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Preface 

Model Predictive Control (MPC) is an area in rapid development with respect to 
both theoretical and application aspects. The former petrochemical applications of 
MPC were ‘easy’, in the sense that they involved only a small number of rather 
similar problems, most of which required only control near steady-state 
conditions. Further control performance specifications were not very challenging. 
The improving of technology and control theory enabled the application of MPC 
in new problems often requiring Nonlinear MPC because of the large transients 
involved, as it has been already seen even in the chemical process industry for the 
control of product grade changes. There is now a great interest in introducing 
MPC in many process and non-process applications such as paper-making, control 
of many kinds of vehicles, including marine, air, space, road and off-road. Some 
interesting biomedical applications are also very promising. Finally, the interest in 
the control of complex systems and networks is significantly increasing. 

The new applications frequently involve tight performance specifications, 
model changes or adaptations because of changing operating points, and, perhaps 
more significantly, safety-criticality. MPC formulations which offer guarantees of 
stability and robustness feasibility are expected to be of great importance for the 
deployment of MPC in these applications. The significant effort in developing 
efficient solutions of the optimisation problem both using an explicit and a 
numerical approach is of paramount importance for a wider diffusion of NMPC.  

In order to summarize these recent developments, and to consider these new 
challenges, on September 5-9, 2008, we organized an international workshop 
entitled “International Workshop on Assessment and Future Directions of 
Nonlinear Model Predictive Control" (NMPC08) which was held in Pavia, Italy. 
In the spirit of the previous successful workshops held in Ascona, Switzerland, in 
1998, and in Freudenstadt-Lauterbad, Germany in 2005, internationally 
recognized researchers from all over the world, working in the area of nonlinear 
model predictive control, were joined together. The number of participants has 
sensibly increased with respect to the previous editions and 21 countries from 4 
continents were represented. The aim of this workshop was to lead to an open and 
critical exchange of ideas and to lay the foundation for new research directions 
and future international collaborations, facilitating the practical and theoretical 
advancement of NMPC technologies.  



VI Preface 

This volume contains a selection of papers presented at the workshop that cover 
the following topics: stability and robustness, control of complex systems, state 
estimation, tracking, control of stochastic systems, algorithms for explicit solution, 
algorithms for numerical solutions and applications. The high quality of the papers 
has been guaranteed by a double careful pear-review process.  

We would like to thank all authors for their interesting contributions. Likewise, 
we are grateful to all of the involved reviewers for their invaluable comments.  

The workshop and the present volume have been supported by University of 
Pavia, Risk and Security Study Center of the Institute for Advanced Study (IUSS) 
and Magneti Marelli. 

 Lalo Magni 
Davide Martino Raimondo 

Frank Allgöwer 
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Christoph Böhm, Tobias Raff, Marcus Reble, Frank Allgöwer
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Unconstrained NMPC Based on a Class of Wiener Models:
A Closed Form Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Shraddha Deshpande, V. Vishnu, Sachin C. Patwardhan



Contents XI

An Off-Line MPC Strategy for Nonlinear Systems Based
on SOS Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
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Input-to-State Stability: A Unifying Framework
for Robust Model Predictive Control

D. Limon, T. Alamo, D.M. Raimondo, D. Muñoz de la Peña,
J.M. Bravo, A. Ferramosca, and E.F. Camacho

Abstract. This paper deals with the robustness of Model Predictive Controllers for
constrained uncertain nonlinear systems. The uncertainty is assumed to be modeled
by a state and input dependent signal and a disturbance signal. The framework used
for the analysis of the robust stability of the systems controlled by MPC is the well-
known Input-to-State Stability. It is shown how this notion is suitable in spite of
the presence of constraints on the system and of the possible discontinuity of the
control law.

For the case of nominal MPC controllers, existing results on robust stability are
extended to the ISS property, and some novel results are presented. Afterwards, sta-
bility property of robust MPC is analyzed. The proposed robust predictive controller
uses a semi-feedback formulation and the notion of sequence of reachable sets (or
tubes) for the robust constraint satisfaction. Under mild assumptions, input-to-state
stability of the predictive controller based on nominal predicted cost is proved. Fi-
nally, stability of min-max predictive controllers is analyzed and sufficient condi-
tions for the closed-loop system exhibits input-to-state practical stability property
are stated. It is also shown how using a modified stage cost can lead to the ISS
property. It is remarkable that ISS of predictive controllers is preserved in case of
suboptimal solution of the minimization problem.

Keywords: Robust Nonlinear Model Predictive Control, Input-to-State Stability,
Robust Constraint Satisfaction.
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2 D. Limon et al.

1 Introduction

Model predictive control (MPC) is one of the few control techniques capable to cope
with constrained system providing an optimal control for a certain performance in-
dex. This control technique has been widely used in the process industry and studied
in academia [51, 6, 34]. The theoretical development in issues such as stability, con-
straint satisfaction and robustness has recently matured. The main features of this
problem are the following [42]: (i) stability must be ensured considering that the
control law is a nonlinear (and maybe discontinuous [45]) function of the state ; (ii)
recursive feasibility must be ensured to guarantee that the control law is well-posed,
(iii) constraints must be robustly fulfilled along the evolution of the closed-loop sys-
tem and (iv) performance and domain of attraction of the closed-loop system should
be optimized.

For the nominal control problem, the Lyapunov theory combined with the
invariant set theory provide a suitable theoretical framework to deal with the sta-
bility problem [42]. When model mismatches and/or disturbances exist, some dif-
ferent stability frameworks, such as robust stability, ultimately bounded evolution or
asymptotic gain property, are used [8, 59, 7, 14, 20, 54, 56]. The problem to assure
recursive feasibility and constraint satisfaction in presence of uncertainties is more
involved, especially for the case of nonlinear prediction models [4, 21, 41, 54, 39].

This paper presents the notion of input-to-state stability (ISS) [60, 18, 19] as a
suitable framework for the analysis of the stabilizing properties of model predictive
controllers in presence of uncertainties. The use of ISS analysis in the context of
nonlinear MPC is not new (see for instance [28, 30, 37, 53, 25, 26]), but this paper
aims to show that it can be used as a general framework of robust stability analysis of
constrained nonlinear discontinuous systems. Based on this notion, existing robust
MPC techniques are studied: firstly, inherent robustness of the nominal MPC is ana-
lyzed and novel sufficient conditions for local ISS are presented, extending existing
results [59, 29, 14, 46]. It is demonstrated that uniform continuity of the closed-loop
model function or of the cost function are sufficient conditions to ensure robustness
of the nominal MPC.

Then robust predictive controllers are studied. These controllers must ensure ro-
bust constraint satisfaction and recursive feasibility in spite of the uncertainties as
well as a suit closed-loop performance. In order to enhance these properties, a semi-
feedback parametrization and a tube (i.e. sequence of reachable sets) based approach
[7, 28, 32, 5, 44, 55, 43] has been considered. Under suitable novel assumptions on
the tube robust constraint satisfaction is proved.

In the case of cost functions based on nominal predictions [7, 47, 28, 32, 5, 44,
55, 43], ISS is proved subject to continuity of some ingredients. In the case of a
worst-case cost function (i.e. min-max predictive controllers) [42, 41, 35, 10, 30,
37, 26, 49] the stability property is analyzed following [53] and shows how, under
some standard assumptions, min-max predictive controllers are input to state prac-
tically stabilizing due to the worst-case based nature of the controller. Moreover, it
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is shown, how ISS can be achieved by means of a dual mode approach or by using
an H∞ formulation.

A remarkable property derived from this analysis is that the ISS property of the
closed-loop system is preserved in the case that the solution of the optimization
problem does not provide the optimal solution, but the best suboptimal one.

Notation and basic definitions

Let R, R≥0, Z and Z≥0 denote the real, the non-negative real, the integer and the
non-negative integer numbers, respectively. Given two integers a,b ∈ Z≥0, Z[a,b] �
{ j ∈ Z≥0 : a≤ j ≤ b}. Given two vectors x1 ∈ Ra and x2 ∈Rb, (x1,x2) � [x′1,x

′
2]
′ ∈

Ra+b. A norm of a vector x ∈Ra is denoted by |x|. Given a signal w ∈Ra, the signal
sequence is denoted by w � {w(0),w(1), · · ·} where the cardinality of the sequence
is inferred from the context. 0 denotes a suitable signal sequence taking a null value.
If a sequence depends on a parameter, as w(x), w( j,x) denotes its j-th element. The
sequence w[τ] denotes the truncation of sequence w, i.e. w[τ]( j) = w( j) if 0≤ j ≤ τ
and w[τ]( j) = 0 if j > τ . For a given sequence, we denote ‖w‖ � supk≥0{|w(k)|}.
The set of sequences w, whose elements w( j) belong to a set W ⊆ Ra is denoted by
MW . For a compact set A, Asup � supa∈A{|a|}.

Consider a function f (x,y) : A×B→ Rc with A⊆Ra and B⊆Rb, then f is said
to be uniformly continuous in x for all x ∈ A and y ∈ B if for all ε > 0, there exists
a real number δ (ε) > 0 such that | f (x1,y)− f (x2,y)| ≤ ε for all x1,x2 ∈ A with
|x1− x2| ≤ δ (ε) and for all y ∈ B. For a given set Â⊆ A and y ∈ B, the range of the
function w.r.t. x is f (Â,y) � { f (x,y) : x ∈ Â} ⊆ R

c.
A function γ : R≥0→ R≥0 is of class K (or a “K -function”) if it is continuous,

strictly increasing and γ(0) = 0. A function γ : R≥0→ R≥0 is of class K ∞ if it is a
K -function and γ(s)→+∞ as s→+∞. A function β : R≥0×Z≥0 →R≥0 is of class
K L if, for each fixed t ≥ 0, β (·, t) is of class K , for each fixed s ≥ 0, β (s, ·) is
decreasing and β (s,t)→ 0 as t → ∞. Consider a couple of K -functions σ1 and σ2,
then σ1 ◦σ2(s) � σ1(σ2(s)), besides σ j

1 (s) denotes the j-th composition of σ1, i.e.

σ j+1
1 (s) =σ1◦σ j

1(s) with σ1
1 (s) �σ1(s). A function V : Ra→R≥0 is called positive

definite if V (0) = 0 and there exists a K -function α such that V (x)≥ α(|x|).

2 Problem Statement

Consider that the plant to be controlled is modeled by a discrete-time invariant non-
linear difference equation as follows

x(k + 1) = f (x(k),u(k),d(k),w(k)), k ≥ 0 (1)

where x(k) ∈ Rn is the system state, u(k) ∈ Rm is the current controlled variable,
d(k) ∈ R

q is a signal which models external disturbances and w(k) ∈ R
p is a sig-

nal which models mismatches between the real plant and the model. The solution of
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system (1) at sampling time k for the initial state x(0), a sequence of control inputs
u, disturbances w and d is denoted as φ(k,x(0),u,d,w), where φ(0,x(0),u,d,w) =
x(0).

This system is supposed to fulfil the following standing conditions.

Assumption 1

1. System (1) has an equilibrium point at the origin, that is f (0,0,0,0) = 0.
2. The control and state of the plant must fulfill the following constraints on the

state and the input:
(x(k),u(k)) ∈ Z (2)

where Z ⊆ Rn+m is closed and contains the origin in its interior.
3. The uncertainty signal w is modeled as follows

w(k) = wη (k) η(x(k),u(k)) (3)

for all k ≥ 0, where η is a known function η : Z ⊆ Rn+m → R≥0 such that it
is continuous and η(0,0) = 0. wη ∈ Rp is an exogenous signal contained in a
known compact set Wη ⊂ R

p. W ⊆ R
p denotes the set where the signal w is

confined, i.e. W � {w ∈ Rp : w = wηη(x,u), wη ∈Wη , (x,u) ∈ Z}
4. The disturbance signal d is such that d(k) ∈ D for all k ≥ 0, where D ⊂ R

q is a
known compact set containing the origin.

5. The state of the plant x(k) can be measured at each sample time.

Remark 1. The distinction between a disturbance signal d and a state and input de-
pendent uncertainty signal w is aimed to enhance the controller performance by tak-
ing advantage of the structure of the uncertainties [30]. However, if merely bounded
disturbances are used to model uncertainties, then all the presented results can be
applied by merely taking w(k) = 0 for all k≥ 0.

The nominal model of the plant (1) denotes the system considering
zero-disturbance and it is given by

x̃(k + 1) = f̃ (x̃(k),u(k)), k ≥ 0 (4)

where f̃ (x,u) � f (x,u,0,0). The solution to this equation for a given initial state
x(0) is denoted as φ̃ (k,x(0),u) � φ(k,x(0),u,0,0).

This paper is devoted to the stability analysis of the constrained uncertain sys-
tem (1) (not necessarily continuous) controlled by a model predictive control law
u(k) = κN(x(k)) (not necessarily continuous). This requires that there exists a sta-
bility region XN where, if the initial state is inside this region, i.e. x(0) ∈ XN , the
evolution of the uncertain system fulfils the constraints (that is (x(k),κN(x(k))) ∈ Z
for all k≥ 0 for any possible evolution of the disturbance signals d(k) and w(k)) and
the robust stability property of the system is ensured.

In the following section of the paper, we show that the notion of input-to-state
stability (ISS) is a suitable framework for the robust stability analysis of systems
controlled by predictive controllers. Furthermore, this stability notion unifies in a



ISS: A Unifying Framework for Robust Model Predictive Control 5

single framework other commonly-used robust stability notions, allowing existing
results on this topic to be reviewed in a more general approach.

3 Input-to-State Stability

Consider that system (1) is controlled by a certain control law u(k) = κ(x(k)), then
the closed loop system can be expressed as follows:

x(k + 1) = fκ(x(k),d(k),w(k)), k ≥ 0 (5)

where fκ (x,d,w) � f (x,κ(x),d,w). Consider also that assumption 1 holds for the
controlled system. Define the set Xκ � {x ∈Rn : (x,κ(x)) ∈ Z} and define the func-
tion ηκ(x) � η(x,κ(x)). The solution of this equation at sampling time k, for the
initial state x(0) and the sequences d and w is denoted as φκ(k,x(0),d,w). The
nominal model function is denoted as f̃κ (x) � f̃ (x,κ(x)) and its solution is denoted
as φ̃κ(k,x(0)) � φκ(k,x(0),0,0).

In this section, the input-to-state stability property is recalled showing its benefits
for the analysis of robustness of a controlled system. Afterwards, a more involved
notion, useful for the robustness analysis of predictive controllers, is presented: the
regional input-to-state practical stability.

3.1 A Gentle Motivation for the ISS Notion

For the sake of clarity, in this section, state dependent uncertainties w are not con-
sidered (or considered zero) and, with a slight abuse of notation, this argument will
be dropped in the previously defined functions. Besides, constraints are not taken
into account.

A primary requirement of the controlled system is that, in absence of uncertain-
ties, i.e. d(k) = 0 for all k ∈ Z≥0, the controlled system x̃(k + 1) = fκ (x̃(k),0) �
f̃κ (x̃(k)) is asymptotically stable. This property is defined as follows:

Definition 1. The system x̃(k +1) = f̃κ (x̃(k)) is (globally) asymptotically stable (0-
AS) if there exists a K L -function β such that |φ̃κ ( j,x(0))| ≤ β (|x(0)|, j).

This property is usually demonstrated by means of the existence of a (not necessarily
continuous) Lyapunov function, which is defined as follows [61, §5.9].

Definition 2. A function V : R
n → R≥0 is a Lyapunov function of system x̃(k +1) =

f̃κ (x̃(k)) if there exist three K∞-functions,α1, α2 and α3, such that α1(|x|)≤V (x)≤
α2(|x|) and V ( f̃κ (x))−V(x)≤−α3(|x|).
On the other hand, the effect of the uncertainty makes the system evolution differs
from what expected. Then, it would be desirable that this effect is bounded and
depends on the size of the uncertainty. This robustness condition has been expressed
in the literature using the following notions [18]:
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AG: System (5) has an asymptotic gain (AG) if there exists a K -function γa such
that for each x(0) and d ∈MD, the state of the system satisfies the following
property:

limsup
j→∞

|φκ ( j,x(0),d)| ≤ γa

(
limsup

j→∞
|d( j)|

)
This notion is closely related to the ultimately bounded property of a system
[22]: the trajectories of the system converge asymptotically to a set which bound
depends uniformly on the ultimate bound of the uncertainty.

SM: System (5) has a stability margin (SM) if there exists a K∞-function σ such
that for all d(k) = δ (k)σ(|x(k)|) with |δ (k)| ≤ 1, system (5) is asymptotically
stable, i.e. there exist a K L -function β such that for all x(0)

|φκ ( j,x(0),d)| ≤ β (|x(0)|, j)

The function σ is called a stability margin. This definition states the existence of
a (sufficiently small) state-dependent signal for which asymptotic stability of the
uncertain system is maintained. This property is also called robust stability.

The notion of ISS is shown in the following definition [18]:

Definition 3. System (5) is ISS if there exist a K L -function β and a K -function γ
such that for all initial state x(0) and sequence of disturbances d ∈MD,

|φκ ( j,x(0),d)| ≤ β (|x(0)|, j)+ γ(‖d[ j−1]‖) (6)

The definition of input-to-state stability of a system comprises both effects (nominal
stability and uniformly bounded effect of the uncertainties) in a single condition. In
effect, notice that the ISS condition implies asymptotic stability of the undisturbed
system (0-AS) (just taking d = 0) and that the effect of the disturbance on the evo-
lution of the states is bounded. Furthermore, if the disturbance signal fades, then the
disturbed system asymptotically converges to the origin. Then, it is sensible to think
that there exists a relation between ISS and the previous robust stability definitions
[60]. This assertion is stated in the following theorem.

Theorem 1. Consider system (5), then the following statements are equivalent

1. It is input-to-state stable (ISS).
2. The nominal system is asymptotically stable and the disturbed system has an

asymptotic gain (0-AS+AG).
3. There exists a stability margin for the disturbed system (SM).

The equivalence between ISS and SM has been proved in [18]. The fact that ISS is
equivalent to 0-AS+AG has been proved in [11] as the counterpart for continuous-
time systems [60]. If the model is discontinuous, it can be proved that the equiva-
lence properties are valid [33].

Remark 2. Stability margin property can be used to demonstrate that a system is ISS
even in the case that the uncertainty signal d(k) is not decaying with the norm of the
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state. The existence of a SM does not imply that the real signal will be bounded by
the SM along the time.

Therefore, the ISS notion generalizes existing classic notions on stability of dis-
turbed system allowing the study of the effect of state dependent, persistent or fading
disturbances in a single framework. Moreover, as it will be presented in the follow-
ing section, there exists Lyapunov-like conditions for the analysis of this property.

It is also interesting to study if a nominally asymptotically stable system (0-AS)
has a certain degree of robustness. The answer to this question is negative in gen-
eral, since examples can be found where the 0-AS systems presents zero robustness
[20, 14]. Then, additional requirements on the system are necessary. The following
theorem gives some sufficient conditions on the nominal system to be ISS, which
extends the results of [14, 20] to ISS and generalizes [29]:

Theorem 2. Assume that system (5) is such that the function fκ (x,d) is uniformly
continuous in d for all x ∈ R

n and d ∈ D. Assume that system (5) is nominally
asymptotically stable (0-AS), then this system is ISS if one of the following condi-
tions holds:

1. There exists a Lyapunov function V (x) for the nominal system which is uniformly
continuous in Rn.

2. Function f̃κ (x) is uniformly continuous in x ∈ R
n.

The proof of this theorem can be found in the appendix.
In some cases, robustness can only be ensured in a neighborhood of the origin

and/or for small enough uncertainties. This problem can also be analyzed within the
ISS framework by means of the local ISS notion.

Definition 4. System (5) is said to be locally ISS if there exist constants c1 and c2, a
K L -function β and a K -function γ such that

|φκ ( j,x(0),d)| ≤ β (|x(0)|, j)+ γ(‖d[ j−1]‖)

for all initial state |x(0)| ≤ c1 and disturbances |d( j)| ≤ c2.

Under milder conditions, the local ISS property can be ensured.

Corollary 1 (Local ISS). The uniform continuity conditions of the latter theorem
can be relaxed to achieve local ISS. In effect, assume that the uniform continuity
condition of fκ , f̃κ and V is replaced by merely continuity at a neighborhood of
x = 0 and d = 0. Then in virtue of the Heine-Cantor theorem, there exist c1 and c2

such that for all x and d such that |x| ≤ c1 and |d| ≤ c2, these functions are uniformly
continuous and the theorem can be applied yielding local ISS.

3.2 Regional Input-to-State Practical Stability (ISpS)

In this section, a more general definition of the input-to-state stability is recalled:
the regional input-to-state practical stability. The term regional refers to the fact that
stability property holds in a certain region, which is compulsory for the analysis
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of constrained systems. The term practical means that the input-to-state stability of
a neighborhood of the origin could be only ensured. Furthermore, based on [53],
extending the results of [30, 37, 26], Lyapunov-type sufficient conditions for ISpS
are presented.

In the stability analysis of constrained systems, the invariance notion plays an
important role. In the following definition, robust invariance for system (5) is
presented.

Definition 5 (Robust positively invariant (RPI) set). Consider that hypothesis 1
holds for system (5) . A set Γ ⊆ Rn is a robust positively invariant (RPI) set for
system (5) if fκ (x,d,w) ∈Γ , for all x ∈Γ , all wη ∈Wη and all d ∈D. Furthermore,
if Γ ⊆ Xκ , then Γ is called admissible RPI set.

For the robust stability analysis of systems controlled by predictive controllers it
is appropriate to use a quite general notion of ISS: regional input-to-state practical
stability (ISpS) [60, 18, 37] which is defined as follows:

Definition 6 (Regional ISpS in Γ ). Suppose that assumption 1 is satisfied for sys-
tem (5). Given a set Γ ⊆ Rn, including the origin as an interior point, system (5) is
said to be input-to-state practical stable (ISpS) in Γ with respect to d if Γ is a robust
positively invariant set for (5) and if there exist a K L -function β , a K -function
γ2 and a constant c≥ 0 such that

|φκ ( j,x(0),d,w)| ≤ β (|x(0)|, j)+ γ2(||d[ j−1]||)+ c (7)

for all x(0) ∈ Γ , wη ∈MWη , d ∈MD and k ≥ 0.

Remark 3. In the case that c = 0 in (7) , the system (5) is said to be input-to-state
stable (ISS) in Γ with respect to d.

Remark 4. The constant c describes the fact that, in the case of zero disturbances, the
controlled system (5) may not evolve to the origin, but to a compact neighborhood
of the origin. Thus the ISpS property can also be defined as ISS with respect to a
compact nominal invariant set [60, 18].

Regional ISpS with respect to d will be now associated to the existence of a suit-
able Lyapunov-like function (not necessarily continuous), which is defined below
[30, 37].

Definition 7. (ISpS-Lyapunov function in Γ ) Suppose that assumption 1 is satisfied
for system (5). Consider that Γ is a RPI set containing the origin in its interior.
A function V: Rn → R≥0 is called an ISpS-Lyapunov function in Γ for system (5)
with respect to d, if there exists a compact set Ω ⊆ Γ (including the origin as an
interior point), suitable K∞-functions α1,α2, α3, a K -function λ2 and a couple of
constants c1,c2 ≥ 0 such that:

V (x) ≥ α1(|x|), ∀x ∈ Γ (8)

V (x) ≤ α2(|x|)+ c1, ∀x ∈Ω (9)

and for all x ∈ Γ , wη ∈Wη , and d ∈ D,
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V ( fκ (x,d,w))−V (x)≤−α3(|x|)+λ2(|d|)+ c2 (10)

Remark 5. A function V : Rn →R≥0 is called an ISS-Lyapunov function in Γ if it is
an ISpS-Lyapunov function in Γ with c1 = c2 = 0.

A sufficient condition, that extends the ISS results of [37] and [30] by means of
lemma 4 (see the appendix), is stated in the following theorem.

Theorem 3. Consider system (5) which fulfils assumption 1. If this system admits
an ISpS-Lyapunov function in Γ w.r.t. d, then it is ISpS in Γ w.r.t. d.

The proof can be derived from [53] taking into account lemma 4.

Remark 6. Notice also that ISpS w.r.t. d implicitly states that the state-dependent
uncertainty w is bounded by a stability margin. Under this assumption, an ISpS-
Lyapunov function w.r.t. w and d is also an ISpS-Lyapunov function w.r.t. d with a
suitable redefinition of the supply functions [53].

4 Input-to-State Stability of Nominal MPC

In this section, robust stability of a nominal model predictive controller for system
(1) fulfilling assumption 1 is analyzed. This predictive controller is called nominal
because it has been designed using the nominal model of the system (4), that is,
neglecting the disturbances. We focus on the standard model predictive control for-
mulation presented in [42], which control law is derived from the solution of the
following mathematical programming problem PN(x) parameterized in the current
state x.

min
u

VN(x,u) �
N−1

∑
j=0

L(x̃( j),u( j))+Vf (x̃(N)) (11)

s.t. x̃( j) = φ̃ ( j,x,u), j ∈ Z[0,N] (12)

(x̃( j),u( j)) ∈ Z, j ∈ Z[0,N−1] (13)

x̃(N) ∈ Xf (14)

where L : Rn×Rm →R≥0 is the stage cost function, Vf : Rn → R≥0 is the terminal
cost function and Xf ⊆Rn is the terminal region. It is assumed that PN(x) is feasible
in a non-empty region denoted XN . For each x∈ XN , the optimal decision variable of
PN(x) is denoted u∗(x) and the optimal cost is V ∗N(x). The MPC control law derives
from the application of the solution in a receding horizon manner κN(x) � u∗(0,x)
and it is defined for all x ∈ XN .

The stage cost L, the terminal cost Vf and the terminal set Xf of the MPC con-
troller are considered to fulfil the following conditions.

Assumption 2. The stage cost function L(x,u) is such that L(0,0) = 0 and there
exists a K∞ function α(·) such that L(x,u) ≥ α(|x|) for all (x,u) ∈ Z. Xf is an
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admissible control invariant set for system (4), i.e. for all x ∈ Xf there exists u ∈
Rm such that (x,u) ∈ Z and f̃ (x,u) ∈ Xf . Vf is a control Lyapunov function (CLF)
for system (4) such that for all x ∈ Xf there exist two K∞-functions αVf and βVf

satisfying αVf (|x|)≤Vf (x)≤ βVf (|x|) and

min
u
{Vf ( f̃ (x,u))−Vf (x)+ L(x,u) : (x,u) ∈ Z, f̃ (x,u) ∈ Xf } ≤ 0, ∀x ∈ Xf

It is well known that this assumption suffices to prove that the optimal cost V ∗N(x) is
a Lyapunov function of the closed-loop nominal system and the feasible region XN

is an admissible positively invariant set. Then the MPC control law asymptotically
stabilizes system (4) with a domain of attraction XN [42]. This property holds for any
prediction horizon N, but a larger N may yield to a better closed-loop performance
and a larger domain of attraction, but at expense of a larger computational burden
of the calculation of the optimal solution.

The obtained control law stabilizes the nominal system but, is the stability main-
tained when it is applied to the uncertain system (1)? This important question has
been recently studied. In [12, 8, 40, 17] robustness is analyzed for nonlinear sys-
tems based on the optimality of the control problem for unconstrained systems. In
[59, 14, 29, 9, 56] more general results are obtained using continuity conditions on
the solution of the optimization problem. In the following theorem, some of these
results are generalized and extended to the ISS notion.

Theorem 4. Consider a system given by (1) fulfilling assumption 1. Let κN(x) be the
predictive controller derived from the solution of PN(x) satisfying assumption 2 and
let XN be its feasibility region. Let the model function of system, f (x,κN(x),d,w),
be uniformly continuous in d and w for all x ∈ XN, d ∈ D and w ∈W. If one of the
following conditions holds:

1. Function f̃ (x,κN(x)) is uniformly continuous in x for all x ∈ XN.
2. The optimal cost V ∗N(x) is uniformly continuous in XN.

then system (1) controlled by the nominal model predictive controller u(k) =
κN(x(k)) fulfils the ISS property in a robust invariant set Ωr ⊆ XN for a sufficiently
small bound of the uncertainties.

The proof of this theorem can be found in the appendix.
Between the two conditions for ISS stated in the latter theorem, uniform conti-

nuity of the optimal cost function results more interesting from a practical point of
view since this can be ensured under certain conditions on the MPC problem. Some
of these conditions are shown in the following proposition.

Proposition 1. Assume that hypotheses of theorem 4 hold.

C1: If the plant has only constraints on the inputs (i.e. Z � Rn×U where U ⊆Rm),
the terminal region is Xf � Rn and VN(x,u) is uniformly continuous in x for all
x ∈Rn and u ∈MU , then the optimal cost V ∗N(x) is uniformly continuous in Rn.
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Besides, if f (x,u,d,w) is uniformly continuous in x, L(x,u) is uniformly contin-
uous in x and Vf (x) is uniformly continuous for all x ∈ Rn, u ∈U, d ∈ D and
w ∈W , then uniform continuity condition of VN(x,u) holds.

C2: If the plant has constraints on the state and on the inputs (i.e. Z � X×U with
X ⊆ Rn and U ⊆ Rm), Vf (x) is given by Vf (x) � λV (x) where V (x) is a uni-
formly continuous CLF in Xf such that

min
u
{V ( f̃ (x,u))−V (x)+ L(x,u) : (x,u) ∈ Z, f̃ (x,u) ∈ Xf } ≤ 0

for all x ∈ Xf with λ ≥ 1 a given weighting factor, and VN(x,u) is uniformly
continuous in x for all x ∈ XN and u ∈ MU then there exists a region Ωr �
{x ∈ R

n : V ∗N(x) ≤ r} ⊆ XN in which the optimal cost is uniformly continuous.
Besides larger λ yields to larger region Ωr.

C3: If the nominal model is linear, the cost function VN(x,u) is linear and the set
of constraints Z is a convex closed polyhedron, then optimal cost V ∗N(x) is uni-
formly continuous in XN.

C4: If the nominal model is linear, the cost function VN(x,u) is continuous and the
set of constraints Z is a compact convex polyhedron, then optimal cost V ∗N(x) is
uniformly continuous in XN.

The proof can be found in the appendix.
As studied in [14], MPC controllers may exhibit zero-robustness and hence may

not be ISS. From the previously presented results, it can be seen that ISS can be en-
sured for some special classes of models and ingredients of the MPC. Thus, linear
systems with bounded inputs controlled with a predictive control law are ISS if the
cost function is continuous. For the case of nonlinear systems uniformly continu-
ous in the uncertainty signals, uniform continuity of the cost function is assumed to
derive ISS property. In the uncommon case that the set of constraints of the opti-
mization problem does not depend on the state, ISS is proved. In the case that there
exist some constraints depending on the state, such as constraints on the predicted
states of the system or terminal constraints, these may cause discontinuity [45] and
zero-robustness [14, Section 5]. Fortunately, in this case the closed-loop system will
be ISS by merely weighting the terminal cost function. This is a simple and practical
method to ensure robustness of the nominal MPC for continuous functions.

Uniform continuity of some functions involved in theorem 4 and property 1 play
an important role in the demonstration of the ISS property. Taking into account
the Heine-Cantor theorem, the conditions on the functions can be relaxed obtaining
simpler results, as stated in the following corollary.

Corollary 2. Under the hypotheses of theorem 4 and proposition 1, if the uniform
continuity condition is replaced by continuity of the corresponding functions at a
neighborhood of x = 0 and d = 0, then there exist c1 and c2 such that for all x
and d such that |x| ≤ c1 and |d| ≤ c2, these functions are uniformly continuous and
theorem 4 and proposition 1 can be applied yielding to local ISS.

Remark 7 (Inherent robustness of suboptimal nominal MPC). Notice that in the pre-
viously presented results on local robustness of the nominal MPC it is implicitly



12 D. Limon et al.

assumed that the optimal solution of PN(x) is achieved. However, it is well-known
that this requirement is difficult to address when the system is non-linear. In [58],
a stabilizing control algorithm based on suboptimal solutions to the optimization
problem is presented. Nominal stability of this suboptimal practical procedure has
been proved [58, 31].

The question that arises from this fact is if the local ISS property of the MPC
based on optimal solutions still holds in case of suboptimality. Observe that subop-
timal nominal predictive controller makes sense in presence of uncertainties since,
in absence of uncertainties in the system, the feasible solution computed from the
last optimal solution suffices for stability. Extending the results from [27, Thm 5.16],
it can be proved that continuity of the optimal cost suffices to prove local ISS of the
suboptimal controller, but a larger degree of suboptimality implies a lower stability
margin.

5 Input-to-State Stability of Robust MPC

Earlier approaches of robust MPC formulations derive the control law from the so-
lution of an optimization problem based on open-loop predictions of the uncertain
system evolution. This open-loop scheme results to be very conservative from both
a performance and domain of attraction points of view (see [42, Section 4]). In order
to reduce this conservativeness, a closed-loop (or feedback) formulation of the MPC
has been proposed [57]. In this case, control policies instead of control actions are
taken as decision variables, yielding to an infinite dimensional optimization problem
that is in general very difficult to solve and for which there exist few efficient algo-
rithms in the literature in the case of linear systems [48, 13]. A practical formulation
between these two approaches is the so-called semi-feedback formulation, where a
family of parameterized control laws is used [23, 10]. Thus the decision variables
are the sequence of the parameters of the control laws, and hence the optimization
problem is a finite-dimensional mathematical programming problem.

Consider that the control actions are derived from a given family of controllers
parameterized by v ∈ Rs, u(k) = π(x(k),v(k)). Thus, system (1) is transformed in

x(k + 1) = fπ (x(k),v(k),d(k),w(k)), k ≥ 0 (15)

where fπ (x,v,d,w) � f (x,π(x,v),d,w) and v plays the role of the input of the mod-
ified system. The family of control laws is typically chosen as an affine function of
the state. Notice that the open-loop formulation is included in the proposed semi-
feedback approach.

Consider assumption 1 holds for system (1). Then it is convenient to pose con-
straint (2) in terms of v as follows

(x(k),v(k)) ∈ Zπ (16)

where Zπ is such that (x,π(x,v)) ∈ Z for all (x,v) ∈ Zπ . State and input dependent
uncertainty signal w can also be written as follows
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w(k) = wη (k)ηπ (x(k),v(k)) (17)

where ηπ(x,v) � η(x,π(x,v)). It will be useful to define the model function in terms
of wη as follows

fπη(x,v,d,wη ) � fπ (x,v,d,wη ηπ(x,v)) (18)

The nominal model of system (15) is denoted by f̃π(x,v) � fπ (x,v,0,0). The
solution to the difference equation (15) at k sampling times, starting from x and for
inputs v, d and w, is denoted by φπ(k,x,v,d,w) and the solution to the nominal
model φ̃π(k,x,v) � φπ(k,x,v,0,0).

In the following sections, robust stability of robust predictive controllers based
on the nominal cost function and based on the worst-case cost function are analyzed
by means of input to state stability framework. In both cases, robust constraint sat-
isfaction will be guaranteed by means of the calculation of a sequence of reachable
sets, commonly known as tube.

5.1 Tube Based Methods for Robust Constraint Satisfaction

The notion of tube (of trajectories), or sequence of reachable sets, was firstly intro-
duced in [4] as a sequence of sets such that each set can be reached from the previous
one. Recently, this idea has emerged again as a tool for robust constraint satisfac-
tion [7, 28, 32, 5, 15] or for design robust predictive controllers for linear [24, 44]
and for nonlinear systems [54, 55, 43]. In this section, this notion is presented as a
practically attractive method for solving the robust constraint satisfaction.

Definition 8. A sequence of sets {X0,X1, · · · ,XN}, with Xi ⊂Rn, is called a tube (or
a sequence of reachable sets) for system (15) and a given sequence of control inputs
v, if fπη (Xi,v(i),D,Wη )⊆ Xi+1, for all i ∈ Z[0,N−1].

A tube can be calculated by means of a suitable procedure to estimate the range of
a function.

Definition 9. Let Cb be a class of compact sets contained in Rb and let F : Ra →
Rb. Then a procedure is called a (guaranteed) range estimator of the function F,
denoted by F, if for every compact set X ⊂R

a, F(X) returns a set in C
b such that

F(x) ∈ F(X) for all x ∈ X.

This procedure is assumed to be computationally tractable and uses a specialized
algorithm or property to calculate a compact set of a certain class (as for instance,
balls, boxes, intervals, zonotopes, polytopes) which is an outer bound of the exact
range [32, 5, 1, 54]. Using this range estimator procedure of the function model
fπ(·, ·, ·, ·), a tube can be computed by means of the following recursion:

Xi+1 =  fπη (Xi,v(i),D,Wη ) (19)
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for i ∈ Z[0,N−1] and a given X0. Notice that the procedure computes the range for the
four arguments. This method has been used to compute a tube by several authors. In
[47, 28] Lipschitz continuity of the model function is used in the estimation range
procedure providing a ball Br � {x ∈ Rn : |x| ≤ r} as an estimation set (i.e. Cn is
the set of balls in Rn). In [32], the tube is calculated by using a range estimation
procedure based on the interval extension of a function, returning interval sets as es-
timation. In [5] the procedure used is based on zonotope inclusion and an extension
of the mean value theorem, and returns a zonotope (i.e. an affine mapping of a hy-
percube) as estimation region. In [1] a procedure based on DC-programming is used
resulting in paralleltopes. In the case of linear systems, a tube centered in a nominal
trajectory and a robust invariant set as cross section is used in [44] and in [55] a tube
is computed for a class of nonlinear systems by means of a suitable transformation
and using linear-case methods. Notice the latter procedures return convex compact
sets, typically polytopes. For the computation of the tubes, the procedure is assumed
to fulfil the following hypotheses.

Assumption 3. The procedure  fπη(X ,v,D,Wη) is such that

1. For every A,B ⊂ Rn such that A ⊆ B, we have that  fπ(A,v,D,Wη ) ⊆
 fπη(B,v,D,Wη) for every v, D and Wη .

2. Let A be a robust invariant set for system (1) controlled by u = π(x,v f ), for all
d(k) ∈D and wη (k) ∈Wη . Then  fπη(A,v f ,D,Wη )⊆ A.

These conditions are slightly restrictive but provide useful properties to the tube
when used to design a predictive controller. These properties can be addressed (or
relaxed) by a suitable procedure.

In the following sections, the tube-based method will be used in the predictive
control formulations. The idea consists in replacing the constraints on the sequence
of predicted trajectory with the constraints on the sequence of predicted reachable
sets derived from the current state [32, 5]. In [44], the authors propose a tube with
an invariant set as constant section and centered in a nominal predicted trajectory
which initial state is considered as decision variable. Based on this ingredients and
the superposition principle, a nice robust controller is derived. This formulation will
not be used in this paper.

5.2 Predictive Controllers Based on Nominal Predictions

The robust nominal MPC is a natural extension of the nominal MPC to the case
of uncertain systems [47, 28, 15] where the cost function is calculated for nominal
predictions while the decision variables must be such that the constraints are fulfilled
for any possible realization of the uncertainties.

The proposed predictive controller based on tubes is derived from the following
optimization problem Pnt

N (x):
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min
v

VN(x,v) �
N−1

∑
j=0

Lπ(x̃( j),v( j))+Vf (x̃(N)) (20)

s.t. x̃( j) = φ̃π( j,x,v) (21)

X0 = {x} (22)

Xj+1 =  fπη(Xj,v( j),D,Wη ), j ∈ Z[0,N−1] (23)

Xj× v( j)⊆ Zπ , j ∈ Z[0,N−1] (24)

XN ⊆ Xf (25)

where Lπ(x,v) � L(x,π(x,v)). The feasibility region of this optimization problem is
denoted by Xnt

N and v∗(x) denotes the optimal solution. The predictive control law is
given by u(k)= κnt

N (x(k)) �π(x(k),v∗(0;x(k))). The ingredients of the optimization
problem and the system function must fulfil the following assumption.

Assumption 4. The stage cost function L(x,u) is such that L(0,0) = 0 and there
exists a K∞ function α(·) such that L(x,u) ≥ α(|x|) for all (x,u) ∈ Z. Xf is an
admissible robust invariant set for system (15) for a suitable parameter v f , i.e. for
all x ∈ Xf , (x,v f ) ∈ Zπ and fπη (x,v f ,d,wη ) ∈ Xf for all d ∈ D, wη ∈Wη . Vf is a
Lyapunov function for the nominal system such that for all x ∈ Xf there exist αVf

and βVf , both K∞-functions, satisfying αVf (|x|)≤Vf (x)≤ βVf (|x|) and

Vf ( f̃π (x,v f ))−Vf (x)≤−Lπ(x,v f )

Function fπ (x,v,d,w) is uniformly continuous in x, d and w, Vf (x) is uniformly
continuous and Lπ(x,v) is uniformly continuous in x for all (x,v) ∈ Zπ , d ∈ D,
w ∈W.

In the following theorem, stability of this controller is stated.

Theorem 5. Assume that the feasible set Xnt
N is not empty and consider that as-

sumptions 3 and 4 hold. Then for all x(0) ∈ Xnt
N , system (1) controlled by u = κnt

N (x)
robustly fulfils constraint (2) and it is ISS in Xnt

N .

The proof of this theorem can be found in the appendix

Remark 8. From the proof of theorem 5 it can be derived that at any sample k > 0, a
feasible solution ensuring the ISS property can be constructed from the solution of
the last sample. Then, optimality of the solution of Pnt

N (x) is not required, but merely
an enhanced solution (if possible) to the constructed feasible solution.

5.3 Min-Max Model Predictive Controllers

Robust predictive controllers based on nominal predictions have demonstrated to
robustly stabilize the uncertain system. From a closed-loop performance index point
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of view, there may exist uncertainty scenarios where the cost function based on
nominal predictions is not a suitable measure of the closed-loop performance. This
leads us to the well-known min-max formulation of the robust predictive controller
[57, 42, 41, 10, 37, 30] and the H∞ control [36, 16, 35, 38]. In this section, the ISS
property of these controllers is studied. As in the previous section, a semi-feedback
formulation of the controller is considered due to practical reasons, but the presented
results can be extended to the feedback case. A tube-based formulation for the ro-
bust constraint satisfaction is also used leading to a novel min-max formulation.
Notice that if it is assumed that the range estimation procedure returns the exact set,
then the presented formulation reduces to the standard one [42, 53]. The min-max
optimization problem Pr

N(x) is as follows:

min
v

max
d∈MD,wη∈MWη

N−1

∑
j=0

Lπ(x( j),v( j),d( j),w( j))+Vf (x(N))

s.t. x( j) = φπ( j,x,v,d,w),
w( j) = wη ( j)ηπ (x( j),v( j))
X0 = {x},
Xj+1 =  fπη(Xj,v( j),D,Wη ), j ∈ Z[0,N−1]

Xj× v( j)⊆ Zπ , j ∈ Z[0,N−1]

XN ⊆ Xf .

where Lπ(x,v,d,w) � L(x,π(x,v),d,w). The feasibility region of this optimization
problem is denoted by Xr

N and the optimal cost of this optimization problem is de-
noted by V r

N(x). The control law is given by u(k) = κ r
N(x(k)) � π(x(k),v∗(0;x(k))).

The parameters of the controller are supposed to fulfil the following
conditions:

Assumption 5. The stage cost function L(x,u,d,w) is such that L(0,0,0,0) = 0 and
there exists a couple of K∞ functions αLx, αLd such that L(x,u,d,w) ≥ αLx(|x|)−
αLd(|d|) for all (x,u) ∈ Z, w ∈W and d ∈ D. Xf is an admissible robust invariant
set for system (15) for a suitable parameter v f , i.e. for all x ∈ Xf , (x,v f ) ∈ Zπ and
fπ(x,v f ,d,w) ∈ Xf for all wη ∈Wη and d ∈D. Vf is an ISS-Lyapunov function w.r.t.
signal d in Xf such that for all x ∈ Xf , there exist αVf and βVf , both K∞-functions
and a K -function ρ , satisfying αVf (|x|)≤Vf (x)≤ βVf (|x|) and

Vf ( fπ(x,v f ,d,w))−Vf (x)≤−Lπ(x,v f ,d,w)+ρ(|d|),∀wη ∈Wη ,∀d ∈ D

Notice that this assumption implies that the system controlled by the terminal con-
trol law u(k) = π(x(k),v f ) is ISS w.r.t the disturbance d in Xf and hence w is
bounded by a stability margin for all x(k) ∈ Xf . Input-to-state stability of the min-
max controller is proved in the following theorem which is a generalization of
[30, 37].
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Theorem 6. [53] Assume that the feasibility region Xr
N is a non-empty compact set

and assumptions 3 and 5 hold, then system (1) controlled by u(k) = κ r
N(x(k)) is ISpS

with respect to d in the robust invariant region Xr
N.

The proof of this theorem is derived demonstrating that the optimal cost function
of Pr

N(x) is an ISpS-Lyapunov function in Xr
N . Moreover, this satisfies the following

inequality

V r
N( f (x,κ r

N(x),d,w))−V r
N(x)≤−αLx(|x|)+αLd(|d|)+ρ(Dsup)

This highlights two interesting properties of min-max controllers [30, 26]: if the
uncertainty w(k) is locally bounded by a stability margin for the system controlled
by the terminal control law, then the min-max controller inherits the stability margin
and extends it to its domain of attraction Xr

N (see remark 6). The second interesting
property stems from the term ρ(Dsup). This term is the responsible for the practical
stability of the closed-loop system and it is derived from the worst-case nature of
the min-max optimization problem. Thus, despite the signal d(k) fades, the state of
the closed loop system may not converge to the origin.

Input-to-state stability of the min-max controllers can be achieved by two meth-
ods: the most simple one is based on the application of the controller in a dual-mode
manner, switching to the terminal control law once x(k) ∈ Xf [26]. The second
method is based on the H∞ strategy. This is derived from the optimization prob-
lem Pr

N(x) taking a suitable choice of the stage cost [35], as stated in the following
theorem.

Theorem 7. [53] Let Ld(d) be a definite positive function and let the stage cost
function L(x,u,d,w) � Lx(x,u,w)−Ld(d) be such that assumption 5 holds for ρ ≡
0. Assume that the feasibility region Xr

N is non-empty then, under assumptions 3 and
5, the closed-loop system x(k+1) = f (x(k),κ r

N (x(k)),d(k),w(k)) is ISS with respect
to d in the robust invariant region Xr

N.

The stability proof of min-max predictive controllers can be obtained by means of
dynamic programming [41, 30] or by means of monotonicity of the cost function
[35, 37, 2].

Remark 9. Notice that no assumption on the continuity of the model function, stage
cost function or terminal cost function are considered in the stability conditions of
the min-max controller. This means that min-max is suitable for robust stability of
discontinuous systems and/or discontinuous cost functions.

Remark 10. From standard arguments, it can be proved that suboptimal solutions in
the minimization of Pr

N(x) can be tolerated retaining stability, but sub-optimality of
the maximization stage requires further analysis. This problem is rather interesting
since the maximization stage may be computationally more demanding than the
minimization one. In [2] it is demonstrated for linear systems how maximization
can be relaxed yielding to input-to-state practical stability. This problem has been
extended to nonlinear systems in [52].
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6 Conclusions

In this paper, existing results on robust model predictive control are reviewed
demonstrating how an unifying framework for robust stability analysis can be used:
input-to-state stability. Sufficient conditions for local ISS of nominal MPC are
stated. In the case of robust MPC, a semi-feedback tube-based formulation is pro-
posed and sufficient conditions for ISS are given in the case of nominal predictions.
This framework has also been used for the min-max MPC and its stability has also
been studied. Moreover, the robust stability results are valid in the suboptimal case.

However, there are many interesting and open topics on stability and robustness
analysis of MPC, as the following: stability in presence of discontinuous model
functions, robust constraint satisfaction and enhanced estimation of the tubes, sub-
optimal approaches of predictive controllers, mainly in the min-max approach,
decentralized and distributed formulations for large-scale systems applications or
tracking of changing operating points and trajectories.

A Proof of the Theorems

A.1 Technical Lemmas

The following lemmas play an important role in the theoretical development of the
results presented in this paper. Their proofs are omitted by lack of space.

Lemma 1. Let f be a function f (x,y) : Ra×Rb → Rc. Then f is an uniformly con-
tinuous function in x for all x ∈ A and y ∈ B iff there exists a K∞-function σ such
that

| f (x1,y)− f (x2,y)| ≤ σ(|x1− x2|), ∀x1,x2 ∈ A, ∀y ∈ B

Lemma 2. Consider a system defined by the difference equation x(k + 1) =
f (x(k),u(k)) with (x(k),u(k)) ∈ Z. Denote φ( j,x,u) the solution to this equation.
Assume that f is assumed to be uniformly continuous in x for all (x,u) ∈ Z and σx

is a suitable function such that | f (x,u)− f (y,u)| ≤ σx(|x− y|). Then

|φ( j,x,u)−φ( j,y,u)| ≤ σ j
x (|x− y|).

Lemma 3. Let Γ ⊆Rn be a set with the origin in its interior and let V (x) :Γ →R≥0

be a positive definite function continuous at a neighborhood of the origin, then there
exists a K∞-function α such that V (x)≤ α(|x|) for all x ∈ Γ .

Lemma 4. Consider a couple of sets Γ ,Ω ⊆Rn both of them with the origin in their
interior and such that Ω ⊆ Γ . Let V (x) : Γ ⊆Rn → R≥0 be a function such that: (i)
V (x) < ∞ for all x ∈ Γ , (ii) there exists a K -function α1 such that V (x) ≥ α1(|x|)
for all x ∈ Γ and (iii) there exists a K -function α2 and a positive constant c ≥ 0
such that V (x)≤α2(|x|)+c, ∀x∈Ω . Then there exists a K∞-function β such that
V (x)≤ β (|x|)+ c, ∀x ∈ Γ .
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A.2 Proof of Theorem 2

1. Let V (x) be the uniform continuous Lyapunov function according to the defini-
tion 2. In virtue of lemma 1, there exists a K -function σV such that |V (y)−
V (x)| ≤ σV (|y− x|). Moreover, from the uniform continuity of fκ w.r.t. d, there
exists a K -function σd such that | fκ(x,d1)− fκ (x,d2)| ≤ σd(|d2− d1|). From
these facts, it is inferred that

V ( fκ (x,d))−V(x) = V ( fκ (x,d))−V( fκ (x,0))+V( fκ (x,0))−V(x)
≤ |V ( fκ (x,d))−V( fκ (x,0))|−α3(|x|)
≤ σV (| fκ (x,d)− fκ(x,0)|)−α3(|x|)
≤ σV ◦σd(|d|)−α3(|x|)

Then V (x) is a ISS-Lyapunov function and in virtue of [18] the system is ISS.
2. The asymptotic stability of the nominal system implies that there exists a K L -

function β such that |φκ( j,x(0),0)| ≤ β (|x(0)|, j).
From this property, it will be proved that there exists a uniform continuous

Lyapunov function for the nominal system, following a similar procedure to [50].
For every K L -function β , there exists a couple of K∞ functions α1 and α2 and
a constant a > 0 such that β (s, t)≤ α−1

1 (α2(s)e−at) [50].
Define the function

V (x) � sup
j≥0

(
α1 (φκ( j,x,0))ea j)

Since fκ (x,0) is uniformly continuous, then φκ( j,x,0) is uniformly continuous
in x, and hence V (x) inherits this property.

See that α1 (φκ ( j,x,0))ea j is upper bounded by α2(|x|), and hence the func-
tion is well-defined. Besides, this function satisfies α1(|x|) ≤ V (x) ≤ α2(|x|).
Then, it suffices to proof the decreasing property:

V ( fκ (x,0)) = sup
j≥0

(
α1 (|φκ( j, fκ (x,0),0)|)ea j)

= sup
j≥1

(
α1 (|φκ ( j,x,0)|)ea( j−1)

)
≤ sup

j≥0

(
α1 (|φκ( j,x,0)|)ea j)e−a

= V (x)e−a = V (x)− (1− e−a)V (x)
≤ V (x)− (1− e−a)α1(|x|)

Hence there exists a uniformly continuous Lyapunov function V (x) for the nom-
inal system and then in virtue of the first statement of theorem 2 the disturbed
system is ISS.
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A.3 Proof of theorem 4

First, the ISS condition will be proved. Notice that f (x,κN(x),d,w) ∈ Ωr ⊆ XN for
all x ∈Ωr and hence the control law is defined along the time.

1. Since the closed-loop model function f (x,κN(x),d,w) is uniformly continuous
in all its arguments, in virtue of theorem 2, the ISS property of the closed-loop
system is derived.

2. ISS property directly stems from theorem 2.

Once the ISS property is derived, the existence of a compact robust invariant set
Ωr is proved for a sufficiently small bound of the uncertainties. From the first part
of the proof, it can be said that in all the cases there exists a uniformly continuous
Lyapunov function Ṽ (x) in XN . Define Ωr as Ωr � {x : Ṽ (x)≤ r} such that Ωr ⊆ XN .
Then there exist a couple of K -functions γd , γw

Ṽ ( f (x,κN(x),d,w)) ≤ Ṽ (x)−L(x,κN(x))+ γd(|d|)+ γw(|w|)

for all x ∈ XN . From standard Lyapunov theory arguments (see [18] for instance)
there exists a K∞ function α1 such that Ṽ (x) ≥ α1(|x|). Furthermore, there ex-
ists a K∞ function ρ such that θ (s) = s− ρ(s) is a K -function and ensures that
Ṽ ( f (x,κN(x),d,w)) ≤ ρ ◦Ṽ (x)+ γd(|d|)+ γw(|w|) [18, Lemma 3.5]. Taking a cou-
ple of constants c1 and c2 such that γd(c1)+ γw(c2)≤ θ (r), then we have that for all
|d| ≤ c1 and |w| ≤ c2,

Ṽ ( f (x,κN(x),d,w)) ≤ ρ(r)+ γd(|d|)+ γw(|w|)
≤ ρ(r)+θ (r) = r

Then, robust invariance of Ωr is derived.

A.4 Proof of Proposition 1

1. Consider a given sequence of control actions u and x,z ∈ Rn, then in virtue of
the uniform continuity of the cost function VN(x,u) there exists a K∞-function θ
such that |VN(x,u)−VN(z,u)| ≤ θ (|x− z|).

Let u∗(x) be the optimal solution of PN(x). Since the constraints of PN(x) do
not depend on the state x, u∗(x) is feasible for any x ∈Ωr. Assume (without loss
of generality) that V ∗N(z)≥V ∗N(x), then

|V ∗N(z)−V ∗N(x)| ≤ |VN(z,u∗(x))−VN(x,u∗(x))| ≤ θ (|x− z|)

Therefore, the optimal cost is uniformly continuous in Rn.
In order to prove the second statement, denote x̃(i) = φ̃(i, x̃,u) and z̃(i) =

φ̃(i, z̃,u). Uniform continuity of the model function implies the existence of a
K∞-function σx such that | f (x,u,d,w)− f (z,u,d,w)| ≤ σx(|x− z|) for all x,z in
Rn. Then from lemma 2 it is derived that |x̃(i)− z̃(i)| ≤ σ i

x(|x̃(0)− z̃(0)|).
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Analogously, there also exists a couple of K∞-functions σL,σVf such that
|L(x,u)−L(z,u)| ≤ σL(|x−z|) and |Vf (x)−Vf (z)| ≤ σVf (|x−z|) for all x,z ∈Rn

and u ∈U . Considering these results we have that

|VN(x,u)−VN(z,u)| ≤
N−1

∑
j=0

|L(x̃( j),u( j))−L(z̃( j),u( j))|

+|Vf (x̃(N))−Vf (z̃(N))|

≤
N−1

∑
j=0

σL ◦σ j
x (|x− z|)+σVf ◦σN

x (|x− z|)

Hence the cost function is uniformly continuous.
2. Consider the compact set Ωr � {x ∈ Rn : V ∗N(x) ≤ r} contained in the interior

of XN ⊆ X . Then this set is an admissible invariant set for the nominal system
controlled by the MPC. Take a x ∈ Ωr and denote x∗( j) the optimal trajectory
of the solution of PN(x), then from the Bellman’s optimality principle, V ∗N(x) ≥
V ∗N− j(x

∗( j)) for all j ∈ Z[0,N] Given that for all z∈ XN , V ∗N(z)≤V ∗N− j(z), we have
that V ∗N(x∗( j)) ≤ V ∗N(x). Then for all x ∈ Ωr, the predicted optimal trajectory
remains in Ωr and hence the constraint on the states is not active. Therefore, this
can be removed from PN(x).

On the other hand, taking into account the results reported in [31], for any λ
such that Vf (x) = λV (x), there exists a value of r(λ ) such that for all x ∈Ωr the
terminal constraint is not active throughout the state evolution. Besides, larger λ ,
larger the region Ωr. Then, the terminal constraint could also be removed from
the optimization problem yielding to a set of constraints of PN(x) which does not
depend on the state x. From the arguments of the latter case, the optimal cost is
uniformly continuous in Ωr.

3. In this case, the optimal cost function is a piece-wise affine continuous function
[3]. Then V ∗N(x) is Lipschitz and hence uniformly continuous in its domain.

4. This proof can be derived from [14, Proposition 12].

A.5 Proof of Theorem 5

First, recursive feasibility will be proved. Thus, consider a state xk ∈ Xnt
N and denote

v∗(x) the optimal solution of Pnt
N (x) and denote {X∗j (x)} the sequence of reachable

sets for the optimal solution.
Let x+ be the actual state at next sampling time, i.e. x+ = f (x,κnt

N (x),d,w). De-
fine the following sequence of control inputs to be applied at this state v̄(x+) �
{v∗(1,x), · · · ,v∗(N−1,x),v f} and define the sequence of sets

X̄ j+1(x+) �  fπη(X̄ j(x+), v̄( j,x+),D,Wη )

with X̄0(x+) = {x+}. Since x+ ∈ X∗1 (x), then it can be proved from the property 1
of assumption 3 X̄ j(x+)⊆ X∗j+1(x). Therefore
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X̄ j(x+)× v̄( j,x+)⊆ X∗j+1(x)× v∗( j + 1,x)⊆ Zπ , j ∈ Z[0,N−2]

Moreover, since X̄N−1(x+)⊆ X∗N(x)⊆ Xf we have that

X̄N−1(x+)× v̄(N−1,x+)⊆ Xf × v f ⊆ Zπ

Finally, from assumption 3, we have that

X̄N(x+) �  fπη(X̄N−1(x+),v f ,D,Wη )⊆  fπη(Xf ,v f ,D,Wη)⊆ Xf

Therefore, the sequence v̄(x+) is a feasible solution of Pnt
N (x+) and hence recursive

feasibility and robust invariance of Xnt
N are proved.

To demonstrate the ISS property, let define the following sequences z̃(i) �
φ̃π(i,x+, v̄(x+)) and x̃∗(i) � φ̃π(i,x,v∗(x)) for i ∈ Z[0,N−1]. From the assumption
4, there exist some K∞-functions σx, σd , σw, σL, σVf , such that

| fπ(x1,v,d1,w1)− fπ(x2,v,d2,w2)| ≤ σx(|x1− x2|)+σd(|d1−d2|)
+σw(|w1−w2|)

|Lπ (x,v)−Lπ(z,v)| ≤ σL(|x− z|)
|Vf (x)−Vf (z)| ≤ σVf (|x− z|)

for all (x,u) in Zπ d ∈D and w ∈W .
Taking into account this fact and considering that v̄(i,x+) � v∗(i+1,x) for all i∈

Z[0,N−1], it can be inferred that |z̃(i)− x̃∗(i+ 1)| ≤ σ i
x(|x+− x̃∗(1)|), i ∈ Z[0,N−1].

Denote V̄N(x+) � VN(x+, v̄(x+)), then, we can state

V̄N(x+)−V ∗N(x) = −L(x,κnt
N (x))

+
N−2

∑
j=0

[Lπ(z̃( j), v̄( j,x+))−Lπ(x̃∗( j + 1),v∗( j + 1,x))]

+Lπ(z̃(N−1),v f )+Vf (z̃(N))−Vf (z̃(N−1))
+Vf (z̃(N−1))−Vf (x̃∗(N))

Taking into account that v̄(i,x+) � v∗(i + 1,x), the following bound can be ob-
tained

Lπ(z̃( j), v̄( j,x+))−Lπ(x̃∗( j + 1),v∗( j + 1,x)) ≤ σL ◦σ j
x (|x+− x∗(1)|)

for all j ∈ Z[0,N−2] and similarly,

Vf (z̃(N−1))−Vf (x̃∗(N))≤ σVf ◦σN
x (|x+− x∗(1)|)

Considering that z̃(N − 1) ∈ X̄N−1(x+), and X̄N−1(x+) ⊆ X∗N(x) ⊆ Xf , we have
that z̃(N−1) ∈ Xf . From assumption 4, we have that

Lπ(z̃(N−1),v f )+Vf (z̃(N))−Vf (z̃(N−1))≤ 0
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This yields to V̄N(x+)−V ∗N(x) ≤ −L(x,κnt
N (x)) + γ(|x+ − x∗(1)|), where γ(s) �

∑N−2
j=0 σL ◦σ j

x (s)+σVf ◦σN
x (s). On the other hand, since x+ � f (x,κnt

N (x),d,w) and

x∗(1) � f (x,κnt
N (x),0,0), we have that

|x+− x̃∗(1)|= | f (x,κnt
N (x),d,w)− f (x,κnt

N (x),0,0)| ≤ σd(|d|)+σw(|w|)

Then there exists a couple of K -functions θd and θw such that

V̄N(x+)−V ∗N(x)≤−α(|x|)+θd(|d|)+θw(|w|)

Since v̄(x+) is a feasible solution of Pnt
N (x+) we have that V ∗N(x+) ≤ V̄N(x+),

and then V ∗N(x+)−V ∗N(x) ≤ −α(|x|)+ θd(|d|)+ θw(|w|). Taking into account that
V ∗N(x) is a definite positive function continuous in a neighborhood of the origin,
in virtue of lemma 3 there exists a couple of K -functions α1 and α2 such that
α1(|x|)≤V ∗N(x)≤ α2(|x|) for all x ∈ Xnt

N . Hence the closed-loop system is ISS.
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26. Lazar, M., Muñoz de la Peña, D., Heemels, W.P.M.H., Alamo, T.: On input-to-state sta-
bility of min-max nonlinear model predictive control. Systems & Control Letters 57,
39–48 (2008)

27. Limon, D.: Predictive control of constrained nonlinear systems: stability and robustness.
PhD thesis, Universidad de Sevilla (2002) (in spanish)

28. Limon, D., Alamo, T., Camacho, E.F.: Input-to-state stable MPC for constrained discrete-
time nonlinear systems with bounded additive uncertainties. In: 41st IEEE CDC, pp.
4619–4624 (2002)

29. Limon, D., Alamo, T., Camacho, E.F.: Stability analysis of systems with bounded ad-
ditive uncertainties based on invariant sets: Stability and feasibility of MPC. In: ACC
2002, pp. 364–369 (2002)

30. Limon, D., Alamo, T., Salas, F., Camacho, E.F.: Input to state stability of min-max MPC
controllers for nonlinear systems with bounded uncertainties. Automatica 42, 797–803
(2006)



ISS: A Unifying Framework for Robust Model Predictive Control 25

31. Limon, D., Alamo, T., Salas, F., Camacho, E.F.: On the stability of constrained MPC
without terminal constraint. IEEE Transactions on Automatic Control 51, 832–836
(2006)

32. Limon, D., Bravo, J.M., Alamo, T., Camacho, E.F.: Robust MPC of constrained nonlin-
ear systems based on interval arithmetic. IEE Proceedings-Control Theory and Applica-
tions 152, 325 (2005)

33. Limon, D., Raimondo, D.M., Picasso, B.: On the input-to-state stability of discontinuous
discrete-time systems. Internal Report. Dpt. Ing. Sistemas y Automática. U. de Sevilla
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Self-optimizing Robust Nonlinear Model
Predictive Control

M. Lazar�, W.P.M.H. Heemels, and A. Jokic

Abstract. This paper presents a novel method for designing robust MPC schemes
that are self-optimizing in terms of disturbance attenuation. The method employs
convex control Lyapunov functions and disturbance bounds to optimize robustness
of the closed-loop system on-line, at each sampling instant - a unique feature in
MPC. Moreover, the proposed MPC algorithm is computationally efficient for non-
linear systems that are affine in the control input and it allows for a decentralized
implementation.

Keywords: nonlinear systems, robust model predictive control (MPC), input-to-
state stability (ISS), decentralized control.

1 Introduction

Robustness of nonlinear model predictive controllers has been one of the most rel-
evant and challenging problems within MPC, see, e.g., [1, 2, 3, 4, 5]. From a con-
ceptual point of view, three main categories of robust nonlinear MPC schemes can
be identified, each with its pros and cons: inherently robust, tightened constraints
and min-max MPC schemes, respectively. In all these approaches, the input-to-
state stability property [6] has been employed as a theoretical tool for characterizing
robustness, or robust stability1.
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The goal of the existing design methods for synthesizing control laws that achieve
ISS [7, 8, 9] is to a priori guarantee a predetermined closed-loop ISS gain. Conse-
quently, the ISS property, with a predetermined, constant ISS gain, is in this way
enforced for all state space trajectories of the closed-loop system and at all time in-
stances. As the existing approaches, which are also employed in the design of MPC
schemes that achieve ISS, can lead to overly conservative solutions along particular
trajectories, it is of high interest to develop a control (MPC) design method with the
explicit goal of adapting the closed-loop ISS gain depending of the evolution of the
state trajectory.

In this article we present a novel method for synthesizing robust MPC schemes
with this feature. The method employs convex control Lyapunov functions (CLFs)
and disturbance bounds to embed the standard ISS conditions of [8] using a finite
number of inequalities. This leads to a finite dimensional optimization problem that
has to be solved on-line, in a receding horizon fashion. The proposed inequalities
govern the evolution of the closed-loop state trajectory through the sublevel sets of
the CLF. The unique feature of the proposed robust MPC scheme is to allow for
the simultaneous on-line (i) computation of a control action that achieves ISS and
(ii) minimization of the closed-loop ISS gain depending of an actual state trajectory.
As a result, the developed nonlinear MPC scheme is self-optimizing in terms of
disturbance attenuation. From the computational point of view, following a partic-
ular design recipe, the self-optimizing robust MPC algorithm can be implemented
as a single linear program for discrete-time nonlinear systems that are affine in the
control variable and the disturbance input. Furthermore, we demonstrate that the
freedom to optimize the closed-loop ISS gain on-line makes self-optimizing robust
MPC suitable for decentralized control of networks of nonlinear systems.

