
J. Yang et al. (Eds.): UNISCON 2009, LNBIP 20, pp. 127–141, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Modeling Actions in Dynamic Engineering Design 
Processes 

Vadim Ermolayev1, Natalya Keberle1,  
Eyck Jentzsch2, Richard Sohnius2, and Wolf-Ekkehard Matzke2  

1 Department of IT, Zaporozhye National University, Zhukovskogo 66, 69063,  
Zaporozhye, Ukraine 

vadim@ermolayev.com, nkeberle@gmail.com 
2 Cadence Design Systems, GmbH, Mozartstr. 2 D-85622 Feldkirchen, Germany 

{jentzsch,rsohnius,wolf}@cadence.com 

Abstract. The paper presents the approach for modeling actions in the dynamic 
processes of engineering design in microelectronics and integrated circuits do-
main. It elaborates the formal framework for representing processes, the states 
of these processes and process environments, the actions being the constituents 
of the processes. Presented framework is implemented as the part of PSI suite 
of ontologies and is evaluated using three different methods: user evaluation, 
formal evaluation, and commonsense evaluation following PSI shaker modeling 
methodology. The suite of PSI ontologies is used for representing dynamic en-
gineering design processes in Cadence Project Planning Expert System software 
prototype.    

Keywords: PSI, action, task, activity, environment, design system, perform-
ance, framework, ontology. 

1   Introduction 

As many experts in microelectronic and integrated circuits design point out (e.g., [1]), 
one of the main industrial challenges is the gap between the capability of design tech-
nology and the productivity of design systems. For example, the capability of the 
design technology to accommodate digital gates on a chip is growing much faster than 
the capability of design teams using this technology and corresponding design envi-
ronments to produce these gates in their designs. The consequence is that the effort 
required to be spent for designing a typical microelectronic device is growing sub-
stantially. Therefore, tools and methodologies for improving the performance of de-
sign systems are very highly demanded by industry. 

PSI project1 aims at developing models, methodologies, and software tools provid-
ing for rigorous engineering treatment of performance and performance management. 
PSI performance modeling and management approach focuses on performance as a 

                                                           
1 Performance Simulation Initiative (PSI) is the R&D project of Cadence Design Systems 

GmbH. 



128 V. Ermolayev et al. 

pro-active action. A fine-grained dynamic model of an engineering design process, 
comprising a semantically rich action model, and a design system is therefore devel-
oped. PSI approach considers that performance is embodied in its environment and is 
controlled by the associated performance management process. 

An engineering design process is a goal-directed process of transforming the repre-
sentations of a design artifact in stateful nested environments. An environment com-
prises design artifact representations, resources, tools, and actors who perform actions 
to transform design artifacts using tools, and consume resources. Actions are admissi-
ble in particular environment states and may be atomic or compound, state-transitive 
or iterative, dependent or independent on other actions. The components of an envi-
ronment may generate internal events or may be influenced by external events. Events 
may have causal dependencies. An engineering design process is a problem solving 
process which goals, partial goals, and environments may change dynamically. A 
decision taking procedure is associated with each state to allow environments to ad-
just the process taking these changes into account. Decisions are taken by actors mod-
eled by software agents.  

PSI software tools are developed [2] for assisting project managers to make robust 
planning, monitoring, and management of their design projects aiming at reaching 
best possible performance. Grounded decisions in planning are based on the knowl-
edge base of project logs accomplished in the past. These logs provide vast and finely 
grained records of the performance of accomplished projects and may be used for 
simulating the behavior of the design system in response to different influences. At 
project execution phase PSI software may be used for predicting the behavior of the 
design system in the future based on the record of the partially accomplished dynamic 
engineering design process (DEDP), the knowledge about its environment(s), and 
performance simulations. 

The focus of this paper is the framework for modeling actions. The rest of the pa-
per is structured as follows. Section 2 analyses the related work in process modeling 
emphasizing the ways to model dynamic processes and pointing out the advancement 
of the presented modeling approach. Section 3 presents the action modeling frame-
work of PSI. Section 4 reports how the framework has been implemented as the part 
of PSI suite of ontologies, evaluated, and used in PSI software prototype. Finally, 
concluding remarks are given and our plans for future work are outlined in Section 5.    

2   Related Work  

The framework presented in this paper is for modeling change and adequately account-
ing for dynamics in the processes of engineering design. Fundamentally, research in 
representing, reasoning, and capturing knowledge about change and dynamics pro-
duced the plethora of premium quality results which can’t be even listed here due to 
space limit. Instead, we point to [3] as an excellent reference source. We also mention 
several related sources for analyzing our contribution.  

