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PROJECT OVERVIEW

Software Verification and Validation

Research in software verification and validation (V&V) has been conducted for more than three

decades. Software systems play an increasingly critical role in society and industry and their

complexity tends to grow exponentially over time. As a result, existing V&V technology in many

industry sectors is no match for the scale and complexity of software systems, and this makes

it difficult to ensure the dependability of software systems in a cost-effective way. For example,

safety-critical systems in various industries (e.g., aerospace, automotive, maritime, and energy)

increasingly rely on software and need to be certified with respect to their safety. Despite in-

ternational standards and practical guidelines, no cost-effective, well-established way to ensure

software safety at a reasonable level exists.

Software V&V research develops algorithms, strategies, and tools to help develop and automate

techniques to detect failures and correct faults in software systems. From a scientific standpoint,

this research involves a variety of technologies that cover many technical domains, including soft-

ware modeling, programming languages, static and dynamic analysis of source code, simulation,

and optimization and search algorithms. These domains must be integrated to form a suitable,

complete, and practical V&V solution.

Scientific Challenges
The main challenges regarding software V&V relate to devising solutions that scale up to the

increasing complexity of software systems. In practice, resources to verify and validate software

systems are limited, both in terms of available expertise and time. The challenges at a more de-

tailed level are related to the effective automation of verification techniques and to the evaluation

of their cost-effectiveness.

Most of the work on V&V performed at Simula takes a model-driven approach that relies on

models of the behavior and properties of the designed software system. We make use of meta-

heuristic search techniques developed in evolutionary computing to reveal potential problems in

the system design and to generate an optimal set of test cases with a high fault-revealing power.

The focus of verification spans faults ranging from functional to safety, response time, and con-

currency properties. Such an approach is markedly different from mainstream approaches, based

for example on static analysis of source code or model checking, which, for different reasons,

tend not to scale up to large systems.

Obtained and Expected Results
A number of model-driven techniques have been developed for class testing, component off-the-

shelf testing, integration testing, and testing of non-functional properties such as response time,

deadlocks, or starvation. Many other aspects of verification must be investigated, with a particular

emphasis on safety and robustness. Moreover, providing automated solutions and investigating

their cost and effectiveness on large systems requires attention.

We currently are in the process of establishing model-based testing practices at Tandberg in

Oslo, and new projects with other companies are beginning. One of these projects, with Det

Norske Veritas, that is of particular interest to Norwegian society, is the improvement of software

V&V technology in the maritime and energy sectors, where complex software systems play an

increasingly important role and where software failures can lead to dramatic consequences in

terms of loss of human lives, damage to the environment, or significant financial losses.
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28.1 Introduction
Software is present in most systems across all industries, including energy, automo-

tive, health care, maritime, aerospace, and banking, to name just a few. Software

systems are increasingly taking on safety- and business-critical roles and growing

in complexity. One crucial aspect of software development is therefore to ensure

the dependability of such systems, that is, their reliability, safety, and robustness.

This is achieved by several complementary means of verification, ranging from early

analysis of system specifications and designs to systematic testing of the executable

software. Such verification activities are, however, difficult and time-consuming. This

stems in part from the sheer complexity of most software systems and because they

must accommodate changing requirements from many stakeholders.

Software verification potentially has a high impact on the dependability of sys-

tems and therefore their economical, human, and environmental impact. Exhaustive

verification, however, even on smaller systems, is impossible to achieve and this of-

ten leads to the difficult dilemma of how to achieve sufficient confidence with limited

resources. This chapter presents a personal assessment of the state of the art in soft-

ware verification, its achievements and gaps, and a set of research directions that the

author believes hold promise for the future.

28.2 Background

Fundamentals
The goal of software verification is to make software-based systems dependable.

Software dependability is, however, a multipronged concept. Ideally, one would like

software systems to be correct. It is, however, highly difficult to prove the correctness

of even small programs [11]. The closest workable concept is that of reliability, which

is defined as the probability that a system will perform its intended function during

a specified period of time under stated conditions [17]. Moreover, there is more to

dependability than just reliability. A system also needs to be robust and safe. A sys-

tem is robust if it acts reasonably under severe, unusual, or illegal conditions [31].
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Robustness is often associated with the concept of “graceful degradation”, that is,

the capacity of a system to provide partial functionality even under degraded condi-

tions. Safety is related to whether a system can cause damage, for example, threaten

human life or cause serious environmental damage. Those three aspects of depend-

ability, namely, reliability, robustness, and safety, are related but distinct. They must

all be addressed by verification with dedicated techniques.

There are three ways according to which one can influence dependability. First,

through rigorous specification, design, and coding practices, one can limit the intro-

duction of defects, although one cannot entirely avoid them. Second, one can attempt

to detect defects as early as possible in the development life cycle, for example, by

inspecting, analysing, or testing various artefacts, such as design documents, mod-

els, and source code. Such activities are referred to as verification. Last, software can

be designed to be fault tolerant in order to contain run-time failures and, in the worst

case, provide degraded but graceful functionality in the event of failure [38].

Verification can be performed according to different processes, depending on the

artefact to be verified and the technology available. As far as non-executable arte-

facts are concerned, common practices include inspections, walkthroughs, and code

reviews [46]. Those are all variants of informal but systematic manual or partially

automated analyses of development artefacts, ranging from planning documents to

specification and design documents to even source code. Alternatively, if the spec-

ification and design are represented as verifiable models (i.e., abstractions) bearing

precise semantics, then automated model analysis can be considered. Model analysis

is used here as a general term to refer to any form of analysis of model properties.

For example, one may want to verify whether deadlocks are possible in a concurrent

design [57]. Model analysis methods range from formal and exhaustive (e.g., model

checking [31]) to search-based heuristics1 [31]. Executable code can be tested, that

is, executed in some controlled and systematic fashion in order to ensure that it

properly implements its specifications. This chapter will focus on two types of veri-

fication: model analysis using search heuristics (simply referred to below as model

analysis) and testing. The main reason is that, in the foreseeable future, these options

are believed to be the only ones scalable to large systems.

