ci,
namely,

Fit(α, ci) = FitCAD(α) + ci · FitBCD(α), where i = 1, . . . , 5

12 different slopes have been used (0.01, 1, 5, 10, 25, 50, 60, 70, 75, 80, 90, 100),
with 10 runs for each slope. In the end, the best results obtained for each slope
has been gathered together, and the non-dominated ones are considered to be
the best possible approximation of the Pareto Front for this strategy.
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5.3 Results

Figure 3 presents the results of both strategies, in objective space: the approx-
imation of the Pareto Front by MO-CMA-ES is concentrated around 8 points
only, and 5 points (a-e) represent the best approximation of the Pareto Front
by CMA-ES, corresponding to the slopes (1, 5, 25, 50, 100). For each of these,
the crosses represent the average values over the 10 runs along with standard
deviations in both directions.

The first conclusion to be drawn is that MO-CMA-ES results are dominated
by the CMA-ES results. Moreover, and this is the reason why so few slopes below
1 were tried, the results with slope 0.01 are slightly dominated, but very close
to those with slope 1 (hence they are not plotted on Figure 3). This seems to
indicate that FitCAD has orders of magnitude more influence on the fits than
FitBCD. In order to confirm this point, we ran CMA-ES on each fitness alone:
it reaches error values down to FitCAD = 47, but at the cost of an error on
Bicoid of order 106 - while FitBCD never reached any value lower than 28.

Another finding was that the final populations of the MO-CMA-ES runs (not
shown) were very diverse, whereas all single-objective runs for the same slope
robustly found very similar solutions, as witnessed by the crosses on Figure 3.
MO-CMA-ES seems to lack some evolutionary pressure toward the true Pareto
Front, maybe because, in multi-objective algorithms, the whole population
rapidly contains only non-dominated points, and the selection pressure is then

e e

d

d

c

c

b

b

a

a
best non dominated set

�MOCMA�

CMA

28.5 29.0 29.5 30.0 30.5 31.0 31.5

70

80

90

100

Fitness Bicoid

Fi
tn

es
s

C
au

da
l

CMA and MOCMA solutions

Fig. 3. Best non-dominated sets found by the single-objective (CMA) and multi-
objective (MO-CMA) techniques. In the single-objective approach, we have optimized
the fitness function FitCAD + ci · FitBCD, for ci = 1, 5, 25, 50, 100. By construction,
the Pareto front is tangent to these lines. The results are labelled as small a, b, c, d, e,
respectively. For each slope ci, the mean values and the standard deviations are repre-
sented with crosses. The best result of each set of 10 optimization runs for each ci has
the same label. The final result of the multi-objective case is the best non-dominated
population calculated by the intersection of the final populations of 100 independent
runs. In this case, the MO-CMA technique gives worst solutions for the optimization
problem.
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Fig. 4. Evolution of the fitnesses (MSEs on the Bicoid and Caudal) during optimiza-
tion. Plotted are the averages and standard deviations over 100 runs for both CMA-ES,
minimizing the sum of both fitnesses, and MO-CMA-ES. Above are single fitness val-
ues (the minimal values in the population for MO-CMA-ES, the values for the best
individual in CMA-ES). Below is the sum of both of the above (the actual fitness used
by CMA-ES).

enforcing the uniform spreading on the current front rather than progress toward
the true Pareto Front.

Figure 4 illustrates the situation, by plotting average results for 100 runs
of MO-CMA-ES on the one hand, and of CMA-ES optimizing FitCAD(α) +
FitBCD(α) (i.e. corresponding to point a in figure 3) on the other hand. Above
plots are the best values in the population (averaged over the 100 runs) for
FitCAD and FitBCD, and below is the sum of both. The fact that the MO-
CMA-ES plot never catches up that of CMA-ES, even when considering the best
possible value for one error alone, is another sign of its poor behavior.

Note that both algorithms are compared using the number of function eval-
uations on the x-axis, but the MO-CMA-ES requires some additional overhead
time: the update of the covariance matrix is made for each individual, and the
whole population undergoes non-dominated sorting. However, for larger systems
of differential equations, such as the ones describing the genetic network of the
early development of Drosophila, [AD06], the computational cost of numerical
integration will be the most time consuming part of the algorithm. This is why
it has also been used here.