McCarthy and Hayes [4] were the pioneers in introducing a logical formalism 
which became a mainstream for commonsense reasoning and reasoning about change 
in particular – the Situation Calculus (SC).  Several authors have further developed  
 



 Modeling Actions in Dynamic Engineering Design Processes 129 

this approach resulting in several Event Calculi (EC) [5, 6]. Most of them use linear 
time instead of branching time characteristic to the SC. A topical representative of a 
branching time logic approach is [5]. Our approach is particularly close to DEC [6] 
because DEC uses discrete linear time representation. In difference to the mentioned 
EC our framework uses discrete linear time and time intervals with fuzzy beginnings 
and endings [7]. This enhancement makes our representation of events [8] and actions 
more flexible and expressive. For all other desired representational capabilities like 
causality, event triggering, context sensitivity, delays in effects, concurrency, release 
from the law of inertia [9] we rely on [6]. Some of these have already been accounted 
for: causality, triggering, delays. Elaboration of the rest is planned for the future work.  
The mainstream of formal business process modeling and engineering today is using 
PSL [10], PDL [11] or their extensions. Unfortunately, these formal process modeling 
frameworks do not fully allow breaking down the diversity of the processes encoun-
tered in real life. This diversity may be characterized for example by Sandewall’s 
taxonomy [9] of the basic features of the processes. This classification embraces 
highly predictable, normal, manufacturing processes at one side and stochastic (“sur-
prising”2), structurally ramified, time-bound processes characteristic for design do-
main, on the other side of the spectrum.  

Presented modeling framework and the PSI suite of ontologies are the follow-up of 
our results published in [12]. The DEDP modeling framework in its part of process 
modeling bases its approach on [15-17]. The advancements of PSI approach are: (i) a 
rich typology of actions; (ii) environmentalistic approach to model processes, actions, 
their dependencies comprising concurrency; (iii) a state model refined using decision 
making mechanism and requirement sensitivity; (iv) an explicit difference between 
events and actions.   

To the best of our knowledge, existing frameworks do not specify the difference 
between events and actions, except stating that actions are a kind of events: “the most 
important events are actions, and for a program to plan intelligently, it must be able to 
determine the effects of its own actions…” [cf. 18]. Such a view underestimates the 
role of events which occur without the involvement of an actor and the influence of 
those events on the environments of actions. Indeed, if we consider a person acciden-
tally falling out from a window, this event can hardly be qualified as an action – the 
person had no purpose for or intention of falling out. The refinement proposed in PSI 
[19, 20] is that processes (compound actions) subsume to events, while atomic actions 
do that not. Atomic actions are a specific kind of an instrument for agents to pro-
actively apply changes to their environment(s).      

Our analysis of the variety of foundational ontologies [14] has revealed that the 
best matching ontological foundation for DEDP modeling is DOLCE [15] and the 
most appropriate referential commonsense theory is SUMO [16] extended by Word-
Net [17].  The semantics of our representation of actions, events, and environments is 
aligned with DOLCE through the PSI Upper-Level ontology [14]. The concepts of 
PSI Process ontology are mapped to SUMO through PSI Upper-Level ontology and 
WordNet using subsumptions. 

                                                           
2 A process is considered “surprising” if it is allowed that a surprising or exogenous event may 

cause a change that is not anticipated by the process script [11]. 



130 V. Ermolayev et al. 

3   Action Modeling Framework of PSI 

A DEDP is the process of goal-directed (pro-active) transformation of a design arti-
fact. A DEDP usually begins with collecting the initial available inputs (like the re-
quirements, the high-level specification), continues in a sequence of stages normally 
defined by the design system, and ends up with the design artifact in a form which 
meets the goal of the design. These stages are the actions applied to a design artifact. 
Actions are distinct because they affect a design artifact differently by applying dif-
ferent changes (transformations) or causing no tangible change at all. Actions may be 
grouped in different combinations like sequences, branching structures, alternative or 
concurrent paths.  

3.1   Preliminaries 

A design artifact (DA) is a tangible product that is being designed in a DEDP. A DA 
may be a single indivisible design object or a hierarchical composition of design ob-
jects having the same or different types. A DA, and every design object in a DA, is 
incrementally elaborated as the emerging set of its representations. A DA representa-
tion (a representation further on in the paper) is the implementation of a DA in a  
particular form, format, or notation in which the DA is used for a distinctive purpose.  

There exists only a partial order among representation types and respective repre-
sentations. The semantics of this partial order is that a representation Rm which pre-
cedes another representation Rn is more abstract, while Rn is more elaborated. The 
distance between two representations Rm and Rn may also be of interest. Indeed, a 
question about how much is Rn more elaborated (or more abstract) than Rm is impor-
tant because the answer characterizes the difficulty of the transformation of a DA 
between those representations. Difficulty is understood as the amount of abstraction 
crossed by a transformation. As transformations are applied by actions, difficulty (and 
distance) is somehow reflected by the effort to be spent for an action. 

In any combination, actions lead processes to particular states. The simplest possi-
ble DEDP may be described by specifying its initial (triggering) influence, its initial 
state, its action, its target state, and the change in the design artifact caused by the 
specified action and reached in the target state. A more complex DEDP may comprise 
both atomic and compound actions. Hence, in a general case, a DEDP description 
should also contain the specification of its intermediate states. A DEDP state is a state 
S of DEDP environment which is characterized by the set of the pre-requisites for the 
associated actions. These pre-requisites are either the events [8] which, if perceived as 
happenings [8], trigger influences that change the course of action, the representations 
which are required for an action, or their combination. A DEDP state is the state of 
affairs in which a decision to perform one of the admissible actions (for example, to 
cease the process) is to be made:  

>=< ),,, ARE sDS , (1) 

where: E is the set of associated events, R is the set of associated representations, Ds 
is the mechanism to make the decision to take a certain associated action, A is the set 
of admissible actions.   



