
J. Yang et al. (Eds.): UNISCON 2009, LNBIP 20, pp. 103–114, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Achieving Adaptivity Through Strategies in a Distributed
Software Architecture

Claudia Raibulet1, Luigi Ubezio2, and William Gobbo2

1 Università degli Studi di Milano-Bicocca, DISCo – Dipartimento di Informatica
Sistemistica e Comunicazione, Viale Sarca 336, Edificio 14, 20126 Milan, Italy

raibulet@disco.unimib.it
2 IT Independent Consultant,

Milan, Italy
ubezio@gmail.com, william.gobbo@hotmail.it

Abstract. Designing information systems which are able to modify their struc-
ture and behavior at runtime is a challenging task. This is due to various reasons
mostly related to questions such as what should be changed, when should be
changed, and how should be changed at runtime in order to maintain the func-
tionalities of a system and, in the same time, to personalize these functionalities
to the current user, services requests and situations, as well as to improve its
performances. The systems which manage to address properly these aspects are
considered adaptive. Our approach to design adaptive systems exploits strate-
gies to implement the decisional support and to ensure an efficient modularity,
reusability and evolvability of the architectural model. In this paper we describe
the main types of the strategies defined in our solution, as well as how these
strategies are exploited at run-time in the context of an actual case study in the
financial domain.

1 Introduction

Adaptivity is one of the keywords related to the design of today’s information sys-
tems. It addresses the modifications performed in a system during its execution. These
modifications aim to improve the productivity and performance of a system, and to
automate the configuration, re-configuration, control and management tasks. They
may be translated into modifications of structural, behavioral or architectural compo-
nents [5, 6, 8].

This paper presents our solution for the design of an Adaptive MANagement of
Resources wIth Strategies (ARMANIS) in a service-oriented mobile-enabled distrib-
uted system. In this context, we focus on the definition of various types of strategies,
which implement the decisional support playing a fundamental role in the process of
achieving adaptivity. They exploit a late binding mechanism which enables us to
combine structural and behavioral elements in order to obtain a personalized solution
for each request based on its input information.

In previous work, the architectural model of our solution which exploits reflection
to achieve adaptivity has been described [10]. In the same paper we have presented an

104 C. Raibulet, L. Ubezio, and W. Gobbo

implementation example based on a distributed peer-to-peer paradigm. The service-
oriented features of ARMANIS have been described in [12]. We have validated the
proposed model by applying it in a healthcare system [11]. Furthermore, we have
adapted and implemented our solution for mobile devices [2]. In this paper, we aim to
focus the attention on the strategies we consider to be fundamental to achieve adaptiv-
ity through ARMANIS. In [10, 14] we have introduced the concept of strategy and
described its design and implementation issues through the Strategy and Composite
design patterns. In this paper we describe the types of strategies to be considered and
exploited at runtime by the various components of our architectural model: domain,
system and connectivity. The definition of these strategies can be considered a further
evolution of our approach, evolution mostly due to the integration of the wired (e.g.,
LAN) and wireless (e.g., Bluetooth, WI-FI) networks, the usage of the RFID (Radio
Frequency Identification) [4, 15] technology for the localization of the system actors,
and to the possibility to apply it in various application contexts.

The rest of the paper is organized as following. Section 2 introduces the case study
considered to validate our solution. Section 3 describes our architectural model by
focusing on its main concepts meaningful for this paper. The application of our ap-
proach in the context of the case study is dealt in Section 4. Discussions and further
work are presented in Section 5.

2 Motivating Example

The motivating example is collocated in the context of a finance case study. The main
idea behind this example is to provide support to the bank staff members to offer
customers entering a bank agency personalized services based on customers’ profile
and account status, as well as on the current business and financial advertisings of-
fered by the bank. Customers appreciate and agree easier to exploit new and personal-
ized services when the bank staff members have the chance to explain them face to
face the advantages of the advertisings, rather than when the bank contacts them
through communication letters, emails or phone calls.

A prerequisite to achieve this goal is to reveal the presence of the customers enter-
ing the bank agency in a non-intrusive way. A possible scenario may be based on a
RFID approach, which notifies the system whenever a person having a tag crosses an
access point. We suppose that the bank customers have a credit card enriched with a
tag, which is able to be excited by radio signals and to send back its own identifier.
We have already developed a complex access control framework for the management
of multi-services structured based on the notification of the customers’ presence [16].
In this case study the access point, called choke point, is the agency entrance(s).