Testing

Testing usually has a number of complementary objectives. It must, of course, be

effective at triggering failures and therefore detecting faults. But it is also important

that the testing process be automated and repeatable. It must be automated to be

cost-effective, given the typical complexity of software systems, and it must be re-

peatable so that a precise understanding of the fault can be gained to verify that it

was properly corrected. It must also be helpful in locating faults in the source code

once a failure is observed, i.e., the fault localization problem [55]. Finally, it must be

systematic in order to associate an expected level of dependability with a specific

testing strategy.

1 This form of analysis is not to be confused with model checking, which, as further discussed

below, is an important approach to model analysis that has been getting increasing attention in

recent years.
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Figure 28.1 Dimensions of software testing.

There are many different testing activities in a typical software development pro-

cess, as illustrated in figure 28.1. Such activities typically differ according to the

type of faults they aim to find and the phase of verification during which they can

be applied. Testing can focus on the verification of single units or components in

isolation (i.e., unit or component testing). It can target the interactions of compo-

nents or (sub)systems, which is usually referred to as integration testing, or it can

encompass the testing of entire systems, whether on development or deployment

platforms, which can be distinct and very different for embedded systems [57]. Test

techniques are typically classified according to three main categories. Black-box tech-

niques rely exclusively on some representation of the specification of the system

under test (SUT): They do not use internal information regarding design or source

code. White-box techniques rely on structural information obtained, for example,

through source code analysis. Techniques that rely on partial information about the

system’s internal details, such as design documents, are often referred to as grey-

box techniques. These different testing techniques are complementary, since they

are used to target different types of faults during different verification activities [42].

One practical issue is to determine the appropriate combination of techniques in a

given development context.

When testing is based on models of the system’s behaviour or structure, the

terms model-based and model-driven are typically used. The main idea, in the con-

text of model-driven development (MDD) [51, 44], is to exploit the early models of

the system’s specifications and design to automate (part of) the test case genera-

tion process. The development models are transformed into test models that can

then be exploited by specific test generation algorithms to satisfy certain coverage

requirements [61]. The notions of test model and coverage criteria are illustrated in

28.2, where the test model could, for example, be a state machine model of the SUT

and the coverage criterion could require that all transitions in the state machine be
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Figure 28.2 Deriving test cases from test models and coverage criteria.

covered by test suites. Based on a test model and an objective coverage criterion,

mechanisms can be devised to automatically derive test cases, although this is not

always an easy endeavour. The goal is then to check the conformance of a system

implementation with a dedicated model representation, which is itself derived from

specification and design information. Failures can be due to a fault either in the model

or in the implementation. Models have also been shown to be useful in addressing the

well-known oracle problem, which is the way the verdict of each test execution will

be determined, since test case execution results can be compared against relevant

information in the model.

Model Analysis

When the behaviour, structure, and other properties of the software are modeled

during the specification and design stages, such models can be analysed to verify

various relevant properties early in the development cycle, long before any test-

ing can be performed. There are different ways to go about this, each differing in

their level of formality, practicality, and scalability. One important field of research

is model checking [31], which can be defined as “the process of checking whether

a given structure is a model of a given logical formula”. For example, the structure

can be a finite state machine and the logical formula can be expressed in proposi-

tional logic or temporal logic. Such formulas may target safety, temporal, or concur-

rency properties. The advantage of the model-checking approach is that it system-

atically explores all reachable states (at a certain level of abstraction) of a system,

thus providing strong confidence about whether certain properties hold. One of the

challenges of model checking, however, is that on industrial-scale problems, it often

faces a combinatorial explosion problem for which many solutions are still currently

being investigated [31]. Another practical issue is that many model checkers require

the use of modelling languages that are far away from current development practice

and not always easy to use on large-scale problems, for example, temporal logic.

The approach to model analysis focussed on in this chapter is aimed at being more

scalable and is based on evolutionary or meta-heuristic search techniques [16]. In

this situation, a fitness or objective function is defined to represent the violation of a

property and a guided but random search technique is used to traverse the space of

possible behaviours of the system being verified. The point is to uncover problems

without having to explore the entire state space of the system. Such an approach

does not guarantee that a property will never be violated but through the guided
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search it optimizes the chances of finding property violation occurrences if there are

any. Furthermore, approaches based on search heuristics are usually not as demand-

ing as model checking in terms of the level of formality required for the model input.

This is also expected to facilitate the integration of model analysis with the other

activities of software development. Examples will be discussed below.

State of the Art, State of Practice, and Problem Definition
The point here is not to provide a comprehensive overview of the state of the art in

software testing. For this, the reader is referred to the several reviews on the subject

[23, 49, 37]. What follows is, instead, a subjective assessment reflecting the author’s

experience trying to bridge research and practice and apply or tailor research results

in practical situations.

Software-testing research has been a focus of attention for more than three

decades, though the number of researchers in the field has grown exponentially in

the last decade. This stems from the recognition that verification activities take up to

50 per cent of resources on typical development projects and far more in the context

of safety-critical development. Furthermore, several recent papers have shown that

current verification practices are far from satisfactory [14].

A large body of work exists on testing techniques based on control and data flow

analysis of the source code [31]. Such white-box approaches have, however, shown

practical limitations in terms of their scalability, e.g., when dealing with millions of

lines of code, and automation. For example, the identification of infeasible control

flow paths is generally an undecidable problem. It was suggested that in the con-

text of testing larger components or systems, white-box testing could only be used

to indicate what parts of the system lacked coverage once black-box testing was

applied, thus leading to the refinement of black-box test suites [42]. As a result, in

practice, white-box testing is used in its simplest form, such as statement coverage

and, more rarely, edge/branch coverage. Very few tools [5, 35] go beyond these

simplest strategies for code coverage, despite decades of research on the topic.