Table 1 displays the parameters of model equations (3) and the corresponding
fitness values, fitted with the CMA-ES algorithm. The actual fits of the corre-
sponding solutions of the model equations (3) and plotted against experimental
data are shown in Figure 5. In the numerical fits, we have fixed the Drosophila
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Table 1. Parameter values for the five best non-dominated solutions of model equations
(3), obtained with the CMA algorithm, for the experimental data set of Figure 1c).
In Figure 5, we show this data set together with the solutions of equations (3) for the
parameter values a-e. All the different choices of these parameter values are calibrated
candidates of the experimental data set. We also show, for each parameter, the mean
value (mean) and the standard deviation (σ) taken on the Pareto front.

a b c d e mean σ

L1 5.68 · 10−2 6.72 · 10−2 6.25 · 10−2 3.29 · 10−2 1.43 · 10−2 4.67 · 10−2 2.24 · 10−2

L2 1.73 · 10−1 1.68 · 10−1 1.62 · 10−1 1.84 · 10−1 1.94 · 10−1 1.76 · 10−1 0.12 · 10−1

L3 4.28 · 10−1 4.35 · 10−1 4.04 · 10−1 4.07 · 10−1 4.04 · 10−1 4.16 · 10−1 0.14 · 10−1

L4 7.63 · 10−1 7.74 · 10−1 8.45 · 10−1 8.45 · 10−1 8.48 · 10−1 8.15 · 10−1 0.42 · 10−1

B 1.53 · 10+3 1.98 · 10+3 3.47 · 10+3 2.36 · 10+3 1.98 · 10+3 2.26 · 10+3 0.73 · 10+3

C 1.06 · 10+3 1.08 · 10+3 1.26 · 10+3 1.28 · 10+3 1.28 · 10+3 1.19 · 10+3 0.11 · 10+3

Dbcd 1.00 · 10−2 1.09 · 10−2 1.99 · 10−2 2.03 · 10−2 2.04 · 10−2 1.63 · 10−2 0.53 · 10−2

Dcad 1.00 · 10−2 1.00 · 10−2 1.00 · 10−2 1.00 · 10−2 1.00 · 10−2 1.00 · 10−2 0.00 · 10−2

abcd 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 1.31 · 10+1

acad 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 3.96 · 10+1

r 8.64 · 10+3 6.74 · 10+3 3.34 · 10−2 5.74 · 10−2 6.71 · 10−4 3.07 · 10+3 4.26 · 10+3

Iterations 9.84 · 10+3 9.79 · 10+3 9.37 · 10+3 9.35 · 10+3 9.36 · 10+3 9.54 · 10+3 0.25 · 10+3
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Fig. 5. Fits with experimental data for Bicoid and Caudal from the data shown in
Figure 1c). (Embryo ad13 from the FlyEx database). The five figures correspond to
the parameter values a-e in Table 1. The parameters of the different functions are on
the best approximated Pareto set of Figure 3. In (a), we show the best fit for Bicoid
and the worst fit for Caudal, then a gradual variation occurs, and in (e) it we have
plotted the worst fit for Bicoid and the best fit for Caudal.

embryo length to the standard value L = 0.5 × 10−3m, and all the graphs of
Figure 5 have been scaled to the interval [0, 1].

The mean relative error between the experimental data and the optimized
solutions of the model equations (3) can be measured by the fitness function.
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For example, for the case of Bicoid protein, if BCDmax is the maximum value
of the experimental values, the relative error of the calibrated model equations
can be measured by

√
FitBCD/BCD2

max. For the experimental data analyzed
here, the mean relative error of all solution in the approximated Pareto front
using the single-objective strategy are in the range 3% − 6%.

6 Discussion and Conclusion

We have tested the applicability of a single- and a multi-objective algorithms to
the calibration of a model equation for a biological process. We have used two ap-
proaches: reducing the multi-objective optimization problem to a parametrized
single-objective problem, repeatedly tackled by CMA-ES algorithm; and use an
ab-initio multi-objective perspective, the multi-objective version of CMA-ES.