A general scenario consists in the following steps. The system reveals the presence
of the customers through their enhanced credit cards. Furthermore, the system looks
for the customer’s account and identifies the services he can be interested in. Based
on the commercial importance of the customer for the bank, various staff members
are notified of his presence (e.g., the cashiers, an account consultant, the director of
the agency). This information may be displayed on various devices used by the bank
staff members (e.g., desktop monitors, wall monitors, PDAs, mobile phones) and in
various modes based on their current location and the activities they are performing.

 Achieving Adaptivity Through Strategies in a Distributed Software Architecture 105

We underline that the actual users of this system are the staff members of the bank
agency. The system provides them support to experience a new way of interacting
with the bank customers.

Related to this case study we present the following two significant scenarios.

Scenario 1: The bank staff members are notified when a customer enters a bank
through a message on their working device. In this scenario, we consider an ordinary
customer who interacts only with one of the cashiers at work.

Through the credit card, the system reveals the presence of the customer and iden-
tifies the customer's name and bank account number. Based on the customer's profile,
the system identifies if there are any advertisings which should be communicated to
the customer. All this information is displayed on the desktops used by the cashiers.

Scenario 2: An important customer enters the bank. In this case the director of the
bank agency is notified. The way he is notified depends on his location (e.g., office
room, meeting room, out of the bank agency) and of the device he has available (e.g.,
working terminal, wall monitor, PDA, mobile phone). If the director is not present in
the agency, the vice-director is notified.

3 ARMANIS’ Architectural Model

Figure 1 shows the main components of our architectural model:

• the Domain Manager, which provides a Graphical User Interface (GUI), a Re-
quest Execution Protocol (REP) module, and the knowledge specific to the cur-
rent application domain; the GUI shows to the users the domain services offered
by the software system; the REP module defines the steps for the execution of
services’ requests in the context of the application domain;

• the System Manager, which controls the services provided by the hardware and
software components of a system (e.g., print, display); these services are inde-
pendent of the application domain and depend only on the system’s architecture;
system services are exploited by the domain services;

• the Connectivity Manager, which supervises the communication with other
ARMANIS-enabled nodes; this manager deals with various types of networks
both wired (e.g., LAN) and wireless (e.g., WI-FI, Bluetooth).

As shown in Figure 1, the three managers are related to the three main types of
knowledge available in every software system. We consider them separately to en-
sure the modularity of the solution, its maintenance, as well as the reusability as
much as possible of the design and implementation components. Each of these man-
agers consists of three main elements: knowledge, services and strategies. The
knowledge represents the information owned by each manager. The services repre-
sent the functionalities they offer to the users or other components of a system. The
strategies implement the mechanisms through which runtime adaptation is achieved.

In the remaining of this section attention is focused on the description of those ele-
ments of our architectural model which are independent of any application domain.
Hence, we describe the main concepts used by the Request Execution Protocol mod-
ule to indicate how services are executed. Furthermore, the strategies defined by the
system and connectivity modules are introduced.

106 C. Raibulet, L. Ubezio, and W. Gobbo

Fig. 1. ARMANIS’ Architectural Model

3.1 The Request Execution Protocol Model

The Request Execution Protocol module describes formally the behavior of our ap-
proach related to the execution of services requests. The main elements of this module
are shown in Figure 2. A ServiceRequestType defines the States of a request and the
Transitions from one state to another. Each ServiceRequest instance corresponds to a
ServiceRequestType. For each service request, the Checker element verifies what type
it belongs to and assigns it the identified type. If there is no type matching, the request
cannot be addressed.

Fig. 2. Elements of the Request Execution Protocol

The definition of service execution protocols is based on:

• an XML description of the requests;
• a sequence of steps expressed in terms of a finite state machine chart; this se-

quence guarantees the order of the steps to execute a request.

In ARMANIS all the information exchanged among peers is document centric.