Another important body of work in the testing area concerns mutation analysis

or fault-based testing [61]. The main idea is to define so-called mutation operators to

automatically modify the SUT in small ways and generate large numbers of program

mutants, i.e., programs with one incorrect change. Test suites are then refined until

all mutants trigger at least one failure. The motivation is to expose weaknesses in the

test data and ensure that all parts of the SUT are exercised during testing. The main

problem with mutation testing is that typically many mutants are equivalent from

a functional standpoint to the original program and identifying equivalent mutants

is once again an undecidable problem. Second, even on small programs, very large

numbers of mutants can be generated and this therefore requires valid sampling

strategies to select a representative subset of mutants. Last, whether test suites that

effectively detect mutants are also effective at detecting real faults is still in question,

although recent evidence suggests that this is the case [33]. As a result, despite

substantial research over the last two decades, to the knowledge of the author, only

limited industrial application of fault-based testing has been reported.
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Another area of intense research has been the use of state machine models to

test communication protocols [49]. This research started three decades ago with the

seminal article by Chow [59] on the W method. This research focussed, to a great

extent, on finding strategies to traverse the finite state machines to guide testing

and on automatically deriving distinguishing sequences of inputs to determine the

resulting state of test sequences, thus helping determine whether the communication

protocol conformed to its state machine specification. Though this body of work has

impacted the verification of communication protocols, state-based testing in other

areas is still a very rare practice. One reason is that very little is known regarding

the cost-effectiveness of various test strategies based on state models [47]. Recent

experiments [45] have shown that certain strategies are far from effective, even for

small software components. Another reason is that the practice of state modelling in

software development is still infrequent—with perhaps the exception of certain areas

in embedded systems where it is required by standards—in part because it is not

appropriate for every type of system but also because it is rather complex in large

components or subsystems.

A large body of work addresses the problem of regression testing. The goal is to

be able to minimise and prioritise regression test cases on every release [43, 36, 28].

This is important, since with the rise of incremental development, several releases

of a software product are typically released every year. Since regression test suites

that check whether unchanged functionality has not been broken by new changes

can be quite large, re-running all regression test cases can be impractical or even

impossible. This is where selection and prioritisation techniques come in. Most of

these are based on source code control flow, data flow, and change analysis. Most

existing studies are based on small, artificial programs and very little is known about

the conditions under which such regression test techniques are beneficial. The gains

in many cases seem to be rather small and test case selection often leads to faults re-

maining undetected. Though prioritisation is more promising, empirical results based

on realistic conditions (i.e., real releases, changes, and systems) are rare. As a result,

despite at least two decades of work on the subject, the results of academic research

in regression testing are scarcely applied in practice and there is no comprehensive

commercial tool supporting most techniques.

Other areas of intense research that have failed to transfer to industrial prac-

tice include testing based on logical specifications [19] and the use of combinatorial

designs, especially in the context of testing software with many configuration param-

eters [60].

In recent years, with the maturation of the Unified Modeling Language (UML)

[24, 50] as a standard modelling language for software, practical and model-based

verification techniques have received increasing attention. Indeed, for the community

working on model-based verification, UML has brought a number of advantages. It

addressed a wide range of modelling requirements and came with an increasingly so-

phisticated set of tools and open-architecture technologies to help automate analysis

and testing based on models. The UML is the modelling language used in the con-

text of the Model Driven Architecture R©(MDA R©) standard supported by the Object
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Management GroupTM(OMGTM)2, a large consortium of software industry leaders.

Furthermore, the language can be used at different levels of formality and extended

and tailored according to needs into so-called profiles. Also UML 2.0 contains many

features that support the modelling of large-scale, complex systems. Though it can

be used at different levels of rigour, UML has tried to bring together best practices

from many world experts and past successful methods and a real attempt to make

modelling practical and scalable has been made through the work around MDA. Re-

cently, UML was even extended to define a UML testing profile [15] whose main

goal was to provide a way to model testing information, e.g., test cases, suites, and

harnesses, using also the UML and its associated tools, thus facilitating the develop-

ment of test tools and the interchange of test data among them. Other profiles exist,

for example, in the areas of real-time and embedded systems [39] and safety-critical

software [38]. Such profiles, as standards approved by the OMG, can be used to

develop models that are then appropriate as a source of information for automating

verification, either through model analysis or model-based testing. The work on us-

ing UML models to automate testing is, however, still fragmentary and, as discussed

in [32], most techniques are superficially defined and not automated and validated

to an extent that makes them interesting solutions to consider.

At the same time that MDA was evolving as a standard, a new field of research

emerged focussing on hard, long-standing test automation issues: evolutionary test-

ing. The basic idea is to transform an automation problem into a search/optimisation

problem. Evolutionary search techniques, also referred to as meta-heuristic search

techniques, are used to solve typically hard search problems in large search spaces

[16]. They have shown to be effective for a variety of testing problems, such as au-

tomating the generation of test suites to achieve code coverage [58]. More recently,

these techniques have been used to address non-functional testing problems [52, 7]

such as execution time deadlines and safety properties. Despite promising results,

however, the scalability and effectiveness of evolutionary testing to address realistic

test automation problems still remain to be investigated [40].

A recurring problem in past testing research is related to the scalability and cost-

effectiveness of the proposed test techniques. How can one gain sufficient confidence

in complex software systems when limited time and resources are available? There is

obviously no perfect solution to this dilemma. As further developed below, however,

there are reasons to believe that certain types of model-based analysis and testing

strategies, supported by evolutionary search techniques, can be combined to address

large-scale software verification in a cost-effective and scalable manner.

Although mostly an academic exercise at this point, model checking is the most

common approach to model analysis and consists in verifying that a system or,

rather, a model thereof, complies with a property, for example related to safety or

concurrency, by exhaustively exploring all its reachable states [31]. It therefore re-

quires that system models, for example state machines, and property models such as

temporal logic formulas, be developed to be applicable. These models must comply

with the specific notation used by the selected model checker (e.g., Promela in SPIN

2 www.omg.org

http://www.omg.org
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[31]). Despite many claims, its practice, however, is still very rare and very little ev-

idence exists to show that it can scale up to real verification problems and whether

this is applicable in most software development contexts. The main problems stem

from its underlying principle of exhaustively searching a state space and, though a

number of approaches have been investigated to alleviate this problem, no generally

satisfactory solution has been devised.