2 Preliminary Definitions and Results

2.1 Basic Notions and Definitions

Let R, R+, Z and Z+ denote the field of real numbers, the set of non-negative re-
als, the set of integer numbers and the set of non-negative integers, respectively.
We use the notation Z≥c1 and Z(c1,c2] to denote the sets {k ∈ Z+ | k ≥ c1} and
{k ∈ Z+ | c1 < k ≤ c2}, respectively, for some c1,c2 ∈ Z+. For a set S ⊆ Rn, we
denote by int(S ) the interior of S . For two arbitrary sets S ⊆Rn and P ⊆Rn, let
S ∼P := {x∈R

n | x+P ⊆S } denote their Pontryagin difference. A polyhedron
(or a polyhedral set) in Rn is a set obtained as the intersection of a finite number of
open and/or closed half-spaces. The Hölder p-norm of a vector x ∈ Rn is defined as

‖x‖p := (|[x]1|p + . . .+ |[x]n|p)
1
p for p ∈ Z[1,∞) and ‖x‖∞ := maxi=1,...,n |[x]i|, where

[x]i, i = 1, . . . ,n, is the i-th component of x and | · | is the absolute value. For a

matrix M ∈ Rm×n, let ‖M‖p := supx�=0
‖Mx‖p
‖x‖p

denote its corresponding induced ma-

trix norm. Then ‖M‖∞ = max1≤i≤m∑n
j=1 |[M]i j|, where [M]i j is the ij-th entry of

M. Let z := {z(l)}l∈Z+ with z(l) ∈ Ro for all l ∈ Z+ denote an arbitrary sequence.
Define ‖z‖ := sup{‖z(l)‖ | l ∈ Z+}, where ‖ · ‖ denotes an arbitrary p-norm, and
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z[k] := {z(l)}l∈Z[0,k] . A function ϕ : R+→R+ belongs to class K if it is continuous,
strictly increasing and ϕ(0) = 0. A function ϕ : R+ → R+ belongs to class K∞ if
ϕ ∈K and lims→∞ ϕ(s) =∞. A function β : R+×R+→R+ belongs to class K L
if for each fixed k ∈R+, β (·,k)∈K and for each fixed s ∈R+, β (s, ·) is decreasing
and limk→∞ β (s,k) = 0.

2.2 ISS Definitions and Results

Consider the discrete-time nonlinear system

x(k + 1) ∈Φ(x(k),w(k)), k ∈ Z+, (1)

where x(k) ∈ Rn is the state and w(k) ∈ Rl is an unknown disturbance input at the
discrete-time instant k. The mapping Φ : Rn×Rl ↪→ Rn is an arbitrary nonlinear
set-valued function. We assume that Φ(0,0) = {0}. Let W be a subset of Rl .

Definition 1. We call a set P ⊆ Rn robustly positively invariant (RPI) for system
(1) with respect to W if for all x ∈P it holds that Φ(x,w) ⊆P for all w ∈W.

Definition 2. Let X with 0 ∈ int(X) and W be subsets of Rn and Rl , respectively.
We call system (1) ISS(X, W) if there exist a K L -function β (·, ·) and a K -
function γ(·) such that, for each x(0) ∈ X and all w = {w(l)}l∈Z+ with w(l) ∈W

for all l ∈ Z+, it holds that all corresponding state trajectories of (1) satisfy
‖x(k)‖ ≤ β (‖x(0)‖,k) + γ(‖w[k−1]‖), ∀k ∈ Z≥1. We call the function γ(·) an ISS
gain of system (1).

Theorem 1. Let W be a subset of Rl and let X⊆Rn be a RPI set for (1) with respect
to W, with 0∈ int(X). Furthermore, let α1(s) := asδ , α2(s) := bsδ , α3(s) := csδ for
some a,b,c,δ ∈R>0, σ ∈K and let V : Rn → R+ be a function such that:

α1(‖x‖)≤V (x)≤ α2(‖x‖), (2a)

V (x+)−V(x)≤−α3(‖x‖)+σ(‖w‖) (2b)

for all x ∈X, w ∈W and all x+ ∈Φ(x,w). Then the system (1) is ISS(X,W) with

β (s,k) := α−1
1 (2ρkα2(s)), γ(s) := α−1

1

(
2σ(s)
1−ρ

)
, ρ := 1− c

b
∈ [0,1). (3)

If inequality (2b) holds for w = 0, then the 0-input system x(k + 1) ∈ Φ(x(k),0),
k ∈ Z+, is asymptotically stable in X.

The proof of Theorem 1 is similar in nature to the proof given in [8, 10, 11] by
replacing the difference equation with the difference inclusion as in (1).

2.3 Inherent ISS through Continuous and Convex Control
Lyapunov Functions

Consider the discrete-time constrained nonlinear system



30 M. Lazar et al.

x(k + 1) = φ(x(k),u(k),w(k)) := f (x(k),u(k))+ g(x(k))w(k), k ∈ Z+, (4)

where x(k) ∈ X ⊆ Rn is the state, u(k) ∈ U ⊆ Rm is the control action and w(k) ∈
W⊂Rl is an unknown disturbance input at the discrete-time instant k. φ : Rn×Rm×
Rl → Rn, f : Rn×Rm → Rn and g : Rn → Rn×l are arbitrary nonlinear functions
with φ(0,0,0) = 0 and f (0,0) = 0. Note that we allow that g(0) �= 0. We assume that
0 ∈ int(X), 0 ∈ int(U) and W is bounded. We also assume that φ(·, ·, ·) is bounded
in X. Next, let α1,α2,α3 ∈K∞ and let σ ∈K .

Definition 3. A function V : Rn → R+ that satisfies (2a) for all x ∈ X is called a
control Lyapunov function (CLF) for system x(k + 1) = φ(x(k),u(k),0), k ∈ Z+, if
for all x ∈X, ∃u ∈ U such that V (φ(x,u,0))−V (x)≤−α3(‖x‖).
Problem 1. Let a CLF V (·) be given. At time k ∈ Z+ measure the state x(k) and
calculate a control action u(k) that satisfies:

u(k) ∈ U, φ(x(k),u(k),0) ∈X, (5a)

V (φ(x(k),u(k),0))−V (x(k))+α3(‖x(k)‖)≤ 0. (5b)

Let π0(x(k)) := {u(k) ∈ Rm | (5) holds}. Let x(k + 1) ∈ φ0(x(k),π0(x(k))) :=
{ f (x(k),u) | u ∈ π0(x(k))} denote the difference inclusion corresponding to the
0-input system (4) in “closed-loop” with the set of feasible solutions obtained by
solving Problem 1 at each instant k ∈ Z+.

Theorem 2. Let α1,α2,α3 ∈K∞ of the form specified in Theorem 1 and a corre-
sponding CLF V (·) be given. Suppose that Problem 1 is feasible for all states x in
X. Then: (i) The difference inclusion

x(k + 1) ∈ φ0(x(k),π0(x(k))), k ∈ Z+, (6)

is asymptotically stable in X; (ii) Consider a perturbed version of (6), i.e.

x̃(k + 1) ∈ φ0(x̃(k),π0(x̃(k)))+ g(x̃(k))w(k), k ∈ Z+ (7)

and let X̃⊆X be a RPI set for (7) with respect to W. If X is compact, the CLF V (·)
is convex and continuous2 on X and ∃M ∈R>0 such that ‖g(x)‖ ≤M for all x ∈X,
then system (7) is ISS(X̃,W).

Proof: (i) Let x(k) ∈X for some k ∈Z+. Then, feasibility of Problem 1 ensures that
x(k +1) ∈ φ0(x(k),π0(x(k))) ⊆X due to constraint (5a). Hence, Problem 1 remains
feasible and thus, X is a PI set for system (6). The result then follows directly from
Theorem 1. (ii) By convexity and continuity of V (·) and compactness of X, V (·) is
Lipschitz continuous on X [12]. Hence, letting L ∈R>0 denote a Lipschitz constant
of V (·) in X, one obtains |V (φ(x,u,w))−V (φ(x,u,0))| = |V ( f (x,u) + g(x)w)−
V ( f (x,u))| ≤ L M‖w‖ for all x ∈ X and all w. From this property, together with
inequality (5b) we have that inequality (2b) holds with σ(s) := L Ms ∈K . Since

2 Continuity of V (·) alone is sufficient, but it requires a somewhat more complex proof.
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X̃ is an RPI set for (7) by the hypothesis, ISS(X̃,W) of the difference inclusion (7)
follows from Theorem 1. �

3 Problem Definition

Theorem 2 establishes that all feasible solutions of Problem 1 are stabilizing feed-
back laws which, under additional assumptions even achieve ISS. However, this
inherent ISS property of a feedback law calculated by solving Problem 1 relies on
a fixed, possibly large gain of σ(·), which depends on V (·). This gain is explicitly
related to the ISS gain of the closed-loop system via (3). To optimize disturbance
attenuation for the closed-loop system, at each time instant k ∈ Z+ and for a given
x(k) ∈X, it would be desirable to simultaneously compute a control action u(k) ∈U

that satisfies:

(i) V (φ(x(k),u(k),w(k)))−V (x(k))+α3(‖x‖)−σ(‖w(k)‖)≤ 0, ∀w(k) ∈W

(8)

and some functionσ(s) :=η(k)sδ and (ii) minimize η(k) (η(k),δ ∈R>0, ∀k∈Z+).

Remark 1. It is not possible to directly include (8) in Problem 1, as it leads to an
infinite dimensional optimization problem. If W is a compact polyhedron, a pos-
sibility to resolve this issue would be to evaluate the inequality (8) only for w(k)
taking values in the set of vertices of W. However, this does not guarantee that
(8) holds for all w(k) ∈ W due to the fact that the left-hand term in (8) is not
necessarily a convex function of w(k), i.e. it contains the difference of two, possi-
bly convex, functions of w(k). This makes the considered problem challenging and
interesting. �

4 Main Results

In what follows we present a solution to the problem stated in Section 3. More
specifically, we demonstrate that by considering continuous and convex CLFs and
compact polyhedral sets X,U,W (that contain the origin in their interior) a so-
lution to inequality (8) can be obtained via a finite set of inequalities that only
depend on the vertices of W. The standing assumption throughout the remainder
of the article is that the considered system, i.e. (4), is affine in the disturbance
input w.

4.1 Optimized ISS through Continuous and Convex CLFs

Let we, e = 1, ...,E , be the vertices of W. Next, consider a finite set of sim-
plices S1, . . . ,SM with each simplex Si equal to the convex hull of a subset of
the vertices of W and the origin, and such that ∪M

i=1Si = W. More precisely,
Si = Co{0,wei,1 , . . . ,wei,l} and {wei,1 , . . . ,wei,l} ⊂ {w1, . . . ,wE} (i.e. {ei,1, . . . ,ei,l} ⊂
{1, . . . ,E}) with wei,1 , . . . ,wei,l linearly independent. For each simplex Si we define



32 M. Lazar et al.

the matrix Wi := [wei,1 . . . wei,l ] ∈ Rl×l , which is invertible. Let λe(k), k ∈ Z+, be
optimization variables associated with each vertex we. Let α3 ∈K∞, suppose that
x(k) at time k ∈ Z+ is given and consider the following set of inequalities depending
on u(k) and λ1(k), . . . ,λE(k):

V (φ(x(k),u(k),0))−V (x(k))+α3(‖x(k)‖)≤ 0, (9a)

V (φ(x(k),u(k),we))−V(x(k))+α3(‖x(k)‖)−λe(k)≤ 0, ∀e = 1,E. (9b)

Theorem 3. Let V (·) be a convex CLF. If for α3 ∈K∞ and x(k) at time k ∈ Z+ there
exist u(k) and λe(k), e = 1, . . . ,E, such that (9a) and (9b) hold, then (8) holds for
the same u(k), with σ(s) := η(k)s and

η(k) := max
i=1,...,M

‖λ̄i(k)W−1
i ‖, (10)

where λ̄i(k) := [λei,1(k) . . . λei,l (k)] ∈ R1×l .

Proof: Let α3 ∈ K∞ and x(k) be given and suppose (9b) holds for some λe(k),
e = 1, . . . ,E . Let w ∈ W =

⋃M
i=1 Si. Hence, there exists an i such that w ∈

Si = Co{0,wei,1 , . . . ,wei,l}, which means that there exist non-negative numbers
μ0,μ1, . . . ,μl with ∑l

j=0 μ j = 1 such that w = ∑l
j=1 μ jwei, j + μ00 = ∑l

j=1 μ jwei, j .

In matrix notation we have that w = Wi[μ1 . . . μl]� and thus [μ1 . . . μl]� = W−1
i w.

Multiplying each inequality in (9b) corresponding to the index ei, j and the inequality
(9a) with μ j ≥ 0, j = 0,1, . . . , l, summing up and using ∑l

j=0 μ j = 1 yield:

μ0V (φ(x(k),u(k),0))+
l

∑
j=1

μ jV (φ(x(k),u(k),wei, j ))

−V (x(k))+α3(‖x(k)‖)−
l

∑
j=1

μ jλei, j(k)≤ 0.

Furthermore, using φ(x(k),u(k),wei, j ) = f (x(k),u(k))+ g(x(k))wei, j , convexity of
V (·) and ∑l

j=0 μ j = 1 yields

V (φ(x(k),u(k),
l

∑
j=1

μ jw
ei, j ))−V(x(k))+α3(‖x(k)‖)−

l

∑
j=1

μ jλei, j(k)≤ 0,

or equivalently

V (φ(x(k),u(k),w))−V (x(k))+α3(‖x(k)‖)− λ̄i(k)[μ1 . . . μl]� ≤ 0.

Using that [μ1 . . . μl]� = W−1
i w we obtain (8) with w(k) = w for σ(s) = η(k)s and

η(k)≥ 0 as in (10). �
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4.2 Self-optimizing Robust Nonlinear MPC

For any x ∈ X let Wx := {g(x)w | w ∈ W} ⊂ R
n (note that 0 ∈ Wx) and assume

that X∼Wx �= /0. Let λ̄ := [λ1, . . . ,λE ]� and let J(λ̄ ) : RE → R+ be a function that
satisfies α4(‖λ̄‖) ≤ J(λ̄ ) ≤ α5(‖λ̄‖) for some α4,α5 ∈K∞; for example, J(λ̄ ) :=
maxi=1,...,M ‖λ̄iW−1

i ‖.
Problem 2. Let α3 ∈K∞, J(·) and a CLF V (·) be given. At time k ∈ Z+ measure
the state x(k) and minimize the cost J(λ1(k), . . . ,λE(k)) over u(k),λ1(k), . . . ,λE(k),
subject to the constraints

u(k) ∈ U, λe(k)≥ 0, f (x(k),u(k)) ∈X∼Wx(k), (11a)

V (φ(x(k),u(k),0))−V (x(k))+α3(‖x(k)‖)≤ 0, (11b)

V (φ(x(k),u(k),we))−V(x(k))+α3(‖x(k)‖)−λe(k)≤ 0, ∀e = 1,E. (11c)

�

Let π(x(k)) := {u(k) ∈Rm | (11) holds} and let

x(k + 1) ∈ φcl(x(k),π(x(k)),w(k)) := {φ(x(k),u,w(k)) | u ∈ π(x(k))}

denote the difference inclusion corresponding to system (4) in “closed-loop” with
the set of feasible solutions obtained by solving Problem 2 at each k ∈ Z+.

Theorem 4. Let α1,α2,α3 ∈K∞ of the form specified in Theorem 1, a continuous
and convex CLF V (·) and a cost J(·) be given. Suppose that Problem 2 is feasible
for all states x in X. Then the difference inclusion

x(k + 1) ∈ φcl(x(k),π(x(k)),w(k)), k ∈ Z+ (12)

is ISS(X, W).

Proof: Let x(k) ∈ X for some k ∈ Z+. Then, feasibility of Problem 2 ensures that
x(k+1)∈ φcl(x(k),π(x(k)),w(k))⊆X for all w(k)∈W, due to g(x(k))w(k)∈Wx(k)
and constraint (11a). Hence, Problem 2 remains feasible and thus, X is a RPI set with
respect to W for system (12). From Theorem 3 we also have that V (·) satisfies (2b)
with σ(s) := η(k)s and η(k) as in (10). Let

λ ∗ := sup
x∈X,u∈U,e=1,...,E

{V (φ(x,u,we))−V(x)+α3(‖x‖)}.

Due to continuity of V (·), compactness of X, U and boundedness of φ(·, ·, ·), λ ∗
exists and is finite (the sup above is a max if φ(·, ·, ·) is continuous in x and u). Hence,
inequality (11c) is always satisfied for λe(k) = λ ∗ for all e = 1, . . . ,E , k ∈ Z+, and
for all x ∈ X, u ∈ U. This in turn, via (10) ensures the existence of a η∗ ∈ R>0

such that η(k) ≤ η∗ for all k ∈ Z+. Hence, we proved that inequality (8) holds for
all x ∈ X and all w ∈ W. Then, since X is RPI, ISS(X,W) follows directly from
Theorem 1. �
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Remark 2. An alternative proof to Theorem 4 can be obtained by simply applying
the reasoning used in the proof of Theorem 2. Hence, inherent ISS can be estab-
lished directly from constraint (11b). Also, notice that in the proof of Theorem 4
we used a worst case evaluation of λe(k) to prove ISS. However, it is important to
observe that compared to Problem 1, nothing is lost in terms of feasibility, while
Problem 2, although it inherently guarantees a constant ISS gain, it provides free-
dom to optimize the ISS gain of the closed-loop system, by minimizing the variables
λ1(k), . . . ,λE(k) via the cost J(·). As such, in reality the gain η(k) of the function
σ(·) can be much smaller for k ≥ k0, for some k0 ∈ Z+, depending on the state
trajectory x(k). �

In Theorem 4 we assumed for simplicity that Problem 2 is feasible for all x ∈ X; in
other words, feasibility implies ISS. Whenever Problem 2 can be solved explicitly
(see the implementation paragraph below), it is possible to calculate the maximal
RPI set for the closed-loop dynamics that is contained within the explicit set of fea-
sible solutions. Alternatively, we establish next an easily verifiable sufficient condi-
tion under which any sublevel set of V (·) contained in X is a RPI subset of the set
of feasible solutions of Problem 2.

Lemma 1. Given a CLF V (·) that satisfies the hypothesis of Theorem 4, let VΔ :=
{x ∈ Rn | V (x) ≤ Δ}. Then, for any Δ ∈ R>0 such that VΔ ⊆ X, if λ ∗ ≤ (1−ρ)Δ ,
with ρ as defined in (3), Problem 2 is feasible for all x ∈ VΔ and remains feasible
for all resulting closed-loop trajectories that start in VΔ .

Proof: From the proof of Theorem 4 we know that inequalities (11c) are feasible
for all x(k) ∈ X, u(k) ∈ U and e = 1,E by taking λ (k) = λ ∗ for all k ∈ Z+. Thus,
for any x(k) ∈ VΔ ⊆ X, Δ ∈ R≥0, we have that:

V (φ(x(k),u(k),w(k))) ≤V (x(k))−α3(‖x(k)‖)+λ ∗ ≤ ρV(x(k))+λ ∗

≤ ρΔ +λ ∗ ≤ ρΔ +(1−ρ)Δ = Δ ,

which yields φ(x(k),u(k),w(k)) ∈ VΔ ⊆X. This in turn ensures feasibility of (11a),
while (11b) is feasible by definition of the CLF V (·), which concludes the proof. �

Remark 3. The result of Theorem 4 holds for all inputs u(k) for which Problem 2
is feasible. To select on-line one particular control input from the set π(x(k)) and
to improve closed-loop performance (in terms of settling time) it is useful to also
penalize the state and the input. Let F : R

n → R+ and L : R
n ×R

m → R+ with
F(0) = L(0,0) = 0 be arbitrary nonlinear functions. For N ∈ Z≥1 let ū(k) :=
(ū(k), ū(k + 1), . . . , ū(k + N − 1)) ∈ UN and JRHC(x(k), ū(k)) := F(x̄(k + N)) +
∑N−1

i=0 L(x̄(k+ i), ū(k+ i)), where x̄(k+ i+1) := f (x̄(k+ i), ū(k+ i)) for i = 0,N− 1
and x̄(k) := x(k). Then one can add this cost to Problem 2, i.e. at time k ∈ Z+
measure the state x(k) and minimize JRHC(x(k), ū(k)) + J(λ1(k), . . . ,λE(k)) over
ū(k),λ1(k), . . . ,λE(k), subject to constraints (11) and x̄(k + i) ∈ X, i = 2,N. Ob-
serve that the optimum needs not to be attained at each sampling instant to achieve
ISS, which is appealing for practical reasons but also in the case of a possibly dis-
continuous value function. �



Self-optimizing Robust Nonlinear Model Predictive Control 35

Remark 4. Besides enhancing robustness, the constraints (11b)-(11c) also ensure
that Problem 2 recovers performance (in terms of settling time) when the state
of the closed-loop system approaches the origin. Loosely speaking, when x(k) ≈
0, solving Problem 2 will produce a control action u(k) ≈ 0 (because of con-
straint (11b) and the fact that the cost JRHC(·) + J(·) is minimized). This yields
V (φ(0,0,we))− λe(k) ≤ 0, e = 1,E, due to constraint (11c). Thus, solving Prob-
lem 2 with the above cost will not optimize each variable λe(k) below the corre-
sponding value V (φ(0,0,we)), e = 1,E, when the state reaches the equilibrium.
This property is desirable, since it is known from min-max MPC [11] that consid-
ering a worst case disturbance scenario leads to poor performance when the real
disturbance is small or vanishes. �

4.3 Decentralized Formulation

In this paragraph we give a brief outline of how the proposed self-optimizing MPC
algorithm can be implemented in a decentralized fashion. We consider a connected
directed graph G = (S ,E ) with a finite number of vertices S and a set of directed
edges E ⊆ {(i, j) ∈S ×S | i �= j}. A dynamical system is assigned to each vertex
i ∈S , with the dynamics governed by the following equation:

xi(k + 1) = φi(xi(k),ui(k),vi(xNi(k)),wi(k)), k ∈ Z+. (13)

In (13), xi ∈ Xi ⊂ Rni , ui ∈ Ui ⊂ Rmi are the state and the control input of the i-th
system, and wi ∈Wi ⊂ R

li is an exogenous disturbance input that directly affects
only the i-th system. With each directed edge ( j, i) ∈ E we associate a function
vi j : R

n j → Rni , which defines the interconnection signal vi j(x j(k)),k ∈ Z+, be-
tween system j and system i, i.e. vi j(·) characterizes how the states of system j
influence the dynamics of system i. The set Ni := { j | ( j, i) ∈ E } denotes the set of
direct neighbors (observe that j ∈Ni �⇒ i ∈N j) of the system i. For simplicity of
notation we use xNi(k) and vi(xNi(k)) to denote {x j(k)} j∈Ni and {vi j(x j(k))} j∈Ni ,
respectively. Both φi(·, ·, ·, ·) and vi j(·) are arbitrary nonlinear, possibly discontinu-
ous functions that satisfy φi(0,0,0,0) = 0, vi j(0) = 0 for all (i, j) ∈S ×Ni. For all
i ∈S we assume that Xi, Ui and Wi are compact sets that contain the origin in their
interior.

Assumption 1. The value of all interconnection signals vi j(x j(k)) is known at all
discrete-time instants k ∈ Z+ for any system i ∈S .

From a technical point of view, Assumption 1 is satisfied, e.g., if all interconnection
signals vi j(x j(k)) are directly measurable at all k ∈ Z+ or, if all directly neighboring
systems j ∈Ni are able to communicate their local measured state x j(k) to system
i ∈S . Consider next the following decentralized version of Problem 2, where the
notation and definitions employed so far are carried over mutatis mutandis.

Problem 3. For system i ∈S let α i
3 ∈K∞, Ji(·) and a CLF Vi(·) be given. At time

k ∈ Z+ measure the local state xi(k) and the interconnection signals vi(xNi(k)) and
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minimize the cost Ji(λ i
1(k), . . . ,λ

i
Ei

(k)) over ui(k),λ i
1(k), . . . ,λ

i
Ei

(k), subject to the
constraints

ui(k) ∈ U, λ i
e(k)≥ 0, φi(xi(k),ui(k),vi(xNi(k)),0) ∈ Xi ∼Wxi(k), (14a)

Vi(φi(xi(k),ui(k),vi(xNi(k)),0))−Vi(xi(k))+α i
3(‖xi(k)‖)≤ 0, (14b)

Vi(φi(xi(k),ui(k),vi(xNi(k)),w
e
i ))−Vi(xi(k))+α i

3(‖xi(k)‖)−λ i
e(k)≤ 0,

∀e = 1,Ei. (14c)

�

Let πi(xi(k),vi(xNi(k))) := {ui(k) ∈ R
mi | (14) holds} and let

xi(k +1) ∈φ cl
i (xi(k),πi(xi(k),vi(xNi

(k)),vi(xNi
(k)),wi(k))

:= {φi(xi(k),u,vi(xNi
(k)),wi(k)) | u ∈ πi(xi(k),vi(xNi

(k)))}

denote the difference inclusion corresponding to system (13) in “closed-loop” with
the set of feasible solutions obtained by solving Problem 3 at each k ∈ Z+.

Theorem 5. Let, α i
1,α

i
2,α

i
3 ∈K∞ of the form specified in Theorem 1, continuous

and convex CLFs Vi(·) and costs Ji(·) be given for all systems indexed by i ∈ S .
Suppose Assumption 1 holds and Problem 3 is feasible for each system i ∈S and
for all states xi in Xi and all corresponding vi(xNi). Then the interconnected dynam-
ically coupled nonlinear system described by the collection of difference inclusions

xi(k + 1) ∈ φ cl
i (xi(k),πi(xi(k),vi(xNi(k)),vi(xNi(k)),wi(k)), i ∈S , k ∈ Z+ (15)

is ISS(X1× . . .×XS, W1× . . .×WS).

The proof is omitted due to space limitations. Its central argument is that each con-
tinuous and convex CLF Vi(xi) is in fact Lipschitz continuous on Xi [12], which
makes ∑i∈S Vi(xi) =: V ({xi}i∈S ) a Lipschitz continuous CLF for the global inter-
connected system. The result then follows similarly to the proof of Theorem 2-(ii).
Theorem 5 guarantees a constant ISS gain for the global closed-loop system, while
the ISS gain of each closed-loop system i ∈S can still be optimized on-line.

Remark 5. Problem 3 defines a set of decoupled optimization problems, implying
that the computation of control actions can be performed in completely decen-
tralized fashion, i.e. with no communication among controllers (if each vi j(·) is
measurable at all k ∈ Z+). Inequality (14b) can be further significantly relaxed by
replacing the zero on the righthand side with an optimization variable τi(k) and
adding the coupling constraint ∑i∈S τi(k) ≤ 0 for all k ∈ Z+. Using the dual de-
composition method, see e.g. [13], it is then possible to devise a distributed control
scheme, which yields an optimized ISS-gain of the global interconnected system in
the sense that ∑i∈S Ji(·) is minimized. Further relaxations can be obtained by ask-
ing that the sum of τi(k) is non-positive over a finite horizon, rather than at each
time step. �
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4.4 Implementation Issues

In this section we briefly discuss the ingredients, which make it possible to imple-
ment Problem 2 (or its corresponding decentralized version Problem 3) as a single
linear or quadratic program. Firstly, we consider nonlinear systems of the form (4)
that are affine in control. Then it makes sense that there exist functions f1 : Rn →Rn

with f1(0) = 0 and f2 : Rn →Rn×m such that:

x(k + 1) = φ(x(k),u(k),w(k)) := f1(x(k))+ f2(x(k))u(k)+ g(x(k))w(k). (16)

Secondly, we restrict our attention to CLFs defined using the ∞-norm, i.e. V (x) :=
‖Px‖∞, where P ∈ Rp×n is a matrix (to be determined) with full-column rank. We
refer to [14] for techniques to compute CLFs based on norms.

Then, the first step is to show that the ISS inequalities (11b)-(11c) can be spec-
ified, without introducing conservatism, via a finite number of linear inequalities.
Since by definition ‖x‖∞ = maxi∈Z[1,n] |[x]i|, for a constraint ‖x‖∞ ≤ c with c > 0 to
be satisfied, it is necessary and sufficient to require that ±[x]i ≤ c for all i ∈ Z[1,n].
Therefore, as x(k) in (11) is the measured state, which is known at every k ∈ Z+, for
(11b)-(11c) to be satisfied it is necessary and sufficient to require that:

± [P( f1(x(k))+ f2(x(k))u(k))]i−V (x(k))+α3(‖x(k)‖) ≤ 0

± [P( f1(x(k))+ f2(x(k))u(k)+g(x(k))we)]i−V (x(k))+α3(‖x(k)‖)−λe(k)≤ 0,

∀i ∈ Z[1,p], e = 1,E ,

which yields 2p(E + 1) linear inequalities in the variables u(k),λ1(k), . . . ,λE(k).
If the sets X, U and Wx(k) are polyhedra, which is a reasonable assumption, then
clearly the inequalities in (11a) are also linear in u(k),λ1(k), . . . ,λE(k). Thus, a
solution to Problem 2, including minimization of the cost JRHC(·) + J(·) for any
N ∈ Z≥1, can be obtained by solving a nonlinear optimization problem subject to
linear constraints.

Following some straightforward manipulations [10], the optimization problem
to be solved on-line can be further simplified as follows. If the model is (i) piece-
wise affine or (ii) affine and the cost functions JRHC(·) and J(·) are defined us-
ing quadratic forms or infinity norms, then a solution to Problem 2 (with the cost
JRHC(·)+J(·)) can be obtained by solving (i) a single mixed integer quadratic or lin-
ear program (MIQP - MILP), or (ii) a single QP - LP, respectively, for any N ∈ Z≥1.
Alternatively, for N = 1 and quadratic or ∞-norm based costs, Problem 2 can be
formulated as a single QP or LP for any discrete-time nonlinear model that is affine
in the control variable and the disturbance input.

5 Illustrative Example

Consider the nonlinear system (13) with S = {1,2}, N1 = {2}, N2 = {1}, X1 =
X2 = {ξ ∈ R2 | ‖ξ‖∞ ≤ 5}, U1 = U2 = {ξ ∈ R | |ξ | ≤ 2} and W1 = W2 = {ξ ∈
R

2 | ‖ξ‖1 ≤ 0.2}. The dynamics are given by:
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φ1(x1,u1,v1(xN1
),w1) :=

[
1 0.7
0 1

]
x1 +

[
sin([x1]2)

0

]
+
[

0.245
0.7

]
u1 +

[
0

([x2]1)2

]
+w1, (17a)

φ2(x2,u2,v2(xN2
),w2) :=

[
1 0.5
0 1

]
x2 +

[
sin([x2]2)

0

]
+
[

0.125
0.5

]
u2 +

[
0

[x1]1

]
+w2. (17b)

The technique of [14] was used to compute the weights P1,P2 ∈ R2×2 of the
CLFs V1(x) = ‖P1x‖∞ and V2(x) = ‖P2x‖∞ for α1

3 (s) = α2
3 (s) := 0.01s and the

linearizations of (17a), (17b), respectively, around the origin, in closed-loop with
u1(k) := K1x1(k), u2(k) := K2x2(k), K1,K2 ∈ R2×1, yielding

P1 =
[

1.3204 0.6294
0.5629 2.0811

]
, K1 =

[−0.2071 −1.2731
]
,

P2 =
[

1.1356 0.5658
0.7675 2.1356

]
, K2 =

[−0.3077 −1.4701
]
.

Note that the control laws u1(k) = K1x(k) and u2(k) = K2x2(k) are only employed
off-line, to calculate the weight matrices P1,P2 and they are never used for control-
ling the system. To optimize robustness, 4 optimization variables λ i

1(k), . . . ,λ
i
4(k)

were introduced for each system, each one assigned to a vertex of the set Wi, i = 1,2,
respectively. The following cost functions were employed in the optimization prob-
lem, as specified in Remark 3: Ji

RHC(xi(k),ui(k)) := ‖Qi
1φi(xi,ui,vi(xNi),0)‖∞ +

‖Qixi(k)‖∞ + ‖Riui(k)‖∞, Ji(λ i
1(k), . . . ,λ

i
4(k)) := Γ i∑4

j=1 |λ i
j(k)|, where i = 1,2,

Q1
1 = Q2

1 = 4I2, Q1 = Q2 = 0.1I2, R1 = R2 = 0.4, Γ 1 = 1 and Γ 2 = 0.1. For each
system, the resulting linear program has 7 optimization variables and 42 constraints.
During the simulations, the worst case computational time required by the CPU
(Pentium 4, 3.2GHz, 1GB RAM) over 400 runs was 5 milliseconds, which shows
the potential for controlling networks of fast nonlinear systems. In the simulation
scenario we tested the closed-loop system response for x1(0) = [3, −1]�, x2(0) =
[1, −2]� and for the following disturbance scenarios: w1(k) = w2(k) = [0, 0]� for
k ∈ Z[0,40] (nominal stabilization), wi(k) takes random values in Wi, i = 1,2, for
k∈Z[41,80] (robustness to random inputs), w1(k) = w2(k) = [0, 0.1]� for k∈Z[81,120]

(robustness to constant inputs) and w1(k) = w2(k) = [0, 0]� for k ∈ Z[121,160] (to
show that asymptotic stability is recovered for zero inputs).

In Figure 1 the time history of the states, control input and the optimization
variables λ 1

1 (k) and λ 2
1 (k), assigned to w1

1 = w1
2 = [0, 0.2]�, are depicted for each

system. In the state trajectories plots, the dashed horizontal lines give an approx-
imation of the bounded region in which the system’s states remain despite distur-
bances, i.e. approximately within the interval [−0.2, 0.2]. In the input trajectory
plots the dashed line shows the input constraints. In all plots, the dashed vertical
lines delimit the time intervals during which one of the four disturbance scenarios
is active. One can observe that the feedback to disturbances is provided actively,
resulting in good robust performance, while state and input constraints are satisfied
at all times, despite the strong nonlinear coupling present. In the λ1 plot, one can
see that whenever the disturbance is acting on the system, or when the state is far
from the origin (in the first disturbance scenario), these variables act to optimize the
decrease of each Vi(·) and to counteract the influence of the interconnecting signal.
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Fig. 1 States, inputs and first optimization variable histories for each system

Whenever the equilibrium is reached, the optimization variables satisfy the con-
straint Vi(φi(0,0,we

i )) ≤ λ i
e(k), e = 1, . . . ,4, as explained in Remark 4. In Figure 1,

the λ1 plot, the values V1(φ1(0,0,w1
1)) = 0.2641 and V2(φ2(0,0,w1

2)) = 0.2271 are
depicted with dashed horizontal lines.

6 Conclusions

In this article we studied the design of robust MPC schemes with focus on adapting
the closed-loop ISS gain on-line, in a receding horizon fashion. Exploiting convex
CLFs and disturbance bounds, we were able to construct a finite dimensional opti-
mization problem that allows for the simultaneous on-line (i) computation of a con-
trol action that achieves ISS, and (ii) minimization of the ISS gain of the resulting
closed-loop system depending on the actual state trajectory. As a consequence, the
proposed robust nonlinear MPC algorithm is self-optimizing in terms of disturbance
attenuation. Solutions for establishing recursive feasibility and for decentralized im-
plementation have also been briefly presented. Furthermore, we indicated a design
recipe that can be used to implement the developed self-optimizing MPC scheme as
a single linear program, for nonlinear systems that are affine in the control variable
and the disturbance input. This brings the application to (networks of) fast nonlinear
systems within reach.
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Set Theoretic Methods in Model Predictive
Control

Saša V. Raković

Abstract. The main objective of this paper is to highlight the role of the set theo-
retic analysis in the model predictive control synthesis. In particular, the set theo-
retic analysis is invoked to: (i) indicate the fragility of the model predictive control
synthesis with respect to variations of the terminal constraint set and the terminal
cost function and (ii) discuss a simple, tube based, robust model predictive control
synthesis method for a class of nonlinear systems.

Keywords: Control Synthesis, Set Invariance, Tube Model Predictive Control.

1 Introduction

The contemporary research has recognized the need for an adequate mathematical
framework permitting the meaningful robust control synthesis for constrained con-
trol systems. An appropriate framework to address the corresponding robust control
synthesis problems is based on the utilization of the set theoretic analysis, see, for
instance, a partial list of pioneering contributions [1–4] and comprehensive mono-
graphs [5, 6] for a detailed overview. A set of alternative but complementary control
synthesis methods utilizing game–theoretic approaches is also studied [7, 8].

The robust model predictive control synthesis problem is one of the most impor-
tant and classical problems in model predictive control [9, 10]. The power of the set
theoretic analysis has been already utilized in the tube model predictive control syn-
thesis [11–15] and the characterization of the minimal invariant sets [16, 17]. The
main objective of this paper is to indicate a further role of the set theoretic analysis
in the model predictive control synthesis [9, 12, 18].
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Outline of the paper

Section 2 introduces systems under considerations and highlights the role of in-
formation available for the control synthesis. Section 3 collects some basic notions,
definitions and results relevant for the control synthesis under constraints and uncer-
tainty. Section 4 recalls basic results of the receding horizon control synthesis and
utilizes the set theoretic analysis to indicate fragility of the receding horizon control.
Section 5 proposes a simple, tube based, robust model predictive control synthesis
for a particular class of non–linear systems. Section 6 provides concluding remarks.

Nomenclature and Basic Definitions

The sets of non–negative, positive integers and non–negative real numbers are de-
noted, respectively, by N, N+ and R+, i.e. N := {0,1,2, . . .}, N+ := {1,2, . . .} and
R+ := {x ∈ R : x ≥ 0}. For q1,q2 ∈ N such that q1 < q2 we denote N[q1:q2] :=
{q1,q1 + 1, . . . ,q2− 1,q2}. For two sets X ⊂ Rn and Y ⊂ Rn, the Minkowski set
addition is defined by X⊕Y := {x + y : x ∈ X , y ∈Y} and the Minkowski set sub-
traction is X�Y := {z ∈ Rn : z⊕Y ⊆ X}. For a set X ⊂ Rn and a vector x ∈ Rn we
write x⊕X instead of {x}⊕X . A set X ⊂ Rn is a C set if it is compact, convex, and
contains the origin. A set X ⊂ Rn is a proper C set if it is a C set and the origin is in
its non–empty interior. A set X ⊆ Rn is a symmetric set (with respect to the origin
in Rn) if X = −X . We denote by |x|L norm of the vector x induced by a symmetric,
proper C set L. For sets X ⊂ Rn and Y ⊂ Rn, the Hausdorff semi–distance and the
Hausdorff distance of X and Y are, respectively, given by:

hL(X ,Y ) := inf
α
{α : X ⊆ Y ⊕αL, α ≥ 0} and

HL(X ,Y ) := max{hL(X ,Y ),hL(Y,X)},

where L is a given, symmetric, proper C set in Rn. Given a function f (·), f k(x), k ∈
N stands for its k-th iterate at the point x, i.e f k(x) = f ( f k−1(x)) = f ( f ( f k−2(x))) =
. . .. If f (·) is a set-valued function from, say, X into U , namely, its values are subsets
of U , then its graph is the set {(x,y) : x ∈ X , y ∈ f (x)}.

2 System Description and Role of Information

In the deterministic case, the variables inducing the dynamics are the state z∈Rn and
the control v ∈ Rm. The underlying dynamics in the deterministic case is discrete–
time and time–invariant and is generated by a mapping f̄ (·, ·) : Rn× Rm → Rn.
When the current state and control are, respectively, z and v, then:

z+ = f̄ (z,v) (1)

is the successor state. The system variables, i.e. the state z and the control v are
subject to hard constraints:

z ∈ Z and v ∈ V, (2)
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where sets Z and V are, respectively, subsets of Rn and Rm. Likewise, in the basic
uncertain model, the variables inducing the dynamics are the state x∈Rn, the control
u ∈ Rm and the disturbance w ∈ Rp. The considered dynamics is discrete–time and
time–invariant and is generated by a mapping f (·, ·, ·) : Rn×Rm×Rp → Rn. As in
the basic deterministic model, when the current state, control and disturbance are,
respectively, x, u and w, then:

x+ = f (x,u,w) (3)

is the successor state. The system variables, i.e. the state x, the control u and the
disturbance w are subject to hard constraints:

x ∈ X, u ∈U and w ∈W, (4)

where X, U and W are, respectively, subsets of Rn, Rm and Rp. In this paper we
invoke the following technical assumption:

Assumption 1. (i) The function f̄ (·, ·) : Rn×Rm→ Rn is continuous and sets Z and
V are compact. (ii) The function f (·, ·, ·) : Rn×Rm×Rp → Rn is continuous and
sets X, U and W are compact.

An additional ingredient playing a crucial role in the uncertain case is the one of the
information available for the control synthesis.

Interpretation 1 (Inf–Sup Type Information). At any time k when the decision
concerning the control input uk is taken, the state xk is known while the disturbance
wk is not known and can take arbitrary value wk ∈W.

Under Interpretation 1, at any time instance k, the feedback rules uk = uk(xk) are
allowed.

Interpretation 2 (Sup–Inf Type Information). At any time k when the decision
concerning the control input uk is taken, both the state xk and the disturbance wk ∈
W are known while future disturbances wk+i, i ∈ N+ are not known and can take
arbitrary values wk+i ∈W, i ∈ N+.

Clearly, under Interpretation 2 the feedback rules uk = uk(xk,wk) are also, in addi-
tion to the feedback rules uk = uk(xk), allowed at any time instance k.

3 Constrained Controllability

An important role of the set theoretic analysis in the control synthesis is the char-
acterization of controllability sets under constraints and uncertainty. A very simple,
natural and basic problem, in the control synthesis in the deterministic case, is:
Given a target set T ⊆ Z, characterize the set of all states z ∈ Z, say S, and all
control laws v(·) : S→ V such that for all z ∈ S and a control law v(·) it holds
that f̄ (z,v(z)) ∈ T. Obviously, similar questions can be posed, in a transparent way,
for both variants, i.e. inf–sup and sup–inf variants, of control synthesis in the un-
certain case. We indicate the mathematical formalism providing answers to these
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basic questions and obtained by a direct utilization of the set theoretic analysis. We
consider in the deterministic case, for a given, non–empty, set Z ⊆ Z, the preimage
mapping B̄ (·) and the set–valued control map V (·) given by:

B̄(Z) := {z : ∃v ∈ V such that f̄ (z,v) ∈ Z}∩Z and

∀z ∈ B̄(Z), V (z) := {v ∈V : f̄ (z,v) ∈ Z}. (5)

Similarly, for a given, non–empty, set X ⊆ X, under Interpretation 1, the inf–sup
preimage mapping Binf−sup (·) and the inf–sup set–valued control map Uinf−sup (·)
are given by:

Binf−sup(X) := {x : ∃u ∈ U such that ∀w ∈W, f (x,u,w) ∈ X}∩X and

∀x ∈Binf−sup(X), Uinf−sup(x) := {u ∈ U : ∀w ∈W, f (x,u,w) ∈ X}. (6)

Likewise, under Interpretation 2, the sup–inf preimage mapping Bsup−inf (·) and the
sup–inf set–valued control map Usup−inf (·, ·) are given by:

Bsup−inf(X) := {x : ∀w ∈W, ∃u ∈ U such that f (x,u,w) ∈ X}∩X and

∀(x,w) ∈Bsup−inf(X)×W, Usup−inf(x,w) := {u ∈ U : f (x,u,w) ∈ X}. (7)

Evidently, given a non–empty set Z ⊆ Z, the set of states that are one step control-
lable to Z is the set B̄(Z) and any control law v(·) : B̄(Z) → V ensuring that
the successor state f̄ (z,v(z)) is in the set Z is a selection of the set–valued con-
trol map V (·). Similarly, the set of states that are one step inf–sup controllable to
X is the set Binf−sup(X) and any control law u(·) : B̄(X)→ U ensuring that all
possible successor states f (x,u(x),w), w ∈W are in the set X is a selection of the
inf–sup set–valued control map Uinf−sup (·). Likewise, the set of states that are one
step sup–inf controllable to X is the set Ssup−inf = Bsup−inf(X) and any control law
u(·, ·) : B̄(X)×W → U ensuring that any successor state f (x,u(x,w),w) is in
the set X is a selection of the sup–inf set–valued control map Usup−inf (·, ·). If As-
sumption 1 (i) holds and a target set Z is compact, the set B̄(Z) and the graph of
the set–valued control map V (·) are compact when non–empty. Likewise, if As-
sumption 1 (ii) holds and a target set X is compact then the set Binf−sup(X) and
the graph of the inf–sup set–valued control map Uinf−sup (·) are compact when non–
empty and, similarly, the set Bsup−inf(X) and the graph of the sup–inf set–valued
control map Usup−inf (·, ·) are compact when non–empty. The semi–group property
of preimage mappings permits the characterization of the N–step, the N–step inf–
sup and the N–step sup–inf controllable sets and corresponding set–valued control
maps by dynamic programming procedures indicated next. Let N be an arbitrary in-
teger and let T be a given target set. The N–step controllable sets and corresponding
set–valued control maps are given in the deterministic case, for j ∈N[1:N], by:

Z j := B̄(Z j−1) and ∀z ∈Z j,

V j(z) := {v ∈V : f̄ (z,v) ∈Z j−1}, (8)
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with the boundary condition Z0 := T ⊆ Z. Similarly, the N–step inf–sup con-
trollable sets and corresponding inf–sup set–valued control maps are given, for
j ∈ N[1:N], by:

Xinf−sup j := Binf−sup(Xinf−sup j−1) and ∀x ∈Xinf−sup j,

Uinf−sup j(x) := {u ∈ U : ∀w ∈W, f (x,u,w) ∈Xinf−sup j−1}, (9)

with the boundary condition Xinf−sup0 := T ⊆ X. Likewise, the N–step sup–inf
controllable sets and corresponding sup–inf set–valued control maps are given, for
j ∈ N[1:N], by:

Xsup−inf j := Bsup−inf(Xsup−inf j−1) and ∀(x,w) ∈Xsup−inf j×W,

Usup−inf j(x,w) := {u ∈ U : f (x,u,w) ∈Xsup−inf j−1}, (10)

with the boundary condition Xsup−inf0 := T⊆X. If Assumption 1 holds and a target
set T is compact then: (i) the k–step controllable set Zk satisfies Zk = B̄k(T) and Zk

and the graph of the set–valued control map Vk (·) are compact when non–empty; (ii)
the k–step inf–sup controllable set Xinf−supk satisfies Xinf−supk = Bk

inf−sup(T) and
Xinf−supk and the graph of the inf–sup set–valued control map Uinf−supk (·) are com-
pact when non–empty; and (iii) the k–step sup–inf controllable set Xsup−infk satis-
fies Xsup−infk = Bk

sup−inf(T) and Xsup−infk and the graph of the sup–inf set–valued
control map Usup−infk (·, ·) are compact when non–empty. It is well known that the
non–emptiness of the N–step, the N–step inf–sup and the N–step sup–inf control-
lable sets represents, respectively, necessary and sufficient conditions for solvability
of the N–step, the N–step inf–sup and the N–step sup–inf controllability to a target
set control problems [2, 4–6]. Likewise, the afore mentioned non–emptiness plays
a crucial role in the solvability of the finite horizon (of length N) optimal and ro-
bust (inf–sup and sup–inf) optimal control problems in the presence of terminal set
constraints (as is the case in the receding horizon control [9]).

A further role of preimage mappings is also evident in set invariance [5, 6]:

Definition 1. A set Z is a control invariant set for the system z+ = f̄ (z,v) and con-
straints set (Z,V) if and only if Z ⊆ B̄(Z).

A set X is an inf–sup control invariant set for the system x+ = f (x,u,w) and
constraints set (X,U,W) if and only if X ⊆Binf−sup(X).

A set X is a sup–inf control invariant set for the system x+ = f (x,u,w) and con-
straints set (X,U,W) if and only if X ⊆Bsup−inf(X).

A more subtle issue is related to properties of fixed points of preimage mappings.
The fixed point set equations of preimage mappings take the form:

X = B̄(X), X = Binf−sup(X) and X = Bsup−inf(X), (11)

where the unknown, in any of the three cases, is the set X . It is known [5, 6] that,
under Assumption 1, special fixed points of preimage mappings are the maximal
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control invariant set Ω̄∞, the maximal inf–sup control invariant set Ω inf−sup
∞ and the

maximal sup–inf control invariant set Ω sup−inf
∞ given, respectively, by:

Ω̄∞ =
∞⋂

k=0

B̄k(Z), Ω inf−sup
∞ =

∞⋂
k=0

Bk
inf−sup(X), and Ω sup−inf

∞ =
∞⋂

k=0

Bk
sup−inf(X).

Under Assumption 1, sets Ω̄∞, Ω inf−sup
∞ and Ω sup−inf

∞ are compact, when non–empty,
and are, in fact, unique maximal (with respect to set inclusion) fixed points of cor-
responding preimage mappings B̄ (·), Binf−sup (·) and Bsup−inf (·).

4 Fragility of Receding Horizon Control

We indicate fragility of the receding horizon control by utilizing the set theoretic
analysis and exploiting the fact that fixed points of preimage mappings are, in gen-
eral, non–unique. Given an integer N ∈ N let vN := {v0,v1, . . . ,vN−1} denote the
control sequence of length N, let also φ(i,z,vN) denote the solution of (1) at time
i ∈ N[0:N] when the initial state at time 0 is z and the control sequence is vN . The
cost function VN (·, ·) : Z×VN → R+ is specified by:

VN(z,vN) :=
N−1

∑
i=0

�(φ(i;z,vN),vi)+Vf (φ(N;z,vN), (12)

where functions �(·, ·) : Z×V → R+ and Vf (·) : Z f → R+ are the path and
terminal cost and Z f ⊆ Z is the terminal constraint set. Let also

VN(z) := {vN ∈V
N : ∀i ∈ N[0,N−1], (φ(i;z,vN),vi) ∈ Z×V and

φ(N;z,vN) ∈ Z f }, (13)

denote the set of admissible control sequences at an initial condition z ∈ Z. We
invoke usual assumptions employed in the model predictive control [9]:

Assumption 2. (i) The function f̄ (·, ·) satisfies 0 = f̄ (0,0). (ii) The terminal con-
straint set Z f ⊆ Z is a compact set and (0,0) ∈ Z f ×V. (iii) The path and termi-
nal cost functions �(·, ·) : Z×V → R+ and Vf (·) : Z f → R+ are continuous,
�(0,0) = 0 and Vf (0) = 0 and there exist positive scalars c1,c2,c3 and c4 such that
for all (z,v) ∈ Z×V it holds that c1|z|2 ≤ �(z,v)≤ c2 and for all x∈ Z f it holds that
c3|z|2 ≤Vf (z)≤ c4|z|2 (iv) There exists a control law κ f (·) : Z f → V such that for
all z ∈ Z f it holds that f̄ (z,κ f (z)) ∈ Z f and Vf ( f̄ (z,κ f (z)))+ �(z,κ f (z))≤Vf (z).

Given an integer N ∈ N, we consider the optimal control problem PN(z):

PN(z) : V ∗N(z) := min
vN
{VN(z,vN) : vN ∈ VN(z)}

v∗N(z) := argmin
vN
{VN(z,vN) : vN ∈ VN(z)}. (14)
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In the model predictive control, the optimal control problem PN(z) is solved on–
line at the state z, encountered in the process, and the optimizing control sequence
v∗N(z) = {v∗0(z),v∗1(z), . . . ,v∗N−1(z)} is utilized to obtain the model predictive control
law by applying its first term v∗0(z) (or its selection when v∗N(z) is set–valued) to
the system (1). The domain of the value function V ∗N (·) and the optimizing control
sequence v∗N (·) is given by:

ZMPCN := {z : VN(z) �= /0}. (15)

At the conceptual level, in the deterministic case, the model predictive control law
is an on–line implementation of the receding horizon control law; The explicit form
of the receding horizon control law and the value function can be obtained by
solving the optimal control problem PN(z) utilizing parametric mathematical pro-
gramming techniques [19] or by employing parametric mathematical programming
in conjunction with the standard dynamic programming procedure given, for each
j ∈ N[1:N], by:

Z j := B̄(Z j−1), ∀z ∈Z j, V j(z) := {v ∈ V : f̄ (z,v) ∈Z j−1},
∀z ∈Z j, V ∗j (z) := min

v
{�(z,v)+V ∗j−1( f̄ (z,v)) : v ∈ V j(z)},

∀z ∈Z j, κ∗j (z) := argmin
v
{�(z,v)+V ∗j−1( f̄ (z,v)) : v ∈ V j(z)}, with

Z0 := Z f and ∀z ∈Z0, V ∗0 (z) := Vf (z). (16)

Obviously, qualitative system theoretic properties of the model predictive control
and the receding horizon control are equivalent. Under Assumptions 1 and 2, the
origin is an exponentially stable attractor for the controlled system, possibly set–
valued system when κ∗N (·) is set–valued,:

∀z ∈ZN , z+ ∈ F̄(z) := { f̄ (z, ṽ) : ṽ ∈ κ∗N(z)}, (17)

with the basin of attraction being equal to a compact set ZN = B̄N(Z f ). The cor-
responding stability property is, in fact, a strong property, that is it holds for all
state trajectories {zk}∞k=0 satisfying (17). The first role of set theoretic analysis is
the characterization of the domain ZN of the value function V ∗N (·) and the receding
horizon control law κ∗N (·); The corresponding domain is the set B̄N(Z f ) which is,
under Assumptions 1 and 2, compact for any fixed integer N ∈ N and, additionally,
an invariant set (i.e. ∀z ∈ZN , F̄(z) ⊆ZN). Clearly, it is, then, of interest to under-
stand how is the domain of functions V ∗N (·) and κ∗N (·) affected by the variation of
the terminal constraint set Z f (and possibly variation of the terminal cost function
Vf (·)). A crucial point in understanding this important issue is closely related to
properties of the preimage mapping B̄ (·) and, in fact, non–uniqueness and attrac-
tivity properties of its fixed points. We now deliver a simple example illustrating the
fragility of the receding horizon control.
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Example 1. Consider the two dimensional system generated by a linear map:

f̄ (z,v) =
1
2

Iz+ Iv, so that z+ =
1
2

Iz+ Iv,

with constraints on system variables z ∈ R2 and v ∈ R2:

Z = [−4,4]× [−2l,2l] and V = [−1,1]×{0}with l ∈N.

The maximal control invariant set is, clearly, the set Z as:

Z = B̄(Z) and,consequently, Z = B̄N(Z) for any integer N ∈N.

However, the set Z := [−4,4]×{0} is also a fixed point of the mapping B̄ (·):

Z = B̄(Z) and,consequently, Z = B̄N(Z) for any integer N ∈N.

A moment of reflection reveals that for any compact set Y such that 0 ∈ Y ⊆ Z:

[−2,2]×{0}⊆ B̄(Y )⊆ [−4,4]×{0} and B̄(Y )⊆ B̄k+1(Y ) = [−4,4]×{0},

for any integer k ∈ N+. A further examination shows that for any compact set X
such that {0}× [−2ε,2ε] = X ⊆ Z (with ε > 0 arbitrarily small) we have:

X ⊆ [−2,2]× [−4ε,4ε]∩Z = B̄(X)⊆ [−4,4]× [−4ε,4ε]∩Z,

∀k ∈ N+, B̄k(X)⊆ B̄k+1(X) = [−4,4]× [−2k+2ε,2k+2ε]∩Z, and

for all k ∈ N such that k ≥ 2 and 2k+1ε ≥ 2l, B̄k(X) = Z.

A variant of the example relevant to the receding horizon control follows. Pick an
integer N ∈N and consider the receding horizon control synthesis problem with the
following ingredients. The path cost function is:

�(z,v) = z′Qz+ v′Rv with Q =
14
16

I and R = I,

The terminal cost function is the unconstrained infinite horizon value function:

Vf (z) = z′Iz.

The corresponding unconstrained infinite horizon optimal control law is:

κ f (z) =−1
4

Iz

and the terminal constraint set Z f is the maximal positively invariant set for the
system z+ = 1

4 Iz subject to constraints z ∈ Z and 1
4 Iz ∈ V which turns out to be

the set Z = [−4,4]×{0}. All assumptions (our Assumptions 1 and 2) commonly
employed in the model predictive control literature [9] are satisfied. Unfortunately,
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the set Z f = Z = [−4,4]×{0} is a fixed point of the preimage mapping B̄ (·) so
that Z f = B̄N(Z f ) for any integer N. In turn, regardless of the choice of the horizon
length N ∈ N, the receding horizon control law κ∗N (·) and the corresponding value
function V ∗N (·) are defined only over the set ZN = B̄N(Z f ) = Z f = Z, which is a
compact, zero measure, subset of the maximal control invariant set Z. The exact
constrained infinite horizon control value function and control law are given by:

∀z ∈ Z, V ∗∞(z) = z′
(

1 0
0 14

12

)
z, and κ∗∞(z) =

(− 1
4 0

0 0

)
z.

In fact, in our example, the following, fixed–point type, relations hold true:

Z = B̄(Z), ∀z ∈ Z, V∞(z) = {v ∈ V : f̄ (z,v) ∈ Z} �= /0,

∀z ∈ Z, V ∗∞(z) = min
v
{�(z,v)+V ∗∞( f̄ (z,v)) : v ∈ V∞(z)},

∀z ∈ Z, κ∗∞(z) = argmin
v
{�(z,v)+V ∗∞( f̄ (z,v)) : v ∈ V∞(z)}.

Choosing the terminal constraint set Z f = [−4,4]× [−2ε,2ε]⊆ Z, with ε > 0, and
the terminal cost function Vf (·) =V ∗∞ (·) leads (for a sufficiently large horizon length
N, for example for N ∈ N such that 2N+1ε ≥ 2l) to the receding horizon control
law κ∗N (·) and the value function V ∗N (·) identically equal over the whole set Z to
the infinite horizon control law κ∗∞ (·) and the infinite horizon value function V ∗∞ (·).
Hence an ε > 0 variation of the ingredients (the set Z f and the functionVf (·)) for the
receding horizon control synthesis results in a discontinuous change of domains of
the corresponding receding horizon control law κ∗N (·) and the corresponding value
function V ∗N (·) (notice that the Hausdorff distance between sets Z = [−4,4]×{0}
and Z = [−4,4]× [−2l,2l ] can be made as large as we please by setting l large
enough).

Conclusion 1. Standard assumptions employed in the model predictive control [9]
(summarized by Assumptions 1 and 2) are not, in the general case, sufficient as-
sumptions to ensure convergence (as N → ∞) of the receding horizon control law
κ∗N (·), the value function V ∗N (·) and the corresponding domain ZN to the infinite
horizon control law κ∗∞ (·), the value function V ∗∞ (·) and the corresponding domain
denoted Z∞. Furthermore, an ε > 0 variation of the terminal constraint set Z f and
the terminal cost function Vf (·), such that the perturbed data satisfy usual assump-
tions can result, in general case, in the discontinuous change of the domain ZN of
the receding horizon control law κ∗N (·) and the corresponding value function V ∗N (·);
Hence the receding horizon control synthesis is fragile, even in the linear–polytopic
case, with respect to feasible perturbations of the terminal constraint set Z f and the
terminal cost function Vf (·).

5 Simple Tube Model Predictive Control

The potential structure of the underlying mapping f (·, ·, ·) generating the dynamics
is beneficial for the simplified inf–sup tube model predictive control synthesis, as
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illustrated in [11–14] for special classes of discrete time systems (including linear,
piecewise affine and some classes of nonlinear systems). Ideas employed in [11–
14] are, now, demonstrated by considering a class of non–linear systems (that has
interesting structure and has not been treated in [11–15]) for which:

f (x,u,w) = g(x)+ Bu + w so that x+ = g(x)+ Bu + w. (18)

With the uncertain system (18) we associate a nominal system generated by:

f̄ (z,v) = g(z)+ Bv so that z+ = g(z)+ Bv, (19)

and work in this subsection under the following simplifying assumption:

Assumption 3. There exists a function θ (·, ·) : Rn×Rn → Rm such that:
(i) for all x and z, |g(x)−g(z)+ Bθ (x,z)|L ≤ λ |x− z|L for some λ ∈ [0,1); (ii) for
all x and z such that |x− z|L ≤ γ , where γ := (1−λ )−1μ and μ := hL(W,{0}), it
holds that |θ (x,z)|M ≤ η; (iii) for all x ∈ γL and y ∈ γL, |g(x)+ Bθ (x,0)−g(y)−
Bθ (y,0)|L ≤ λ ∗|x− y|L for some λ ∗ ∈ [0,λ ]⊂ [0,1).

Since |g(x)+B(v+θ (x,z))+w−g(z)−Bv|L≤λ |x−z|L + |w|L by Assumption 3 (i),
and, since λ (1−λ )−1hL(W,{0})+hL(W,{0})= (1−λ )−1hL(W,{0}), the follow-
ing simple but useful fact is affirmative:

Lemma 1. Suppose Assumptions 3 (i) and 3 (ii) hold and consider a set X := z⊕ γL
where z ∈ Rn, γ := (1− λ )−1μ and μ := hL(W,{0}). Then for all x ∈ X and all
v ∈ Rm it holds that θ (x,z) ∈ ηM and g(x) + B(v + θ (x,z))⊕W ⊆ z+⊕ γL with
z+ = g(z)+ Bv.

Lemma 1 motivates the use of the parameterized inf–sup tube–control policy pair.
The parameterized tube Xinf−supN is the sequence of sets {Xinf−supk}N

k=0 where:

∀k ∈N[0:N], Xinf−supk := zk⊕ γL. (20)

The corresponding parameterized policy Πinf−supN is the sequence of control laws
{πinf−supk (·, ·)}N−1

k=0 where:

∀k ∈ N[0:N−1], ∀y ∈ Xinf−supk, πinf−supk(y,zk) := vk +θ (y,zk). (21)

To exploit fully Lemma 1 we need an additional and mild assumption:

Assumption 4. Sets Z := X� γL and V := U�ηM are non–empty and such that
(0,0) ∈ Z×V.

A direct argument exploiting mathematical induction and Lemma 1 yields:

Proposition 1. Suppose Assumptions 3 (i), 3 (ii) and Assumption 4 hold. Assume
also that sequences {zk}N

k=0 and {vk}N−1
k=0 are such that z0 ∈ Z and, for all k ∈

N[0:N−1], zk+1 = g(zk) + Bvk ∈ Z and vk ∈ V. Consider the parameterized tube–
control policy pair (Xinf−supN ,Πinf−supN) given by (20) and (21). Then Xinf−sup0 =
z0⊕ γL⊆ Z⊕ γL⊆ X and for all k ∈ N[0:N−1] it holds that:
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∀y ∈ Xinf−supk, πinf−supk(y,zk) = vk +θ (y,zk) ∈ V⊕ηM ⊆ U,

Xinf−supk+1 = zk+1⊕ γL⊆ Z⊕ γL⊆ X, and ,

∀y ∈ Xinf−supk, g(y)+ Bπinf−supk(y,zk)⊕W⊆ zk+1⊕ γL = Xinf−supk+1.

We now provide a more general result under an additional assumption and utilize it
in conjunction with Proposition 1 for the tube model predictive control.

Assumption 5. There exists a compact set ZN ⊆ Z with 0 ∈ ZN and functions
κ∗N (·) : ZN →V with κ∗N(0) = 0 and V ∗N (·) : ZN → R+ with V ∗N(0) = 0 such that:
(i) For all z ∈ZN it holds that z+ = g(z)+Bκ∗N(z) ∈ZN; (ii) The origin is exponen-
tially stable for the controlled system z+ = g(z)+Bκ∗N(z) with the basin of attraction
ZN, i.e. all sequences {zk}∞k=0 with arbitrary z0 ∈ZN and zk+1 = g(zk)+ Bκ∗N(zk)
satisfy |zk|L ≤ αkβ |z0|L for some α ∈ [0,1) and β ∈ [0,∞); (iii) The function V ∗N (·)
is lower semi–continuous over the set ZN, continuous at the origin and it induces
the property assumed above in (ii).

For all x ∈ZN⊕ γL let Z (x) := {z ∈ZN : (x− z) ∈ γL} and define:

∀x ∈ZN ⊕ γL, V 0
N(x) := min

z
{V ∗N(z) : z ∈Z (x)}, and

∀x ∈ZN ⊕ γL, z0(x) := argmin
z
{V ∗N(z) : z ∈Z (x)}. (22)

We consider the feedback control law and the corresponding induced controlled
uncertain system given by:

∀x ∈ZN ⊕ γL, κ0
N(x) := κ∗N(z0(x))+θ (x,z0(x)) and

∀x ∈ZN ⊕ γL, x+ ∈ F(x) := {g(x)+ Bκ0
N(x)+ w : w ∈W}, (23)

A straight–forward utilization of Lemma 1 and construction above yields:

Theorem 1. Suppose Assumptions 1, 3 (i), 3 (ii), 4 and 5 hold. Then: (i) for all
x ∈ ZN ⊕ γL it holds that Z (x) �= /0 and for any x ∈ ZN ⊕ γL there exists at least
one z ∈Z (x) such that V ∗N(z) = V 0

N(x); (ii) for all x ∈ z⊕ γL with arbitrary z ∈ZN

it holds that V 0
N(x) = V ∗N(z0(x))≤V ∗N(z); (iii) for all x ∈ γL it holds that V 0

N(x) = 0,
z0(x) = 0, κ0

N(x) = θ (x,0) and g(x)+Bκ0
N(x)⊕W⊆ γL; (iv) For all state sequences

{xk}∞k=0 with arbitrary x0 ∈ZN⊕ γL and generated by (23) it holds that, for all k,:

xk ∈ z0(xk)⊕ γL⊆ZN ⊕ γL⊆ X,

κ0
N(xk) = κ∗N(z0(xk))+θ (xk,z

0(xk)) ∈ V⊕ηM ⊆ U,

V 0
N(xk+1) = V ∗N(z0(xk+1))≤V ∗N(g(z0(xk))+ Bκ∗N(z0(xk))),

hL(z0(xk)⊕ γL,γL)≤ αkβ |z0(x0)|L and hL({xk},γL)≤ αkβ |z0(x0)|L,

for some scalars α ∈ [0,1) and β ∈ [0,∞).

