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Abstract. We investigate the adaptability of optimization algorithms
for the real-valued case to concrete problems via tuning. However, the
focus is not primarily on performance, but on the tuning potential of
each algorithm/problem system, for which we define the empirical tuning
potential measure (ETP). It is tested if this measure fulfills some trivial
conditions for usability, which it does. We also compare the best obtained
configurations of 4 adaptable algorithms (2 evolutionary, 2 classic) with
classic algorithms under default settings. The overall outcome is quite
mixed: Sometimes adapting algorithms is highly profitable, but some
problems are already solved to optimality by classic methods.

1 Introduction

The evolutionary computation (EC) field is on the move. After years of self-
containedness, the necessity to demonstrate the effectiveness of evolutionary al-
gorithms (EAs) in direct comparison to other optimization algorithms which
are frequently applied for solving engineering problems has become obvious.
However, such studies do already exist, as e.g provided by Schwefel already in
1979 [14]. Since then, the usage of many algorithms or benchmark problem sets
has almost remained the same. However, the enormously increased computing
power entailed a matching growth in the availability of experimental results,
which lead to some new insight.

Triggered by several warning voices who critisized the arbitrariness of pub-
lished EC algorithm comparison studies (one of which belongs to Eiben and
Jelasity [9]), researchers of the field have put some effort into strengthening the
experimental methodology, e.g. by standardization of test problems and perfor-
mance measures. Additionally, the enormous effects of algorithm parametriza-
tion have been unveiled, and consequently, tuning methods were presented, like
the sequential parameter optimization (SPO) [2], or the F-race by Birattari et
al. [6], the latter being especially well suited for combinatorial optimization.
Other approaches like meta-EAs tackle the same goal. These methods adapt the
parameters of an algorithm to a concrete setting which shall contain a single
problem or small problem class, the desired performance measure, and other
environmental conditions as a maximum run length. On a first glance, the best
achieved performances are of great value, because they let us compare algorithms
under fair conditions, approximately at the top of their capacity.
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Provided with automated tuning methods, we may also tackle the question
for the adaptability of optimization algorithms towards a given situation, with
the overall task to generalize on this algorithm property. Adaptability does not
only consider top performance, but also the relative gain when starting from an
‘average’ (default?) algorithm configuration, as well as the effort needed to get
there. To give an example, algorithm A may perform reasonably well on some
problems, but does not allow for much adaptation because it does not provide
any parameters which can be employed as handles for modifying the algorithm.
Algorithm B may perform worse under default parameter values, but enables
changing its behavior so as to obtain much better results by means of a tuning
process. Initially, there is good reason to prefer algorithm A, but if tuning can
be applied, algorithm B may turn out to be much better due to its adaptability.

Of course, an optimization algorithm may also be improved by introducing
new or modified operators reflecting problem knowledge. However, there is little
chance to do that in an automated and thereby measurable way, whereas tuning
methods may be applied as soon as some parameters are available which can
be adapted. Yet, it is hard to measure adaptability without imposing too many
constraints on the employed problems. It shall be possible even in situations
when the global optimum (of the optimization problem) is not known. It should
also not depend on detecting optimal parameters for an algorithm, as this cannot
be guaranteed by the tuning methods. We need to define a measure and then do
an empirical investigation to see if the definition proves worthwhile. This work
provides a first attempt into that direction and obeys the following scheme:
§2 concretizes the aims pursued and introduces the chosen test problems and
optimization algorithms. §3 discusses the meaning of parameters and suggests
an adaptability measure. §4 reports on a thorough experimental investigation,
followed by conclusions.

2 Aims and Methods

We want to investigate two related aspects of adaptability:

– How may adaptability be measured, and what do the measures tell us, es-
pecially concerning ‘classic’ (e.g. quasi-Newton) optimization algorithms?

– For any single algorithm, does it really pay off to tune? Is there a significant
difference between default and tuned configurations’ performances?

