
A Flatness-Based Iterative Method for Reference
Trajectory Generation in Constrained NMPC

J.A. De Doná, F. Suryawan, M.M. Seron, and J. Lévine

Abstract. This paper proposes a novel methodology that combines the differential
flatness formalism for trajectory generation of nonlinear systems, and the use of a
model predictive control (MPC) strategy for constraint handling. The methodology
consists of a trajectory generator that generates a reference trajectory parameterised
by splines, and with the property that it satisfies performance objectives. The refer-
ence trajectory is generated iteratively in accordance with information received from
the MPC formulation. This interplay with MPC guarantees that the trajectory gen-
erator receives feedback from present and future constraints for real-time trajectory
generation.

Keywords: flatness, trajectory generation, B-splines, Nonlinear MPC.

1 Introduction

Differential flatness [1] is a property of some controlled (linear or nonlinear) dy-
namical systems, often encountered in applications, which allows for a complete
parameterisation of all system variables (inputs and states) in terms of a finite num-
ber of independent variables, called flat outputs, and a finite number of their time
derivatives. We consider a general system

ẋ(t) = f
(
x(t),u(t)

)
, (1)

J.A. De Doná, F. Suryawan, and M.M. Seron
CDSC, School of Electrical Engineering and Computer Science,
The University of Newcastle, Callaghan, NSW 2308, Australia
e-mail: {jose.dedona,fajar.suryawan,maria.seron}@newcastle.edu.au

J.A. De Doná and J. Lévine
CAS, Mathématiques et Systèmes, Mines-ParisTech, 35 rue Saint-Honoré.
77300 Fontainebleau, France
e-mail: jean.levine@ensmp.fr

L. Magni et al. (Eds.): Nonlinear Model Predictive Control, LNCIS 384, pp. 325–333.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

{jose.dedona,fajar.suryawan,maria.seron}@newcastle.edu.au
jean.levine@ensmp.fr

326 J.A. De Doná et al.

where x(t) ∈R
n is the state vector and u(t) ∈R

m is the input vector. If the system is
flat [1], we can write all trajectories (x(t),u(t)) satisfying the differential equation
in terms of a finite set of variables, known as the flat output, y(t) ∈ R

m and a finite
number of their derivatives:

x(t) = ϒ
(
y(t), ẏ(t), ÿ(t), . . . ,y(r)(t)

)
,

u(t) = Ψ
(
y(t), ẏ(t), ÿ(t), . . . ,y(r+1)(t)

)
.

(2)

The parameterisation (2), afforded by the flatness property, allows to simplify (espe-
cially in the case of nonlinear flat systems) the generation of reference trajectories
(trajectory planning). Typically, some ‘desired’ reference trajectory is prescribed
for the flat output, yref, and the corresponding input and state trajectories for the
system are obtained from (2); namely, uref(t) = Ψ

(
yref(t), ẏref(t), . . . ,(yref(t))(r+1)),

xref(t) = ϒ
(
yref(t), . . . ,(yref(t))(r)

)
. However, a very common requirement in en-

gineering applications is for some of the variables of the dynamical system to
satisfy a number of constraints, usually expressed as inequality constraints. For
example the input and state of the system can be required to satisfy u ∈ U and
x ∈ X, where U ⊂ R

m and X ⊂ R
n are specified constraint sets. The presence of

such constraints makes trajectory generation for nonlinear systems (in general) a
highly nontrivial task, due to the ensuing nonlinearity of the mappings ϒ (·) and
Φ(·) in (2). (In particular, it is typically very difficult, to specify constraint sets for
the flat output variables y in terms of the constraint sets for u and x, respectively, U

and X.)
In this paper, we propose a novel methodology that exploits the flatness parame-