From a Computer Science perspective, the most striking fact is the differ-
ence in performance between both algorithms. Further experiments with other
multi-objective algorithms should be run before any conclusion can be drawn.
However, in this paper, the multi-objective approach lacks pressure toward the
Pareto front, suggesting that other algorithms with a better control of the con-
vergence to the Pareto front should be tried. Another important issue that must
be tested is the generalization issue, i.e. how well the parameters that have been
identified using one experimental dataset fit another dataset gathered from the
same biological system.

From the biological point of view, we have shown that, if multi-objectives are
considered, biological data is compatible with a large set of parameters values
associated with a specific model. This non-dominated variability, intrinsic to
biological systems, can explain the phenotypic plasticity of living systems.

On the other hand, from a more practical point of view, this problem enabled
us to show the applicability of an mRNA diffusion model in order to describe the
establishment of steady gradients of proteins in Drosophila early development.
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Abstract. Fuzzy clustering is an important tool for analyzing microar-
ray cancer data sets in order classify the tissue samples. This article
describes a real-coded Genetic Algorithm (GA) based fuzzy clustering
method that combines with popular Artificial Neural Network (ANN)
/ Support vector Machine (SVM) based classifier in this purpose. The
clustering produced by GA is refined using ANN / SVM classifier to ob-
tain improved clustering performance. The proposed technique is used to
cluster three publicly available real life microarray cancer data sets. The
performance of the proposed clustering method has been compared to
several other microarray clustering algorithms for three publicly available
benchmark cancer data sets, viz., leukemia, Colon cancer and Lymphoma
data to establish its superiority.

1 Introduction

With the advancement of microarray technology, it is now possible to measure
the expression levels of a huge number of genes across different tissue samples si-
multaneously [1,2,3,4,5]. Several studies have been done in the area of supervised
cancer classification. But unsupervised classification or clustering of tissue sam-
ples should also be studied since in many cases, labeled tissue samples are not
available. This article explores the application of the GA based fuzzy clustering
for unsupervised classification of cancer data.

A microarray gene expression data consisting of g genes and s tissue samples
is typically organized in a 2D matrix E = [eij ] of size s×g. Each element eij gives
the expression level of the jth gene for the ith tissue sample. Clustering [6] is a
popular unsupervised pattern classification technique which partitions the input
space into K regions {C1, C2, . . . , CK} based on some similarity/dissimilarity
metric where the value of K may or may not be known a priori. The main
objective of any clustering technique is to produce a K × n partition matrix

C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.): EvoBIO 2009, LNCS 5483, pp. 191–202, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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U(X) of the given data set X , consisting of n patterns, X = {x1, x2, . . . , xn}. The
partition matrix may be represented as U = [ukj ], k = 1, . . . , K and j = 1, . . . , n,
where ukj is the membership of pattern xj to cluster Ck. In crisp partitioning
ukj = 1 if xj ∈ Ck, otherwise ukj = 0. On the other hand, for fuzzy partitioning
of the data, the following conditions hold on U (representing non-degenerate
clustering): 0 <

∑n
j=1 ukj < n,

∑K
k=1 ukj = 1, and

∑K
k=1
∑n

j=1 ukj = n.
For defuzzification of a fuzzy clustering solution, samples are assigned to clus-

ters to which they have the highest membership degree. It has been observed
that for a particular cluster, some of the samples belonging to it have higher
membership degree to that cluster, whereas the other samples of the same clus-
ter may have lower membership degree. Thus the samples in the later case are
not assigned to that cluster with high confidence. Motivated by this, the cluster-
ing result produced by the fuzzy clustering technique is refined using Artificial
Neural Network (ANN) [7,8] / Support vector Machine (SVM) [9,10], which is
trained by the points with high membership degree in a cluster. The trained
ANN / SVM classifier can thereafter be used to classify the remaining points. A
real-coded Genetic Algorithm (GA) based fuzzy clustering algorithm has been
used for generating the fuzzy partition matrix. In the subsequent stage, ANN /
SVM is applied to classify the points with lower membership degree.