For automated parameter tuning, we employ the sequential parameter opti-
mization (SPO) [2] algorithm, in the variant suggested in [3]. Starting from a
latin hypercube sample (LHS) based kriging model, it uses random permuta-
tion tests to decide if a suggested new configuration is better than an old one.
The maximum budget is always 1000 algorithm runs, with a minimum of 4 re-
peats. For more than 2 parameters, a grid search would be much more expensive.
The tuning results are investigated using Kendall’s non-parametric tau test for
correlations; random permutation tests are employed for detecting significant
differences between different algorithm configurations.
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Table 1. Selected problems from the CEC 2005 library and some of their properties.
No problem is separable and/or unimodal. All problems used in 10 dimensions.

no.problem multimodal characteristic optimum domain
6 shifted Rosenbrock’s yes narrow valley from local to global

optimum
390 -100/100

10 shifted rotated Rastrigin’s highly regular local optima structure -330 -5/5
12 Schwefel’s 2.13 yes best optima are far from each other -460 −π/π
13 (F8F2) shifted expanded

Griewank’s plus Rosen-
brock’s

extremely global structure very flat -130 -5/5

16 rotated hybrid composition 1 extremely irregular with local patterns and
plateaus

120 -5/5

17 rotated hybrid composition 1
with fitness noise

extremely same as 16 plus noise 120 -5/5

23 non-continuous rotated hy-
brid composition 3

highly local patterns with many plateaus 360 -5/5

2.1 Test Problems

We select some problem instances from the CEC 2005 contest library [15], as
enlisted in table 1. These may all be considered as hard, with different degrees
of multimodality, and some additional properties like non-continuity and added
noise. None of the problems is separable. This choice is motivated by the hope to
discriminate the performance of the algorithms according to different problem
characteristics. We acknowledge that the chosen instances are generally not very
well suited for the classic optimization methods like the one of Broyden-Fletcher-
Goldfarb-Shanno (BFGS). However, by allowing multistarts, in principle every
method can reach the global optimum, and the CEC 2005 contest was intended
to be hard, as simple and smooth problems are the typical domain of gradient-
based optimization algorithms.

2.2 Algorithms

For the classical optimization algorithms, we basically rely on the optim method
in the R stats package, which provides a quasi-Newton BFGS, a conjugate gra-
dients (CG), and a Nelder-Mead [13] method. These three are derived from the
implementation of Nash [12]. Furthermore, we employ the L-BFGS-B algorithm
of Byrd et al. [7] and the simulated annealing (SA) variant of Belisle [4] contained
in optim. Additionally, the alternative BFGS (hereafter denoted ALT-BFGS) im-
plementation of Clausen [8] is used, as it provides access to several parameters
usually hidden in backend libraries.

From the domain of metaheuristics, we test two related evolutionary algo-
rithms, namely a generic evolution strategy (ES) with self adaptation as sug-
gested by Schwefel [5], and the covariance matrix adaptation evolution strategy
(CMA-ES) by Hansen and Ostermeier [10].

3 Parameters and Adaptability

What does it conceptually mean to adapt parameters of optimization algo-
rithms? We shall question an often voiced opinion which marks large parameter
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sets as bad and strives for reducing their size. So what are the advantages and
disadvantages of parameterized (optimization) algorithms? On the negative side,
we have at least two:

– A large set of parameters makes a method more difficult to handle, because
at least the unexperienced user does not know how to set these right.

– Parameter-parameter and parameter-problem interactions may enormously
complicate evaluating algorithm performance, also making it more difficult
to obtain good parameter settings.

Nevertheless, we here want to further a slightly unorthodox view of parame-
ters, namely as handles to modify algorithms as desired. Simple standard algo-
rithms are usually considered as being parameterless, but may easily be extended
into paramerized ones (e.g. clever-quicksort). However, it is the advantage of sim-
ple algorithms with only one parameter that one can often prove a particular
parameter value to deliver optimal performance. For evolutionary algorithms
running on different optimization problems, this approach is not feasible. This
is partly due to their rather complex stochastic behavior, but also stems from
the inherent imprecision of the term algorithm as it is often applied to EAs. A
concrete algorithm is instantiated only if the two following conditions are met.