 Modeling Actions in Dynamic Engineering Design Processes 131 

A representation R which is unconditionally available after a state S is reached is 
the characteristic representation of this state and belongs to the set ℜ of characteristic 
representations of this state. 

Further on, to find out if a representation is really the thing we wanted to receive, 
the characteristics of the representation are verified against the requirements. For 
simplicity reasons only independent characteristics are taken into account. An inde-
pendent characteristic c is the property of a representation which may be measured as 
recommended by the design system independently of the other characteristics. The set 
of independent characteristics of a representation is denoted as },...{ 1 ncc=C . A re-

quirement },{: falsetrue→Cρ  is the Boolean function of the independent character-

istics of a representation. Provided that requirements are defined for a representation, 
the degree of the success of an action elaborating the representation could be meas-
ured. If an action was successful enough the corresponding state may be considered as 
achieved. Otherwise a corrective action should be taken to improve the result. Hence 
the difficulty of an action is the function of the requirements to its target  
representation.  

Requirements to the same representation may differ in different phases of a DEDP. 
For example, the characteristic of the density of the elements on the integrated circuit 
becomes really important at a place and route phase, though accounted for more liber-
ally at earlier phases. Hence, a requirement is the attribute of a representation in a 
certain DEDP State. Requirements may be changed when a DEDP is already being 
executed. Such (events of) late changes to the requirements may result in unpredict-
able changes in the DEDP. If ],0[ TT = is the life time of a DEDP then a dynamic 
requirement ],0[},,{:)( Ttfalsetruet ∈→Cρ  is a requirement which may be changed 

during the life time of a DEDP, otherwise it is a static requirement.  
Accounting for the requirements implies the changes in the model of a state. A ρ -

sensitive state is a DEDP state in which representations are constrained by a non-
empty set of requirements },...,{ 1 nρρ=Ρ , which may be static or dynamic: 

>=< ),,,, AΡRE sDS . (2) 

One important kind of a requirement is a quality requirement. Such requirements are 
based on the characteristics measured as prescribed by the used quality model. 

3.2   Action Kinds 

While modeling actions it is important to pay attention to the following characteristic 
features: (i) is an action simple or compound? (ii) does an action transit a DEDP to a 
different state? (iii) what are the changes applied to the DA? (iv) what are the depend-
encies among certain actions?  

Compound and Atomic Actions. Actors may have different understanding of the 
actions in a DEDP (Fig. 1). Some of them, according to their role, prefer to operate 
high-level actions. For example, a project manager may find more appropriate to 
specify only high-level actions in the project plan, like front-end design and back-end 
design. The others may tend to go deeper in the details of the actions. A front-end 
designer will definitely notice that a high-level front-end design action comprises 



132 V. Ermolayev et al. 

several lower-level actions like RTL development, testbench development, etc. There-
fore one may deduce the hierarchical structure of the actions in a DEDP3 from the 
different facets of understanding a DEDP by different actors playing different roles. It 
is however important to find out if there are the basic building blocks for these actions 
– the ones which are understood as indivisible (atomic), by all the actors in a design 
system. It is rational to consider that such atomic actions exist and are defined by the 
design technology used within the design system. Such atomic actions are further on 
referred to as activities. 

Definition 1: an activity. An activity is a basic indivisible (atomic) action which is 
allowed, supported, and provided by a design technology. An activity is the only 
action which is executed and applies the atomic chunk of the transformation to a de-
sign artifact.  

Compound actions are the parts of a DEDP which are shrunk into one edge for con-
venience and the proper representation for different roles. These composite actions 
are denoted as tasks.  

Definition 2: a task. A task is a compound action which may be represented as the 
composition of the other tasks and activities. Such representations are different in the 
knowledge of different actors.  
As shown in Fig. 1, tasks may contain several transformation paths.  

   
 

Si 

S2

Ri 

A1 

The view of a Front-End Designer 

The view of a Back-End Designer 

R2

S6 R6 
S3 R3 

S4 
R4 S5 R5 

A3 

St RtA2 

A4

A5 

A7 

A6 

A8 

T3

T4 

S8 R8

St Rt

S6 R6 

S5 R5 

Si Ri 

T1 

T2 

The view of a Project Manager 

St Rt

S6 R6 

S5 R5 

Si Ri 
T1 

T2 

T3

T4 

S7 R7

S9 R9

S10 R10

A9 

A10

A13

A12

A11

A14

A15

A16

Si 

S2 

A1 S6 

A2 A7 

A6 

S3 

⎪
⎩

⎪
⎨

⎧

⎯ →⎯⎯ →⎯

⎯ →⎯⎯ →⎯

63

62

1
72

61

XOR:

SSS

SSS

T
AA

i

AA
i

Si S6 
S3 

S4 S5 
A3

A4 

A5 

A7 

A8 

⎪
⎩

⎪
⎨

⎧

⎯ →⎯⎯ →⎯

⎯ →⎯⎯ →⎯
⎯ →⎯

654

634

2
85

74

3 XOR:

SSS

SSS

ST
AA

AA

A
i  

Front-End Back-End  

Fig. 1. Compound and atomic actions in subjective views of different actors 

State-Transitive Actions. A DEDP transits to a new state when the pre-requisites for 
such a transition are met. These pre-requisites are: (i) events which indirectly trigger 
an action or (ii) the availability of characteristic representations for the target DEDP 
state. For clarity we shall consider the events occurring outside of DEDP environment 

                                                           
3 Like in a project plan. Indeed, the Actions in a project plan are often presented in a hierarchy.  



 Modeling Actions in Dynamic Engineering Design Processes 133 

and the events generated within the environment of a DEDP as separate kinds of 
events – external and internal ones.  

An action will transit a DEDP to a new state S if representations produced by this 
action “complete” the set ℜ  of the characteristic representations of S. According to 
the classification of the results of actions, the following types of actions may result in 
DEDP state transition because they produce new representations: productive actions, 
decomposition and integration actions. 

It can not be expected that external events occur in a controllable manner. There-
fore unexpected happenings and appropriate reactions to them in the form of influ-
ences should be accounted for. External events may or may not be perceived by the 
actors in the DEDP environment. External events may cause environmental changes 
of different magnitude. We shall say that an environment is stable with respect to a 
particular external event if the change caused by this event is negligibly subtle. On the 
contrary the environment is not stable with respect to a particular external event if the 
magnitude of the incurred change is substantial. By saying “substantial” we mean that 
the magnitude of the change4 requires that a corrective action is applied to the DEDP. 
In the latter case it is important to ensure that such an event is perceived and the influ-
ence is generated to execute required corrective actions. For the sake of uniformity 
and simplicity we shall consider a forced change of DEDP state as the only possible 
type of a corrective action.  

Internal events are generated by the components of the environment [8] of a DEDP 
– the design system. One possible kind of an internal event is that an actor executing 
an action becomes unavailable. Possible reactions are: (i) action suspension until the 
actor becomes available; (ii) actor substitution – no influence to DEDP; (ii) corrective 
action changing DEDP state and choosing a different transformation path executed by 
a different actor. Another possible internal event could be that a resource being con-
sumed in the action becomes unavailable. Possible reactions are: (i) action suspension 
until the resource becomes available; (ii) resource substitution – no influence to 
DEDP; (iii) corrective action changing DEDP state and choosing a different transfor-
mation path where the resource is not consumed. Yet one more kind of an internal 
event is that the requirements to a representation have no chance to be met if the cho-
sen iterative action is continued. Possible reaction is rolling back to the previous 
DEDP state and choosing a different transformation path.  

If a DEDP has reached its target state St and all the requirements to the characteris-
tic representations of St are met, a cessation action terminating the DEDP in success 
has to be applied. In all other cases either a change in the environment (like actor 
substitution or resource substitution) is sufficient or an action is decided to be sus-
pended. Otherwise, a corrective action should be taken to choose a different transfor-
mation path in the process.  

Corrective Actions. In a DEDP some transformation paths may be more risky than 
the others. Indeed, when for example a design system transits to a new design tech-
nology, the correlations among the requirements are not very well understood. The 
assessments of the quality provided by actions are not well grounded. If these settings 
are complicated by the dynamic factors, an action on a chosen transformation path 
                                                           
4 Corresponding thresholds should be found out experimentally when calibrating the model of 

the design system. 



134 V. Ermolayev et al. 

may unexpectedly result in missing the requirements to a characteristic representation. 
Though iterative actions may help further elaborating or refining the representation, 
there might be a situation in which the refinement is not longer possible using avail-
able actions. A corrective action may improve such a situation by: (i) rolling-back the 
transformation path to the nearest successful state or (ii) choosing the next-most pro-
ductive transformation path as the back-up plan.  Corrective actions may also be used 
as a mechanism of collecting facts on bad experience to make risk assessments more 
grounded in the future. 

Iterative Actions. Some types of actions will iterate a DEDP in a ρ -sensitive state S 
if characteristic representations of S do not meet the set of requirements 

},...,{ 1 nρρ=Ρ of state S, i.e. at least one of the requirement functions ρ is false. 

Moreover, only such types of actions may be triggered by SD until the requirements 

are met. These types of actions are: refinement actions, elaboration actions, de-
bugging actions, verification actions. A SD  may detect that several iterative actions 

should be performed at a certain phase of iterations at state S. By the analogy to pro-
ductions-based inference engines these actions may be considered to be in a conflict 
set. The conflicts may be resolved by: (i) analyzing the dependencies among the ac-
tions in the conflict set; and (ii) assigning priorities to the (types of) independent  
actions.  

Cessation Actions. The difference between a corrective action and a cessation action 
is that a corrective action transits a DEDP to its state, though different from the previ-
ous one, but a cessation action terminates a DEDP – i.e., moves it out of the state 
space. A cessation action may terminate a DEDP in success or in failure. 

