
Modelling and Maintenance of Very Large

Database Schemata Using Meta-structures

Hui Ma1, Klaus-Dieter Schewe2, and Bernhard Thalheim3

1 Victoria University of Wellington, School of Engineering and Computer Science,
Wellington, New Zealand
hui.ma@ecs.vuw.ac.nz

2 Information Science Research Centre, Palmerston North, New Zealand
kdschewe@acm.org

3 Christian-Albrechts-University Kiel, Institute of Computer Science, Kiel, Germany
thalheim@is.informatik.uni-kiel.de

Abstract. Practical experience shows that the maintenance of
databases with a very large schema causes severe problems, and no sys-
tematic support is provided. In this paper we address this problem. Based
on the analysis of a large number of very large database schemata we
identify twelve frequently recurring meta-structures in three categories
associated with schema construction, lifespan and context. We argue
that systematic use of these meta-structures will ease the modelling and
maintenance of very large database schemata.

Keywords: Database modelling, schema maintenance, meta-structure.

1 Introduction

While data modellers learn about data modelling by means of small “toy” ex-
amples, the database schemata that are developed in practical projects tend to
become very large. For instance, the relational SAP/R3 schema contains more
than 21,000 tables. Moody discovered that as soon as ER schemata exceed 20
entity- and relationship types, they already become hard to read and compre-
hend for many developers [7].

Therefore, the common observation that very large database schemata are
error-prone, hard to read and consequently difficult to maintain is not surprising
at all. Common problems comprise repeated components as e.g. in the LH Cargo
database schema with respect to transport data or in the SAP/R3 schema with
respect to addresses.

Some remedies to the problem have already been discussed in previous work
of some of the authors, and applied in some database development projects.
For instance, modular techniques such as design by units [13] allow schemata
to be drastically simplified by exploiting principles of hiding and encapsulation
that are known from Software Engineering. Different subschemata are connected
by bridge types. Component engineering [9] extends this approach by means of

J. Yang et al. (Eds.): UNISCON 2009, LNBIP 20, pp. 17–28, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 H. Ma, K.-D. Schewe, and B. Thalheim

view-centered components with well-defined composition operators, and hierar-
chy abstraction [16] permits to model objects on various levels of detail.

In order to contribute to a systematic development of very large schemata the
co-design approach, which integrates structure, functionality and interactivity
modelling, emphasises the initial modelling of skeletons of components, which
is then subject to further refinement [17]. Thus, components representing sub-
schemata form the building blocks, and they are integrated in skeleton schemata
by means of connector types, which commonly are modelled by relationship
types.

In this paper we further develop the method for systematic schema devel-
opment focussing on very large schemata. We first analyse skeletons and sub-
schemata more deeply in Section 2 and identify distinguishing dimensions [3].
In Section 3, based on the analysis of more than 8500 database schemata, of
which around 3500 should be considered very large we identify twelve frequently
recurring meta-structures, which determine the skeleton schema. These meta-
structures are classified into three categories addressing schema construction,
lifespan and context. Finally, in Section 4 we elaborate more on the application
of meta-structures in data modelling, but due to space restrictions some formal
details have to be outsourced. In a concurrent submission [6] we elaborate on
the handling of the identified meta-structures in a more formal way.

2 Internal Dimensions of Skeletons and Subschemata

A component – formally defined in [9,16] – is a database schema together with
import and export interfaces for connecting it to other components by stan-
dardised interface techniques. Schema skeletons [15] provide a framework for the
general architecture of an application, to which details such as types are to be
added. They are composed of units, which are defined by sets of components
provided this set can be semantically separated from all other components with-
out losing application information. Units may contain entity, relationship and
cluster types, and the types in it should have a certain affinity or adhesion to
each other.

In addition, units may be associated with each other in a variety of ways
reflecting the general associations within an application. Associations group the
relation of units by their meaning. Therefore, different associations may ex-
ist between the same units. Associations can also relate associations with each
other. Therefore, structuring mechanisms as provided by the higher-order entity-
relationship model [13] may be used to describe skeletons.