1. The problem is clearly specified (not e.g., an ES applied to TSP).
2. All (exogenous) parameter values are fixed.

If this is not the case, one actually deals with an algorithm family, and one
usually does so based on theoretical or empirical findings obtained from sin-
gle algorithm instances. Whereas the first condition leads us to an uninevitable
dilemma between practical usability and generalizability and thus between the
real-world application and the scientific approach, the second one can be dealt
with e.g. by parameter tuning. But still, it is not obvious which of the resulting
tuned instances a scientific inquiry shall be based on. The best that is obtained
by a concrete tuning method with a given time limit? Or a reasonably good (e.g.
average) one? De Jong [11] points out that ‘getting in the ball park’ by achieving
a reasonably well performing parameter setting is often sufficient for practical
purposes, and that doing so may not be too difficult because of a certain robust-
ness of EAs towards parameter changes. However, even for classic optimization
algorithms for the real-valued domain, adapting parameters to the concrete prob-
lem may be advantageous. This is probably so for highly multimodal or otherwise
considered difficult problems. Nevertheless, adaptation comes at a cost, and one
shall take into account how difficult it is to ’get into the ball park’, as well as the
achieved performance differences relative to default parameter configurations.

3.1 Adaptability

When treating a real-world problem, (evolutionary) optimization algorithms
are often adapted after a simple scheme. Based on the experience of the al-
gorithm designer, a canonical EA is adjusted according to the interpretation of
first results, thereby largely following intuitive reasoning. However, no generally
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applicable structured method exists to attain a good optimization algorithm for
a yet untreated problem. Besides, evolutionary algorithms are so flexible that
it seems unreasonable to approach such a method. Parameter tuning may help
to a certain extent, but only insofar as a) there is something to tune, that is,
the employed operators are parametrized, and b) the chosen components of the
tuned algorithm are well suited to the problem at hand.

However, availability of fairly automated tuning procedures enables us to look
at the adaptation process from the opposite direction: What does parameter tun-
ing of an optimization algorithm towards one or several problems tell us about
the algorithm? Applying a tuning method lets us obtain an estimate for peak
and average performance. It surely depends on the employed performance mea-
sure how these two values can be aggregated into one, but this quantity may
then serve as a measure for the tuning potential of an algorithm-problem system.
However, we also need to make the assumption that the peak performance de-
tected via tuning is a good estimator of the achievable maximum. The accuracy
of this claim clearly depends on the quality of the employed tuning method, and
its proper use. Time may be an important factor that limits tuning quality, be-
cause tuning requires multiple optimization algorithm runs, which is very costly
for a non-trivial problem. Leaving these objections aside, and presuming that we
have obtained two samples representing peak yp and average performance ya,
we suggest to compute an empirical tuning potential (ETP) measure (for min-
imization) from these samples. We deliberately abstain from using any ‘target’
performance as it is not generally known.

ETP(yp,ya) :=
median(ya) − median(yp)

sq(ya)
· median(ya) − median(yp)

sq(yp)
(1)

In the given formula, sq stands for semi-quartile range, meaning half of the
distance between the lower and the upper quartile. Its advantage lies in the fact
that it allows for an estimation of the spread without depending on a specific
distribution type (e.g. normal). The ETP consists of two components, namely
the relative improvement and the spreads. The rationale behind the latter is
that algorithms which mostly reach a near optimal value usually exhibit a much
smaller spread than ones that often get stuck far away from it. We thus em-
ploy distribution properties of the average and the best performance sample to
describe how good the improved value is.

4 Experimental Investigation

When optimizing a real-world problem, time is usually the most important con-
straint. But as one often possesses a good estimation of the expected time for
each function evaluation, one can easily give the maximum number of evalua-
tions allowed. The concrete value of this number may be specific to every single
optimization task, but according to our experience, 1E3 to 1E4 is a reasonable
size for many applications. We therefore run each algorithm twice, with a budget
of 1E3 and 1E4 evaluations.
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Table 2. Median (51 runs) performance of classic algorithms under default settings

ALT-BFGS BFGS CG L-BFGS-B SANN Nelder-Mead
no. 1000 10000 1000 10000 1000 10000 1000 10000 1000 10000 1000 10000

6 3.82E9 393.98 390.00 390.00 390.00 390.00 390.00 390.00 1.48E10 399.77 8.77E5 3.67E4
10 -173.30 -260.35 -144.94 -254.88 -133.99 -216.57 -143.44 -235.97 -178.89 -192.90 -23.087 -113.05
12 3.18E5 -296.21 -459.99 -459.99 -459.99 -459.99 -459.99 -459.99 1670.8 -113.98 2498.9 -274.72
13 81.314 -112.10 -123.64 -128.01 -122.34 -124.68 -83.996 -113.10 -124.78 -126.65 -99.094 -126.16
16 1144.4 587.90 638.97 477.68 794.33 465.56 809.03 521.49 735.76 636.86 704.18 474.07
17 1124.2 745.19 1064.2 621.97 1051.3 621.25 1624.9 1070.5 871.62 660.13 1660.7 1097.5
23 1953.9 1816.1 1948.2 1774.1 2052.3 1785.8 2112.6 1908.6 1658.4 1661.3 1986.7 1724.3