terisation (2) for trajectory generation and the use of the Model Predictive Control
(MPC) strategy for constraints handling. The methodology consists of a trajectory
generator module, that generates a reference trajectory yref(t) with the property that
it satisfies performance objectives (e.g., satisfies given initial and final conditions,
passes through a given set of way-points, etc.). There are points of contact between
some aspects of the approach advocated in this paper and, for example, the work
in [3] where the problem of generation of a reference trajectory for a nonlinear flat
system subject to constraints is formulated as a NonLinear Programming (NLP)
problem. One of the main drawbacks of posing the problem as a NLP optimisation
problem is that, in general, it is very difficult to prove convergence, or convergence
to a global optimum. Hence, in this paper we explore an alternative algorithm for
trajectory generation for nonlinear flat systems, in the presence of constraints, that
is based on the information provided by a model predictive control (MPC) formula-
tion. The approach is, to the best of the authors knowledge, the first attempt to com-
bine the differential flatness formalism with model predictive control techniques in
an iterative algorithm for constrained nonlinear trajectory generation. No proofs of
convergence are available at present, due to the challenging nature of these prob-
lems, and this will be of concern in future work. However, simulation results, as the
ones presented in this paper, are promissory and indicate that the effort of develop-
ing such algorithms and investigating formal proofs of convergence is worthwhile.

A Flatness-Based Iterative Method 327

Thus, in the methodology investigated in this paper, the reference trajectory
yref(t) is generated iteratively in accordance with information (predicted in real time)
received from an MPC formulation. That way, the trajectory generator receives
“feedback from the (present and future) constraints” of the system while generating
the desired trajectory. Thus, the proposed method unites two important properties.
Firstly, since the trajectories are generated via the flatness parameterisation (2), with
“feedback from the constraints,” they constitute natural trajectories for the nominal
model to follow. And, secondly, the information generated by an MPC formulation
(via the solution of a Quadratic Programming optimisation, based on the linearised
dynamics around the given reference trajectory) ensures that the system constraints
are taken into account.

2 Flatness and Trajectory Parameterisation

We consider the problem of steering system (1) from an initial state at time t0 to
a final state at time t f . Note that, in a Model Predictive Control context, this fixed
interval problem is one window of a bigger scheme, implemented repeatedly in a
receding horizon fashion. In order to generate a suitable reference trajectory, we
will use a spline parameterisation, as explained in the following sections.

2.1 Parameterisation of Flat Outputs and Their Derivatives

We parameterise each of the flat outputs y j(t), j = 1, . . . ,m, as

y j(t) =
N

∑
i=1

λi(t)Pi j; t ∈ [t0 , t f], (3)

where λi, i = 1, . . . ,N, is a set of basis functions, which is the same for each flat
output y j. The basis functions are assumed to be λi ∈ C r+1[t0, t f], i = 1, . . . ,N. This
reduces the problem of characterising a function in an infinite dimensional space
to finding a finite set of parameters Pi j. In a discrete set of M + 1 sampling times,
t0,t1, . . . ,tM = t f , this parameterisation becomes

Yj = G0Pj, (4)

where Yj � [y j(t0),y j(t1), . . . ,y j(t f)]T, Pj � [P1 j, . . . ,PN j]T is a vector containing the
parameters Pi j, i = 1, . . . ,N, defined in (3), and

G0 �

⎡

⎢
⎣

λ1(t0) . . . λN(t0)
...

. . .
...

λ1(t f) . . . λN(t f)

⎤

⎥
⎦ (5)

is the basis function matrix (also known as blending matrix). Collecting all the m
flat outputs, we have

328 J.A. De Doná et al.

Y �
[
Y1 Y2 . . . Ym

]
=

⎡

⎢
⎣

y1(t0) y2(t0) . . . ym(t0)
...

...
. . .