The usage of types in a database schema differs in many aspects. In order to
support the maintenance of very large schemata this diversity of usage should
be made explicit. Following an analysis of usage patterns [9] leads to a number
of internal dimensions including the following imortant ones:

– Types may be specialized on the basis of roles objects play or categories into
which objects are separated. This specialization dimension usually leads to

Modelling and Maintenance of Very Large Database Schemata 19

subtype, role, and categorisation hierarchies, and to versions for develop-
ment, representation or measures.

– As objects in the application domain hardly ever occur in isolation, we are
interested in representing their associations by bridging related types, and
adding meta-characterisation on data quality. This association dimension
often addresses specific facets of an application such as points of view, ap-
plication areas, and workflows that can be separated from each other.

– Data may be integrated into complex objects at runtime, and links to busi-
ness steps and rules as well as log, history and usage information may be
stored. Furthermore, meta-properties may be associated with objects such
as category, source and quality information. This defines the usage, meta-
characterisation or log dimension. Dockets [10] may be used for tracking pro-
cessing information, superimposed schemata for explicit log of the treatment
of the objects, and provenance schemata for the injection of meta-schemata.

– As data usage is often restricted to some user roles, there is a rights and obli-
gations dimension, which entails that the characterisation of user activities
is often enfolded into the schema.

– As data varies over time and different facets are needed at different moments,
there is a data quality, lifespan and history dimension for modelling data
history and quality , e.g. source data, and data referring to the business
process, source restrictions, quality parameters etc. Wity respect to time the
dimension distinguishes between transaction time, user-defined time, validity
time, and availability time.

– The meta-data dimension refers to temporal, spatial, ownership, representa-
tion or context data that is often associated with core data. These meta-data
are typically added after the core data has been obtained.

We often observe that very large database schemata incorporate some or all of
these dimensions, which explains the difficulty for reading and comprehension.
For instance, various architectures such as technical and application architecture
may co-appear within a schema [11].

Furthermore, during its lifetime a database schema, which may originally have
captured just the normalised structure of the application domain, is subjected
to performance considerations and extended in various ways by views. A typical
example for a complete schema full of derived data is given by OLAP applications
[5]. Thus, at each stage the full schema is in fact the result of folding extensions
by means of a so-called grounding schema into the core database schema.

3 Meta-structures in Subschemata and Schema Skeletons

Based on an extensive study of a large number of conceptual database schemata
we identify frequently occurring meta-structures and classify them in three cat-
egories according to construction, lifespan and context. In the following we de-
scribe these meta-structures. Due to space restrictions the description will only
contain sufficient details for some of the meta-structures, whereas for the others
it will necessarily be rather terse.

20 H. Ma, K.-D. Schewe, and B. Thalheim

3.1 Construction Meta-structures

Structures are based on building blocks such as attributes, entity types and re-
lationship types. In order to capture also versions, variations, specialisations,
application restrictions, etc. structures can become rather complex. As observed
in [9] complex structures can be primarily described on the basis of star and
snowflake meta-structures. In addition, bulk meta-structures describing the sim-
ilarity between things and thus enable generalisation and combination, and ar-
chitecture meta-structures describe the internal construction by building blocks
and the interfaces between them.

Star and Snowflake Meta-Structures. Star typing has been used already
for a long time outside the database community. The star constructor permits to
construct associations within systems that are characterized by complex branch-
ing, diversification and distribution alternatives. Such structures appear in a
number of situations such as composition and consolidation, complex branching
analysis and decision support systems.

�

�

�
�

� �

Address

Geographical

Address
Contact
Address

Meta-
Characterization

Specific
Characteristics

Additional
Characteristics

Language

Version

IdentificationCode
(Valid)From

(Valid)To

Text

Name
AssignmentComment
...
DiscontinuationDate
Comment

Fig. 1. The General Structure of Addresses

A star meta-structure is
characterized by a core entity
(or relationship) type used for
storing basic data, and a num-
ber of subtypes of the entity
type that are used to capture
additional properties [16]. A
typical star structure is shown
in Figure 1 for the Address en-
tity type. In the same fashion
a snowflake schema, the one in
Figure 2 – shown without at-
tributes – represents the information structure of documented contributions of
members of working groups during certain time periods.