The performance of the proposed GA-ANN and GA-SVM clustering tech-
niques has been demonstrated on three publicly available benchmark cancer
data sets, viz., Leukemia, Colon cancer, and Lymphoma data and compared
with that of GA based clustering alone, K-means clustering [6], FCM algorithm
[11], hierarchical average linkage clustering [6] and Self Organizing Map (SOM)
clustering [12].

2 GA Based Fuzzy Clustering

Genetic Algorithms (GAs) [13] are randomized search and optimization tech-
niques guided by the principles of evolution and natural genetics, and have a
large amount of implicit parallelism. They provide near-optimal solutions of an
objective or fitness in complex, large and multimodal landscapes. In GAs, the
parameters of the search space are encoded in the form of strings (or, chromo-
somes). A fitness is associated with each string that represents the degree of
goodness of the solution encoded in it. Biologically inspired operators like selec-
tion, crossover and mutation are used over a number of generations for generating
potentially better strings. Genetic and other evolutionary algorithms have been
earlier used for pattern classification including clustering of data [5,14,15]. In
this section, an improved GA based fuzzy clustering algorithm [14] is described.

2.1 Chromosome Encoding and Initial Population

Here the chromosomes are made up of real numbers which represent the coordi-
nates of the cluster centers. If chromosome i encodes the centers of K clusters
in g dimensional space then its length li will be g × K. For example, in four
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dimensional space, the chromosome
<1.3 11.4 53.8 2.6 10.1 21.4 0.4 5.3 35.6 0.0 10.3 17.6>

encodes 3 cluster centers, (1.3, 11.4, 53.8, 2.6), (10.1, 21.4, 0.4, 5.3) and (35.6,
0.0, 10.3, 17.6). Each center is considered to be indivisible.

Each chromosome in the initial population consists of the coordinates of K
random points from the data set.

2.2 Computation of Fitness

The fitness of a chromosome indicates the degree of goodness of the solution
it represents. Jm cluster validity index [11] is used as a fitness here. Let X =
{x1, x2, . . . , xn} be the set of n data points to be clustered. For computing the
fitness, the centers encoded in a chromosome are first extracted. Let these be
denoted as Z = {z1, z2, . . . , zK}. The membership values uik, i = 1, 2, . . . , K and
k = 1, 2, . . . , n are computed as per Eqn. 1 [11]:

uik =
1∑K

j=1(
D(zi,xk)
D(zj ,xk) )

2
m−1

, 1 ≤ i ≤ K; 1 ≤ k ≤ n, (1)

where D(., .) is a distance function, m is the weighting coefficient and K be the
number of clusters encoded in the chromosome. (Note that while computing uik

using Eqn. 1, if D(zj , xk) is equal to zero for some j, then uik is set to zero for
all i = 1, . . . , K, i �= j, while ujk is set equal to one.) Subsequently, the centers
encoded in a chromosome are updated using Eqn. 2 [11]:

zi =
∑n

k=1(uik)mxk∑n
k=1(uik)m

, 1 ≤ i ≤ K, (2)

and the cluster membership values are recomputed as per Eqn. 1. The objective
function is the Jm validity measure that is optimized by the FCM algorithm.
This computes the global fuzzy variance of the clusters and this is expressed by
the following equation [11]:

Jm =
n∑

k=1

K∑
i=1

um
ikD2(zi, xk), (3)

Jm is to be minimized to get compact clusters.

2.3 Selection

To generate the mating pool of chromosomes, conventional proportional selection
based on roulette wheel technique [13] has been used. Here, a string receives a
number of copies proportional to its fitness in the mating pool.
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2.4 Crossover

Conventional single point crossover for variable length chromosomes is used here.
While choosing the crossover points, the cluster centers are considered to be in-
divisible. Hence the crossover points can only lie in between two clusters centers.
The crossover operator is applied stochastically with probability pc.

2.5 Mutation

Following mutation operator is adopted depending on the mutation probability
pm. In this method, a random center of the chromosome to be mutated is chosen.
Then a random number δ in the range [0, 1] is generated with uniform distribu-
tion. If the value of the center in the dth dimension at is zd, after mutation it
becomes (1 ± 2.δ).zd, when zd �= 0, and (±2.δ), when zd = 0. The ‘+’ or ‘-’ sign
occurs with equal probability.