...
y1(t f) y2(t f) . . . ym(t f)

⎤

⎥
⎦

= G0 ·
[
P1 P2 . . .Pm

]
= G0 P = Y (P),

(6)

where Y is an (M + 1)×m output matrix, G0 is the (M + 1)×N blending matrix,
and P �

[
P1 P2 . . .Pm

]
is an N ×m matrix containing the coefficients Pi j of the

parameterisation (3). The rows of P are m-dimensional vectors called control points.
Furthermore, we can also build the time-derivatives of yi at discrete points in

time, by successively differentiating (3) followed by time-discretisation. Doing this
and using the notation as in (6), we obtain

Y (1) = G1P ; Y (2) = G2P ; Y (3) = G3P ; . . . Y (r+1) = Gr+1P ; (7)

where Y (q) � [Y (q)
1 Y (q)

2 . . . Y (q)
m], and

Y (q)
j �

⎡

⎢⎢
⎣

dq

dtq y j(t)
∣∣
t=t0

...
dq

dtq y j(t)
∣
∣
t=t f

⎤

⎥⎥
⎦ ; Gq �

⎡

⎢⎢
⎣

dq

dtq λ1(t)
∣∣
t=t0

. . . dq

dtq λN(t)
∣∣
t=t0

...
. . .

...
dq

dtq λ1(t)
∣
∣
t=t f

. . . dq

dtq λN(t)
∣
∣
t=t f

⎤

⎥⎥
⎦ , (8)

with j = 1, . . . ,m and q = 1, . . . ,r + 1.

2.2 Trajectory Parameterisation Using Splines

Given a reference trajectory parameterised as in (6), Y ref = G0Pref, with specified
reference control points Pref, in this section we will show how to parameterise
variations around that reference trajectory using splines. In this paper, clamped B-
splines [2] are chosen as basis functions which results in the blending matrix G0

having a particular structure. Namely, G0 has only one non-zero element in the first
row (which lies in the first column) and only one non-zero element in the last row
(which lies in the last column). The matrix G1 has two non-zero elements in the first
row (which lie in the first and second column) and two non-zero elements in the
last row (which lie in the last and second-last column). The matrix G2 has a simi-
lar property with three non-zero elements, etc. More properties of B-splines can be
found in, e.g., [2].

Notice from (3) that,

dq

dtq y j(t)
∣
∣
t=t0

=
N

∑
i=1

dq

dtq λi(t)
∣
∣
t=t0

Pi j, (9)

for q = 0,1, . . . ,r + 1; j = 1, . . . ,m. We can see from (9) and the structure of G0

discussed above that y j(t0) = λ1(t0)P1 j, j = 1, . . . ,m, and hence, by fixing the first
row of P, P1 j = Pref

1 j , j = 1, . . . ,m, the flat outputs at time t0 are fixed and equal to the
corresponding values of the reference trajectory. Fixing more rows of P (up to the

A Flatness-Based Iterative Method 329

order of the B-spline) fixes the flat output derivatives at time t0 (e.g. fixing two rows
fixes the first derivatives, three rows fixes the second derivatives, etc.). This property
(made possible by the structure of Gq, q = 0,1, . . .) can be used to maintain fixed
end-points. For example, prescribed position and first and second order derivatives
of the flat output at times t0 and t f , as in the rest-to-rest case, can be maintained by
holding the ‘external’ control points (the three topmost and the three bottommost
rows of P in Eq. (6)) fixed. This can be achieved by reparameterising P as:

P = Pref + ρP̂; ρ = [0 I 0]T, (10)

where matrix P̂ is an [N−(l1 + l2)]×m matrix that parameterises the deviation from
the ‘internal’ control points of Pref and ρ is an N× [N− (l1 + l2)] matrix with the
l1 top rows set equal to zero, the l2 bottom rows set equal to zero and the identity
matrix of dimension [N− (l1 + l2)]× [N− (l1 + l2)] in the middle.

3 Using MPC to Shape the Reference Trajectory

In this section we will develop an iterative algorithm for trajectory generation for
nonlinear systems, subject to constraints, that is based on information provided by
model predictive control (MPC). The main motivation for resorting to MPC is to ex-
ploit the well-known capabilities for handling constraints of this control technique.
The basic idea is to propose an initial reference trajectory based purely on perfor-
mance considerations, parameterised as in (6), i.e. Y ref,0 = G0Pref,0 (it is assumed
here that an initial set of reference control points Pref,0 is specified), and to then
use an MPC formulation to give information as to how well that trajectory can be
followed in the presence of constraints and, moreover, which parts of the original
trajectory are problematic and should be modified. Then a new reference trajectory
is generated based on a trade-off between the information obtained from MPC (this
information can be regarded as the feedback from the constraints) and the origi-
nal performance specifications. This interplay between performance objectives and
MPC (feedback from constraints) is then iterated, and the challenge is to devise an
algorithm such that the iteration converges to a suitable reference trajectory.