Bulk Meta-Structures. Types used in schemata in a very similar way can be
clustered together on the basis of a classification.

Member

Time

Project�

�

�

	Contribution

Document� 	accessible
Access
Policy

� 	referred toProject

� 	Of
Member
Category

� 	ruled by Political
Faction

�

�

	During
Display

Period
� 	In

Validity

Period

Fig. 2. Snowflake Schema on Contributions

Modelling and Maintenance of Very Large Database Schemata 21

Contribution

ID

ContributionDate

[EntryDate] Made

Commented

Reused

�
�

	

�
�

�
�

Group
FromDate

GroupContMechSeq

[ThrueDate][Comment]

Person

ID

[Account]

[Comment]

Fig. 3. E-Community Application

Let us exemplify this generalisa-
tion approach for the commenting
process in an e-community applica-
tion. The relationship types Made,
Commented, and Reused in Figure
3 are all similar. They associate
contributions with both Group and
Person. They are used together and
at the same objects, i.e. each con-
tribution object is at the same time
associated with one group and one
person. We can combine the three
relationship types into the type ContributionAssociationas shown in Figure 4.
The type ContributionAssociationClassifier and the domain {Made, Com-
mented, Reused} for the attribute ContractionDomain can be used to recon-
struct the three original relationship types. The handling of classes that are bound
by the same behaviour and occurrence can be simplified by this construction.

Contribution

IDContributionDate

[EntryDate]

Group
FromDate

GroupContMechSeq

[ThrueDate][Comment]

Person

ID

[Account]

[Comment]

Contribution
Association
Classifier

Identif
ContractionDomain
ContractionBinder

�

�

	Contribution
Association

�

Fig. 4. Bulk Meta-Structure for E-Community

In general, the meta-
structure can be described
as follows:

Assume to be given a central
type C and other types that
are associated with C by
a set of relationship types
{A1, ..., An} by means of
an occurrence frame F . The
occurrence frame can be such
that either all inclusion constraints Ai[C] ⊆ Aj [C] for 1 ≤ i, j ≤ n must hold or
another set of inclusion constraints.

Now we combine the types {A1, ..., An} into a type BulkTypewith an additional
component ContractionAssistant, and attributes Identif to identify objects
of this type, ContractionDomainwith domain {A1 , . . . , An}, and Contraction-
Binder with domain F . This is shown in Figure 5.

Central
Type

Associated
Type

Contraction
Assistant

�

�

	Bulk
Type

IdentifIdentif

Identif

ContractionDomain

ContractionBinder

Fig. 5. General Bulk
Meta-Structure

Architecture and Constructor-Based Meta-
Structures. Categorisation and compartmentalization
have been widely used for modelling complex structures.
For instance, the architecture of SAP R/3 has often
been displayed in form of a waffle. Therefore, we
adopt the term waffle meta-structure or architecture
meta-structure for structures that arise this way. These
meta-structures are especially usefulfor the modelling
of distributed systems with local components and
behaviour. They provide solutions for interface man-
agement, replication, encapsulation and inheritance,

22 H. Ma, K.-D. Schewe, and B. Thalheim

and are predominant in component-based development and data warehouse
modelling.

Star and snowflake schemata may be composed by composition operators such
as product, nest, disjoint union, difference and powerset. These operators permit
the construction of any schema of interest, as they are complete for sets. A
structural approach as in [1] can be employed. Thus, all constructors known for
database schemata may also be applied to meta-schema construction.

3.2 Lifespan Meta-structures

The evolution of an application over its lifetime is orthogonal to the construc-
tion. This leads to a number of lifespan meta-structures, which we describe
next. Evolution meta-structures record life stages similar to workflows, circu-
lation meta-structures display the phases in the lifespan of objectss, incremental
meta-strucutres permit the recording of the development, enhancement and age-
ing of objects, loop meta-structures support chaining and scaling to different
perspectives of objects, and network meta-structures permit the flexible treat-
ment of objects during their evolution by supporting to pass objects in a variety
of evolution paths and enable multi-object collaboration.