2.6 Elitism

Elitism is required to track the best chromosome obtained till the most recent
generation. It is implemented as follows: If the fitness of the best chromosome
of the ith generation is better than the fitness of the worst chromosome of the
(i + 1)th generation, then the worst chromosome of the (i + 1)th generation is
replaced by the best chromosome of the ith generation.

2.7 Termination Condition

The algorithm has been executed for a fixed number of generations. The pop-
ulation size is kept constant throughout all the generations. The best string of
the last generation is considered as the solution given by the algorithm.

3 Artificial Neural Network Based Classifier

The ANN classifier algorithm implements a three layer feed-forward neural net-
work with a hyperbolic tangent function for the hidden layer and the softmax
function [16] for the output layer. Using softmax, output of ith output neuron
is given by:

pi =
eqi∑K

j=1 eqj

, (4)

where qi the net input to the ith output neuron, and K is the number of output
neurons. The use of softmax makes it possible to interpret the outputs as prob-
abilities. The number of neurons in the input layer is d, where d is the number
of features of the input data set. The number of neurons in the output layer is
K, where K is the number of classes. The ith output neuron provides the class
membership degree of the input pattern to the ith class. The number of hidden
layer neurons is taken as 2 × d. The weights are optimized with a maximum
a posteriori (MAP) approach; cross-entropy error function augmented with a
Gaussian prior over the weights. The regularization is determined by MacKay’s
ML-II scheme [8]. Outlier probability of training examples is also estimated [17].
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4 Support Vector Machines

Viewing the input data as two sets of vectors in a d-dimensional space, a Support
Vector Machine (SVM) classifier [9] constructs a maximally separating hyper-
plane to separate the two classes of points in that space. On each side of the
separating hyperplane, two parallel hyperplanes are constructed that are pushed
up against the two classes of points. A good separation is achieved by the hyper-
plane that has the largest distance to the neighboring data points of both the
classes. Larger distance between these parallel hyperplanes indicates better gen-
eralization error of the classifier. Fundamentally the SVM classifier is designed
for two-class problems. It can be extended for multi-class problems by designing
a number of two-class SVMs.

Suppose a data set contains n feature vectors < xi, yi >, where yi ∈ {+1,−1},
denotes the class label for the data point xi. The problem of finding the weight
vector w can be formulated as minimizing the following function:

L(w) =
1
2
||w||2 + C

n∑
i=1

ξi, (5)

subject to yi[w.φ(xi) + b] ≥ 1 − ξi, i = 1, . . . , n, ξi ≥ 0. Here, b is the bias
and the function φ(x) maps the input vector to the feature vector. The dual
formulation is given by maximizing the following:

Q(λ) =
n∑

i=1

λi − 1
2

n∑
i=1

n∑
j=1

yiyjλiλjκ(xi, xj), (6)

subject to
∑n

i=1 yiλi = 0 and 0 ≤ λi ≤ C, i = 1, . . . , n. The parameter C,
called as regularization parameter, controls the tradeoff between complexity of
the SVM and the misclassification rate. Only a small fraction of the λi coefficients
are nonzero. The corresponding pairs of xi entries are known as support vectors
and they fully define the decision function. Geometrically, the support vectors
are the points lying near the separating hyperplane. κ(xi, xj) = φ(xi).φ(xj) is
the kernel function.

Kernel functions map the input space into higher dimensional space. Linear,
polynomial, sigmoidal, radial basis function (RBF), etc. are examples of them.
RBF kernels are of the following form:

κ(xi, xj) = e−γ|xi−xj |2 , (7)

where γ is the weight. The above mentioned RBF kernel is used here and γ = 0.9
is taken.