28.3 Requirements for Model-based Verification
The purpose of this section is to clearly identify the requirements to address the

problems stated in the previous section. This will help us structure our discussion

in the next section and provide clearer arguments to support the proposed research

directions.

Testing
R1. To be cost-effective and scalable, test techniques must be automated. This must

include both the automation of test case and oracle generation. For regression test-

ing, both test case selection and prioritisation must also be supported.

R2. The user requirements for a test technique must be realistic. It must account

for what can be realistically expected given the complexity of systems, the skills

and education of software engineers, international standards, and the maturity of

supporting technology in the foreseeable future.

R3. Systems must be designed to be testable if any testing technique is to be cost-

effective. Methodologies for supporting the design and assessment of testability must

be provided. Testability is typically defined as reflecting two dimensions [29]: ob-

servability and controllability. One must be able to observe the state of the SUT and

set it in a state appropriate for preparing the execution of test cases. This typically

entails that built-in test interfaces be provided when designing software components

and subsystems [22]. Another important aspect is that the design of a system must

enable a rational integration strategy by allowing stepwise component and subsys-

tem integration while minimising the need for stubs or mocks [21].

Analysis of Early Specification and Design Artefacts
R4. Though the analysis of all interesting properties is unlikely to be fully automated

in practice, effective decision support should be provided to facilitate the analysis

of large specification and design models. The involvement of the analyst must be

minimised as well as the amount of information that must be processed to inspect

the artefact and achieve a decision.

R5. Analysis techniques, just as for testing, must be realistic in terms of the inputs

required from the analyst. This entails that the modelling notation used and underly-

ing technology be carefully selected to be usable for large systems, be supported by
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effective, extensible, and open architecture tools, and account for international mod-

elling standards. For modelling to be scalable, such notation should effectively sup-

port hierarchical, partial, and incremental modelling, the definition of model aspects

(cross-cutting concerns at the modelling level), and the automated consistency and

completeness checking of different modelling views (e.g., different UML diagrams).

28.4 Moving Forward
This section will outline what is considered to be an ambitious yet realistic research

approach to converge towards cost-effective engineering solutions for the verifica-

tion of software systems within the framework of MDD. The choices made will be

explicitly linked to the requirements stated previously.

Model-Based Test Generation and Context Simulation
The point of model-based test generation is to exploit specification or design informa-

tion for the purpose of automating test case generation (R1) according to systematic

strategies and thus check the conformance between an implementation and its spec-

ification and design. In order to provide effective and scalable test automation, there

is little alternative to model-based testing. Indeed, adequate abstract representations

(models) of the SUT must be defined to support the automated derivation of test

cases and oracles based on explicitly defined test strategies. Such automated sup-

port would be difficult to conceive based on source code analysis3 or informal, and

therefore ambiguous and probably incomplete, textual documentation. With test-

ready system models, or in short, test models, test automation is bound to be limited

to test execution and replay. On the other hand, as discussed in the section about

choice of modelling paradigm on page 428, the test modelling requirements must be

realistic so as to be applicable in practice in the context of large and complex soft-

ware systems. A balance must be struck between the effort invested in modelling

and the benefits achieved through verification automation (R2).

Figure 28.3 presents an overview of the activities and artefacts involved in model-

based testing. As one can see, the approach involves four parts, respectively related

to test modelling from specification artefacts4, exploiting the test models for test

case generation, generating the executable test harness (e.g., scripts) for a targeted

platform, and running the test cases on it. Automating test oracles is also a very

significant, practical problem throughout the software industry and is discussed in

the next subsection, since it implies specific techniques.

3 White-box testing has been shown not to scale up, as source code static analysis leads to numerous

difficulties on non-trivial programs, for example, infeasible execution paths. Furthermore, a great

deal of relevant information is difficult to reverse-engineer from source code, for example, states

and their invariants.
4 We can also focus on design artefacts, depending on the purpose and level of testing, though

in the context of object-oriented analysis and design (OOAD), design models are refinements of

analysis (specification) models. We will only refer to specifications in the remainder of the text.
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Let us now examine the main features of Figure 28.3. Test modelling requires

devising an analysable model for the specific purpose of test automation from sys-

tem specifications. If such specifications are informal, then the modelling process is

mostly manual, though it can still be supported by a specific modelling methodol-

ogy and tool. For example, one may derive some form of UML state machines from

the informal specification of a control or reactive system. The model then has to

be checked for consistency and completeness. Traceability information between the

specifications and the test model must be saved so that changes to the specifications

can later be more easily accommodated by changes in the test model. The second

phase is then to exploit the test model to generate test requirements (e.g., paths to

cover all transitions in a state machine [22]), then test cases once the test require-

ments have been validated (e.g., all transition paths are feasible), and then possibly

prioritise test cases if the resulting test suites are large. Prioritisation is usually based

on a risk model and can be achieved through some form of optimisation strategy.

The risk model can be based, for example, on how safety critical the functions trig-

gered by test cases are (e.g., transition paths) or how error prone the executed com-

ponents are (e.g., based on historical data or complexity measurements [17]). Last,

any model-based testing tool needs to be coupled with the available test script gen-

erator and test execution environments on the specific development or deployment

platform.

In the context of embedded real-time systems, it is crucial to perform as much

verification as possible on the development platform. Running test cases on the de-

ployment platform may be vastly expensive and in many cases dangerous and diffi-

cult to set up. To be able to run, say, a control system on a development platform,

its environment needs to be simulated. For example, the behaviour sensors and ac-

tuators, external systems, or even users need to be emulated as if the system under

test were actually running in its deployment environment. One interesting approach

to be investigated is the use of UML modelling and extensions to model the system

context [57] so as to be able to generate the emulation code automatically. One can,

based on appropriate models, replace the drivers’ code with emulation code having

identical interfaces. For example, state machines describing devices can be trans-

formed into code emulating these devices. Using the same modelling technology for

modelling the context and the system offers many practical advantages. It must be

determined whether, in the context of embedded systems, a UML profile, such as the

Profile for Schedulability, Performance, and Time Specification (SPT) [39], could be

used to model all relevant properties of a context (e.g., time properties of sensors).