Evolution Meta-Structures. By using a flow constructor evolution meta-
structures permit the construction of a well-communicating set of types with a
P2P data exchange among the associated types. Such associations often appear
in workflow applications, business processes, customer scenarios, and when when
identifying variances. Evolution is based on the treatment of stages of objects.
Objects are passed to handling agents (teams), which maintain and update their
specific properties.

Circulation Meta-Structures. Objects may be related to each other by
life-cycle stages such as repetition, self-reinforcement and self-correction. Typi-
cal examples are objects representing iterative processes, recurring phenomena

Legislation
Body

Document
Form

Organization

Person

�

Legal
Body

� Document
Request

�

Party⊕�
�

Proposed
Document

�

�

� DocumentIn
Reviewing

� Accepted
Document

�

�

�

�

Approved
Document

��

Governed
By

Creator

Of

By

For

IsA

On

Reviews

By

Proposed
By

By OnThe
Basis
Of

Positive
Reviewed

Fig. 6. Incremental Meta-Structure

or time-dependent activities. A
circulation meta-structure sup-
ports primarily iterative pro-
cesses.

Circulation meta-structures
permit to display objects
in different phases. For
instance, legal document
handling in the SeSAM sys-
tem, an e-government ap-
plication, is based on such
phases:
DocumentForm, ProposedDocu-
ment, DocumentInRe-
viewing, AcceptedDocument,

Modelling and Maintenance of Very Large Database Schemata 23

RejectedDocument, FinalVersionDocument, ApprovedDocument, and
ArchievedDocument. The circulation model is supported by a phase-based
dynamic semantics [13]. Alternatively, an incremental meta-structure could be
chosen as shown in Figure 6.

Incremental Meta-Structures. Incremental meta-structures enable the pro-
duction of new associations based on a core object. It employs containment,
sharing of common properties or resources, and alternatives. Typical examples
are found in applications, in which processes collect a range of inputs, generate
multiple outcomes, or create multiple designs.

Incremental development builds layers of an application with a focus on the
transport of data and cooperation, thereby enabling the management of systems
complexity. It is quite common that this leads to a multi-tier architecture and
object versioning. Typical incremental constructions appear in areas such as
facility management [4]. A special layer constructor is widely used in frameworks,
e.g. the OSI framework for communicating processes.

As an example consider the schema displayed in Figure 6 dealing with the
handling of legal documents in the e-gvernance application SeSAM. It uses a
specific composition frame, i.e. the type DocumentInReviewing is based on the
type ProposedDocument. Legal documents typically employ particular document
patterns, which are represented by the type DocumentForm. Actors in this ap-
plications are of type Party, which generalises Person and Organisation.

Loop Meta-Structures. Loop meta-structures appear whenever the lifes-
pan of objects contains cycles. They are used for the representation of objects
that store chains of events, people, devices, products, etc. Similar to the circu-
lation meta-structure since it employs non-directional, non-hierarchical associa-
tions with different modes of connectivity being applicable. In this way temporal
assignment and sharing of resources, association and integration, rights and re-
sponsibilities can be neatly represented and scaled.

Network Meta-Structures. Network or web meta-structures enable the col-
lection of a network of associated types, and the creation of a multi-point web of
associated types with specific control and data association strategies. The web
has a specific data update mechanism, a specific data routing mechanism, and
a number of communities of users building their views on the web.

As networks evolve quickly and irregularly, i.e. they grow fast and then are
rebuilt and renewed, a network meta-structure must take care of a large number
of variations to enable growth control and change management. Usually, they
are supported by a multi-point center of connections, controlled routing and
replication, change protocols, controlled assignment and transfer, scoping and
localisation abstraction, and trader architectures. Furthermore, export/import
converters and wrappers are supported. The database farm architecture [16] with
check-in and check-out facilities supports flexible network extension.