Under Assumptions 1 and 3 a direct application of results in [16, Section 4] yields
that the mapping F̃(X) := {g(x)+ Bθ (x,0)+ w : x ∈ X ,w ∈W} is a contraction
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on the space of compact subsets of γL (note that Assumption 3 implies F̃(γL)⊆ γL)
and it admits the unique fixed point, namely there exists a compact subset O of γL
such that O = F̃(O) and iterates F̃k+1(γL) ⊆ F̃k(γL) converge, with respect to the
Hausdorff distance, exponentially fast to the set O as k→ ∞. Hence, in addition to
assertions of Theorem 1, we have:

Corollary 1. Suppose Assumptions 1, 3, 4 and 5 hold. Then there exists a compact
subset O of γL such that {g(x)+ Bκ0

N(x)+ w : x ∈ O,w ∈W} = O where κ0
N (·)

is given by (23). Furthermore, for all state sequences {xk}∞k=0 with arbitrary x0 ∈
ZN ⊕ γL and generated by (23) it holds that, for all k, hL({xk},O)≤ α̃kβ̃ |z0(x0)|L
for some scalars α̃ ∈ [0,1) and β̃ ∈ [0,∞).

It should be clear that the set ZN and functions κ∗N (·) : ZN → V and V ∗N (·) :
ZN → R+ appearing in Assumption 5 and utilized in (22) and (23), Theorem 1 and
Corollary 1 can be obtained implicitly, under Assumptions 1, 4 and 2 by the stan-
dard model predictive control synthesis considered in Section 4 (namely, functions
κ∗N (·) and V ∗N (·) can be computed implicitly by solving PN(z), specified in (14), on–
line and the set ZN is given, implicitly, by (15) or alternatively by ZN = B̄N(Z f )
where Z f ⊆ Z is the corresponding terminal constraint set utilized in (14)). Utiliz-
ing Proposition 1 and the implicit representation of the set ZN , given in (15), and
functions κ∗N (·) and V ∗N (·), obtained from (14), we provide a formulation of an op-
timal control problem that when solved on–line provides the implementation of the
parameterized tube receding horizon control law (23). Given an integer N ∈ N, the
corresponding parameterized tube optimal control problem PtubeN(x) is:

PtubeN(x) : V 0
N(x) := min

(z,vN)
{VN(z,vN) : vN ∈VN(z),(x− z) ∈ γL}

(z,vN)0(x) := arg min
(z,vN)

{VN(z,vN) : vN ∈ VN(z),(x− z) ∈ γL}.

Note that the tube model predictive control problem PtubeN(x) is marginally more
complex than the conventional model predictive control problem PN(z), specified
in (14), as it includes z as an additional decision variable and has an additional
constraint (x− z) ∈ γL which, by construction, can be satisfied for all x ∈ZN⊕ γL.
The control applied to the system x+ = g(x)+Bu+w, w ∈W at the state x ∈ZN⊕
γL, encountered in the process, is given by:

κ0
N(x) = v0

0(x)+θ (x,z0(x));

It is, in fact, the on–line implicit implementation of the feedback utilized in (23)
and, hence, it ensures, under Assumptions 1, 3, 4 and 2, that properties established
in Theorem 1 and Corollary 1 hold for the controlled uncertain system given by
∀x ∈ZN ⊕ γL, x+ ∈ {g(x)+ B(v0

0(x)+θ (x,z0(x)))+ w : w ∈W}.
Remark 1. All results established above are applicable to the sup–inf case with di-
rect modifications. One of many possible and simple synthesis methods for the
sup–inf case would require only changes in Assumption 3 (i.e. the use of func-
tion θ (·, ·, ·) rather than θ (·, ·) and direct modifications of remaining parts of
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Assumption 3) and the utilization of the parameterized sup–inf tube–control pol-
icy pair (Xsup−infN ,Πsup−infN) where, as in (20) and (21), for any k, we employ
Xsup−infk := zk⊕ γL and for any (y, w̃) ∈ Xsup−infk×W, we consider parameterized
control laws πsup−infk(y, w̃,zk) := vk +θ (y, w̃,zk).

6 Concluding Remarks

We highlighted the role of the set theoretic analysis in the model predictive control
synthesis and suggested that it provides qualitative insights that are beneficial for the
receding horizon control synthesis. We indicated the fragility of the model predictive
control and proposed a simple tube model predictive control synthesis method for a
particular class of non–linear systems.

Acknowledgements. The author is grateful to E. Crück, S. Olaru and H. Benlaoukli for
research interactions leading to an ongoing, collaborative, research project on the fragility of
the receding horizon control.
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8. Başar, T., Olsder, J.G.: Dynamic noncooperative game theory. Academic Press, New

York (1995)
9. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained Model Predictive

Control: Stability and Optimality. Automatica 36(6), 789–814 (2000)
10. Magni, L., De Nicolao, G., Scattolini, R., Allgöwer, F.: Robust Model predictive Con-
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Adaptive Robust MPC: A
Minimally-Conservative Approach

Darryl DeHaan, Martin Guay, and Veronica Adetola

Abstract. Although there is great motivation for adaptive approaches to nonlinear
model prediction control, few results to date can guarantee feasible adaptive stabi-
lization in the presence of state or input constraints. By adapting a set-valued mea-
sure of the parametric uncertainty within the framework of robust nonlinear-MPC,
the results of this paper establish such constrained adaptive stability. Furthermore,
it is shown that the ability to account for future adaptation has multiple benefits,
including both the ability to guarantee an optimal notion of excitation in the system
without requiring dither injection, as well as the ability to incorporate substantially
less conservative designs of the terminal penalty.

Keywords: Model Predictive Control, Adaptive Control, Robust Control, Nonlin-
ear Systems.

1 Introduction

Model predictive control (MPC) has rapidly emerged as the control method of
choice for systems involving constraints on the system states and inputs. Despite
its enormous industrial success, in particular within the process industries, the issue
of prediction error due to model uncertainty remains a serious concern for many
applications.

From a theoretical perspective, the most well established framework for ad-
dressing model uncertainty in MPC is that of a min-max robust MPC formulation
(see [10]). Although this approach suffers a significant computational burden, it
offers the least conservative control with a guarantee of stability in the presence
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of significant disturbance. Of particular relevance is “feedback-MPC” (see [12],
amongst others), in which the optimization solves for the optimal feedback pol-
icy rather than an open-loop input trajectory. By accounting for the effects of future
feedback decisions on disturbance attenuation, conservativeness is significantly re-
duced. However, a significant downside to robust control approaches in general lies
in that treating static model uncertainties as an exogenous disturbance is inevitably
conservative.

Classically, a second framework for addressing model uncertainty is that of adap-
tive control. Applicable for systems with unknown constant, or slowly time-varying,
parameters, a nominal parameter estimate is generally adapted online until it con-
verges to the true system model. Unfortunately, incorporating adaptive control into
an MPC framework has, to date, met with only limited success. For example, the ap-
proach in [9] imposes an excitation condition on the prediction trajectories, showing
that under ideal circumstances, the parameter estimator will converge in some finite
time Tθ , after which the controller becomes stabilizing. However, while t < Tθ the
prediction error may result in poor performance, including violation of state con-
straints. The approach in [1] uses a global ISS-CLF to limit the impact of such
prediction errors, with the obvious downside being the dearth of design approaches
to construct such a CLF, in particular in the presence of constraints.

This work takes a very different perspective on the role of adaptation in MPC.
Rather than adapting a nominal estimate θ̂ ∈ �p of the uncertain parameter θ ,
instead the uncertainty set Θ̂ ⊆ �p (within which θ is known to lie) is gradually
contracted. This notion of adapting the uncertainty set has similarities to hierar-
chical approaches to adaptive control of nonlinearly-parameterized systems, such
as explored in [3]. It is also related to the unfalsified control approach [11], a data-
driven direct adaptive control approach based on the falsification of sets of controller
parameters. By imbedding this within a robust MPC framework, the controller com-
bines the strong guarantees of stability and feasibility of robust MPC with the ability
of an adaptive mechanism to improve performance over time. Extending the con-
cept of feedback-MPC, maximum performance is achieved by accounting for future
adaptation via optimizing over classes of adaptive feedbacks. An alternate perspec-
tive favoring tractability over performance is found in [5].

This paper is organized as follows. Section 2 gives the statement of the problem,
while Section 3 develops the proposed adaptive MPC framework. Some practical
considerations are discussed in Section 4, with a discussion of robustness in Section
5 followed by brief conclusions in Section 6.

1.1 Notation and Mathematical Preliminaries

For any quantity s ∈ �s, the notation s[a,b] denotes its continuous time trajectory
s(τ), τ ∈ [a,b], and ṡ(τ) denotes its forward directional derivative. For any set S⊆
�

s, denote

1) its interior int{S}, and closure cl{S}
2) its boundary ∂S � cl{S} \ int{S}
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3) its orthogonal distance function dS(s) � infs′∈S ‖s− s′‖
4) a closed ε-neighbourhood B(S,ε)�{s ∈�s |dS(s)≤ε}
5) an interior approximation

←−
B (S,ε)�{s ∈ S |d∂S(s)≥ε}

6) a (finite, closed, open) cover of S as any (finite) collection {Si} of (open, closed)
sets Si whose union contains S.

7) the maximal closed subcover cov{S} as the infinite collection {Si} containing
all possible closed subsets Si ⊆ S; i.e. cov{S} is a maximal “set of subsets”.

A function S : S→ (−∞,∞] is lower semi-continuous (L S -continuous) [4] at s if
it satisfies

liminf
s′→s

S(s′)≥ S(s) (1)

A continuous function α :�≥0→�≥0 is class K∞ if i) α(0)= 0, ii) α strictly in-
creases, and iii) lims↑∞α(s)=∞.

2 Problem Description

The problem of interest in this work is to achieve robust regulation, by means of
state-feedback, of the system state to some compact target set Σo

x ∈ �n. The state
and input trajectories are required to obey point-wise constraints (x,u) ∈ X×U,
and optimality is measured with respect to accumulation of an instantaneous cost
L(x,u)≥ 0.

It is assumed that the system dynamics are not fully known, with uncertainty
stemming from both unmodelled static nonlinearities as well as additional exoge-
nous inputs. As such, the dynamics are assume to be of the general form

ẋ = f (x,u,θ ,d(t)) (2)

where f is a locally Lipschitz function of state x ∈�n, control input u ∈�m, distur-
bance input d ∈�d , and constant parameters θ ∈�p. The entries of θ may represent
physically meaningful model parameters (whose values are not exactly known a-
priori), or alternatively they may represent parameters associated with a (finite) set
of universal basis functions. The disturbance d(t) represents the combined effects
of actual exogenous inputs, neglected system states, or static nonlinearities lying
outside the span of θ (such as truncation error resulting from a finite basis).

Assumption 1. θ ∈Θ o, a known compact subset of�p.

Assumption 2. d(·) ∈ D∞, the set of all right-continuous L ∞-bounded functions
d :�→D; i.e. composed of continuous subarcs d[a,b), and satisfying d(τ) ∈D , with
D ⊂�d a compact vectorspace, ∀τ ∈�.

Unlike much of the robust or adaptive MPC literature, we will not necessar-
ily assume exact knowledge of the system equilibrium manifold, or its stabi-
lizing equilibrium control map. Instead, we make the following (weaker) set of
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assumptions, which essentially imply that for any (unknown) θ , there must exist
a subset of Σo

x that can be rendered robustly invariant by adaptive feedback of the
form u = kΣ (x, θ̂ )∈Σo

u , using any θ̂ in a sufficiently small neighborhood of θ ∗.

Assumption 3. Letting Σo
u ⊆ U be a chosen compact set, assume L : X×U→�≥0

is continuous, L(Σo
x ,Σo

u )≡0, and L(x,u)≥ αL
(
dΣo

x×Σo
u
(x,u)

)
, αL ∈K∞.

Definition 1. For each Θ ⊆Θ o, let Σx(Θ) ⊆ Σo
x denote the maximal (strongly)

control-invariant subset for the differential inclusion ẋ∈ f (x,u,Θ ,D), using only
controls u ∈ Σo

u .

Assumption 4. ∃NΣ ≤∞, and a finite minimal cover ofΘ o (not necessarily unique),
denoted {Θ}Σ , such that

i. the collection {int{Θ}}Σ is an open cover for int{Θ o}.
ii. Θ ∈ {Θ}Σ =⇒ Σx(Θ) �= /0.

iii. {Θ}Σ contains NΣ elements, the smallest number for which any such collection
satisfies i. and ii.

3 Adaptive Robust Design Framework

3.1 Adaptation of Parametric Uncertainty Sets

Unlike standard approaches to adaptive control, this work does not involve explic-
itly generating a parameter estimator θ̂ for the unknown θ . Instead, the focus is
on adapting the parametric uncertainty set Θ o to gradually eliminate regions within
which it is guaranteed that θ does not lie. To this end, we define the infimal uncer-
tainty set

Z (Θ ,x[a,b],u[a,b]) � {θ ∈Θ | ẋ(τ) ∈ f (x(τ),u(τ),θ ,D), ∀τ∈ [a,b]} (3)

Since the computation of (3) online is impractical, we assume that the set Z is
approximated online using any estimatorΨ which satisfies the following

Criterion 1. Ψ(·, ·, ·) is designed such that for a≤b≤c

C1.1 Z ⊆Ψ
C1.2 Ψ(Θ , ·, ·)⊆Θ , and closed.
C1.3 Ψ(Θ1,x[a,b],u[a,b])⊆Ψ (Θ2,x[a,b],u[a,b]), Θ1 ⊆Θ2

C1.4 Ψ(Θ ,x[a,b],u[a,b])⊇Ψ(Θ ,x[a,c],u[a,c])
C1.5 Ψ(Θ ,x[a,c],u[a,c])≡Ψ (Ψ(Θ ,x[a,b],u[a,b]),x[b,c],u[b,c])

The set Ψ is an approximation of Z in two senses: first of all, both Θ o and Ψ
can be restricted to a particular class of finitely-parameterized sets (for example,
convex polytopes). Secondly, contrary to the definition of (3), Ψ can essentially
be computed by removing values from Θ o as they are determined to violate the
differential inclusion. As such, the search for infeasible values can be terminated at
any time without violating C1.
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The closed loop dynamics of (2) then take the form

ẋ =f (x,κmpc(x,Θ(t)),θ ,d(t)), x(t0) = x0 (4a)

Θ(t) =Ψ(Θ o,x[t0,t],u[t0,t]) (4b)

where κMPC(x,Θ) represents the MPC feedback policy, detailed in Section 3.2. The
(set-valued) controller state Θ could be generated differentially by an update law Θ̇
designed to gradually contract the set (satisfying C1). However, the given statement
of (4b) is more general, as it allows forΘ(t) to evolve discontinuously.

3.2 Feedback-MPC Framework

In the context of min-max robust MPC, it is well known (see [10]) that feedback-
MPC provides significantly less conservative performance than standard open-loop
MPC implementations, due to its ability to account for the effects of future feedback
decisions on disturbance attenuation. In the following, the same principle is applied
to also incorporate the effects of future parameter adaptation.

The receding horizon control law in (4) is defined as κmpc(x,Θ) � κ∗(0,x,Θ),
where κ∗ : [0, T ]×�n× cov{Θ o} → �

m is a minimizer for the following optimal
control problem:

J(x,Θ) � min
κ(·,·,·)

max
θ∈Θ (t)
d(·)∈D∞

∫ T

0
L(xp,up)dτ +W (xp

f ,Θ̂ f ) (5a)

s.t.∀τ ∈ [0,T ]
d

dτ xp = f (xp,up,θ ,d), xp(0) = x (5b)

Θ̂(τ) =Ψp(Θ(t),xp
[0,τ],u

p
[0,τ]) (5c)

xp(τ) ∈ X (5d)

up(τ) � κ(τ,xp(τ),Θ̂(τ)) ∈ U (5e)

xp
f � xp(T ) ∈ Xf (Θ̂ f ) (5f)

Θ̂ f �Ψf (Θ(t),xp
[0,T ],u

p
[0,T ]). (5g)

In the remainder, we will drop the explicit constraints (5d)-(5f) by extending the
domain of L and W as follows:

L(x,u) =

{
L(x,u) < ∞ (x,u) ∈ X×U

+∞ otherwise
(6a)

W (x,Θ) =

{
W (x,Θ) < ∞ x ∈ Xf (Θ)
+∞ otherwise

(6b)

The parameter identifiersΨp and Ψf are similar (possibly identical) to Ψ in (4b),
and must satisfy C1 in addition to:
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Criterion 2. For identical arguments, Z ⊆Ψ⊆Ψf ⊆Ψp.

There are two important characteristics which distinguish (5) from a standard (non-
adaptive) feedback-MPC approach. First of all, future evolution of Θ̂ in (5c) is fed
back into (5b),(5e). The benefits of this feedback are analogous to those of adding
state-feedback into the MPC calculation; the resulting cone of potential trajectories
xp(·) is narrowed, resulting in less conservative worst-case predictions. Similarly,
parameterizing W and Xf as functions of Θ̂ f in (5g) also acts to reduce the conser-
vativism of the cost. More importantly, accounting for Θ̂ f in W and Xf may allow
for a stabilizing terminal penalty to be constructed when otherwise no such function
exists, as will become apparent in later sections.

3.3 Generalized Terminal Conditions

To guide the selection of W (xf ,Θ̂ f ) and Xf (Θ̂ f ) in (5), it is important to outline
(sufficient) conditions under which (4)-(5) can guarantee stabilization to the target
Σo

x . A set of such conditions for robust MPC is outlined in [10], from which the
results of this section are extended.

For reasons that will become clear in Section 4.3, it will be useful to present
these conditions in a more general context in which W (·,Θ) is allowed to be L S -
continuous with respect to x, as may occur if W is generated by a switching mecha-
nism. This adds little additional complexity, since (5) is already discontinuous due
to constraints.

Criterion 3. The set-valued terminal constraint function Xf : cov{Θ o} → cov{X}
and terminal penalty function W : �n× cov{Θ o} → [0,+∞] are such that for each
Θ ∈ cov{Θ o}, there exists k f (·,Θ) : Xf → U satisfying

C3.1 Xf (Θ)�= /0⇒Σo
x ∩Xf (Θ)�= /0 and Xf (Θ)⊆X closed

C3.2 W (·,Θ) is L S -continuous w.r.t. x ∈�n

C3.3 k f (x,Θ) ∈ U, ∀x ∈ Xf (Θ).
C3.4 Xf (Θ) is strongly positive invariant with respect to the differential inclusion

ẋ∈ f (x,k f (x,Θ),Θ ,D).
C3.5 ∀x ∈Xf (Θ), and denoting F � f (x,k f (x,Θ),Θ ,D),

max
f∈F

⎛⎝L(x,k f (x,Θ))+ liminf
v→ f
δ↓0

(
W (x+δv,Θ )−W(x,Θ )

δ

)⎞⎠≤ 0

Criterion 4. For any Θ1,Θ2 ∈ cov{Θ o} s.t. Θ1 ⊆Θ2,

C4.1 Xf (Θ2)⊆ Xf (Θ1)
C4.2 W (x,Θ1)≤W (x,Θ2), ∀x ∈ Xf (Θ2)

Designing W and Xf as functions of Θ satisfying Criteria 3 and 4 may appear pro-
hibitively complex; however, the task is greatly simplified by noting that neither
criterion requires any notion of continuity of W or Xf with respect to Θ . A con-
structive design approach exploiting this fact is presented in Section 4.3.
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3.4 Closed-Loop Stability

Theorem 1 (Main result). Given system (2), target Σo
x , and penalty L satisfying

Assumptions 1-4, assume the functionsΨ ,Ψp,Ψf , W and Xf are designed to satisfy
Criteria 1-4. Furthermore, let X0 � X0(Θ o) ⊆ X denote the set of initial states,
with uncertainty Θ(t0) = Θ o, for which (5) has a solution. Then under (4), Σo

x is
feasibly asymptotically stabilized from any x0 ∈X0.

Proof

This proof will follow a direct method of establishing stability by directly
proving strict decrease of J(x(t),Θ(t)), ∀x �∈ Σo

x . Stability analysis involving
L S -continuous Lyapunov functions [4, Thm5.5] typically involves the prox-
imal subgradient ∂pJ (a generalization of ∇J), an ambiguous quantity in the
context of (4b). Instead, this proof will exploit an alternative framework [4,
Prop5.3] involving subderivates (generalized Dini-derivatives). Together, the
following two conditions can be shown sufficient to ensure decrease of J,
where F � f (x,κMPC(x,Θ(t)),Θ(t),D)

i. max
f∈F

−→
DJ(x,Θ)�max

f∈F
liminf

v→ f
δ↓0

J(x+δv,Θ (t+δ ))−J(x,Θ (t))
δ <0

ii. min
f∈F

←−
DJ(x,Θ)� min

f∈F
limsup

v→ f
δ↓0

J(x−δv,Θ (t−δ ))−J(x,Θ (t))
δ >0

i.e. J is decreasing on both open future and past neighborhoods of t, for all
t ∈�, where

−→
D J,

←−
D J ∈ [−∞,+∞].

To prove condition i., let xp, Lp, W p correspond to any worst-case minimizing
solution of J(x(t),Θ(t)), defined on τ ∈ [0,T ]. Additional notations: Θ̂ p

τ ≡
Θ̂ f (τ) (corresponding to xp solution); also, W p

τ (S) is interpreted W (xp(τ),S);
i.e. the set S need not equal Θ̂ f (τ). The maxliminf, dropped for clarity, is
everywhere implied.

max
f∈F

−→
D J(x,Θ)= 1

δ

[
J(x+δv,Θ(t+δ ))−∫ T

0 Lpdτ−W p
T (Θ̂ p

T)
]

≤ 1
δ

[
J(x+δv,Θ(t+δ ))−∫ δ0 Lpdτ−∫ T

δ Lpdτ−W p
T (Θ̂ p

T)
]

+
1
δ

(
W p

T (Θ̂ p
T)−W p

Tδ
(Θ̂ p

T)−δL(xp
T ,k f (x

p
T ,Θ̂ p

Tδ
))
)

(by C3.5; append k f segment on [T,Tδ ] onto xp)

≤ 1
δ

[
J(x+δv,Θ(t+δ ))−∫ Tδ

δ Lpdτ−W p
Tδ

(Θ̂ p
T )
]
−Lp|δ

≤ 1
δ

[
J(xp(δ ),Θ̂ p(δ ))−∫ Tδ

δ Lpdτ−W p
Tδ

(Θ̂ p
T )
]
−Lp|δ

≤−L(x,κMPC(x,Θ))
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The final inequalities are achieved by recognizing:

• the
∫

Lpdτ +W p term is a suboptimal cost on the interval [δ ,Tδ ], starting
from the point (xp(δ ),Θ̂p(δ ))

• by C2,Θ(t+δ ) �Ψ (Θ(t),x[0,δ ],u[0,δ ])⊆Ψp(Θ(t),x[0,δ ],u[0,δ ]), along any
locus connecting x and x + δv.

• the liminfv applies over all sequences {vk} → f , of which the sequence

{v(δk) = xp(δk)−x
δ } is a member.

• there exists an arbitrary perturbation of the sequence {v(δk)} satisfying
Ψp(Θ(t),x[0,δ ])
= Θ̂ p(δ ).

• the liminfv includes the limiting cost J(xp(δ ),Θ̂ p(δ )) of any such per-
turbation of {v(δk)}. This cost is optimal on [δ ,Tδ ], originating from
(xp(δ ),Θ̂p(δ )), and hence the bracketed expression is non-positive.

By analogous arguments, condition ii. follows from:

min
f∈F

←−
D J(x,Θ)

=max
f∈F

limsup
v→ f
δ↓0

1
δ

[∫ T−δ
−δ Lpdτ+W p

T−δ (Θ̂
p
T−δ)− J(x,Θ)

]
≥ 1

δ

[∫ T
0 Lpdτ+W p

T (Θ̂ p
T−δ)− J(x,Θ)

]
+Lp|−δ

≥ L(x,κMPC(x,Θ))

Given the above, and Assumption 3, it follows that J(t) is strictly decreas-
ing on x �∈ Σo

x , and non-increasing on x ∈ Σo
x , from which it follows that

limt→∞(x,Θ) must converge to an invariant subset of Σ0
x ×cov{Θ o}. Assump-

tion 1 guarantees that such an invariant subset exists, since it implies ∃ε∗ > 0
such that Σx(B(θ ∗,ε∗)) �= /0, with θ ∗ the unknown parameter in (2). Contin-
ued solvability of (5) as (x(t),Θ(t)) evolve follows by: 1) x(τ) �∈X0(Θ(τ))⇒
J(τ) = +∞, and 2) if x(t) ∈X0(Θ(t)) and x(t ′) �∈X0(Θ(t ′)), then (t ′ − t) ↓ 0
contradicts either condition i. at time t, or ii. at time t ′. �

4 Computation and Performance Issues

4.1 Excitation of the Closed-Loop Trajectories

Contrary to much of the adaptive control literature, including adaptive-MPC ap-
proaches such as [9], the result of Theorem 1 does not depend on any auxiliary
excitation signal, or require any assumptions regarding the persistency or quality of
excitation in the closed-loop behaviour.

Instead, the effects of injecting excitation into the input signal are predicted by
(5c) and (5g), and thus automatically accounted for in the optimization. In the case
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whereΨp≡Ψf ≡Ψ , then the controller generated by (5) will automatically inject the
exact type and amount of excitation to optimize the worst-case cost J(x,Θ); i.e. the
closed-loop behaviour (4) could be considered “optimally-exciting”. Unlike most
a-priori excitation signal design methods, excess actuation is not wasted in trying
to identify parameters which have little impact on the closed-loop performance (as
measured by J).

AsΨp andΨf deviate fromΨ , the convergence result of Theorem 1 remains valid.
However, in the limit as Ψp, Ψf approach identity maps, the optimization ceases to
account for any benefits of future identification, which means there ceases to be
any incentive for the optimal solution to contain additional excitation. The resulting
identification will converge more slowly, and result in more conservative control
behaviour with a smaller domain of attraction X0.

4.2 Extension to Open-Loop MPC

While the feedback-MPC framework in Section 3.2 is more general, the above re-
sults can also be extended to a more standard open-loop MPC framework. In fact,
open-loop MPC is just a special case of (5) in which the minimization is restricted
to “feedbacks” of the form κ(τ,x,Θ) � κol(τ,Θ), or even κol(τ) ≡ u(τ) (in which
case (5c) is omitted, but (5g) still retained). The stability result of Theorem 1 can
then be shown to hold as long as the horizon length T ∈ [0, Tmax] is added as a mini-
mization variable (without which Assumption 4.5 no longer ensures decrease of the
cost). However, in most cases the resulting domain X ol

0 will be significantly smaller
than the original X0, and the overall control much more conservative, albiet easier
to compute.

4.3 A Practical Design Approach for W and Xf

Proposition 1. Let {(W i,Xi
f )} denote a finitely-indexed collection of terminal func-

tion candidates, with indices i ∈ I , where each pair (W i,Xi
f ) satisfies Criteria 3

and 4. Then

W (x,Θ) � min
i∈I

{Wi(x,Θ)}, Xf (Θ) �
⋃

i∈I

{Xi
f (Θ)} (7)

satisfy Criteria 3 and 4.

Proof

The fact that C4 holds is a direct property of the union and min operations for
closed Xi

f , and the fact that the Θ -dependence of individual (W i,Xi
f ) satisfy

C4. For the purposes of C3, theΘ argument is a constant, and is omitted from
notation. Properties C3.1 and C3.2 follow directly by (7), the closure of X

i
f ,

and (1). Define

I f (x) = {i ∈I |x ∈ X
i
f and W (x) = W i(x)}
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Denoting F i � f (x,ki
f (x),Θ ,D), the following inequality holds for every i ∈

I f (x):

max
f i∈F i

liminf
v→ f i

δ↓0

W(x+δv)−W (x)
δ ≤ max

f i∈F i
liminf

v→ f i

δ↓0

W i(x+δv)−W(x)
δ

≤−L(x,ki
f (x))

It then follows that u = k f (x) � ki(x)
f (x) satisfies C3.5 for any arbitrary selec-

tion rule i(x) ∈I f (x) (from which C3.3 is obvious). Condition C3.4 follows
from continuity of the x(·) flows, and observing that by (6), C3.5 would be
violated at any point of departure from Xf . �

Using Proposition 1, it is clear that W (·, ·), Xf (·) can be constructed from a collec-
tion of pairs of the form

(
W i(x,Θ), X

i
f (Θ)

)
=

{(
W i(x), Xi

f

)
Θ ⊆Θ i

(+∞, /0) otherwise

Constructively, this could be achieved as follows:

1. Generate a finite collection {Θ i} of sets coveringΘ o

• The elements of the collection can, and should, be overlapping, nested, and
ranging in size.

• Categorize {Θ i} in a hierarchical (i.e. “tree”) structure such that
i. level 1 (i.e. the top) consists ofΘ o. (AssumingΘ o ∈ {Θ i} is w.l.o.g., since

W (·,Θ o)≡+∞ and Xf (Θ o) = /0 satisfy Criteria 3 and 4)
ii. every set in the l’th vertical level is nested inside one or more “parents” on

level l−1
iii. at every level, the “horizontal peers” coverΘ o.

2. For every set Θ j ∈ {Θ i}, calculate a robust CLF W j(·) ≡W j(·,Θ j), and ap-
proximate its domain of attraction X

j
f ≡X

j
f (Θ

j).

• Generally, W j(·,Θ j) is selected first, after which Xf (Θ j) is approximated as
either a maximal level set of W j(·,Θ j), or otherwise (e.g. via polytopes).

• Since the elements of {Θ i} need not be unique, one could actually define
multiple (W i,Xi

f ) pairs associated with the same Θ j.
• While certainly not an easy task, this is a standard robust-control calculation.

As such, there is a wealth of tools in the robust control and viability literatures
(see, for example [2]) to tackle this problem.

3. Calculate W (·,Θ) and Xf (Θ) online:

i. Given Θ , identify indices of all sets which are active: I ∗ = I ∗(Θ) �{
j |Θ ⊆Θ j

}
. Using the hierarchy, test only immediate children of active

parents.
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ii. Given x, search over the active indices to identify I ∗
f = I ∗

f (x,I ∗) � { j ∈
I ∗ |x ∈ X

j
f }. Define W (x,Θ) � min j∈I ∗W j(x) by testing indices in I ∗

f ,
setting W (x,Θ) = +∞ if I ∗

f = /0.

5 Robustness Issues

One could technically argue that if the disturbance model D in (2) encompassed all
possible sources of model uncertainty, then the issue of robustness is completely ad-
dressed by the min-max formulation of (5). In practice this is unrealistic, since it is
desirable to explicitly consider only significant disturbances (or exclude D entirely,
if Θ sufficiently encompasses dominant uncertainties). The lack of nominal robust-
ness to model error in constrained nonlinear MPC is a well documented problem,
as discussed in [7]. In particular, [8, 6] establish nominal robustness (for “perfect-
model”, discrete-time MPC) in part by implementing the constraint x ∈ X as a suc-
cession of strictly nested sets. We present here a modification to this approach, as
relevant to the current adaptive framework. Due to space restrictions, proof of results
in this section are omitted.

In the following, for any γ,ε ≥ 0 we denote

Z ε,γ (Θ ,x[a,b],u[a,b]) � {θ ∈Θ | B(ẋ,ε+γτa)∩ f (B(x,γτa),u,θ ,D) �= /0, ∀τ}

where τa � τ−a. We furthermore denote Z ε ≡Z ε,0, with analogous notations for
Ψ ,Ψf ,Ψp.

Claim. For any a<b<c, γ≥0, and ε≥ε ′ ≥0, let x′[a,c] be an arbitrary, continuous
perturbation of x[a,b] satisfying

i. ‖x′(τ)− x(τ)‖ ≤
{
γ(τ−a) τ ∈ [a,b]
γ(b−a) τ ∈ [b,c]

ii. ‖ẋ′(τ)− ẋ(τ)‖ ≤
{
ε− ε ′+ γ(τ−a) τ ∈ [a,b]
γ(b−a) τ ∈ [b,c]

Then, Z ε,γ satisfies

Z ε,γ
(
Z ε ′(Θ ,x′[a,b],u[a,b]),x

′
[b,c],u[b,c]

)
⊆Z ε,γ (Θ ,x[a,c],u[a,c]) (8)

Proposition 2. Assume that the following modifications are made to the design in
Section 3:

i. W (x,Θ) and Xf (Θ) are constructed as per Prop. 1, but with C3.2 strengthened
to require the individual W i(x,Θ) to be continuous w.r.t x ∈ Xi

f (Θ).
ii. For some εx > 0, (6) and (7) are redefined as:

L̃(τ,x,u) =

{
L(x,u) (x,u)∈←−B (X,εx

τ
T )×U

+∞ otherwise
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W̃ i(x,Θ) =

{
W i(x) x∈←−B (Xi

f (Θ),εx)
+∞ otherwise

iii. For some ε f > 0, C3.4 holds for every inner approximation
←−
B (Xi

f (Θ),ε ′x), ε ′x ∈
[0,εx], where positive invariance is with respect to ẋ∈B( f (x,ki

f (x,Θ),Θ ,D),ε f )
iv. Identifiers of the form Ψε,γ , Ψε,γ

f , Ψε,γ
p , each satisfying C1.1-4, C2, and the

statement of Claim 5, are implemented as follows

• For some ε ′ > 0,Ψε ′ replacesΨ in (4b)
• For some γ > 0 and ε > ε ′,Ψε,γ

p andΨε,γ
f replaceΨp in (5c) andΨf in (5g),

respectively.

Then for any compact subset X̄0 ⊆X0(Θ o), ∃c∗ = c∗(γ,εx,ε f ,ε,ε ′,X̄0) > 0 such
that, for all x0 ∈ X̄0 and disturbances ‖d2‖ ≤ c∗, the target Σo

x and actual dynamics

ẋ = f (x,κmpc(x,Θ(t)),θ ,d(t))+ d2(t), x(t0) = x0 (9a)

Θ(t) =Ψε ′(Θ o,x[t0,t],u[t0,t]) (9b)

are input-to-state stable (ISS); i.e. there exists αd ∈K such that x(t) will asymp-
totically converge to B(Σo

x ,αd(c∗)).

6 Conclusions

In this paper, we have demonstrated a new methodology for adaptive MPC, in which
the adverse effects of parameter identification error are explicitly minimized using
methods from robust MPC. As a result, it is possible to feasibly address both state
and input constraints within the adaptive framework. Another key advantage of this
approach is that the effects of future parameter estimation can be incorporated into
optimization problem, raising the potential to significantly reduce the conservative-
ness of the solutions, especially with respect to design of the terminal penalty.
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Birkhäuser, Boston (1991)

3. Cao, C., Annaswamy, A.: Parameter convergence in systems with a general nonlinear
parameterization using a hierarchical algorithm. In: Proc. American Control Conference,
pp. 376–381 (2002)

4. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control
Theory. Grad. Texts in Math, vol. 178. Springer, New York (1998)



Adaptive Robust MPC: A Minimally-Conservative Approach 67

5. DeHaan, D., Adetola, V., Guay, M.: Adaptive robust MPC: An eye towards compu-
tational simplicity. In: Proc. IEEE Conf. on Decision and Control (submitted, 2006),
http://chee.queensu.ca/˜dehaan/publications.html

6. Grimm, G., Messina, M., Tuna, S., Teel, A.: Nominally robust model predictive control
with state constraints. In: Proc. IEEE Conf. on Decision and Control, pp. 1413–1418
(2003)

7. Grimm, G., Messina, M., Tuna, S., Teel, A.: Examples when model predictive control is
non-robust. Automatica 40(10), 1729–1738 (2004)

8. Marruedo, D., Alamo, T., Camacho, E.: Input-to-state stable MPC for constrained
discrete-time nonlinear systems with bounded additive uncertainties. In: Proc. IEEE
Conf. on Decision and Control, pp. 4619–4624 (2002)

9. Mayne, D.Q., Michalska, H.: Adaptive receding horizon control for constrained nonlin-
ear systems. In: Proc. IEEE Conf. on Decision and Control, pp. 1286–1291 (1993)

10. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive
control: Stability and optimality. Automatica 36, 789–814 (2000)

11. Safonov, M., Tsao, T.: The unfalsified control concept and learning. IEEE Trans. Au-
tomat. Contr. 42(6), 843–847 (1997)

12. Scokaert, P.O.M., Mayne, D.Q.: Min-max feedback model predictive control for con-
strained linear systems. IEEE Trans. Automat. Contr. 43(8), 1136–1142 (1998)

http://chee.queensu.ca/~dehaan/publications.html


Enlarging the Terminal Region of NMPC with
Parameter-Dependent Terminal Control Law

Shuyou Yu, Hong Chen, Christoph Böhm, and Frank Allgöwer

Abstract. Nominal stability of a quasi-infinite horizon nonlinear model predictive
control (QIH-NMPC) scheme is obtained by an appropriate choice of the termi-
nal region and the terminal penalty term. This paper presents a new method to en-
large the terminal region, and therefore the domain of attraction of the QIH-NMPC
scheme. The proposed method applies a parameter-dependent terminal controller.
The problem of maximizing the terminal region is formulated as a convex optimiza-
tion problem based on linear matrix inequalities. Compared to existing methods us-
ing a linear time-invariant terminal controller, the presented approach may enlarge
the terminal region significantly. This is confirmed via simulations of an example
system.

Keywords: Nonlinear Model predictive control; Terminal invariant sets; Linear dif-
ferential inclusion; Linear matrix inequality.

1 Introduction

Nonlinear model predictive control (NMPC) is a control technique capable of deal-
ing with multivariable constrained control problems. One of the main stability re-
sults for NMPC is the quasi-infinite horizon approach [1, 2]. A remainding issue
for QIH-NMPC is how to enlarge the terminal region since the size of the terminal
region affects directly the size of the domain of attraction for the nonlinear opti-
mization problem. Many efforts have been made to determine the terminal penalty
term and the associated terminal controller such that the terminal region is enlarged.
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For nonlinear systems, using either a local polytopic linear differential inclusions
(LDI) representation [3] or a local norm-bounded LDI representation [4], the ter-
minal region is obtained by solving an linear matrix inequality (LMI) optimization
problem. In [5], a local LDI representation is used as well, and a polytopic terminal
region and an associated terminal penalty are computed. Using support vector ma-
chine learning [6], freedom in the choice of the terminal region and terminal penalty
needed for asymptotic stability is exploited in [6].

Here, we generalize the scheme in [7]. A more general polytopic LDI description
is used to capture the nonlinear dynamics and the condition of twice continuous
differentiability of the nonlinear system is relaxed to continuous differentiability.
The approach results in a parameter-dependent terminal control law. Compared with
the use of time-invariant linear state feedback laws, the proposed approach provides
more freedom in the choice of the terminal region and terminal cost needed for
asymptotic stability. Thus a larger terminal region is obtained.

The remainder of this paper is organized as follows. Section 2 briefly introduces
the QIH-NMPC scheme. The condition to calculate terminal region of QIH-NMPC
based on linear differential inclusions and the optimization algorithm to maximize
the terminal region are proposed in Section 3 and 4. The efficacy of the algorithm is
illustrated by a numerical example in Section 5.

2 Preliminaries

Consider the smooth nonlinear control system

ẋ(t) = f (x(t),u(t)), x(t0) = x0, t ≥ t0 (1a)

z(t) = g(x(t),u(t)), (1b)

subject to z(t) ∈ Z ⊂ R
p, ∀t ≥ t0, (2)

where x(t) ∈ Rn, u(t) ∈ Rm are the state and input vector, and z(t) is the output
vector. Denote X and U as the projection of the output vector space Z to the state
vector space and the input vector space, respectively.

Fundamental assumptions of (1) are as follows:

A0) The nonlinear fuctions f and g are continuously differentiable, and satisfy
f (0,0) = 0 and g(0,0) = 0. The equilibrium is a hyperbolic fixed point.

A1) System (1) has a unique solution for any initial condition x0 ∈ X and any
piecewise right-continuous input function u(·) : [0,Tp]−→U ;

A2) U ⊂Rm and X ⊆Rn are compact and the point (0,0) is contained in the interior
of X×U .

For the actual state x(t), the optimization problem in the QIH-NMPC is formulated
as follows [2, 8]:

min
ū(·)

J
(
x(t), ū(·)) (3)

subject to
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˙̄x = f (x̄, ū), x̄(t;x(t)) = x(t), (4a)

z̄(τ) ∈ Z, τ ∈ [t, t + Tp], (4b)

x̄(t + Tp; x̄(t)) ∈Ω(α), (4c)

where J(x(t), ū(τ,x(t))) =V (x̄(t +Tp);x(t))+
∫ t+Tp

t F
(
x̄(τ;x(t)), ū(τ)

)
dτ , Tp is the

prediction horizon, x̄(·;x(t)) denotes the state trajectory starting from the current
state x(t) under the control ū(t). The pair (x̄, ū) denotes the optimal solution to
the open-loop optimal control problem (3). F(·, ·) is the stage cost satisfying the
following condition:

A3)F(x,u) : Rn×U → R is continuous and satisfies F(0,0) = 0 and F(x,u) > 0,
∀(x,u) ∈ Rn×U \ {0,0}.

In (4), the set Ω(α) is a neighborhood of the origin and defined as a level set of a
positive definite function V (·) as follows

Ω(α) := {x ∈ Rn | V (x)≤ α}. (5)

Moreover,Ω(α) and V (x) are said to be the terminal region and the terminal penalty
respectively, if there exists a continuous local controller u = κ(x) such that the fol-
lowing conditions are satisfied:

B0)Ω(α)⊆ X ,
B1)g(x,κ(x)) ∈ Z, for all x ∈Ω(α),
B2)V (x) satisfies inequality

∂V (x)
∂x

f (x,κ(x))+ F(x,κ(x))≤ 0, ∀x ∈Ω(α). (6)

Clearly, Ω(α) has the following additional properties [8]:

• The point 0∈Rn is contained in the interior of Ω(α) due to the positive definite-
ness of V (x) and α > 0,

• Ω(α) is closed and connected due to the continuity of V in x.
• Since (6) holds,Ω(α) is invariant for the nonlinear system (1) controlled by local

control u = κ(x).
The following stability results can be established:

Lemma 1. [8] Suppose that

(a)assumptions A0)-A3) are satisfied,
(b)for the system (1), there exist a locally asymptotically stabilizing controller u =

κ(x), a continuously differentiable, positive definite function V (x) that satisfies
(6) for ∀x ∈Ω(α) and a terminal region Ω(α) defined by (5),

(c)the open-loop optimal control problem described by (3) is feasible at time t = 0.

Then, the closed-loop system is nominally asymptotically stable with the region of
attraction D being the set of all states for which the open-loop optimal control prob-
lem has a feasible solution.
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3 Enlarging the Terminal Region of Quasi-infinite Horizon
NMPC

In this section we derive a sufficient condition for the calculation of the terminal
region and a linear parameter-dependent terminal control law based on a polytopic
differential inclusion description of the nonlinear system (1). The constraints under
consideration are

−ẑk ≤ zk(t)≤ ẑk, k = 1,2, . . . , p, t ≥ t0, (7)

where zk(·) is the kth element of the outputs, and ẑk is positive scalar.
We choose the stage cost F(x,u) = xT Qx + uT Ru with 0 ≤ Q ∈ Rn×n and

0 ≤ R ∈m×m. Suppose that the Jacobian linearization of the system (1) at the ori-
gin is stabilizable. Then a quadratic Lyapunov function and a local region round
the equilibrium defined by the level set of the Lyapunov function exist [9] which
serve as terminal penalty and terminal region, respectively. Therefore, we choose
the terminal region Ω(α,P) := {x ∈ Rn|xT Px≤ α} which represents an ellipsoid.

3.1 Polytopic Linear Differential Inclusions

Suppose that for each x,u and t there is a matrix G(x,u,t) ∈Π such that[
f (x,u)
g(x,u)

]
= G(x,u, t)

[
x
u

]
(8)

where Π ⊆ R(n+p)×(n+p). If we can prove that every trajectory of the LDI defined
by Π has some property, then we have proved that every trajectory of the nonlinear
system (1) has this property. Conditions that guarantee the existence of such a G are

f (0,0) = 0, g(0,0) = 0, and

[
∂ f
∂x

∂ f
∂u

∂g
∂x

∂g
∂u

]
∈Π for all x,u, t [10].

The set Π is called a polytopic linear differential inclusion (PLDI) if Π is de-
scribed by a list of its vertices [10]

Ω = Co

{[
A1 B1

C1 D1

]
,

[
A2 B2

C2 D2

]
, . . . ,

[
AN BN

CN DN

]}
, (9)

where

[
Ai Bi

Ci Di

]
, i = 1,2, . . . ,N are vertex matrices of the set Π , and N is the number

of vertex matrices. Then the nonlinear system (1) can be represented in the form of
a linear parameter-varying dynamic system [11]

ẋ(t) =
N

∑
i=1

βi(λ )(Aix(t)+ Biu(t)), (10a)

z(t) =
N

∑
i=1

βi(λ )(Cix(t)+ Diu(t)) (10b)
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where λ ∈ Rnλ is the time-variant parameter vector, and βi(λ ) are non-negative
scalar continuous weighting functions satisfying βi(λ ) > 0 and ∑N

i=1βi(λ ) = 1. In

the following we denote β (λ ) =
[
β1(λ ) β2(λ ) . . . βN(λ )

]T
. Suppose that Kj ∈

R
m×n is a time-invariant feedback gain of the ith vertex system, the control law

for the whole PLDI system can be inferred as a weighted average of controllers
designed for all vertices, i.e.,

κ(λ ) =
N

∑
j=1

β j(λ )Kj. (11)

Substituting (11) into (10), we obtain the closed-loop system

ẋ(t) = Acl
(
β (λ )

)
x(t), (12a)

z(t) = Ccl
(
β (λ )

)
x(t), (12b)

with Acl
(
β (λ )

)
=

N
∑

i=1

N
∑
j=1

βi(λ )β j(λ )(Ai + BiKj), Ccl
(
β (λ )

)
=

N
∑

i=1

N
∑
j=1

βi(λ )β j(λ )

(Ci + DiKj).

3.2 Terminal Region of NMPC Based on PLDI

Based on the PLDI of nonlinear system (1), the inequality condition (6) can be for-
mulated as a linear matrix inequality (LMI) problem. This is attractive since com-
putationally efficient methods to solve such problems are available [10, 11].

Theorem 1. For system (12), suppose that there exist a matrix X > 0 and matrices
Yj such that

N

∑
i=1

N

∑
j=1

βi(λ )β j(λ )

⎡⎣AiX + BiYj +(AiX + BiYj)T X Y T
i

X −Q−1 0
Yj 0 −R−1

⎤⎦≤ 0, (13)

Then, with κ(λ ) = ∑N
j=1β j(λ )Kj as in (11) and V (x) := xT Px, where P = X−1 and

Kj = YjX−1, the inequality (6) is satisfied.

Proof: By substituting P = X−1 and Yj = KjX in (13) and performing a congruence
transformation with the matrix {X−1, I, I}, we obtain⎡⎣Acl(λ )T P+ PAcl(λ ) X κ(λ )T

X −Q−1 0
κ(λ ) 0 −R−1

⎤⎦≤ 0,

It follows from the Schur complement that the inequalities (13) are equivalent to

Acl(λ (t))T P + PAcl(λ (t))+ Q+κ(λ (t))T Rκ(λ (t))≤ 0. (14)

We choose V (ξ ) = ξ T Pξ as a Lyapunov function candidate. The time derivative of
V (x) along the trajectory of (12) is given as follows:



74 S. Yu et al.

dV (x(t))
dt

= ẋ(t)T Px(t)+ x(t)T Pẋ(t)

= x(t)T
{ N

∑
i=1

N

∑
j=1

hi(λ )h j(λ )
(
(Ai + BiKj)T P+ P(Ai + BiKj)

)}
x(t)

= x(t)T
{

Acl(λ )T P+ PAcl(λ )
}

x(t) (15)

Using (14), we have dV (x(t))
dt ≤ −x(t)T Qx(t)− x(t)Tκ(λ )T Rκ(λ )x(t). Thus the in-

equality (6) holds, and κ(λ ) is the associated terminal control law. �

Now we derive conditions such that the constraints (7) are satisfied by the controller
κ(λ ) for any x ∈Ω(P,α).

Theorem 2. If X and Yj, j = 1,2, . . . ,N satisfy (13) and furthermore the following
matrix inequalities

N

∑
i=1

N

∑
j=1

βi(λ )β j(λ )
[

1
α ẑ2

k eT
k (CiX + DiYj)

∗ X

]
≥ 0, k = 1,2, . . . , p, (16)

hold, where ek is kth element of the basis vector in the constraint vector space, then
for any x(t) ∈ Ω(P,α), the parameter-dependent feedback law (11) controls the
system (12) satisfying the the constraint (7).

Proof: Using (12b), satisfaction of the constraints (7) requires

x(t)T (Ccl(β (λ ))T ekeT
k Ccl(β (λ ))x(t)≤ ẑ2

k , (17)

due to x(t) ∈Ω(P,α), which holds if

x(t)T (Ccl(β (λ ))T ekeT
k Ccl(β (λ ))x(t)

ẑ2
k

≤ x(t)T Px(t)
α

, (18)

For any x(t) �= 0 (note that x(t) = 0 leads to z(t) = 0 and satisfaction of (7)), in-

equality (18) holds if

P
α
− (Ccl(β (λ ))T ekeT

k Ccl(β (λ ))
ẑ2

k

≥ 0. (19)

Applying the Schur Complement, the matrix inequality (19) is equivalent to

N

∑
i=1

N

∑
j=1

βi(λ )β j(λ )
[

P ∗
eT

k (Ci + DiKj) 1
α ẑ2

k

]
≥ 0, k = 1,2, · · · , p. (20)

Performing a congruence transformation with diag(I,X) on both sides of (20), we
obtain the required inequality (16). �
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Following the above discussions, we now state the main results of this paper:

Theorem 3. Suppose that the PLDI model of the nonlinear system (1) is given
by (12). If there exist a positive definite matrix X ∈Rn×n, matrices Yj ∈Rm×n, j =
1,2, · · · ,N, and a scalar α > 0, independent of the unknown parameter vector β (λ )
such that (13) and (16), then the ellipsoid Ω(α,P) with P = X−1 and V (x) = xT Px
serve as a terminal region and a terminal penalty for NMPC, respectively. The as-
sociated terminal controller is κ(λ ) = ∑N

j=1β j(λ )Kjx(t) with Kj = YjX−1.

Proof: The inequalities (13) and (16) guarantee that the nonlinear system (1) satisfy
inequality (6) and constraints (2), respectively, i.e. B1) and B2).

The positive definite matrix X ∈ Rn×n, the matrices Yj ∈ Rm×n, and the scalar
α > 0 are independent of the unknown parameter vector β (λ ). Thus Ω(α,P) is the
terminal region and V (x) is the terminal penalty of the nonlinear system, respec-
tively. �

4 Optimization of the Terminal Region

In order to reduce the functional inequalities (13) and (16) to finitely many LMIs,
we utilize the following lemma:

Lemma 2. [12] If there exist matrices Γii = Γ T
ii , Γi j = Γ T

ji , (i �= j, i, j = 1,2, · · · ,r)
such that the matrix Λi j(1≤ i, j ≤ r)

Λii ≤ Γii, i = 1,2, · · · ,r, (21a)

Λi j +Λ ji ≤ Γi j +Γ T
i j , j < i, (21b)

[Γi j]r×r ≤ 0, (21c)

then the parameter matrix inequalities
r

∑
i=1

r

∑
j=1

δi(·)δ j(·)Λi j ≤ 0, (22)

are feasible, where δi(·)≥ 0,
r
∑

i=1
δi(·) = 1,∀t, and [Γi j]r×r =

⎛⎜⎝Γ11 · · · Γ1r
...

. . .
...

Γr1 · · · Γrr

⎞⎟⎠.

Let Ω(α,P) denote the ellipsoid centered at the origin defined by P and α . The
volume of Ω is proportional to det(αX), X = P−1 [10]. The geometric mean of the

eigenvalues [13], leading to minimization of det(αX)
1
n , where n is dimension of X ,

can be used for solving the determinant maximization problem. Define

X0 = αX , Yj0 = αYj. (23)

The inequality constraints (13), (16) can be rewritten as
N

∑
i=1

N

∑
j=1

βi(λ )β j(λ )Li j ≤ 0, (24)
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N

∑
i=1

N

∑
j=1

βi(λ )β j(λ )Fi, j ≥ 0, k = 1,2, . . . ,m, (25)

where Li j =

⎛⎝Ξ X0 Y T
j0

∗ −αQ−1 0
∗ ∗ −αR−1

⎞⎠, Fi, j =
[

ẑ2
k eT

k (CiX0 + DiYj0)
∗ X0

]
, Ξ = X0AT

i +

Y T
j0BT

i + AiX0 + BiYj0.
It follows from Lemma 2 that if there exist matrices Ti j (i, j = 1, · · · ,N) such that

Lii ≤Tii, i = 1,2, · · · ,N, (26a)

Li j +L ji ≤Ti j +T T
i j , j < i, (26b)

[Ti j]N×N ≤ 0, (26c)

then the inequality (6) is satisfied. Furthermore, if there exist matrices Mi j (i, j =
1,2, · · · ,N) such that

Fii ≥Mii, i = 1,2, · · · ,N, (27a)

Fi j +F ji ≥Mi j +M T
i j , j < i, (27b)

[Mi j]N×N ≥ 0, (27c)

then the output constraints (7) are satisfied.
Hence, the maximization problem of the ellipsoid Ω can be reformulated as

max
α , X0, Yj0

(detX0)
1
n , s.t. α > 0, X0 > 0, (26) and (27). (28)

Solving the convex optimization problem (28), the optimal solutions X0,Yj0,( j =
1, · · · ,N) and α are determined. The matrices X and Yj can be found from (23).
Then the optimal terminal penalty matrix P, the terminal region Ω , and the terminal
feedback law can be determined by Theorem 3. Sometimes solving the optimization
problem (28) gives a very large terminal penalty such that the effect of the integral
term in the performance index (3) almost disappears. A very strong penalty on the
terminal states may have a negative influence on achieving the desired performance
which is specified by the finite horizon cost [2]. The trade off between a large ter-
minal region and good control performance can be made by limiting the norm of
the matrix P [3]. Since P = X−1 = α(X0)−1, it can be achieved by imposing the
requirement that α has to be less than or equal to a given constant.

5 A Numerical Example

In this section, the proposed method is applied to a continuous stirred tank reac-
tor(CSTR) [14]. Assuming constant liquid volume, the CSTR for an exothermic,
irreversible reaction, A→B, is described by the following dynamic model based on
a component balance for reactant A and an energy balance:
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ĊA =
q
V

(CA f −CA)− k0 exp(− E
RT

)CA,

Ṫ =
q
V

(Tf −T )− �H
ρCp

k0 exp(− E
RT

)CA +
UA

VρCp
(Tc−T ).

here CA is the concentration of the reactor, T is the reactor temperature, and Tc is
the temperature of the coolant steam. The parameters are q = 100 l/min, V = 100 l,
CA f = 1 mol/l, Tf = 350 K, ρ = 103 g/l, Cp = 0.239 J/(g K), k0 = 7.2×1010 min−1,
E/R = 8750 K, �H = −5×104 J/mol, UA = 5×104 J/(min K). Under these con-
ditions the steady state is Ceq

A = 0.5 mol/l, T eq
c = 300 K, and T eq = 350 K, which

is an unstable equilibrium. The temperature of the coolant steam is constrained to
250 K≤ Tc≤ 350 K. The concentration of the reactor has to satisfy 0≤CA≤ 1 mol/l,
and the temperature of the reactor is constrained to 300 K≤ T ≤ 400 K. The objec-
tive is to regulate the concentration CA and the reactor steam temperature T around
the steady state via NMPC by using the temperature of the coolant as an input, while
the constraints have to be hold. The dynamics of the CSTR can be expressed by the
parameter-dependent weighted linear model of the nonlinear system (10) with A1 =[−23.7583 0

4761.2 −739/239

]
, A2 =

[−1.0155 0
3.2433 −739/239

]
, B1 = B2 =

[
0 500/239

]T
.

The weighting matrices of the stage cost are Q =
[

1
0.5

1
350

]
and R = 1

300 , respec-
tively.

The volume of the terminal region of the proposed method is compared to pre-
vious results which were based on a Lipschitz approach [2]. In order to preserve
a dominating effect of the integral part in the cost function, we impose the con-
straint α ≤ 5 on the optimization problem (28). The terminal region given by [2]
is represented by the dashed ellipsoid, and the terminal region yielded by the PLDI

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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310

320
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340
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Fig. 1 Comparison of the terminal region
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approach with parameter-dependent terminal control law is shown by the solid el-

lipsoid in Figure 1. The associated terminal penalty is P =
[

15.2100 0.0395
0.0395 0.0005

]
.

6 Conclusions

In this paper we propose a method to expand the terminal region which replaces the
time invariant linear state feedback control law by a parameter-dependent terminal
control law. The new algorithm provides an extra degree of freedom to enlarge the
terminal set. The problem of maximizing the terminal region is formulated as an
LMI based optimization problem. It is shown that, compared to the algorithms with
static linear terminal control law, a parameter-dependent terminal control results in
a larger terminal region, which is confirmed by a numerical example.
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Model Predictive Control with Control
Lyapunov Function Support

Keunmo Kang and Robert R. Bitmead

Abstract. A new idea to construct stabilizing model predictive control is studied for
a constrained system based on the adaptation of an existing stabilizing controller
with a Control Lyapunov Function. We focus on systems which are difficult to sta-
bilize via classical model predictive control because the initial state can be so large
that the origin is not reachable in a limited time horizon. We handle this by us-
ing a varying terminal state equality constraint, which eventually converges to the
neighborhood of the origin. Open-loop, pre-computed terminal state trajectories and
closed-loop variants are developed and compared to Artstein’s controllers. In the
closed-loop case, it is shown that the model predictive approach leads to improved
degree of stability over the original stabilizing control law.

Keywords: stabilization, control lyapunov function, terminal constraint.

1 Introduction

We study the stabilization of a constrained discrete-time system, whose behavior
is limited by input and state constraints. In particular, we focus on a Model Pre-
dictive Control (MPC) scheme for the situation where the system is not effectively
stabilized by typical MPC with the zero-terminal-state [7, 10] or terminal set around
the origin [1, 4] because the initial state might be too far from the origin. Here we
consider a different strategy that consists of two stages:

– solving a finite sequence of finite-horizon open-loop optimal control problems
with a varying terminal state equality constraint: the terminal target state changes
at each time step and moves closer to the origin, then
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– solving a sequence of finite-horizon open-loop optimal control problems with the
origin as the target terminal state to achieve closed-loop stability.

The first stage does not appear in typical MPC contexts and it functions to manip-
ulate the system into a situation where typical zero-terminal-state MPC such as the
second stage can be applied. We will show that, if the system has a known sta-
bilizing controller with a Control Lyapunov Function (CLF), then the above idea
can be feasibly realized, achieving an improved convergence rate over the original
controller.

The authors of [2, 11] discussed the idea of including a CLF in the MPC formu-
lation and pointed out its possible performance improvement due to complementary
aspects of a CLF and MPC. In this paper, by example, we demonstrate that our
scheme may also bring improvement to control performance and give flexibility to
tune system behavior. Comparisons are drawn with [11].

2 System Description and Problem

Consider the following discrete time-invariant system

x+ = f (x,u), (1)

where the x+ is the successor state and the state and input are constrained to

x ∈X⊂ R
n, u ∈ U⊂R

m.

We assume that perfect full-state measurement is available and 0 = f (0,0). Consider
a constrained finite-horizon optimal control problem with the current state x∈X, the
horizon N, and the terminal target state x̄ ∈ X,

P(x, x̄,N) :arg min
{u(0,x),...,u(N−1,x)}

N−1

∑
i=0

h(x(i,x),u(i,x)),

subject to x(i+ 1,x) = f (x(i,x),u(i,x)),
x(i,x) ∈ X,

u(i,x) ∈U,

x(N,x) = x̄.

(2)

Here x(i,x) [x(0,x) = x] and u(i,x) represent the i−step-ahead state and control,
which are computed for the given current state x. We assume the following.

Assumption A1. X is closed and 0 ∈ X,
Assumption A2. U is closed and 0 ∈ U,
Assumption A3. f : X×U �−→ Rn is continuous and f (0,0) = 0,
Assumption A4. h : X×U �−→ R is nonnegative definite, upper-semi-continuous,
and satisfies h(0,0) = 0.
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Closure of X and U, continuity of f and h, and positive definiteness of h are the con-
ditions for P(x, x̄,N) to have an optimal solution provided there exists an admissi-
ble sequence pair {x(i,x),u(i,x)}N−1

i=0 [6]. If Assumptions A1∼4 hold, P(x, x̄,N) has
an optimal open-loop control solution sequence, {u∗(i,x)}N−1

i=0 and a corresponding
predicted state sequence {(x∗(i,x)}N

i=0 with x(0,x)=x and x∗(N,x)=x̄. In classical
MPC, at each time step, P(x, x̄,N) with x̄=0 is solved and only the first element
u∗(0,x) of the control solution is applied to the system. By doing this, the cost of
P(x,0,N) decreases over time and the system is asymptotically stabilized [7], pro-
vided that the origin is feasibly reachable from the initial state in N steps. Quite
naturally the following question arises: what can we do for initial states that cannot
be steered to the origin in N steps? We want to develop an MPC scheme to deal
with this situation by using the same structure as (2), in which case x̄ might be non-
zero and varying every time P(x, x̄,N) is solved for a new x. Therefore the main
focus is on how we construct the sequence of terminal target states {x̄} that preserve
feasibility of P(x, x̄,N) over time and finally achieve asymptotic stability.

3 Model Predictive Control Algorithm

Definition 1. A scalar function V (x) is said to be a Control Lyapunov Function
(CLF) for the system (1) in the domain XV , containing the origin, if XV ⊆ X and
there exists a function V (x) : XV �→ R such that

– V is continuous,
– V is positive definite and V (0) = 0,
– for each x ∈ XV , there exists a feasible control u ∈ U such that x+ = f (x,u) ∈

XV and V (x+) ≤ V (x)−β (||x||), where ||x|| �
√

xT x and β is positive definite,
continuous, and satisfies β (0) = 0.

Definition 2. The subset of X, X (0,N1), is the set of states, from which the origin
is reachable in N1 steps.

Now the MPC algorithm is given for a given initial state x0 ∈XV ⊆ X, where XV is
the known domain.

Offline Preparation
choose control horizons for the first stage (N) and the second stage (N + N1),
choose any feasible x̄=x̄0∈XV⊆X based on the initial state x=x0∈XV⊆X,
computeX (0,N1) ∈ X.

Control Lyapunov Function Based Model Predictive Control Law
[First Stage] while x̄ /∈X (0,N1)

solveP(x, x̄,N),
choose x̄+ such that V (x̄+)≤V (x̄)−β (||x̄||) with a positive
definite function β and it is feasibly reachable from x∗(1,x),
apply u∗(0,x) to the system: x+ = x∗(1,x) = f (x,u∗(0,x)),
update x← x+ and x̄← x̄+,

end
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[Second Stage] repeat
solve P(x,0,N1 + N),
apply u∗(0,x) to the system,
update x← x+,

end

Finite time termination of the first stage and asysmptotic stability by the second
stage are described by the following theorem.

Theorem 1. Suppose that the following hold:

– Assumptions A1∼4.
– a CLF, V (x), with domain XV⊆X is given.
– initial problem P(x0, x̄0,N) with x=x0∈XV and x̄=x̄0∈XV is feasible.
– the origin is an interior point of X (0,N1).

Then the CLF Based MPC Law remains feasible and drives the terminal target
state x̄ in finite time to X (0,N1), the set of states from which the origin is feasibly
reachable in N1 steps, and the system is asysmptotically stabilized.

Proof: First, we show that, if the initial problem P(x0, x̄0,N) is feasible, then
feasibility of P(x, x̄,N) throughout the first stage is guaranteed. Since V (x) is a
CLF and x̄0 ∈ XV , there exists x̄+ such that

V (x̄+)≤V (x̄0)−β (||x̄0||). (3)

Then, for the next time step, x+ = x∗(1,x0) can be steered to x̄+ in (3) by the fol-
lowing feasible state trajectory:

{x+ = x∗(1,x0),x∗(2,x0), . . . , x̄0 = x∗(N,x0), x̄+}. (4)

Hence, provided that the initial P(x0, x̄0,N) is feasible, feasibility is guaranteed
for all time. Now it remains to show that successive update of x̄ in the first stage
results in x̄ ∈X (0,N1) in finite time. By a standard Lyapunov stability argument,
(3) implies that x̄+

j → 0 as j → ∞, where x̄+
j is the terminal target state after j

time-updates from the initial terminal target state x̄0. That is, given sufficiently
small γ > 0 such that {x∣∣||x|| ≤ γ} ⊆ X (0,N1), there exists an finite integer M1

such that ||x̄+
j || ≤ γ from all j ≥M1. This leads to the finite termination of the first

stage. Once the first stage terminates, asymptotic stability of the system is achieved
by the second stage as classically established in [7] by the zero terminal state
constraint. �

Remark 1. If the set D⊆ X is any control invariant set for the system, such as XV ,
using the tools of [8], one might construct a larger set of states from which D is
feasibly reachable in N steps. Hence, one may expand the domain of attraction of
XV . Such a construction might be used to expand the permissible set of initial states.
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Remark 2. There is no requirement that x(i,x) ∈ XV , ∀i = 1,2, . . . ,N−1. Only the
current and terminal states need to be in XV .

Remark 3. The requirement for the additional N1 horizon steps in the second stage
is that its corresponding X (0,N1) has the origin as an interior point. This requires
that no proper subspace of the state space be outside the N1-step reachable set, which
observation in the linear case links the minimal choice of N1 to the rank of the reach-
ability matrix of the system for the various horizons. The horizon value N, because
of the CLF property of V , may be chosen as any positive integer. Its selection rep-
resents a balance between the computational resources and the benefits inherited by
MPC through having longer horizon, which we will next show includes the capacity
to improve control performance.