3.3   Dependencies and Concurrency  

As emphasized by many authors, for example [18], best performance is achieved 
when the best achievable degree of coherence among the actions within a process is 
granted. Coherence among actions means several important things: (i) coherence in 
individual goals of different actors performing different actions in one process; (ii) 
proper distribution of the consumption of available resources in different actions; (iii) 
balance in the capacities of the tools used in different actions; (iv) appropriateness of 
the skills of the actors to the requirements of the actions assigned to these actors; (v) 
proper scheduling of the actions which use the results produced by other actions. All 
these aspects represent dependencies among actions. Hence, achieving coherence 
among these actions can be reached by coordination, which is the routine of “manag-
ing the interdependencies between activities” (cf. [19]). Therefore, a model of action 
dependencies should account not only for the direct dependencies of actions on the 
results of other actions (the latter case (v)), but for a broader variety of indirect de-
pendencies (at least cases (i)–(iv)) revealed through the process environment. Gener-
ally speaking, action A3 depends on another action A1 when the post-effects of A1 

change the pre-requisites of A3. This dependency may be denoted in the terms of a 
DEDP State, an event, a happening, and an influence.  

Let S1, S2 be ρ -sensitive States (2).  



 Modeling Actions in Dynamic Engineering Design Processes 135 

Definition 3: an action-related part of DEDP environment.  
1AΣ = {R1, AC1, RT1} 

is the part of DEDP environment related to A1 if: 

– The execution of any action A associated with S1 generates internal events chang-
ing the constituents of Σ1, or 

– The occurrence of any external event E changing 
1AΣ , if percieved by a member 

of AC1, may change the course of actions associated with S1 by influencing these 
actions at their execution time 

The constituents of 
1AΣ are (Fig. 2): 

R1={R1, R2, …, R4} – the set of representations available in S1 and (if any) pro-
duced to reach S2 

AC1=(Ac1, Ac2, …, Acm) – the set of actors capable of executing A1 associated 
with S1 and available at the time when A1 has to be commenced 

RT1 – the pool of resources consumed by and tools used in A1 associated with S1 
 

 

EDP Environment

R2

R1

pre
1RT

S1 

1AΣ
S2 

 
pre
1AC ={        } 

A1 

post
1RT

R4
R3

post
1AC ={          }

post-effects of A1 pre-requisites of A1 

 

Fig. 2. A part of DEDP environment (
1AΣ ) related to action A1 

It is important to note that, according to definition 3, if an action (A1) causes state 

transition (S1 to S2), then post
A

pre
AA 111

Σ∪Σ=Σ comprises both the pre-requisites of A1 

and the post-effects of A1. Some of these pre-requisites are not associated with DEDP 

states, like pre
1AC and pre

1RT . Others belong to S1, like },,{ 3211 RRRpre =R .  Some of 

the post-effects are also state-independent: post
1AC and post

1RT containing those ele-

ments that have been changed by A1. These changes may be in the availability of 
actors, resources and tools and the capability of actors. Other post-effects belong to 

the target DEDP state S2: }{ 41 Rpost =R . These post-effects also contain changed rep-

resentations only.  
If A1 does not cause the transition of the process to a different DEDP state, the con-

figuration of post
A

pre
AA 111

Σ∪Σ=Σ still remain similar to the previous case. The only 

difference is that }{ 41 Rpost =R belongs to the same DEDP state (S1).   

Let A1 be an action causing the transition of the DEDP to DEDP state S2, A3 be an 
action associated with DEDP state S3.  



136 V. Ermolayev et al. 

Definition 4: a dependency. A3 depends on A1, if ∅≠Σ∩Σ post
A

pre
A 13

, otherwise A3 and 

A1 are independent.  
Following [20] we shall classify dependencies as weak and strong. Action A3 is 

strongly dependent on action A1 if the execution of A3 could not be started until A1 is 
accomplished and its goal is fully met. Having in mind that the goal of an action in a 
DEDP is reaching the DEDP state in which all the required representations are made 
available, we may denote strong dependency as follows. 

Definition 5: a strong dependency. A3 strongly depends on A1 if 
postpost

A
pre
A 113

R⊆Σ′=Σ∩Σ  

Please note that definition 5 holds true also if A1 is not a state transitive action. 

Definition 6: a weak dependency. A3 weakly depends on A1 if:  

(i) postpost
A

post
A

pre
A 1\

113
RΣ⊆Σ′=Σ∩Σ – environmental dependency, or  

(ii) postpost
A

post
A 313

R⊆Σ′=Σ∩Σ – facilitation dependency 

According to definition 6 environmental dependencies (i) are caused by sharing the 
pool of actors, the pool of tools, consuming the same resources, or by the combination 
of these reasons, normally indicating that the actions are competitive. On the contrary, 
facilitation dependencies (ii) indicate that actions are cooperative. Indeed, the inter-
pretation of (ii) is as follows: A1, facilitates A3 in reaching its goal because it elabo-

rates some part of the set of representations post
3R . 