24 H. Ma, K.-D. Schewe, and B. Thalheim

3.3 Context Meta-structures

According to [18] we distinguish between the intext and the context of things that
are represented as objects. Intext reflects the internal structuring, associations
among types and subschemata, the storage structuring, and the representa-
tion options. Context reflects general characterisations, categorisation, utilisa-
tion, and general descriptions such as quality. Therefore, we distinguish between
meta-characterisation meta-structures that are usually orthogonal to the intext
structuring and can be added to each of the intext types, utilisation-recording
meta-structures that are used to trace the running, resetting and reasoning of
the database engine, and quality meta-structures that permit to reason on the
quality of the data provided and to apply summarisation and aggregation func-
tions in a form that is consistent with the quality of the data. The dimensionality
of a schema permits the extraction of other context meta-structures [3].

Meta-Characterisation Meta-Structures. Meta-characterisation is orthog-
onal to the structuring dimension that may have led to a schema as displayed
in Figure 1. They may refer to insertion/update/deletion time, keyword char-
acterisation, utilisation pattern, format descriptions, utilisation restrictions and
rights such as copyright and costs, and technical restrictions.

Meta-characterisations apply to a large number of types and should therefore
be factored out. For instance, in an e-learning application learning objects, ele-
ments and scenes are commonly characterised by educational information such
as interactivity type, learning resource type, interactivity level, age restrictions,
semantic density, intended end user role, context, difficulty, utilisation interval
restrictions, and pedagogical and didactical parameters.

Utilisation-Recording Meta-Structures. Logging, usage and history infor-
mation is commonly used for recording the lifespan of the database. Therefore,
we can distinguish between history meta-structures that are used for storing and
recording the computation history within a small time slice, usage-scene meta-
structures that are used to associate data to their use in a business process at a
certain stage, a workflow step, or a scene in an application story, and record the
actual usage.

Such meta-structures are related to one or more aspects of time, e.g. trans-
action time, user-defined time, validity time, or availability time, and associated
with concepts such as temporal data types (instants, intervals, periods), and
temporal statements such as current (now), sequenced (at each instant of time)
and nonsequenced (ignoring time).

Quality Meta-Structures. Data quality is modelled by a variety of meta-
structures capturing the sources (data source, responsible user, business process,
source restrictions, etc.), intrinsic quality parameters (accuracy, objectivity,
trustability, reputation, etc.), accessibility and security, contextual quality (rele-
vance, value, timelineness, completeness, amount of information, etc.), and rep-
resentation quality (ambiguity, ease of understanding, concise representation,

Modelling and Maintenance of Very Large Database Schemata 25

consistent representation, ease of manipulation). Data quality is essential when-
ever versions of data have to be distinguished according to their quality and
reliability.

4 Application of Meta-structures in Data Modelling

Let us now briefly illustrate meta-structuring for some application examples.

4.1 Design by Units

The design-by-units framework [13] provides a modular design technique exploit-
ing the internal skeleton structure of very large schemata. For illustration let us
consider the example of the Cottbusnet website involving four main components:

– The star subschema characterising people maintains the data for types
of people of interest: Member Of Group, Representative Of Partner, and
User.

– The snowflake subschema on project information is used for the representa-
tion of information on various projects, their different stages, their results
and their representation.

– The snowflake subschema on group information allows to store data on
groups, their issues, leadership, obligations and results.

– The snowflake subschema on website maintenance provides data on the infor-
mation that must be given through the web interface to authorized, anony-
mous and general users.

The skeleton of the application schema combines these components. The
internal structure of the components is either a star or a snowflake sub-
schema. The skeleton is associates the components using connector types, e.g.
Contribution in Figure 2 between Person or Member, Document, Project and
Time, PortfolioProfile between Person, Group, and Website, etc. In a similar
way we can extent the skeleton by a component describing the organisation of
group work.

4.2 Incremental Structuring

Meta-structuring supports the incremental evolution of database systems as a
specific form of database system evolution, in particular for facility management
systems. Such systems use a number of phases such as planning phase, construc-
tion phase, realization phase, and maintenance phase. Based on meta-structures
we developed the novel architecture shown in Figure 7, which has already been
positively evaluated in a project [8], in which auxiliary databases provide help
information, and information on regulations, customers, suppliers, etc.