The principles of such an approach are illustrated in figure 28.4. Another interesting

opportunity to investigate is then to use the context models to drive system testing

by adapting a guided random testing approach [3]. Random test generation can be

supported by different forms of guidance in order to generate tests automatically in

a way that achieves proper coverage of the system and provides sufficient evidence

of its reliability.
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Figure 28.3 A high-level view of model-based testing.

Deriving Test Oracles from Models
One of the hardest problems in test automation is the oracle problem (R1). When a

large number of test cases are generated and run, it is absolute necessary to auto-

mate the generation of test verdicts. This is the role of test oracles. Because models

capture the expected system behaviour, such information can be used to check the

conformance of an implementation with its specification. In UML, behaviour can be

modeled in different ways and at various levels of details. State machines capture

states, their invariants, and their transitions and are particularly suitable for certain

types of systems and components, as in the embedded systems domain. Interaction

diagrams capture possible component interaction patterns and can be useful dur-

ing integration testing to check whether observed interactions (e.g., from execution

traces) are consistent with expectations. Various types of constraints, defined, for ex-

ample, with the Object Constraints Language (OCL)—a component of the UML—can

be checked at run time, though it is important to consider the execution overhead

incurred and its consequences in real-time distributed systems. Examples of types of

constraints include operation contracts, class invariants, and safety properties. Re-

search has been carried out to capture execution traces in distributed systems [34]
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Figure 28.4 Context modelling and simulation for test purposes.

and abstract sequence diagrams from these. One challenge, however, is to obtain

models at similar levels of abstraction as design models from execution traces to fa-

cilitate comparisons. Studies have assessed the effectiveness of contract assertions

as oracles [13] and the necessary level of detail and density of oracles [12] to achieve

effective fault detection results. The effectiveness of using state invariants as oracles

has also been investigated and has shown in many cases to be insufficient by itself

[21, 18]. Overall, very little empirical research and scant results exist regarding the

cost-effectiveness of various oracle strategies, whether for model-based testing or in

general. Effective model-based oracle strategies and their empirical assessment are

therefore an important research endeavour. One particularly difficult area of inves-

tigation is the automation of oracles for detecting quality-of-service problems, for

example, related to response time, throughput, or security.

Choice of Modelling Paradigm
Ideally, the same modelling paradigm (notation, process) and technology should be

used for system modelling and test modelling. In practice, this facilitates integra-

tion of specification, design, and testing activities. Designers and testers can then

“speak” the same “language” and use common development platforms and tech-

nologies. This is of high practical importance, since the lack of collaboration and

communication between design and testing teams is a notoriously common prob-

lem. As a result, the adopted modelling paradigm needs to account for the needs of

all stakeholders, including analysts, designers, and testers.

In the foreseeable future, MDA and UML will remain the de facto international

standards for MDD (R2 and R5). They will continue to evolve under the control of

the OMG and will be increasingly supported by open-source or open architecture

technologies such as Eclipse-based modelling platforms [25]. These tools typically

enable the definition of new profiles (e.g., for specific verification purposes) and plug-

ins to automate model analysis and testing (R1 and R4). These characteristics are im-
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portant because they enable the use of common environments for analysts, design-

ers, and testers. Second, by supporting the definition of profiles in a UML context,

they enable the extension of design models for the purpose of deriving test models

amenable to automation. Through plug-in mechanisms, modelling and development

environments can then be extended to automate model-based testing. Many useful

UML profiles have already been defined and approved by the OMG, such as profiles

for real-time and concurrent systems—Schedulability, Performance, and Time Speci-

fication (SPT) [39] and Modeling and Analysis of Real-Time and Embedded Systems

(MARTE) [48]—quality of service [38], and testing [15]. All development activities

can then be centred around one model repository that is exploited for various pur-

poses, such as the generation of specification and design documents, code gener-

ation, test case generation, and model analysis. Furthermore, substantial research

is currently underway to adapt the concepts of aspect-oriented development to the

UML modelling realm (R5), thus facilitating the definition of cross-cutting properties,

for example, safety or security [2]. The current definition of an executable subset of

UML [44] is also expected to facilitate model analysis automation.

Testability
In order to decrease the cost of testing and facilitate its automation, providing ways

to assess and improve the testability (R3) of architectures and designs is an impor-

tant endeavour. Work has already been reported on the analysis of dependencies

among components in order to identify integration hotspots and devise optimal inte-

gration orders so as to minimise testing efforts [21]. Such dependency analyses can

be conveniently based on UML models (e.g., class and sequence diagrams, OCL

constraints) or extensions providing more detailed information about dependencies.

Testability measurement frameworks have also been proposed to help assess testa-

bility based on fault injection [41] and object-oriented designs [29]. More research,

however, is still required in this important area to guide designers towards testable

architectures and designs. In particular, field studies must be carried out to really

understand what the most problematic testability factors are. Case studies are also

required to understand the cost-benefit relations of various approaches to improve

observability, for example, the cost of developing built-in test interfaces and the var-

ious trade-offs that can be made in terms of the granularity of information flowing

through such interfaces. For example, should concrete object states be made visible

or are abstract state assertions sufficient? Also, how does one effectively deal with

observability in the context of distributed systems with distributed state information?

Search-Based Model Analysis of Non-Functional Properties
Once models of the systems are available during the specification or design stages,

they can be exploited to analyse relevant properties related to non-functional as-

pects of the system such as safety, security [10], availability, and performance [53].