4 Choice of x̄+

If a CLF V (x) is given in the domain XV , then we may associate with it control laws
determined by two methods to choose x̄+. As stated in the algorithm, the require-
ments for x̄+ are that V (x̄+) ≤ V (x̄)− β (||x̄||) and x̄+ is feasibly reachable from
x∗(1,x).

4.1 Open-Loop Approach

The first approach is to use the current terminal target state x̄ to determine the next
time’s terminal target state x̄+ via:

x̄+ = argmin
x
{V(x)

∣∣x ∈ f (x̄,U)∩XV}, (5)

where f (x̄,U) � {x|x = f (x̄, ū),∀ū ∈ U}, the one-step reachable set from x̄. The
stabilizing property of the CLF Based MPC is summarized by the following.

Corollary 1. Suppose that the system (1) has a CLF V (x) in the domain XV ⊆ X
and Assumptions A1∼4 are satisfied. Then, by choosing x̄+ according to (5), the
CLF Based MPC Law remains feasible and stabilizes the system, provided that the
initial P(x0, x̄0,N) with x0, x̄0 ∈ XV is feasible and X (0,N1) contains the origin
as an interior point.

The choice of x̄+ in (5) is a discrete-time variant of the control law of [9] in continu-
ous time. For a given continuous system ẋ = fc(x,u) with a given Lyapunov function
Vc(x), the closed-loop control law u ∈Uc was found in a way that achieves the min-
imum gradient of Vc. Also note that we use Artstein’s idea to generate the terminal
target state trajectories, not a closed-loop control solution. That is, the terminal tar-
get state trajectory given by (5) may be computed offline ahead of time since x̄+

in (5) is not a function of the closed-loop state x and so the terminal target state
sequence is not determined by feedback. This motivates the following closed-loop
approach to choosing x̄+.



84 K. Kang and R.R. Bitmead

4.2 Closed-Loop Approach

Definition 3. For the state x+=x∗(1,x) from P(x, x̄,N), XN(x∗(1,x)) is the set of
states that are feasibly reachable from x∗(1,x) in N steps.

Remark 3. The set, XN(x∗(1,x)), relies on information available from the solution
of P(x, x̄,N) and so is denoted as dependent on x∗(1,x).

The second approach to choose x̄+ is

x̄+ = argmin
x̆
{V (x̆)

∣∣x̆ ∈XN(x∗(1,x))∩XV}. (6)

Corollary 2. Suppose that the system (1) has a CLF V(x) in the domain XV⊆X and
Assumptions A1∼4 are satisfied. Then, by choosing x̄+ according to (6), the CLF
Based MPC Law remains feasible and stabilizes the system, provided that the initial
P(x0, x̄0,N) with x0, x̄0 ∈ XV is feasible and X (0,N1) contains the origin as an
interior point.

The terminal target state update (6) may cause a significant computational burden
for systems with high dimension and short sampling time because the N−step reach-
able set, XN(x∗(1,x)), has to be computed at each time, while (5) requires only a
one-step reachable set. This difficulty can be resolved if one formulates the con-
straint set XN(x∗(1,x))∩XV into a function g(·) such that

XN(x∗(1,x))∩XV � {z|∃ui ∈ U, i = 1,2, . . . ,N, g(z,u1, . . . ,uN ,x∗(1,x))≤ 0}.

Then computing XN(x∗(1,x)) at each time can be avoided by calculating

(x̄+, ū+
1 , . . . , ū+

N ) = arg min
z,u1,...,uN

{V (z)
∣∣g(z,u1, . . . ,uN ,x∗(1,x))≤ 0,

ui ∈ U, i = 1,2, . . . ,N},
(7)

where the controls u1, . . . ,uN function as slack variables and are discarded. The
approaches used in (6) and (7) are tractable at least for linear systems with polytopic
constraints using the tools of [5] and [3]. If (6) (or equivalently (7)) is feasibly
realized, compared to (5), it can be beneficial in the following sense.

Corollary 3. Suppose that the system has a CLF in XV⊆X and Assumptions A1∼
4 are satisfied. Provided the initial P(x0, x̄0,N) with x0, x̄0∈XV is feasible and
X (0,N1) contains the origin as an interior point, the CLF Based MPC Law with
closed-loop selection rule (6) achieves at least the same or faster termination of the
first stage than than that with open-loop selection rule (5).

Proof. By the definition of XN(x∗(1,x)), we have f (x̄,U)⊆XN(x∗(1,x)). Therefore
(6) finds x̄+ that achieves the greatest reduction in V (x̄+) over at least the same or
larger set than f (x̄,U)∩XV in (5). This completes the proof. �
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The CLF Based MPC Law using (6) deserves comparison with the control laws
proposed in [11]. In [11], a CLF is used to develop a state constraint. That is, for the
given state x+ = x∗(1,x), they constrain the open-loop control to achieve

V (x+(i+ 1,x+))≤V (x+(i,x+))−β (||x+(i,x+)||), (8)

for the complete horizon i = 0,1, . . . ,N− 1 or just for the next step i = 0. In other
words, their open-loop control problem only requires the predicted states x+(i +
1,x+) to satisfy (8). In our case, for the given x∗(1,x) = x+, we choose the terminal
target state x̄+ to cause the greatest reduction in V (·) and find an open-loop control
solution for P(x+, x̄+,N). Thus, our method may lead to faster convergence of the
state to the neighborhood of the origin than the MPC law of [11]. The above aspect
to use a CLF only for choosing x̄+ also may improve control performance over
that associated with the CLF alone being used for feedback control: this will be
discussed further in the next section with an example.

5 Example

We consider a single scalar integrator plant

x+ = x + u,

since its behavior is quite simple and hence makes it easy to appreciate the main
idea and the performance enhancement of our scheme. We assume 0.2 second sam-
pling time. The objective of control is to steer the initial state x0 to the origin using
the CLF Based MPC Law. We use the terminal state update schemes (5) and (6).
[Denote them by State Independent Update and State Dependent Update respec-
tively.] We use the open-loop constrained control problem (2) with the cost function
h(x(i,x),u(i,x)) = x(i,x)2 +100u(i,x)2. We assume the input constraint U = [−5,5]
and no state constraints. The control horizons N̄ = N = 3 and N̄ = N + N1 = 6
(N1 = 3) are chosen for the first and second stages respectively. The set X (0,3) is
[−15,15]. The initial state is given by x0 = 50 and the initial target terminal target
state is chosen to be x̄ = 42. The system has a nominal (low gain but) stabilizing
feedback control u = −0.1x, which does not violate the control constraint. The as-
sociated CLF is V (x) = x2. As shown in Figure 1, the state trajectory forced by the
nominal feedback law converges to the origin quite slowly. Even if one wants to use
the classical MPC with the zero terminal state equality constraint, a corresponding
open-loop finite horizon control problem at each time step requires at least the hori-
zon size N = 10 to achieve the zero terminal state equality constraint for the given
initial state. When the State Independent Update (5) is used for selecting x̄+ from the
initial x̄0, u = −5 minimizes V (x̄ + u) and results in the terminal target state trajec-
tory {42,37,32, . . . ,17} until x̄ enters X (0,3). If the State Dependent Update (6) is
used, its corresponding transient closed-loop state approaches the (radius 15) neigh-
borhood of the origin faster than that with the State Independent Update as shown in
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Fig. 1 State trajectories for the nominal control and the CLF Based MPC with two terminal
target state selection approaches: State Independent Update (5) [thin line] and State Depen-
dent Update (6) [dashed-dot line]

Corollary 3. If there were no penalty on the control [i.e. h(x(i,x),u(i,x)) = x(i,x)2],
for both cases of using State Independent Update and State Dependent Update,
the corresponding control solution would have allowed the full control capacity to
steer the state, which results in a straight-line-like trajectory and faster convergence
to the origin than the nominal control. These results suggest that the CLF Based
MPC Law allows greater capacity to shape the transient closed-loop state trajec-
tory than when the control design is solely based on the known CLF via Artstein’s
formula.

6 Conclusion and Future Work

The existence of a CLF permits the construction of MPC for the case where the
initial states are not feasibly steered to the origin in reasonable time by classical
MPC. Our viewpoint provides value when an existing stabilizing but low perfor-
mance controller is available, such as the low-gain linear feedback on the integrator
plant. Then this controller’s CLF may be used as the basis for MPC to augment the
closed-loop system behavior. Further investigation is necessary for the system with
disturbance and the computability of the proposed algorithms.
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Further Results on “Robust MPC Using Linear
Matrix Inequalities”

M. Lazar�, W.P.M.H. Heemels, D. Muñoz de la Peña, and T. Alamo

Abstract. This paper presents a novel method for designing the terminal cost and the
auxiliary control law (ACL) for robust MPC of uncertain linear systems, such that
ISS is a priori guaranteed for the closed-loop system. The method is based on the
solution of a set of LMIs. An explicit relation is established between the proposed
method and H∞ control design. This relation shows that the LMI-based optimal
solution of the H∞ synthesis problem solves the terminal cost and ACL problem
in inf-sup MPC, for a particular choice of the stage cost. This result, which was
somehow missing in the MPC literature, is of general interest as it connects well
known linear control problems to robust MPC design.

Keywords: robust model predictive control (MPC), linear matrix inequalities
(LMIs), H∞ control, input-to-state stability (ISS).

1 Introduction

Perhaps the most utilized method for designing stabilizing and robustly stabiliz-
ing model predictive controllers (MPC) is the terminal cost and constraint set ap-
proach [1]. This technique, which applies to both nominally stabilizing and inf-sup
robust MPC schemes, relies on the off-line computation of a suitable terminal cost
along with an auxiliary control law (ACL). For nominally stabilizing MPC with
quadratic costs, the terminal cost can be calculated for linear dynamics by solving a
discrete-time Riccati equation, with the optimal linear quadratic regulator (LQR) as
the ACL [2]. In [3] it was shown that an alternative solution to the same problem,
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D. Muñoz de la Peña and T. Alamo
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which also works for parametric uncertainties, can be obtained by solving a set of
LMIs. The design of inf-sup MPC schemes that are robust to additive disturbances
was treated in [4], where it was proven that the terminal cost can be obtained as a
solution of a discrete-time H∞ Riccati equation, for an ACL that solves the corre-
sponding H∞ control problem.

In this article we present an LMI-based solution for obtaining a terminal cost and
an ACL, such that inf-sup MPC schemes [7, 8] achieve input-to-state stability (ISS)
[5] for linear systems affected by both parametric and additive disturbances. The
proposed LMIs generalize the conditions in [3] to allow for additive uncertainties
as well. Moreover, we establish an explicit relation between the developed solution
and the LMI-based1 optimal solution of the discrete-time H∞ synthesis problem
corresponding to a specific performance output, related to the MPC cost. This result,
which was somehow missing in the MPC literature, adds to the results of [4] and to
the well known connection between design of nominally stabilizing MPC schemes
and the optimal solution of the LQR problem. Such results are of general interest as
they connect well known linear control problems to MPC design.

2 Preliminary Definitions and Results

2.1 Basic Notions and Definitions

Let R, R+, Z and Z+ denote the field of real numbers, the set of non-negative
reals, the set of integer numbers and the set of non-negative integers, respectively.
We use the notation Z≥c1 and Z(c1,c2] to denote the sets {k ∈ Z+ | k ≥ c1} and
{k ∈ Z+ | c1 < k ≤ c2}, respectively, for some c1,c2 ∈ Z+. For i ∈ Z+, let i = 1,N
denote i = 1, . . . ,N. For a set S ⊆ Rn, we denote by int(S ) the interior of S .
A polyhedron (or a polyhedral set) in Rn is a set obtained as the intersection of
a finite number of open and/or closed half-spaces. The Hölder p-norm of a vector

x ∈ Rn is defined as ‖x‖p := (|[x]1|p + . . . + |[x]n|p)
1
p for p ∈ Z[1,∞) and ‖x‖∞ :=

maxi=1,...,n |[x]i|, where [x]i, i = 1, . . . ,n, is the i-th component of x and | · | is the
absolute value. For a positive definite and symmetric matrix M, denoted by M  
0, M

1
2 denotes its Cholesky factor, which satisfies (M

1
2 )�M

1
2 = M

1
2 (M

1
2 )� = M

and, λmin(M) and λmax(M) denote the smallest and the largest eigenvalue of M,
respectively. We will use 0 and I to denote a matrix with all elements zero and the
identity matrix, respectively, of appropriate dimensions. Let z := {z(l)}l∈Z+ with
z(l) ∈R

o for all l ∈Z+ denote an arbitrary sequence. Define ‖z‖ := sup{‖z(l)‖ | l ∈
Z+}, where ‖ · ‖ denotes an arbitrary p-norm, and z[k] := {z(l)}l∈Z[0,k] . A function
ϕ : R+ →R+ belongs to class K if it is continuous, strictly increasing and ϕ(0) =
0. A function ϕ : R+ → R+ belongs to class K∞ if ϕ ∈K and lims→∞ ϕ(s) = ∞.
A function β : R+×R+ → R+ belongs to class K L if for each fixed k ∈ R+,
β (·,k) ∈K and for each fixed s ∈R+, β (s, ·) is decreasing and limk→∞ β (s,k) = 0.

1 A similar connection is established in [4], with the difference that the Riccati-based solu-
tion to the optimal H∞ synthesis problem is exploited, rather than the LMI-based solution;
also, parametric uncertainties are not considered.
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2.2 Input-to-State Stability

Consider the discrete-time nonlinear system

x(k + 1) = Φ(x(k),w(k),v(k)), k ∈ Z+, (1)

where x(k) ∈ Rn is the state and w(k) ∈ Rdw , v(k) ∈ Rdv are unknown disturbance
inputs at the discrete-time instant k. The mapping Φ : Rn×Rdw ×Rdv → Rn is an
arbitrary nonlinear function. We assume that Φ(0,w,0) = 0 for all w. Let W and V

be subsets of Rdw and Rdv , respectively.

Definition 1. We call a set P ⊆ Rn robustly positively invariant (RPI) for system
(1) with respect to (W,V) if for all x ∈ P it holds that Φ(x,w,v) ∈ P for all
(w,v) ∈W×V.

Definition 2. Let X with 0 ∈ int(X) be a subset of Rn. We call system (1) ISS(X,
W, V) if there exist a K L -function β (·, ·) and a K -function γ(·) such that, for
each x(0) ∈ X, all w = {w(l)}l∈Z+ with w(l) ∈W, ∀l ∈ Z+ and all v = {v(l)}l∈Z+

with v(l)∈V, ∀l ∈Z+ it holds that the corresponding state trajectory of (1) satisfies
‖x(k)‖≤ β (‖x(0)‖,k)+γ(‖v[k−1]‖), ∀k ∈Z≥1. We call the function γ(·) an ISS gain
of system (1).

2.3 Input-to-State Stability Conditions for Inf-sup Robust MPC

Consider the discrete-time constrained nonlinear system

x(k + 1) = φ(x(k),u(k),w(k),v(k)), k ∈ Z+, (2)

where x(k) ∈ X ⊆ R
n is the state, u(k) ∈ U ⊆ R

m is the control action and w(k) ∈
W ⊂ Rdw , v(k) ∈ V ⊂ Rdv are unknown disturbance inputs at the discrete-time
instant k. φ : Rn×Rm×Rdw ×Rdv → Rn is an arbitrary nonlinear function with
φ(0,0,w,0) = 0 for all w ∈W. We assume that 0 ∈ int(X), 0 ∈ int(U) and W, V are
bounded. Next, let F : Rn →R+ and L : Rn×Rm →R+ with F(0) = L(0,0) = 0 be
arbitrary nonlinear functions. For N ∈Z≥1 let ū[N−1](k) := (ū(k), ū(k+1), . . . , ū(k+
N− 1)) ∈ UN = U× . . .×U denote a sequence of future inputs and, similarly, let
w̄[N−1](k) ∈ W

N , v̄[N−1](k) ∈ V
N denote some sequences of future disturbances.

Consider the MPC cost

J(x(k), ū[N−1](k),w̄[N−1](k),v̄[N−1](k))

:= F(x̄(k + N))+
N−1

∑
i=0

L(x̄(k + i), ū(k + i)),

where x̄(k + i + 1) := φ(x̄(k + i), ū(k + i), w̄(k + i), v̄(k + i)) for i = 0,N− 1 and
x̄(k) := x(k). Let XT ⊆X with 0 ∈ int(XT ) denote a target set and define the follow-
ing set of feasible input sequences:
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UN(x(k)) := {u[N−1](k) ∈ U
N | x̄(k + i) ∈X, i = 1,N−1, x̄(k + N) ∈XT ,

x̄(k) := x(k), ∀w̄[N−1](k) ∈W
N ,∀v̄[N−1](k) ∈V

N}.

Problem 1. Let XT ⊆X and N ∈Z≥1 be given. At time k ∈Z+ let x(k)∈X be given
and infimize

sup
w̄[N−1](k)∈WN ,v̄[N−1](k)∈VN

J(x(k), ū[N−1](k),w̄[N−1](k), v̄[N−1](k))

over all input sequences ū[N−1](k) ∈UN(x(k)). �

Assuming the infimum in Problem 1 exists and can be attained, the MPC control
law is obtained as uMPC(x(k)) := ū∗(k), where ∗ denotes the optimum2.

Next, we summarize recently developed a priori sufficient conditions for guaran-
teeing robust stability of system (2) in closed-loop with u(k) = uMPC(x(k)), k ∈ Z+.
Let h : Rn → Rm denote an auxiliary control law (ACL) with h(0) = 0 and let
XU := {x ∈ X | h(x) ∈ U}.
Assumption 1. There exist functions α1,α2,α3 ∈K∞ and σ ∈K such that:
(i) XT ⊆ XU;
(ii) XT is a RPI set for system (2) in closed-loop with u(k) = h(x(k)), k ∈ Z+;
(iii) L(x,u)≥ α1(‖x‖) for all x ∈X and all u ∈U;
(iv) α2(‖x‖)≤ F(x)≤ α3(‖x‖) for all x ∈ XT ;
(v) F(φ(x,h(x),w,v))−F(x)≤−L(x,h(x))+σ(‖v‖), ∀x ∈ XT , ∀w ∈W, ∀v ∈V.

In [7, 8] it was shown that Assumption 1 is sufficient for guaranteeing ISS of the
MPC closed-loop system corresponding to Problem 1. Notice that although in Prob-
lem 1 we have presented the “open-loop” formulation of inf-sup MPC for simplicity
of exposition, Assumption 1 is also sufficient for guaranteeing ISS for “feedback”
inf-sup variants of Problem 1, see [7, 8] for the details.

Remark 1. The sufficient ISS conditions of Assumption 1 are an extension for robust
MPC of the well known terminal cost and constraint set stabilization conditions for
nominal MPC, see A1-A4 in [1]. While the stabilization conditions for MPC [1]
require that the terminal cost is a local Lyapunov function for the system in closed-
loop with an ACL, Assumption 1 requires in a similar manner that the terminal cost
is a local ISS Lyapunov function [5] for the system in closed-loop with an ACL. �

3 Problem Formulation

For a given stage cost L(·, ·), to employ Assumption 1 for setting-up robust MPC
schemes with an a priori ISS guarantee (or to compute state feedback controllers
that achieve local ISS), one needs systematic methods for computing a terminal cost
F(·), a terminal set XT and an ACL h(·) that satisfy Assumption 1.

2 If the infimum does not exist, one has to resort to ISS results for sub-optimal solutions,
see, e.g., [6].
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Once F(·) and h(·) are known, several methods are available for calculating the
maximal RPI set contained in XU for certain relevant subclasses of system (2), in
closed-loop with u(k) = h(x(k)), k ∈Z+, see, for example, [9, 10] and the references
therein. As a consequence, therefore, we focus on solving the following problem.

Problem 2. Calculate F(·) and h(·) such that Assumption 1-(v) holds. �

This problem comes down to computing an input-to-state stabilizing state-feedback
given by h(·) along with an ISS Lyapunov function (i.e. F(·)) for system (2) in
closed-loop with the ACL. This is a non-trivial problem, which depends on the type
of MPC cost, system class and on the type of candidate ISS Lyapunov function
F(·). Furthermore, it would be desirable that the MPC cost function is continuous
and convex.

3.1 Existing Solutions

Several solutions have been presented for the considered problem for particular sub-
classes of system (2). Most methods consider quadratic cost functions, F(x) :=
x�Px, P  0, L(x,u) = x�Qx + u�Ru, Q,R  0, and linear state feedback ACLs
given by h(x) := Kx.

(i) The nominal linear case: φ(x,u,0,0) := Ax +Bu, A ∈ Rn×n, B ∈ Rn×m. In [2]
it was proven that the solutions of the unconstrained infinite horizon linear quadratic
regulation problem with weights Q,R satisfy Assumption 1-(v), i.e.

K =−(R + B�PB)−1B�PA

and

P = (A + BK)�P(A + BK)+ K�RK + Q. (3)

Numerically, this method amounts to solving the discrete-time Riccati equation (3).
(ii) The linear case with parametric disturbances: φ(x,u,w,0) := A(w)x+B(w)u,

A(w) ∈ R
n×n, B(w) ∈ R

n×m are affine functions of w ∈W with W a compact poly-
hedron. In [3] it was proven that P = Z−1 and K = Y Z−1 satisfy Assumption 1-(v),
where Z ∈ Rn×n and Y ∈Rm×n are solutions of the linear matrix inequality⎛⎜⎜⎜⎝

Z (A(wi)Z +B(wi)Y )� (R
1
2 Y )� (Q

1
2 Z)�

(A(wi)Z +B(wi)Y ) Z 0 0

R
1
2 Y 0 I 0

Q
1
2 Z 0 0 I

⎞⎟⎟⎟⎠ 0,∀i = 1,E ,

with w1, . . . ,wE the vertices of the polytope W. Numerically, this method amounts to
solving a semidefinite programming problem. This solution trivially applies also to
the case (i) and, moreover, it was extended to piecewise affine discrete-time hybrid
systems in [11].

(iii) The nonlinear case with additive disturbances: φ(x,u,0,v) = f (x)+g1(x)u+
g2(x)v with suitably defined functions f (·), g1(·) and g2(·). A nonlinear ACL given
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by h(x) was constructed in [4] using linearization of the system, so that Assump-
tion 1-(v) holds for all states in a sufficiently small sublevel set of V (x) = x�Px,
P  0. Numerically this method amounts to solving a discrete-time H∞ Riccati
equation.

For the linear case with additive disturbances (i.e. f (x) = A, g1(x) = B and
g1(x) = B1), it is worth to point out that an LMI-based design method to obtain
the terminal cost, for a given ACL, was presented in [12].

4 Main Results

In this section we derive a novel LMI-based solution to the problem of finding a
suitable terminal cost and ACL that applies to linear systems affected by both para-
metric and additive disturbances, i.e.

x(k +1) = φ(x(k),u(k),w(k),v(k)) := A(w(k))x(k)+B(w(k))u(k)+B1(w(k))v(k), (4)

where A(w)∈Rn×n, B(w)∈Rn×m, B1(w)∈Rn×dv are affine functions of w. We will
also consider quadratic cost functions, F(x) := x�Px, P 0, L(x,u) = x�Qx+u�Ru,
Q,R 0, and linear state feedback ACLs given by h(x) := Kx.

4.1 LMI-Based-Solution

Consider the linear matrix inequalities,⎛⎜⎜⎜⎜⎜⎝
Z 0 (A(wi)Z +B(wi)Y )� (R

1
2 Y )� (Q

1
2 Z)�

0 τI B1(wi)T 0 0
(A(wi)Z +B(wi)Y ) B1(wi) Z 0 0

R
1
2 Y 0 0 I 0

Q
1
2 Z 0 0 0 I

⎞⎟⎟⎟⎟⎟⎠ 0,

∀i = 1,E , (5)

where w1, . . . ,wE are the vertices of the polytope W, Q ∈ R
n×n and R ∈ R

m×m are
known positive definite and symmetric matrices, and Z ∈ Rn×n, Y ∈ Rm×n and τ ∈
R>0 are the unknowns.

Theorem 1. Suppose that the LMIs (5) are feasible and let Z,Y and τ be a so-
lution with Z  0, τ ∈ R>0. Then, the terminal cost F(x) = x�Px, the stage cost
L(x,u) = x�Qx + u�Ru and the ACL h(x) = Kx with P := Z−1 and K := Y Z−1 sat-
isfy Assumption 1-(v) with σ(‖v‖) := τ‖v‖2

2 = τv�v.

Proof: For brevity let Δ(wi) denote the matrix in the left-hand side of (5). Us-
ing W = Co{w1, . . . ,wE} (where Co{·} denotes the convex hull) and the fact that
A(w),B(w) and B1(w) are affine functions of w, it is trivial to observe that if (5)
holds for all vertices w1, . . . ,wE of W, then Δ(w)  0 holds for all w ∈W.

Applying the Schur complement to Δ(w)  0 (pivoting after diag(Z, I, I)) and
letting M(w) := A(w)Z + B(w)Y yields the equivalent matrix inequalities:



Further Results on “Robust MPC Using Linear Matrix Inequalities” 95(
Z−M(w)�Z−1M(w)−Z�QZ−Y�RY −M(w)�Z−1B1(w)

−B1(w)�Z−1M(w) τI−B1(w)�Z−1B1(w)

)
 0

and Z  0. Letting Acl(w) := A(w)+ B(w)K, substituting Z = P−1 and Y = KP−1,
and performing a congruence transformation on the above matrix inequality with
diag(P, I) yields the equivalent matrix inequalities:(

P−Acl(w)�PAcl(w)−Q−K�RK −Acl(w)�PB1(w)
−B1(w)�PAcl(w)) τI−B1(w)�PB1(w)

)
 0

and P 0. Pre multiplying with ( x
v)
� and post multiplying with ( x

v ) the above matrix
inequality yields the equivalent inequality:

(Acl(w)x + B1(w)v)�P(Acl(w)x + B1(w)v)− x�Px≤−x�(Q+ K�RK)x + τv�v,

for all x ∈Rn and all v∈Rdv . Hence, Assumption 1-(v) holds with σ(‖v‖) = τ‖v‖2
2.

�

Remark 2. In [8] the authors established an explicit relation between the gain τ ∈
R>0 of the function σ(·) and the ISS gain of the corresponding closed-loop MPC
system. Thus, since τ enters (5) linearly, one can minimize over τ subject to the
LMIs (5), leading to a smaller ISS gain from v to x. �

4.2 Relation to LMI-Based H∞ Control Design

In this section we formalize the relation between the considered robust MPC design
problem and H∞ design for linear systems. But first, we briefly recall the H∞ design
procedure for the discrete-time linear system (4). For simplicity, we remove the
parametric disturbance w and consider only additive disturbances v ∈ V. However,
the results derived below that relate to the optimal H∞ gain also hold if parametric
disturbances are considered, in the sense of an optimal H∞ gain for linear parameter
varying systems.

Consider the system corresponding to (4) without parametric uncertainties, i.e.

x(k + 1) = Ax(k)+ Bu(k)+ B1v(k),
z(k) = Cx(k)+ Du(k)+ D1v(k), (6)

where we added the performance output z ∈ Rdz . Using the results of [13], [14] it
can be demonstrated that system (6) in closed-loop with u(k) = h(x(k)) = Kx(k),
k ∈ Z+, has an H∞ gain less than

√γ if and only if there exists a symmetric matrix
P such that: ⎛⎜⎜⎝

P 0 (A + BK)�P (C + DK)�
0 γI B�1 P D�1

P(A + BK) PB1 P 0
C + DK D1 0 I

⎞⎟⎟⎠ 0. (7)
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Letting Z = P−1, Y = KP−1 and performing a congruence transformation using
diag(Z, I,Z, I) one obtains the equivalent LMI:⎛⎜⎜⎝

Z 0 (AZ + BY)� (CZ + DY)�
0 γI B�1 D�1

AZ + BY B1 Z 0
CZ + DY D1 0 I

⎞⎟⎟⎠ 0. (8)

Indeed, from the above inequalities, where V (x) := x�Px, one obtains the dissipation
inequality:

V (x(k + 1))−V(x(k))≤−‖z(k)‖2
2 + γ‖v‖2

2. (9)

Hence, we can infer that ∑∞
i=0 ‖z(i)‖2

2 ≤ γ ∑∞
i=0 ‖v(i)‖2

2 and conclude that the H∞
norm of the system is not greater than

√γ . Minimizing γ subject to the above LMI
yields the optimal H∞ gain as the square root of the optimum.

Remark 3. In [13], [14] an equivalent formulation of the matrix inequality (7) is
used, i.e. with γI in the south east corner of (7)-(8) instead of I, which leads to the
adapted dissipation inequality V (x(k+1))−V(x(k))≤−γ−1‖z(k)‖2

2 +γ‖v‖2
2. Then,

by minimizing over γ subject to the LMIs (8), one obtains the optimal H∞ gain
directly as the optimal solution, without having to take the square root. However,
regardless of which LMI set-up is employed, the resulting optimal H∞ gain and
corresponding controller (defined by the gain K) are the same, with a difference in
the storage function V (x) = x�Px with a factor γ . �

Theorem 2. Suppose that the LMIs (5) without parametric uncertainties and (8)

with C =
(

Q
1
2

0

)
, D =

(
0

R
1
2

)
and D1 = 0 are feasible for system (6). Then the fol-

lowing statements are equivalent:

1. Z, Y and τ are a solution of (5);

2. Z, Y and γ are a solution of (8) with C =
(

Q
1
2

0

)
, D =

(
0

R
1
2

)
and D1 = 0;

3. System (6) in closed-loop with u(k) = Kx(k) and K = YZ−1 satisfies the dissipa-
tion inequality (9) with storage function V (x) = x�Px and P = Z−1, and it has
an H∞ norm less than

√γ =
√
τ;

4. Assumption 1-(v) holds for F(x) = x�Px, L(x,u) = x�Qx+u�Ru and h(x) = Kx,
with P = Z−1, K = Y Z−1 and σ(‖v‖) = τ‖v‖2

2 = γ‖v‖2
2.

The proof of Theorem 2 is trivially obtained by replacing C, D and D1 in (8) and
(9), respectively, and using Theorem 1 and the results of [13], [14].

Theorem 2 establishes that the LMI-based solution for solving Problem 2 pro-
posed in this paper guarantees an H∞ gain equal to the square root of the gain τ = γ
of the σ(·) function for the system in closed-loop with the ACL. It also shows that
the optimal H∞ control law obtained by minimizing γ = τ subject to (8) (for a par-
ticular performance output related to the MPC cost) solves the terminal cost and
ACL problem in inf-sup robust MPC. These results establish an intimate connection
between H∞ design and inf-sup MPC, in a similar way as LQR design is connected
to nominally stabilizing MPC. This connection is instrumental in improving the
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closed-loop ISS gain of inf-sup MPC closed-loop systems as follows: an optimal
gain τ = γ of the σ(·) function results in a smaller gain of the function γ(·) of
Definition 2 for the MPC closed-loop system, as demonstrated in [8].

5 Conclusions

In this article we proposed a novel LMI-based solution to the terminal cost and aux-
iliary control law problem in inf-sup robust MPC. The developed conditions apply
to a more general class of systems than previously considered, i.e. linear systems
affected by both parametric and additive disturbances. Since LMIs can be solved ef-
ficiently, the proposed method is computationally attractive. Furthermore, we have
established an intimate connection between the proposed LMIs and the optimal H∞
control law. This result, which was somehow missing in the MPC literature, adds to
the well-known connection between design of nominally stabilizing MPC schemes
and the optimal solution of the LQR problem. Such results are of general interest as
they connect well known linear control problems to MPC design.
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LMI-Based Model Predictive Control for Linear
Discrete-Time Periodic Systems

Christoph Böhm, Tobias Raff, Marcus Reble, and Frank Allgöwer

Abstract. This paper presents a new model predictive control (MPC) scheme for lin-
ear constrained discrete-time periodic systems. In each period of the system, a new
periodic state feedback control law is computed via a convex optimization problem
that minimizes an upper bound on an infinite horizon cost function subject to state
and input constraints. The performance of the proposed model predictive controller,
that stabilizes the discrete-time periodic system if it is initially feasible, is illustrated
via an example.

Keywords: Model predictive control, periodic system, linear matrix inequality.

1 Introduction

MPC based on linear discrete-time systems is widely used in industrial applications
and much research has been done on its system theoretical properties, e.g. stability
[16] and robustness [2]. However, only few MPC schemes have been developed
for linear discrete-time periodic systems, see e.g. [7, 11, 13]. Periodic systems are
of great importance for engineering applications. Examples of processes that can
be modeled through a linear periodic system are sampled-data systems, satellites
[15], rotors of helicopters [1], or chemical processes. Several methods to guarantee
stability of linear periodic systems have been developed in the past [3, 5, 8, 9, 10].
A survey of the analysis and control of periodic systems is given in [4].

In this paper a new MPC scheme for linear discrete-time periodic systems based
on results in [8] and [12] is proposed. In each period of the system (not at each
time instant as usually in MPC), a new periodic state feedback control law is com-
puted that minimizes an upper bound on an infinite horizon cost function subject
to input and state constraints. This design problem is formulated as a convex opti-
mization problem involving linear matrix inequalities (LMIs). It is shown that the
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proposed model predictive controller, if initially feasible, stabilizes linear con-
strained discrete-time periodic systems. Note that the proposed MPC scheme can
incorporate input and state constraints compared to existing MPC schemes for lin-
ear periodic systems [7, 11, 13] and improves the performance due to the online
optimization compared to existing state feedback control laws [8, 9, 10]. Satisfac-
tion of input and state constraints is obtained using invariant ellipsoids. Although not
considered in this work, it could be of interest to apply a polyhedral set based MPC
approach similar to [14] in order to obtain a less conservative constraint handling.

The remainder of the paper is organized as follows: In Section 2, the class of
linear discrete-time systems is introduced and the considered control problem is
formulated. Section 3 provides the main result of the paper, namely, a new MPC
scheme for linear constrained discrete-time periodic systems. The applicability of
the proposed MPC scheme is illustrated via an example in Section 4. Section 5
concludes the paper with a summary.

2 Problem Setup

Consider the linear N-periodic system of the form

xk+1 = Akxk + Bkuk (1)

with initial condition x0 = x̄0. In (1) xk ∈R
n is the system state, uk ∈R

m the control
input, k≥ 0 the time variable, and Ak+N = Ak ∈Rn×n, Bk+N = Bk ∈Rn×m are linear
periodic matrices with the time period N.

The control problem considered in this paper is to stabilize the origin of sys-
tem (1) via a model predictive controller such that the state and input constraints
defined by the polyhedral set

C =
{[

xk

uk

]
∈R

n+m : c jxk + d juk ≤ 1, j = 1, . . . , p

}
(2)

are satisfied at every time instant k, where ci ∈ R1×n and di ∈ R1×m. Since MPC
takes constraints explicitly into account it is a suitable method to achieve the given
control task. In MPC the future states of the system are predicted based on the
measurement xk at the time instant k. Therefore, a prediction model is used, which
in the case of discrete-time systems can be written as

xk+i+1|k = Ak+ixk+i|k + Bk+iuk+i|k, xk|k = xk. (3)

In the prediction model the time variable k is fixed whereas i ≥ 0 is the free
prediction time variable. Thus, the state xk+i|k denotes the predicted state at time
instant k + i (under the input uk+i|k) that is calculated based on the state measure-
ment xk of system (1) at time instant k, i.e. xk|k = xk.

The basic idea of MPC is to solve online an optimal control problem at each time
instant k based on the measured system state xk. The underlying optimal control
problem is to minimize the infinite horizon quadratic cost function
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J∞|k =
∞

∑
i=0

xT
k+i|kQxk+i|k + uT

k+i|kRuk+i|k (4)

with the positive definite and symmetric weighting matrices Q ∈ Rn×n and R ∈
Rm×m. In the following a linear state feedback law

uk+i|k = Kk+i|kxk+i|k (5)

is considered, where Kk+i|k ∈ Rm×n, i = 0, . . . ,∞, is a time-variant feedback matrix.
Substituting (5) in (4), the cost function can be written as

J∞|k =
∞

∑
i=0

xT
k+i|k(Q+ KT

k+i|kRKk+i|k)xk+i|k. (6)

Minimizing this cost function at the time instant k would require the calculation
of an infinite number of feedback matrices. This is practically impossible. The key
idea of the approach presented in this paper is to calculate a control law (5) defined
by an N-periodic feedback matrix, i.e. Kk+i+N|k = Kk+i|k. The underlying controller
design problem is formulated as a convex optimization problem which minimizes
an upper bound on the considered cost function (6). In the next section an MPC
approach is derived where the periodic feedback matrix is recalculated after one
time period N, i.e. the feedback law (5) is updated at each time instant κr = rN,
r = 0, . . . ,∞, based on the measurement of the system state xκr . The obtained control
law is then applied to system (1) for one time period N, i.e. for k ∈ [κr,κr + N−1].
At the next recalculation instant κr+1 = (r+1)N a new feedback matrix Kκr+1+i|κr+1

is computed based on the new measured system state xκr+1 . Hence, the proposed
model predictive controller requires the recalculation only once in each period while
in classical MPC approaches the control input is computed at every time instant. In
the next section the model predictive controller is introduced in more detail.

3 MPC For Linear Periodic Systems

The MPC approach proposed in this section is based on the minimization of an
upper bound on cost function (6) at time instants κr = rN, r = 0, . . . ,∞. To simplify
notation, in the remainder of this paper the index of the time instant κr is skipped.
Thus, κ represents an arbitrary multiple of the time period N. The following lemma,
often referred to as periodic Lyapunov lemma, is useful in the stability analysis and
feedback design of N-periodic systems, see e.g. [3, 5, 8].

Lemma 1. It is shown in [3] and [5] that system (1) with uk = 0 is asymptotically
stable if and only if there exits an N-periodic positive definite matrix Pk ∈ Rn×n,
i.e. Pk+N = Pk, such that AT

k Pk+1Ak−Pk < 0 holds for all k ≥ 0. Furthermore, this
inequality holds if the following LMIs with Wk = P−1

k hold:[−Wk WkAT
k

AkWk −Wk+1

]
< 0, k = 0,1, . . . ,N−1. (7)
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Now, an upper bound on the cost function (6) is derived via conditions for the cal-
culation of a control law (5) that stabilizes the prediction model (3).

Theorem 1. Consider the N-periodic prediction model defined in (3) without con-
straints (2). Assume that there exist matrices 0 <Λκ+i|κ ∈Rn×n, Γκ+i|κ ∈Rm×n and
a positive constant ακ such that the LMIs⎡⎢⎢⎢⎣

Λκ+i|κ ΔT
κ+i|κ Λκ+i|κQ

1
2 Γ T

κ+i|κR
1
2

Δκ+i|κ Λκ+i+1|κ 0 0

Q
1
2Λκ+i|κ 0 ακ I 0

R
1
2Γκ+i|κ 0 ακ I

⎤⎥⎥⎥⎦ ≥ 0, (8)

Λκ+N|κ =Λκ |κ , i = 0, . . . ,N−1

with Δκ+i|κ = Aκ+iΛκ+i|κ + Bκ+iΓκ+i|κ are satisfied at the time instant κ . Then the

control law (5) with the N-periodic matrix Kκ+i+N|κ = Kκ+i|κ =Γκ+i|κΛ−1
κ+i|κ , where

Λ−1
κ+i|κακ = Pκ+i|κ = Pκ+i+N|κ , asymptotically stabilizes the origin of the prediction

model (3). Furthermore, xT
κPκ |κxκ upper bounds the cost function (6) at time in-

stant κ , where xκ is the state of system (1) at κ .

Proof. Substituting Δκ+i|κ , Γκ+i|κ , Λκ+i|κ and αk in the LMIs (8) as defined in the
theorem by Aκ+i, Bκ+i, P−1

κ+i|κ and Kκ+i|κ and applying the Schur complement one
obtains

P−1
κ+i|κ −P−1

κ+i|κ
(

Q+ KT
κ+i|κRKκ+i|κ + ÃT

κ+i|κPκ+i+1|κÃκ+i|κ
)

P−1
κ+i|κ ≥ 0, (9)

where Ãκ+i|κ = Aκ+i + Bκ+iKκ+i|κ and i = 0, . . . ,N − 1. Using the periodicity of
system (3) and of the matrices Kκ+i|κ and Pκ+i|κ , one can show after some straight-
forward manipulations that if inequality (9) is satisfied the inequality

(Aκ+i+Bκ+iKκ+i|κ)T Pκ+i+1|κ(Aκ+i+Bκ+iKκ+i|κ)

−Pκ+i|κ + Q+ KT
κ+i|κRKκ+i|κ ≤ 0, (10)

holds for i = 0, . . . ,∞. Since the matrices Q and R are positive definite, one can con-
clude from Lemma 1 that the considered prediction model (3) is asymptotically sta-
bilized by the N-periodic feedback matrix Kκ+i|κ . This implies that limi→∞‖xκ+i|κ‖=
0. Furthermore, it follows from (10) that

xT
κ+i|κ

(
ÃT
κ+iPκ+i+1|κÃκ+i−Pκ+i|κ + Q+ Kκ+i|κRKκ+i|κ

)
xκ+i|κ ≤ 0 (11)

is satisfied for all i≥ 0. Using (3) one obtains that

xT
κ+i|κPκ+i|κxκ+i|κ − xT

κ+i+1|κPκ+i+1|κxκ+i+1|κ
≥ xT

κ+i|κ(Q+ KT
κ+i|κRKκ+i|κ)xκ+i|κ (12)

holds for all i≥ 0. The sum of this inequality from i = 0 to i→ ∞ is
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xT
κ |κPκ |κxκ |κ ≥

∞

∑
i=0

xT
κ+i|κ(Q+ KT

κ+i|κRKκ+i|κ)xκ+i|κ = J∞|κ . (13)

Hence, xT
κ |κPκ |κxκ |κ = xT

κ Pκ |κxκ is an upper bound on the considered cost func-
tion (6) at time instant κ .

In Theorem 1 LMI conditions to calculate an upper bound on the cost function (6)
for linear periodic systems have been introduced. The obtained results will be used
to derive an MPC controller that minimizes this upper bound at each time instant κ .
Besides the minimization of an upper bound, the model predictive controller has to
satisfy input and state constraints as introduced in (2). Since we consider the time-
variant control law (5), the constraint set (2) clearly can be written in a time-variant
form only dependent on the state x:

Cκ+i|κ =
{

x ∈R
n : (c j + d jKκ+i|κ)x≤ 1

}
, (14)

where j = 1, . . . , p and i = 0, . . . ,∞. To guarantee satisfaction of these constraints
the following lemma is useful, see e.g. [6].

Lemma 2. The ellipsoid Eκ+i|κ={x∈R
n :xT Pκ+i|κx≤ακ} is contained in the con-

straint set Cκ+i|κ at the time instant κ + i if and only if

(c j + d jKκ+i|κ)ακP−1
κ+i|κ(c j + d jKκ+i|κ)T ≤ 1, ∀ j = 1, . . . , p. (15)

Hence, it follows from Lemma 2 that if the predicted state xκ+i|κ at the time instant
κ + i is contained in the ellipsoid Eκ+i|κ , then the input and state constraints are
satisfied at this time instant. Using the results of Theorem 1 and Lemma 2 the next
theorem proposes a model predictive controller that asymptoticallyc stabilizes sys-
tem (1) without violating the constraints (2), and which minimizes an upper bound
on the cost function (6) at each time instant κ .

Theorem 2. Consider the N-periodic system (1), the constraints (2) and the cost
function (6). The model predictive controller with the convex optimization problem

min
ακ ,Λκ+i|κ ,Γκ+i|κ

ακ , (16)

subject to [
1 xT

κ
xκ Λκ |κ

]
≥0, (17)⎡⎢⎢⎢⎣

Λκ+i|κ ΔT
κ+i|κ Λκ+i|κQ

1
2Γ T
κ+i|κR

1
2

Δκ+i|κ Λκ+i+1|κ 0 0

Q
1
2Λκ+i|κ 0 ακ I 0

R
1
2Γκ+i|κ 0 0 ακ I

⎤⎥⎥⎥⎦ ≥ 0, (18)

[
1 c jΛκ+i|κ + d jΓκ+i|κ

(c jΛκ+i|κ + d jΓκ+i|κ)T Λκ+i|κ

]
≥0, (19)

Λκ+N|κ=Λκ |κ , i = 0, . . . ,N−1, j = 1, . . . , p,
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that is solved at each time instant κ , where Λκ+i|κ > 0, Δκ+i|κ = Aκ+iΛκ+i|κ +
Bκ+iΓκ+i|κ , Pκ+i|κ =Λ−1

κ+i|κακ , Kκ+i|κ = Γκ+i|κΛ−1
κ+i|κ , and xk is the measured state

of system (1), has the following properties: (a) The upper bound xT
κPκ |κxκ on the

cost function (6) is minimized at each time instant κ . (b) The predicted states xκ+i|κ
and inputs uκ+i|κ satisfy state and input constraints defined in (2) for all i ≥ 0. (c)
If the optimization problem (16)-(19) of the proposed model predictive controller is
feasible at time instant κ = 0, then it is feasible at all future time instants κ . (d) The
control signal uk for k ∈ [κ ,κ +N−1] of the model predictive controller defined by

uκ+i = Kκ+i|κxκ+i, i = 0, . . . ,N−1, (20)

guarantees attractivity of the origin of system (1), i.e. ‖xk‖ → 0 as k→ ∞, without
violating the constraints (2).

Proof. The proof is divided into four parts in order to show separately that the prop-
erties (a)-(d) hold.

Part (a): The LMIs (18) correspond to the LMIs (8) in Theorem 1. Therefore, it is
known that xT

κPκ |κxκ is an upper bound on cost function (6) at the time instant κ .
The LMI (17) is equivalent to the inequality xT

κPκ |κxκ ≤ ακ . Thus, minimizing ακ
implies minimizing this upper bound on the cost function.

Part (b): The LMIs (18) satisfy the conditions of Theorem 1. Therefore, the N-
periodic feedback matrix Kκ+i|κ stabilizes the origin of the prediction model (3).
Furthermore, from inequality (12) in the proof of Theorem 1 it follows with Q > 0
and R > 0 that

xT
κ+i+1|κPκ+i+1|κxκ+i+1|κ− xT

κ+i|κPκ+i|κxκ+i|κ < 0 (21)

holds for all i≥ 0. Combining this with (17) one obtains

xT
κ+i+1|κPκ+i+1|κxκ+i+1|κ<xT

κ+i|κPκ+i|κxκ+i|κ≤ακ , i≥ 0. (22)

Therefore, the state xκ+i|κ lies in the ellipsoid

Eκ+i|κ =
{

x ∈ R
n : xT Pκ+i|κx≤ ακ

}
. (23)

Using the results of Lemma 2, the ellipsoids Ek+i|k, i = 1, . . . ,∞, lie in the corre-
sponding constraint sets (14) if and only if (15) holds for all j = 1, . . . , p and all
i ≥ 0. Since Pκ+i|κ and Kκ+i|κ are N-periodic matrices it is obvious that (15) holds
for all i ≥ 0 if it holds for all i = 0, . . . ,N− 1. With some straightforward manipu-
lations it can be shown that (19) is equivalent to (15). Thus, it has been shown that
the LMIs (19) imply that the state xκ+i|κ lies in the ellipsoid Eκ+i|κ which lies in the
constraint set Cκ+i|κ at each time instant κ + i. Therefore, the predicted sequences
xκ |κ ,xκ+1|κ , . . . ,x∞|κ and uκ |κ ,uκ+1|κ , . . . ,u∞|κ calculated at time instant κ satisfy
state and input constraints at each predicted time instant κ + i.

Part (c): Suppose that the optimization problem (16)-(19) of Theorem 2 is feasible
at time instant κ . It follows from inequality (22) that
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ακ ≥ xT
κ |κPκ |κxκ |κ > xT

κ+1|κPκ+1|κxκ+1|κ > .. .

. . . > xT
κ+N|κPκ+N|κxκ+N|κ (24)

holds. Therefore, with xκ+N|κ+N = xκ+N|κ and Pκ+N|κ = Pκ |κ the inequality

xT
κ+N|κ+NPκ |κxκ+N|κ+N < xT

κ |κPκ |κxκ |κ ≤ ακ (25)

is satisfied. Thus, the matrix Λκ |κ = P−1
κ |κακ satisfies the LMI (17) at time in-

stant κ + N. Since only (17) depends on the system state xκ+N|κ+N , this implies
that the matrices Λκ+i|κ and Γκ+i|κ and the constant ακ are a feasible solution to the
optimization problem (16)-(19) at time instant κ + N. By induction it follows that
feasibility at κ = 0 implies feasibility at all future time instants.

Part (d): The LMIs (17)-(19) are solved at the time instant κ . The control signal
applied to system (1) for k ∈ [κ ,κ + N− 1] is defined by equation (20). The initial
condition of the prediction model (3) equals the state of system (1), i.e. xκ |κ = xκ .
It follows from (20) that the states and inputs of system (1) correspond exactly to
those of the prediction model (3) in the considered time interval, i.e. xκ+i = xκ+i|κ ,
i = 0 . . . ,N, and uκ+i = uκ+i|κ , i = 0, . . . ,N− 1. Thus, from part (b) of the proof it
follows that the inputs and states of system (1) satisfy the constraints at each time
instant k.

What remains is to show that the control law (20) stabilizes the origin of sys-
tem (1). From inequality (22) follows with the N-periodic matrix Pκ+N|κ = Pκ |κ and
with xκ+i|κ = xκ+i for i = 0, . . . ,N, that

xT
κ+NPκ |κxκ+N < xT

κPκ |κxκ (26)

holds. From part (c) of the proof it is known that the solution at the recalculation
instant κ , Pκ+i|κ and Kκ+i|κ , also solve the LMIs (17)-(19) at the following recal-
culation instant κ + N. However, in general this solution is non-optimal. Therefore,
one obtains that

xT
κ+NPκ+N|κ+Nxκ+N ≤ xT

κ+NPκ |κxκ+N < xT
κ Pκ |κxκ (27)

holds for all κ , see [12] for a more detailed explanation. This implies that the states
of system (1) at the recalculation instants κ ∈ [0,N,2N, . . . ,∞) converge to zero,
i.e. ‖xκ‖ → 0 as κ → ∞. It still has to be shown that also the states between the
recalculation instants converge to zero. From inequality (22) follows

xT
κ+iPκ+i|κxκ+i < xT

κPκ |κxκ , i = 0, . . . ,N−1. (28)

At each time instant κ a solution for the LMIs (17)-(19) with positive definite
matrices Pκ+i|κ , i = 0 . . . ,N − 1, exists. This implies that xκ+i is bounded for
i = 0, . . . ,N−1. Furthermore, since ‖xκ‖ → 0 as κ → ∞ it follows from Pk+i|k > 0
that ‖xκ+i‖→ 0, i = 0, . . . ,N−1, as κ→∞. Summarizing, the MPC control law (20)
guarantees attractivity of the origin of the considered periodic system (1), i.e.
‖xk‖→ 0 as k→ ∞.
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As shown above, the repeated solution of the LMIs in Theorem 2 and the application
of the obtained feedback matrices stabilizes the origin of the considered periodic
system (1) without violating input and state constraints. The recalculation of the
N-periodic feedback matrix Kκ+i|κ at each time instant κ reduces the conservatism
of the solution obtained at the previous time instant κ −N. An example system
demonstrates these results in the following section.

4 Simulation Results

To illustrate the results of the previous section a periodic example system of the
form (1) is considered. The system is of third order and has two inputs u1

k and u2
k ,

i.e. n = 3 and m = 2. Its time period is N = 3. The example system is described by
the matrices

A0 =

⎡⎣ 0.4 0.3 1.0
0.6 0.6 0.0
0.1 0.9 0.1

⎤⎦ , A1 =

⎡⎣ 0.4 0.7 0.8
0.1 1.0 0.1
0.3 0.4 0.8

⎤⎦ , A2 =

⎡⎣ 0.3 0.7 0.3
0.8 0.5 0.3
0.6 0.4 0.7

⎤⎦ ,

B0 =

⎡⎣ 0.3 0.3
0.5 1.0
0.4 1.0

⎤⎦ , B1 =

⎡⎣ 0.2 0.6
0.1 0.1
0.3 0.9

⎤⎦ , B2 =

⎡⎣ 0.9 0.0
0.5 0.2
0.3 0.8

⎤⎦ .

The initial condition for the system states is given by x0 = [10 10 0]T . For sim-
plicity, no state constraints are considered. However, the controller has to be de-
signed such that the inputs satisfy −3 ≤ u1

k ≤ 3 and −4.5≤ u2
k ≤ 4.5 for all k ≥ 0.

Fig. 1 Black lines: Proposed model predictive controller. Gray lines: Controller with “con-
stant” feedback
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Thus, the number of constraints is p = 4. Since only input constraints are con-
sidered, the state constraint vectors are c j = [0 0 0] ∀ j = 1, . . . ,4. The input con-
straint vectors are d1 = −d2 = [ 1

3 0] and d3 = −d4 = [0 2
9 ]. As design parameters

for the predictive controller the weighting matrices Q =diag(0.001,0.001,0.001)
and R =diag(0.005,0.005) are chosen. The black lines in Figure 1 show the re-
sults obtained by the proposed MPC controller. To illustrate the effectiveness of the
MPC approach, the results are compared with those obtained when the N-periodic
feedback matrix calculated at the first time instant k = κ = 0, i.e. the sequence
K0|0,K1|0,K2|0,K0|0,K1|0, . . ., is applied to the system without a recalculation of the
feedback matrix at the recalculation instants κ . Exemplarily, Figure 1 shows the
trajectories x1

k , x2
k , u1

k and the norm of the N-periodic feedback matrix. Clearly, the
example system is steered to the origin much faster by the MPC controller. The
reason for this is that the norm of the N-periodic feedback matrix increases after
each recalculation instant leading to exploitation of the whole available input en-
ergy. The update of the feedback matrix makes the controller more aggressive and
therefore, the performance of the MPC controller is significantly better than that of
the controller with “constant” feedback matrix.

Summarizing, the MPC controller can use the available input sequences more
efficiently since the periodic feedback matrix is updated at each time instant κ .

5 Conclusions

In this paper a model predictive controller for constrained linear discrete-time peri-
odic systems has been proposed. The control law is obtained by the repeated solu-
tion of a convex optimization problem. It has been shown that the MPC controller
stabilizes the origin of the considered system without violating the constraints. The
effectiveness of the proposed approach has been demonstrated via simulations of an
example system. Further work is necessary to investigate its applicability on practi-
cal control problems such as e.g. satellite control.
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Receding Horizon Control for Linear Periodic
Time-Varying Systems Subject to Input
Constraints

Benjamin Kern, Christoph Böhm, Rolf Findeisen, and Frank Allgöwer

Abstract. In this paper, a receding horizon control scheme able to stabilize linear
periodic time-varying systems, in the sense of asymptotic convergence, is proposed.
The presented approach guarantees that input constraints are always satisfied if the
optimization problem is feasible at the initial time.

Unlike the usual approaches for linear systems, a finite prediction horizon is used.
Stability is ensured by choosing a time-varying terminal cost, that approximates an
infinite horizon cost and is related to the solution of a Matrix Riccati differential
equation. Sufficient conditions on the system for the design of its corresponding
time-varying terminal region are derived, such that it is also possible to incorporate
input constraints. This region is based on the time-varying terminal cost and can be
calculated off-line.

Keywords: linear periodic time-varying systems, predictive control, input con-
straints, time-varying terminal region, periodic Riccati equation.

1 Introduction

Linear periodic time-varying systems (LPTV systems) are often encountered in
practice. Typical examples are mechanical applications, in which periodic motions
are present, or systems where different parameters oscillate periodically. Other ex-
amples are the rotor motion of wind-turbines [7] or the attitude control of small
satellites [6], which are usually described in this way.
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Due to the nature of these systems, more advanced control methods are necessary
to achieve good performance. For instance, there are H∞ approaches [8] or feedback
techniques based on the solution of a Matrix Riccati equation [5], which can deal
with these kind of systems adequately. However, the implementation of these con-
trollers in practical applications is generally difficult, since it is hard to consider
some physical limitations, in terms of input or state constraints. One way to resolve
these issues is to use receding horizon control schemes, since they are generally ca-
pable of handling constraints. Design methods for nonlinear systems can be found
in [1], [3].

The main contribution of this paper is the development of a receding horizon
control scheme, which guarantees stability for continuous LPTV systems. It differs
from the method proposed in [9], since it takes directly into account some special
properties of LPTV systems. To deal with input constraints, sufficient conditions
for the design of a time-varying terminal region are derived. Due to the structure of
the considered systems, it is possible to calculate the terminal region and the cost
off-line.

The remainder of this paper is structured as follows. In Section 2, the system class
and some necessary assumptions are provided. In Section 3, the proposed approach
and the main results are introduced. Finally, in Section 4, simulation results for a
benchmark system are provided.

2 Problem Statement

Consider the following linear periodic time-varying system

ẋ(t) = A(t)x(t)+ B(t)u(t), x(t0) = x0 (1)

with x(t) ∈ Rn, u(t) ∈ Rm, A(t) ∈ Rn×n,B(t) ∈ Rn×m for all t ≥ t0. The system
matrices A(t) and B(t) are periodic with a period time T , i.e. there is a T > 0,T ∈R ,
such that A(t) = A(t + T) and B(t) = B(t + T ) for all t ≥ t0.
For the remainder of the paper the following assumptions are made:

A1. The system (1) is uniformly controllable in t.
A2. The solution of the Matrix-Riccati-Equation

Ṗ(t) =−A(t)T P(t)−P(t)A(t)+ P(t)B(t)R−1B(t)T P(t)−Q (2)

with Q = QT > 0 and R = RT > 0 is known.

Corollary 1. Suppose assumption A1 and A2 hold. Then the solution of (2) is peri-
odic and positive definite, i.e.

P(t) = P(t + T ) and PT (t) = P(t) > 0, ∀t ≥ t0

and uR(s) =−R−1B(s)T P(s)x stabilizes the system (1) uniformly in t.

Proof. See e.g. [5].
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As shown later, the stabilizing feedback law uR(s) and P(t) can be used to calculate
the terminal region and cost in a receding horizon control framework.

2.1 Receding Horizon Control without Input Constraints

To stabilize system (1), the quasi-infinite-horizon setup proposed in [4] is adopted to
LPTV systems. In a first step, the problem is relaxed by avoiding input constraints.
Assuming that P(t) is known, the following optimal control problem is used:

J∗(x(t), t) := min
ū(·)

J(x(·), ū(·)) (3)

s. t.: ˙̄x(s) = A(s)x̄(s)+ B(s)ū(s), x(t) = xt ,

where J(x(·), ū(·)) is given by

J(x(·), ū(·)) =
∫ t+Tp

t
x̄T Nx̄ + ūT Mūds+ x̄(t + Tp)T P(t + Tp)x̄(t + Tp),

where s denotes the time of the predicted state.

The sampled-data receding horizon scheme can be used to control the system, i.e
at each sampling time ti+1 = ti + δ , the measured state xt is used as an initial value
to solve the optimization problem (3). The obtained solution ū(·), is then applied
to the plant for a sampling time δ ≤ Tp, until the next measurement of the plant is
available. By following this approach, it can be proved that the following theorem
holds.

Theorem 1. Consider the optimal control problem (3). If

N−Q+ P(t)B(t)R−1(M−R)R−1B(t)T P(t) < 0, t ∈ R (4)

with N = NT > 0, M = MT > 0, then, the sampled-data receding horizon control
stabilizes the closed loop, in the sense of asymptotic convergence.

Proof. The proof follows the lines of [10] and [2]. It is shown, that there exists
admissible input policies ûti(·) at each sampling time ti+1 = ti + δ , that are able to
make the optimal value of (3) strictly decreasing for all t ≥ t0.

Since there are no constraints, the optimization problems are feasible for each
sampling time ti. Consider, therefore, the following input policy

ûti+δ (s) =

{
ūti(s), s ∈ [ti + δ , t0 + Tp]
uR(s), s ∈ [t0 + Tp, t0 + Tp + δ ].

(5)

Here, ūti(·) denotes the optimal solution at sampling time ti, which results in
an optimal state trajectory x̄ti(·). The optimal value J∗(x(ti), ti) at time ti is then
given by
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J∗(x(ti),ti) =

ti+Tp∫
ti

x̄T
ti Nx̄ti + ūT

ti Mūti ds+ x̄ti(ti + Tp)T P(ti + Tp)x̄ti(ti + Tp).

The not necessarily optimal input policy ûti+1(·) can be used to approximate the
optimal value J∗(x(ti + δ ),ti + δ ) at sampling time ti+1, i.e.

J∗(x(ti+1),ti+1)≤
ti+δ+Tp∫
ti+δ

x̂T
ti Nx̂ti + ûT

ti Mûti ds

+ x̂ti(ti+1 + Tp)T P(ti+1 + Tp)x̂ti(ti+1 + Tp).

(6)

By using the fact, that for arbitrary t ≥ t0

x(t + Tp)T P(t + Tp)x(t + Tp) =
∫ ∞

t+Tp

xT Qx + uT
RRuR ds

=
∫ ∞

t+Tp

xT (Q+ P(s)B(s)R−1B(s)T P(s)
)

xds,

it can be derived that

J∗(x(ti+1),ti+1)− J∗(x(ti), ti)≤−
∫ ti+Tp

ti
x̄T

ti Nx̄ti + ūT
ti Mūti ds

+
∫ ti+Tp+δ

ti+Tp

xT (N−Q+ P(s)B(s)R−1(M−R)R−1B(s)T P(s))xds.

With (4), it follows that

J∗(x(ti+1),ti+1)− J∗(x(ti), ti)≤−
∫ ti+δ

ti
x̄T Nx̄ds. (7)

As expected, the optimal value at sampling time ti+1 is strictly smaller than the
value at ti. By introducing the “MPC-Value-Function” V δ (t,x) presented in [10], it
can then be shown that

V δ (t, x̄(t)) = J∗(x(s), ti)≤ J∗(x(s), t0)−
∫ t

t0
x̄T Nx̄ds.

Since ûti+δ (·) is admissible at every sampling time ti, J∗(x(s), ti) can be approxi-
mated at every sampling time ti with (6), i.e. J∗(x(s), ti) and consequently the “MPC-
Value-Function” V δ (t,x) are finite for every t. Therefore, from (7), it can be easily
concluded that

∫ ∞
0 x̄T Nx̄ds exists and is finite, since the “MPC-Value-Function” is

finite at all times t. Eventually, it follows from a variant of Barlabat’s Lemma, that
x(t) converges to the origin.
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2.2 Receding Horizon Control with Input Constraints

So far, no input constraints have been considered in the problem setup. If input
constraints are present, the input policy (5) is still admissible at every sampling
time whenever a suitable terminal region is chosen. In this case, the results from
Theorem 1 are still applicable. Consider, in fact, the modified optimization problem
where J(x(·), ū(·)) is given by

min
ū

J(x(·), ū(·)) =
∫ t+Tp

t
x̄T Nx̄ + ūT Mūds+ x̄(t + Tp)T P(t + Tp)x̄(t + Tp) (8)

subject to:

˙̄x(s) = A(s)x̄(s)+ B(s)ū(s),x(t) = xt

ū(s) ∈U , with compact set U

x̄(ti + Tp) ∈Ωti+Tp .

The following theorem holds:

Theorem 2. Consider the optimal control problem (8). If Ωt is chosen such that

Ωt =
{

x ∈ R
n|x(t)T P(t)x(t)≤ α

}
, and

(i) the upper bound α is obtained from

α = min
t0≤τ≤t0+T

max
x∈R

β ,

subject to: x(τ)T P(τ)x(τ)≤ β ,

uR :=−R−1B(τ)T P(τ)x ∈U ,

(ii) for each state x(t) ∈Ωt ⇒ uR(τ)⊂U ∀τ ≥ t,
(iii) N−Q+ P(t)B(t)R−1(M−R)R−1B(t)T P(t) < 0, t ∈ R,

with N = NT > 0, M = MT > 0, then, the sampled-data receding horizon control
stabilizes the closed loop, in the sense of asymptotic convergence.

Proof. The idea is to show that the same input policy from Theorem 1 is admissible
at every sampling time ti+1 = ti + δ , provided that Ωt is chosen adequality. Thus,
the same argumentation can be used to show that the optimal value J∗(x(ti),ti) is de-
creasing, leading to the same results of Theorem 1. Consider a modified terminal re-
gion at Ωζ at the time ζ := t0 +Tp, given by Ωζ =

{
x ∈ Rn|x(ζ )T P(ζ )x(ζ ) ≤ ᾱ

}
,

where ᾱ is chosen, such that the condition (ii) is fulfilled and

ᾱ = max
x∈R

β

subject to: x(ζ )T P(ζ )x(ζ ) ≤ β

Πζ :=−R−1B(ζ )T P(ζ )x ∈U.

Assume now that the modified optimization problem is feasible at t0, i.e. there is
ūt0(·) that transfers every initial state x0 into the terminal region Ωζ . Next it is
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shown, how to choose a region Ωζ+δ , for the optimization problem at time t1 =
t0 + δ , such that ût0+δ (·) becomes admissible. Using condition (ii), it is possible to
approximate the terminal cost at every time τ ≥ t0, with

x(τ)T P(τ)x(τ) =
∫ ∞

τ
xT Qx + uT

RRuR ds

=
∫ τ+ε

τ
xT Qx + uT

RRuR ds+
∫ ∞

τ+ε
xT Qx + uT

RRuR ds

=
∫ τ+ε

τ
xT Qx + uT

RRuRds+ x(τ + ε)T P(τ + ε)x(τ + ε).

(9)

This implies that there is always a relation between the value of the terminal cost at
the times τ and τ + ε , when uR(·) is applied to the system.

Now suppose, that uR(τ) is applied to the system for all τ ∈ [ζ ,ζ +ε] with ε <∞,
then according to (9) and the definition of Ωζ ,

x(ζ + ε)T P(ζ + ε)x(ζ + ε)+
∫ ζ+ε

ζ
xT Qx + uT

RRuRds≤ ᾱ, ∀x(ζ ) ∈Ωζ .