Thus, incremental evolution is supported by meta-structuring on the basis of
import forms of two kinds:

26 H. Ma, K.-D. Schewe, and B. Thalheim

planning
phase DBS

construction
phase DBS

realization
phase DBS

maintenance
phase DBS

DBS
(Sp, ΣSp ,

Op, ΣOp)

inject

insert

�
�modifiable

injected

auxiliary

database

�injected

DBS
(Sc, ΣSc ,

Oc, ΣOc)

inject

insert

�
�modifiable

injected

auxiliary

database

�injected

DBS
(Sr , ΣSr ,

Or, ΣOr)

inject

insert

�
�modifiable

injected

auxiliary

database

�injected

DBS
(Sm, ΣSm ,

Om, ΣOm)

auxiliary

database

�injected

Fig. 7. The General Architecture of Incremental Evolution of Database Systems

– Injection forms enable the injection of data into another database. The
forms are supported by cooperating views. Data injected into another
database cannot be changed by the importing database system. The struc-
ture (Sinject, ΣS) of the views of the exporting database system is entirely
embedded into the structure (S ′

, ΣS′) of the importing database system.
The functionality (Oinject, ΣO) of the views of the exporting database sys-
tem is partially embedded into the functionality (O′

, ΣO′) of the importing
database system by removing all modification operations on the injected
data. These data can only be used for retrieval purposes.

– Insertion forms enable the insertion of data from an exporting database
into an importing database. These data can be modified. The structure
(Sinsert, ΣS) and the functionality (Oinsert, ΣO) of the views of the export-
ing database system are entirely embedded into the structure (S ′

, ΣS′) and
the functionality (O′

, ΣO′) of the importing database system.

4.3 The String Bag Modelling Approach

Looking from the distance at an ER schema the observer may find the diagram
similar to a string bag, and indeed, there is a large number of similarities. Using
the metaphor of a string-bag it has been observed that most database queries
access types that are connected by a subbag [14], and this can be exploited to
automatically derive corresponding SQL queries. For this some of the types in a
query serve as critical types, while the others are used to select the appropriate
paths in the ER schema.

This observation on query behavior can be generalized to database modelling
declaring some of the types to be major or core types, while the others serve for
specialising the application area. This forms the basis of an abstraction principle
according to which the main view schemata form the abstraction of the schema,
and the application is specified by the main views of the “handles”, i.e. the core
types.

If we consider an application that addresses the types Contact Address,
Party Address, Geographical Address, then associations are view types on

Modelling and Maintenance of Very Large Database Schemata 27

the schema relating the main type Address to the kind of usage, i.e. to the main
use of addresses in the application.

4.4 Rigid Structuring and Principles of Schema Abstraction

Database design techniques have often aimed at finding the best possible integra-
tion on the basis of the assumption of uniformity. As already observed database
schemata should be based on a balance of three principles:

Autonomy: Objects represent things that are used in a separated and poten-
tially independent form.

Hierarchy: The main classification method is the development of hierarchies.
Hierarchies may be based on generalisation/specialisation, ontologies, or con-
cept maps.

Coordination: Objects are related to each other and are used to exchange
information among objects. The cohesion of objects is supported by coordi-
nation.

These principles can be extended to principles of schema abstraction:

Extraction of real differences: Recognition of differences enable the han-
dling of classes that are to be treated differently. It strongly promotes even-
tual cohesion. Differences permit building the skeleton of the application.

Cultivation of hierarchies: Things in real applications can be associated to
each other by specialisation and generalisation. Modelling uses hierarchies for
factoring out facets and to use them for simpler and more efficient treatment.

Contraction by similarities: Unnecessary differenciation should be avoided.
Therefore, similar subschemata and types should be clustered and modelled
as components.

5 Conclusion

Very large database schemata with hundreds or thousands of types are usually
developed over years, and then require sophisticated skills to read and com-
prehend them. However, lots of similarities, repetitions, and similar structuring
elements appear in such schemata. In this paper we highlighted the frequently
occurring meta-structures in such schemata, and classified them according to
structure, lifespan and context. We demonstrated that meta-structures can be
exploited to modularise schemata, which would ease querying, searching, recon-
figuration, maintenance, integration and extension. Also reengineering and reuse
are enabled.