Such models, in the context of the previous discussion, would typically be expressed

with one or several of the existing UML profiles or rely on a newly defined, domain-
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Figure 28.5 Searching for deadline misses.

specific profile. Model analysis is complementary to testing since it can help identify

problems early on in the development process, long before any code is available

for testing. As described previously, one very active field is that of model check-

ing, which is based on a systematic exploration of the state space of a system as

represented by a formal model, for example, expressing real-time properties in tem-

poral logic. The approach adopted here, which will be explored further in the future,

is different and likely to be more scalable and applicable, especially in the context

of evolving UML and MDA standards. Based on adequate profiles of the UML, a

search-based approach to the analysis of non-functional properties of software de-

signs is adopted. What this means is that any non-functional property analysis may

be expressed as a search problem and meta-heuristic search algorithms, like evolu-

tionary algorithms, may be used to explore the space of execution scenarios defined

by the system model. For example, based on a model of the task architecture of a

concurrent real-time system, one can search whether possible scenarios can trigger

response time or concurrency problems, such as deadline misses or deadlocks. This

is illustrated in figure 28.5, where a task architecture describing tasks, their dead-

lines, interdependencies, and estimated execution times is provided as input to a

genetic algorithm (GA). Assuming a specific scheduling policy, the search is then

guided towards schedules (e.g., task seeding times) that minimise the difference be-

tween estimated task completion times and their deadlines. The task architecture

information can come, for example, from UML design models using the MARTE

profile.

Recent work on this topic, using dedicated GAs as a search mechanism, has

yielded promising results [52, 7] and has been shown to be very effective, for ex-

ample, when compared to similar model-checking studies. A search approach does

not, of course, guarantee that any property holds in a design. It merely indicates

that, if no violations are found, they are unlikely to occur. This is also the case, how-

ever, with a model-checking approach in practice, since models can be erroneous

anyway and heuristics must be adopted to help improve the scalability of the state

exploration [31].

One advantage with a search-based approach is that it does not attempt to

perform an exhaustive and systematic exploration of the state space but, rather,

searches, in a random but guided way, for specific problems, such as the violation of

safety or concurrency properties. In addition, as opposed to model checkers requir-
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Figure 28.6 Using GAs to search for deadline misses.

ing the definition of properties in formal logical expression, for example, temporal

logic [31], a search-based approach has shown to work in combination with UML

models and their extensions [52, 7]. It is important that a model analysis technique

avoid or minimise the amount of additional modelling that must be performed, in

addition to what is necessary for design and analysis purposes (R5). Ideally, design

models, for example, in UML, should be reused or, at worst, augmented to enable

analysis. For instance, recent work [7] on detecting deadlocks and starvation prob-

lems relied on the SPT and MARTE UML profiles and obtained very encouraging

results. This implies, of course, that an appropriate solution representation (defin-

ing the search space) and fitness function be defined to effectively guide the search.

This may, however, turn out to be impossible for some non-functional properties and

clearly identifying the opportunities and limits of such an approach is part of the

needed research. As an example, for GAs a number of important decisions have to

be made that can potentially impact the efficiency and effectiveness of the search, as

illustrated in when searching for deadline misses in real-time systems. In the prepa-

ration stage, solutions (e.g., schedules) have to be represented as “chromosomes”,

a fitness function must be defined based on an effective search heuristic, and sev-

eral parameters of the GA must be set appropriately (e.g., mutation and cross-over

rates). During the execution stage, the GA then generates a random initial popu-

lation of chromosomes and then iteratively modifies them through generations of

successive populations in what constitutes a random guided search.

Because there is no guarantee that a search mechanism will find property vio-

lations, search algorithms need to be carefully assessed through empirical studies,

showing that the search is indeed effective at finding problems and scalable to real-

istic models [40]. Another challenge is to define or adapt appropriate UML profiles

or other domain-specific modelling languages to capture all the required information
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for the search to be effective, but in a way that is consistent with engineering prac-

tices, based on international standards and well supported by tools. A technology

requiring improbable inputs is not likely to ever transfer to practice.

Empirical Studies of Model-Based Analysis and Testing
Regardless of the specific choice they entail in terms of the test model, coverage

criteria, and oracle, all verification techniques that scale up are inherently heuristic:

They do not guarantee the detection of faults. Their main point is to be systematic in

the way the system or model is exercised and verified so as to obtain a predictable

result in terms of fault detection and focus on certain types of faults. Software engi-

neers are therefore confronted with making the difficult decision of choosing a set of

test and analysis techniques—possibly different across various test phases—which will

fit within their budget and time constraints and that are likely to be effective at de-

tecting faults early in the development process. For example, Briand et al. [45] used

simulation to assess and compare various test strategies based on state machines in

terms of fault detection. The results showed significant variations across SUTs due

to their real-time characteristics, among other things.

It is common to refer to the cost-effectiveness of a technique as the fault detection

obtained over the cost of applying it or, even better, the effort saved by fault detec-

tion minus the effort of detection. Since one cannot analytically assess or compare

the cost-effectiveness of various testing techniques, it is natural to resort to empirical

studies. Such studies should investigate the following categories of questions:

• What cost and fault detection rates can be expected from using a verification

technique?

• How do alternative techniques compare in terms of both cost and fault detection

rates?

• Is it beneficial to combine two or more verification techniques? Are these tech-

niques complementary in terms of fault detection?

Empirical studies are particularly complex, however, because the cost-effectiveness

of a verification technique depends on many other factors. For example, regarding

testing techniques (see figure 28.7), it is not just the coverage criterion and oracle

that determine cost and effectiveness:

• The test technique’s degree of automation obviously affects its cost and, under

time constraints, its effectiveness, since the level of coverage achieved may be

less than 100 per cent. Automation includes the identification of test require-

ments, the generation of test drivers and test stubs (e.g., mock objects), and the

implementation of test oracles.

• The types of faults present in the SUT and their probability of detection (fault

profile) affect the test technique’s detection capability. For example, in a study

investigating the cost-effectiveness of statechart-based testing [18], we found that

many faults in a concurrent cruise control could not be easily detected with just

test cases generated from statecharts, since the concurrent real-time behaviour

of the SUT was not part of the test model and therefore not fully exercised. As
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Figure 28.7 Testing cost-effectiveness factors.

a result, certain faults that could only be exercised by a certain scheduling of

external events never triggered a failure.

• The SUT itself has, of course, an impact on the probability with which certain

faults can be detected given a certain test technique. Concurrency, distribution,

and complex exception handling partially determine not only what types of faults

are present in the SUT but also how easy these faults will be to detect.