 Achieving Adaptivity Through Strategies in a Distributed Software Architecture 107

3.2 System Strategies

The System Manager performs five main tasks: the inspection of the system services
offered by the local peer, the inspection of the qualities of services (QoS) of the sys-
tem services offered by the local peer, the discovery of system services on remote
peers, the choice of the most appropriate service for a request (considering local and
remote services) and the execution of services. Thus, it defines five types of strategies
one for each of these tasks. These strategies are described in Table 1. Each strategy
may have one or more alternatives.

Table 1. System Strategies

The service inspection strategies are exploited to identify which are the services of-

fered by a peer. The services are described through a common ontology. The basic
version of this strategy considers that services are static, meaning that no services can
be added or removed at run-time. Such a strategy is applicable in most of the cases.
For example, the services offered by a server or a mobile phone hardly change at
runtime. However, there are cases in which new types of services are added or a new
type of network is available, thus alternatives to this strategy considering this aspect
have been also defined.

108 C. Raibulet, L. Ubezio, and W. Gobbo

Similar strategies have been inserted for the identification of the QoS associated to
each available service. Furthermore, QoS may have both qualitative and qualitative
values. For more information about the mapping between high-level QoS and low-
level QoS see [13].

The service discovery strategies are defined to inspect the services offered by other
peers in the distributed system. Two approaches can be defined for this type of strat-
egy. Through the first, only the peers directly connected to the requester one are inter-
rogated. The second gives the possibility to specify how many intermediate peers
should be interrogated. For example, establishing the intermediary peers at 1, peer P1
sees the S1.1, S1.2, S2.1, S2.2, S3.1, and S3.2 services provided by the P1, P2 and P3
peers (see Figure 3). In this case P1 cannot reach the services provided by peer P4.

Fig. 3. Connection among peers

The service choice strategies decide which system service is used to execute the
current request. In our approach, this choice is performed based on the QoS and the
location of services [10]. To each service having the type of the requested one is as-
signed a score which indicates how close the QoS and its location are with respect to
those requested. The lower the score is, the better it suits to execute the service. This
strategy may provide also a list of the most suitable services which can fulfil the re-
quest. This option is very useful when the user wants to choose himself the service, or
when other components of a system choose the most appropriate service. In the case
of execution failures, having a two or more services which can execute the request
avoids the overheads needed to identify other candidates.

3.3 Connectivity Strategies

The Connectivity Manager performs three main tasks: the discovery of other AR-
MANIS-enabled peers, the management of the connection among peers, and the man-
agement of the disconnection of peers. Thus, it defines three types of strategies one
for each of these tasks (see Table 2).

The strategy to discover ARMANIS-enabled peers depends on the type of the net-
work. In a highly dynamic system, the discovery of peers is done permanently, while
in an almost static network discovery it is done at the start-up and/or on demand. An
intermediary approach considers that the discovery of other reachable peers is done
when the number of the identified or connected peers is less than a minimum number.

The opening of connections to remote ARMANIS-enabled peers depends on the
type of the application domain. If it is based on a high communication and collabora-
tion among peers, then the connection is established whenever a peer is discovered.
Otherwise, it is more efficient to establish a connection on demand. Furthermore,
connections may be opened when the number of the connected peers or the number of
the responses received from the connected peers is less than a specific value.

 Achieving Adaptivity Through Strategies in a Distributed Software Architecture 109

Table 2. Connectivity Strategies

The disconnection of peers is done whenever a communication exception is

caught due to the fact that a peer does not respond before a specific time limit. An
alternative is to disconnect peers during the discovery process when peers become
unavailable.

4 ARMANIS Applied to a Case Study

The domain knowledge for the case study introduced in Section 2 is composed of
information related to customers, staff members and the financial and business ser-
vices offered by the bank. Information related to the customers includes personal data,
account number and conditions, and contracted services. The information of the staff
members are related to their personal data, qualification and role(s), and access rights.
In addition, for each staff member there are indicated alert channels which are related
to the type of devices he can use for professional activities and the modality of notifi-
cation. For example, a cashier uses always a desktop computer. He receives alerts of
different importance in different ways: through a simple pop-up alert, a modal pop-up
requiring user intervention to be closed, or a full screen message. A consultant may
use a desktop or a laptop. When he uses the desktop, his location is fixed, while when
using the laptop he may change his location. The director of the bank agency may use
a desktop, a laptop, a PDA or a mobile phone.