3.1 MPC Formulation

We will assume, for simplicity, that the flat output is given by a (possibly nonlinear)
combination of the states:

y(t) = h
(
x(t)

)
. (11)

Note that, although this is not the most general case for flat systems, many
examples of practical interest satisfy this assumption (e.g., models of cranes, non-
holonomic cars, etc.). Given a specified reference trajectory for the flat output, pa-
rameterised by control points Pref as explained in the preceding section:

330 J.A. De Doná et al.

yref
j (t) =

N

∑
i=1

λi(t)Pref
i j ; t ∈ [t0,t f], (12)

for j = 1, . . . ,m, we compute the corresponding state and input reference tra-
jectories, xref(t) and uref(t), respectively, from (2). Note, in particular, that the
flatness formulation implies that these trajectories satisfy the system’s equation
ẋref(t) = f

(
xref(t),uref(t)

)
. Then, the dynamics of (1) together with the output equa-

tion (11) are linearised along the reference trajectory
(
uref(t),xref(t),yref(t)

)
as fol-

lows: ˙̃x(t) = A(t)x̃(t)+ B(t)ũ(t), ỹ(t) = C(t)x̃(t), where:

ũ(t) � u(t)−uref(t), x̃(t) � x(t)− xref(t), ỹ(t) � y(t)− yref(t), (13)

and A(t) =
(
∂ f/∂x

)∣∣
xref(t),uref(t), B(t) =

(
∂ f/∂u

)∣∣
xref(t),uref(t) and C(t) =

(
∂h/∂x

)∣∣
xref(t). The resulting linear time varying system is then discretised in

time, so that the following time varying discrete time system is obtained:

x̃k+1 = Akx̃k + Bkũk, ỹk = Ckx̃k. (14)

In the discretisation (14) we consider a sampling interval Ts � (t f − t0)/M, so that
exactly M sampling intervals fit in the interval of definition of the splines, [t0,t f].
Moreover, we define a grid of equally spaced sampling times, tk = t0 + kTs, k =
0, . . . ,M. Note that the variables in (14) (cf. (13)) are measured with respect to the
reference trajectory. Thus we will consider an MPC formulation for the time varying
system (14) where the performance objective is regulation to the origin (this will
ensure tracking of the respective reference trajectories).

Given the current state of the plant at time t, x(t), we compute x̃0 � x(t)−xref(t0)
(where xref(t0) is obtained from (12) using (2)). The aim is to find the M-move
control sequence {ũk} � {ũ0, . . . , ũM−1} that minimises the finite horizon objective
function:

VM({x̃k},{ũk},{ỹk}) � 1
2

x̃T
MPx̃M +

1
2

M−1

∑
k=0

ỹT
k Qỹk +

1
2

M−1

∑
k=0

ũT
k Rũk, (15)

subject to the system equations (14) and x̃0 � x(t)− xref(t0), and where P≥ 0, Q≥
0, R > 0, and M is the prediction horizon. Using the standard vectorised notation
x̃ � [x̃T

1 . . . x̃T
M]T, ũ � [ũT

0 . . . ũT
M−1]

T, the cost function (15) can be written in compact
form as:

VM =
1
2

x̃T
0CT

0 QC0x̃0 +
1
2

x̃TQx̃+
1
2

ũTRũ, (16)

where Q � diag{CT
1 QC1, . . . ,CT

M−1QCM−1,P} and R � diag{R, . . . ,R}.
The system’s state evolution from k = 0 to M can be expressed as x̃ = Γ ũ+Ω x̃0,

where Γ and Ω are formed from the system’s Ak and Bk matrices (see, e.g., [4]).
Substituting this expression for x̃ into (16) yields: VM = V̄ + 1

2 ũTHũ+ ũTFx̃0, where
V̄ is a constant term, H � Γ TQΓ + R and F � Γ TQΩ .