5 Combining GA Based Fuzzy Clustering with ANN and
SVM Classifier

In this section we have described how the GA based fuzzy clustering is combined
with ANN and SVM classifier for performance improvement. The steps of GA-
ANN / GA-SVM clustering are as follows:
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1. GA based Clustering: Cluster the input data set X = {x1, x2, . . . , xn}
using GA based fuzzy clustering algorithm to evolve the fuzzy membership
matrix U = [uik], i = 1, . . . , K and k = 1, . . . , n, where K and n be the
number of clusters and the number of data points, respectively.

2. Defuzzification: Assign each point k, (k = 1, . . . , n), to some cluster j
(1 ≤ j ≤ K) such that ujk = maxi=1,...,K{uik}.

3. Selecting Training Points: For each cluster i (i = 1, . . . , K), sort the
points assigned to it in the descending order of their membership degrees to
that cluster and then select top P% points from the sorted list as the train-
ing points for that cluster. Combine the training points of all the clusters to
form the complete training set. Keep the remaining points as the test set.

4. Training of the Classifier: Train the ANN / SVM classifier using the
training set created in the previous step.

5. Classify Test Points: Predict the class labels of the remaining points (test
points) using the trained ANN / SVM classifier.

6. Final Clustering: Combine the training set (class labels given by GA-
clustering) and the test set (class labels given by ANN / SVM) to obtain
the complete label vector and return it as the clustering solution.

The membership threshold P has been varied from 20% to 80% with step
size 5% and Jm index value is computed for each value of P . The value of P ,
for which the minimum Jm index score is obtained is taken as the optimum
threshold and the corresponding clustering solution is returned. Note that the
above process involves in running GA only once, whereas training and testing
involving ANN / SVM classifier need to be executed for every value of P .

6 Data Sets and Pre-processing

Three publicly available benchmark cancer data sets, viz., Leukemia, Colon can-
cer and Lymphoma data sets have been used for experiments. the data sets and
their pre-processing are described in this section.

6.1 Leukemia Data

The Leukemia data set [1] consists of 72 tissue samples. The samples consists of
two types of leukemia, 25 of AML and 48 of ALL. The samples are taken from 63
bone marrow samples and 9 peripheral blood samples. There are 7,129 genes in
the data set. The data set is available at http://www.genome.wi.mit.edu/MPR.

The data set is subjected to a number of pre-processing steps to find out the
genes with most variability. As here we consider the problem of unsupervised
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classification, the gene selection steps followed here are also completely unsu-
pervised. However, more sophisticated methods for gene selection could have
been applied. First we select the genes whose expression levels fall between 100
and 15000. From the resulting 1015 genes, the 100 genes with the largest vari-
ation across samples are selected, and the remaining expression values are log-
transformed. The resultant data set is of dimension 72 × 100.

6.2 Colon Cancer Data

The Colon cancer data set [4] consists of 62 samples of colon epithelial cells
from colon cancer patients. The samples consists of tumor biopsies collected
from tumors (40 samples), and normal biopsies collected from healthy part of
the colons (22 samples) of the same patient. The number of genes in the data set
is 2000. The data set is publicly available at http://microarray.princeton.edu/
oncology.

This data set is pre-processed as follows: First the genes whose expression
levels fall between 10 and 15000 are selected. From the resulting 1765 genes,
the 200 genes with the largest variation across samples are selected, and the
remaining expression values are log-transformed. The resultant data set is of
dimension 62 × 200.

6.3 Lymphoma Data

The diffuse large B-cell lymphoma (DLBCL) dataset [2] contains expression
measurements of 96 normal and malignant lymphocyte samples each measured
using a specialized cDNA microarray, containing 4,026 genes that are prefer-
entially expressed in lymphoid cells or which are of known immunological or
oncological importance. There are 42 DLBCL and 54 other cancer disease sam-
ples. The data set is publicly available at http://genome-www.stanford.edu/
lymphoma.

The pre-processing steps for this data sets are as follows: As the data set
contains some missing values, we select only those genes which do not contain
any missing value. This results in 748 genes. Next each gene is normalized to
have expression value between 0 and 1. Thereafter top 100 genes with respect
to variance are selected. Hence the data set contains 96 samples each described
by 100 genes.