The system knowledge is composed of all the devices (e.g., monitors, servers,
desktops, laptops, PDAs) available in the bank agency, the services they provide (e.g.,
display, print, photocopy) and their related QoS (e.g., resolution, dimension, number
of printed pages per minute). Each device with computational characteristics is con-
sidered an ARMANIS peer. For example, a printer is not considered a peer. It is con-
nected to a printer server or to a desktop and the last devices are those which provide
the printing service.

Due to the fact that this case study is not a very dynamic one, the service and QoS
inspections are performed on demand when an upgrade is done. The service inspec-
tion is also performed on demand. The strategies related to the service choice are

110 C. Raibulet, L. Ubezio, and W. Gobbo

different for different services. For example, in the case of choosing a printer, version
number 4 (see Table 1) is adopted: the nearest one which is the most appropriate one
based on the QoS specified in the request (e.g., A3 format and color printer). In the
case of the display service, version number 1 is chosen: the best local available one.

For the execution of services, the basic version of the strategy is used in the context
of this case study.

The connectivity knowledge is related to the topology of the bank agency net-
work. The discovery of peers is done on demand. For example, it is performed when
a staff member enters or leaves the bank with one of the devices through which he
performs professional tasks. The presence detector identifies the staff member who
transits an access point, and this event is the trigger for the execution of the peer
discovery strategy.

The basic version of the peer connection strategy is used in this case study. For the
disconnection strategy version 1 has been adopted.

Figure 4 shows the main steps performed by the system when a customer enters the
bank agency. It shows the key points where strategies are used.

Fig. 4. The Main Steps for the Finance Case Study related to the Notification of a Customer’s
Presence to the Staff Members

In the following, we describe how ARMANIS is exploited in the scenarios intro-
duced in Section 2.

Scenario 1: In this scenario only domain knowledge is used. Adaptivity is performed
in the context of the domain knowledge. The system tries to extract the best matching
between the customer’s profile and the advertisings offered by the bank.

 Achieving Adaptivity Through Strategies in a Distributed Software Architecture 111

The customer’s presence is revealed by the presence detector module: based on the
credit card identification tag, the system is able to identify and access the customer’s
information. We have designed a domain specific strategy called CustomerIdentifica-
tion (see Figure 4) to categorize the customer based on his account profile and
exploited services. Such a strategy depends on several factors which may be inde-
pendent of the account information (e.g., when the customer is an important business
or political person) or dependent on the account information (e.g., the customer has a
significant amount of non-invested money). This strategy may change depending on
internal (e.g., the current objectives of the bank) or external factors (e.g., financial
crisis) and, consequently, consider one customer as important even if previously he
was considered an ordinary one, or vice-versa.

Once the customer has been identified and categorized, two further activities are
performed (see Figure 4 – step 4 and 5). These activities may be fulfilled concur-
rently. One is related to the identification of the services which may be proposed to
the customer. This step exploits a domain strategy called ServicesIdentification (see
Figure 4). Actually, this strategy may be composed of several strategies which are
combined in order to provide the best solution for the current client. They consider the
available funds of the customer, the services he uses, the services he is not using yet,
as well as the current advertisings of the bank. The other activity regards the identifi-
cation of the alert channels related to the staff members to be notified of the presence
of the customer based on the last’s type. This task is performed by the domain strat-
egy called StaffIdentification (see Figure 4). In this scenario, this step consists in the
identification of the cashiers at work and present at their working stations.

After these two activities are fulfilled the system notifies the identified cashiers of
the presence of the customer and displays the financial services extracted to be pro-
posed to the customer in an appropriate way decided by the CustomerInfNotification
strategy (see Figure 4).

The states of the system to perform these activities related to the notification of a
customer‘s presence to the staff members are described in Table 3.

The staff members request further information while interacting with the customers.
At the end of the meeting, the staff members update the information related to the

customers with the communications made to the customers and the obtained results in
order to avoid repetitions in the future.