A Flatness-Based Iterative Method 331

If the problem is constrained, for example with input constraints |u(t)| ≤ umax,
then the solution is obtained from the following quadratic program:

ũopt = [(ũopt
0)T . . . (ũopt

M−1)
T]T �argmin

ũ

1
2

ũTHũ+ ũTFx̃0

subject to

|uref + ũ| ≤Umax,

(17)

where uref � [(uref(t0))T (uref(t1))T . . .(uref(tM−1))T]T, Umax � [uT
max . . .uT

max]T, and
the absolute value and the inequality are interpreted element-wise. (Other types
of constraints, e.g., state and output constraints, can be incorporated in (17) in a
straightforward manner.)

The corresponding j-th flat output trajectory, j = 1, . . . ,m, obtained by MPC is
computed from the result of (17), using (13) and (14). Using the expression x̃ =
Γ ũ+ Ω x̃0, the MPC flat output trajectory can be expressed as:

Y mpc
j � C j

[
x̃0

Γ ũopt + Ω x̃0

]
+Y ref

j , (18)

where Y mpc
j and Y ref

j are the j-th flat output sequences stacked over time [defined

similarly to Yj in (4)], and C j � diag{C0, j, . . . ,CM, j}, where Ck, j is the j-th row of
the time-varying matrix Ck, defined in (14) for k = 0, . . . ,M. In an MPC implemen-
tation, one then applies the first control move obtained in (17), ũopt

0 , and the process
is repeated in a receding horizon fashion. However, in our proposed implementa-
tion (see next subsection) this process is iterated before the actual control input is
applied.

3.2 Iterative Method for Reference Trajectory Generation

In this section we present the iterative algorithm that is proposed in this paper. The
algorithm starts from a set of specified initial control points Pref,0 that parameterise
an initial reference trajectory Y ref,0 = G0Pref,0 which is generated based on perfor-
mance considerations, and then it utilises the information about the effect of the
constraints, provided by the MPC formulation, to update the reference trajectory
through successive sets of control points, Pref,0,Pref,1, . . . ,Pref,k, . . ., etc.

Step 1. Given a set of control points Pref,k ;
Step 2. Compute, from (6), Y ref,k = G0Pref,k;
Step 3. Compute Y mpc,k

j from (12)–(18). Note that Y mpc,k so obtained is a (in general

nonlinear) function of Pref,k, that is, Y mpc,k = G
(
Pref,k

)
.

Step 4. Given Y mpc,k, find the variation of the ‘internal’ control points in the pa-
rameterisation (10), denoted P̂mpc,k, that gives a reference trajectory that is
closest in a least-squares sense to Y mpc,k. Namely,

P̂mpc,k
j =

(
(G0 ρ)TG0 ρ

)−1(
G0 ρ

)T(
Y mpc,k

j −G0Pref,k
j

)
. (19)

332 J.A. De Doná et al.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

0

1

2

3

4

5

6

7

8

trajectory iter.: 0
trajectory iter.: 2
trajectory iter.: 50

dx

d y

(a)

0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration Improvement

k

lo
g

η k

(b)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

u iter.: 0
u iter.: 2
u iter.: 50

u(
t)

(c)

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

time

phi iter.: 0
phi iter.: 2
phi iter.: 50

ϕ(
t)

(d)

Fig. 1 Initial reference trajectory, 2nd and 50th iteration. (a) Flat output y =
(
dx,dy

)
; (b)

Measure of convergence ηk; (c) Input u(t); and, (d) Input ϕ(t)

Step 5. Update the control points according to: Pref,k+1 = Pref,k + ρP̂mpc,k.
Step 6. While (a weighted 2-norm of) the difference

(
Pref,k+1−Pref,k

)
is larger than

a prescribed tolerance level and the maximum number of iterations is not
reached: assign Pref,k← Pref,k+1 and go to Step 1.