But, this is equal to

x(ζ + ε)T P(ζ + ε)x(ζ + ε)≤ ᾱ−
∫ ζ+ε

ζ
xT (Q+ P(s)B(s)R−1B(s)T P(s))xds,

∀x(ζ ) ∈Ωζ .

Since Q > 0 and R > 0, there is also a non-negative upper bound β (ε) for the second
term on the right hand, i.e. ∃β (ε)≥ 0 for all ε ≥ 0 such that

0≤
∫ ζ+ε

ζ
xT (Q+ P(s)B(s)R−1B(s)T P(s))xds≤ β (ε)

and thus for all ε ≥ 0

x(ζ + ε)T P(ζ + ε)x(ζ + ε)≤ ᾱ−β (ε), ∀x(ζ ) ∈Ωζ . (10)

Now consider the following two time-dependent regions, for ε ∈ (ζ ,ζ + δ ]

E(ε) =
{

x ∈ R
n|x(ζ + ε)T P(ζ + ε)x(ζ + ε)≤ ᾱ

}
Eβ (ε) =

{
x ∈ R

n|x(ζ + ε)T P(ζ + ε)x(ζ + ε)≤ ᾱ−β (ε)
}

.

Suppose the optimization problem at sampling time t1 has the terminal region
Ωt1 := E(δ ). Obviously, Eβ (ε) is a subset of E(ε) for every ε ∈ (ζ ,ζ + δ ], pro-
vided uR(·) is applied to the system (see Figure 1). By definition, ût0+δ (τ) = uR(τ)
for all τ ∈ [ζ ,ζ + δ ]. Thus, the input ût0+δ (·) transfers each state into the region
E(δ ). However, E(δ ) does not necessarily lie in the subset Πζ+δ . By modifying
Ωζ , where a new ᾱ satisfies condition (ii) and is calculated by
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Fig. 1 Regions E(ε), Eβ (ε) and Ωζ

ᾱ = min
ζ≤τ≤ζ+δ

max
x∈R

β

subject to: x(τ)T P(τ)x(τ) ≤ β

Πτ :=−R−1B(τ)T P(τ)x ∈U

it can be concluded that E(δ ) is a subset of Πζ+δ . Thus ût0+δ (·) becomes an ad-
missible solution of the optimization problem at time t1. By repeating the same
procedure it can be concluded, that ûti+δ (·) is admissible at every sampling time.
Furthermore, since P(t), B(t) and are time-periodic, the parameter β from the min-
max problem will be periodic as well. Thus it is sufficient to calculate α from the
min-max problem for the first time period. Finally, since ûti+δ (·) is admissible at
every samlping time, the results from Theorem 1 still valid.

Note that condition (ii) from Theorem 2 is difficult to check. However, this condition
is necessary since it avoids problems with the time-changing constraint set Πτ . It is
possible to show that this condition is not needed anymore, if the min-max problem
is solved with a constraint set Π , which is the smallest static set that is contained
in Πτ .

3 Simulation Results

A LPTV system of the form (1) is considered. The matrices A(t) and B(t) are given
by:

A(t) =
[

0 1
1 2 + 0.4 · sin(t)

]
, B(t) =

[
1 + 0.3 · sin(t)
1 + 0.3 · sin(t)

]
. (11)

We want to show that the scheme stabilizes the system, while satisfying the input
constraint |u(t)| ≤ 1. In addition, the variation of the time-varying terminal region
is illustrated, showing that it is changing noticably at different sampling times.

The solution of the Matrix-Riccati equation is approximated by backwards inte-
gration for a sufficiently large time. The actual computation of the min-max prob-
lem is approximated by discretizing one time period in 63 different time instants.
Then, at each time instant ti, for the corresponding period, the maximum β (ti) was
computed. The actual α is approximated by minimizing β (ti), i.e. α = minβ (ti). As
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Fig. 2 Terminal region Ωti
at different sampling times

mentioned, condition (ii) from Theorem 2 is generally difficult to check. The com-
putation is therefore simplified by approximating the terminal region with a suitable
rectangle at every sampling time in a specific period. After that, only initial states
at the corners and points on the vertices of each rectangle are tested off-line in a
heurictic manner.

In Figure 2 the terminal region Ωt at some specific sampling times is depicted. It
can be seen, that the region is in fact changing noticeably. Figure 3 illustrates, that
the receding horizon setup stabilizes this system and additionally satisfies the input
constraint.

Fig. 3 Simulation Results with initial condition x0 = [0.9,−0.7]

4 Conclusion

A receding horizon control setup for LPTV system has been presented. The scheme
makes use of the fact that the solution of a Matrix-Riccati equation for uniformly
controllable systems is periodic. Because of this periodic nature, it is possible
to choose a suitable representation for the terminal region, such that input con-
straints could be explicitly considered. Although it is generally difficult to check the
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conditions for the suitable choice of the terminal region, it is possible to enlarge it
by making it time-varying.
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Optimizing Process Economic Performance
Using Model Predictive Control

James B. Rawlings and Rishi Amrit

Keywords: optimal control, constrained control, process economics, unreachable
setpoints.

1 Introduction

The current paradigm in essentially all industrial advanced process control systems
is to decompose a plant’s economic optimization into two levels. The first level
performs a steady-state optimization. This level is usually referred to as real-time
optimization (RTO). The RTO determines the economically optimal plant operating
conditions (setpoints) and sends these setpoints to the second level, the advanced
control system, which performs a dynamic optimization. Many advanced process
control systems use some form of model predictive control or MPC for this layer.
The MPC uses a dynamic model and regulates the plant dynamic behavior to meet
the setpoints determined by the RTO.

This paper considers aspects of the question of how to use the dynamic MPC
layer to optimize directly process economics. We start with the problem of a setpoint
that becomes unreachable due to the system constraints. A popular method to handle
this problem is to transform the unreachable setpoint into a reachable steady-state
target using a separate steady-state optimization. This paper explores the alternative
approach in which the unreachable setpoint is retained in the controller’s stage cost
and objective function. The use of this objective function induces an interesting
fast/slow asymmetry in the system’s tracking response that depends on the system
initial condition, speeding up approaches to the unreachable setpoint, but slowing
down departures from the unreachable setpoint.
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Analysis of the closed-loop properties of this approach for linear dynamic models
is summarized next. This problem formulation leads to consideration of optimal
control problems with unbounded cost. The first studies of this class of problems
arose in the economics literature in the 1920s in which the problem of interest was
to determine optimal savings rates to maximize capital accumulation. Much of the
economics literature focused on establishing existence results for optimal control
with infinite horizon and unbounded cost, and the famous “turnpike” theorems that
characterize the optimal trajectory. We provide a brief summarizing overview of
these optimal control results.

Next we consider the case of replacing the setpoint objective function with an
objective measuring economic performance. Many such objective functions are pos-
sible. We focus attention on the strictly convex stage cost and analyze the nominal
closed-loop stability of this class of controller. We compare performance of this new
controller to the standard RTO/MPC approach to this same problem.

The paper concludes by briefly presenting open issues and promising areas of
future research. Topics of special interest and high potential impact include: non-
linear dynamic models, distributed implementation, and robustness to disturbances
and model errors.

2 Overview of the Process Control Literature

Morari et al. [31] state that the objective in the synthesis of a control structure is
to translate the economic objectives into process control objectives. As mentioned
before, in most industrial advanced control systems, the goal of optimizing dynamic
plant economic performance is addressed by a control structure that splits the prob-
lem into two levels [26]. More generally, the overall plant hierarchical planning and
operations structure is summarized in numerous books, for example Findeisen et al.
[12], Marlin [25], Luyben et al. [24]. Planning focuses on economic forecasts and
provides production goals. It answers questions like what feed-stocks to purchase,
which products to make and how much of each product to make. Scheduling ad-
dresses the timing of actions and events necessary to execute the chosen plan, with
the key consideration being feasibility. The planning and scheduling unit also pro-
vides parameters of the cost functions (e.g. prices of products, raw materials, energy
costs) and constraints (e.g. availability of raw materials). The RTO is concerned with
implementing business decisions in real time based on a fundamental steady-state
model of the plant. It is based on a profit function of the plant and it seeks addi-
tional profit based on real-time analysis using a calibrated nonlinear model of the
process. The data are first analyzed for stationarity of the process and, if a stationary
situation is confirmed, reconciled using material and energy balances to compensate
for systematic measurement errors. The reconciled plant data are used to compute a
new set of model parameters (including unmeasured external inputs) such that the
plant model represents the plant as accurately as possible at the current (station-
ary) operating point. Then new values for critical state variables of the plant are
computed that optimize an economic cost function while meeting the constraints
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imposed by the equipment, the product specifications, and safety and environmental
regulations as well as the economic constraints imposed by the plant management
system. These values are filtered by a supervisory system that usually includes the
plant operators (e.g. checked for plausibility, mapped to ramp changes and clipped
to avoid large changes [30]) and forwarded to the process control layer as setpoints.
When viewed from the dynamic layer, these setpoints are often inconsistent and
unreachable because of the discrepancies between the models used for steady-state
optimization and dynamic regulation. Rao and Rawlings [36] discuss methods for
resolving these inconsistencies and finding reachable steady-state targets that are as
close as possible to the unreachable setpoints provided by the RTO.

Engell [11] reviews the developments in the field of feedback control for optimal
plant operations, in which the various disadvantages of the two layer strategy are
pointed out. The two main disadvantages of the current two layer approach are:

• Models in the optimization layer and in the control layer are not fully consis-
tent [2, 41]. It is pointed out that, in particular, their steady-state gains may be
different.

• The two layers have different time scales. The delay in optimization is inevitable
because of the steady-state assumption [7].

Because of the disadvantages of long sampling times, several authors have pro-
posed reducing the sampling time in the RTO layer [41]. In an attempt to narrow the
gap between the sampling rates of the nonlinear steady-state optimization performed
in the RTO layer and the linear MPC layer, the so called LP-MPC and QP-MPC
two-stage MPC structures have been suggested [32, 48, 33, 5]. Jing and Joseph [18]
perform a detailed analysis of this approach and analyze its properties. The task of
the upper MPC layer is to compute the setpoints both for the controlled variables
and for the manipulated inputs for the lower MPC layer by solving a constrained lin-
ear or quadratic optimization problem, using information from the RTO layer and
from the MPC layer. The optimization is performed with the same sampling period
as the lower-level MPC controller.

Forbes and Marlin [13], Zhang and Forbes [51] introduce a performance mea-
sure for RTO systems to compare the actual profit with theoretic profit. Three losses
were considered as a part of the cost function: the loss in the transient period be-
fore the system reaches a steady state, the loss due to model errors, and the loss
due to propagation of stochastic measurement errors. The issue of model fidelity is
discussed by Yip and Marlin [47]. Yip and Marlin [46] proposed the inclusion of
effect of setpoint changes on the accuracy of the parameter estimates into the RTO
optimization. Duvall and Riggs [10] evaluate the performance of RTO for Tennessee
Eastman Challenge Problem and point out “RTO profit should be compared to opti-
mal, knowledgeable operator control of the process to determine the true benefits of
RTO. Plant operators, through daily control of the process, understand how process
setpoint selection affects the production rate and/or operating costs.”

Backx et al. [2] describe the need for dynamic operations in the process industries
in an increasingly market-driven economy where plant operations are embedded
in flexible supply chains striving for just-in-time production in order to maintain
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competitiveness. Minimizing operation cost while maintaining the desired product
quality in such an environment is considerably harder than in an environment with
infrequent changes and disturbances, and this minimization cannot be achieved by
relying solely on experienced operators and plant managers using their accumulated
knowledge about the performance of the plant. Profitable agile operations call for a
new look at the integration of process control with process operations.

Kadam et al. [20] point out that the RTO techniques are limited with respect to
the achievable flexibility and economic benefit, especially when considering inten-
tionally dynamic processes such as continuous processes with grade transitions and
batch processes. They also describe dynamics as the core of plant operation, mo-
tivating economically profitable dynamic operation of processes. Helbig et al. [16]
introduce the concept of a dynamic real time optimization (D-RTO) strategy. Instead
of doing a steady state economic optimization to compute setpoints, a dynamic op-
timization over a fixed horizon is done to compute a reference trajectory. To avoid
dynamic re-optimization, the regulator tracks the reference trajectory using a sim-
pler linear model (or PID controller) with the standard tracking cost function, hence
enabling the regulator to act at a faster sampling rate. When using a simplified linear
model for tracking a dynamic reference trajectory, an inconsistency remains between
the model used in the two layers. Often an additional disturbance model would be
required in the linear dynamic model to resolve this inconsistency. These distur-
bance states would have to be estimated from the output measurements. Kadam and
Marquardt [19] review the D-RTO strategy and improvements to it, and discuss the
practical considerations behind splitting the dynamic real-time optimization into two
parts. A trigger strategy is also introduced, in which D-RTO reoptimization is only
invoked if predicted benefits are significant, otherwise linear updates to the reference
trajectory are provided using parametric sensitivity techniques.

Skogestad [43] describes one approach to implement optimal plant operation by
a conventional feedback control structure, termed “self-optimizing” control. In this
approach, the feedback control structure is chosen so that maintaining some func-
tion of the measured variables constant automatically maintains the process near an
economically optimal steady state in the presence of disturbances. The problem is
posed from the plantwide perspective, since the economics are determined by over-
all plant behavior. Aske et al. [1] also point out the lack of capability in steady-state
RTO, in the cases when there are frequent changes in active constraints of large
economic importance. The important special case is addressed in which prices and
market conditions are such that economic optimal operation of the plant is the same
as maximizing plant throughput. A coordinator model predictive control strategy is
proposed in which a coordinator controller regulates local capacities in all the units.

Sakizlis et al. [39] describe an approach of integrating optimal process design
with process control. They discuss integration of process design, process control
and process operability together, and hence deal with the economics of the process.
The incorporation of advanced optimizing controllers in simultaneous process and
control design is the goal of the optimization strategy. It deals with an offline control
approach where an explicit optimizing control law is derived for the process. The
approach is said to yield a better economic performance.
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Zanin et al. [50, 49], Rotava and Zanin [38] report the formulation, solution
and industrial implementation of a combined MPC/optimizing control scheme for
a fluidized bed catalytic cracker. The economic criterion is the amount of lique-
fied petroleum gas produced. The optimization problem that is solved in each con-
troller sampling period is formulated in a mixed manner: range control MPC with a
fixed linear plant model (imposing soft constraints on the controlled variables by a
quadratic penalty term that only becomes active when the constraints are violated)
plus a quadratic control move penalty plus an economic objective that depends on
the values of the manipulated inputs at the end of the control horizon. Extremum
seeking control is another approach in which the controller drives the system states
to steady values that optimize a chosen performance objective. Krstić and Wang
[21] address closed-loop stability of the general extremum seeking approach when
the performance objective is directly measured online. Guay and Zhang [14] ad-
dress the case in which the performance objective is not measurable and available
for feedback. This approach has been evaluated for temperature control in chemical
reactors subject to state constraints [15, 8].

Huesman et al. [17] point out that doing economic optimization in the dynamic
sense leaves some degrees of freedom of the system unused. With the help of exam-
ples, it is shown that economic optimization problems can result in multiple solu-
tions suggesting unused degrees of freedom. It is proposed to utilize these additional
degrees of freedom for further optimization based on non economic objectives to get
a unique solution.

3 Turnpike Theorems

We find it useful in the sequel to address problems in which the (positive) stage
cost cannot be brought to zero by any admissible control sequence regardless of
the length of time horizon considered. This problem can arise in several ways. One
way is to choose squared distance from setpoint as the stage cost, and consider an
unreachable setpoint. The controller objective function that sums the stage cost over
a horizon then becomes unbounded as the horizon goes to infinity for any admissible
control sequence.

Optimal control problems with unbounded cost are not new to control theory.
The first studies of this class of problems arose in the economics literature in the
1920s [35] in which the problem of interest was to determine optimal savings rates
to maximize capital accumulation. Since this problem has no natural final time, it
was considered on the infinite horizon. A flurry of activity in the late 1950s and
1960s led to generalizations regarding future uncertainty, scarce resources, expand-
ing populations, multiple products and technologies, and many other economic con-
siderations. Much of this work focused on establishing existence results for optimal
control with infinite horizon and unbounded cost, and the famous “turnpike” theo-
rems [9] that characterize the optimal trajectory. McKenzie [28, 29] provides a com-
prehensive and readable overview of this research. In addition to their high degree of
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technical relevance, turnpike theorems have a fascinating history. Consider the fol-
lowing nested quotation taken from McKenzie

A turnpike theorem was first proposed, at least in a way that came to wide
attention, by Dorfman, Samuelson, and Solow in their famous Chapter 12 of
Linear Programming and Economic Analysis [9], entitled “Efficient Programs
of Capital Accumulation.” . . . I would like to quote the critical passage:

It is, in a sense, the single most effective way for the system to grow, so
that if we are planning long-run growth, no matter where we start, and
where we desire to end up, it will pay in the intermediate stages to get
into a growth phase of this kind. It is exactly like a turnpike paralleled
by a network of minor roads. There is a fastest route between any two
points; and if the origin and destination are close together and far from
the turnpike, the best route may not touch the turnpike. But if the origin
and destination are far enough apart, it will always pay to get on the
turnpike and cover distance at the best rate of travel, even if this means
adding a little mileage at either end.
—Dorfman, Samuelson, and Solow [9, p.331]

It is due to this reference, I believe, that theorems on asymptotic properties
of efficient, or optimal, paths of capital accumulation came to be known as
“turnpike theorems.”
—McKenzie [29]

It seems only fitting that economists developed some of the early optimal control
ideas we now intend to further develop for optimizing economic performance of
chemical plants.

This class of problems was transferred to and further generalized in the con-
trol literature. For infinite horizon optimal control of continuous time systems,
Brock and Haurie [4] established the existence of overtaking optimal trajectories.
Convergence of these trajectories to an optimal steady state is also demonstrated.
Leizarowitz [23] extended the results of [4] to infinite horizon control of discrete
time systems. Reduction of the unbounded cost, infinite horizon optimal control
problem to an equivalent optimization problem with finite costs is established. Carl-
son et al. [6] provide a comprehensive overview of these infinite horizon results.

Turnpike example

The optimal steady state plays the role of the turnpike in the control problems we
are addressing. Consider a linear system with the stage cost measuring distance from
setpoint on both input and output

x+ = Ax + Bu

L(x,u) = (1/2)
(∣∣Cx− ysp

∣∣2
Q +

∣∣u−usp
∣∣2
R

)
Q > 0,R > 0
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Fig. 1 An inconsistent setpoint pair (xsp,usp) = (2,0) and the turnpike optimal control. For
large horizon N, the optimal control spends most of the time near the optimal steady state,
(x∗,u∗) = (0.4,0.8)

where x+ is the state at next time step and |.| denotes the vector norm. The simplest
way to generate a turnpike result is to supply inconsistent setpoints for the input
and output, i.e. ysp �= Gusp with G the steady-state gain. With these setpoints, the
stage cost cannot be brought to zero and maintained there, and an infinite horizon
problem has unbounded cost. Consider the SISO system

A = 1/2 B = 1/4 C = 1 G = 1/2 Q = 1 R = 1

usp = 0 ysp = 2

For an unconstrained problem without integrators, the optimal steady state is
given by

u∗ = (G′QG+ R)−1(G′Qysp + Rusp) x∗ = (I−A)−1Bu∗

u∗ = 0.8 x∗ = 0.4

If we solve the open-loop dynamic optimal control problem from x0 = ±1 for
two different horizon lengths, we obtain the results in Figure 1. We see in Figure 1
that the optimal solution given an unreachable setpoint and a long horizon is to (i)
move from the initial state near to the turnpike (optimal steady state), (ii) remain in
the vicinity of this steady state for most of the control horizon, and then (iii) make a
small transient move away from the turnpike to obtain a further small benefit to the
cost function. Roughly speaking, the reason such trajectories are optimal is that for
sufficiently long horizons, one cannot beat the cost obtained by hanging out at the
optimal steady state.
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4 Linear Models

We now consider the general case of MPC with a strictly convex stage cost
and linear model. We do not assume the stage cost can be brought to zero nor
that the infinite horizon cost is bounded for some admissible input sequence.
The system model is assumed linear and time invariant

x+ = Ax + Bu (1)

x ∈ Rn, u ∈ Rm. The cost function L(x,u) is strictly convex and nonnegative and
vanishes only at the setpoint, L(xsp,usp) = 0. In this paper we employ the popular
choice of a quadratic measure of distance from the setpoint

L(x,u) = (1/2)
(∣∣x− xsp

∣∣2
Q +

∣∣u−usp
∣∣2
R + |u( j + 1)−u( j)|2S

)
Q > 0,R,S ≥ 0

In the above definition, atleast one of R,S > 0. This system can be put in the
standard LQR form by augmenting the state as x̃(k) = [x(k) u(k−1)] [36]. We
denote the MPC controller using this stage cost as sp-MPC. We assume the input
constraints define a nonempty polytope in Rm

U = {u|Hu≤ h}

Definition 1 (Optimal steady state). The optimal steady state, denoted (x∗,u∗), is
the solution to the following optimization problem

min
x,u

L(x,u) subject to x+ = Ax + Bu u ∈ U

For comparison purposes, we also consider standard MPC in which the optimal
steady state is chosen as the center of the cost function

Ltarg(x,u) = (1/2)
(
|x− x∗|2Q + |u−u∗|2R

)
Q > 0,R > 0

We denote the MPC controller using this stage cost as targ-MPC.

4.1 Terminal Constraint MPC

We consider first the case in which the terminal constraint x(N) = x∗ is added to the
controller. Define the controller cost function

V (x,{u(i)}N−1
i=0 ) =

N−1

∑
k=0

L(x(k),u(k)) x+ = Ax + Bu, x(0) = x0

For notational simplicity, we define u = {u(i)}N−1
i=0 . Hence, we express the MPC

control problem as

min
u

V (x,u) subject to: x(N) = x∗ u ∈ U (2)
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We denote the optimal input sequence by

u0(x) = {u0(0,x),u0(1,x), . . . ,u0(N−1,x)}

The MPC feedback law is the first move of this optimal sequence, which we
denote as u0(x) = u0(0,x), and we denote the optimal cost by V 0(x).
The closed-loop system is given by

x+ = Ax + Bu0(x)

with u(k) = u0(x(k)) so

x+ = f (x) f (·) = A(·)+ Bu0(·)

Definition 2 (Steerable set). The steerable set XN is the set of states steerable to x∗
in N steps

XN = {x|x∗ = ANx + AN−1Bu(0)+ · · ·+ Bu(N−1), u( j) ∈ U, j = 0, . . . ,N−1}

The usual comparison of the optimal cost at two subsequent stages gives the follow-
ing inequality [37]

V 0(x+)≤V 0(x)−L(x,u0(x))+ L(x∗,u∗) (3)

In standard MPC with a reachable steady-state target, the origin can be shifted
to (x∗,u∗) and the term L(x∗,u∗) does not appear. That leads immediately to a cost
decrease from x to x+ and the optimal cost is a Lyapunov function for the closed-
loop system. With the unreachable setpoint, the situation is completely different.
The term −L(x(k),u0(x(k)))+ L(x∗,u∗) changes sign with k on typical closed-loop
trajectories. The cost decrease is lost and V 0(x) is not a Lyapunov function for the
closed-loop system. Losing the decreasing cost property does not mean asymptotic
stability is lost, however. The following stability result has recently been established
for this case [37].

Theorem 1 (Asymptotic Stability of Terminal Constraint MPC). The optimal
steady state (x∗,u∗) is the asymptotically stable solution of the closed-loop system
under terminal constraint MPC. Its region of attraction is the steerable set.

Unreachable setpoint example

Consider the single input-single output system

g(s) =
−0.2623

60s2 + 59.2s+ 1
(4)

sampled with T = 10 sec. The input u is constrained as |u| ≤ 1. The desired output
setpoint is ysp = 0.25 which corresponds to a steady-state input value of −0.953.
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Fig. 2 Closed-loop performance of sp-MPC and targ-MPC

The regulator parameters are Qy = 10,R = 0,S = 1,Q = C′QyC + 0.01I2. A hori-
zon length of N = 80 is used. Between times 50−130,200−270 and 360−430, a
state disturbance dx = [17.1,1.77]′ causes the input to saturate at its lower limit. The
output setpoint is unreachable under the influence of this state disturbance (dx). The
closed-loop performance of sp-MPC and targ-MPC under the described disturbance
scenario are shown in Figure 2. The closed-loop performance of the two control
formulations are compared in Table 1. The following three closed-loop control per-
formance measures are use to assess controller performance

Vu(k) =
1

kT
(1/2)

k−1

∑
j=0

[∣∣u( j)−usp
∣∣2
R + |u( j + 1)−u( j)|2S

]
Vy(k) =

1
kT

(1/2)
k−1

∑
j=0

∣∣x( j)− xsp
∣∣2
Q

V (k) = Vu(k)+Vy(k)

Comments

In the targ-MPC approach, the controller tries to reject the state disturbance and
minimize the deviation from the new steady-state target. This requires a large, un-
desirable control action that forces the input to move between the upper and lower
limits of operation. The sp-MPC approach, on the other hand, attempts to minimize
the deviation from setpoint and subsequently the input just rides the lower limit input
constraint. The benefit here is that the sp-MPC controller slows down the departure
from setpoint, but speeds up the approach to setpoint. The traditional targ-MPC can
be tuned to be fast or slow through relative choice of tuning parameters Q and R,
but it is fast or slow from all initial conditions, some of which lead to an approach
setpoint, but others of which lead to a departure from setpoint.

The greater cost of control action in targ-MPC is shown by the cost index Vu

in Table 1. The cost of control action in targ-MPC exceeds that of sp-MPC by
nearly 100%. The control in targ-MPC causes the output of the system to move away
from the (unreachable) setpoint faster than the corresponding output of sp-MPC.
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Table 1 Comparison of controller performance

Performance targ-MPC sp-MPC Δ (index)%
Measure

Vu 0.016 2.2×10−6 99.98
Vy 3.65 1.71 53
V 3.67 1.71 54

Since the control objective is to be close to the setpoint, this undesirable behavior
is eliminated by sp-MPC.

4.2 Terminal Penalty MPC

It is well known in the MPC literature that terminal constraint MPC with a short
horizon is not competitive with terminal penalty MPC in terms of the size of the
set of admissible initial states, and the undesirable difference between open-loop
prediction and closed-loop behavior [27]. Here we briefly outline how the previous
result can be used to prove asymptotic stability of terminal penalty MPC. First define
the rotated cost Lr [23]

Lr(x,u) = L(x,u)−L(x∗,u∗)

and compute the infinite horizon rotated cost-to-go under control law uc(x) =
K(x−x∗)+u∗ with K chosen so that A = A+BK is asymptotically stable. A simple
calculation gives

L∞
r (x) =

∞

∑
k=0

Lr(x(k),u(k)) x+ = Ax + Bu, x(0) = x0

= (1/2)(x− x∗)′Π(x− x∗)−π ′(x− x∗)

in which Π satisfies the usual Lyapunov equation and π is given by

Π = A
′ΠA + Q+ K′RK π = (I−A

′)−1 (Q(xsp− x∗)+ K′R(usp−u∗)
)

Note that the rotated cost-to-go satisfies L∞
r (x) = L∞

r (Ax + Buc(x)) + Lr(x,uc(x)).
Next define the terminal penalty MPC cost function as

Vr(x,u) =
N−1

∑
k=0

Lr(x(k),u(k))+ L∞
r (x(N)) x+ = Ax + Bu, x(0) = x

and controller
min

u
Vr(x,u) subject to: u ∈U (5)
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If the system is unstable and feasible K does not exist to make (A + BK) stable
given the active constraints at u∗, constraints to zero the unstable modes at stage N
are added to Equation 5 [34]. The set of admissible initial states is chosen to en-
sure positive invariance and feasibility of control law uc. These plus compactness of
U ensure system evolution in a compact set. The user has some flexibility in choos-
ing K, such as the simple choice K = 0. A procedure to choose feasible K that more
closely approximates the infinite horizon solution is given in Rao and Rawlings [36].

Using the rotated cost function, one can then establish the following inequality
for terminal penalty MPC

V 0
r (x+)≤V 0

r (x)−L(x,u0(x))+ L(x∗,u∗)

which plays the same role as Equation 3 in the terminal constraint case, and asymp-
totic stability of terminal penalty MPC can also be established [37].

4.3 Economic Cost Function

We now look at an example in which the economic profit function is a linear function
of state and input

Leco(x,u) = α ′x +β ′u

Notice this stage cost also is not bounded for an unconstrained system. We con-
sider a linear process with two states and wish to see how optimizing the profit
function in the MPC control problem is different than the regular the tracking im-
plementation.

x+ =
[

0.857 0.884
−0.0147 −0.0151

]
x +

[
8.57

0.884

]
u

The following values of α and β are chosen for the economic cost.

α =−[3 2
]′ β =−2

The input is constrained between −1 and 1, and so, the economics being linear,
the feasible optimum lies on the boundary of the constraint at u∗ = 1, which corre-
sponds to x∗ = (60,0). For the tracking objective, the standard target cost function
is chosen

Ltarg = (1/2)
(
|x− x∗|2Q + |u−u∗|2R

)
Q = 2I2 R = 2

Figure 3 shows the state space system evolution when the system was initialized
at the state (80,10). It is observed that the descent directions of tracking contours and
the economic contours oppose each other. Hence the dynamic regulator in the stan-
dard two-layer approach does not address the economic incentive. The targ-MPC
controller moves quickly to the target in a direction opposite to the best economics,
while the eco-MPC controller maximizes the profit and only slowly moves toward



Optimizing Process Economic Performance Using Model Predictive Control 131

x2x2x2

targ-MPC eco-MPC

x2

targ-MPC eco-MPC
60 65 70 75 80 85

x1

-2

0

2

4

6

8

10

Fig. 3 The direction of increasing profit is opposite to the direction of decreasing setpoint
error. The eco-MPC controller therefore takes a slow path to the steady-state setpoint while
the standard targ-MPC controller takes a fast path

the steady target. The eco-MPC achieves a profit of 8034 units, which is a 6.3%
improvement over the standard targ-MPC’s profit of 7557.

5 Nonlinear Models

To fully support the goal of optimizing dynamic economic performance of a chem-
ical process, we will need to find suitable ways to extend these results to nonlin-
ear models. Linear models are remarkably useful in the existing two-level chemical
plant control paradigm. The nonlinear model is reserved for a steady-state economic
evaluation. The linear model is often perfectly adequate as the forecaster in the dy-
namic regulation problem because the controller’s goal is to stay near this econom-
ically optimal steady state in the face of disturbances. If the controller is able to
maintain the system near the steady state, the linear model is reasonably accurate.
If we wish to optimize the dynamic economic performance, however, the nonlinear
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Fig. 4 Optimal tracking performance compared to optimal economic performance
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model is required. This aspect of the problem presents some research and implemen-
tation challenges and may slow the introduction of these ideas into routine chemical
plant practice. On the other hand, this class of problems motivates the development
of improved methods for nonlinear MPC, which is after all the main goal of this
conference. We next examine an illustrative nonlinear example.

5.1 Maximizing Production Rate in a CSTR

In many studies, it has been established that the performance of many continu-
ous chemical processes can be improved by forced periodic operation [22, 42, 44,
45]. Bailey [3] provides a comprehensive review of periodic operation of chemical
reactors.

Consider a single second-order, irreversible chemical reaction in an isothermal
CSTR [42]

A−→ B r = kcn
A

in which k is the rate constant and n is the reaction order. The material balance for
component A is

dcA

dt
=

1
τ
(cA f − cA)− kcn

A

dx
dt

=
1
τ
(u− x)− kxn τ = 10, k = 1.2, n = 2 (6)

in which cA = x is the molar A concentration, cA f = u is the feed A concentration,
and τ = 10 is the reactor residence time. Consider the simple case in which the pro-
cess economics for the reactor are completely determined by the average production
rate of B. The reactor processes a mean feedrate of component A. The available ma-
nipulated variable is the instantaneous feed concentration. The constraints are that
the feed rate is nonnegative, and the mean feed rate must be equal to the amount of
A to be processed

u(t)≥ 0
1
T

∫ T

0
u(t)dt = 1 (7)

in which T is the time interval considered. We wish to maximize the average pro-
duction rate or minimize the negative production rate

V (x(0),u(t)) =− 1
T

∫ T

0
kxn(t)dt subject to Equation 6 (8)

The optimal control problem is then

min
u(t)

V (x(0,u(t)) subject to Equation 6–7
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Fig. 5 Optimal periodic input and state. The achieved production rate is V ∗ = −0.0835, an
11% improvement over steady operation

The optimal steady operation is readily determined. In fact, the average flowrate
constraint admits only a single steady feed rate, u∗ = 1, which determines the opti-
mal steady-state reactor A concentration and production rate

u∗ = 1 x∗ = 0.25 V ∗ =−0.075

For the second-order reaction, we can easily beat this production rate with a non-
steady A feed policy. Consider the following extreme policy

u(t) = Tδ (t) 0≤ t ≤ T

which satisfies the mean feed rate constraint, and let x(0) = 0 be the reactor initial
condition at t = 0−. The impulsive feed policy gives a jump in x at t = 0 so x(0+) =
T/τ . Solving the reactor material balance for this initial condition and u = 0 over
the remaining time interval gives

x(t) =
T/τ

(1 + 12T/τ)e0.1t −12T/τ
0≤ t ≤ T

We see from this solution that by choosing T large, x(T ) is indeed close to zero,
and we are approaching a periodic solution with a large period. Substituting x(t)
into Equation 8 and performing the integral in the limit of large T gives

V ∗ = lim
T→∞

− 1
T

∫ T

0
kx2(t)dt =−0.1

The sequence of impulses has increased the average production rate by 33% com-
pared to steady operation. Of course, we cannot implement this extreme policy, but
we can understand why the production rate is higher. The impulse increases the re-
actor A concentration sharply. For second-order kinetics, that increase pays off in
the production of B, and we obtain a large instantaneous production rate which leads
to a large average production rate.



134 J.B. Rawlings and R. Amrit

For an implementable policy we can add upper bounding constraints on u and
constrain the period

0≤ u(t)≤ 3
1
T

∫ T

0
u(t)dt = 1 0≤ T ≤ 100

Solving the optimal control problem subject to this constraint and periodic
boundary conditions on x(t) gives the results in Figure 5. With the new constraints,
switching the input between the bounds (bang bang control), yields a time aver-
age production rate of 0.0835, which is an 11% improvement over the steady-
state value of 0.075. Again, the character of the optimal solution is similar to the
extreme policy: increase the reactor A concentration to the highest achievable level
by maximizing the feed concentration for as long as possible while meeting the
mean constraint.

Finally it is instructive to compare these results to the case of a first-order reac-
tion, n = 1. For n = 1, the optimal steady state is

u∗ = 1 x∗ =
1

1 + kτ
u∗ = 0.0769 V ∗ =− k

1 + kτ
u∗ =−0.09238

This operation is optimal on the infinite horizon because the model is linear and
the cost is convex. Imagine we inject the extreme policy that was so effective in
raising the production rate for the second-order kinetics. We obtain

x(t) =
T
τ

e−(k+1/τ)t V =− k
1 + kτ

and we see that we obtain the same production rate as the steady operation. If we
add a small regularization term so the stage cost is strictly convex, the steady oper-
ation is the unique optimal policy. The objective of maximizing production rate is a
reasonable goal, and second-order kinetics are not an unusual nonlinearity. We see
that some care must be taken in defining the control problem because simply chang-
ing the order of the reaction from n = 1 to n = 2 significantly changes the character
of the optimal policy.

Carlson et al. [6, pp.51–52] provide one set of sufficient conditions for nonlinear
f (x,u) and L(x,u) so that the optimal open-loop trajectory satisfies the turnpike
property and converges to the optimal steady state. More research on this issue is
certainly warranted.

6 Conclusions and Future Work

The broad goal of this paper was to explore how to take advantage of the power-
ful online optimization capabilities provided by model predictive control to address
other more advanced process objectives beyond the traditional tracking and dis-
turbance rejection objective. These more advanced objectives include methods for
handling unreachable setpoints, and optimizing economic performance. In the case
of linear models with convex objectives, it is well known that the optimal control
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problem has the turnpike property. Moreover, under feedback control using MPC, it
has recently been established that the optimal steady state is asymptotically stable
for a reasonably broad class of control horizon and performance parameter values.
The region of attraction is an appropriately defined steerable set.

Consideration of nonlinear models is an active area of research and invites con-
tinued research attention. The turnpike property was shown not to hold for simple
and relevant chemical process examples with reasonable process objectives. We re-
quire better methods for analyzing and understanding the following question: for
which models and objectives is “steady operation” asymptotically “optimal opera-
tion.” When optimal operation is nonsteady we have to make choices. How large
is the economic benefit for nonsteady operation? Do we wish to change the pro-
cess objective so that steady operation is optimal? If so, how do we best make that
choice? What are our available options for objectives? Or do we wish to take advan-
tage of nonsteady operation? In that case, what classes of nonsteady operation are
deemed acceptable: periodic, quasi-periodic, others? All of these issues are on the
table for future research.

Obviously, the online solution of these nonlinear models requires reliable and
efficient numerical optimization methods. Even fundamental research and explo-
ration cannot be accomplished efficiently without these numerical tools. Hopefully
the community of researchers will continue their efforts in the development and dis-
semination of high-quality optimization methods. Despite the many recent advances
in this area, researchers still invest large amounts of their creative time setting up
an optimal control problem, debugging software, and analyzing the causes of op-
timizer failures. Because the excellent closed-loop properties of the controller do
not depend critically on strict optimality, however, the more modest computational
requirements of suboptimal MPC increase the likelihood that these methods can be
applied on even challenging industrial applications [40].

Summarizing the state of affairs: nonlinear MPC enables dynamic process op-
timization. As a research community, we have not yet fully explored how much
process improvement this capability provides. Opportunities abound to address ex-
citing new research challenges that may produce significant and long term industrial
impact.
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Hierarchical Model Predictive Control of
Wiener Models

Bruno Picasso, Carlo Romani, and Riccardo Scattolini

Abstract. A hierarchical two-layer control structure is designed with robust Model
Predictive Control. The system at the upper level is described by a Wiener model,
while the systems at the lower level, which represent the fast actuators dynamics, are
described by general nonlinear models. The proposed control structure guarantees
steady-state zero error regulation for constant reference signals and allows one to
largely decouple the control design phase at the two levels while still guaranteeing
the overall stability under mild assumptions.

Keywords: Wiener systems, hierarchical control, nonlinear MPC, robustness,
stability, asymptotic tracking.

1 Introduction

Due to the ever increasing complexity and to the higher and higher levels of automa-
tion of industrial plants and of production and distribution networks, after many
years, see e.g. [5, 11, 12], research in large scale systems is going to have a re-
naissance. Therefore, there is a growing interest in the development of distributed
and multi-level control structures. In particular, this paper deals with the design of
two layers hierarchical control systems with Model Predictive Control (MPC), see
figure 1. The system to be controlled is described by the discrete-time, multi-input,
multi-output Wiener model

S :

⎧⎨⎩
x f (h + 1) = A f x f (h)+ B f u f (h) =

= A f x f (h)+∑m
i=1 b f

i u f
i (h)

y f (h) = c(x f (h)),
(1)
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where b f
i is the i-th column of B f . At the upper level of the considered hierarchical

structure, an MPC regulator is designed at a slow time scale to guarantee robust
steady-state zero error regulation for constant reference signals by including a suit-
able integral action in the control law. The control variables ui computed by this
regulator are the desired outputs of the systems at the lower level, described by the
nonlinear models

Sact :

{
ζi(h + 1) = si(ζi(h),μi(h))
ũi(h) = mi(ζi(h)), (2)

which represent the available actuators operating at a faster time scale. In turn, also
these actuators are controlled with the MPC approach. The use of MPC at both
levels allows one to cope with control and/or state constraints.

The discrepancy between the control actions (ui) computed by the regulator at
the upper level and the ones (ũi) provided by the systems at the lower level can be
tolerated in view of the robustness properties guaranteed by the min-max MPC law
adopted at the upper level, see [6]. Specifically, the term wf = ũ− u is viewed as
a state-dependent disturbance to be rejected. This approach differs from the classi-
cal sequential design where the lower level control loop is considered as part of the
model seen by the upper level controller. With the proposed technique, instead, it is
possible to largely decouple the design phase and the related optimization problems
at the two levels of the hierarchical structure, while still guaranteeing stability prop-
erties for the overall control system under suitable assumptions on the actuators’
dynamics.

For linear systems, this approach has already been considered in [9, 10], where it
has been shown how: (i) the robustness of the control law at the upper level can be
improved to achieve stability also when the actuators undergo dynamic limitations,
(ii) different configurations can be considered at the lower level when redundancy
in the actuators allows for some degrees of freedom.

Notation. In order to cope with a multirate implementation typical of hierarchical
control structures, where the upper layer acts at a slower rate than the lower layer,
two time scales are considered: the fast discrete-time index is denoted by h, while
the slow discrete-time index is represented by k. Then, given a signal φ f (h) in the
fast time scale, its sampling in the slow time scale is φ(k) = φ f (νk), where ν is a
fixed positive integer.

By ‖ · ‖ we denote the Euclidean vector or matrix norm.

o

upper lower act

f
f f

ff

Fig. 1 The hierarchical control structure considered in the paper
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2 System and Control at the Upper Level

2.1 System and Control Problem

In the fast discrete time index, the system at the upper level is described by equa-
tion (1). It is supposed that c(·) is a C2 function with c(0) = 0, the measurable state
x f ∈ Xp ⊂ Rnx and the control variables u f

i ∈Upi ⊂ R, i = 1, . . . ,m, belong to given
compact sets, y f ∈ Rm is the output.

For system (1), the tracking problem considered here consists of finding a feed-
back control law such that limh→+∞ y f (h) = yo, where yo ∈ Y o ⊆ c(Xp) is a given
reference signal.

Assumption 1

i) the pair (A f ,B f ) is stabilizable;
ii) the matrix A f has no eigenvalues λ with |λ |= 1;
iii) for a given reference signal yo ∈ Y o: (a) there exists at least one equilibrium

pair x̄ f (yo), ū f (yo) (for short x̄ f and ū f in the following) strictly inside Xp and

Up respectively, such that c(x f ) = yo; (b) letting C f (yo) = ∂c(x f )
∂x f |x̄ f (for short

C f ), the pair (A f ,C f ) is detectable; (c) the linearized system (A f ,B f ,C f ) has no
invariant zeros in 1.

For a fixed integer ν ≥ 1, let us decompose the input of system (1) in the form
u f (h) = û(h)+ (u f (h)− û(h)), where û(h) ∈Up is some piecewise constant signal
such that, ∀k = 0,1, . . . and ∀ j = 0, . . . ,ν−1, it holds that û(νk + j) = û(νk). Then
system (1) can be rewritten as{

x f (h + 1) = A f x f (h)+ B f û(h)+ B f wf (h)
y f (h) = c(x f (h)), (3)

where wf (h) = u f (h)− û(h) is considered as a matched disturbance term. Letting
x(k) = x f (νk), u(k) = û(νk), y(k) = y f (νk) and

A = (A f )ν , B =
ν−1

∑
j=0

(A f )ν− j−1B f , w(k) =
ν−1

∑
j=0

(A f )ν− j−1B f wf (νk + j) (4)

system (3) can be written in the slow sampling rate as:

Ss :

{
x(k + 1) = Ax(k)+ Bu(k)+ w(k)
y(k) = c(x(k)) (5)

Hence, at the upper level, the problem consists of solving a robust zero error regu-
lation for system (5), thus yielding the piecewise constant signal û(h) in (3).

In view of (4), if (x̄ f , ū f ) is an equilibrium pair for system (1) such that c(x̄ f ) =
yo, then the pair x̄ = x̄ f , ū = ū f is also an equilibrium for system (5), with w = 0,
such that c(x̄) = yo. Moreover, it is easy to prove the following result:
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Proposition 1. Under Assumption 1, the linearization of system (5) at (x̄, ū) has no
invariant zeros in 1.

In order to guarantee robust asymptotic zero error regulation, the above stated track-
ing problem is solved by forcing an integral action on each component of the error
e(k) = yo− y(k). Moreover, an additional delay function is applied on each control
variable for an easy computation of the control increment u(k)− u(k− 1) in the
design of the MPC law. Then, the overall system to be controlled is

Sall :

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = Ax(k)+ Bu(k)+ w(k)
v(k + 1) = v(k)+ yo− c(x(k))
φ(k + 1) = u(k)
e(k) = yo− c(x(k))

(6)

which can be written in the more compact form{
χ(k + 1) = f̂ (χ(k),yo)+ B̂u(k)+ B̂1w(k)
e(k) = η̂(χ(k),yo)

(7)

where χ = [x′v′φ ′]′, while the matrices B̂, B̂1 and the C2 functions f̂ , η̂ can be easily
derived from (6). Associated to (7), let us define the auxiliary output

z(k) =

⎡⎣ e(k)
Mχ(k)

u(k)− Ĉχ(k)

⎤⎦ (8)

where
Ĉ =

[
0m,nx 0m,m Im,m

]
and R

(nx+2m)×(nx+2m) !M > 0.

Let χ =
[

x̄′ v̄′ ū′
]′

be an equilibrium of (7) with w = 0 such that η̂(χ,yo) = 0, and
z̄ = [0 Mχ 0 ]. Rewrite (7), (8) as{

δχ(k + 1) = f (δχ(k),yo)+ B̂δu(k)+ B̂1w(k)
e(k) = η(δχ(k),yo) (9)

δ z(k) =

⎡⎣ η(δχ(k),yo)
Mδχ(k)

δu(k)− Ĉδχ(k)

⎤⎦ , (10)

where δχ = χ − χ , δu = u− u and δ z = z− z̄. Moreover, let X ⊂ Rnx+2m and
U ⊂Rm be the two largest sets such that, for any δχ ∈ X and δu∈U one has x∈ Xp

and ui ∈Upi, i = 1, . . . ,m. It holds that U ⊂ Rm is a compact set and X ⊂ Rnx+2m is
closed (and bounded with respect to x(k),φ(k)) both containing the origin in their
interior.

Remark 1. Letting F1 = ∂ f/∂δχ |δ χ=0, from Proposition 1 it can be easily checked
that the pair (F1, B̂) is stabilizable.
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Assumption 2. For a given γΔ > 0, the disturbance w in system (9), (10) is such
that ∀k ≥ 0, w(k) ∈W (γΔ ,δ z(k)), where

W (γΔ ,δ z) := {w ∈ R
nx : ‖w‖ ≤ γΔ‖δ z‖}

2.2 Robust MPC for the Upper Level

Consider system (9) and let γ be a positive real: according to the results reported
in [6], an auxiliary control law guaranteeing robust stability for any disturbance in
W (γΔ ,δ z), with γγΔ < 1, is first derived. Then, the goal is to determine an MPC
state-feedback control law such that the corresponding closed loop system with in-
put w and output δ z given by (10) has performance and a region of attraction greater
than those provided by the auxiliary control law.

Auxiliary control law

For system (9), (10), let us synthesize a state-feedback controller which guaran-
tees robust stability for disturbances satisfying Assumption 2. To this end, given a
positive γ such that γγΔ < 1 and a square (nx + 2m)× (nx + 2m) matrix P, letting

R =
[

r11 r12

r21 r22

]
=
[

B̂′PB̂+ I B̂′PB̂1

B̂′1PB̂ B̂′1PB̂1− γ2I

]
and defining the quadratic function

Vf (δχ) = δχ ′Pδχ

the following result holds:

Proposition 2. Suppose that there exists a positive definite matrix P such that:

a) r22 < 0

b) letting H =
[
∂η/∂δχ |δ χ=0

M

]
,

−P+ F ′1PF1 + H ′H + Ĉ′Ĉ− [F ′1PB̂− Ĉ′ F ′1PB̂1]R−1

[
B̂′PF1− Ĉ

B̂′1PF1

]
< 0

Consider the control law
δu = κ f (δχ ,yo), (11)

where [
κ f (δχ ,yo)
ξ ∗(δχ ,yo)

]
=−R−1

[
B̂′P f (δχ ,yo)− Ĉδχ

B̂′1P f (δχ ,yo)

]
, (12)

and the closed-loop system (9), (11). Then there exist α > 0 and ε > 0 such that,
letting Xf := {δχ : Vf (δχ) ≤ α}, it holds that: i) Xf ⊆ X; ii) ∀δχ ∈ Xf one has
κ f (δχ ,yo) ∈U; iii) ∀δχ ∈ Xf , δχ �= 0, and ∀w ∈W (γΔ ,δ z) the following holds:
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Vf ( f (δχ ,yo)+ B̂κ f (δχ ,yo)+ B̂1w)−Vf (δχ) <−(‖δ z‖2− γ2‖w‖2 + ε‖δχ‖2)
(13)

In particular, under Assumption 2, Xf is a positively invariant set.

Proof. To simplify the notation, in the proof let δχ−→ χ , δu−→ u, f (δχ ,yo)−→
f (χ), η(δχ ,yo)−→ η(χ) and δ z−→ z. Following [6], define:

Ψ(χ ,u,w) = Vf ( f (χ)+ B̂u + B̂1w)−Vf (χ)+ (‖z‖2− γ2‖w‖2)

Then:

Ψ(χ ,u,w) = ( f (χ)+ B̂u + B̂1w)′P( f (χ)+ B̂u + B̂1w)− χ ′Pχ+
+(η(χ)′η(χ)+ χ ′M′Mχ + u′u + χ ′Ĉ′Ĉχ−2u′Ĉχ− γ2w′w) =

= f ′(χ)P f (χ)− χ ′Pχ +η ′(χ)η(χ)+ χ ′M′Mχ + χ ′Ĉ′Ĉχ−
−2[u′ w′]

[
Ĉχ
0

]
+[u′ w′]R

[
u
w

]
+ 2[u′ w′]

[
B̂′P f (χ)
B̂′1P f (χ)

]
(14)

and, computingΨ (χ ,u,w) for u = κ f (χ) and w = ξ ∗(x) from (12),

Ψ (x,κ f (χ),ξ ∗(χ)) = f ′(χ)P f (χ)− χ ′Pχ +η ′(χ)η(χ)+ χ ′M′Mχ + χ ′Ĉ′Ĉχ−
−[ f ′(χ)PB̂− χ ′Ĉ′ f ′(χ)PB̂1]R−1

[
B̂′P f (χ)− Ĉχ

B̂′1P f (χ)

]
From hypothesis b) it follows that there exist ε > 0 and a neighborhood X̃0 of χ = 0
such that

Ψ(χ ,κ f (χ),ξ ∗(χ)) <−ε‖χ‖2 ∀χ ∈ X̃0, χ �= 0 (15)

By the Taylor expansion of (14):

Ψ (χ ,u,w) = Ψ(χ ,κ f (χ),ξ ∗(χ))+ 1
2

[
u′−κ ′f (χ) w′− ξ ′∗(χ)

]
R

[
u−κ f (χ)
w− ξ ∗(χ)

]
+

+ o

(∥∥∥∥ u−κ f (χ)
w− ξ ∗(χ)

∥∥∥∥2
)

If the system is controlled by u = κ f (χ) then:

Ψ (χ,κ f (χ),w) =Ψ (χ,κ f (χ),ξ ∗(χ))+ 1
2 (w−ξ ∗(χ))′r22(w−ξ ∗(χ))+o(‖w−ξ ∗(χ)‖2)

Since r22 < 0, there exist a neighborhood X0 of χ = 0 and W0 := {w ∈Rnx : ‖w‖ ≤
rw} (for some rw > 0) such that ∀χ ∈ X0 and ∀w ∈W0, one has Ψ(χ ,κ f (χ),w) ≤
Ψ(χ ,κ f (χ),ξ ∗(χ)). In view of (15), ∀χ ∈ X̃0 ∩X0, χ �= 0, and ∀w ∈W0, it holds
thatΨ (χ ,κ f (χ),w) ≤Ψ(χ ,κ f (χ),ξ ∗(χ)) <−ε‖χ‖2 that is,

Vf ( f (χ)+ B̂κ f (χ)+ B̂1w) < Vf (χ)− (‖z‖2− γ2‖w‖2)− ε‖χ‖2

It is then possible to choose a sufficiently small α > 0 so that
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Xf := {χ : Vf (χ)≤ α}

is such that Xf ⊆ X , Xf ⊆ X̃0 ∩X0 and ∀χ ∈ Xf , ‖z(χ)‖ · γΔ ≤ rw, where z(χ) =[
η(χ ,yo)′ χ ′M′ κ f (χ)′ − χ ′Ĉ′

]′
. Hence, from Assumption 2, ∀χ ∈ Xf it holds

that w ∈W (γΔ ,z(χ))⊂W0. Therefore, ∀χ ∈ Xf with χ �= 0 and ∀w ∈W (γΔ ,z(χ)),

Vf ( f (χ)+ B̂κ f (χ)+ B̂1w) < Vf (χ)− (‖z‖2− γ2‖w‖2)− ε‖χ‖2 < Vf (χ)− ε‖χ‖2

which proves both (13) and the positive invariance of Xf for the closed-loop sys-
tem (9), (11). Finally, the control constraint κ f (χ ,yo) ∈U ∀χ ∈ Xf follows by the
choice of Xf ⊆ X and by the invariance of Xf .

Model predictive control

The region of attraction Xf and the performance provided by the auxiliary con-
trol law (11) are now improved with the MPC approach. To this end, consider sys-
tem (9), (10), let Np ∈N be the length of the prediction horizon and Nc ∈N, Nc≤Np,
be the length of the control horizon. Define by

D(k,Np) = [w(k),w(k + 1), . . . ,w(k + Np−1)]

the sequence of disturbances over the prediction horizon and by

K(δχ(k),yo,Nc) = [κo(δχ(k),yo),κ1( · ,yo), . . . ,κNc−1( · ,yo)],

where κi : Rnx+2m→Rm, the vector of state-feedback control laws to be synthesized
by the MPC control algorithm. At any time instant k, the control problem consists
of solving the following min-max optimization problem:

min
K(δ χ(k),yo,Nc)

max
D(k,Np)

J(δχ(k),K,D,Nc,Np) (16)

J(δχ(k),K,D,Nc,Np) =
k+Np−1

∑
i=k

(‖δ z(i)‖2− γ2‖w(i)‖2)+Vf (δχ(k + Np))

subject to:

i) system (9), (10) and the control law

δu(k + j) =
{
κ j(δχ(k + j),yo), j = 0, . . . ,Nc−1
κ f (δχ(k + j),yo), j = Nc, . . . ,Np−1;

ii) the disturbance constraint w(k + j) ∈W (γΔ ,δ z(k + j)), j = 0, . . . ,Np−1;
iii) the state and control constraints δχ(k + j) ∈ X and δu(k + j) ∈ U ,

∀ j = 0, . . . ,Np−1 and ∀D(k,Np) such that ii) holds;
iv) the terminal constraint δχ(k + Np) ∈ Xf , ∀D(k,Np) such that ii) holds.
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If (K̄(δχ(k),yo,Nc),D̄(k,Np)) is the optimal solution of this min-max problem, ac-
cording to the Receding Horizon principle, define the MPC control law as

δu(k) = κ̄o(δχ(k),yo) = κRH(δχ(k),yo) (17)

Under the previous assumptions, the following theorem can be proved:

Theorem 1. Let XMPC(Nc,Np) ⊆ X be the set of states δχ such that the min-max
problem (16) admits a solution. Then ∀Np ∈ N and ∀Nc ∈ N, Nc ≤ Np:

i) XMPC(Nc,Np) is a positively invariant set for the closed-loop system (9), (17);
ii) Xf ⊆ XMPC(Nc,Np);
iii) The state of the closed-loop system (9), (17) asymptotically converges to the

origin with region of attraction XMPC(Nc,Np), that is the controlled system (5)
converges to its equilibrium (x̄, ū).

Proof. To simplify the notation, in the proof let δχ−→ χ and δ z−→ z. The theorem
is proved for Nc ≥ 1 (the case Nc = 0 directly follows by Proposition 2).

Let V (χ(k),Nc,Np) = J(χ(k), K̄,D̄,Nc,Np) be the optimal performance at time
k. By the disturbance constraint ii) (i.e., Assumption 2) and the condition γγΔ < 1,
the function V (χ(k),Nc,Np) is positive definite.

Let us prove that XMPC(Nc,Np) is a positively invariant set for the closed loop
system (9), (17). Indeed, if χ(k) ∈ XMPC, then there exists K̄ such that χ(k + Np) ∈
Xf . Hence, at time k + 1, consider the following policy:

K̂(χ(k + 1),yo,Nc) =
= [κ̄1(χ(k + 1),yo), . . . , κ̄Nc−1(χ(k + Nc−1),yo),κ f (χ(k + Nc),yo)]

Since, under Assumption 2, Xf is a positively invariant set with respect to the auxil-
iary law, the new policy is feasible and XMPC is a positively invariant set. Moreover,
being the auxiliary law feasible, it follows that Xf ⊆ XMPC (in particular, the equi-
librium is included in XMPC).

To prove iii), let us show that V (χ(k),Nc,Np) is decreasing along the state trajec-
tories. Indeed, consider the control and prediction horizons of length Nc +1, Np +1
and the control policy

K̃(χ(k),yo,Nc + 1) = [K̄(χ(k),yo,Nc) κ f (χ(k + Nc),yo)]

Therefore,

J(χ(k), K̃(χ(k),yo,Nc + 1),D(k,Np + 1),Nc + 1,Np + 1) =
= ∑k+Np−1

i=k (‖z(i)‖2− γ2‖w(i)‖2)+Vf (χ(k + Np + 1))+
+Vf (χ(k + Np))−Vf (χ(k + Np))+ (‖z(k + Np)‖2− γ2‖w(k + Np)‖2)

Since the value of the output z(k + Np) is obtained with the auxiliary control law
used at time k + Np, using inequality (13), one has



Hierarchical Model Predictive Control of Wiener Models 147

J(χ(k), K̃(χ(k),yo,Nc + 1),D(k,Np + 1),Nc + 1,Np + 1) <

< ∑k+Np−1
i=k (‖z(i)‖2− γ2‖w(i)‖2)+Vf (χ(k + Np))

Consequently

V (χ(k),Nc + 1,Np + 1)≤
≤ max

D(k,Np+1)
J(χ(k), K̃(χ(k),yo,Nc + 1),D(k,Np+1),Nc+1,Np+1) <

< V (χ(k),Nc,Np)

(18)

Now observe that

V (χ(k),Nc,Np)≥ ‖z(k)‖2− γ2‖w(k)‖2 +V(χ(k + 1),Nc−1,Np−1)

and, thanks to (18),

V (χ(k + 1),Nc,Np)−V(χ(k),Nc,Np) <−(‖z(k)‖2− γ2‖w(k)‖2)

Finally, by Assumption 2, it follows that

V (χ(k + 1),Nc,Np)−V(χ(k),Nc,Np) <−(1− γ2γ2
Δ )‖z(k)‖2 (19)

which proves that V (χ(k),Nc,Np) is a decreasing function since γγΔ < 1.
From (19), it follows that limk→+∞ z(k) = 0 and, since M > 0 (see equation (8)),

limk→+∞ χ(k) = 0. Therefore, by returning to the original coordinates,
limk→+∞ x(k)= x̄, limk→+∞ u(k) = ū and limk→+∞ v(k) = v̄.

3 System and Control at the Lower Level

3.1 System

The real inputs u f
i of system (1) coincide with the outputs ũi, i = 1, . . . ,m, of the i-th

single-input, single-output system at the lower level described in the short sampling
time by the nonlinear model in equation (2). There, ζi ∈ R

nζi is the measurable
state and μi ∈ R is the manipulated input. Moreover, the following state and input
constraints are considered:

ζi ∈ Zpi, μi ∈Mpi,

where Zpi, Mpi are compact sets with nonempty interior and Zpi is such that
mi(Zpi) = Upi. For systems (2), we consider the following assumption:

Assumption 3. For any ûi ∈ Upi there exists an unique equilibrium pair (ζ̂i ∈
Zpi, μ̂i ∈Mpi) such that: {

ζ̂i = si(ζ̂i, μ̂i)
ûi = mi(ζ̂i)
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For a given reference ûi ∈Upi, according to Assumption 3, system (2) can be rewrit-
ten as {

δζi(h + 1) = s̃i(δζi(h),δμi(h), ζ̂i, μ̂i)
δui(h) = m̃i(δζi(h), ζ̂i)− ûi

(20)

where δζi(h) = ζi(h)− ζ̂i, δμi(h) = μi(h)− μ̂i and δui(h) = ũi(h)− ûi. Define by
Mi(μ̂i) ⊆ R and Zi(ζ̂i) ⊆ R

nζi the largest compact sets such that μi ∈ Mpi for any
δμi ∈Mi(μ̂i) and ζi ∈ Zpi for any δζi ∈ Zi(ζ̂i).

3.2 MPC for the Lower Level

For system (20) it is now possible to design a stabilizing MPC algorithm by means
of one of the many techniques proposed in the literature, see e.g. [7, 1, 3, 4]. Addi-
tionally, with the same kind of developments reported in the previous section, one
could include integral actions to achieve robust steady-state zero error regulation for
constant references. However, for simplicity, in the following a zero terminal con-
straint algorithm without integral action will be used, see e.g. [2, 7]. Specifically, for
the i-th subsystem, it is possible to minimize with respect to the sequence of future
control variables

Θi(h,ν) = [δμi,h(h), . . . ,δμi,h(h +ν−1)]

the performance index

Ji(δζi(h),Θi,ν) = ∑ν−1
j=0 (‖δui(h + j)‖2 +‖δζi(h + j)‖2

Qi
) i = 1, . . . ,m,

where ‖δζi‖2
Qi

= ζ ′i Qiζi with Qi > 0, subject to (20), to the input and state con-
straints δμi,h(h + j) ∈ Mi, δζi(h + j) ∈ Zi, j = 0, . . . ,ν − 1, and to the terminal
constraint δζi(h + ν) = 0. Letting Θ o

i (h,ν) = [δμo
i,h(h), . . . , δμo

i,h(h + ν − 1)] be
the optimal future control sequence, only its first value δμo

i,h(h) is applied and the
overall procedure is repeated at any short time instant. This implicity defines a state-
feedback control law

δμi(h) = γi(δζi(h), ûi) (21)

where, for later use, we find convenient to make explicit the dependence of the
control law from the reference ûi.

Assumption 4. For any equilibrium pair (ζ̂i ∈ Zpi, μ̂i ∈Mpi), the set of states δζi

such that the above optimization problem admits a solution is Zi(ζ̂i).

Under this assumption, the following result holds true:

Theorem 2. The state of the closed loop system (20), (21) asymptotically converges
to the origin with region of attraction Zi(ζ̂i) and limh→+∞ δui(h) = 0.

The proof follows standard arguments, see [7].
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4 The Hierarchical Control System

In a hierarchical implementation, at any long sampling time k, the controller at the
upper level computes the value u(k) of the input for system (9), the components of
u(k) are then taken as the references for the systems at the lower level (2). In details,
consider the input signal u(k), k = 0,1, . . . generated by the MPC at the upper level
and define

û(h) = u
(" h

ν #
)
, (22)

where "·# is the floor function. Let the i-th component of û(h) be the reference signal
for (2), the input for system (1) is then defined by the corresponding outputs of the
systems (2), (21), that is u f (h) = ũ(h) where⎧⎨⎩

ζi(h + 1) = si(ζi(h),μi(h))
μi(h) = γi(ζi(h)− ζ̂i(h), ûi(h))+ μ̂i(h)
ũi(h) = mi(ζi(h)),

(23)

with (ζ̂i(h), μ̂i(h)) being the equilibrium pair associated to ûi(h).
Notice that system (23) is well-defined thanks to Assumption 4 which guarantees

that the optimization problem defining the feedback law (21) remains feasible at
any switching instant h = νk. Notice also that, although the references ûi(h) are
piecewise constant functions, the values of μi(h) provided by (21) are computed
considering constant references ûi(h) over the prediction horizon.

Because of the state and control constraints of the systems at the lower level, as
well as to the initial conditions ζi(νk) of the states of the systems (2) at the begin-
ning of any slow sampling period, the control variables ũi(νk + j), j = 0, . . . ,ν−1,
are in general different from the corresponding desired components ui(k). The dif-
ference between the input value provided by the controller at the upper level and the
one provided by the subsystems at the lower level is the matched disturbance term
appearing in (3), namely wf

i (h) = ũi(h)− ûi(h). Hence, according to (4), the norm
of the disturbance w(k) acting on system (9) is such that

‖w(k)‖ ≤
m

∑
i=1

ν−1

∑
j=0
‖(A f )ν− j−1b f

i w f
i (νk + j)‖ (24)

In order to test the validity of Assumption 2, at any long time instant h = νk, asso-
ciated with the optimal future control sequenceΘ o

i (νk,ν), it is possible to compute
the function

J̃o
i (δζi(νk),Θ o

i (νk,ν),ν) = ∑ν−1
j=0 ‖(A f )ν− j−1b f

i δuo
i (νk + j)‖

(denoted, for short, by J̃o
i (νk)) where δuo

i (νk + j), j = 0, . . . ,ν − 1, is the output
of (20) with the sequenceΘ o

i (νk,ν). However, since system (20) is controlled with a
receding horizon policy, the function J̃o

i (νk) is not directly related to an upper bound
for ‖w(k)‖. Nevertheless, if at any short sampling time h = νk + l, l = 1, . . . ,ν−1,
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the optimization problem defining the feedback law (21) is solved under the addi-
tional constraint

∑ν−1
j=l ‖(A f )ν− j−1b f

i δui,l(νk + j)‖ ≤ ∑ν−1
j=l ‖(A f )ν− j−1b f

i δuo
i (νk + j)‖,

where the δui,l are the outputs of (20) with the sequenceΘi(νk + l,ν), then

ν−1

∑
j=0

‖(A f )ν− j−1b f
i w f

i (νk + j)‖ ≤ J̃o
i (νk) (25)

so that, by (24),
‖w(k)‖ ≤ ∑m

i=1 J̃o
i (νk).