7 Experimental Results

The performance of the proposed GA-ANN and GA-SVM clustering has been
compared with GA based clustering alone, K-means clustering [6], FCM [11],
hierarchical average linkage clustering method [6] and Self Organizing MAP
(SOM) clustering [12].
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7.1 Performance Metrics

For evaluating the performance of the clustering algorithms on the three cancer
data sets, an external validity measure namely Adjusted Rand Index (ARI) [18]
and an internal validity measure namely Silhouette Index (S(C)) [19] are used.

Adjusted Rand Index. Suppose T is the true clustering of the samples of a
cancer data set based on domain knowledge and C a clustering result given by
some clustering algorithm. Let a, b, c and d respectively denote the number of
sample pairs belonging to the same cluster in both T and C, the number of pairs
belonging to the same cluster in T but to different clusters in C, the number of
pairs belonging to different clusters in T but to the same cluster in C, and the
number of pairs belonging to different clusters in both T and C. The adjusted
Rand index ARI(T, C) is then defined as follows:

ARI(T, C) =
2(ad − bc)

(a + b)(b + d) + (a + c)(c + d)
. (8)

The value of ARI(T, C) lies between 0 and 1 and higher value indicates that C
is more similar to T . Also, ARI(T, T ) = 1.

Silhouette Index. Silhouette index [19] is a cluster validity index that is used to
judge the quality of any clustering solution C. Suppose a represents the average
distance of a point from the other points of the cluster to which the point is
assigned, and b represents the minimum of the average distances of the point
from the points of the other clusters. Now the silhouette width s of the point is
defined as:

s =
b − a

max{a, b} . (9)

Silhouette index S(C) is the average silhouette width of all the data points
(genes) and it reflects the compactness and separation of clusters. The value of
silhouette index varies from -1 to 1 and higher value indicates better clustering
result.

7.2 Distance Measure and Input Parameters

Pearson correlation based distance measure is used here since it is independent
of the expression values, rather it is dependent on the expression patterns of
the two samples between which the distance is to be measured. Hence the data
sets need not to be standardized with zero mean and unit variance for using the
correlation based distance measures. This is defined below:

Pearson Correlation: Given two sample vectors, si and sj , Pearson correlation
coefficient Cor(si, sj) between them is computed as:

Cor(si, sj) =
∑p

l=1(sil − μsi)(sjl − μsj )√∑p
l=1(sil − μsi)2

√∑p
l=1(sjl − μsj )2

. (10)



Refining Genetic Algorithm Based Fuzzy Clustering 199

Here μsi and μsj represent the arithmetic means of the components of the sample
vectors si and sj respectively. Pearson correlation coefficient defined in Eqn. 10
is a measure of similarity between two samples in the feature space. The distance
between two samples si and sj is computed as 1− Cor(si, sj), which represents
the dissimilarity between those two samples.

The different parameters of GA are taken as follows: number of genera-
tions=100, population size=50, crossover probability=0.8 and mutation proba-
bility=0.01. These values have been chosen experimentally. The fuzzy exponent
m is chosen as in [20,21], and the values of m for the data sets Leukemia, Colon
cancer and Lymphoma are set to 1.19, 1.53 and 1.34, respectively. The K-means
and the fuzzy C-means algorithms have been run for 200 iterations unless they
converge before that.

7.3 Results

Each algorithm has been executed for 50 runs and the Tables 1 and 2 report the
average ARI index scores and average S(C) index scores over 50 runs, respec-
tively, for the Leukemia, Colon cancer and Lymphoma data sets. It is evident
from the tables that irrespective of the data set used, application of ANN / SVM
improves the clustering performance of the GA based clustering. The GA-ANN
/ GA-SVM clustering produce the best average ARI index scores and S(C) in-
dex scores compared to the other algorithms. In general, it can be noted that

Table 1. Average ARI scores produced by 50 runs of different algorithms for Leukemia,
Colon cancer and Lymphoma data sets

Algorithms Leukemia Colon cancer Lymphoma
GA-ANN 0.8324 0.6634 0.4015
GA-SVM 0.8133 0.6672 0.4031
K-means 0.7093 0.4264 0.3017
FCM 0.7019 0.4794 0.3414
GA 0.7758 0.5629 0.3458
Avg. linkage 0.6284 -0.0432 0.3973
SOM 0.7409 0.5923 0.3367