Accounting for action dependencies may help building better DEDP schedules thus 
improving their performance properties.  

Concurrency among actions is one more aspect which may influence temporal 
properties of DEDP performance. It is evident that gaining more concurrency among 
the actions in a DEDP may result in shorter schedules and shorter execution times. 
Even partial overlaps in time intervals of action execution may optimize the overall 
performance. Unfortunately, it is not possible to execute all the actions in a DEDP in 
parallel or partly in parallel because of their dependencies.  

Let, according to [7], 
1AI be the fuzzy time interval of the execution of A1 and

3AI be 

the fuzzy time interval of the execution of A3. Then the following definitions of full 
and partial concurrency among two different actions hold true.   

Definition 7: full concurrency. Action A1 is fully concurrent to action A3 if 
),(),(

3131 AAAA IIWithinIISame ∨ . 

Definition 8: partial concurrency. Action A1 is partially concurrent to action A3 if 
),(

31 AA IIOverlaps . 

In terms of action dependencies we may rightfully state that if action A1 is independ-
ent to action A3 then we may schedule and execute them fully concurrently. Granting 
concurrency to dependent actions is not that straightforward. The case of a strong 
dependency is simpler.  



 Modeling Actions in Dynamic Engineering Design Processes 137 

Corollary 1: concurrency of strongly dependent actions. If action A3 is strongly de-
pendent on action A1 then they can not be executed concurrently.  

The case of a weak dependency is more complex.  

Corollary 2: concurrency of environmentally dependent actions. If action A3 is envi-
ronmentally dependent of action A1, then their concurrent execution, while being 
possible, may make the overall performance less optimal. 

Corollary 3: concurrency of actions with facilitation dependency. If action A1 facili-
tates the execution of action A1, then their concurrent execution while result in better 
overall performance. 

4   Implementation and Evaluation  

The action modeling framework presented above has been implemented as several 
OWL-DL5 modules of the PSI suite of ontologies. The initial implementation has 
been done in the suite of ontologies v.2.0. In this revision actions were modeled by 
the Task-Activity ontology and several relationships to the Actor ontology, Project 
ontology, Design Artifact ontology. In v.2.1 the ontological model of actions has been 
refined by introducing the associations to the Time ontology [7] and the Environment, 
Event, and Happening (E2H) ontology [8].  Finally, in v.2.2 the Upper-Level ontol-
ogy [14] has been introduced and the modular structure has been refined by splitting 
the action model at the domain level into the Process Pattern ontology and the Process 
ontology. PSI shaker modeling methodology [14] has been used for refining the suite 
of ontologies and producing v.2.1 and v.2.2. 

Fig. 3 pictures the UML diagram of PSI Process ontology v.2.2. Full details of this 
ontology are given in [21]. Uncolored packages in Fig. 3 represent different PSI core 
ontologies: Actor ontology; Project ontology; Design Artifact ontology; Environment, 
Event, and Happening ontology [8]; Time ontology [7]. The grey colored package 
represents the Resource extension ontology developed in the PRODUKTIV+ project6. 

PSI Process ontology has been evaluated as the part of the core of PSI suite of on-
tologies v.2.2 as suggested by the shaker modeling methodology. Three different 
evaluation activities have been performed: (i) user evaluation; (ii) formal evaluation; 
(iii) commonsense evaluation.  

User evaluation has been performed as a goal-based evaluation of the adequacy of 
the knowledge model and its implementation in the ontology to the set of require-
ments by the group of subject experts in microelectronic engineering design. It found 
out that the ontology adequately answers the competency questions formulated using 
the requirements by subject experts. Several test cases have been developed for evalu-
ating the suite of ontologies using simulation. A testcase is a real or a fictive project 
for which at least all the initial data instances required for design system modeling are 
available. Acquiring a testcase allows to verify that the ontology is capable of storing 
all initial data as its instances and to start simulation using the multi-agent system 
 
                                                           
5 Web Ontology Language: http://www.w3.org/TR/owl-guide/.    
6 PRODUKTIV+ is the R&D project funded by the German Bundesministerium für Bildung 

und Forschung (BMBF). 



138 V. Ermolayev et al. 

TaskPostEffect

id : String

name : String
description : String

Task

id : String

name : String
description : String
startingDate : Date

agreedDate : Date
agreedDeadline : Date

assignedDate : Date
monetaryBudget : double
earnedUoW : int

minimalCost : int
realStartDate : Date

realEndDate : Date

realStart : TimeInstant
realEnd : TimeInstant

TaskPreCondition

id : String

name : String
description : String

DesignArtifact

DAState

Activity

id : String

name : String

description : String
difficulty : double

executionEffort : double
rampUpEffort : double

iterative : boolean

stateTransitive : boolean

Resource

Influence

Project

Project

GanttDiagramElement

0..*

requires

0..*

isRequiredBy

0..*

resultsIn

1..*

isResultOf

0..*

has

0..*

of

0..*

provides

0..*

of

0..*

affects

0..*

affectedBy

0..*

requires

0..*

isInitialFor

target

0..*

IsTargetOf

0..*

targetsTo

isInitialOf

0..*

hasInitial

1..*

in

0..*

has

1..*

in

0..*

for

ConsumableResource

ResourceConsumption

0..*

requires

0..*

requiredFor

Time

TimeInstant

TaskImmediateEffect

id : String
name : String

description : String

0..*

of

0..*

provides

EState

Decision

0..*

toChoosechosenDue

Event-Happening

PreCondition

ImmediateEffect

PostEffect

ExternalEvent

Actor

0..*

takenBy takes

ResourceConsumption

Actor

1..*

comprises

1..*

in

 