This modified optimization problem is always feasible in view of the feasibility at
time h = νk. Thus, it is assumed that the feedback law (21), and hence system (23),
are changed accordingly. In the end, the following result holds:

Theorem 3. Under the assumptions of Theorems 1 and 2, consider the closed loop
system (1), (22) and (23), where the MPC controller at the upper level is initial-
ized with δχ(0) = [x f ′(0)− x̄′ v′(0)− v̄′ φ ′(0)− ū′ ]′ ∈ XMPC(Nc,Np) and, at the
lower level, ζi(0) ∈ Zpi, i = 1, . . . ,m. Assume that ∀k ∈N, the following condition is
verified:

m

∑
i=1

J̃o
i (νk)≤ γΔ‖δ z(k)‖ (26)

Assume also that, ∀ j = 0, . . . ,ν − 1, the columns of the matrix (A f ) jB f are
all different from 0. Then it holds that limh→+∞ x f (h) = x̄ and, in particular,
limh→+∞ y f (h) = yo.

Proof. Inequality (26) guarantees that Assumption 2 is satisfied for sys-
tem (9), (10). Hence, by Theorem 1, it holds that limk→+∞ δ z(k) = 0 (for,
limh→+∞ û(h) = ū and limk→+∞ δx f (νk) = 0, where δx f = x f − x̄).

We claim that limh→+∞ ũ(h) = ū: since limk→+∞ δ z(k) = 0, then by (26) and (25),
∀i = 1, . . . ,m, one has limk→+∞∑ν−1

j=0 ‖(A f )ν− j−1b f
i w f

i (νk + j)‖= 0, namely

limk→+∞∑ν−1
j=0 ‖(A f )ν− j−1b f

i (ũi(νk + j)− ûi(νk + j))‖= 0.

Thus, ∀ j = 0, . . . ,ν−1, limk→+∞ ‖(A f )ν− j−1b f
i (ũi(νk + j)− ûi(νk + j))‖= 0 and,

since (A f )ν− j−1b f
i �= 0, limk→+∞(ũi(νk + j)− ûi(νk + j)) = 0 which is equivalent

to limh→+∞(ũi(h)− ûi(h)) = 0. The claim is proved because limh→+∞ ûi(h) = ūi.
To complete the proof, let us show that, ∀l = 1, . . . ,ν − 1, it holds that

limk→+∞ ‖δx f (νk + l)‖= 0. To this end, since by (1)

δx f (νk + l) = (A f )lδx f (νk)+∑l−1
j=0(A

f )l− j−1B f (ũ(νk + j)− ū),

then, ∀l = 1, . . . ,ν−1, it holds that
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‖δx f (νk + l)‖ ≤ ‖(A f )l‖ · ‖δx f (νk)‖+
l−1

∑
j=0

‖(A f )l− j−1B f ‖ · ‖ũ(νk + j)− ū‖.

The thesis follows because limk→+∞ δx f (νk) = 0 and limh→+∞ ũ(h) = ū.

Remark 2. Theorem 2 ensures that, for any constant reference ûi, the state ζi of the i-
th actuator converges to the corresponding equilibrium ζ̂i. However, as it is clarified
in [8], it is not guaranteed in general that the following CICS (converging-input
converging-state) property holds: if limh→+∞ ûi(h) = ūi, then limh→+∞ ζi(h) = ζ̄i.
Hence, in Theorem 3, it is not possible to conclude that also the internal states
of the actuators converge to the equilibrium ζ̄ . Nevertheless, by definition of the
controller (21) at the lower level, it is guaranteed that the state ζi of the i-th actuator
belongs to the compact set Zpi.

If instead, for the system at the lower level, one is able to prove stability rather
than mere convergence, then also the convergence of the states of the actuators to ζ̄i

is guaranteed for the overall system [8].

Remark 3. If condition (26) is not fulfilled, one may relax the constraint by modi-
fying the robustness properties of the system at the upper level, i.e. by reducing the
attenuation level γ , so that a larger value of γΔ is allowed. With reference to a pure
regulation problem for linear systems, in [9] it has been shown that combining this
strategy with a suitable switching procedure, the convergence property provided by
Theorem 3 can be achieved under milder assumptions. If there is some redundancy
in the available actuators at the lower level, also these further degrees of freedom can
be exploited to satisfy at any time instant the robustness constraint. This approach
is described in [10] for linear systems.

5 Conclusions

A robust MPC approach has been derived to solve a hierarchical control problem
characterized by two layers. The upper one, working at a slow time scale, decides
the ideal control inputs by solving an asymptotic zero error regulation problem for
Wiener systems with constant reference signals and sends its requirements to the
set of the available actuators at the lower level, which in turn compute the actual
control action. The discrepancy between the ideal and actual control values justifies
the use of the robust paradigm, whereas the presence of hard bounds on the control
and state variables enforces the use of the MPC approach.

Acknowledgements. This research has received funding from European Community
through FP7/2007-2013 under grant agreement n. 223854 (“Hierarchical and Distributed
Model Predictive Control of large scale systems”, HD-MPC project).
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Multiple Model Predictive Control of Nonlinear
Systems

Matthew Kuure-Kinsey and B. Wayne Bequette

Abstract. An augmented state space formulation for multiple model predictive con-
trol (MMPC) is developed to improve the regulation of nonlinear and uncertain
process systems. By augmenting disturbances as states that are estimated using a
Kalman filter, improved disturbance rejection is achieved compared to an additive
output disturbance assumption. The approach is applied to a Van de Vusse reactor
example, which has challenging dynamic behavior in the form of a right half plane
zero and input multiplicity.

Keywords: model predictive control, state estimation, multiple model.

1 Introduction

With chemical processes moving towards specialty chemicals and batch processes in
recent years, advanced control strategies are required that handle the resulting wide
range of operating conditions from, for example, different product specifications for
different customers. One such advanced control strategy is multiple model control.
In its simplest form, known as gain scheduling, a bank of controllers is generated,
with each representing a discrete region of the operating space. A decision variable,
such as the value of the output variable, is used to trigger a switch between active
controllers.

In gain scheduling, the switching point between controllers is often
pre-determined and there is no flexibility in determining if that controller is still
the best suited to the particular system conditions. This flexibility is provided by
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not pre-determining switching points, and instead choosing as the active controller
the controller that minimizes a desired objective function. Athans et al. [1] use this
approach to control F-8C fighter aircraft. The approach uses linear quadratic con-
trollers, each of which is generated to nominally represent a different aspect of a
typical flight profile. The objective function is an a posteriori calculation based on
the residuals of each model output, with the control action a weighted linear combi-
nation based on the magnitude of the residuals. This results in blending of controller
outputs, in contrast to switching strategies that select a single controller output.

Similar to the work of Athans et al. [1], the motivation for this research is the
development of a unified control strategy capable of controlling a nonlinear system
at different steady state operating conditions. There are two primary contributions
in this paper. The first is the extension of multiple model predictive control to the
use of augmented state space matrices, and the second addresses a lack of detail
in the existing literature by providing a tutorial overview of model averaging, state
estimation and state variable transitions.

2 Control Structure

The control structure for the multiple model predictive control strategy is shown in
the control block diagram in figure 1.

setpoint
MPC

Weight
Calculation

State
Estimation

Model
Bank

Plant
manipulated input

measured
output

r
k u

k
y

k

iy
k|k-1

iy
k|k
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k|k-1

ix
k|k

^a ^a

^ ^

Fig. 1 Control block diagram of multiple model predictive control strategy

2.1 Model Bank

The multiple model predictive control strategy is based on the use of n models in
the model bank that have the general form given in (1).

ix̂k = iΦ ix̂k−1 +iΓ uk−1
iŷk = iC ix̂k (1)

The left superscript i denotes the model number, with i ranging from 1 to n mod-
els. Although the plant being controlled in practice is likely nonlinear, the models in
(1) are all linear. It is important to note that there are no inherent restrictions in this
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method to linear models, and extension of this method to nonlinear models follows
a similar approach. Each of the n linear models is selected to represent a specific ex-
pected operating condition of the nonlinear system. The use of local linear models
simplifies control design while maintaining an accurate representation of each sys-
tem operating condition. The models in the model bank are updated in parallel with
the plant by passing the manipulated input, uk−1, into the model bank and updating
each model.

2.2 State Estimation

The linear state space model defined in (1) as the basis for the model bank uses “hat”
notation to designate that the states and outputs are predicted rather than measured.
Taking into account the presence of process and measurement noise, the state space
model in (1) is rewritten in (2).

ixk = iΦ ixk−1 +iΓ uk−1
iyk = iC ixk +νk (2)

The νk term in (2) represents measurement noise. None of the n linear models in
the model bank perfectly describes the plant at all times. There is always a degree
of parameter uncertainty, system characteristics change with time and disturbances
enter and affect the system. To handle this, the model predicted outputs, iyk, are
corrected by estimating a disturbance term. This disturbance term, idk, is used to
account for all uncertainties between the model and plant being controlled.

To estimate this disturbance term, each model in the model bank is augmented
with a disturbance estimation model. The simplest and most frequently used model
is the additive output disturbance model. The additive output disturbance enters the
linear model through the output equation, resulting in the augmented model in (3).

ixk = iΦ ixk−1 +iΓ uk−1
idk = idk−1 +ωk−1
iyk = iC ixk +i dk +νk (3)

The ωk−1 term is process noise associated with the disturbance estimation and
the νk term is again measurement noise. An alternative correction method is the use
of a step input disturbance model. The step input disturbance enters the linear model
through the state equation, resulting in the augmented model in (4).

ixk = iΦ ixk−1 +iΓ uk−1 +iΓ d idk−1
idk = idk−1 +ωk−1
iyk = iC ixk +νk (4)

The model states ixk and disturbance term idk for both disturbance models are
“states” being estimated by the model, allowing for combination into a single aug-
mented state vector, defined in (5).
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ixa
k =

[
ixk
idk

]
(5)

Using the augmented state vector, the two disturbance models are generalized
into the common augmented model in (6).[

ixk
idk

]
︸ ︷︷ ︸

ixa
k

=
[

iΦ Gx

0 I

]
︸ ︷︷ ︸

iΦa

[
ixk−1
idk−1

]
︸ ︷︷ ︸

ixa
k−1

+
[

iΓ
0

]
︸ ︷︷ ︸

iΓ a

uk−1 +
[

0
I

]
︸︷︷︸
iΩ a

ωk−1

iyk =
[

iC Gy
]︸ ︷︷ ︸

iCa

[
ixk
idk

]
︸ ︷︷ ︸

ixa
k

+νk (6)

The two general terms in (6) are Gx and Gy, defined as 0 and I for the additive
output disturbance model and iΓ d and 0 for the step input disturbance model. The
augmented model in (6) is further simplified using the appropriate augmented state
matrices, resulting in:

ixa
k = iΦa ixa

k−1 +iΓ a uk−1 +i Ω aωk−1

iyk = iCa ixa
k +νk (7)

The augmented state and output terms in (7) are calculated based on information
available at the previous timestep — that is, before a plant measurement is taken.
This is clear when (7) is rewritten to include timestep notation.

ix̂a
k|k−1 = iΦa ix̂a

k−1|k−1 +iΓ a uk−1

iŷk|k−1 = iCa ix̂a
k|k−1 (8)

The augmented states and outputs in (8) are predicted using information from the
previous timestep. Because they are predictions, and as the process and measure-
ment noise terms in (7) are not known in practice, the augmented states and outputs
use “hat” notation to denote a predicted value.

To make the predictions from (8) as accurate as possible, information from the
plant measurement at the current timestep is used to update the model. The plant
measurement is incorporated using a set of predictor / corrector equations, given in
(9) – (11).

ix̂a
k|k−1 = iΦa ix̂a

k−1|k−1 +iΓ a uk−1 (9)
ix̂a

k|k = ix̂a
k|k−1 +i Lk(yk−i Ca ix̂a

k|k−1) (10)
iŷk|k = iCa ix̂a

k|k (11)

The predictor / corrector equations first predict the augmented states without the
measurement, then update the augmented states based on the difference between the
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plant measurement and the uncorrected model prediction. In the limit of a perfect
model, this difference is zero and there is no state update in (10). The augmented
state update is dependent on Lk, which is an appropriate observer gain based on the
disturbance model. For the additive output disturbance model, Lk is defined in (12).

Lk =
[

0
I

]
(12)

This is equivalent to the use of a deadbeat observer [2]. For the step input
disturbance model, Lk is defined by the solution to the Riccati equation in (13)
and (14).

iPk = iΦa iPk−1
iΦaT

+i Ω a iQ iΩ aT −i Φa iPk−1
iCaT

[iCa iPk−1
iCaT

+i R]−1 iCa iPk−1
iΦaT

(13)

iLk =i Pk
iCaT

[iCa iPk
iCaT

+i R] (14)

The solution to the Riccati equation in (14), iLk, is known as the Kalman gain.
The Q and R terms in the Riccati equation are stochastic terms representing the vari-
ance on the input disturbance and output measurement respectively. For the example
studied in this paper, both are diagonal matrices, Q with dimensions equal to the
number of disturbances being estimated and R with dimensions equal to the number
of measured outputs. Muske and Badgwell [2] show that for unbiased estimates, the
number of estimated disturbances cannot exceed the number of measured outputs. In
practice, the variances are not known, and Q and R become tuning parameters, con-
ventionally expressed as the ratio Q/R, for scalar noise terms. Each model i in the
model bank has a Q and R matrix. Since Q/R is a tuning parameter and all models
are independent of one another, there is no restriction on the magnitude and values
of iQ and iR, with iQ and iR tuned online for each system being controlled.

2.3 Model Weighting Calculation

Once the models are updated with information from the most recent measurement,
the predicted outputs are passed to the model weighting calculation. For each model
and associated predicted output, a corresponding weight is calculated. The weights
are normalized so that the sum of all n weights is unity, and the closer a models’
weight is to unity, the better that model is at representing the plant, relative to the
other models in the model bank. The weights are calculated based on residuals of
each model in the model bank, with the residuals defined in (15).

iεk = yk−i ŷk|k (15)

The model predicted outputs iŷk|k are calculated based on state estimation up-
dates in (11). The formula used to calculate the model weights is based on Bayes
probability theorem, given in (16).
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iρk =
exp(−0.5 iεT

k
iΛ iεk) iρk−1

∑n
j=1 exp(−0.5 jεT

k
iΛ jεk) j ρk−1

(16)

The exponential term in the Bayesian probability comes from the Gaussian prob-
ability distribution function and is based on the assumption that the underlying
model weight probabilities are Gaussian and stochastic in nature. The exponential
term in (16) also has the added benefit of rejecting models that do not represent the
current plant state exponentially fast. The iΛ in (16) is a diagonal scaling matrix for
the residuals, and is based on the covariances of each model. As the covariances are
unknown in practice, the iΛ matrix is a tuning parameter that is adjusted to achieve
desired control behavior. The difference in residuals due to different underlying lin-
ear models drives the calculation in (16) while iΛ affects the speed at which models
evolve in the model bank. The term iρk represents the probability of the ith model
representing the plant at the kth time step. The probability calculation is recursive,
as it relies on information from the previous time step iρk−1. Due to this recursion,
if the probability of any model reaches zero, there is no way for that probability to
become non-zero at a future time step, even if the model is a more accurate repre-
sentation of the plant. To account for this and allow every model to remain active
in the calculation, an artificial lower limit on the probability is enforced. Any prob-
ability that drops below this limit, represented by δ , is set equal to δ . The model
weights are calculated by normalizing the probabilities, according to the formula
in (17).

iwk =

{ iρk
∑n

j=1
jρk

iρk > δ
0 iρk < δ

(17)

The probability calculation in (16) is recursive, so an initial value for the prob-
ability of each model is required prior to the first control calculation. Without a
priori knowledge of the system, each disturbance model starts with the same initial
weight.

In multiple model control strategies that “hard switch” between controllers,
bumpless transfer is a critical consideration when switching between controllers.
Proper initialization of the controller switching on is required to avoid a disconti-
nuity in manipulated control action, resulting in a continuous, or bumpless, tran-
sition between controllers. It is important to note that bumpless transfer is not a
concern in the developed multiple model predictive control strategy. The evolution
of weights according to (16) and (17) represent a continuously evolving model and
the multiple model strategy formulated in this paper does not contain multiple dis-
tinct controllers. The strategy uses the evolving weights to calculate manipulated
control action without discontinuities.

3 Model Predictive Control

The fundamental control strategy used in multiple model predictive control is based
on linear model predictive control. At each time step, an optimization problem is
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formulated and solved. The objective function is to minimize control action over
a prediction horizon of p timesteps. The decision variables are m control moves,
where m is the control horizon. Only the first control move is applied to the system,
the model is updated, and the entire process is repeated at the next time step.

The model that is used in the control calculation is the average linear model
defined in (18).

yk+ j|k =
n

∑
i=1

iwk
iŷk+ j|k (18)

The vector iwk is the weight vector defined in (17), and the iŷk+ j|k terms are
the individual model predicted outputs generated from the models defined in (1)
and calculated with the state estimation in (11). From the average linear model in
(18), the next step is to derive a model predictive control solution. In the objective
function that follows, the first term represents the error over the prediction horizon
and the second term is a penalty on control actions.

min Φ = (Ysp−Y )T Wy (Ysp−Y )+ΔUTWuΔU (19)

In (19), Ysp is a vector of setpoints, Δ U is a vector of optimal control moves, and
Y is the vector of predicted outputs from yk+1|k to yk+p|k, defined in (20).

Y =

⎡⎢⎢⎢⎣
yk+1|k
yk+2|k

...
yk+p|k

⎤⎥⎥⎥⎦ (20)

To solve for a control action for the unconstrained problem in (19), the propaga-
tion of y from yk+1|k to yk+p|k is needed. The propagation results in the definition of
Y in (21).

Y = Sa
x + Sa

c SeΔU + Sa
c U0 (21)

The vectors ΔU and U0 and matrices Sa
x , Sa

c , and Se are defined as (22)-(26).

ΔU =

⎡⎢⎢⎢⎣
Δuk

Δuk+1
...

Δuk+m−1

⎤⎥⎥⎥⎦ (22)

U0 =

⎡⎢⎢⎢⎣
uk−1

uk−1
...

uk−1

⎤⎥⎥⎥⎦ (23)
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Sa
x =

n

∑
j=1

jwk

⎡⎢⎢⎢⎣
jCa jΦa

jCa jΦa2

...
jCa jΦan

⎤⎥⎥⎥⎦ j x̂a
k (24)

Se =

⎡⎢⎣ I 0
...

. . .
I . . . I

⎤⎥⎦ (25)

Sa
c =

n

∑
j=1

jwk

⎡⎢⎣
jCa jΓ a 0

...
. . .

jCa jΦap−1 jΓ a . . . jCa jΓ a

⎤⎥⎦ (26)

The optimization problem in (19) is solved analytically for ΔU .

ΔU = (ST
e SaT

c Sa
cSe +Wu)−1ST

e SaT

c (Ysp−Sa
x−Sa

cU0) (27)

4 Example System

The van de Vusse reactor is chosen for its challenging nonlinear behavior, including
input multiplicity and nonminimum phase behavior [3] and is described by (28)
and (29).

dCA

dt
=

F
V

(CA f −CA)− k1CA− k3C
2
A (28)

dCB

dt
=−F

V
CB + k1CA− k2CB (29)

The measured output in (28) and (29) is the concentration of species B. For the
van de Vusse reactor, dilution rate ( F

V ) is considered manipulated and feed concen-
tration is a likely disturbance, so the disturbance input estimated in id̂k is the feed
concentration, CA f .

Table 1 Van de Vusse parameters and steady state values (Bequette [4]

Parameter Value Parameter Value
k1 5/6 min−1 k12 5/3 min−1

k3 1/6 mol/L−min CA,ss 3 gmol/L
CB,ss 1.117 gmol/L CA f ,ss 10.0 gmol/L

The next step is to populate the model bank. The values in table 1 represent a
nominal model of operation on the left hand side (LHS) of the input multiplicity
curve. As system behavior changes with time and disturbances affect the system,
additional models are needed in the model bank. These models are based on either
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C
A,ss

 = 3.0 mol/L

C
B,ss

 = 1.117 mol/L

F/V
ss

 = 0.5714 min-1

C
A,ss

 = 6.72 mol/L

C
B,ss

 = 0.988 mol/L

F/V
ss

 = 4.00 min-1

(Model 1 - LHS)

(Model 6 - RHS)

k
1

disturbance

C
Af

disturbance

+0.1 k
1

-0.1 k
1

-1 mol/L

+1 mol/L

(Model 2)

(Model 3)

(Model 4)

(Model 5)

Nominal
Model

Perturbation
Type

Perturbation
Model

Fig. 2 Tree and branch diagram for the van de Vusse reactor illustrating the relationship
between linear models in the model bank

perturbations of nominal parameters or a different steady state, and are illustrated in
figure 2.

The branching in figure 2 shows how different models in the model bank are
based on the same nominal model. The perturbations in figure 2 are the likely
sources of disturbance, k1 and CA f . In addition, model 6 is based on a different
set of nominal parameters, ones that represent behavior on the opposite, or right
hand side (RHS), of the input multiplicity curve. This demonstrates how additional
expected operating conditions are incorporated into the model bank.

5 Simulation Results

The first test of the van de Vusse reactor is a comparison of the two disturbance
models used for state estimation, additive output and step input, for a setpoint reg-
ulation problem. There is Gaussian measurement noise with a mean value equal to
five percent of the steady state measured output value added to the measured out-
put. This is done to provide realistic conditions for the comparison, and is typical
of what is expected in practice. The disturbance estimated by id̂k in the step input
disturbance model is the feed concentration,CA f . The setpoint regulation results and
weight evolutions are shown in figure 3.
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Fig. 3 Comparison of additive output and step input disturbance models for setpoint regula-
tion; p = 30, m = 1, Λ = 500, δ = 0.01, Δ t = 0.1 minutes, Q/R = 1.0

There are several important details to note from figure 3. First is the relatively
similar performance between the two disturbance models. Using mean absolute de-
viation (MAD) as a performance criterion, the step input disturbance model is 12
percent lower at a MAD of 0.4749 mol

L than the 0.540 mol
L for the additive output

disturbance model. In addition, there is a marked difference in weight evolutions
for the two disturbance models. The weights evolve significantly faster for the step
input disturbance model. Setpoint regulation is not the only metric for comparing
the two disturbance models. The purpose of the disturbance models is to estimate
and reject disturbances, so it therefore makes sense to also compare the two mod-
els for their disturbance rejection capability. One common disturbance for industrial
reactors is to the dilution rate, due to variations and uncertainty in flow from up-
stream processes. For a +0.1 min−1 change in dilution rate at time 6 minutes, the
disturbance rejection results and weight evolutions are shown in figure 4.

The results in figure 4 show the strength of the step input disturbance model.
While the additive output disturbance model is unable to reject the input disturbance,
the step input disturbance model quickly rejects the disturbance. This disturbance
capability, along with the lower MAD for setpoint regulation, is the justification for
using the step input disturbance model in the remainder of simulation in this paper.

The parameters given in table 1 are taken from Bequette [4], and are representa-
tive of the series-parallel reaction scheme described in (28) — (29). The parameters
that describe reaction kinetics: k1, k2 and k3, have an initial value that is estimated
in lab bench scale experiments. Once the process is online and running in a scaled
up, continuous plant setting, the values of these parameters change with time and
are especially sensitive during plant start-up. These changes are in response to a
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Fig. 4 Comparison of additive output and step input disturbance models for rejection of
+0.1min−1 disturbance to the dilution rate at t = 6 minutes; p = 30, m = 1,Λ = 500, δ = 0.01,
Δ t = 0.1 minutes, Q/R = 1.0

spike or surge in temperature, flowrate, concentration, etc. from an upstream pro-
cess. It is important to see how well the multiple model predictive control strategy
is able to handle this change in reaction kinetic parameters. Additionally, since the
disturbance estimated in (4) is the feed concentration, this simulation also looks at
how the multiple model predictive control strategy handles disturbances that do not
match the estimated disturbance in (4). At time 10 minutes, the k1 parameter is in-
creased by 10 percent. The result of this sudden change in reaction kinetic parameter
is shown in figure 5.

The results in figure 5 show how sensitive the multiple model predictive control
strategy is to small, sudden changes in reaction kinetic parameters. Not only does
the strategy bring the concentration back to setpoint, but the weighting of the models
undergoes a drastic shift in response to the 10 percent change in k1, with model 2
(representing an increase in k1) becoming the dominant model after the introduction
of the disturbance.

One of the more challenging features of the van de Vusse reactor is the presence
of input multiplicity, where multiple distinct values of the manipulated input result
in the same steady state measured output. While two distinct dilution rates can lead
to the same concentration, they do so on opposite sides of the curve. The sign of the
gain on each side of the curve is different. A large enough disturbance in the dilution
rate can force the process to “cross the peak” and operate on a side of the curve with
the opposite gain sign. A linear controller has a fixed gain and is unable to handle
this disturbance. By creating a model bank that has models representing both sides
of the curve, the multiple model predictive control strategy is able to handle this
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Fig. 5 Simulation of a change in reaction kinetic parameters; 10 percent change in k1 at t =
10 minutes; p = 30, m = 1, Λ = 500, δ = 0.01, Δ t = 0.1 minutes, Q/R = 1.0

0 5 10 15 20 25 30
0.5

1

time (minutes)

C
B
  (

m
ol

/L
) 

   
  

0 5 10 15 20 25 30
0

5

D
ilu

tio
n 

ra
te

(m
in

−
1 ) 

  

 

 

0 5 10 15 20 25 30

0
1
2
3

D
ilu

tio
n 

R
at

e
D

is
tu

rb
an

ce
  

0 5 10 15 20 25 30
0

0.5

1

time (minutes)

M
od

el
 W

ei
gh

ts
   

   
  (

F
/V

) 
   

   
 

0 5 10 15 20 25 30
0

0.5

1

time (minutes)

M
od

el
 W

ei
gh

ts
  (

C
A

f) 
   

 

 

 

Multiple Model − C
Af Multiple Model − F/V Linear Model

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Fig. 6 Simulation of a sudden change in dilution rate causing operation to shift from the left
hand side of the peak to the right hand side; p = 30, m = 1, Λ = 500, δ = 0.01, Δ t = 0.1
minutes, Q/R = 1.0

type of disturbance. The model bank has models that represent both sides of the
peak: model 1 on the left hand side and model 6 on the right hand side. The results
to this point are for a step input disturbance model that estimates a disturbance in
feed concentration. This is an appropriate disturbance to estimate when the feed
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concentration is perturbed. The step input disturbance model is also able to estimate
a disturbance in the dilution rate, which is the disturbance that causes the van de
Vusse reactor to “cross the peak”. Performance of the two disturbance estimations
for a dilution rate disturbance that forces the van de Vusse reactor onto the other side
of the curve are compared with a linear model predictive controller, and the results
are shown in figure 6.

The results in figure 6 are exactly what is expected. The linear model predictive
controller is unable to handle the disturbance while the multiple model predictive
control strategy successfully rejects the peak crossing with both disturbance esti-
mates. The model weight evolution shows how the dominant model switches to the
right hand side of the curve model after the disturbance is introduced for both dis-
turbance estimates.

6 Summary

This paper has developed an extension of multiple model predictive control using
augmented state space models. The detailed development of an unconstrained solu-
tion to the multiple model predictive control problem addresses the lack of detail in
the existing literature, including model updating, state variable transition and model
bank generation. The analytical unconstrained solution is tested on a challenging
problem with input multiplicity.
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Stabilizing Nonlinear Predictive Control over
Nondeterministic Communication Networks

R. Findeisen and P. Varutti

Abstract. Networked control systems are systems in which distributed controllers,
sensors, actuators and plants are connected via a shared communication network.
The use of nondeterministic networks introduces two major issues: communication
delays and packet dropouts. These problems cannot be avoided and they might lead
to a degradation in performance, or, even worse, to instability of the system. Thus,
it is important to take network effects directly into account. In this paper, nonlinear
continuous time networked control systems are considered and a nonlinear model
predictive controller that is able to compensate the network nondeterminism is
outlined.

Keywords: nonlinear continuous time systems, networked control systems, time-
varying delays, packet dropouts, nonlinear model predictive control, stability.

1 Introduction

In recent years, the attention of the control community has focused on networked
control systems (NCSs), i.e. systems where controllers, actuators, and sensors are lo-
cated remotely and connected through a shared communication network. Although
the idea is not new, e.g. CAN for automotive purposes, the availability of cheap
and universal shared communication media like Internet has cast a new light on
the way of interpreting NCSs. In fact, it can be convenient to re-use the preexisting
standardized infrastructure to control systems remotely, since it allows to reduce de-
ployment costs and to cope more efficiently with component failures, allowing for
redundancies and cheap replacement. Unfortunately, using shared communication
networks instead of dedicated ones introduces new control issues and challenges.
Digital networks are usually nondeterministic in their behavior and the communi-
cated information can be delayed or lost. This not only might reduce the overall
system performance but also lead to instability.
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Though great attention on linear NCSs has been paid, e.g. [7, 13, 18], only a
few works consider nonlinear continuous time systems, e.g. [2, 10, 16]. Often ei-
ther measurement or actuator delays are taken into account. Moreover, only a few
works consider packet losses, as in [12, 14]. Furthermore, specific communica-
tion protocols are usually contemplated in the controller design, as for example in
[6, 7, 15, 17].

In this paper, a predictive control approach for nonlinear NCSs is presented. As
shown in [4], predictive control has already demonstrated to be an effective way to
deal with computational delays. In the frame of this work, we expand these results to
delays in the sensor and actuator channel. In comparison to other papers, the proto-
col stack is abstracted and modeled as an additive delay. By labeling the information
packets with time-stamps, the measurement delay can be compensated. In a similar
way, by considering a worst case scenario and using smart-actuators, i.e. special ac-
tuators equipped with playback buffers, the actuation delay, as well as limited packet
losses, can be solved in a simple, yet conservative way. Finally, if prediction con-
sistent feedbacks are used, it is possible also to counteract larger packet losses. In
this case, instead of sending a short piece of the input trajectory, the whole predicted
control input is dispatched. Consistence between consecutive sequences should be
guaranteed to ensure stability. It is proved that the proposed method is able to sta-
bilize the closed-loop system. Simulation results for an inverted pendulum on a cart
are provided.

In Section 2, the nonlinear networked control problem is presented. Section 3
introduces the new proposed method. In particular, in 3.1-3.2, the problem of mea-
surement and actuation delays are solved by using a compensation approach, while
in Section 3.3 a prediction consistent method to solve packet losses is outlined. Fi-
nally, to support the effectiveness of the new approach, simulation results for an
inverted pendulum on a cart are presented in Section 4.

2 Problem Statement

Consider the nonlinear continuous time system

ẋ(t) = f (x(t),u(t)), x(0) = x0, (1)

where x(t) ∈X ⊆ Rn, and u(t) ∈ U ⊂ Rm denote respectively the state and the
input vectors. The set of admissible inputs is denoted by U , while the set of feasible
states is denoted by X . It is assumed that U is compact, X is connected, and
(0,0) ∈X ×U . Moreover, the vector field f : Rn×Rm → Rn is locally Lipschitz
continuous and satisfies f (0,0) = 0.

The following definition of partition will be used through the paper.

Definition (Partition). Every series π = (ti), i ∈ N of positive real numbers such
that t0 = 0, ti < ti+1 and ti → ∞ is called partition.

Figure 1 shows a sketch of an NCS. Here, τsc(t) ∈ [0,τsc] represents the mea-
surement delay, while τca(t) ∈ [0,τca] the actuation delay, both assumed to be
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Fig. 1 Sketch of an NCS with packet dropouts, delays τsc(t), τca(t) and random packet losses

nondeterministic. For sake of simplicity, they will be referred as τsc, and τca. No
assumption on their probability distributions is made. We assume that both are ulti-
mately bounded by τsc and τca respectively.

The communication medium is shared with other processes, such as in the In-
ternet case. Although only one system and one controller are considered, as well
as one sensor/actuator, the idea can be easily extended also to hierarchical or dis-
tributed control problems, considering multiple controller, plant, actuator, and sen-
sor configurations. In comparison to other works, such as [6, 11], the underlying
network protocols are not taken directly into account but abstracted as delays and
packet dropouts.

In order to avoid ambiguities, a clear definition of packet loss is commonly
known. Finally, every component - sensor, actuator, controller - has an inner clock,
synchronized with all the others. Although limiting, this is a common assumption
in NCSs since it provides a common time-frame, which is used to compensate the
delays.

On the sensor side, periodically possibly-not-equally-distributed instances of the
state x(t) are measured at time ti ∈ π . The information is sent to the controller
through the network. A time-stamp ts = ti is associated to every packet. The con-
troller receives this information and solves the optimization problem. Once the opti-
mal control input is obtained, the control information is sent to the actuator, attached
again with a time-stamp. The network is subject to random packet losses, which can
be, for example, modeled as Bernoullian variables Si ∼B(1− ps), Ai ∼B(1− pa)
with ps, pa ∈ [0,1], loss probabilities in the sensor/actuator link, s.t.

Si =
{

0, if a measurement packet is lost at ti ∈ π
1, otherwise

,

Ai =
{

0, if an actuation packet is lost at ti ∈ π
1, otherwise

.

Controller and actuator can either be event-driven or time-driven components. For
simplicity of presentation, it is assumed that no computational delay is present.
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In the next section, a method to compensated the nondeterministic network be-
havior is presented. Section 3.1 shows how to counteract the measurement delay,
while in Section 3.2 a procedure to deal with the actuation delay is presented. Fi-
nally, in Section 3.3, a solution for packet losses is described.

3 Proposed Method

In this section, a predictive control strategy to solve the network nondeterminism is
presented. Predictive techniques have demonstrated to be effective against delays,
as in [4], where a compensation approach for computational delays was presented.
In fact, if a model of the system is available, it can be used to forecast the cur-
rent state of the plant and consequently to counteract the delays. The key challenge
for a sufficiently good prediction, however, is that the input should be known at
any time.

3.1 Compensation of Measurement Delays

Assume for the moment that only the sensor-to-controller channel is subject to a
nondeterministic delay τsc. Since the information measured at the time ti is available
at the controller side only at (ti + τsc), the actual state of the system differs from the
received piece of information. One can compensate this delay by means of suitable
prediction/simulation.

In particular, consider the nonlinear system (1). Sampled-Data Nonlinear Model
Predictive Control (SD-NMPC) is based on the repeated solution of an open-loop
control problem, subject to the system dynamics and constraints. Based on the state
at time ti, the controller predicts the system behavior in the future over a predic-
tion horizon Tp, such that a certain objective cost functional is minimized. The
procedure is repeated at every recalculation instant ti ∈ π . This is mathematically
formulated as:1

min
ū(·)

J(ū(·), x̄(·))

s.t. ˙̄x = f (x̄(τ), ū(τ)), x̄(ti) = x(ti)
ū(τ) ∈U , x̄(τ) ∈X ,τ ∈ [ti,ti + Tp] (2)

x̄(ti + Tp) ∈ E,

where the cost functional J is typically given by

J(·) =
∫ ti+Tp

ti
F(x̄(τ), ū(τ))dτ + E(x̄(ti + Tp)),

1 Assuming for simplicity that the minimum is obtained.
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and u(τ) = u∗(τ;x(ti)), for τ ∈ [ti, ti+1). It is assumed that the cost function F :
X ×U → R is locally Lipschitz continuous with F(0,0) = 0 and F(x,u) > 0,
∀(x,u) ∈X ×U \ (0,0).

Under certain rather mild conditions, stability in the nominal case - no delays
and no packet losses - can be guaranteed, see [3, 5, 8, 9]. The idea is to consider
the available model of the plant and use it to compensate the measurement delay by
predicting x̂(ti + τsc) from the last available measurement. The time-stamp can be
used to calculate the delay just by comparison with the controller’s inner clock. In
this way, the optimization problem can be solved for the predicted state. The proof
of stability for this compensation approach can be found in the next section.

3.2 Compensation of Actuation Delays

Assume now that an additional controller-to-actuator delay τca affects the commu-
nication. While the measurement delays can be solved as shown in Section 3.1,
actuation delays are less trivial to deal with. In fact, the presence of (stochastic)
delays on the actuation side does not allow to conclude for sure which control in-
put is applied to the plant at a specific moment, therefore compromising the state
prediction.

As stated in several works, e.g. [1], nondeterministic delays can be rendered de-
terministic by using playback buffers. However, no former work has ever solved
the control problem for nonlinear continuous time systems affected simultaneously
by both input and output delays. By introducing special actuators which are able to
store the control information and apply it at the proper moment - commonly called
smart actuators -, it is possible to solve the up-link delay by considering τca. In
fact, since τca is assumed to be known, the state prediction x̂(ti + τsc + τca) can be
calculated and used to solve the optimization problem. The time-stamp of the corre-
sponding control packet is set equal to (ti +τsc +τca), since it cannot be used before
that time. It is responsibility of the actuator to apply the input when the time-stamp
matches the actuator’s inner clock. Although performance might slightly worsen,
it is possible for the controller to reconstruct exactly the applied input, since the
actuation delays is made deterministic.

The overall procedure can be summarized by the following algorithm.

Algorithm 1(Worst-case compensation). For all ti ∈ π; t = current time; Sensor:

1. Measure x(ti).
2. Send the packet [x(ti)|ts], with ts = ti.
3. Go to 1.

Controller:
buffer = [x(ti)|ts]old;
control input = {[u(·)|ts0]};
1. If a new packet [x(ti)|ts]new arrives

a) If tsnew ≤ tsold , then discard.
b) Else buffer= [x(ti)|ts]new.
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2. τsc = (t− ts).
3. x̂(t + τca) = xts +

� t+τca
ts f (x(τ),u(τ))dτ , where u(τ) ∈ control input.

4. Solve the o.c.p. for x̂(t + τca)−→
u∗(τ;x(ti)), for τ ∈ (ti + τsc + τca,ti+1 + τsc + τca], with ti = ts.

5. Send [u∗(τ;x(ti))|ts], with ts = (t + τca).
6. Insert [u∗(τ;x(ti))|ts] in control input.
7. Go to 1.

Actuator:
buffer = {[u(·)|ts0], . . . , [u(·)|tsn]}, for ts0 < .. . < tsn;
applied input = [u(·)|ts0];

1. If a new packet [u(·)|ts]new arrives

a) Insert [u(·)|ts]new in buffer.
b) Sort buffer by increasing ts.

2. temp = first element of buffer.
3. If tstemp = t

a) applied input = temp.
b) Remove first element from buffer.

4. Go to 1.

By using the former method, even though sensor and actuator delays are present,
it can be proved that stability can be established.

Theorem 1 (Worst-case compensation). Given the nonlinear system (1), the closed
loop using the compensation approach is stable, in the sense of asymptotic conver-
gence, if the nominal controller, i.e. the controller subject to no delays, stabilizes the
system.

Proof. The proof is composed by two parts, feasibility and convergence, and it can
be re-conducted to the nominal case (see [3]).

Feasibility: Consider any time ti such that the optimal continuous problem has a
solution. The corresponding optimal input u∗(τ;x(ti)) for x(ti) is implemented for
τ ∈ (ti + τsc + τca,ti+1 + τsc + τca], by storing the corresponding piece of trajectory
in the actuator’s buffer. Since it is assumed that there is no model mismatch, the
prediction state x̂(ti+1) at ti+1 must be equal to the actual state x(ti+1). Therefore,
the remaining piece of optimal input u∗(τ;x(ti)), τ ∈ [ti+1,ti + Tp], where Tp is the
prediction horizon, satisfies the state and input constraints. By considering the input

ū(τ) =
{

u∗(τ;x(ti)),τ ∈ [ti+1, ti + Tp]
uE(τ),τ ∈ (ti + Tp, ti+1 + Tp]

, (3)

satisfying the constraints, the state x(ti+1 + Tp;xt+1, ū(·)) is reached. Thus, feasibil-
ity for ti implies feasibility at ti+1.

Convergence: By denoting the optimal cost function at ti as the value function
V (x(ti)) = J∗(u∗(·),x(ti)), it can be shown that the value function is strictly decreas-
ing. Therefore, the state converges to the origin. In fact, the value function at ti is
given by
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V (x(ti)) =
∫ ti+Tp

ti
F(x̂(τ;x(ti)),u∗(·;x(ti))),u∗(τ;x(ti))dτ

+ E(x̂(ti + Tp;x(ti),u(·))).

Now, consider the cost resulting from the application of u starting from x(ti+1):

J(u(·),x(ti+1)) =
∫ ti+1+Tp

ti+1

F(x̂(τ;xti+1),u(·),u(τ))dτ

+ E(x̂(ti+1 + Tp;x(ti+1),u(·))).

It can be reformulated as

J(u(·),x(ti+1)) = V (x(ti))−
∫ ti+1

ti
F(x̂(τ;x(ti)),u∗(·;x(ti)))dτ

− E(x̂(ti + Tp;x(ti),u∗(·;x(ti))))

+
∫ ti+1+Tp

ti+Tp

F(x̂(τ;x(ti+1),u(·)),u(τ))dτ

+ E(x̂(ti+1 + Tp;x(ti+1),u(·))).

By integrating the inequality ∂E
∂x f (x(τ),uE(τ))+F(x(τ),uE(τ))≤ 0, where, as pre-

viously mentioned, uE(τ) is such that the set E is an invariant region, the last three
terms of the former cost function can be upper bounded by zero. Thus,

V (x(ti))− J(u(·),x(ti+1))≤−
∫ ti+1

ti
F(x̂(τ;x(ti)),u∗(·;x(ti)))dτ.

But this is equal to

V (x(ti))−V(x(ti+1))≤−
∫ ti+1

ti
F(x̂(τ;x(ti)),u∗(·;x(ti)))dτ,

which is strictly decreasing for (x,u) �= (0,0). Since this last condition is verified,
it is possible to apply a variant of the Barbalat’s lemma to establish convergence of
the state to the origin for t → ∞. �
Remark 1. Only nominal asymptotic converge is ensured. This is a weaker prop-
erty than asymptotic stability, meaning that not only disturbances cannot be rejected
immediately, but also that, if disturbances are present, the system can temporary
drift from the equilibrium point before converging. Proving stability would in the
first step require to rigorously define stability for systems of discrete even nature,
since the partition π is not necessarily known a priori. This is way beyond the avail-
able space and the focus of the paper.

Remark 2. Although NMPC has been adopted in the previously described method,
any predictive/model-based control approach can be used. NMPC is only well suited
for the purpose.
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Remark 3. The compensation approach presented in the paper requires the pres-
ence of synchronized inner clocks in order to have a common time-frame among
the components. This can represent a problem for fast dynamic systems, since the
state-of-the-art synchronization algorithms cannot guarantee high precision.

3.3 Packet Dropouts

In the presence of packet losses, the former method is too conservative. When Si = 0,
i.e. a measurement packet is dropped, the local model can still be used to predict
the current state of the plant by utilizing the last available measurement. Instead,
if Ai = 0, i.e. no control input arrives, the actuator does not have any new informa-
tion to use and the controller cannot be sure about what is applied to the system. The
idea is to keep compensating the delays as described in Algorithm 1, and at the same
time use prediction consistent feedbacks, i.e. ∀ti ∈ π , u∗(τ;x(·)), for τ ∈ [ti, ti + Tp)
is calculated and dispatched. When a packet is lost, the smart actuator can con-
tinue to apply the remainder of the old input, i.e. if Ai = 0, u∗(τ) = u∗(τ;x(·)), for
τ ∈ [ti−1,ti+1). However, to guarantee stability a more elaborated version of NMPC
is required, such that the input trajectories are able to keep consistency between
consecutive state predictions even if some information is lost. The following defini-
tions are useful to delineate prediction consistency. They are formulated in terms of
a discrete system representing the dynamics in between sampling instances.

Definition (Control Invariant Set). The non-empty set Ω ⊂Rn is a control invari-
ant set for the discrete system xk+1 = f̃ (xk,uk) if and only if there exist a feedback
control law uk = g(xk) such that Ω is a positive invariant set for the closed-loop
system xk+1 = f̃ (xk,g(xk)), and uk ∈U ,∀xk ∈Ω .

Definition (Reachable Set). The set Si(Ω ,T) is the i-step reachable set contained
in Ω for the systems xk+1 = f̃ (xk,uk) if and only if T is a control invariant subset
of Ω and Si(Ω ,T) contains all the states in Ω for which there exists an admissible
control sequence of length i which will drive the state of the system in T in i or less
steps, while keeping the evolution of the state inside Ω .

Definition (Prediction consistent feedback). Given the recalculation partition π ,
and the terminal set T ⊆X ⊆ Rn, the feedback u(·) is called prediction consistent
if for every recalculation time ti ∈ π , u(·;x(ti))∈U , and, given two input trajectories
uk(·;x(tk)), uh(·;x(th)) obtained at the recalculation times tk < th, the predicted states
of the system (1), x̂(t j;uk(·;x(tk))), x̂(t j;uh(·;x(th))) at the recalculation time t j > th,
obtained by applying the former inputs, belong to the same reachable set S j(X ,T)
of the corresponding sampled-data system, ∀t j ∈ π .

Essentially, this can be seen as the requirements that under information loss, the
actual state of the system under the old input trajectory, drift negligibly from the
controller’s prediction (see Figure 2).

By using a prediction consistent feedback and the compensation approaches pre-
sented formerly, the following theorem holds.
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Fig. 2 Example of prediction consistent feedbacks

Theorem 2 (Dropouts compensation). Given the system (1), the closed loop is
stable if

• The feedback prediction is consistent.
• The feedback stabilizes the nominal system, i.e. the system with no delays.
• Compensation and smart actuators are used to counteract delays.
• The number of consecutive losses is less that the prediction horizon.

Proof. Since, the prediction consistent feedbacks ensure by definition that
x̂(ti;u∗i (·)) ∈ Si(X ,T ), ∀ti ∈ π , from the Theorem 1 feasibility and convergence
are guaranteed. �
Remark 1. Special control schemes are needed, i.e. they must be prediction con-
sistent. This means that the concatenation of different input sequences under infor-
mation loss must be such that the actual state of the system under the old input
trajectory drift only negligibly from the controller’s prediction. By using prediction
consistent feedbacks, even though the applied input is not known precisely at the
controller side, the closed-loop system is not destabilized.

Remark 2. Although here sample-data NMPC was used, other finite horizon
NMPC approaches can be utilized, e.g. zero terminal constraint, terminal penalty
constraint, terminal region constraint. Moreover, note that prediction consistency is
one possible solution for the packet dropouts. In practice, every method which is
able to lead to the same control sequence even though control packets are lost can
be used.

Remark 3. If the number of consecutive losses Ai is longer than the prediction
horizon, the system cannot be controlled anymore.
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4 Simulation Results

An inverted pendulum on a cart is used as benchmark problem. Attention was fo-
cused solely on the pendulum dynamics. The mathematical model is given by the
system {

ẋ1(t) = x2(t)

ẋ2(t) = mLcos(x1(t))sin(x1(t))x2
2(t)−g(M+m)sin(x1(t))+cos(x1(t))u(t)

mLcos2(x1(t))− 4
3 (m+M)L

,

where x1(t) is the angular position of the pendulum, and x2(t) is its angular speed.
The control input is represented by u(t). The values of the coefficients m, M, and L,
and the initial conditions are reported in Table 1.

Table 1 Coefficients and initial conditions for the inverted pendulum

Pendulum Cart Pendulum Initial Initial
mass mass length condition prediction

m = 0.2 Kg M = 1 Kg L = 1 m x(0) = [0.2 0]T x̂(0) = [0 0]T

The simulations were made in Matlab and Simulink. Sensor, actuator and con-
troller were implemented as time-driven components, with a sampling and recalcu-
lation time equal to 0.025 seconds. Two setups are considered: one without packet
losses and one with random dropouts. For sake of simplicity, both delays are as-
sumed to be constant and multiples of the sampling time.
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Fig. 3 Simulation results in absence of packet dropouts
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Fig. 4 Simulation results in presence of both packet losses and delays

In the first simulation, τsc is set equal to 0.1 seconds, while τca = 0.05. The
corresponding results are depicted in Figure 3. Here, the dashed line represents the
non-compensated case, while the solid line shows the system when the formerly
proposed method is applied. The controller not only stabilizes the system, but it
exhibits performance comparable to the nominal case.

In the second simulation, packet dropouts are included. A loss probability of
20% is considered, while τsc = 0.2 and τca = 0.1 seconds. As shown in Figure 4,
where the gray bars represents the intervarls for which the communication fails, the
controller obtained with the proposed method is still able to stabilize the system
under packet losses.

5 Conclusions

In this paper the problem of controlling nonlinear NCSs has been analyzed. A com-
pensation approach to counteract measurement and actuation delays has been pre-
sented. The measurement delay can be evaluated by using a system of synchronized
clocks and by labeling the sensor information with a time-stamp, representing the
instant in which the information is collected from the plant. By using a predictive
approach it is possible to forecast the actual state of the system, even though the
communication channel is affected by random delays. Moreover, a worst-case com-
pensation approach for actuation delays has been introduced. Solving the delays in
the actuation channel is in general less trivial than the sensor one, since it is not
possible a priori to be sure about the input that is applied to the system. However,
whenever the maximum actuation delay is know, it is possible to use again predic-
tive control techniques to solve the delay. This requires the use of smart actuators.
Finally, packet losses have been solved by using prediction consistent techniques,
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i.e. techniques that guarantee that two consecutive sequences of optimal control in-
puts do not differ extremely from each other. In this way, packet dropouts which
are shorter that the prediction horizon can be handled. It has been proved that the
proposed method is able to stabilize the close loop system, in sense of asymptotical
convergence. An inverted pendulum on a cart has been used as simulation bench-
mark, demonstrating that the method is able to stabilize the NCS and to increase its
performance.
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2. Carnevale, D., Teel, A.R., Nešić, D.: A lyapunov proof of an improved maximum allow-
able transfer interval for networked control systems. IEEE Trans. Automat. Contr. 52(5),
892–897 (2007)

3. Findeisen, R.: Nonlinear Model Predictive Control: A Sampled-Data Feedback Perspec-
tive. PhD thesis, University of Stuttgart (2006)
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Distributed Model Predictive Control System
Design Using Lyapunov Techniques

Jinfeng Liu, David Muñoz de la Peña, and Panagiotis D. Christofides

Abstract. In this work, we introduce a distributed control method for nonlinear
process systems in which two different controllers have to coordinate their actions
to regulate the state of the system to a given equilibrium point. This class of systems
arises naturally when new sensors, actuators and controllers are added to already
operating control loops to improve closed-loop performance and fault tolerance,
taking advantage from the latest advances in wireless technology. Assuming that
there exists a Lyapunov-based controller that stabilizes the closed-loop system using
the pre-existing control loops, we propose to use Lyapunov-based model predictive
control to design two different predictive controllers that coordinate their actions in
an efficient fashion. Specifically, the proposed distributed control design preserves
the stability properties of the Lyapunov-based controller, improves the closed-loop
performance and is computationally more efficient compared to the corresponding
centralized MPC design. The theoretical results are demonstrated using a chemical
process example.

Keywords: Networked control systems; Distributed model predictive control; Non-
linear systems; Process control.

1 Introduction

Increasingly faced with the requirements of safety, environmental sustainability, and
profitability, chemical process operation is relying extensively on highly automated
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control systems. The operation of chemical processes could benefit from the deploy-
ment of control systems using hybrid communication networks that take advantage
of an efficient integration of the existing, point-to-point communication networks
(wire connections from each actuator/sensor to the control system using dedicated
local area networks) and additional networked (wired or wireless) actuator/sensor
devices. Such an augmentation in sensor information and network-based availabil-
ity of wired and wireless data is now well underway in the process industries [1, 2]
and clearly has the potential to be transformative in the sense of dramatically im-
proving the ability of the single-process and plantwide model-based control systems
to optimize process and plant performance (in terms of achieving performance ob-
jectives that go well beyond the ones that can be achieved with control systems using
wired, point-to-point connections) and prevent or deal with adverse and emergency
situations more quickly and effectively (fault-tolerance).

Augmenting existing control systems with additional sensors and actuators gives
rise to the need to develop coordination schemes between the different controllers
that operate on a process. Lately, several distributed model predictive control (MPC)
schemes have been proposed in the literature that deal with the coordination of dif-
ferent MPC controllers that communicate in order to obtain an optimal input trajec-
tory in a distributed manner, see [3] for a review of results in this area. In [4], the
problem of distributed control of dynamically coupled nonlinear systems that are
subject to decoupled constraints was considered. In [5, 6], the effect of the coupling
is modeled as a bounded disturbance compensated using a robust MPC formulation.
In [7], it was proven that through multiple communications between each controller
and using system-wide control objective functions, stability of the closed-loop sys-
tem can be guaranteed. This problem has also been studied from a decentralized
point of view in [8]. In [9] distributed MPC control of decoupled systems (a class of
systems of relevance in the framework of multi-agents systems) has been studied.
Within process control, important recent work on the subject of networked pro-
cess control includes the development of a quasi-decentralized control framework
for multi-unit plants that achieves the desired closed-loop objectives with minimal
cross communication between the plant units [10].

In this paper, we continue our recent efforts [11] on the development of two-
tier control architectures for networked process control problems. Specifically, we
focus on networked process control problems in which two different controllers
have to coordinate their actions to regulate the state of the system to a given equi-
librium point. Assuming that there exists a Lyapunov-based controller that stabi-
lizes the closed-loop system using the pre-existing control loops, we propose to use
Lyapunov-based model predictive control (LMPC) theory [12, 13, 14] to design
two different predictive controllers that coordinate their actions in an efficient fash-
ion. LMPC is based on the concept of uniting model predictive control with con-
trol Lyapunov functions as a way of guaranteeing closed-loop stability. The main
idea is to formulate appropriate constraints in the predictive controller’s optimiza-
tion problem based on an existing Lyapunov-based controller, in such a way that
the MPC controller inherits the robustness and stability properties of the Lyapunov-
based controller. The proposed distributed model predictive control design preserves
the stability properties of the Lyapunov-based controller, improves the closed-loop
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performance and is computationally more efficient compared to the corresponding
centralized MPC design. The applicability and effectiveness of the proposed control
method is demonstrated using a chemical process example.

2 Preliminaries

2.1 Problem Formulation

We consider nonlinear systems described by the following state-space model

ẋ(t) = f (x(t),u1(t),u2(t),w(t)) (1)

where x(t) ∈ Rnx denotes the vector of state variables, u1(t) ∈ Rnu1 and u2(t) ∈ Rnu2

are two separate sets of control (manipulated) inputs and w(t) ∈ Rnw denotes the
vector of disturbance variables. The disturbance vector is bounded, i.e., w(t) ∈W
where W := {w ∈ Rnw s.t. |w| ≤ θ ,θ > 0}1.

We assume that f is a locally Lipschitz vector function and f (0,0,0,0)= 0 which
means that the origin is an equilibrium point for the nominal system (system of Eq. 1
with w(t) = 0 for all t) with u1 = 0 and u2 = 0. System of Eq. 1 is controlled with
the two sets of control inputs u1 and u2, which could be multiple inputs of a system
or a single input divided artificially into two terms (e.g., ẋ(t) = f̂ (x(t),u(t),w(t))
with u(t) = u1(t)+ u2(t)). We also assume that the state x of the system is sampled
synchronously and continuously and the time instants that we have measurement
samplings are indicated by the time sequence {tk≥0} with tk = t0 + kΔ , k = 0,1, . . .
where t0 is the initial time and Δ is the sampling time.

2.2 Lyapunov-Based Controller

We assume that there exists a Lyapunov-based controller u1(t) = h(x(t)), such that
f (x,h(x),0,0) is locally Lipschitz, which renders the origin of the nominal closed-
loop system asymptotically stable with u2(t) = 0. Using converse Lyapunov theo-
rems [15, 16], this assumption implies that there exist functionsαi(·), i = 1,2,3,4 of
class K 2 and a continuously differentiable Lyapunov function V (x) for the nominal
closed-loop system that satisfy the following inequalities

α1(|x|)≤V (x)≤ α2(|x|)
∂V (x)
∂x

f (x,h(x),0,0)≤−α3(|x|)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|)
(2)

for all x ∈ Ωρ
3 ⊆ D where D is an open neighborhood of the origin and Ωρ

denotes the stability region of the nominal closed-loop system under the control
u1 = h(x) and u2 = 0.

1 | · | denotes Euclidean norm of a vector.
2 Class K functions are strictly increasing functions of their argument and satisfy α(0) = 0.
3 We use Ωr to denote the set Ωr := {x ∈ Rnx |V (x)≤ r}.
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By the Lipschitz property of f and the continuous differentiable property of the
Lyapunov function V , there exist positive constants Lx, Lw such that∣∣∣∣∂V

∂x
|x f (x,u1,u2,w)− ∂V

∂x
|x′ f (x′,u1,u2,0)

∣∣∣∣≤ Lx|x− x′|+ Lw|w|. (3)

for al x,x′ ∈ Ωρ and w ∈W . These constants will be used in the proof of the main
results of this work.

2.3 Centralized Lyapunov-Based MPC

Lyapunov-based MPC (LMPC) is based on uniting receding horizon control with
Lyapunov functions and computes the manipulated input trajectory solving a fi-
nite horizon constrained optimal control problem. The main advantage of LMPC
approaches with respect to the Lyapunov-based controller is that optimality consid-
erations can be taken explicitly into account (as well as constraints on the inputs and
the states [13]). In particular, we propose to use the LMPC scheme proposed in [12]
which guarantees practical stability of the closed-loop system. The LMPC controller
is based on the previously designed Lyapunov-based controller h. The controller h is
used to define a contractive constraint for the LMPC scheme which guarantees that
the LMPC inherits the stability and robustness properties of the Lyapunov-based
controller. The LMPC scheme introduced in [12] is based on the following opti-
mization problem

min
uc1,uc2∈S(Δ )

∫ NΔ

0
[x̃T (τ)Qcx̃(τ)+ uT

c1(τ)Rc1uc1 + uT
c2(τ)Rc2uc2(τ)]dτ (4a)

s.t. ˙̃x(τ) = f (x̃(τ),uc1(τ),uc2(τ),0) (4b)

x̃(0) = x(tk) (4c)

∂V (x)
∂x

|x(tk) f (x(tk),uc1(0),uc2(0),0)

≤ ∂V (x)
∂x

|x(tk) f (x(tk),h(x(tk)),0,0) (4d)

where S(Δ) is the family of piece-wise constant functions with sampling period Δ ,
Qc, Rc1 and Rc2 are positive definite weight matrices that define the cost, x(tk) is the
state measurement obtained at tk, x̃ is the predicted trajectory of the nominal system
for the input trajectory computed by the LMPC, N is the prediction horizon and V
is the Lyapunov function corresponding to the controller h(x). The optimal solu-
tion to this optimization problem is denoted by u∗c1(τ|tk) and u∗c2(τ|tk). The LMPC
controller is implemented with a receding horizon scheme; that is, at time tk, the
optimization problem is solved for x(tk) and u∗c1(0|tk),u∗c2(0|tk) is applied to the sys-
tem for t ∈ [tk,tk+1]. In what follows, we refer to this controller as the centralized
LMPC. The optimization problem of Eq. 4 does not depend on the uncertainty and
assures that the system in closed-loop with the LMPC controller of Eq. 4 maintains
the stability properties of the Lyapunov-based controller u1 = h(x) with u2 ≡ 0. The
contractive constraint of Eq. 4d guarantees that the value of the time derivative of
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the Lyapunov function at the initial evaluation time of the LMPC is lower or equal to
the value obtained if only the Lyapunov-based controller u1 = h(x) is implemented
in the closed-loop system. This is the contractive constraint that allows one to prove
that the LMPC inherits the stability and robustness properties of the Lyapunov-based
controller h.

Note that a major difference of the above LMPC scheme of Eq. 4 from some
other existing Lyapunov-based MPC approaches (see for example [17, 18]) is that
the constraint of Eq. 4d requires the Lyapunov function value to decay, not at the
end of the prediction horizon, but only during the first time step.

3 Distributed LMPC

3.1 Distributed LMPC Formulations

It is well known that the computation time of a nonlinear MPC optimization prob-
lem grows significantly with the increase of the iteration times and the number of
optimization (decision) variables. The main objective of the proposed distributed
LMPC scheme is to reduce the computation burden in the evaluation of the opti-
mal manipulated inputs while maintain the performance of the closed-loop system
at a close level to the one attained when a centralized LMPC is used. In the present
work, we design two separate LMPCs to compute u1 and u2 and refer to the LMPC
computing the trajectories of u1 and u2 as LMPC 1 and LMPC 2, respectively. Fig-
ure 1 shows a schematic of the proposed distributed scheme. We propose to use the
following implementation strategy:

1. At sampling instant tk, both LMPC 1 and LMPC 2 receive the state measurement
x(tk) from the sensors.

2. LMPC 2 computes the future input trajectory of u2 based on x(tk) and sends the
first step input value to its corresponding actuators and the entire optimal input
trajectory to LMPC 1.

3. Once LMPC 1 receives the entire optimal input trajectory for u2 from LMPC 2,
it evaluates the future input trajectory of u1 based on x(tk) and the entire optimal
input trajectory of u2 computed by LMPC 2.

4. LMPC 1 sends the first step input value of u1 to corresponding actuators.

Remark 1. The key idea of the proposed formulation is to impose a hierarchy on
the order in which the controllers are evaluated. In this work, we assume flawless
communication. If data losses are taken into account, the control scheme has to be
modified because the coordination between the two LMPCs is not guaranteed.

First we define the LMPC 2 optimization problem. This optimization problem de-
pends of the latest state measurement x(tk), however, LMPC 2 does not have any in-
formation on the value that u1 will take. In order to make a decision, LMPC 2 must
assume a trajectory for u1 along the prediction horizon. To this end, the Lyapunov-
based controller u1 = h(x) is used. In order to inherit the stability properties of this
controller, u2 must satisfy a contractive constraint that guarantees a given minimum
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Fig. 1 Distributed LMPC
control system

Process

Sensors

x

LMPC 1

u1

LMPC 2

x

u2

decrease rate of the Lyapunov function V . The LMPC 2 controller is based on the
following optimization problem:

min
ud2∈S(Δ )

∫ NΔ

0
[x̃T (τ)Qcx̃(τ)+ uT

d1(τ)Rc1ud1(τ)+ uT
d2(τ)Rc2ud2(τ)]dτ (5a)

˙̃x(τ) = f (x̃(τ),ud1(τ),ud2(τ),0) (5b)

ud1(τ) = h(x̃( jΔ)) ∀ τ ∈ [ jΔ ,( j + 1)Δ), j = 1, ...,N−1 (5c)

x̃(0) = x(tk) (5d)

∂V (x)
∂x

|x(tk) f (x(tk),h(x(tk)),ud2(0),0)

≤ ∂V (x)
∂x

|x(tk) f (x(tk),h(x(tk)),0,0) (5e)

where x̃ is the predicted trajectory of the nominal system with u2 being the in-
put trajectory computed by the LMPC of Eq. 5 (i.e., LMPC 2) and u1 being the
Lyapunov-based controller h(x(tk)) applied in a sample and hold fashion. The op-
timal solution to this optimization problem is denoted by u∗d2(τ|tk). The first move
of this trajectory is sent to LMPC 1. The contractive constraint of Eq. 5e guarantees
that the value of the time derivative of the Lyapunov function at the initial evaluation
time, if u1 = h(x(tk)),u2 = u∗d2(0|tk) are applied, is lower than or equal to the value
obtained when u1 = h(x(tk)),u2 = 0 are applied.

The LMPC 1 optimization problem depends on the latest state measurement x(tk),
and the decision taken by LMPC 2 (i.e., u∗d2(τ|tk)). This allows LMPC 1 to compute
an input u1 such that the closed-loop performance is optimized, while guaranteeing
that the stability properties of the Lyapunov-based controller are preserved. LMPC 1
is based on the following optimization problem:

min
ud1∈S(Δ )

∫ NΔ

0
[x̃T (τ)Qcx̃(τ)+ uT

d1(τ)Rc1ud1(τ)+ u∗Td2 (τ|tk)Rc2u∗d2(τ|tk)]dτ (6a)

˙̃x(τ) = f (x̃(τ),ud1(τ),u∗d2(τ|tk),0) (6b)

x̃(0) = x(tk) (6c)

∂V (x)
∂x

|x(tk) f (x(tk),ud1(0),u∗d2(0|tk),0)

≤ ∂V (x)
∂x

|x(tk) f (x(tk),h(x(tk)),u∗d2(0|tk),0) (6d)

where x̃ is the predicted trajectory of the nominal system with u2 being the optimal
input trajectory u∗d2(τ|tk) computed by LMPC 2 and u1 being the input trajectory
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computed by LMPC 1. The optimal solution to this optimization problem is de-
noted by u∗d1(τ|tk). The contractive constraint of Eq. 6d guarantees that the value
of the time derivative of the Lyapunov function at the initial evaluation time, if
u1 = u∗d1(0|tk),u∗d2(0|tk) are applied, is lower than or equal to the value obtained if
u1 = h(x(tk)),u2 = u∗d2(0|tk) is applied.

The manipulated inputs of the proposed distributed LMPC design based on the
above LMPC 1 and LMPC 2 are defined as follows

u1(t) = u∗d1(0|tk), ∀t ∈ [tk, tk+1)
u2(t) = u∗d2(0|tk), ∀t ∈ [tk, tk+1).

(7)

Referring to the behavior (boundedness) of the optimal inputs of Eq. 7 for
x(tk)∈Ωρ , a feasible solution to LMPC 2 and LMPC 1 is u2 = 0 and u1 = h(x(tk+ j))
( j = 0,1, . . . ,N − 1), respectively, which results in finite values for the costs of
Eqs. 5a and 6a. Since LMPC 2 and LMPC 1 try to minimize these costs further
while satisfying the constraints of Eqs. 5e and 6d, the resulting closed-loop costs
will also be finite for the optimal policies of Eq. 7, which implies u∗d1(0|tk) and
u∗d2(0|tk) are bounded. Therefore, when u1 = u∗d1(0|tk) and u2 = u∗d2(0|tk) are ap-
plied to the closed-loop system, by the local Lipschitz property assumed for f , there
exists a positive constant M such that

max
t∈[tk ,tk+1)

| f (x(t),u1(tk),u2(tk),w(t))| ≤M (8)

for all x(t) ∈Ωρ and w(t) ∈W .