Whereas most classic optimization algorithms as BFGS and CG have internal
mechanisms to detect when to stop, this is not necessarily true for metaheuristics.
As they often do not possess explicit gradient or hessian information of their
current search region (the CMA-ES is a notable exception here), defining such a
criterion is not trivial. For the generic ES, we thus employ a very simple heuristic
and terminates the search if no progress has been made after 10 generations.

In order to enable a fair comparison and use up the maximum number of
function evaluations, a simple restart mechanism is applied. It starts the algo-
rithm anew at a random location whenever the budget is not yet exceeded. For
all algorithms which terminate autonomously and do not give us access to the
code that does so (true for all methods of R optim), we estimate the expected
number of function evaluations needed for each single search by averaging the
finished searches. Whenever the number of consumed evaluations plus the ex-
pected number of evaluations for one search lies below max evaluations +10%,
the algorithm is given another random start. This mode of operation adds some
variation to the results, as the algorithms do not always use exactly 1E3 or 1E4
evaluations, but some number near to it. However, we expect that this influence
is rather small for 1E4, where often many restarts are done, and unfortunately
unavoidable for 1E3, as long as the algorithms cannot be told from the start
how many evaluations to use. As all tested problems are multimodal, it is clear
that we cannot expect a single run to detect the global optimum in all cases as
it may be trapped in a local one.

Experiment: How adaptable are the tested optimization algorithms via tuning?

Pre-experimental planning. As a reference for comparison with the adaptable
algorithms, a performance table of the considered classical methods is derived,
depicted in table 2. All algorithms are run 51 times on each problem and with
a budget of 1E3 and 1E4 evaluations, respectively. The reported median values
indicate that most algorithms cope relatively well with the test problems, with
the exception of the Nelder-Mead algorithm, which performs considerably worse.
The ALT-BFGS method obviously needs more than 1E3 evaluations to reach
good areas on problems 6 and 12, but with 1E4 evaluations it also performs well.

According to some preliminary tests, we fixed the parameter intervals for
the adaptable methods, given in table 3. Especially for the Ccov parameter of
the CMA-ES, it was found that values of more than 1 usually led to failure of
the algorithm, thus the chosen interval was set to the range from 0 to 1. The
restart base parameter of the CMA-ES is a generalization of the restart with
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increasing population size as introduced in [1]. Each time a restart is scheduled,
the population size is not just doubled, but multiplied with this factor. The X ·Cs

and X · Cc parameters are simply multipliers for the internally precomputed
original Cs and Cc values. For the generic EA, we introduce the preco parameter
as probability of recombination. As the treated problems are all multimodal,
employing mutation only to realize independent searches may make sense.

Task. We cannot demand a concrete adaptability value (ETP) for any algorithm
as there is no comparison data on these values available. However, we shall
expect that a) if and only if the median and tuned configuration are significantly
different (5% random permutation test), than the ETP should have a large value
(> 1), and b) that there is a negative rank correlation between the p-values of the
significance test between median and tuned, and the ETP, when cross-tabled. We
require a correlation of at most around −0.5 to state that the measure makes
sense. Concerning the reviewed adaptable algorithms, the task is to beat the
classic methods by changing parameter configurations according to the problem.
So at least one of the adatable methods shall be significantly better than the
best non-adaptable algorithm (see table 2), detected by a random permutation
test at the 5% level. Problems which are solved optimally by the non-adaptable
algorithms are excluded here.