Fig. 3. UML diagram of the main concepts in the PSI Process ontology v.2.2 

(MAS). Ideally, a testcase also provides a complete project execution record which is 
required for the calibration step and for the verification of the simulation results. 
Amongst the set of testcases are very simple and fictive ones describing tiny digital 
and tiny analog designs. These have been used to verify and refine the model and the 
ontologies. Others are based on real world projects of digital and analog chip design. 
These are fictive ones as well designed for demonstration purposes because real world 
project data usually may not be disclosed to public. For calibration the Project Plan-
ning Expert System MAS [2] was fed with the project definition and the knowledge 
base. Using these, it created a new work breakdown structure (Fig. 4). The result was 
then compared to the original structure, differences were analyzed, and corrections 
were made until the both roughly matched. At subsequent stages the MAS simulated 
project executions (Fig. 5) and again the results were compared to the original project 
course. Project log replay simulations and calibration experiments proved that the 
approach is effective and practical.  

Formal evaluation has been performed using OntoClean methodology [22]. Its objec-
tive was to check the formal conformance of the taxonomy structure of the evaluated 
Suite of Ontologies v.2.2 to the meta-properties of rigidity, identity, and dependence 
[23]. Formal evaluation of PSI Process ontology together with PSI Upper-Level ontol-
ogy [14] revealed that the taxonomy structure is conceptually correct.  

The mappings of the concepts of the Process ontology to SUMO [16] through PSI 
Upper-Level ontology and WordNet [17] have been defined [13] for evaluating these 
ontologies with respect to the common sense [24]. This work revealed that the ontol-
ogy adequately maps to SUMO – the chosen [14] commonsense reference ontology. 
This fact allows us believing that the process related part of the PSI suite of ontolo-
gies may be used not only internally in PSI and PRODUKTIV+ projects, but broader 
– as a descriptive theory of dynamically ramified processes in the domains which are 
 



 Modeling Actions in Dynamic Engineering Design Processes 139 

 

Fig. 4. The result of the planning phase of a design process simulation in Cadence Project 
Planning Expert System: generated Work Breakdown Structure graph. Ellipses stand for re-
sults, rectangles for tasks. Darker entries show the selected transformation path. 

 

Fig. 5. The results of planning and execution phases of a design process simulation in Cadence 
Project Planning Expert System. Action durations are compared for planning (brighter bars) 
and execution (darker bars). 



140 V. Ermolayev et al. 

dynamic, complex, and non-deterministic similarly to engineering design. One good 
example is the domain of knowledge processes and knowledge workers investigated 
by the ACTIVE project7. 

5   Concluding Remarks 

The paper presents the action-related part of the PSI theoretical framework and its 
implementation as the Process ontology of the PSI suite of ontologies v.2.2. The ad-
vantages of the presented approach to modeling actions and processes are: (i) a rich 
variety of action kinds; (ii) environmentalistic approach to model processes, actions, 
their dependencies comprising concurrency; (iii) a state model refined using decision 
making mechanism and requirement sensitivity; (iv) an explicit difference between 
events and actions. These allow making process and action models being flexible and 
adaptive to the extent required for modeling structurally and dynamically ramified, 
time-bound processes characteristic for engineering design domain.  

The presented ontological model of actions has been iteratively refined starting from 
its initial revision in v.2.0 of the PSI suite of ontologies till its current revision in v.2.2 
using PSI shaker modeling methodology. The methodology subsumes several kinds of 
evaluation activities which have been performed as reported in the paper. Evaluation 
proved that the presented approach to modeling actions and processes is practical and 
effective. The core part and the several extensions of the PSI suite of ontologies are 
used in the Cadence Project Planning Expert System software prototype.  

References 

1. Van Staa, P., Sebeke, C.: Can Multi-Agents Wake Us from IC Design Productivity Night-
mare? In: Mařík, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS 2007. LNCS (LNAI), 
vol. 4659, pp. 15–16. Springer, Heidelberg (2007) 

2. Sohnius, R., Jentzsch, E., Matzke, W.-E.: Holonic Simulation of a Design System for Per-
formance Analysis. In: Mařík, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS 2007. 
LNCS (LNAI), vol. 4659, pp. 447–454. Springer, Heidelberg (2007) 

3. Mueller, E.T.: Commonsense Reasoning. Morgan Kaufmann Publishers, San Francisco 
(2006) 

4. McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the Standpoint of Artificial 
Intelligence. Machine Intelligence 4, 463–502 (1969) 