Remark 2. In order to achieve that LMPC 2 and LMPC 1 can be solved in paral-
lel, LMPC 1 can use old input trajectories of LMPC 2, that is, at tk, LMPC 1 uses
u∗2(t− tk−1|tk−1) to define its optimization problem. This strategy may introduce ex-
tra errors in the optimization problem, however, and may not guarantee closed-loop
stability.

3.2 Distributed LMPC Stability

The stability property of the distributed LMPC scheme (7) is stated below.

Theorem 1. Consider system of Eq. 1 in closed-loop with the distributed LMPC
design of Eq. 7 based on a controller u1 = h(x) that satisfies the conditions of Eq. 2.
Let εw > 0, Δ > 0 and ρ > ρs > 0 satisfy the following constraint:

−α3(α−1
2 (ρs))+ LxMΔ + Lwθ ≤−εw/Δ . (9)

If x(t0) ∈Ωρ and if ρ∗ ≤ ρ where

ρ∗ = max{V(x(t +Δ)) : V (x(t))≤ ρs},
then the state x(t) of the closed-loop system is ultimately bounded in Ωρ∗ .

Proof: The proof consists of two parts. We first prove that the optimization prob-
lems of Eqs. 5 and 6 are feasible for all states x ∈ Ωρ . Then we prove that, under
the proposed distributed LMPC of Eq. 7, the state of system of Eq. 1 is ultimately
bounded in a region that contains the origin.

Part 1: We prove the feasibility of LMPC 2 first, and then the feasibility of
LMPC 1. All input trajectories u2(τ) such that u2(τ) = 0, ∀τ ∈ [0,Δ) satisfy the
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constraints of Eq. 5, thus feasibility of LMPC 2 is guaranteed. The feasibility of
the optimization problem of Eq. 6 follows because input trajectories u1(τ) such that
u1(τ) = h(x(tk)), ∀τ ∈ [0,Δ) satisfy the constraints of Eq. 6.

Part 2: From conditions of Eq. 2 and the constraints of Eqs. 5e and 6d, if x(tk) ∈
Ωρ it follows that

∂V (x)
∂x |x(tk) f (x(tk),u∗d1(0|tk),u∗d2(0|tk),0)

≤ ∂V (x)
∂x |x(tk) f (x(tk),h(x(tk)),u∗d2(0|tk),0)

≤ ∂V (x)
∂x |x(tk) f (x(tk),h(x(tk)),0,0)

≤−α3(x(tk)).

(10)

The time derivative of the Lyapunov function along the actual state trajectory x(t)
of system of Eq. 1 in t ∈ [tk,tk+1) is given by

V̇ (x(t)) = ∂V
∂x |x(t) f (x(t),u∗d1(0|tk),u∗d2(0|tk),w(t)).

Adding and subtracting ∂V
∂x |x(tk) f (x(tk),u∗d1(0|tk),u∗d2(0|tk),0) and taking into ac-

count the Eq. 10, we obtain the following inequality

V̇ (x(t))≤−α3(|x(tk)|) + ∂V (x)
∂x |x(t) f (x(t),u∗d1(0|tk),u∗d2(0|tk),w(t))

− ∂V
∂x |x(tk) f (x(tk),u∗d1(0|tk),u∗d2(0|tk),0).

(11)

From Eqs. 2, 3 and 11, the following inequality is obtained for all x(tk) ∈Ωρ/Ωρs

V̇ (x(t)) ≤ −α3(α−1
2 (ρs))+ Lx|x(t)− x(tk)|+ Lw|w|.

By Eq. 8 and the continuity of x(t), the following bound can be written for all
t ∈ [tk,tk+1)

|x(t)− x(tk)| ≤MΔ .

Using this expression, we obtain the following bound on the time derivative of the
Lyapunov function for t ∈ [tk,tk+1), for all initial states x(tk) ∈Ω/Ωρs

V̇ (x(t))≤−α3(α−1
2 (ρs))+ LxMΔ + Lwθ .

If Eq. 9 is satisfied, then there exists εw > 0 such that the following inequality holds
for x(tk) ∈Ω/Ωρs

V̇ (x(t)) ≤−εw/Δ

in t = [tk,tk+1). Integrating this bound on t ∈ [tk,tk+1), we obtain that

V (x(tk+1)≤V (x(tk))− εw

V (x(t))≤V (x(tk)), ∀t ∈ [tk,tk+1).
(12)

If x(t0) ∈ Ω/Ωρs , using Eq. 12 recursively it is proved that the state converges to
Ωρs in finite number of sampling times without leaving the stability region. Once
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the state converges to Ωρs ⊂Ωρ∗ , it remains inside Ωρ∗ for all times. This statement
holds because of the definition of ρ∗. This proves that the closed-loop system under
the proposed distributed LMPC is ultimately bounded in Ωρ∗ .

4 Application to a Reactor-Separator Process

The process considered in this example is a three vessel, reactor-separator process
consisting of two continuously stirred tank reactors (CSTRs) and a flash tank sepa-
rator. A feed stream to the first CSTR F10 contains the reactant A which is converted
into the desired product B. The desired product B can then further react into an unde-
sired side-product C. The effluent of the first CSTR along with additional fresh feed
F20 makes up the inlet to the second CSTR. The reactions A→ B and B → Ctake
place in the two CSTRs.The overhead vapor from the flash tank is condensed and
recycled to the first CSTR, and the bottom product stream is removed. A small por-
tion of the overhead is purged before being recycled to the first CSTR. All the three
vessels are assumed to have static holdup. The equations describing the behavior of
the system are given below:

dxA1

dt
=

F10

V1
(xA10− xA1)+

Fr

V1
(xAr− xA1)− k1e

−E1
RT1 xA1

dxB1

dt
=

F10

V1
(xB10− xB1)+

Fr

V1
(xBr− xB1)+ k1e

−E1
RT1 xA1− k2e

−E2
RT1 xB1

dT1

dt
=

F10

V1
(T10−T1)+

Fr

V1
(T3−T1)+

−ΔH1

Cp
k1e

−E1
RT1 xA1 +

−ΔH2

Cp
k2e

−E2
RT1 xB1 +

Q1

ρCpV1

dxA2

dt
=

F1

V2
(xA1− xA2)+

F20

V2
(xA20− xA2)− k1e

−E1
RT2 xA2

dxB2

dt
=

F1

V2
(xB1− xB2)+

F20

V2
(xB20− xB2)+ k1e

−E1
RT2 xA2− k2e

−E2
RT2 xB2

dT2

dt
=

F1

V2
(T1−T2)+

F20

V2
(T20−T2)+

−ΔH1

Cp
k1e

−E1
RT2 xA2 +

−ΔH2

Cp
k2e

−E2
RT2 xB2 +

Q2

ρCpV2

dxA3

dt
=

F2

V3
(xA2− xA3)− Fr +Fp

V3
(xAr − xA3)

dxB3

dt
=

F2

V3
(xB2− xB3)− Fr +Fp

V3
(xBr − xB3)

dT3

dt
=

F2

V3
(T2−T3)+

Q3

ρCpV3

(13)

where the definitions for the variables can be found in [11]. The model of the flash
tank separator was derived under the assumption that the relative volatility for each
of the species remains constant within the operating temperature range of the flash
tank. It has been assumed that there is a negligible amount of reaction taking place
in the separator. The following algebraic equations model the composition of the
overhead stream relative to the composition of the liquid holdup in the flash tank:



190 J. Liu et al.

Table 1 Noise parameters

σp φ θp σp φ θp σp φ θp

xA1 1 0.7 0.25 xA2 1 0.7 0.25 xA3 1 0.7 0.25
xB1 1 0.7 0.25 xB2 1 0.7 0.25 xB3 1 0.7 0.25
T1 10 0.7 2.5 T2 10 0.7 2.5 T3 10 0.7 2.5

xAr =
αAxA3

αAxA3 +αBxB3 +αCxC3

xBr =
αBxB3

αAxA3 +αBxB3 +αCxC3

xCr =
αCxC3

αAxA3 +αBxB3 +αCxC3

(14)

Each of the tanks has an external heat input. The manipulated inputs to the system
are the heat inputs to the three vessels, Q1, Q2 and Q3, and the feed stream flow rate
to vessel 2, F20.

System of Eq. 13 was simulated using a standard Euler integration method. Pro-
cess noise was added to the right-hand side of each equation in system of Eq. 13 and
it was generatedof the form wk = φwk−1 +ξk where k = 0,1, . . . is the discrete time
step of 0.001 hr, ξk is generated by a normally distributed random variable with
standard deviation σp, and φ is the autocorrelation factor and wk is bounded by θp,
that is |wk| ≤ θp. Table 1 contains the parameters.

We assume that the measurements of the temperatures T1, T2, T3 and mass
fractions xA1, xB1, xA2, xB2, xA3, xB3 are available at time instants {tk≥0} with
tk = t0 + kΔ , k = 0,1, . . . where t0 is the initial time and Δ is the sampling time.
For the simulations carried out in this section, we pick the initial time t0 = 0 and the
sampling time Δ = 0.02 hr = 1.2 min.

Table 2 Steady-state values for u1s and u2s

Q1s 12.6×105[KJ/hr] Q3s 11.88×105[KJ/hr]
Q2s 13.32×105[KJ/hr] F20s 5.04[m3/hr]

Table 3 Steady-state values for xs

xA1s 0.605 xA2s 0.605 xA3s 0.346
xB1s 0.386 xB2s 0.386 xB3s 0.630
T1s 425.9[K] T2s 422.6[K] T3s 427.3[K]

The control objective is to regulate the system to the steady state xs corresponding
to the the operating point defined by Q1s, Q2s, Q3s of u1s and F20s of u2s. The steady-
state values for u1s and u2s and the values of the steady-state are given in Table 2 and
Table 3, respectively. The process model of Eq. 13 belongs to the following class of
nonlinear systems
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ẋ(t) = f (x(t))+ g1(x(t))u1(t)+ g2(x(t))u2(t)+ w(x(t))

where xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9] = [xA1−xA1s xB1−xB1s T1−T1s xA2−xA2s xB2−
xB2s T2−T2s xA3− xA3s xB3− xB3s T3−T3s] is the state, uT

1 = [u11 u12 u13] = [Q1−
Q1s Q2−Q2s Q3−Q3s] and u2 = F20−F20s are the manipulated inputs which are
subject to the constraints |u1i| ≤ 106 KJ/hr (i = 1, 2, 3) and |u2| ≤ 3 m3/hr, and
w = wk is a time varying bounded noise. To demonstrate the theoretical results, we
first design the Lyapunov-based controller u1 = h(x), which stabilizes the closed-
loop system, as follows [19, 20]

h(x) =

{
− Lf V+

√
Lf V 2+Lg1V 4

Lg1V 2 Lg1V if Lg1V �= 0

0 if Lg1V = 0
(15)

where Lf V and Lg1V denote the Lie derivatives of the scalar function V with respect
to the vectors fields f and g1 respectively. We consider a Lyapunov function V (x) =
xT Px with P being the following weight matrix

P = diag4(5.2×1012[4 4 10−4 4 4 10−4 4 4 10−4)
]
).

The values of the weights in P have been chosen in such a way that the Lyapunov-
based controller of Eq. 15 stabilizes the closed-loop system and provides good
closed-loop performance.

Based on the Lyapunov-based controller of Eq. 15, we design the centralized and
the proposed distributed LMPC schemes. In the simulations, the same parameters
are used for both controllers. The prediction step is the same as the sampling time,
that is Δ = 0.02 hr = 1.2 min; the prediction horizon is chosen to be N = 6; and the
weight matrices for the LMPC schemes are chosen as

Qc = diag(
[
2 ·103 2 ·103 2.5 2 ·103 2 ·103 2.5 2 ·103 2 ·103 2.5

]
)

and Rc1 = diag(
[
5 ·10−12 5 ·10−12 5 ·10−12

]
) and Rc2 = 100. The state and input

trajectories of system of Eq. 13 under the proposed distributed LMPC and the cen-
tralized LMPC are shown in figures 2 and 3 from the initial state

x(0)T = [0.890 0.110 388.7 0.886 0.113 386.3 0.748 0.251 390.6].

Figure 2 shows that both the distributed and the centralized LMPC schemes give
similar closed-loop performance and drive the temperatures and the mass fractions
in the closed-loop system close to the desired steady-state in about 0.3 hr and 0.5 hr,
respectively.

We carried out a set of simulations to compare the proposed distributed LMPC
scheme with the centralized LMPC scheme with the same parameters from a per-
formance index point of view. Table 4 shows the total cost computed for 15 dif-
ferent closed-loop simulations under the proposed distributed LMPC scheme and
the centralized LMPC scheme. To carry out this comparison, we have computed
the total cost of each simulation with different operating conditions (different ini-
tial states and process noise) based on the index of the form ∑i=M

i=0 x(ti)T Qcx(ti)+
u1(ti)T Rc1u1(ti) + u2(ti)T Rc2u2(ti), where t0 is the initial time of the simulations

4 diag(v) denotes a matrix with its diaganol elements being the elements of vector v and all
the other elements being zeros.
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Fig. 2 State trajectories of system of Eq. 13 under the distributed LMPC (solid lines) and the
centralized LMPC (dashed lines)
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Fig. 3 Input trajectories of system of Eq. 13 under the distributed LMPC (solid lines) and the
centralized LMPC (dashed lines)

and tM = 1 hr is the end of the simulations. As we can see in Table 4, the proposed
distributed LMPC scheme has a cost lower than the centralized LMPC in 10 out of
15 simulations. This demonstrates that in this example, the closed-loop performance
of the distributed LMPC is comparable to the one of the centralized LMPC.

We have also carried out simulations to compare the computation time needed
to evaluate the distributed LMPC scheme with that of the centralized LMPC. The
simulations have been carried out using Matlab in a Pentium 3.20G Hz. The nonlin-
ear optimization problem has been solved using the built-in function fmincom of
Matlab. To solve the ODEs model of Eq. 13, both in the simulations and in the op-
timization algorithm, an Euler method with a fixed integration time of 0.001 hr has
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Table 4 Total performance cost along the closed-loop system trajectories

sim. Distr. Centr. sim. Distr. Centr. sim. Distr. Centr.
1 65216 70868 6 83776 66637 11 62714 70951
2 70772 73112 7 61360 68897 12 76348 70547
3 57861 67723 8 47070 66818 13 49914 66869
4 62396 70914 9 79658 64342 14 89059 72431
5 60407 67109 10 65735 72819 15 78197 70257

been implemented in a mex DLL using the C programming language. For 50 evalu-
ations, the mean time to solve the centralized LMPC optimization problem is 9.40 s;
the mean times to solve LMPC 1 and LMPC 2 are 3.19 s and 4.53 s, respectively.
From this set of simulations, we see that the computation time needed to solve the
centralized LMPC is larger than the sum of the values for LMPC 1 and LMPC 2 even
though the closed-loop performance in terms of the total performance cost is com-
parable to the one of the distributed LMPC. This is because the centralized LMPC
has to optimize u1 and u2 in one optimization problem and the distributed LMPC
has to solve two smaller (in terms of decision variables) optimization problems.

5 Conclusion

In this work, a distributed control design for nonlinear process systems was pro-
posed. Assuming that there exists a Lyapunov-based controller that stabilizes the
closed-loop system, Lyapunov-based model predictive control techniques were used
to design two different predictive controllers that coordinate their actions in an effi-
cient fashion. The proposed distributed control design preserves the stability prop-
erties of the Lyapunov-based controller, improves the closed-loop performance and
is computationally more efficient compared to the corresponding centralized MPC.
Simulations using a chemical plant example illustrated the applicability and effec-
tiveness of the proposed control method.
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Stabilization of Networked Control Systems by
Nonlinear Model Predictive Control: A Set
Invariance Approach

Gilberto Pin and Thomas Parisini

Abstract. The present paper is concerned with the robust state feedback stabiliza-
tion of uncertain discrete-time constrained nonlinear systems in which the loop is
closed through a packet-based communication network. In order to cope with model
uncertainty, time-varying transmission delays and and packet dropouts which typ-
ically affect networked control systems, a robust control policy, which combines
model predictive control with a network delay compensation strategy, is proposed.

Keywords: Networked Control Systems, Nonlinear Model Predictive Control.

1 Introduction

In the past few years, control applications in which sensor data and actuator com-
mands are sent through a shared communication network have attracted increasing
attention in control engineering, since network technologies provide a convenient
way to remotely control large distributed plants [1]. These systems, usually refer-
enced as Networked Control Systems (NCS’s), are affected by the dynamics intro-
duced by both the physical link and the communication protocol, that, in general,
need to be taken in account in the design of the NCS. Various control schemes have
been presented in the current literature to design effective NCS’s for linear time-
invariant systems [2, 3, 4, 5, 6]. Moreover, if the system to be controlled is sub-
jected to constraints and nonlinearities, the formulation of an effective networked
control strategy becomes a really hard task [7]. In this framework, the present paper
provides theoretical results that motivate, under suitable assumptions, the combined
use of nonlinear Model Predictive Control (MPC) with a Network Delay Compen-
sation (NDC) strategy [8, 9], in order to cope with the simultaneous presence of
model uncertainties, time-varying transmission delays and data-packet losses. In the
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current literature, for the specific class of MPC schemes which impose a fixed termi-
nal constraint set, Xf , as a stabilizing condition, the robust stability properties of the
overall c-l system, in absence of transmission delays, has been shown to depend on
the invariance properties of Xf , [10, 11]. In this regard, by resorting to invariant set
theoretic arguments [12, 13], this paper aims to show that the devised NCS retains
some degree of robustness also in presence of data transmission delays.

2 Main Notations

Let R, R≥0, Z, and Z≥0 denote the real, the non-negative real, the integer, and the
non-negative integer sets of numbers, respectively. The Euclidean norm is denoted
as | · |. Given a compact set A⊆Rn, let ∂A denote the boundary of A. Given a vector x∈
Rn, d(x,A)�inf{|ξ−x| ,ξ∈A} is the point-to-set distance from x∈Rn to A. Given two
sets A⊆Rn, B⊆Rn, dist(A,B)�inf{d(ζ ,A),ζ∈B} is the minimal set-to-set distance.
The difference between two given sets A⊆Rn and B⊆Rn, with B⊆A, is denoted
as A\B�{x : x∈A,x/∈B}. Given two sets A∈Rn, B∈Rn, the Pontryagin difference
set C is defined as C=A�B�{x∈Rn : x+ξ∈A,∀ξ∈B}. Given a vector η∈Rn and
a scalar ρ∈R>0, the closed ball centered in η of radius ρ is denoted as B(η ,ρ)�
{ξ∈Rn : |ξ−η |≤ρ}. The shorthand B(ρ) is used when η=0. A function α : R≥0→
R≥0 belongs to class K if it is continuous, zero at zero, and strictly increasing.

3 Problem Formulation

Consider the nonlinear discrete-time dynamic system

xt+1 = f̂ (xt ,ut)+ dt x0 = x, t ∈ Z≥0. (1)

where xt ∈Rn denotes the state vector, ut ∈Rm the control vector and dt ∈Rn, is an
additive transition uncertainty. Assume that state and control variables are subject
to the following constraints

xt ∈ X , t ∈ Z≥0 , (2)

ut ∈U, t ∈ Z≥0 , (3)
where X and U are compact subsets of Rn and Rm, respectively, containing the ori-
gin as an interior point. With regard to the nominal transition map f̂ (xt ,ut), assume
that f̂ (0,0) = 0. Moreover, let x̂t+ j|t , j ∈ Z>0 denote the state prediction generated
by means of the nominal model on the basis of the state information at time t with
the input sequence ut,t+ j−1 = col[ut , . . . ,ut+ j−1]

x̂t+ j|t = f̂ (x̂t+ j−1|t ,ut+ j−1), x̂t|t = xt , t ∈ Z≥0, j ∈ Z>0. (4)

Throughout the paper, all the quantities computed by the control algorithm (i.e.,
input sequences, state estimates and predictions) will be double-indexed, in order
to denote i) the time instant which they refer to and ii) the time instant in which
the information used for the computation was collected (typically it consists in a
measurement of the process state).
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Assumption 1 (Lipschitz). The nominal map f̂ (x,u) is Lipschitz with respect to x
in X, with Lipschitz constant L fx ∈R>0. �

Assumption 2 (Uncertainty). The transition uncertainty vector dt belongs to the
compact ball D�B(d̄),with d̄ ∈ [0,+∞). �

Under the posed assumptions, the control objective consists in guaranteeing, in ab-
sence of delays, the Input-to-State Stability (ISS) of the c-l system with respect to
the prescribed class of uncertainties, while keeping, also in presence of data packet
dropouts and transmission delays, the state variables in the set X (i.e., achieving
constraint satisfaction) despite of bounded disturbances.

With regard to the network dynamics and communication protocol, it is assumed
that a set of data (packet) can be transmitted at the same time by a node. Moreover,
both the sensor-to-controller and controller-to-actuator links are supposed to be af-
fected by delays and dropouts due to the unreliable nature of networked communi-
cations. In order to cope with network delays, the data packets are Time-Stamped
(TS) [5], that is, they contain the information on when they were delivered by the
transmission node. In this regard, a common system clock is assumed to be acces-
sible by sensor and actuator nodes, which are usually physically connected to the
process. In general, a proper synchronization mechanism should be set up to make
the time-stamping strategy work properly; the synchronization issue will not be dis-
cussed in detail here, since we will focus on the control design problem. We restrict
our analysis on communication protocols in which the destination node sends an
acknowledgment of successful packet reception to the source node (e.g., TCP net-
works [3]). The acknowledgment messages are assumed to have the highest priority,
such that, after each successful packet reception, the source node receives the notifi-
cation within a single time-interval. The mechanism of acknowledgment is intended
for the controller to know when a packeted control sequence has been successfully
transmitted to the actuator, in order to internally reconstruct the true sequence of
controls which have been applied to the plant [9]. A graphical representation of the
overall NCS layout is depicted in Figure 1, while the NDC and the controller will
be described in the next sections.

3.1 Network Delay Compensation

In the sequel, τca(t) and τsc(t) will denote the delays occurred respectively in the
controller-to-actuator and in the sensor-to-controller links, while τa(t) is the age (in
discrete time instant) of the control sequence used by the smart actuator to compute
the current input and τc(t) the age of the state measurement used by the controller
to compute the control actions at time t. Finally, τrt(t) � τa(t)+ τc(t− τa(t)) is the
so called round trip time, i.e., the age of the state measurement used to compute the
input applied at time t.

The NDC strategy adopted, devised in [9], is based on exploiting the time stamps
of the data packets in order to retain only the most recent informations at each
destination node: when a novel packet is received, if it carries a more recent time-
stamp than the one already in the buffer, then it takes the place of the older one,
and an acknowledgment of successful packet reception is sent to the node which
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networked packet-based link with acknowledgment

Fig. 1 Scheme of the NCS, with emphasis on the MPC controller, on Time Stamped data
buffering (TS) and on the NDC components

transmitted the packet. Such a mechanism implies τa(t)≤ τca(t) and τc(t)≤ τsc(t).
Moreover, the adopted NDC strategy uses an input buffering mechanism [6], which
requires that the controller node send a sequence of Nc control actions (with Nc to
satisfy Assumption 3) to the actuator node, relying on a model-based prediction (in
this case generated by the MPC), and that the smart actuator choose, at each time
instant t, the correspondent input value, by setting ut = ub

t , where ub
t is the τa(t)-th

subvector of the buffered sequence ub
t−τa(t),t−τa(t)+Nc−1, given by

ub
t−τa(t),t+Nc−1= col[ub

t−τa(t), . . . ,u
b
t , . . . ,u

b
t−τa(t)+Nc−1]

= uc
t−τa(t),t+Nc−1|t−τrt(t)

.

where the sequence uc
t−τa(t),t+Nc−1|t−τrt (t)

had been computed at time t − τa(t) by

the controller on the basis of the state measurement collected at time t − τrt (t) =
t−τa(t)−τc(t−τa(t)). In most situations, it is natural to assume that the age of the
data-packets available at the controller and actuator nodes subsumes an upper bound
[9], as specified by the following assumption.

Assumption 3 (Network reliability). The quantities τc(t) and τa(t) verify τc(t) ≤
τ̄c and τa(t)≤ τ̄a, ∀t ∈ Z>0, with τ̄c + τ̄a +1 < Nc. Notably, we don’t impose bounds
on τsc(t) and τca(t), allowing the presence of packet losses (infinite delay). Un-
der these conditions, the round trip time verifies τrt (t) ≤ τ̄rt = τ̄c + τ̄a ≤ Nc − 1,
∀t ∈ Z>0. �

3.2 Current State Reconstruction and Prediction

As already specified in Section 3, at time t the computation of the control actions
must rely on a state measurement performed at time t−τc(t), xt−τc(t). In order to
recover the standard MPC formulation, the current (unavailable) state xt has to be
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reconstructed by means of the nominal model (4) and of the true input sequence
ut−τc(t),t−1 applied by the smart actuator to the plant, ut−τc(t),t−1 � col[ut−τc(t), . . . ,
ut−1] from time t−τc(t) to t−1. In this regard, the benefits due to the use of a state
predictor in NCS’s are deeply discussed in [9] and [5, 6]. The sequence ut−τc(t),t−1
can be internally reconstructed by the controller thanks to the acknowledgment-
based protocol. Moreover, in presence of delays in the controller-to-actuator path,
we must consider that the computed control sequence may not be applied entirely
to the plant, and that only a subsequence of future control actions can be effectively
used. In order to ensure that the sequence used for prediction would coincide with
the one that will be applied to the plant, we can retain some of the elements of the
control sequence computed at time t− 1, i.e. the subsequence ub

t,t+τ̄a−1|t−1−τc(t−1),
and optimize only over the remaining elements, i.e. the sequence ut+τ̄a,t+Nc−1, initi-
ating the MPC with the state prediction x̂t+τ̄a .We will show that the recursive feasi-
bility of such a scheme can be guaranteed w.r.t. (suitably small) model uncertainty.

3.3 Finite Horizon Predictive Controller

In the following, we will describe the mechanism used by the controller to compute
the sequence of control actions to be forwarded to the smart actuator. It relies on
the solution, at each time instant t, of a Finite Horizon Optimal Control Problem
(FHOCP), which uses a constraint tightening technique [10] to robustly enforce the
constraints.

Problem 1 (FHOCP). Given a positive integer Nc∈Z≥0, at any time t∈Z≥0, let
x̂t|t−τc(t) be the estimate of the current state obtained from the last available plant
measurement xt−τc(t) with the controls ut−τc(t),t−1 already applied to the plant; more-
over let x̂t+τ̄a|t−τc(t) be the state computed from x̂t|t−τc(t) by extending the prediction
using the input sequence computed at time t − 1, uc

t,t+τ̄a−1. Then, given a stage-
cost function h, the constraint sets Xi(d̄)⊆X , i∈{τ̄a(t)+ 1, . . . ,Nc}, a terminal cost
function h f and a terminal set Xf , the Finite Horizon Optimal Control Problem
(FHOCP) consists in minimizing, with respect to a Nc−τ̄a steps input sequence,
ut+τ̄a,t+Nc−1|t−τc(t) � col[ut+τ̄a|t−τc(t), . . . ,ut+Nc−1|t−τc(t)], the cost function

J◦FH(x̂t+τ̄a|t−τc(t),u
◦
t+τ̄a,t+Nc−1|t−τc(t)

,Nc)

� min
ut+τ̄a,t+Nc−1|t−τc(t)

t+Nc−1

∑
l=t+τ̄a

h(x̂l|t−τc(t)
,ul|t−τc(t)

)+h f (x̂t+Nc|t−τc(t))

subject to the
i) nominal dynamics (4);
ii) input constr.ut−τc(t)+i|t−τc(t)∈U, i∈{τc(t)+τ̄a, . . . ,τc(t)+Nc−1};
iii) state constr. x̂t−τc(t)+i|t−τc(t)∈Xi(d̄), i∈{τc(t)+τ̄a+1, . . . ,τc(t)+Nc};
iv) terminal state constr. x̂t+Nc|t−τc(t) ∈ Xf .

Finally, the sequence of controls forwarded by the controller to the actuator is
constructed as uc

t,t+Nc−1|t−τc(t)
�col[uc

t,t+τ̄a−1|t−1−τc(t−1),u
◦
t+τ̄a,t+Nc−1|t−τc(t)

] (i.e., it
is obtained by appending the solution of the FHOCP a subsequence computed
at time t − 1). In the following, we will say that a sequence ūc

t,t+Nc−1|t−τc(t)
�
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col[uc
t,t+τ̄a−1|t−1−τc(t−1), ūt+τ̄a,t+Nc−1|t−τc(t)

] is feasible if the first subsequence yields

to x̂t−τc(t)+i|t−τc(t)∈Xi(d̄), ∀i∈{τc(t)+1, . . . ,τc(t)+τ̄a and if the second subsequence
(possibly suboptimal) satisfies all the constraints of the FHOCP set up at time t. �

By accurately choosing the stage cost h, the constraints Xi(d̄), the terminal cost func-
tion h f , and by imposing a terminal constraint Xf at the end of the control horizon,
it is possible to show that the recursive feasibility of the scheme can be guaran-
teed for t ∈ Z>0, also in presence of norm-bounded additive transition uncertainties
and network delays. Moreover, in absence of transmission delays, this class of con-
trollers has been proven to achieve the ISS property if the the following assumption
is verified [11].

Assumption 4 (κ f ,h f ,Xf ). There exist an auxiliary control law κ f (x) : X→U, a
function h f (x) : Rn→R≥0, a positive constant Lh f∈R>0, a level set of h f , Xf ⊂ X
and a positive constant ν∈R>0 such that the following properties hold:

i) Xf ⊂ X, Xf closed, {0} ∈ Xf ;
ii) κ f (x) ∈U, ∀x ∈ Xf ;
iii) h f (x) Lipschitz in Xf , with L. constant Lh f ∈ R>0;

iv) h f ( f̂ (x,κ f (x)))−h f (x)<−h(x,κ f (x)),∀x∈Xf \{0}; �

Now, the following Lemma (proven in the Appendix) describes how the constraint
sets of the FHOCP can be computed in order to enforce the satisfaction of original
constraints under the perturbed networked c-l dynamics.

Lemma 1 (State Constraints Tightening). Under Assumptions 1 and 2, suppose
(the very special case Lfx=1 can be trivially addressed by a few suitable modifi-
cations to the proof of Lemma 1), without loss of generality, L fx �= 1. If the state
constraints Xi(d̄), are computed as follows

Xi(d̄) � X �B
(
(Li

fx −1)/(Lfx−1)d̄
)
, ∀i ∈ {1, . . . ,Nc + τc(t)} (5)

then, each feasible control sequence ūc
t,t+Nc−1|t−τc(t)

guarantees that the true state

will satisfy xt+ j∈X , ∀ j∈{1, . . . , Nc}, under the c-l dynamics. �

In the next section, the robust stability properties of the control policy described will
be analyzed in presence of transmission delays and model uncertainty.

4 Set Invariance Theory and Robust Stability

In the following, the robust stability properties of the developed NCS with respect to
model uncertainties, data transmission delays and packet-dropouts will be analyzed.
To this end, the interplay between set invariance [12] and the robust stability of the
c-l system will be addressed. The following definition will be used .

Definition 1 (Ci(X ,Ξ)). Given a set Ξ ⊆ X, the i-step Controllability Set to Ξ ,
Ci(X ,Ξ), is the set of states which can be steered to Ξ by an admissible control
sequence of length i, u0,i−1, under the nominal map f̂ (x,u), subject to constraints
(2) and (3), i.e.
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Ci(X ,Ξ)�
{

x0∈X : ∃u0,i−1∈U×. . .×U such that
x̂(x0,u0,i−1,t)∈X , ∀t ∈ {1, . . . , i−1}, x̂(x0,u0,i−1, i)∈Ξ .

}
�

In the sequel, the shorthand C1(Ξ) will be used in place of C1(Rn,Ξ) to denote the
one-step controllability set to Ξ .

Resorting to feasibility arguments, the main stability result for the designed ro-
bust networked RH scheme is asserted by the following Theorem (see Appendix 4
for the proof).

Theorem 1 (Robust Stability). Assume that at time instant t the control sequence
computed by the controller, ūc

t,t+Nc−1|t−τc(t)
, is feasible. Then, in view of Assumptions

1-4, if the norm bound on the uncertainty satisfies

d̄≤ min
k∈{0,τ̄c}

{
min

(
(Lfx−1)/(LNc+k

fx
−LNc−1

fx
)dist

(
R

n\C1(Xf ),Xf
)
,

(Lfx−1)/(LNc+k
fx
−1)dist

(
R

n\X̂k+Nc(d̄),Xf
))}

,

then, the recursive feasibility of the scheme in ensured for every time instant
t + i,∀i∈Z>0, while the closed-loop trajectories are confined into X. �

Conclusion

In this paper, a networked control system, based on the combined use of a model
predictive controller with a network delay compensation strategy, has been designed
with the aim to stabilize in a compact set a nonlinear discrete-time system, affected
by unknown perturbations and subject to delayed packet-based communications in
both sensor-to-controller and controller-to-actuator links. The characterization of
the robust stability properties of the devised scheme represents a significant contri-
bution in the context of nonlinear networked control systems, since it establishes the
possibility to guarantee the robust enforcement of constraints under unreliable net-
worked communications in the feedback and command channels, even in presence
of model uncertainty.

Appendix

Proof (Lemma 1). Given the state measurement xt−τc(t) available at time t at the
controller node, let us consider the combined sequence of control actions formed
by i) the subsequence used for estimating x̂t|t−τc(t) (i.e., the true control sequence
applied by the NDC to the plant from t − τc(t) to t) and ii) by a feasible control
sequence ūc

t,t+Nc−1|t−τc(t)
,

u∗t−τc(t),t+Nc−1|t−τc(t)
�col[ut−τc(t),t−1, ū

c
t,t+Nc−1|t−τc(t)

], (6)

then the prediction error êt−τc(t)+i|t−τc(t) � xt−τc(t)+i− x̂t−τc(t)+i|t−τc(t), with i∈
{1, . . . ,Nc+τc(t)}, and xt−τc(t)+i obtained applying u∗t−τc(t),t+Nc−1|t−τc(t)

in open
loop to the uncertain system (1), is upper bounded by
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|êt−τc(t)+i|t−τc(t)| ≤ (Li
fx −1)/(Lfx−1)d̄, ∀i ∈ {1, . . . ,Nc + τc(t)}

where d̄ is defined as in Assumption 2. Being ūc
t,t+Nc−1|t−τc(t)

feasible, it holds that

x̂t−τc(t)+i|t−τc(t)∈Xi(d̄),∀i∈{τc(t) + 1, . . . ,Nc + τc(t)}, then it follows immediately
that xt−τc(t)+i=x̂t−τc(t)+i|t−τc(t)+êt−τc(t)+i|t−τc(t)∈X ,.

Appendix II

Proof (Theorem 1). The proof consists in showing that if, at time t, the input se-
quence computed by the controller ūc

t,t+Nc−1|t−τc(t)
is feasible, then, under the per-

turbed c-l dynamics, there exists a feasible control sequence at time instant t + 1
(i.e., the FHOCP is solvable and the overall sequence verifies the prescribed con-
straints).Finally, the recursive feasibility follows by induction. The proof will be
carried out in four steps.

i) x̂t+Nc|t−τc(t) ∈ Xf ⇒ x̂t+Nc+1|t+1−τc(t+1) ∈ Xf : Let us consider the sequence
u∗t−τc(t),t+Nc−1|t−τc(t)

defined in (6). It is straightforward to prove that the norm
difference between the predictions x̂t−τc(t)+ j|t−τc(t) and x̂t−τc(t)+ j|t+1−τc(t+1) (ini-
tiated respectively by xt−τc(t) and xt+1−τc(t+1)), respectively obtained by applying
to the nominal model the sequence u∗t−τc(t),t−τc(t)+ j−1|t−τc(t)

and its subsequence
u∗t+1−τc(t+1),t−τc(t)+ j−1|t−τc(t)

, can be upper bounded by

|x̂t−τc(t)+ j|t−τc(t)+i−x̂t−τc(t)+ j|t−τc(t)|≤
1

Lfx

i

∑
l=1

Lj−l+1
fx

d̄=
Lj

fx
−Lj−i

fx

L fx−1
d̄ (7)

where we have posed i=τc(t)−τc(t +1)+1 and with j∈{i, . . . ,Nc+τc(t)}. Consid-
ering now the case j=Nc +τc(t), then (7) yields to |x̂t+Nc |t−τc(t)+i−x̂t+Nc|t−τc(t)|=
|x̂t+Nc|t+1−τc(t+1)−x̂t+Nc|t−τc(t)|≤(LNc+τc(t)

fx
−LNc+τc(t)−i

fx
)/(Lfx−1)d̄. If the follow-

ing inequality holds for all the possible values of the quantity τc(t)andτc(t +1)+1,
i.e. ∀k∈{1, . . . , τ̄c} (the case i = 0 is trivial)

d̄ ≤ (Lfx −1)/(LNc+k
fx

−LNc−1
fx

)dist
(
R

n\C1(Xf ),Xf
)
,

then x̂t+Nc|t+1−τc(t+1)∈C1(Xf ), whatever be the value of τc(t + 1). Hence, there
exists a control move ūt+Nc|t+1−τc(t+1)∈U which can steer the state vector from
x̂t+Nc|t+1−τc(t+1) to x̂t+Nc+1|t+1−τc(t+1) ∈ Xf .

ii) x̂t−τc(t)+ j|t−τc(t)∈Xj(d̄)⇒x̂t−τc(t)+ j|t+1−τc(t+1)∈Xj−i(d̄), with i=τc(t)−τc(t + 1)+
1 and ∀ j∈{τc(t) + 1, . . . ,Nc+τc(t)}: Consider the predictions x̂t−τc(t)+ j|t−τc(t)
and x̂t−τc(t)+ j|t−τc(t)+i(initiated respectively by xt−τc(t) and xt−τc(t)+i), respec-
tively obtained with the sequence u∗t−τc(t),t−τc(t)+ j−1|t−τc(t)

and its subse-

quence u∗t−τc(t)+i,t−τc(t)+ j−1|t−τc(t)
. Assuming that x̂t−τc(t)+ j|t−τc(t)∈X�B((Lj

fx
−

1)/(Lfx − 1)d̄ ), let us introduce η ∈B((Lj−i
fx
− 1)/(Lfx − 1)d̄ ). Let ξ �

x̂t−τc(t)+ j|t−τc(t)+i−x̂t−τc(t)+ j|t−τc(t)+η , then, in view of Assumption 1 and thanks
to (7), it follows that
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|ξ | ≤ |x̂t−τc(t)+ j|t−τc(t)+i− x̂t−τrt(t)+ j|t−τc(t)|+ |η | ≤ (Lj
fx
−1)/(Lfx−1)d̄,

and hence, ξ∈B((Lj
fx
−1)/(Lfx−1)d̄ ). Since x̂t−τc(t)+ j|t∈Xj(d̄), it follows that

x̂t−τc(t)+ j|t−τc(t) +ξ = x̂t−τc(t)+ j|t−τc(t)+i +η ∈X , ∀η∈B((Lj−i
fx
−1)/(Lfx−1)d̄),

yielding to x̂t−τc(t)+ j|t+1−τc(t+1)∈Xj−τc(t)+τc(t+1)−1(d̄). Posing k= j−τc(t) the last
inclusion can be rearranged as x̂t+k|t+1−τc(t+1)∈Xk+τc(t+1)(d̄),∀k∈{1, . . . ,Nc}

iii) x̂t+Nc|t−τc(t)∈Xf⇒x̂t+1+Nc|t+1−τc(t+1)∈XNc+τc(t+1)(d̄); Thanks to Point i), there
exists a feasible control sequence at time t+1 which yields to x̂t+1+Nc|t+1−τc(t+1)∈
Xf . If d̄ satisfies

d̄ ≤ min
j∈{Nc,...,Nc+τ̄c}

{
(Lfx−1)/(Lj

fx
−1)dist(Rn\Xj(d̄),Xf )

}
,

it follows that the statement holds whatever be the value of τc(t + 1).

Then, under the assumptions posed in the statement of Theorem 1, given xt=0 ∈XRH ,
and being τc(0) = 0 (i.e. at the first time instant the actuator buffer is initiated with
a feasible sequence )in view of Points i)–iii) it holds that at any time t ∈ Z>0 a
feasible control sequence does exist and can be chosen as ūc

t+1,t+Nc+1|t+1−τc(t+1)=
col[ūc

t+1,t+Nc−1|t−τc(t)
, ūt+Nc|t+1−τc(t+1)]. Therefore the recursive feasibility of the

scheme is ensured.
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Nonlinear Model Predictive Control for
Resource Allocation in the Management of
Intermodal Container Terminals

A. Alessandri, C. Cervellera, M. Cuneo, and M. Gaggero

Abstract. Nonlinear model predictive control is proposed to allocate the available
transfer resources in the management of container terminals by minimizing a perfor-
mance cost function that measures the lay times of carriers over a forward horizon.
Such an approach to predictive control is based on a model of the container flows
inside a terminal as a system of queues. Binary variables are included into the model
to represent the events of departure or stay of a carrier, thus the proposed approach
requires the on-line solution of a mixed-integer nonlinear programming problem.
Different techniques for solving such problem are considered that account for the
presence of binary variables as well as nonlinearities into the model and cost func-
tion. The first relies on the application of a standard branch-and-bound algorithm.
The second is based on the idea of dealing with the decisions associated with the bi-
nary variables as step functions. In this case, real nonlinear programming techniques
are used to find a solution. Finally, a third approach is proposed that is based on the
idea of approximating off line the feedback control law that results from the appli-
cation of the second one. The approximation is made using a neural network that
allows to construct an approximate suboptimal feedback control law by optimizing
the neural weights. Simulation results are reported to compare such methodologies.
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neural networks.
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1 Introduction

The considerable growth of container shipping makes the problem of an efficient
management of container terminals crucial. Toward this end, queuing theory can be
used for performance evaluation, but it suffers from a poor capability of describing
the dynamic behavior of the container flows inside a terminal (see, e.g., [1]). As a
consequence, more powerful modeling paradigms, like, for example, discrete-event
systems, were proposed that allow one to account for dynamic aspects [2].

Discrete-event tools allow one to construct very precise models of the logistics
operations carried out in container terminals. Unfortunately, they are quite demand-
ing from the computational point of view, which may become critical if the model is
used for the purpose of controlling a container terminal in real time. In this paper, in
line with previous works (see [3, 4]), a novel approach to the modeling of container
terminals is proposed that is based on a nonlinear discrete-time dynamic model of
the terminal activities, and consists in optimizing the container flows using a lim-
ited amount of resources (i.e., cranes, trucks, and other transfer machines employed
inside the terminal). Using this model, an optimal allocation of such resources is
searched that minimizes a given performance index according to a predictive-control
strategy.

In [5], the modeling framework presented in [4] has been improved by adding
binary variables that represent the events of departure or stay of a carrier. Thus, the
predictive control action results from the solution of a mixed-integer nonlinear pro-
gramming problem, for which we investigated the use of two methodologies. The
first approach consists in using a standard branch-and-bound technique. The second
one is based on the idea of treating the decisions associated with the binary variables
as nondifferentiable step functions. Thus, real mathematical programming tools are
required to perform the optimization. In this paper, a third approach is presented that
consists in applying an approximation scheme to find suboptimal feedback control
laws that result from the approximation of the optimal ones obtained via the sec-
ond methodology previously described. Among the various choices for the family
of nonlinear approximators, we focused on neural networks. Such class of approx-
imators includes one-hidden-layer neural networks, which exhibit another power-
ful feature that consists in requiring a small number of parameters (i.e., the neural
weights) to ensure a fixed approximation accuracy, especially in high-dimensional
settings (see, e.g., [6, 7] and the references therein). According to such an approach,
suboptimal controllers are constructed that take on the structure of a neural network,
whose parameters are chosen via suitable training algorithms. The learning process
is computationally demanding, but it is made off line. By contrast, the on-line use
of the resulting neural controller requires a very small computation.

2 A Dynamic Model of Terminal Operations

A general maritime container terminal takes up a large storage yard, usually with
three subterminals: the first for ships, the second for trucks, and the third for trains.
The terminal yard is usually divided into an import area and an export area. We shall
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Fig. 1 Submodel of container flows related to a single transportation mode

focus on loading/unloading operations, which are critically connected to the exploita-
tion of the available transfer resources, e.g., quay cranes (QCs), rail mounted gantry
cranes (RMGCs), reach stackers (RSs), rubber tyred gantry cranes (RTGCs), and
yard trucks (YTs).

In line with previous works [3, 4], we introduce a discrete-time dynamic model
to describe the flows of containers that enter or leave a maritime terminal upon the
arrival of carriers or that are scheduled for departure aboard other carriers, respec-
tively. In practice, it is a system composed of container queues, each served by spe-
cific transfer resources. Such queues model the waiting times of containers before
they are moved by any transfer resource. The resulting queue system can be split
into three submodels, each related to a specific transportation mode, i.e., ship, truck,
or train (see [5]). Without loss of generality, we shall focus only on a generic carrier
type that represents a single transportation mode. To this purpose, we shall use the
generic term “carrier” to indicate a ship or a truck or a train. The combination of the
three single-mode submodels provides the overall model. A sketch of one of such
submodels is depicted in Figure 1.

The arrival of carriers is modeled by means of the waiting queue qin, where the
carriers stay until the area for loading/unloading operations becomes free. We shall
suppose that there exists only one area for loading/unloading, and thus that only
one carrier per time may be served. We shall adopt a discrete-time representation of
the queue dynamics with a sampling time equal to ΔT . For the sake of simplicity,
we refer only to two generic types of transfer resources, i.e., type A and type B.
We shall denote the queues by means of the corresponding lengths at time t, i.e.,
xi(t), i = 1,2, . . . ,6 (we measure these lengths in TEU, i.e., Twenty-foot Equivalent
Unit). The queue x1 represents the containers to be unloaded from the carrier that
entered the terminal, whereas the queue x6 represents the containers that have been
loaded into that carrier; such containers are ready to leave the terminal on carrier
departure. The queues x3 and x4 account for the container stay in the import and
export area of the storage yard, respectively. The queues x2 and x5 model the on-
going transfer without storage during unloading operations (the import flow, i.e.,
the flow from x1 to x3) and loading operations (the export flow, i.e., the flow from
x4 to x6), respectively. The submodel in Figure 1 can be generalized to represent
the loading/unloading of more than one carrier per time. In this case, we should add
more pairs of queues like x1 and x6, exactly as the number of contemporarily served
carriers.
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The control inputs ui(t) ∈ [0,1], i = 1,2, . . . ,5, are the percentages of server
capacities used for container transfers at time t = 0,1, . . .. The exogenous input
a(t) ≥ 0 is the quantity of containers (in TEU) that enters the terminal at time
t = 0,1, . . . via the carrier that is in the loading/unloading area. Such variable is
normally equal to zero, except when a carrier enters the terminal; in this case the
variable becomes equal to the amount of containers that has to be unloaded from
that carrier. The time-varying parameters μi(t) ≥ 0, i = 1, . . . ,5, are the maximum
container handling capacities (in TEU/h) for the various queues at time t = 0,1, . . ..
Such parameters are related to the corresponding number and hourly handling rate
of the available resources. They become time-invariant if we assume, for example,
that there exist nA and nB transfer machines with the same ideal capacity given by
rA and rB, respectively; in this case they turn out to be μi(t) = rA nA, i = 1,5, and
μi(t) = rB nB, i = 2,3,4, for all t = 0,1, . . .. Finally, let us introduce the binary vari-
able y(t) ∈ {0,1} to model the departure or stay of a carrier depending on whether
the planned loading/unloading operations are finished or not at time t = 0,1, . . ..
More specifically, y(t) is equal to 0 when the carrier in the loading/unloading area
has finished all the operations, and thus can leave the terminal. Otherwise, it is equal
to 1. In other words, the variable y(t) takes on its values as follows:

y(t) =
{

0 if x6(t)+ΔTμ5(t)u5(t) = s(t) and x1(t) = 0
1 otherwise

(1)

where t = 0,1, . . . and s(t) is defined as the amount of containers (in TEU) sched-
uled, at time t, for loading before departure. The first condition in (1) occurs after
the completion of the loading/unloading, whereas the second one is true if the load-
ing/unloading is not complete.

The dynamic equations that result from the balance of input and output container
flows for all the queues in Figure 1 are the following:

x1(t + 1) = x1(t)+ a(t)−ΔTμ1(t)u1(t) (2a)

xi(t + 1) = xi(t)+ΔT [μi−1(t)ui−1(t)− μi(t)ui(t)], i = 2,3,4,5 (2b)

x6(t + 1) = y(t)[x6(t)+ΔTμ5(t)u5(t)] (2c)

where t = 0,1, . . ..
To account for the boundedness of the type A and type B resources, we need to

impose constraints on the control variables as follows:

u1(t)+ u5(t)≤ 1 (3a)

u2(t)+ u3(t)+ u4(t)≤ 1 (3b)

where t = 0,1, . . ..
In the next section, we shall use the vectors x(t), u(t), and y(t) to represent the

state vector, the control vector, and the binary vector of the overall model at time
t, as they result from the combination of three submodels of type (1)–(3) for the
transportation modes based on ships, trucks, and trains.
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3 Predictive Control of Container Flows

In this section, we shall use the above-described modeling framework to develop
an optimal resource allocation strategy based on predictive control. Here the goal
of predictive control is to allocate the transfer resources inside a terminal in order
to optimize an objective function that is related to the performance of the terminal
over a certain time horizon from the current instant.

Let us assume to know the container demands for loading/unloading with early
forecasts. On the basis of such information, we can foresee the queue lengths and
devise the control actions for the allocation of the resources from the current time
instant for a given number of forward time steps that optimize the considered perfor-
mance index. Toward this end, we refer to a function h [x(t),y(t),u(t)] (in general
nonlinear), which provides a measure of performance that depends on x(t), y(t),
and u(t).

We chose the minimization of the lay times of carriers as a management goal
since a carrier that remains for a longer time in the terminal results in higher costs
for both a useless employment of resources and a poor service to customers. As in
[4, 5], we focused on the following function h for the submodel (1)–(3):

h [x(t),y(t),u(t)] = c1[1−u1(t)]y(t)+ c2[1−u5(t)]y(t) (4)

where the coefficients c1 and c2 are positive constants. The task of reducing the lay
times of carriers is indirectly accomplished by using a performance index based on
(4). Indeed, given the time a carrier spends in the terminal tightly depends on how
fast the containers to load/unload into/from carriers are moved, one can reduce the
overall delay by keeping the control inputs as higher as possible.

Since no specific final penalty is required for the last time step in our context, a
predictive control approach can be obtained by minimizing, at each time t = 0,1, . . .,
a cost function of the form

Jt [x(t),y(t), . . . ,y(t + T −1),u(t), . . . ,u(t + T −1)] =
t+T−1

∑
k=t

h [x(k),y(k),u(k)]

where T is the length of the forward horizon. If the predictions concerning the fu-
ture are either unknown or known with large uncertainty, a one-step-ahead strategy
may be adopted that consists in minimizing the previous cost function with T equal
to 1, as shown in [4]. If the arrivals of carriers and the amounts of containers to
load/unload are known with sufficient accuracy, one can set up the terminal oper-
ations over a forward horizon that may be longer, as a larger value of T enables
one to adopt strategies that are more effective since a larger amount of information
about the future is taken into account. Clearly, an increase in T entails much more
computation, and hence a tradeoff between effectiveness and computational effort
is needed.

To sum up, given x(t) at each time t = 0,1, . . ., we need to solve the following
optimization problem:
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min
u(t), . . . ,u(t +T −1)
y(t), . . . ,y(t +T −1)

Jt [x(t),y(t), . . . ,y(t + T −1),u(t), . . . ,u(t + T −1)] (5)

subject to u(k) ∈ [0,1]dim(u), y(k) ∈ {0,1}dim(y), for k = t, . . . ,t + T − 1, as well as
to the extensions to the complete three-mode model of the constraints that corre-
spond to the following: right-hand side of (2) ≥ 0 and (3). Once the optimal values
u◦(t), . . . ,u◦(t + T − 1) and y◦(t), . . . ,y◦(t + T − 1) have been found by the mini-
mization of Jt , only the first values u◦(t) and y◦(t) are retained and applied; such a
procedure is repeated at time t + 1, and so on.

A possible approach to finding a solution to problem (5) is based on Branch-and-
Bound Mixed-Integer NonLinear Programming techniques (we shall refer to such
methodologies as BBMINLP) because of the binary variables that are involved in
both the state equation and constraints. Thus, the search for a solution may be too
computational demanding. As a matter of fact, we note that we can avoid dealing
with the binary variables by using nonsmooth step functions in the constraints in-
volving such variables. For example, if we refer to the single-mode model (1)–(3),
we note that (2c) can be rewritten as follows:

x6(t + 1) =
{

0 if x6(t)+ΔTμ5(t)u5(t) = s(t) and x1(t) = 0
x6(t)+ΔTμ5(t)u5(t) otherwise.

Such a constraint can be expressed by the following relationship:

x6(t + 1) = [x6(t)+ΔTμ5(t)u5(t)]χ [s(t)− x6(t)−ΔTμ5(t)u5(t)+ x1(t)]

where χ is the step function [i.e., χ(z) = 1 if z > 0, χ(z) = 0 otherwise]. By re-
placing the components of y(t) with the corresponding functions χ(·) in all the
constraints and cost function, the problem reduces to a nonlinear programming one
with no integer variables but with nonsmooth functions; thus, we resort to Real
NonLinear Programming techniques (RNLP, for short) to find a solution. Following
such approach, the predictive control problem (5) reduces to searching for only the
optimal inputs u◦(t), . . . ,u◦(t + T −1).

Unfortunately, it may be quite demanding to find a solution of RNLP and partic-
ularly BBMINLP problems in a real-time context, especially with large predictive
horizons and numerous control and state variables. An alternative method to con-
struct a predictive control strategy can be derived from the RNLP approach. Since
only the first optimal control input [i.e., u◦(t)] is retained and applied, a different
methodology is proposed that consists in approximating off line the optimal RNLP
feedback control law x(t) �→ u◦(t) by means of some approximator in order to gen-
erate the control action on line almost instantaneously. In particular, once T has been
selected, we can (i) solve off line many optimization problems of type RNLP, (ii) col-
lect the solution pairs given by state and optimal control vectors, and (iii) apply some
training method to approximate such pairs. The optimal weights that result from (iii)
are used to compute the control action on line. Toward this end, we shall employ



Nonlinear Model Predictive Control for Resource Allocation 211

one-hidden-layer feedforward neural networks (OHLFFNNs) with sigmoidal acti-
vation functions in the hidden layer.

It is worth noting that the resulting approximate optimal control law may not
satisfy some constraints exactly. However, to deal with this difficulty, some simple
solutions can be devised. For example, if the inequality constraints (3) were not
satisfied, we could normalize the outputs of the neural network in such a way to
impose the satisfaction of such inequalities. Clearly, the more precise the approx-
imation, the smaller the correction. Thus, in order to ensure a sufficient precision,
neural networks of adequate complexity should be used.

4 Simulation Results

In this section, we present the simulation results that refer to a three-berth medium-
size container terminal in northwest Italy (details can be found in [4]). The overall
model is made up of a number of state, binary, and input variables equal to 28, 5, and
25, respectively. In the following, a description of the simulation setup and results
is provided.

The interarrival times of ships were assumed to be exponentially distributed with
a mean of 11 h; the quantity of containers to load/unload was taken according to a
uniform distribution in the [60, 750] TEU range. The arrivals of trucks were gen-
erated according to a criterion that takes into consideration the existence of peaks
at certain hours of the day. More specifically, we assumed that the number of con-
tainers to load/unload were uniformly distributed over different ranges given by [1,
6] TEU for “quiet” time periods and [50, 70] TEU for “busy” ones. The interar-
rival times of trains were taken according to an exponential distribution with mean
equal to 2.5 h and standard deviation equal to 0.25 h; the quantity of containers
to load/unload was taken with a uniform distribution in the [50, 70] TEU range.
Concerning the sampling time, we chose ΔT = 0.5 h, which is a sampling time con-
sistent with the dynamics of the terminal and its operations, and allows one to obtain
a compromise between effectiveness of the resulting control strategy and computa-
tional burden. Larger values of ΔT might be used with the advantage of having at
disposal more time to perform the optimization, but this would compromise the ca-
pability of applying the proposed approaches to control the operations in real time.
The handling capacities of the resources were generated as random variables with
truncated Gaussian distributions. The means and standard deviations of such ran-
dom variables were chosen to be equal to the following: 25 and 2.5 TEU/h for QCs;
20 and 6 TEU/h for RMGCs; 10 and 3 TEU/h for RSs; 17 and 5 TEU/h for RTGCs;
9 and 3 TEU/h for YTs. As regards the number of transfer resources, we used 5
QCs, 2 RMGCs, 15 RSs, 16 RTGCs, and 30 YTs.

The solutions of the various predictive control problems at t = 0,1, . . . with
a function like in (4) having coefficients equal to 100 for ships, 25 for trucks,
and 60 for trains were found using either Matlab nonlinear programming tech-
niques without using the derivatives of both the cost function and constraints accord-
ing to the RNLP approach, or a standard branch-and-bound algorithm to perform
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Fig. 2 Performances over time of BBMINLP, RNLP, and OHLFFNN predictive controllers

Table 1 Summary of the performances of BBMINLP, RNLP, and OHLFFNN controllers for
the prediction horizons T = 1 and T = 3

Control horizon T = 1 T = 3
Carrier type Ship Truck Train Ship Truck Train

TNSC 6 71 13 6 72 13
NTC [TEU] 4096 4860 2110 4096 4866 2110

BBMINLP MLTC [h] 13.2 0.33 3.76 12.5 0.35 3.90
MOCT [min] 7.6 154.1

TNSC 6 71 13 6 72 13
NTC [TEU] 4096 4860 2110 4096 4866 2110

RNLP MLTC [h] 13.6 0.32 3.84 12.8 0.36 3.88
MOCT [min] 0.16 3.5

TNSC 6 66 13 6 67 13
NTC [TEU] 4096 4746 2110 4096 4780 2110

OHLFFNN MLTC [h] 15.3 0.50 4.75 13.7 0.45 4.65
MOCT [min] 0.0011 0.0011

a BBMINLP optimization. As regards the neural approach, we used a OHLFFNN
with 10 sigmoidal activation functions in the hidden layer. The neural training was
done using the Levenberg-Marquardt algorithm available in Matlab with a data set
made up of 1500 state-control pairs obtained by the RNLP approach.

The performances of the terminal were evaluated for different predictive horizons
T (we chose T = 1, T = 2, and T = 3) and computing the total number of served
carriers (TNSC), the number of transferred containers (NTC), and the mean lay
times of carriers (MLTC) for t = 0,1, . . . ,144. The simulations were performed on
a 3.2 GHz Pentium 4 PC with 1 GB of RAM.

As expected, the longer the control horizon T , the smaller the values of the func-
tion h resulting from the optimization, as pictorially shown in Figure 2 for the BB-
MINLP, RNLP, and OHLFFNN approaches. As shown in Table 1 (where MOCT
stands for mean on-line computational time), BBMINLP provides the best results
in terms of the final minimization cost, while RNLP demand a reduced computa-
tional burden with respect to BBMINLP. This reduction is payed with a small de-
cay of performances. The OHLFFNN methodology performs worse than the other



Nonlinear Model Predictive Control for Resource Allocation 213

approaches, but it has the great advantage of a very low on-line computational
burden. Clearly, the neural network that provides the approximate optimal control
law of the OHLFFNN approach has to be trained again if there are changes in the
terminal configuration (e.g., number or capacity of resources and number of load-
ing/unloading areas).

Note that, looking at Table 1, the use of predictive control to devise management
strategies can be practically accomplished in real time only using the RNLP and
OHLFFNN approaches because of their reduced computational burden. By contrast,
the solution based on BBMINLP cannot be applied with success because of the
too high computational effort that prevents it from being used on line. The RNLP
approach appears to be a good compromise between efficiency and computational
effort to determine it. However, note that the simulations were run in Matlab, thus
the use of a more efficient development framework employing, e.g., C code, would
give a considerable reduction of the on-line computational time.
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Predictive Power Control of Wireless Sensor
Networks for Closed Loop Control

Daniel E. Quevedo, Anders Ahlén, and Graham C. Goodwin

Abstract. We study a networked control architecture where wireless sensors are used
to measure and transmit plant outputs to a remote controller. Packet loss probabilities
depend upon the time-varying communication channel gains and the transmission
powers of the sensors. Within this context, we develop a centralized stochastic non-
linear model predictive controller. It determines the sensor power levels by trading
energy expenditure for expected plant state variance. To further preserve sensor en-
ergies, the power controller sends coarsely quantized power increment commands
only when necessary. Simulations on measured channel data illustrate the perfor-
mance achieved by the proposed controller.

Keywords: Wireless Sensor Networks, Predictive Control.

1 Introduction

Wireless Sensor Networks (WSNs) are becoming an interesting alternative for closed
loop control [1, 2]. WSNs can be placed where wires cannot go and where power
sockets are not available. A drawback of using WSNs is that channel fading and
interference may lead to packet errors and, thus, performance degradation. Whilst
communication reliability and, thus, control accuracy, can certainly be improved by
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increasing transmission power levels, saving energy in WSNs is uppermost to avoid
unnecessary maintenance, such as the replacement of batteries, see also [3, 4].

In the present work we examine a Networked Control System (NCS) architecture
where sensor measurements are sent over wireless fading channels. In contrast to
other approaches, see, e.g., [5], in the topology studied here, sensors do not commu-
nicate with each other. Instead, sensor measurements are sent to a single gateway for
state estimation and subsequent plant input calculation. In addition, the gateway de-
cides upon the power levels to be used by the sensors. Within this setting, we show
how the sensor power levels can be designed via nonlinear predictive control. The
proposed controller trades expected plant state variance for energy expenditure. The
present work extends our recent conference contribution [6] (on state estimation)
to NCS’s.

2 WSNs for Networked Control

We consider an LTI n-dimensional plant with input {μ(k)}k∈N0 :

x(k + 1) = Ax(k)+ Bμ(k)+ w(k), k ∈ N0 � {0,1, . . .}, (1)

where the initial state is Gaussian distributed with mean x0 and covariance P0 ∈
Rn×n, i.e., x(0) ∈N (x0,P0). Similarly, the driving noise process w = {w(k)}k∈N0

is i.i.d., where each w(k) ∈N (0,Q).
A collection of M sensors is used to measure and transmit plant output informa-

tion via wireless links to a single gateway. Each sensor provides a noisy measure-
ment signal, say {ym(k)}k∈N0 :

ym(k) = Cmx(k)+ vm(k), m ∈ {1,2, . . . ,M}, (2)

and where v = {vm(k)}k∈N0 is an i.i.d. process with vm(k) ∈N (0,Rm).1

The signals received at the gateway are then used to calculate the control input μ .
The aim is to steer the system state x(0) to the origin. In the present work, we will
assume that the associated control policy has already been designed and is given by
linear state estimate feedback:

μ(k) =−L(k)x̂(k), k ∈ N0 � {0,1, . . .}, (3)

where x̂(k) is an estimate of x(k) and where L(k) are given state feedback matrices
of appropriate dimensions. Thus, the gateway needs to remotely estimate the state
of the system (1). The situation is depicted in Fig. 1 for a networked control system
(NCS) having M = 2 wireless sensors.

The distinguishing aspect of the situation at hand is that, since the M links be-
tween sensors and gateway are wireless, transmission errors are likely to occur.

1 In addition to measurement noise, v may also describe quantization effects.
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This leads to loss of packets and control performance degradation.2 Packet loss
probabilities depend upon the time-varying channel gains and upon the transmission
power used by the sensors, higher power providing less transmission errors. How-
ever, in wireless sensor networks, it is of fundamental importance to save energy:
Sensor nodes are expected to be operational for several years without maintenance.
Thus, available energy resources have to be used with care. The main purpose of
the present work lies in designing a centralized predictive power controller for the
WSN used in the NCS of Fig. 1. Before presenting our proposal, we will first set the
work in context by briefly elucidating the trade-off between power use and control
accuracy.

3 Trading Energy Use for Control Performance

To describe the interplay between energy consumption and transmission reliability,
we quantify the energy used by each sensor m at time k ∈ N0 via:

gm(um(k)) �

⎧⎨⎩
um(k)bm

r
+ EP if um(k) > 0,

0 if um(k) = 0.
(4)

Here, um(k) is the transmission power used by the m-th sensor radio power amplifier,
bm is the number of bits used per measurement value ym(k), r is bit-rate of the
channels and EP is the total energy needed (per measurement value) for power-up,
sensing and circuitry. As we will see in Section 5, the choice of bm depends on
the required accuracy and the energy available. A large value of bm will lead to
an improved accuracy, but at the expense of a higher energy expenditure and an
increased probability of packet error. In general, the number of bits per transmitted
packet will be governed by the protocol used. In the present work, we focus on a

2 We will assume that sensor data is not affected by delays. Extensions to include time-
delay issues, and also irregular sampling, does not present conceptual difficulties, provided
sensor data are time-stamped.
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simple scheme, where one measurement is transmitted at a time.3 The selected bit
rate, r, will thus depend on the application as will the number of channels used.

Due to physical limitations of the radio power amplifiers, we assume that the
power levels are constrained in magnitude according to:

0≤ um(k)≤ umax
m , ∀k ∈N0, ∀m ∈ {1,2, . . . ,M}, (5)

for given values {umax
m }. Thus, the maximum transmission energy per measurement

value at each node is given by:

(Emax
TX )m � (bm/r)umax

m , m ∈ {1,2, . . . ,M}. (6)

We model transmission effects by introducing the M binary stochastic arrival pro-
cesses {γm(k)}k∈N0 , m ∈ {1,2, . . . ,M}, where:

γm(k) =

{
1 if ym(k) arrives error-free at time k,

0 if ym(k) does not arrive error-free at time k.
(7)

The associated success probabilities satisfy

P
{
γm(k) = 1

}
= fm

(
um(k)hm(k)

)
, m ∈ {1,2, . . . ,M}, (8)

where fm(·) : [0,∞)→ [0,1] is a monotonically increasing function, which depends
upon the communication scheme employed, and where hm(k) denotes the square of
the magnitude of the channel gain.