Setup. For each of the four adaptable algorithms (Nelder-Mead, ALT-BFGS,
CMA-ES, and generic-ES) and each run-length (1E3 and 1E4), an SPO run is
executed with a budget of 1000 runs, starting from an LHS of size 100 with 4 runs
per algorithm. The allowed parameter intervals are given in table 3. By means
of eq. 1, we compute the ETP from the median configuration of the LHS and
the best configuration obtained via SPO, each validated with 51 separate runs.
Additionally, a random permutation test is performed between these two, to
check if there is a significant difference in quality stemming from the adaptation
(tuning) process. We shall state that for the CMA-ES as well as for the generic-
ES, default parameter guidelines are known, and it surely makes sense also to
compare with these (resulting in a different ETP definition which we defer to
future work). However, here we deliberately take possible misconfigurations into
account, as may happen within allowed parameter bounds. Experience shows
that for most algorithms and suitable bounds, the median configuration of a
large LHS already performs quite well. Algorithms that suffer dramatically from
every deviation from the default/best parameters are penalized by this measure.

Table 3. Parameter intervals for the tuning process

Nelder-Mead alpha beta gamma
0.1:5 0.1:5 0.1:5

ALT-BFGS initial stepsize ftol gtol
domain·(0.002:1) −6:−2 0.1:0.99

self-adaptive EA initial stepsize population selection pressure τ preco

domain·(0.002:1) 2:100 2:10 0.01:1 0.01:1
CMA-ES initial stepsize population damp multiplier X · Cs X · Cc Ccov restart base

domain·(0.002:1) 2:100 0.2:5 0.2:2 0.2:2 0:1 1:5
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Table 4. CMA-ES: Median (51 runs) of the median LHS(100) and the best SPO-
detected configurations, p-values (random permutation) between both and ETP

1000 10000
no. LHS median SPO best p-value ETP LHS median SPO best p-value ETP

6 8.24E7 804.06 1e-04 17731 397.38 390.00 0.0189 110.64
10 -270.44 -313.09 1e-04 100.24 -325.03 -328.01 1e-04 5.9983
12 25386 6506.3 1e-04 8.4837 1096.7 -449.99 1e-04 1.0539
13 -118.74 -127.41 1e-04 52.423 -128.97 -129.22 1e-04 1.3046
16 440.26 277.85 0.2499 13.613 229.30 213.45 1e-04 10.009
17 502.22 335.70 1e-04 23.990 250.80 219.94 1e-04 30.324
23 1601.0 1566.6 0.0216 0.0801 1330.5 919.56 1e-04 2.6853

Table 5. Generic-ES: Median (51 runs) of the median LHS(100) and the best SPO-
detected configurations, p-values (random permutation) between both and ETP

1000 10000
no. LHS median SPO best p-value ETP LHS median SPO best p-value ETP

6 8.86E9 3951.2 1e-04 1.00E6 1537.4 483.59 1e-04 14.870
10 -206.99 -309.82 1e-04 156.75 -310.60 -320.05 1e-04 19.240
12 93010 6891.3 1e-04 76.331 163.58 -313.40 4e-04 1.5113
13 4526.5 -126.97 1e-04 3598.5 -128.15 -129.47 1e-04 14.928
16 2572.7 1667.4 1 9.1604 1023.6 426.24 1e-04 32.024
17 2652.4 1887.9 1 4.6060 1344.1 482.69 1e-04 41.054
23 2980.4 1931.5 1e-04 22.579 1703.4 1440.2 1e-04 5.4864

Table 6. Nelder-Mead: Median (51 runs) of the median LHS(100) and the best SPO-
detected configurations, p-values (random permutation) between both and ETP

1000 10000
no. LHS median SPO best p-value ETP LHS median SPO best p-value ETP

6 3.22E8 9547.1 1e-04 3189.8 9.00E8 1078.6 1e-04 9.39E6
10 -195.60 -205.68 0.0834 0.5810 -232.89 -235.91 0.0548 0.1646
12 53157 -23.822 1e-04 270.61 26886 -459.97 1e-04 3.99E7
13 542.85 -125.56 1e-04 320.52 -38.399 -128.54 1e-04 334.50
16 591.41 549.66 5e-04 1.6421 477.60 400.94 1e-04 5.8551
17 668.74 662.37 0.0524 0.0118 502.12 495.95 0.0972 0.0278
23 1776.8 1678.9 1e-04 10.943 1692.0 1621.0 1e-04 15.104