In this way data modelling using meta-structures enables systematic schema
development, extension and implementation, and thus contributes to overcome
the maintenance problems arising in practice from very large schemata. Further-
more, the use of meta-structures also enables component-based schema develop-
ment, in which schemata are developed step-by-step on the basis of the skeleton

28 H. Ma, K.-D. Schewe, and B. Thalheim

of the meta-structure, and thus contributes to the development of industrial-
scale database applications. We plan to elaborate further on formal aspects of
meta-structing in data modelling with the concurrent submission in [6] being a
first step. This will exploit graph grammars [2] and graph rewriting [12].

References

1. Brown, L.: Integration Models – Templates for Business Transformation. SAMS
Publishing (2000)

2. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformations. Applications, Languages
and Tools, vol. 2. World Scientific, Singapore (1999)

3. Feyer, T., Thalheim, B.: Many-dimensional schema modeling. In: Manolopoulos,
Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, pp. 305–318. Springer, Hei-
delberg (2002)

4. Kahlen, H.: Integrales Facility Management – Management des ganzheitlichen
Bauens. Werner Verlag (1999)

5. Lenz, H.-J., Thalheim, B.: OLAP schemata for correct applications. In: Draheim,
D., Weber, G. (eds.) TEAA 2005. LNCS, vol. 3888, pp. 99–113. Springer, Heidel-
berg (2006)

6. Ma, H., Schewe, K.-D., Thalheim, B.: Handling meta-structures in data modelling
(submitted, 2008)

7. Moody, D.: Dealing with Complexity: A Practical Method for Representing Large
Entity-Relationship Models. Ph.D thesis, University of Melbourne (2001)

8. Raak, T.: Database systems architecture for facility management systems. Master’s
thesis, Fachhochschule Lausitz (2002)

9. Schewe, K.-D., Thalheim, B.: Component-driven engineering of database appli-
cations. In: Conceptual Modelling – Proc. APCCM 2006. CRPIT, vol. 53, pp.
105–114. Australian Computer Society (2006)

10. Schmidt, J.W., Sehring, H.-W.: Dockets: A model for adding value to content. In:
Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS,
vol. 1728, pp. 248–263. Springer, Heidelberg (1999)

11. Siedersleben, J.: Moderne Softwarearchitektur. dpunkt-Verlag (2004)
12. Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C.J.D. (eds.): Term Graph Rewriting

– Theory and Practice. John Wiley and Sons, Chichester (1993)
13. Thalheim, B.: Entity Relationship Modeling – Foundations of Database Technol-

ogy. Springer, Heidelberg (2000)
14. Thalheim, B.: Generating database queries for web naturallanguage requests using

schema information and database content. In: Applications of Natural Language
to Information Systems – NLDB 2001. LNI, vol. 3, pp. 205–209. GI (2001)

15. Thalheim, B.: Component construction of database schemes. In: Spaccapietra, S.,
March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 20–34. Springer,
Heidelberg (2002)

16. Thalheim, B.: Component development and construction for database design. Data
and Knowledge Engineering 54, 77–95 (2005)

17. Thalheim, B.: Engineering database component ware. In: Draheim, D., Weber, G.
(eds.) TEAA 2006. LNCS, vol. 4473, pp. 1–15. Springer, Heidelberg (2007)

18. Wisse, P.: Metapattern – Context and Time in Information Models. Addison-
Wesley, Reading (2001)

	Modelling and Maintenance of Very Large Database Schemata Using Meta-structures
	Introduction
	Internal Dimensions of Skeletons and Subschemata
	Meta-structures in Subschemata and Schema Skeletons
	Construction Meta-structures
	Lifespan Meta-structures
	Context Meta-structures

	Application of Meta-structures in Data Modelling
	Design by Units
	Incremental Structuring
	The String Bag Modelling Approach
	Rigid Structuring and Principles of Schema Abstraction

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