Table 2. Average S(C) scores produced by 50 runs of different algorithms for
Leukemia, Colon cancer and Lymphoma data sets

Algorithms Leukemia Colon cancer Lymphoma
GA-ANN 0.3108 0.4338 0.3226
GA-SVM 0.3102 0.4385 0.3234
K-means 0.2252 0.1344 0.2291
FCM 0.2453 0.1649 0.2239
GA 0.2606 0.3015 0.2543
Avg. linkage 0.1934 0.2653 0.2235
SOM 0.2518 0.3153 0.2665
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GA-ANN / GA-SVM consistently outperforms the other algorithms for all the
data sets in terms of both the performance indices.

7.4 Statistical Significance Test

To establish that GA-ANN and GA-SVM are significantly superior compared
to the other algorithms, a statistical significance test called t-test has been con-
ducted at the 5% significance level. Seven groups, corresponding to the seven
algorithms (1. GA-ANN, 2. GA-SVM, 3. K-means, 4. FCM, 5. GA, 6. average
linkage and 7. SOM) have been created for each data set. Each group consists
of the ARI index scores produced by 50 runs of the corresponding algorithm.

As is evident from the Table 1, the average values of ARI scores for GA-ANN
and GA-SVM are better than those for the other algorithms. To establish that
this goodness is statistically significant, Table 3 reports the P-values produced
by t-test for comparison of two groups (group corresponding to GA-ANN and a
group corresponding to some other algorithm) at a time. As a null hypothesis, it
is assumed that there are no significant difference between the mean values of two
groups. Whereas, the alternative hypothesis is that there is significant difference
in the mean values of the two groups. All the P-values, except for comparison
between GA-ANN and GA-SVM, reported in the table are less than 0.05 (5%
significance level). Similar results are obtained for GA-SVM also (Table 4). These
are strong evidences against the null hypothesis, indicating that the better mean
values of the ARI index produced by GA-ANN and GA-SVM are statistically
significant and do not occur by chance. Moreover, large P-values for comparison
between GA-ANN and GA-SVM indicates that these two algorithms are equally
good. Statistical significance test on S(C) index values (not shown here) also
provides similar results.

Table 3. P-values produced by t-test comparing GA-ANN with other algorithms

P-values
Data Sets (comparing average ARI index scores of GA-ANN with other algorithms)

K-means FCM GA Avg. Linkage SOM GA-SVM
Leukemia 2.3E-06 2.67E-06 3.4E-05 1.08E-06 2.5E-04 0.537
Colon 2.31E-05 4.43E-08 4.3E-07 6.5E-05 1.45E-06 0.621
Lymphoma 4.42E-06 4.61E-07 4.2E-05 1.4E-05 1.08E-06 0.844

Table 4. P-values produced by t-test comparing GA-SVM with other algorithms

P-values
Data Sets (comparing average ARI index scores of GA-SVM with other algorithms)

K-means FCM GA Avg. Linkage SOM GA-ANN
Leukemia 1.3E-06 2.17E-06 3.5E-06 1.14E-05 5.25E-04 0.537
Colon 2.31E-05 2.23E-08 1.3E-04 5.52E-04 2.31E-05 0.621
Lymphoma 5.52E-06 7.4E-05 2.4E-05 2.43E-06 3.7E-06 0.844
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8 Discussion and Conclusions

An unsupervised cancer data classification technique based on GA-based fuzzy
clustering has been presented. The quality of the clustering solutions produced
by the GA-based fuzzy clustering has been improved through ANN / SVM clas-
sification. Results on three publicly available benchmark cancer data sets, viz.,
Leukemia, Colon cancer and Lymphoma, have been demonstrated. The perfor-
mance of the proposed technique has been compared with that of several other
clustering methods. The results demonstrate how improvement in clustering per-
formance is achieved by refining the clustering solution produced by GA using
ANN / SVM classifier. It has been found that the GA-ANN / GA-SVM cluster-
ing schemes outperform all the other clustering methods considered here.
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