Table 3. Activities and states in the REP module for the notification of the customer’s presence
to the staff members

State Nr. Activity Name State Name

1. BusyWaitPresenceNotification CustomerPresenceNotification

2. IdentifyCustomer CustomerIdentification

3. ExtractCustomerInformation CustomerInformation
4. IdentifyCustomerType CustomerType

5. IdentifyStaffMember StaffMemberIdentification

6. IdentifyAdvertisings AdvertisingsIdentification

7. NotifyStaffMember StaffMemberNotification

112 C. Raibulet, L. Ubezio, and W. Gobbo

Scenario 2: In the second scenario all types of knowledge are exploited. Besides the
adaptivity issues related to the domain knowledge common with the first scenario, in
this case adaptivity exploits also the system and connectivity parts of the system.

When an important customer enters the bank agency the director is notified. The
domain manager identifies the devices registered for the director. The detection mod-
ule identifies the current location of the director. Actually, this activity is performed
only if the director is present in the agency, otherwise the system is already aware that
he is out of the agency. This is due to the disconnection strategy of the connectivity
manager which is notified by the presence detector module when the director leaves
the agency and the domain specific strategy which manages the presence of the staff
members at work.

If the director is in his office, the notification arrives on his desktop through a modal
pop-up message. In all the other locations inside the agency, the notification arrives on
the closest device (i.e., reachable peer identified by the service choice strategy of the
system manager) where more information may be displayed at once.

If the director is not in the bank agency, then the StaffIndentification strategy (see
Figure 4) requires the notification of the vice-director (or the next staff member in the
hierarchy at work) and the notification of the director on his mobile phone.

4.1 Implementation Notes

The current implementation of our approach considers three types of peers: front-end,
central and service. Front-end peers run applications which are used by the staff
members. Applications are written in C# (for desktops) and J2ME (for mobile de-
vices). This type of peers communicates through XML-RPC protocol with the peers
storing domain information and offering services. The central peers are used to store
information related to the staff members and to the customers and to offer domain
specific services. In addition, they store information about the passage of customers
through choke points (e.g., customers entering or leaving a bank agency). Applica-
tions running on central peers are written in the Java language due to its portability
feature which allows them to be independent of any operating system. The service
peers process signal information revealing the presence of the customers, which are
further sent and stored on the central peers. Applications on service peers are written
in C++ to have better performances in signals analysis.

The presence recognition system is composed of two antennas: one inside and one
outside the agency. An antenna reads the tags carried by the customers and sends a
signal to the system. Each signal is filtered in order to reduce the redundancy of in-
formation and has associated to a timestamp. In this way the system is able to infer if
a customer is entering or leaving a bank agency. For more technical information on
the customers’ presence recognition see [16].

5 Conclusions and Further Work

Adaptivity is gaining more and more the attention of the academic and industrial
worlds. This affirmation is sustained by the increasing number of events (e.g., confer-
ences, workshops) and publications (e.g., ACM TAAS journal, books, special issues)

 Achieving Adaptivity Through Strategies in a Distributed Software Architecture 113

having adaptivity as central topic, as well as by the various projects (e.g., Odyssey
[9], ReMMoC (A Reflective Middleware to support Mobile Client Interoperability)
[7], MobiPADS (Mobile Platform for Actively Deployable Service) [3], CARISMA
(Context-Aware Reflective mIddleware System for Mobile Applications) [1]).

In this paper we have presented the main aspects of our architectural model for
adaptive distributed systems focusing attention on the design of various types of
strategies exploited to implement decisions at runtime. Three main types of strategies
have been introduced. Strategies similar to the system services (service and QoS in-
spection, service discovery, service choice and service execution) have been defined
also for domain services. Further work will be related to (1) the description of these
strategies through a formal approach such as the one used in the context of the Rain-
bow project [5] and (2) the extension of the current set of defined strategies while
considering other case studies.

We have described how our solution is used in the context of a case study. This
case study is under development and we plan to extend it with further adaptive strate-
gies and improve the already existent once. For example, when a person enters the
bank and he is not a customer then the staff members may be interested in convincing
the person to become a customer. Or, when the director is notified that an important
customer is present in the bank agency, we will consider in the adaptation process
also the activity the director is currently performing in order to avoid disturbing him
from another important task. We plan to address also customers with financial prob-
lems having important debts. The system identifies and proposes the best solution for
this type of customers to overcome their financial problems. In this scenario besides
the cashiers also one of the account consultants is notified.