Results/Visualization. The results of the tuning process are depicted together
with the computed ETP in tables 4, 5, 6, and 7. Kendall’s tau test between the
attained ETP values and the corresponding p-values discriminating between
peak and median configuration from the four tables gives a correlation estimate
of -0.554 with a p-value of 5.2E-8. Note that the discriminating power of the ETP
is higher than the p-value as it returns intermediate values where the p-value
is either near zero or 1, see e.g. table 5. Concerning the comparison of the best
unparametrized method with the best adaptable method, we state that there is
no need for a better method for problems 6 and 12 (1E3 and 1E4 evaluations);
these are solved to optimality by BFGS, CG, and L-BFGS-B. On problem 10,
we have to compare SANN against the CMA-ES (1E3) and ALT-BFGS against
the CMA-ES (1E4). For problem 13, it is SANN vs. CMA-ES (1E3) and BFGS
vs. the generic ES (1E4). Problem 16 is dominated by BFGS and the CMA-ES
(1E3), and CG and the CMA-ES (1E4). On problem 17, SANN and the CMA-
ES perform best (1E3), and CG and the CMA-ES (1E4). Finally, for problem
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Table 7. ALT-BFGS: Median (51 runs) of the median LHS(100) and the best SPO-
detected configurations, p-values (random permutation) between both and ETP

1000 10000
no. LHS median SPO best p-value ETP LHS median SPO best p-value ETP

6 4.44E10 4.82E7 1e-04 153.11 8.80E8 390.00 1e-04 9.52E15
10 -162.85 -175.78 0.1385 0.1093 -247.41 -259.35 0.1624 0.6133
12 3.30E6 1233.6 1e-04 27.228 -163.85 -459.99 1e-04 1.22E11
13 136.59 32.148 0.3409 0.3152 -102.06 -122.95 0.0019 0.5457
16 1026.6 1090.2 0.7604 0.0931 610.37 626.33 0.6361 0.0377
17 1110.5 1090.2 0.5835 0.0142 762.43 708.35 0.1577 0.5200
23 1911.0 1921.6 0.3728 0.0291 1810.8 1813.7 0.4411 0.0066

23, we compare SANN against the CMA-ES (1E3 and 1E4). In all cases, the
adaptable algorithm was significantly better than the unparametrized one, with
random permuation test p-values of below 1.0E − 4. Only on problem 23 (1E3),
the p-value was larger (0.0042), still indicating a significant difference.

Observations. We observe that for most algorithms, tuning works out well,
so that the performance increases significantly. However, the ALT-BFGS seems
to be hard to tune as indicated by best configurations in the range of median
configurations. It is also striking that SANN performs remarkably well, especially
on the more rugged landscapes on problems 13, 17, and 23. However, for each
algorithm, the measured tuning potential is quite different for the considered
problems: E.g., for Nelder-Mead, there is almost no potential on problems 10
and 17, but there is for the others. The two evolutionary algorithms (CMA-ES
and generic ES) behave very similar, with the CMA-ES usually winning.

Discussion. First of all, the ETP measure seems to work well. It may not be
ideal, but at least fulfills the criteria stated as tasks. The tuning potential itself
is quite different for the tested algorithm/problem combinations. Sometimes an
algorithm is brought from complete failure to robustly finding the optimum,
as for the ALT-BFGS on problem 6 with 1E4 evaluations. The opposite also
happens, namely that no better solution is found by the tuning process. This
also happens for the ALT-BFGS several times, so it can be assumed that this
algorithm is a bit more ’difficult to adapt’ than the others. The 2 evolutionary
algorithms seem to have the highest tuning potential, followed by Nelder-Mead,
and then ALG-BFGS. Note that for technical reasons, it is also possible that
the LHS result is seemingly better than the SPO one. The reason is that the
LHS table is built with only four runs per configuration, which is seemingly not
enough to estimate its quality in some cases. So the LHS configuration may in
fact be much better or worse than it first appeared.

5 Conclusions

This work documents several insights. The featured tuning potential measure
(ETP) seems to work well, but may still be improved. For instance, the time
aspect is not included at all yet. Concerning the comparison of adaptable and
non-adaptable algorithms we can state that the potential of the adaptable algo-
rithms is used by tuning if the problems are not already solved to optimality by
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the non-adaptable algorithms. Thus, it is a question of time that is needed to
adapt a better method. However, the comparison on the CEC test set may be
not entirely fair, as the classic methods have not been designed for such prob-
lems. Nevertheless, they cope quite well and are only overtaken by well adapted
algorithms and/or on the most difficult problems.
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