• The training and skills of testers also have a strong impact, since test techniques

are usually not entirely automated and require at the very least human input. For

example, test models are devised by software engineers and may vary greatly

in terms of correctness and completeness. Certain techniques are entirely based

on human intuition and an understanding of the system’s behaviour, such as the

category-partition method [9], and have been observed to yield a wide variety of

results under identical conditions [8].

• Test models vary in complexity and cost. Certain techniques require complex

models that entail significant cost. Furthermore, such models are likely to be in-

correct or even incomplete in practice, which is an important aspect regarding

how human factors can affect a technique’s applicability.

Because the preceding factors can have a dramatic impact on a test technique’s

cost-effectiveness, empirical studies should try to control for such factors in order

to ensure that any cost-effectiveness comparison among test techniques is unbiased

but also representative of the targeted context of the study.

28.5 Software Verification Research at Simula
This section provides a structured overview of research objectives, recent work, and

industry collaborations involving the author and his colleagues at Simula.

Research Scope
One Simula Research Laboratory’s mandate is to perform industry-driven research

to increase SRL’s relevance and impact on actual engineering practices. In this con-



434 Lionel C. Briand

text, and based on the discussions in previous sections, our approach to verification

research can be characterised as follows:

• We assume that development and test models are expressed in the UML or exten-

sions through profiles. Depending on the targeted aspect of verification, we may

be led to define new profiles. We therefore place our work within the MDA stan-

dard proposed by the OMG in order to benefit from a rapidly growing, and often

open-source, technological base and comply with the only de facto international

standard regarding software modelling.

• We model not only the software being tested but also its environment. This is

particularly important for embedded systems that need to be verified and tested

on the development platform before undergoing the same in realistic settings,

since such environment (context) models can help us generate the emulation code

we need to emulate drivers and other context elements.

• Model analysis and test generation are automated through the use of meta-

heuristic search algorithms such as GAs. Our choice is therefore to rely on heuris-

tic search rather than systematic and complete state exploration, such as in model

checking. The main motivation is to achieve scalable solutions.

• Simulations, field studies, or controlled experiments are used to assess empirically

the cost and fault detection effectiveness of verification strategies, as well as their

scalability to larger models. Empirical research is therefore a major component of

our activities and requires developing appropriate methodologies to empirically

assess verification techniques.

• Particular emphasis will be placed on verifying non-functional properties, includ-

ing safety, robustness, response time, security, and concurrency. Very little is

available regarding these aspects in the context of MDD.

Related Research
To provide the background information that may help explain and exemplify the

perspectives described above, recent work by the author related to this chapter can

be summarised as follows.

Model Analysis

• Automated traceability of UML model refinements [27]: Traceability between

analysis (domain) models and design models must be preserved so as to be

able to propagate changes from one to the other. This work provides a means

to automate the creation of traceability information in the context of UML model

refinements.

• Impact analysis based on UML models [1]: This works provides a solution to

identify the ripple effects of changes to the design across the system, based on

the analysis of UML models, with a focus on class and sequence diagrams with

OCL constraints.

• Model-based prediction of resource usage and load in distributed systems [4]:

UML sequence diagrams, augmented with timing information, are used to pre-
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dict system behaviour at the design phase in terms of network traffic, CPU, and

memory usage.

• Deadlock and starvation analysis based on UML models with the MARTE profile

[7]: Based on UML MARTE models (e.g., sequence diagrams), GAs are used to

search for deadlocks and starvation problems in concurrent systems.

• Definition of a safety profile to support third-party safety accreditation in the

aerospace domain [10]: This work is a first step towards the definition of a safety

UML profile to enable safety analysis and accreditation in the context of MDA.

• Reverse-engineering UML sequence diagrams from dynamic analysis in the con-

text of distributed Java systems [34]: This was a first step towards collecting and

analysing traces in the context of distributed systems to be able to compare

executions to UML design models and identify discrepancies in an automated

fashion.

Model-Based Testing

• Regression test selection based on UML models [26]: Regression test selection

based on source code analysis is a well-researched area. The only problem is that

it is applicable only after changes have been applied to the source code. This

work provides a way to assess regression test efforts and identify test cases to

rerun based on changes in UML design models.

• Empirical evaluation and improvement of strategies for state machine-based test-

ing and its combination with white-box testing [45, 18]: Simulations and series

of experiments were performed to assess the cost-effectiveness of testing strate-

gies based on state machines, how they compare to simple control flow testing,

and whether the two should somehow be combined. A careful analysis also led to

refinements of testing and oracle strategies in addition to practical recommenda-

tions.

• Improving state machine testing with data flow analysis [56]: Because empirical

results have shown that it is not easy to select paths to test in state machines,

this work investigates whether data flow information, derived from operation con-

tracts and guard conditions in OCL, can be used to select high-fault-detection

paths. The authors empirically investigate whether paths that exercise the most

data flow also help detect more faults.

• Stress-testing distributed systems [54, 30]: Based on UML sequence diagrams

augmented with timing information and specially designed GAs, the goal here is

to stress-test distributed systems with test scenarios maximising network traffic.

• Contracts as test oracles in sequential and concurrent contexts [13, 20]: This work

extends the Java Modeling Language to allow the definition of contract assertions

in the context of concurrent systems. This is a necessary technology to help define

test oracles for concurrent Java systems.

• Stress-testing real-time systems by generating test cases that maximise comple-

tion times for target tasks [52]: The goal was to stress-test real-time systems to

maximise their chances of missing deadlines. The goal was to increase confidence

so that, if such test cases were successful, deadline misses would be unlikely. Test

cases are derived from UML models augmented using the SPT profile, which
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has now been replaced by MARTE. Similar to concurrency problems, deadline

misses, in some cases, can be directly identified from the models, without resort-

ing to testing.

• State machine-based integration testing [6]: Based on the analysis of state ma-

chines and interaction diagrams in UML models, this work attempts to devise

systematic class integration testing strategies.

• Contract-based test automation of commercial off-the-shelf (COTS) components

[62]: Assuming only contracts are available to describe the functionally of a

COTS component, since design details are usually proprietary, this work adapts

existing strategies to automatically derive adequate test suites that can be used

by the component users to assess its reliability.