Further work will be related to performance evaluations considering additional
case studies. For example, we aim to consider also case studies similar to the person-
alized tourist guides inside a museum or in a city in order to address a wider range of
issues related to the design of strategies for adaptivity.

References

1. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective mIddle-
ware System for Mobile Applications. IEEE Transactions on Software Engineering 29(10),
929–945 (2003)

2. Ceriani, S., Raibulet, C., Ubezio, L.: A Java Mobile-Enabled Environment to Access
Adaptive Services. In: Proceedings of the 5th Principles and Practice of Programming in
Java Conference, pp. 249–254. ACM Press, Lisbon (2007)

3. Chan, A.T.S., Chuang, S.N.: MobiPADS: A Reflective Middleware for Context-Aware
Mobile Computing. IEEE Transactions on Software Engineering 29(12), 1072–1085
(2003)

4. Finkenzeller, K.: The RFID Handbook – Fundamentals and Applications in Contactless
Smart Cards and Identification. Wiley & Sons LTD, Swadlincote (2003)

5. Garlan, D., Cheng, S.W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: Architec-
ture-based Self-Adaptation with Reusable Infrastructure. IEEE Computer 37(10), 46–54
(2004)

6. Gorton, I., Liu, Y., Trivedi, N.: An extensible and lightweight architecture for adaptive
server applications. Software – Practice and Experience Journal (2007)

114 C. Raibulet, L. Ubezio, and W. Gobbo

7. Grace, P., Blair, G.S., Samuel, S.: ReMMoC: A reflective Middleware to Support Mobile
Client Interoperability. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS 2003,
DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 1170–1187. Springer, Heidelberg
(2003)

8. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive Soft-
ware. Computer 37(7), 56–64 (2004)

9. Noble, B.: System Support for Mobile, Adaptive Applications. IEEE Personal Communi-
cations, 44–49 (2000)

10. Raibulet, C., Arcelli, F., Mussino, S., Riva, M., Tisato, F., Ubezio, L.: Components in an
Adaptive and QoS-based Architecture. In: Proceedings of the ICSE 2006 Workshop on
Software Engineering for Adaptive and Self-Managing Systems, pp. 65–71. IEEE Press,
Los Alamitos (2006)

11. Raibulet, C., Ubezio, L., Mussino, S.: An Adaptive Resource Management Approach for a
Healthcare System. In: Proceedings of the 19th International Conference on Software En-
gineering & Knowledge Engineering, Boston, Massachusetts, USA, pp. 286–291 (2007)

12. Raibulet, C., Arcelli, F., Mussino, S.: Exploiting Reflection to Design and Manage Ser-
vices for an Adaptive Resource Management System. In: Proceedings of the IEEE Interna-
tional Conference on Service Systems and Service Management, pp. 1363–1368. IEEE
Press, Los Alamitos (2006)

13. Raibulet, C., Arcelli, F., Mussino, S.: Mapping the QoS of Services on the QoS of the Sys-
tems’ Resources in an Adaptive Resource Management System. In: Proceedings of the
2006 IEEE International Conference on Services Computing, pp. 529–530. IEEE Com-
puter Society Press, Los Alamitos (2006)

14. Raibulet, C., Ubezio, L., Gobbo, W.: Leveraging on Strategies to Achieve Adaptivity in a
Distributed Architecture. In: Proceedings of the 7th Workshop on Adaptive and Reflective
Middleware (2008)

15. Song, J., Kim, H.: The RFID Middleware System Supporting Context-Aware Access Con-
trol Service. In: Proceedings of the 8th International Conference on Advances Communi-
cation Technology, vol. 1, pp. 863–867. IEEE Press, Los Alamitos (2006)

16. Ubezio, L., Valle, E., Raibulet, C.: Management of Multi-Services Structures through an
Access Control Framework. In: Kaschek, R., et al. (eds.) UNISCON 2008. LNBIP 5, pp.
519–530. Springer, Heidelberg (2008)

	Achieving Adaptivity Through Strategies in a Distributed Software Architecture
	Introduction
	Motivating Example
	ARMANIS’ Architectural Model
	The Request Execution Protocol Model
	System Strategies
	Connectivity Strategies

	ARMANIS Applied to a Case Study
	Implementation Notes

	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