5. Shafer, G., Gillett, P.R., Scherl, R.B.: The logic of events. Ann. Math. Artif. Intelli-
gence 28(1-4), 315–389 (2000) 

6. Mueller, E.T.: Event Calculus Reasoning through Satisfiability. J. Logic and Computa-
tion 14(5), 703–730 (2004) 

7. Ermolayev, V., Keberle, N., Matzke, W.-E., Sohnius, R.: Fuzzy Time Intervals for Simu-
lating Actions. In: Kaschek, R., Kop, C., Steinberger, C., Fliedl, G. (eds.) UNISCON 2008. 
LNBIP, vol. 5, pp. 429–444. Springer, Heidelberg (2008) 

 
                                                           
7 ACTIVE: Knowledge Powered Enterprise (http://www.active-project.eu/) is an Integrating 

Project funded by Framework Program 7 of the European Union. 



 Modeling Actions in Dynamic Engineering Design Processes 141 

8. Ermolayev, V., Keberle, N., Matzke, W.-E.: An Ontology of Environments, Events, and 
Happenings. In: Proc. 31st IEEE Annual International Computer Software and Applica-
tions Conference (COMPSAC 2008), pp. 539–546. IEEE Computer Society, Los Alamitos 
(2008) 

9. Sandewall, E.: Features and Fluents. The Representation of Knowledge about Dynamical 
Systems, vol. 1. Oxford University Press, Oxford (1994) 

10. Bock, C., Gruninger, M.: PSL: A semantic domain for flow models. Software and Systems 
Modeling Journal 4, 209–231 (2005) 

11. Workflow Management Coalition. Workflow Standard. Process Definition Interface – 
XML Process Definition Language. V. 2.00, Doc. No. WFMC-TC-1025 (Final), October 3 
(2005) 

12. Ermolayev, V., Jentzsch, E., Karsayev, O., Keberle, N., Matzke, W.-E., Samoylov, V., 
Sohnius, R.: An Agent-Oriented Model of a Dynamic Engineering Design Process. In: 
Kolp, M., Bresciani, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2005. LNCS, 
vol. 3529, pp. 168–183. Springer, Heidelberg (2006) 

13. Ermolayev, V., Jentzsch, E., Keberle, N., Sohnius, R.: Performance Simulation Initiative. 
Meta-Ontology v.2.2. Reference Specification, tech. report PSI-ONTO-TR-2007-4, VCAD 
EMEA Cadence Design Systems GmbH (2008) 

14. Ermolayev, V., Keberle, N., Matzke, W.-E.: An Upper-Level Ontological Model for Engi-
neering Design Performance Domain. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) 
ER 2008. LNCS, vol. 5231, pp. 98–113. Springer, Heidelberg (2008) 

15. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb Deliverable 
D18 Ontology Library (final). In: ICT Project 2001-33052 WonderWeb: Ontology Infra-
structure for the Semantic Web (2003) 

16. Niles, I., Pease, A.: Towards a Standard Upper Ontology. In: Guarino, N., Smith, B., 
Welty, C. (eds.) Int. Conf. on Formal Ontologies in Inf. Systems, vol. 2001, pp. 2–9. ACM 
Press, New York (2001) 

17. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge 
(1998) 

18. O’Donnel, F.J., Duffy, A.H.B.: Design Performance. Springer, London (2005) 
19. Malone, T., Crowston, K.: Toward an interdisciplinary theory of coordination. Center for 

Coordination Science, Technical Report 120, MIT Sloan School of Management (1991) 
20. Nagendra Prasad, M.V., Lesser, V.R.: Learning situation-specific coordination in coopera-

tive multi-agent systems. Autonomous Agents and Multi-Agent Systems 2(2), 173–207 
(1999) 

21. Ermolayev, V., Jentzsch, E., Keberle, N., Sohnius, R.: Performance Simulation Initiative. 
The Suite of Ontologies v.2.2. Reference Specification. Technical report PSI-ONTO-TR-
2007-5, VCAD EMEA Cadence Design Systems, GmbH (2007) 

22. Guarino, N., Welty, C.: Supporting Ontological Analysis of Taxonomic Relationships. 
Data and Knowledge Engineering 39(1), 51–74 (2001) 

23. Guarino, N., Welty, C.A.: A Formal Ontology of Properties. In: Dieng, R., Corby, O. 
(eds.) EKAW 2000. LNCS, vol. 1937, pp. 97–112. Springer, Heidelberg (2000) 

24. Keberle, N., Ermolayev, V., Matzke, W.-E.: Evaluating PSI Ontologies by Mapping to the 
Common Sense. In: Mayr, H.C., Karagiannis, D. (eds.) Proc. 6th Int’l Conf. Information 
Systems Technology and its Applications (ISTA 2007). GI LNI, vol. 107, pp. 91–104. GI 
Bonn (2007) 


	Modeling Actions in Dynamic Engineering Design Processes
	Introduction
	Related Work
	Action Modeling Framework of PSI
	Preliminaries
	Action Kinds
	Dependencies and Concurrency

	Implementation and Evaluation
	Concluding Remarks
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