Industry-Driven Engineering Research in Software System

Development
It is important to describe how we intend to proceed with the previously mentioned

research given SRL’s mandate. As opposed to many other engineering disciplines,

it is rarely possible for software engineering researchers to reproduce the phenom-

ena they are studying in the laboratory. Despite many decades of research in soft-

ware engineering, the impact of academic software engineering research on engi-

neering practice is unclear, although there is probably wide variation across different

research areas. The gap between research and practice is, in our opinion, partly

due to the historical specificities of software engineering, which originally branched

out of computer science, which itself was initially a branch of discrete mathematics.

There is therefore little engineering tradition in software engineering research and,

as a result, research is far too rarely problem driven or based on precisely defined

problems reflecting the reality of software system development. Though research

on fundamental problems is obviously crucial, such an imbalance contrasts sharply

with research in other engineering disciplines. Furthermore, because of the human

and organisational factors involved in software development, software engineering

cannot simply be seen as a mathematical problem. The right trade-offs have to be

found between the seemingly conflicting objectives of engineering rigor, changing

requirements, and tight schedules. Any solution must be scalable to large systems

and teams, be compatible with the practice of incremental development, and support

frequent change.

The preceding statements entail that researchers cannot fully understand the ac-

tual problems or devise and assess suitable engineering solutions, whether for ver-

ification or any other aspect of software development, if they do not work in close

collaboration with industry. This is why software engineering research at SRL has

focussed on industry-driven projects. A difficult question, however, is how to make

such collaboration effective and productive. The practicing engineer’s priority is to

complete projects on schedule and not, unless there exists a clear mandate to do so,

to improve engineering practices. Since software development is a collective endeav-

our, the task of implementing change in practices, with its training and mentoring

requirements, is also far from a trivial matter and requires dedicated resources.
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To make collaborative, industry-driven research effective, the verification group

at SRL has adopted a research process that relies on integrating the work of doctoral

candidates into the practice of industrial partners. At a high level, the first step of

the process is to identify difficult, long-standing problems that our industry partners

have been facing on projects. The state of the art related to the identified problem

is then assessed by performing a systematic and thorough review of the scientific

literature. Usually, significant gaps are found, as many of the proposed techniques

are incomplete or simply not applicable as defined, for example, not scalable. A so-

lution is then devised in context and scientifically evaluated on actual systems, using,

for example, actual fault data, accounting for human and organisational factors. The

last step is to generalise the solution to make it applicable to a wider context by

attempting, for example, to relax some of the assumptions underlying the work.

Adopting such an approach to research presents a number of practical challenges

that should be addressed. It is important to ensure that the problem selected is sig-

nificant enough to constitute a doctoral thesis topic. In the current stage of maturity

of software engineering practice and research, this is usually not a difficult prob-

lem. Second, long-term commitment from the industry partners is required, because

such collaborations must necessarily last the duration of a thesis and cannot be in-

terrupted without serious consequences. Working with industry partners requires

understanding their problems, technology, and working processes, which entails an

effort overhead not normally present in traditional doctoral work.

The following provides two illustrative examples of recent industry collaborations

in which the author and his SRL colleagues were involved.

Telecom. This project took place in collaboration with an industry partner in the

telecom domain. One problem identified on this project was that insufficient re-

sources were available to thoroughly test all components on every release of a tele-

com product. As a result, testing was ad hoc and mostly driven by individual choices.

We analysed change and fault data, as well as the source code of a number of re-

leases and devised a prediction model to identify, on each release, where faults were

more likely to be located. A testing strategy was then devised to adjust the testing

intensity to the likelihood of faults in a component. This strategy was assessed and

showed a 100 per cent return on investment.

Manufacturing. This project took place in the context of the development of man-

ufacturing systems. One important problem raised was related to the safety of such

systems and therefore the verification of a safety component in charge of monitor-

ing unsafe events during the system’s execution. Given the stringent safety require-

ments, a model-based testing approach, based on formal state models, was defined.

To support change, a design strategy was elaborated to ensure traceability between

the state model and the source code, thus facilitating future changes. Empirical stud-

ies are underway to assess the benefits of both the testing and design approaches.
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28.6 Conclusions
This chapter addresses the verification of software systems, a highly crucial topic,

given the growing importance of software throughout most economic sectors, es-

pecially in the many domains where it plays a safety- or business-critical role. This

chapter argues that the current state of the art is not even close to addressing the

highly challenging problems that software engineers are facing when verifying soft-

ware systems. The scale and complexity of the work are so daunting that automation

is a requirement. Effective automation, however, can only be achieved if systems

are described by appropriate models that not only help describe their specification

and design but also support verification, including both analysis of specification and

design artefacts and model-based testing. With the advent of the international UML

2.0 standard and its associated MDA framework, a growing body of technology, in-

cluding open-source and architecture tool platforms, has rapidly developed in recent

years. This means that the introduction of MDD practices, including model-driven

verification, is a much more realistic opportunity today than even five years ago.

Through carefully adapted and tailored modelling technologies, with a rigorous

scientific approach, and through tight collaborations between industry and research

institutions, the complexity and scale of software verification may now be tackled.

This chapter highlights the need for a stronger focus on non-functional aspects of

verification and addresses the use of meta-heuristic search algorithms as a practi-

cal alternative to automated model analysis and model-based testing. It also shows

that model-based verification is essentially a trade-off between modelling effort in the

early stages of development and automation gains in verification activities. Though

devising scalable and effective solutions for model-driven verification is a significant

challenge, with the rising complexity and criticality of software-based systems the use

of models is bound to yield increased benefits. The benefits, costs, and scalability of

the proposed solutions can only be investigated in industrial contexts and on actual

systems, accounting for human, organisational, and economic factors. Such inves-

tigations are best done through carefully designed empirical studies involving both

SRL researchers and their industrial partners. Such a research agenda is therefore in

perfect alignment with the mandate of SRL, a leader in industry-driven, high-impact

IT research.
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