Note from Steps 1–5 that the proposed algorithm implements a recursion Pref,k+1 =
F

(
Pref,k

)
, whose complexity depends predominantly on the (in general, nonlinear)

mapping Y mpc,k = G
(
Pref,k

)
. The convergence properties of the recursive mapping,

Pref,k+1 = F
(
Pref,k

)
, will be investigated in future work.

4 Simulation Example

In this section we will test the previous algorithm on a classical example of a
flat system, a nonholonomic car system. The system is modeled by the equations:
ḋx(t) = u(t)cosθ (t), ḋy(t) = u(t)sinθ (t) and θ̇ (t) = (1/l)u(t) tanϕ(t), where the
state dx(t) is the displacement in the “x-direction”, the state dy(t) is the displacement
in the “y-direction”, the state θ (t) is the angle of the car with respect to the x-axis,
the input u(t) is the velocity of the car, the input ϕ(t) is the angle of the steering
wheels, and l is the distance between the front and the rear wheels. It is straightfor-
ward to determine that the flat output for this system is given by y(t) =

(
dx(t),dy(t)

)
.

A Flatness-Based Iterative Method 333

A matrix of initial control points, Pref,0, is chosen so that, together with the param-
eterisation (12) using cubic B-splines λi(t), gives the initial reference trajectory yref,0

shown with a dotted line in Figure 1(a). The control inputs are assumed to be subject
to the constraints u(t) ≤ 0.8 and |ϕ | ≤ 0.45. The inputs corresponding to the ini-
tial reference trajectory yref,0 are shown with dotted lines in Figures 1(c) and (d), far
exceeding the constraint limits. The result after 2, respectively 50, iterations of the al-
gorithm is shown in Figures 1(a), 1(c), and 1(d) with dashed, respectively solid, lines.
Notice that the algorithm produces a final reference trajectory which is close to the
initial reference trajectory and with associated inputs only mildly exceeding the con-
straints. In addition, the initial and final end-point conditions are maintained. A mea-
sure of convergenceof the algorithm, ηk = ∑m

j=1(P
ref,k
j −Pref,k-1

j)TGT
0 G0(P

ref,k
j −Pref,k-1

j),
is shown in Figure 1(b).

5 Conclusion

A novel methodology combining the differential flatness formalism for trajectory
generation of nonlinear systems, and the use of a model predictive control strategy
for constraint handling has been proposed. The methodology consists of a trajectory
generator that generates a reference trajectory parameterised by splines, and with
the property that it satisfies performance objectives. The reference trajectory is gen-
erated iteratively in accordance with information received from the MPC formula-
tion. The performance of the iterative scheme has been illustrated with a simulation
example. Future work will focus on investigating the conditions required to estab-
lish the convergence of the iterative algorithm, and on evaluating its computational
performance for real-time applications.

References

1. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of non-linear systems:
Introductory theory and examples. International Journal of Control 61, 1327–1361 (1995)

2. Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)
3. Flores, M.E., Milam, M.B.: Trajectory generation for differentially flat systems via

NURBS basis functions with obstacle avoidance. In: 2006 American Control Conference,
Minneapolis, USA (2006)

4. Goodwin, G.C., Seron, M., De Doná, J.A.: Constrained Control and Estimation: An Op-
timisation Approach. Communications and Control Engineering Series. Springer, Heidel-
berg (2005)

	A Flatness-Based Iterative Method for Reference Trajectory Generation in Constrained NMPC
	Introduction
	Flatness and Trajectory Parameterisation
	{\it Parameterisation of Flat Outputs and Their Derivatives}
	{\it Trajectory Parameterisation Using Splines}

	Using MPC to Shape the Reference Trajectory
	{\it MPC Formulation}
	{\it Iterative Method for Reference Trajectory Generation}

	Simulation Example
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