To calculate the plant input μ(k) in (3), the gateway needs to obtain plant state es-
timates. Here, we will assume that the data transmitted incorporates error detection
coding [7]. Hence, at any time k, past and present realizations of the transmission
processes (7), say

γk �
⋃

m∈{1,2,...,M}

{
γm(0),γm(1), . . . ,γm(k)

}
(9)

are available at the gateway. Faulty packets will be discarded when estimating the
system state. This amounts to sampling (1)-(2) only at the successful transmission
instants of each sensor link. Indeed, the conditional probability distribution of the
system state at any time k, given x0, P0, γk and correctly received sensor measure-
ments up to time k, say yk, is Gaussian. The conditional mean and covariance4 of
the state, i.e.,

x̂(k) � Ew,v,x(0)

{
x(k)

∣∣ yk,γk
}

P̄(k) � Ew,v,x(0)

{(
x̂(k)− x(k)

)(
x̂(k)− x(k)

)T ∣∣ yk,γk
}
,

3 Alternatively, one could also aggregate measurements.
4 Here, Ew,v,x(0) denotes expectation taken w.r.t. the noise sequences w and v and the initial

state x(0).
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satisfy the Kalman Filter recursions (see, e.g., [8]):

x̂(k + 1) = Ax̂(k)+ Bμ(k)+ K(k + 1)
(
y(k + 1)−C(k + 1)(Ax̂(k)+ Bμ(k))

)
P(k + 1) = AP(k)AT + Q−AK(k)C(k)P(k)AT (10)

P̄(k) = P(k)−K(k)C(k)P(k),

with initial values P(0) = P0 and x̂(0) = x0 and where:5

C(k) �
[
γ1(k)(C1)T γ2(k)(C2)T . . . γM(k)(CM)T

]T

K(k) � P(k)C(k)T (C(k)P(k)C(k)T + R
)−1

R � diag
(
R1,R2, . . . ,RM

)
.

(11)

The state estimate in (10) is used to calculate the plant input, see (3). The con-
trolled plant (1)-(3) is, thus, described via:

x(k + 1) = Ā(k)x(k)+ e(k)+ w(k),

where Ā(k) � A−BL(k), whereas

e(k) � BL(k)(x(k)− x̂(k)) (12)

denotes the effect of the state estimation error on the successor plant state.
We note that e(k) in (12) depends upon the transmission processes γm(k) through

the matrices C(k) in the state estimate x̂(k), see (10) and (11). As seen in (8), trans-
mission reliability can be improved by using larger power levels um(k), however,
this occurs at the expense of more energy consumption, see (4). This trade-off be-
tween energy consumption at the sensors and resulting control accuracy forms the
background to the power control scheme proposed in the following section.

4 Predictive Power Control

In the NCS architecture under study, the gateway not only calculates the plant inputs,
but also determines the power levels to be used by the sensors. For that purpose, the
gateway is equipped with a model predictive controller which trades energy con-
sumption for control quality over a future prediction horizon. Power control signals
are sent over wireless links to the sensors.6

Power Control Signal Coding

To keep processing and associated power consumption at the sensors to a minimum,
in our approach the power control signals have short word-lengths. Here, we will use

5 Properties of this (and related) estimators have been studied, e.g., in [9, 10, 11].
6 At the gateway saving energy is of less importance than at the sensors. We, thus, assume

that communication from the gateway to the sensors is error-free.
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coding ideas frequently used in power control architectures for cellular networks,
see, e.g., [12] (and compare also to our work on NCS’s in [13]) and send coarsely
quantized power increments, say Δum(k), rather than actual power values, um(k), to
each sensor m ∈ {1,2, . . . ,M}. We thus have:

Δum(k) ∈ Um, ∀k ∈ N0, ∀m ∈ {1,2, . . . ,M}, (13)

where {Um} are given finite sets, each having a small number of elements.
Upon reception of Δum(k), each sensor m reconstructs the power level to be used

by its radio power amplifier by simply setting

um(k) = um(k−1)+Δum(k). (14)

For further reference, we define the signal

Δu(k) �
[
Δu1(k) . . . ΔuM(k)

]T
, k ∈ N0 (15)

and note that the quantization constraint (13) imposes:

Δu(k) ∈ U � U1×U2×·· ·×UM, ∀k ∈ N0.

Predictive Power Controller

At every time instant k ∈ N0, the predictive power controller first calculates P̄(k),
which results from iterating (10) for the (known) past arrival process realizations γk,
see (9). It also obtains channel gain predictions over a finite horizon of fixed length
N, namely:

{ĥm(k + 1|k), ĥm(k + 2|k), . . . , ĥm(k + N|k)}, ∀m ∈ {1,2, . . . ,M},

which can be estimated by using previous channel estimates, see, e.g., [14, 15].
Given this information, the controller minimizes the finite-set constrained cost7

J(ΔU) �
k+N

∑
�=k+1

{
EΓ (k)

{
trace

(
Σ ′(�)

)}
+ρ

M

∑
m=1

gm(u′m(�))
}

, (16)

where gm(u′m(�)) is as in (4) and where

Σ ′(�) � Ew,v,x(0)
{

e′(�)e′(�)T
∣∣ yk,γk}= BL(�)P̄′(�)L(�)T BT ,

ΔU � {Δu′(k + 1),Δu′(k + 2), . . . ,Δu′(k + N)},
(17)

see (10) and (12). The scalar ρ ≥ 0 is a design parameter which allows one to trade
control accuracy for energy consumption. The expectation operator EΓ (k) is taken
with respect to the distribution of future transmission outcomes in8

7 Primed variables refer to tentative values of the corresponding physical variables.
8 Compare to the scenario based approaches taken in [16].
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Γ (k) �
[
γ(k + 1) γ(k + 2) . . . γ(k + N)

]T
.

This distribution depends upon the power level, see (8). The decision variables,
i.e., the tentative future power value increments, are collected in ΔU , see (15)
and (17). These determine the tentative future power levels u′m(�) in (16) via

u′m(�) = u′m(�−1)+Δu′m(�), � ∈ {k + 1, . . . ,k + N}, m ∈ {1,2, . . . ,M},

starting from the current values, u′m(k) = um(k), ∀m ∈ {1,2, . . . ,M}.
Minimization of (16) subject to the constraints:

ΔU ∈ U
N � U×U×·· ·×U

0≤ u′m(�)≤ umax
m , ∀� ∈ {k + 1, . . . ,k + N}, ∀m ∈ {1,2, . . . ,M}

gives the sequence of control increments:

ΔUopt � argminJ(ΔU). (18)

Following the moving horizon principle, only the M power updates in9

Δu(k + 1)opt �
[
IM 0M . . . 0M

]
ΔUopt

are sent to the corresponding sensors. At the next time step, namely k + 1, the opti-
mization procedure is repeated, giving rise to power level increments Δu(k + 2)opt.
This procedure is repeated ad infinitum.

We emphasize that, despite (18) being a stochastic nonlinear programme, ΔUopt

can be found via simple exhaustive search over the 2MN possible transmission sce-
narios Γ (k) and, in a worst complexity case, |U|N values of ΔU .

The proposed controller jointly decides upon the power levels of all M sensors to
achieve the best trade-off between energy use and control accuracy.

5 Simulation Study

To illustrate basic features of the model predictive power controller presented in
the previous section, we consider a NCS as in Fig. 1 with M = 2 channels and use
measured channel data. Measurements were acquired in the 2.4 GHz ISM band in
an office area at the Signals and Systems group at Uppsala University.

We assume that Binary Phase Shift Keying is employed and use the transmission
error model [7]:

fm(um(k)hm(k)) =

⎧⎨⎩
(

1− Q̃
(√

2um(k)hm(k)/(rkBT )
))bm

if um(k) > 0

0 if um(k) = 0,

9 IM denotes the M×M identity matrix and 0M the all zeros M×M matrix.
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where Q̃(z) � 1/
√

2π
∫ ∞

z exp(−ν2/2)dν is the Q-function, kB is the Boltzmann con-
stant and T = 300 [K] is the temperature. The selected bit-rate of the channels is
r = 40 [kbits/s], and the number of bits per measurement value are b1 = b2 = 8 [bits].

The (unstable) plant is characterized via the model of Section 2 with:

A =
[

2 1
1 1

]
,B =

[
1
1

]
,x0 =

[
0
0

]
,P0 =

1
3

I2, Q =
1
2

I2,

[
C1

C2

]
= I2, R1 = R2 =

1
100

.

The plant input in (3) is provided by the LQG policy: μ(k) =−[1.452 0.898
]

x̂(k).
The constraints on the power values, see (5), are umax

1 = umax
2 = 0.5 [mW ]. The

power controller parameters are chosen as N = 1, ρ = 10 [1/μJ]. Power increments
are restricted to belong to the finite sets U1 = U2 = {0,±50} [μW ]. We assume that
the gateway has perfect one-step-ahead channel predictions.

To investigate the impact of different kinds of sensor nodes, we introduce the
energy ratio η � EP/Emax

TX , see (4) and (6).

Fig. 2 System performance for sensor nodes with energy ratio η = 0.5

Fig. 3 Power levels for sensor nodes with energy ratio η = 1.7
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Fig. 2 illustrates that the proposed predictive controller tries to find the best
compromise between the two sensor links. In particular, the controller at times
approximately inverts the channel gains. At other times, it decides to send one of the
sensors to sleep, i.e., to set u1(k) = 0 or u2(k) = 0. This scheduling aspect is even
more apparent in Fig. 3, as a consequence of a higher value of η . It is important to
notice that, in the present case, the first component of x(k) is more important than
the second component. Consequently, the predictive controller favors Sensor 1 over
Sensor 2.

If power levels would be kept constant, such that the same total amount of energy
is used, then, for η = 0.5, the trace of the empirical covariance of the state would be
25% larger. For η = 1.7, no such constant power levels exist, since EP is too large.

6 Conclusions

We have developed a stochastic nonlinear model predictive power controller for
wireless sensor networks used within a networked control system. Due to (time-
varying) fading on the wireless channels, transmission errors of sensor measure-
ments are likely to occur. The proposed controller trades energy expenditure at the
sensors for expected plant state variance to compensate for channel fading in an
optimal manner, as illustrated on measured channel data. Key to keeping the com-
putational burden limited is the fact that the occurrence of transmission errors con-
stitutes a binary random variable. Thus, expectations can be exactly evaluated via
finite sums, i.e., no integrals need to be evaluated or approximated.
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On Polytopic Approximations of Systems with
Time-Varying Input Delays

Rob Gielen, Sorin Olaru, and Mircea Lazar

Abstract. Networked control systems (NCS) have recently received an increas-
ing attention from the control systems community. One of the major problems in
NCS is how to model the highly nonlinear terms caused by uncertain delays such
as time-varying input delays. A straightforward solution is to employ polytopic ap-
proximations. In this paper we develop a novel method for creating discrete-time
models for systems with time-varying input delays based on polytopic approxima-
tions. The proposed method is compared to several other existing approaches in
terms of quality, complexity and scalability. Furthermore, its suitability for model
predictive control is demonstrated.

Keywords: input delay, networked control systems, polytopic uncertainty.

1 Introduction

Recently networked control systems (NCS) have become one of the topics in control
that receives a continuously increasing attention. This is due to the important role
that transmission and propagation delay play in nowadays modern control applica-
tions. In [8], a survey on future directions in control, NCS where even indicated
to be one of the emerging key topics in control. In NCS the connection between
plant and controller is a network that is in general shared with other applications.
The motivations for using NCS are mostly cost and efficiency related. In [6, 10]
a comprehensive overview of the main difficulties within NCS and the recent de-
velopments in this field is given. Both papers present different setups and solutions
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for stabilizing controller design. In general two main issues can be distinguished:
time-varying input delay and data packet dropout. The present paper focusses on
the first issue. A general study on stability of NCS can be found in [1] and the refer-
ences therein. More recently, in [3, 5] the problem of time-varying input delay was
reformulated as a robust control problem and a static feedback controller was then
synthesized by means of linear matrix inequalities (LMI). In [9], also by means of
LMI, a model predictive control (MPC) scheme has been designed for systems with
time-varying input delay.

One of the biggest challenges in stabilization and predictive control of NCS is
to find a modeling framework that can handle time-varying input delays effectively.
One of the most popular solutions to this problem, already employed in [3, 5, 9],
is to model the delay-induced nonlinearity using a polytopic approximation. The
advantage of this approach is that the resulting model is a linear parameter varying
system for which efficient stabilization methods and control design techniques exist,
see, for example, [7]. This paper proposes a new approach for deriving a polytopic
approximation, based on the Cayley-Hamilton theorem. The method is compared
with the above-mentioned techniques in terms of scalability, complexity and con-
servativeness. The suitability of all methods for predictive control is analyzed using
the MPC strategy of [7].

2 Preliminaries

2.1 Basic Notation and Definitions

Let R, R+, Z and Z+ denote the field of real numbers, the set of non-negative
reals, the set of integers and the set of non-negative integers respectively. We use
the notation Z≥c1 and Z(c1,c2] to denote the sets {k ∈ Z+|k ≥ c1} and {k ∈ Z+|c1 <
k≤ c2}, respectively, for some c1,c2 ∈ Z+. A polyhedron, or a polyhedral set, in R

n

is a set obtained as the intersection of a finite number of open and/or closed half-
spaces, a polytope is a compact polyhedron. Let Co(·) denote the convex hull. Let

‖A‖2 := supx�=0
‖Ax‖2
‖x‖2

denote the induced matrix 2-norm. A well-known property is

that ‖A‖2
2 = λmax(AT A), where λmax(M) is the largest eigenvalue of M ∈ Rn×n .

2.2 Problem Definition

Consider the continuous time system with input delay

ẋ(t) = Acx(t)+ Bcu(t)
u(t) = uk, ∀t ∈ [tk + τk,tk+1 + τk+1] and u(t) = uinitial, ∀t ∈ [0,τ0],

(1)

where tk = kTs, k ∈ Z+ and Ts ∈ R+ is the sampling time. Furthermore Ac ∈ R
n×n,

Bc ∈ Rn×m, τk ∈ R[0,Ts), ∀k ∈ Z+ is the network delay, uk ∈ Rm, k ∈ Z+ is the
control action generated at t = tk, u(t) ∈ Rm is the system input and x(t) ∈ Rn is
the system state. The time-varying delay that affects the input signal is one of the
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most important aspects of NCS. As in NCS the controller only has discrete time
information, we employ next several algebraic manipulations to obtain a discrete
time description of the system, i.e.

xk+1 = eAcTs xk +
∫ τk

0
eAc(Ts−θ)dθBcuk−1 +

∫ Ts

τk

eAc(Ts−θ)dθBcuk. (2)

The goal is to design a stabilizing controller that is robust in the presence of
time-varying delays. However this is a highly nonlinear system and is in general not
suitable for controller synthesis. To obtain a model more suitable for control design
define

Δk :=
∫ τk

0
eAc(Ts−θ)dθBc, k ∈ Z+. (3)

Furthermore, by manipulating (2) and introducing a new augmented state vector of
the form ξ T

k = [xT
k uT

k−1] we obtain:

ξk+1 = A(Δk)ξk + B(Δk)uk, (4)

with A(Δk) :=
[

Ad Δk
0 0

]
, B(Δk) :=

[
Bd−Δk

Im

]
, Bd =

∫ Ts
0 eAc(Ts−θ)dθBc and Ad = eAcTs .

Here (4) is a nonlinear parameter varying system with unknown parameter τk. The
challenge that remains is to find a polytopic approximation of this nonlinear un-
certainty in order to reformulate (4) into a linear parameter varying system with
unknown parameter Δk. To achieve this we define the following set of matrices:

Δ := Co({Δ l}), Δ l ∈ R
n×m, l ∈ Z[0,L], L ∈ Z+, (5)

such that Δk ∈ Δ ,∀τk ∈ [0,τ ], where τ is the maximum input delay that can be
introduced by the network. This is a model that can be handled by most robust
control techniques, including MPC, as it will be shown later.

2.3 Existing Solutions

In [3, 5, 9] several methods for finding the generators of the set in (5) were derived.
Here these methods are only explained briefly to obtain a self-contained assessment;
further details and proofs can be found in the corresponding articles.

In [3] and the references therein an elementwise maximization is proposed where
Δ l contain all possible combinations of maxima and minima for all entries of Δk.
This approach will be referred to as the ME method.

Other methods, as the ones in [3] and [9], are based on the Jordan normal form
(JNF), i.e. Ac = V JV−1 with J block diagonal. Starting from (3), with a mild as-
sumption on Ac and using the JNF yields:

Δk =
n

∑
i=1

A−1
c V (eJiTs − eJi(Ts−τk))V−1Bc. (6)
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Filling in τk = 0 and τk = τ gives the generators of the set Δ . The two papers differ
in so far that in [9] a method is proposed to reduce the number of generators at the
cost of a larger polytope. The method as presented in [3] will be referred to as JNF1
and the method from [9] as JNF2.

Another option was proposed in [5], which makes use of a Taylor series expan-
sion of (3), i.e.:

Δk =

(
−

∞

∑
i=1

(−τk)i

i!
Ai−1

c eAcTs

)
Bc. (7)

The generators of Δ are also obtained for τk = 0 and τk = τ . The infinite sum is
approximated by a finite number of terms p, which is also the number of generators
for Δ , i.e. L = p. This method will be referred to as TA. Next we present a novel
method for finding the generators of the set Δ .

3 Main Result

The method presented in this paper is based upon the Cayley-Hamilton theorem.

Theorem 1 (Cayley-Hamilton theorem). If p(λ ) := det(λ In−A) is the character-
istic polynomial of a matrix A ∈ Rn×n then p(A) = 0.

The original proof of this theorem can be found in [2] and further details on the
theorem are given in [4]. Using this theorem it is possible to express all powers of A
of order n and higher as a combination of the first n powers, i.e.

Ai = ci,0I + . . .+ ci,n−1An−1, ∀i ∈ Z≥n, (8)

for some ci, j ∈ R, j = 0, . . . ,n−1. Define now the functions

f j(Ts−θ ) :=
∞

∑
i=0

ai, j(Ts−θ )i, (9)

where ai, j := ci, j
i! . By Theorem 1 we can derive the following expression for Δk.

Lemma 1. Let

g j(τk) :=
∫ τk

0
f j(Ts−θ )dθ , (10)

for some ci, j ∈ R and f j(Ts−θ ) as in (8) and (9). Then

Δk =
n−1

∑
j=0

g j(τk)A j
cBc. (11)
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Proof: Starting from (3) and using (8) we obtain:

Δk =
∫ τk

0

∞

∑
k=0

(Ts−θ )k

k!
Ak

cdθBc

=
∫ τk

0

(
In +Ac(Ts−θ )+ . . .+An

c
(Ts−θ )n

n!
+ . . .

)
dθBc

=
∫ τk

0

(
In +Ac(Ts−θ )+ . . .

. . .+(cn,0In + . . .+cn,n−1An−1
c )

(Ts−θ )n

n!
+ . . .

)
dθBc. (12)

Gathering all terms before the same matrices, writing them as a function of Ts−θ
and using (9) yields:

Δk =
∫ τk

0

(
f0(Ts−θ )In + . . .+ fn−1(Ts−θ )An−1

c

)
dθBc, (13)

which concludes the proof. �
Filling in the corresponding values for τk in g j(τk) gives g j,l ∈ R and g j,u ∈ R

such that g j,l ≤ g j(τk) ≤ g j,u,∀τk ∈ [0,τ]. By Lemma 1 it is possible to write all
realizations of Δk as a convex combination of a finite number of matrices Δ l , as
stated in the next theorem.

Theorem 2. For any τk ∈ [0,τ], Δk satisfies:

Δk ∈Co(nΔ0, . . . ,nΔ2n−1), (14)

where

Δ j := g j,lA
j
cBc, Δ j+n := g j,uA j

cBc, ∀ j = 0, . . . ,n−1. (15)

Proof: Starting from Lemma 1, for any τk ∈ [0,τ] and g j(τk) there exists a ν j ∈R[0,1]
and μ j = 1−ν j such that:

Δk =
(

g0(τk)In +g1(τk)Ac + . . .+gn−1(τk)An−1
c

)
Bc

=
(
(ν0g0,l +μ0g0,u)In + . . .+(νn−1gn−1,l +μn−1gn−1,u)A

n−1
c

)
Bc,

=

(
n−1

∑
j=0

(ν j

n
ngj,l +

μ j

n
ngj,u

)
A j

c

)
Bc,

=
(
δ0 ng1,l I +δn ng1,u I + . . .+δn−1 ngn−1,l A

n−1
c +δ2n−1 ngn−1,u An−1

c

)
Bc. (16)

As δi = ν j
n , δi+n = μ j

n and hence, ∑2n−1
i=0 δi = 1, concludes the proof. �

Thus we have now found again the generators for the convex set as defined in (5).
Throughout the remainder of the paper we will refer this approach as CH2, with the
observation that the resulting polytope is spanned by 2n generators.
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Remark 1. In Section 2.3 it was pointed out that both [3, 9] propose methods based
upon the Jordan Normal Form with the difference that the method of [9] reduces the
number of generators at the cost of a larger polytope, e.g. a square can always be
contained in a triangle thus reducing the number of points spanning the polytope. A
similar reasoning can also be applied to the method CH2 presented above, to obtain
a polytope smaller than the one obtained via Theorem 2, but now with 2n generators
instead of 2n. The method corresponding to this modification of CH2 will be referred
to as CH1, to be consistent with the method JNF2 versus JNF1. �

Observe that (9) is of infinite length and will in practice be approximated by a func-
tion of finite length p. The resulting polytopic embedding therefore has an error.
Next, we provide an explicit upper bound on the 2-norm of the approximation error.

Theorem 3. Let

ρ :=
3
√

λmax(AT
c Ac)Ts

p
, (17)

and suppose1 ρ < 1. Then:

∥∥∥∥∫ τk

0

∞

∑
k=p

Ak
c(Ts−θ )k

k!
Bcdθ

∥∥∥∥
2
≤ ρ p

1−ρ
τ
√

λmax(BT
c Bc). (18)

Proof:∥∥∥∥∫ τk

0

∞

∑
k=p

Ak
c(Ts−θ )k

k!
Bcdθ

∥∥∥∥
2
≤

∞

∑
k=p

∥∥∥∥∫ τk

0

Ak
c(Ts−θ )k

k!
Bcdθ

∥∥∥∥
2

≤
∞

∑
k=p

∥∥∥∥Ak
cT k

s

( k
3)k

Bcτ
∥∥∥∥

2
≤

∞

∑
k=p

(
3Ts

k

)k

τ‖Ak
c‖2‖Bc‖2

≤
∞

∑
k=p

(
3
√
λmax(AT

c Ac)Ts

p

)k

τ
√

λmax(BT
c Bc) =

ρ p

1−ρ
τ
√

λmax(BT
c Bc), (19)

where the triangle and the Cauchy-Schwarz inequality were used. The inequality
‖Ak‖2

2 ≤ ‖A‖2
2× . . .×‖A‖2

2= λ k
max(A

T A), which follows from the Cauchy-Schwarz
inequality, was also employed. �
Using Theorem 3 one can choose p such that the approximation error is small
enough and then correct the resulting polytope accordingly. This can be done by
performing a Minkowsky addition of the resulting polytope with the unit ball pro-
portional to the size of the error bound.

1 Note that p and Ts can always be chosen such that this requirement is satisfied.
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4 Suitability for MPC

In this section we present an assessment of all modeling methods considered in this
paper with focus on suitability for MPC. To do so, consider system (1)-(2) with
Ac =

[
1 −1.2
4 6

]
, Bc =

[
0
−1

]
, Ts = 0.05 and τ = 0.045. For CH1 and CH2 we chose

p = 15 and thus, (18) yields ρ p

1−ρ τ
√

λmax(BT
c Bc) ≈ 4× 10−19. The approximation

order needed by TA was p = 8. Each method has its polytope, as defined in (5), and
generators spanning the polytope. In Figure 1 these polytopes are plotted. Notice
that the accuracy of the methods ME, CH1, CH2 and TA is of the same order of
magnitude, whereas for JNF1 and JNF2 the polytope is much larger (different axes).

We will now discuss the methods in terms of scalability, computational aspects
and control performance. Firstly, note that the LMI used in [7] for stabilizing con-
troller synthesis scales linearly with the number of generators of Δ . In Table 1 the
number of generators for each method is shown.
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Fig. 1 Different polytopic approximations: along the axes are the values of Δ l(1,1) and
Δ l(2,1) for l = 1,2, in black all the possible realizations of Δk and the grey areas are the
polytopes

Table 1 The number of generators per method (L)

method: ME JNF1 JNF2 TA CH1 CH2
number of generators: 2nm 2n n+1 p 2n 2n
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Fig. 2 Simulation of the same MPC scheme for two different models

A few further observations about the various methods are worth noticing:

• The number of generators yielded by the TA method does not depend on the
state dimension. Hence, the TA approach seems well suited for large dimension
systems, while it can be less efficient for low dimension systems.

• The number of generators for the methods ME, JNF1 and CH1 is an exponential
function of the state dimension, which makes these approaches not suitable for
large dimension systems.

• The ME method is not implementable because the extreme realizations of Δk are
not necessarily obtained for τk = 0 and τk = τ .

• Both JNF methods have the disadvantage that they become complex when the
JNF becomes complex, e.g. when Ac has complex values on the diagonal of J.
Also, the JNF methods become more complex when Ac is not invertible.

• The TA method does not provide an upper bound on the estimation error due to
the finite order approximation of the Taylor series. This means that one has to
check stability of the closed-loop system a posteriori. If this stability test fails
there is no systematic approach for finding a solution.

• CH1 and CH2 use an algorithm which calculates the determinant of a possibly
large matrix and the roots of a high order polynomial.

• For CH1 and CH2, if p is chosen small this increases the number of generators,
while if p is chosen very large a correction of the polytope becomes superfluous,
but the influence on the computational complexity is insignificant.

Finally we can, by means of the MPC law from [7], compare the performance
of the different approaches to see how they perform in the MPC context. At each
time instant tk a feedback gain K(xk) is calculated by solving a semi-definite pro-
gramming problem, which yields the control action uk := K(xk)xk. JNF2 and CH2
were not considered because they will never outperform their corresponding vari-
ants JNF1 and CH1, respectively. ME was not considered because this method is
not really applicable due to numerical reasons mentioned above. In Figure 2 we plot
the results of a simulation for the system under observation. The resulting closed
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loop state and input trajectories of the simulations corresponding to CH1 and TA
are plotted. Note that in the simulation CH1 uses less control effort and has less
overshoot, even though the two methods achieve the same settling time. In the sim-
ulation corresponding to JNF1 the resulting MPC problem was not feasible. This
indicates that overestimating the nonlinearity can lead to infeasibility.

5 Conclusions

A novel method for modeling uncertain time-varying input delays was presented. It
has been shown that this method indeed creates a polytope that contains all possible
realizations of the nonlinear terms induced by delays. Then it was shown how to up-
per bound the error made in the approximation of an infinite length polynomial and
how to compensate for this error. It has been demonstrated that the approach pre-
sented in this paper can be more efficient compared with earlier presented methods,
also in terms of suitability for MPC. Furthermore, the presented modeling method
can be modified to allow for delays larger then the sampling time using techniques
similar to the ones employed in e.g., [3, 9], which makes the developed method
appealing for control of networked control systems.
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A Vector Quantization Approach to Scenario
Generation for Stochastic NMPC

Graham C. Goodwin, Jan Østergaard, Daniel E. Quevedo, and Arie Feuer

Abstract. This paper describes a novel technique for scenario generation aimed at
closed loop stochastic nonlinear model predictive control. The key ingredient in the
algorithm is the use of vector quantization methods. We also show how one can im-
pose a tree structure on the resulting scenarios. Finally, we briefly describe how the
scenarios can be used in large scale stochastic nonlinear model predictive control
problems and we illustrate by a specific problem related to optimal mine planning.

Keywords: Scenario generation, closed loop control, stochastic nonlinear model
predictive control, vector quantization.

1 Introduction

The motivation for the research described in the current paper arises from large scale
optimization problems having a temporal component. A specific example of such a
problem is open-cut mine planning. In this example, the goal is to determine the
value of an asset by carrying out an optimization of possible future actions over
a suitable planning horizon (typically 20 years for a mine). Such problems can be
converted into nonlinear model predictive control problems by appropriate choice of
variables. An important feature of such problems is that they contain a large number
of inputs and states. Indeed, a simplified version of the mine optimization prob-
lem involves tens of thousands of state variables. Hence, even after the application
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of spatial and temporal aggregation, it typically takes many hours to carry out the
required optimization on a high speed computer. Another important feature of such
problems is that there are usually variables whose future values cannot be accurately
predicted. For example, in the case of mining, one does not know the future price
that the ore will bring. Hence it is desirable to treat such problems in a stochastic
setting. Alas, the issue of computational complexity now becomes critical.

The usual model predictive control (MPC) paradigm used in industrial control to
deal with uncertainty is the so called “receding horizon” approach. Here one typ-
ically uses open loop optimization to determine the control sequence over some
horizon and then one applies the first control action. At the next time instant, one
measures (or estimates) the state and then recomputes the control over a future con-
trol horizon and the first control step is again implemented. This strategy is very
well known to the control community and has been extremely successful in prac-
tice [2, 3, 4, 5]. This kind of strategy “reacts” to disturbances when they occur (since
the input is recalculated based on the measured state). However, no explicit account
is taken of the fact that, in the future, we will have more information about the un-
certain states than we do at the present time. Control strategies which implement
the latter policy are usually termed “closed loop” and lead to so-called scenario
trees [6, 7]. Also, there exist intermediate strategies in which a restricted form of
feedback is allowed; see, e.g., [8], which studies robust constraint satisfaction and
closed loop stability for a class of uncertain linear stochastic models.

There exists a substantial literature1 on “closed loop” optimization in the stochas-
tic programming literature [9]. There has also been some interest in the topic in
recent control literature. For example, the work [10] considers closed loop policies
based on the vertices of an assumed set.

Our particular interest in the current paper resides in cases where the state dimen-
sion is very large and the underlying system is highly nonlinear. Clearly, in such a
problem one needs to be extremely careful with stochastic optimization since the
associated computations can easily become intractable. The end result of this line of
reasoning is that one can, at best, deal with a “handful” (say several hundred) pos-
sible realizations of the uncertain elements in the problem. This, in turn, raises the
issue of how one should choose this “handful” of realizations (which we term “sce-
narios”) so they give representative “coverage” of the likely outcomes. To illustrate
the difficulty of this problem, we note that if we utilize an optimization horizon of
20 steps and we consider just 10 values for the uncertain variables at each step then
this gives 1020 realizations of the uncertain process. Since in non-convex stochastic
optimization the computational time grows linearly with the number of scenarios,
then if it takes several hours to deal with one realization, then clearly 1020 real-
izations is completely impossible. (It would take 1017 years!). Obviously, careful
choice of the scenarios is an important question in this context.

The topic of scenario generation has been addressed extensively in the stochas-
tic programming literature. For example, in [11, 12, 13], scenario tree genera-
tion for specific multi-stage optimization problems is considered. In these works,

1 The policies are sometimes said to be “with recourse” in the stochastic programming
literature.
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algorithms are proposed which in certain cases and for the Wasserstein (transporta-
tional) distance metric, lead to optimal scenario trees. For alternative approaches,
see, e.g. [14, 15].

One obvious recommendation made in the literature is that one should ideally
design the scenarios taking into account the “true problem”. However, this is not
sensible in the context of complex problems since it is computationally intractable
to compare different scenario patterns, e.g., via a Monte-Carlo study. Indeed, if this
were possible, then one could simply carry out the intended design directly.

Our strategy will be to divide the problem into two stages. In the first stage, we
will carry out scenario design based on a simple measure of scenario performance.
In this stage, we rely upon the fact that the number of uncertain variables is typically
small (say 2 or 3 in the case of the mining problem). Then, in a second stage, we
will utilize the scenarios on the “true problem”. This “divide-and-conquer” strategy
is aimed at making the overall problem computationally tractable. The novel con-
tribution in the current paper is to link the problem of scenario generation to code
book design in vector quantization. This link allows us to develop a new strategy for
scenario generation. We also explain several embellishments of the basic scheme in-
cluding how to enforce a tree structure on the scenarios. The latter is used for closed
loop stochastic control.

The layout of the remainder of the paper is as follows: In section 2, we give a
brief overview of the mine planning problem so as to place the subsequent work in
a practical context. In section 3 we briefly review different stochastic optimization
strategies. Section 4 contains the key result of the paper, namely, the scenario gen-
eration algorithm. In section 5 we briefly return to the mine planning problem and
conclusions are given in section 6.

2 Motivational Problem

Before describing the scenario generation strategy, we will first set the work in a
practical context by briefly describing the optimal mine planning problem [1, 5].

The key idea is as follows: given geological data based on preliminary explo-
ration, determine where and when to dig. The optimization problem can be cast as
a mixed integer linear programming (MILP) problem. A host of constraints need to
be satisfied e.g. mining capacity in each year, slope constraints on the walls of the
mine, precedent constraints on the order in which material is removed, processing
plant constraints etc.

If one adopts the, so called, block model approach, then one divides the mine into
blocks say 100×100 on the surface and 10 vertically. This gives 105 blocks. Over a
15 year horizon, this gives 1075 decisions on when to remove a block. Interestingly,
1075 is approximately the number of atoms in the known universe, so clearly some
simplifications are necessary.

The basic problem can be given a nice interpretation in the NMPC framework.
To see how this can be done, we divide the surface into rectangular blocks {j =
1, . . . , M ; k = 1, . . . , M} as shown in Fig. 1.
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Fig. 1 Block model of a
mine

j

k
xjk(t)

Let xjk(t) denote the depth at location j, k at time t, ujk(t) ∈ {0, 1} denote the
decision to mine (1) or not to mine (0) at time t. Then a simple state space model is

xjk(t) = xjk(t− 1) + bujk(t). (1)

The various constraints take the form
∑

jk hl
jkxjk ≤ bl. The cost function can be

expressed as J =
∑N

t=1 dtct

∑
j,k Vj,k(xjk(t))uj,k, where Vjk(xjk(t)) denotes the

amount of ore at depth xjk(t) in location (j, k), dt denotes a discount factor and ct

denotes the value of ore at time t.

3 Stochastic Optimization Strategies

The simplified description of the mine planning problem given above implicitly
assumes that the value of the ore is known. However, future values of this variable
are certainly not exactly known. Several strategies can be adopted to deal with this
uncertainty as described below:

Open Loop Policies. Here one carries out the design based on some nominal tra-
jectory (say the expected value) for the uncertain variables. Then one applies the
strategy irrespective of what actually happens. This may sound rather strange to
the control community but, in mine planning, certain decisions (e.g. how large
to make the processing plant) cannot easily be changed in the light of updated
information.

Receding Horizon (or Reactive) Policies. Here one bases the original design on
some nominal trajectory for the uncertain variables. However, one only implements
the first stage. One then re-does the optimization when new information is obtained
(i.e. one “reacts” to incoming data). This idea is central to model predictive control
and will be very familiar to the control community.

Closed Loop Policies. These policies take account of the fact that, in the future, we
will have additional information not available now. Closed loop policies typically
lead to function optimization problems in which one designs a mapping from the
future information state to the control. We give a brief overview of the dynamic
programming (DP) approach to these policies.
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Let Ik denote the information available to the controller at time k, that is

Ik = (y0, . . . , yk, u0, . . . , uk−1). (2)

The required control policy π(μ0, . . . , μN−1) maps Ik into the control space ck. A
key feature is the non-anticipatory constraint i.e. decisions can only be based on the
information that has been revealed so far.

The cost function takes the form:

Jπ = E
z0,{ωk},{νk}

{
gN(xN ) +

N−1∑
k=0

gk(xk, μk(Ik), ωk)

}
(3)

where the state evolution satisfy xk+1 = fk(xk, μk(Ik), ωk). The available mea-
surements are y0 =h0(x0, ν0) and yk =hk(xk, μk−1(Ik−1), νk), where {ωk}, {νk}
are i.i.d. sequences (typically Gaussian distributed).

The associated DP equations are

JN−1(IN−1) = min
uN−1∈UN−1

{
E

xN−1,ωN−1

[
gN(fN−1(xN−1, uN−1, ωN−1))

+ gN−1(xN−1, uN−1, ωN−1)|IN−1, μN−1

]} (4)

and for k = 0, . . . , N − 2

Jk(Ik) = min
uk∈Uk

{
E

xk,ωk,yk+1

[
gk(xk, uk, ωk) + Jk+1(Ik, yk+1, uk)|Ik, μk

]}
.

(5)

A Simple Example. To illustrate closed loop planning, we consider the simple two-
stage stochastic decision problem in Fig. 2. We see in this figure that there is only
one random variable, ω, which takes one of two values, ω1, ω2 with equal probabil-
ity. There are two stages in the problem and two decisions for the control at each
stage. Thus, at stage 1, u0 can be chosen as a or b and at stage 2, u1 can be chosen
as a or b. The final rewards (cost function) are shown on the right of the diagram.

Optimal open loop and reactive policies do not use the fact that the state will be
known after stage 1 has been completed. Thus open loop and reactive policies both
lead to the same return of $2. This can be seen from the following simple argument:

Say we apply u0 = a; then whatever we do next gives ±$50, 000 with equal
probability. Hence, the expected return is $0. However, u0 = b, u1 = a returns $1
and u0 = b, u1 = b returns $2. Thus, in conclusion, the best open loop strategy is
u0 = b, u1 = b yielding $2 (we would get the same answer with a reactive policy).

For the closed loop case, we add the extra information that we will know where
we have reached at the end of stage 1. The obvious closed loop policy is; u0 = a,
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u0
= a,

ω = ω2

u0 = a, ω = ω1

u
0 =

b u1 = a

u1 = a

u1 = a

u1 = b

u1 = b

u1 = b

−$50, 000

−$50, 000

+$50, 000

+$50, 000

+$1

+$2

Fig. 2 Simple example

then u1 = a if ω = ω1 which implies a return of $50, 000 and u0 = a, then u1 = b
if ω = ω2 which implies a return of $50, 000.

We see from the above that a closed loop strategy can give significant benefits
compared with open loop or reactive. At a heuristic level the closed loop policy
keeps “all options open” and avoids being “painted into a corner” by the first move.

Computational Issues. The computational burden associated with the design of
closed loop policies grows linearly with the number of alternatives considered for
the uncertain variables. Hence, it is usually essential to restrict the cardinality of the
set of alternatives for the uncertain variables. The philosophical basis of the strategy
is to carry out extensive off-line calculations (by Monte Carlo-like techniques) so as
to design a small set of scenarios which are then used in the on-line solution of the
optimization problem. This amounts to replacing a very complex on-line problem
by a simpler on-line problem based on the pre-computed scenarios. The issue of
how to choose the representative set of alternatives is addressed in the next section.

4 Scenario Generation

The goal of scenario generation is to come up with a (relatively small) set of repre-
sentative trajectories for a stochastic process. A specific example is that of ore prices
as described in section 2.

A “brute force” method is to use Monte Carlo type methods to simulate a set of
trajectories using different “seeds” for the underlying innovation process. This is
known to perform well for a large number of scenarios. However, in the case where
the cardinality of the scenario set is severely restricted, then it is prudent to exercise
some care in the scenario selection.

In the next subsection we describe the key novel contribution of this paper,
namely, linking the problem of scenario generation to vector quantization.
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Vector Quantization. Let us first briefly review some important properties of vector
quantization (VQ). For a thorough introduction to VQ we refer the reader to [16, 17].

An L-dimensional vector quantizer QL is a (nonlinear and non-invertible) map,
say QL : RL → C, where C is a discrete set of M distinct elements given by

C � {ci ∈ R
L : i = 1, . . . , M}. (6)

The set C is also known as a codebook and the element ci ∈ C is usually referred to
as the ith codeword or ith reconstruction point.

It is convenient to decompose QL into a cascade of two functions, e.g. QL(·) =
β(α(·)) where α is referred to as the encoder and β is the decoder. The encoder is a
many-to-one function which maps points in RL to indices, i.e. α : RL → I, where
I is an index set defined as

I � {i ∈ N : i = 1, . . . , M}. (7)

We then define α(x) � i if and only if x ∈ Si where Si ∈ S and where

S � {Si ⊂ R
L : i = 1, . . . , M}. (8)

We generally require that S “cover” RL, i.e. RL ⊆ S and moreover that any pair
of subsets (Si, Sj), i �= j, do not overlap except possibly at their boundaries.

The decoder is given by β : I → C, where I is given by (7) and C by (6). With
this, we establish the following:

QL : x �→ ci ⇔ x ∈ Si ⇔ α(x) = i, β(i) = ci so that QL(x) = β(α(x)).
(9)

Given a distortion measure (or cost function) ρ : RL × C → R+ we define a
Voronoi cell V i :

V i � {x ∈ R
L : ρ(x, ci) ≤ ρ(x, cj), j = 1, . . . , M}, i = 1, . . . , M. (10)

It follows that if QL is a nearest neighbor quantizer, then Si = V i and this
is in fact an optimal encoder for the given decoder, i.e. for the given set of
codewords C [16].

Let φX(x) denote the probability density function for the random variable X .
Then, an optimal quantizer is one that, for a given M , minimizes the expected cost
J where

J = Eρ(X, QL(X))

=
M∑
i=1

∫
x∈Si

φX(x)ρ(x, ci) dx =
M∑
i=1

P (X ∈ Si)E[ρ(x, ci)|X ∈ Si].
(11)
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In simple cases, the codeword ci only appears in one of the terms of the sum
in (11). It then follows that the optimal codeword, given the set Si, is the generalized
centroid of Si. Specifically, given Si ∈ S

ĉi = arg min
ci∈RL

E
[
ρ(X, ci)|X ∈ Si

]
= arg min

ci∈RL

∫
x∈Si

φX(x)ρ(x, c) dx∫
x∈Si

φX(x) dx
. (12)

In other words, given the encoder, or equivalently, given the set S, the optimal de-
coder is defined by the set of reconstructions points C = {ĉi : i = 1, . . . , M},
where ĉi is given by (12).

An optimal quantizer is therefore a nearest neighbor quantizer having centroids
as codewords [16]. For example, if ρ is the squared error distortion measure, i.e.
ρ(x, x′) = ‖x− x′‖2 =

∑L−1
n=0 |xn − x′

n|2 then it is easy to show that

ĉi = arg min
ci∈RL

E
[
ρ(X, ci)|X ∈ Si

]
(13)

= E
[
X |X ∈ Si

]
(14)

=

∫
x∈Si

φX(x)xdx∫
x∈Si

φX(x) dx
. (15)

Furthermore, if X is stationary and ergodic, then one can approximate the centroid
by the sample average obtained simply by drawing a large number of points from
Si and taking their average [16].

Unfortunately, it is generally hard to design a jointly optimal encoder and de-
coder pair (α(·), β(·)). However, there exist iterative design algorithms which
yield locally optimal quantizers. One such algorithm is Lloyd’s algorithm, which
was originally defined for the scalar case [18] and later extended to the vector
case [19].

Lloyd’s algorithm (and its extension to the vector case) is basically a cyclic
minimizer that alternates between two stages; given an optimal encoder α, find the
optimal decoder β and given an optimal decoder find an optimal encoder. More
specifically, we first construct a random set of codewords C. Then we repeatedly
apply the following two steps:

1. Given a set of centroids C = {ci}M
i=1, find the Voronoi cells S = {Si}M

i=1 by use
of (10).

2. Given a set of decision cells S = {Si}M−1
i=0 find the centroids C = {ci}M

i=1 by
use of (12).

This approach guarantees convergence to a (local) minimum [20].2

2 In practice, one can run the codebook design algorithm for several initial guesses and
choose the one that yields the lowest distortion (on the same test data).
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Fig. 3 Binary tree
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Scenario Generation by Vector Quantization Techniques. We will now estab-
lish a connection between the extended Lloyd’s VQ design algorithm and scenario
generation in stochastic MPC.3

Let zk ∈ RL be a state vector that satisfies the Markovian recursion given by

zk+1 = f(zk, ωk) (16)

where ωk ∈ RL is an arbitrary distributed random vector process.
In the special case where ωk ∈ {wk(0), ωk(1)}, i.e. the disturbance, can take on

only two distinct values at every time instant k, then the evolving state sequence
describes a binary tree as shown in Fig. 3. The root of the tree describes the initial
state z0 at time k = 0. Then, at time k = 1, the next state, i.e. z1 will take on the
value z1(0) or z1(1) depending upon whether the event ω0(0) or ω0(1) happens. At
time k = 2, if the previous state was z1(0), the current state will be either z2(0) or
z2(1). Similarly, if the previous state was z1(1) then the current state will be either
z2(2) or z2(3) depending on the actual realization of the uncertain disturbance ωk.
Thus, four different state trajectories are possible and at time k = 0 it is not known
in advance which one of them will eventually happen. The only information that is
available at time k = 0 is the statistics, i.e. the probability of each of the trajec-
tories. Notice that we can describe each trajectory, i.e. each path in the tree, by a
sequence of disturbances. Specifically, the ith path can be described by the se-
quence ωi = (ω0(i), ω1(i)), where i ∈ {0, . . . , 3}. In the general case where we
have N + 1 stages in the tree and M distinct end nodes {zN(i)}, i = 1, . . . , M ,
which (in the case of the binary tree) corresponds to M distinct paths in the tree,
we have ωi = (ω0(i), ω1(i), . . . , ωN−1(i)). Furthermore, there is a one-to-one
correspondence between the sequence of disturbances ωi and the sequence of

3 It is worth emphasizing that the related k-means algorithm [21] has been adapted for a
specific instance of scenario generation in [11]. Our extension includes allowing arbitrary
cost functions and imposing desired tree structures.
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Fig. 4 Different scenario trees

state vectors zi = (z0(i), z1(i), . . . , zN (i)). To see this, recall that zk+1(i) =
fk(zk(i), ωk(i)).

With the above, we will refer to a sequence of disturbances, say ωi, as a scenario.
In particular, ωi denotes the ith scenario. We are interested in scenario generation
for finite-horizon stochastic MPC. If the disturbances takes on only a finite number
of possible values at each time instant, then we can form a scenario tree, e.g. as the
one shown in Fig. 3. Of course, many other trees are possible, cf. Figs. 4(a) and 4(b).

It is often the case that the disturbances take on a continuum of values. In this
case, we seek to form a finite number of scenarios by discretizing the set of possible
disturbances. Specifically, we wish to design M distinct scenarios, whose trajec-
tories capture the evolution of the the most likely state sequences. In other words,
the set of M candidate scenarios should (on average) be a good approximation of
all possible sequences of disturbances. Thus, we actually wish to design a code-
book C in the ω-space having M codewords where the codewords {ωi ∈ C}M

i=1 are
themselves scenarios.

Let JN be the N -horizon cost function defined by

JN � E min
ωi∈C

ρN (z, zi) (17)

= min
S

M∑
i=1

P (ω ∈ Si)E[ρN (z, zi)|ω ∈ Si] (18)

where
ω̂i = arg min

ωi∈RL(N+1)
E[ρN (z, zi)|ω ∈ Si] (19)
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is the generalized centroid of an optimal nearest neighbor quantizer, Si ⊂ RL(N+1)

and ρN (·, ·) is given by

ρN (z, zi) = ‖z − zi‖2Q (20)

=
N∑

k=0

‖zk − zk(i)‖2Qk
(21)

where {Qk ∈ RL×L}, k = 0, . . . , N is a sequence of weighting matrices and Q =

diag(Q0, . . . , QN).
Interestingly, this approach yields a jointly (locally) optimal distribution of code-

words over the temporal as well as spatial dimensions. Note, however, that one has
no control over the resulting structure of the scenario tree. In fact, a likely outcome
is a scenario tree with a root node that branches into M separate deterministic paths
(similar to Fig. 4(a) for the case of M = 4).

Imposing a Tree Structure on the Scenarios. In the previous section we allowed
arbitrary scenario trees. Clearly, this yields the lowest possible cost. Nonetheless, in
stochastic closed loop planning one requires that the future uncertainty be progres-
sively reduced as the stages proceed. Thus, a tree like structure is required in the
scenario space, see also [12, 14, 15, 11]. We will impose a particular tree structure
which is especially suited to the Dynamic Programming formulation of stochastic
optimal control. In the chosen tree structure the nodes of the tree share common
points. We enforce this by adding linear equality constraints at each node in the
code book generation algorithm. Let ΥM

N denote the set of all possible tree struc-
tures containing exactly M distinct paths each having N + 1 nodes. For example,
Figs. 3, 4(a), and 4(b), all belong to Υ 4

2 . It should be clear that any codebook C hav-
ing M codewords {ωi}M

i=1 (each having N elements ωi
k, k = 0, . . . , N − 1) admits

a tree Γ ∈ ΥM
N . We write C � Γ if C admits the specific scenario tree described

by Γ .
When we restrict the codebook to admit a specific scenario tree, the codeword

separation described in (19) does not apply and one needs to design the full code-
book simultaneously. Specifically, given a scenario tree Γ ∈ ΥM

N and a set of deci-
sion cells S = {Si ∈ RL : i = 1, . . . , M}, the optimal set Ĉ of codewords must
jointly satisfy:

Ĉ = arg min
C�Γ

M∑
i=1

P (ω ∈ Si)E[ρN (z, zi)|ω ∈ Si] (22)

where the minimization is now over discrete sets C ⊂ R
L(N+1) satisfying |C| = M

in addition to C � Γ , which has the equivalent interpretation of minimizing over
points in a higher dimensional vector space, i.e. C ∈ RML(N+1) subject to C � Γ .
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Fig. 5 The resulting codebook and scenario tree after five iterations of the modified Lloyd’s
algorithm

We thus modify Lloyd’s algorithm to alternate between updating the decision
cells S using (10) keeping the codebook C fixed and updating the codebook us-
ing (22) keeping the decision cells fixed.

Example of Scenario Generation. To illustrate the principle behind the proposed
scenario generation technique, we carry out a simple simulation. Let zk+1 =
0.9zk + ωk where zk, ωk ∈ R and ωk is a zero-mean unit-variance Gaussian dis-
tributed random variable. Let the horizon length be N = 4 and let the number
of codewords be M = 16. It follows that we are interested in finding 16 “good”
4-dimensional codewords {ωi}4i=1 defined in the ω-space, which admit a specific
scenario tree, say a binary tree. For simplicity, we will minimize the squared error
in the state-space domain, i.e. ρN (z, zi) = ‖z − zi‖2.

We now first randomly pick a set of 16 codewords (from the distribution of ω)
which admits a binary scenario tree. We then randomly draw 20, 000 4-dimensional
vectors (also from the distribution of ω) to be used as “training” vectors.4 Finally, we
alternate between numerically evaluating (10) and (22) given the training set. The
resulting codebook and scenario tree after five iterations is illustrated in Figs. 5(a)
and 5(b), respectively.

5 Return to the Motivational Problem

Finally, we return to the optimal mine planning example. We recall that the state
for this problem has two decoupled components; namely the mine depth at various
locations and the ore price. For simplicity we assume that the current ore price states
can be measured.

4 In the case of simple distributions in the ω-space, it might be possible to explicitly derive
the associated distribution in the z-space. This is convenient, since it eliminates the need
for “training” vectors.
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We can set the problem up as a large problem in which we assign a different
control action to each node of the scenario tree. This implicitly imposes a mapping
from the measured state to the control input [5].

We utilize the scenario tree for ore price to evaluate the current control as a func-
tion of the measured state x0. Now time is advanced 1 step to k = 1. Since we
have discretized the scenario space, the measured value of x1 will, with probability
one, not coincide with any of the values used in evaluating the current input. Thus,
the scenario tool is really only a computational device to allow us to compute the
current control action μ0 whilst accounting (in some way) for the fact that, in the
future, we will actually know more than we do now. In other words, exactly as in
the simple example of Section 3, we utilize scenarios to ensure that the first step is
made in the knowledge that more will be known in the future.

Of course, the fact that the measured value of x1 is not exactly equal to any of
the values used the calculation should not be of great concern to us. All we need to
do is to react to the measured value of x1 at time 1 and recalculate u1 by the same
procedure as was used to evaluate μ0.

We call the above strategy a receding horizon closed loop policy.

6 Conclusion

This paper has described a novel approach to scenario generation aimed at com-
plex nonlinear model predictive control problems. We have shown that the problem
can be formulated in the framework of codebook design for vector quantization. We
have also shown how the method can be embellished in several ways, e.g. by impos-
ing a tree structure on the scenarios. A crucial point to note is that extensive off-line
calculations (needed to generate the scenarios) are used to simplify the necessary
on-line computational burden.5
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Successive Linearization NMPC for a Class of
Stochastic Nonlinear Systems

Mark Cannon, Desmond Ng, and Basil Kouvaritakis

Abstract. A receding horizon control methodology is proposed for systems with
nonlinear dynamics, additive stochastic uncertainty, and both hard and soft (proba-
bilistic) input/state constraints. Jacobian linearization about predicted trajectories is
used to derive a sequence of convex optimization problems. Constraints are handled
through the construction of tubes and an associated Markov chain model. The pa-
rameters defining the tubes are optimized simultaneously with the predicted future
control trajectory via online linear programming.

Keywords: Nonlinear systems, stochastic optimal control, constrained control.

1 Introduction

Constraints handled by predictive control strategies are typically treated as hard
(inviolable) constraints, or as soft constraints, in which case the degree of violation
is to be minimized in some sense. This paper considers probabilistic constraints
in the form of soft input/state constraints, for which the probability of violation is
subject to hard limits. This form of constraint can account for the distribution of
model or measurement uncertainty, and thus avoid the conservativeness of a hard-
constraint strategy based on the worst-case uncertainty [2], which may be highly
unlikely. The approach also provides statistical guarantees of closed-loop constraint
satisfaction, unlike approximate methods [8, 6] based on constraints on the means
and variances of predicted variables.

The difficulties of predicting the distributions of model states over a horizon and
of ensuring recursive feasibility in closed-loop operation have limited MPC based
on probabilistic constraints to highly computationally intensive Monte Carlo meth-
ods (e.g. [1]) or to limited problem classes (e.g. linear dynamics [7]). This paper
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considers nonlinear systems with stochastic disturbances, and proposes a reced-
ing horizon control law subject to probabilistic and hard constraints based on
tubes [4, 3]. Analysis of a simplified Markov chain model verifies that the prob-
ability of constraint violation is within the limits specified by the soft constraints.
Linearizations about predicted trajectories allow for an efficient online optimization
which may be terminated after a single iteration. The approach is illustrated by a
numerical example in Section 5.

1.1 Problem Statement

The system to be controlled is described by a discrete-time nonlinear model with
state xk ∈Rnx and input uk ∈ Rnu :

xk+1 = f (xk,uk)+ dk, k = 0,1, . . . (1)

and with f (0,0) = 0. Here dk is a random disturbance with a finitely supported,
stationary distribution satisfying

E(dk) = 0, ∀k

(where E(·) denotes expectation). Furthermore d j,dk are assumed to be independent
for all j �= k. We assume that xk is available for measurement at time k. The dynamics
of (1) are assumed to be continuous throughout the operating region for the state
(denoted X ) and input (denoted U ) in the following sense.

Assumption 1. f (x,u) is Lipschitz continuous for all (x,u) ∈X ×U .

The system is subject to two types of constraint on state and input variables. Hard
constraints of the form

FHxk + GHuk ≤ hH , hH ∈ R
nH (2)

must be satisfied at all times k = 0,1, . . .. Thus, for example, we require the set of
feasible (x,u) for (2) to be a subset of the operating region, i.e.

{(x,u) : FHx + GHu≤ h} ⊂X ×U .

In addition, we consider soft input/state constraints:

FSxk + GSuk ≤ hS, hS ∈ R
nS (3)

which may be violated at any given time k, but which are subject to hard bounds
on the expected number of constraint violations over a given horizon. To simplify
presentation (but with no loss of generality), we consider the case of a single soft
constraint (nS = 1). The bound on the expected number of constraint violations can
therefore be expressed as a hard constraint:
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1
Nc

Nc

∑
i=1

Pr{FSxk+i + GSuk+i > hS} ≤ Nmax

Nc
(4)

which must hold for all k = 0,1, . . .. Here Pr{A} denotes the probability of event A,
and Nmax/Nc is the maximum allowable rate of violation of soft constraints averaged
over an interval of Nc samples.

The control objective is the optimal regulation of xk about the origin with respect
to the performance index

J({u0,u1, . . .},x0) =
∞

∑
k=0

E0
(
1T |xk|+λ1T |uk|

)
(5)

subject to constraints (2) and (4). Here Ek(·) denotes expectation conditional on
information available to the controller at time k, namely the measured state xk; 1 is
a vector, 1 =

[
1 · · · 1

]T
, with dimension dependent on the context and λ > 0 is a

control weighting. The 1-norm cost defined in (5) is employed for computational
convenience but the paper’s approach is easily extended to more general stage costs
that are convex in (xk,uk).

2 Successive Linearization MPC

This section describes in outline a method of solving the receding horizon formu-
lation of the control problem defined in Section 1.1. Let {uk|k,uk+1|k, . . .} denote a
predicted input sequence at time k and denote {xk|k,xk+1|k, . . .} as the corresponding
state trajectory, with xk|k = xk. Following the dual mode prediction paradigm [5], we
define the infinite horizon predicted input sequence in terms of a finite number of
free variables, ck = {c0|k, . . . ,cN−1|k}, as:

uk+i|k = Kxk+i|k + ci|k (6)

with
ci|k = 0, i = N,N + 1, . . .

The linear feedback law u = Kx is assumed to stabilize the model (1) in a neigh-
bourhood of x = 0 (the paper’s approach allows this to be replaced by a stabilizing
nonlinear feedback law if available). Note that this formulation contains a degree of
conservativeness since it leads to an optimization over the variables ck rather than
closed-loop policies, however it provides a convenient balance of computation and
conservativeness.

Under the control law of (6), state predictions are governed by the model

xk+i+1|k = φ(xk+i|k,ci|k)+ dk+i, xk|k = xk (7)

where φ : Rnx×nu → Rnx is defined by the identity

φ(x,c) = f (x,Kx + c), ∀x ∈ R
nx , c ∈ R

nu .
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In order to account efficiently for the nonlinearity and uncertainty in the predic-
tion system (7), the proposed receding horizon optimization is based on linear mod-
els obtained from the Jacobian linearization of (7) around nominal trajectories for
the predicted state. Let {x0

k|k, . . . ,x
0
k+N|k} denote a trajectory for the nominal system

associated with the expected value of uncertainty in (7) and c0
k = {c0

0|k, . . . ,c
0
N−1|k},

so that x0
k+i|k evolves according to

x0
k+i+1|k = φ(x0

k+i|k,c
0
k), x0

k|k = xk. (8)

The combined effects of approximation errors and unknown disturbances can be
taken into account through the definition of a sequence of sets centred on a nominal
trajectory at prediction times i = 1, . . . ,N and a terminal set centred at the origin
for i > N. For computational convenience we define these sets as low complexity
polytopes of the form {x : |V (x− x̂i|k)| ≤ z̄i|k} for i = 1, . . . ,N, and {x : |V x| ≤ z̄t}
for the terminal set. Here V is a square full-rank matrix and the parameters z̄i|k, z̄t

determine the relative scaling of the sets. Possible choices for V and K are discussed
in Section 3.2.

To simplify presentation, we define a transformed variable z = Vx and denote zδ

and cδ as the deviations from the nominal trajectories for z and c:

zδk+i|k = zk+i|k− z0
k+i|k, z0

k+i|k = Vx0
k+i|k

cδi|k = ci|k− c0
i|k.

The transformed state evolves according to

z0
k+i+1|k + zδk+i+1|k = Vφ

(
V−1(z0

k+i|k + zδk+i|k) , c0
i|k + cδi|k

)
+ εk+i (9)

where εk =Vdk. The linearization of (7) about {x0
k|k, . . . ,x

0
k+N|k} and c0

k can therefore
be expressed

zδk+i+1|k = Φk+i|kzδk+i|k + Bk+i|kcδi|k + εk+i + ek+i|k, zδk|k = 0 (10)

where

Φk+i|k = V
∂φ
∂x

∣∣∣∣
(x0

k+i|k,c
0
i|k)

V−1 Bk+i|k = V
∂φ
∂c

∣∣∣∣
(x0

k+i|k,c
0
i|k)

Similarly, for i≥ N we have zk+i|k = Vxk+i|k where

zk+i+1|k = Vφ
(
V−1zk+i|k , 0

)
+ εk+i (11)

and the Jacobian linearization about z = 0 therefore gives

zk+i+1|k = Φzk+i|k + εk+i + ek+i|k , Φ = V
∂φ
∂x

∣∣∣∣
(0,0)

V−1. (12)
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Remark 1. From Assumption 1 it follows that the linearization error in (10):

ek+i|k = Vφ
(
V−1(z0

k+i|k + zδk+i|k) , c0
i|k + cδi|k

)
−Vφ

(
V−1z0

k+i|k,c
0
i|k
)−Φk+i|kzδk+i|k−Bk+i|kcδi|k

necessarily satisfies the Lipschitz condition

|ek+i|k| ≤ Γz|zδk+i|k|+Γc|cδi|k| (13)

for some positive matrices Γz,Γc, for all (zδk+i|k,c
δ
i|k) such that(

V−1(z0
k+i|k + zδk+i|k) , KV−1(z0

k+i|k + zδk+i|k)+ c0
i|k + cδi|k

) ∈X ×U .

Similarly, for i≥ N, the linearization error in (12):

ek+i|k = Vφ
(
V−1(zk+i|k) , 0

)−Φzk+i|k

is Lipschitz continuous, with

|ek+i|k| ≤ Γt |zk+i|k| (14)

for some positive matrix Γt , for all zk+i|k such that(
V−1zk+i|k , KV−1zk+i|k

) ∈X ×U .

In Section 3 the bounds (13) and (14) are combined with bounds on εk to con-
struct sets Zi|k, i = 0, . . . ,N that depend on cδk = {cδ0|k, . . . ,cδN−1|k}, thus defining
tubes centred on a nominal trajectory containing the predictions of (7). These tubes
provide a means of bounding the receding horizon performance cost and of en-
suring satisfaction of constraints. As a result, the process of successively lineariz-
ing about ({x0

k+i|k},c0
k), optimizing cδk , and then redefining ({x0

k+i|k},c0
k) by setting

c0
k ← c0

k + cδk necessarily converges to a (local) optimum for the original nonlinear
dynamics, as discussed in Section 4.

3 Probabilistic Tubes

This section describes a method of constructing a series of tubes around a nominal
predicted trajectory so that each tube contains the future predicted state with a pre-
scribed probability. This process provides a means of bounding the predicted value
of the cost (5) and of ensuring satisfaction of hard constraints (2) and probabilistic
constraints (4) along future predicted trajectories. The probabilities of transition be-
tween tubes from one sampling instant to the next and the probability of constraint
violation within each tube are governed by fixed probabilities that are determined
offline. However the parameters determining the size of each tube are retained as
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optimization variables, and this allows the effects of stochastic model uncertainty
and linearization errors (which depend on the predicted input trajectory) to be esti-
mated non-conservatively over the prediction horizon.

Let {S (1)
t , . . . ,S

(r)
t } and {S (1)

i|k , . . . ,S
(r)

i|k } for i = 1, . . . ,N denote collections of
sets in Rnx with

S
( j)

t ∩S
(m)

t = /0, S
( j)

i|k ∩S
(m)

i|k = /0 ∀ j �= m, (15)

and let S
( j)

0|k = 0 for all j. Let p jm ∈ [0,1] for j,m = 1, . . . ,r, with

r

∑
j=1

p jm = 1 j = 1, . . . ,r, (16)

and assume that the sequences {zδk+i|k, i = 0, . . . ,N} and {zk+i|k, i ≥ N} generated
respectively by the prediction models of (10) and (12) satisfy

Pr
(
zδk+i+1|k ∈S

( j)
i+1|k | zδk+i|k ∈S

(m)
i|k
)

= p jm i = 0, . . . ,N (17a)

Pr
(
zk+i+1|k ∈S

( j)
t | zk+i|k ∈S

(m)
t

)
= p jm i = N,N + 1, . . . (17b)

(note that the requirement for these probabilities to hold with equality is relaxed in
Section 3.1). Let the sets S

( j)
N|k be linked to the terminal sets S

( j)
t through

zδk+N|k ∈S
( j)

N|k =⇒ zk+N|k = z0
k+N|k + zδk+N|k ∈S

( j)
t j = 1, . . . ,r. (18)

Then the probabilities of zδk+i|k ∈S
( j)

i|k for i = 1, . . . ,N and of zδk+i|k ∈S
( j)

t for i > N
are governed by a Markov chain model with transition matrix Π :

Π =

⎡⎢⎣p11 · · · p1r
...

. . .
...

pr1 · · · prr

⎤⎥⎦
and the distribution of predicted states can be approximated using the property⎡⎢⎢⎢⎢⎣

p(1)
i

p(2)
i
...

p(r)
i

⎤⎥⎥⎥⎥⎦= Π ie1, p( j)
i =

⎧⎨⎩ Pr
(
zδk+i|k ∈S

( j)
i|k
)

i = 1, . . . ,N

Pr(zk+i|k ∈S
( j)

t

)
i = N,N + 1, . . .

(19)

where e1 =
[
1 0 · · · 0

]T
.

Define p j as a bound on the one-step-ahead conditional probability of violating
the soft constraint (3):
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Pr
(
FSxk+i+1|k + GSuk+i+1|k > hS | zδk+i|k ∈S

( j)
i|k
)≤ p j i < N (20a)

Pr
(
FSxk+i+1|k + GSuk+i+1|k > hS | zk+i|k ∈S

( j)
t

)≤ p j i≥ N (20b)

Then, from (15), (16) and (19), we have

Pr(FSxk+i+1|k + GSuk+i+1|k > hS)≤
[
p1 p2 · · · pr

]
Π ie1 ∀i. (21)

Assume also that the hard constraints (2) are satisfied within S
( j)
i|k and S

( j)
t :

zδk+i|k ∈S
( j)

i|k =⇒ FHxk+i|k + GHuk+i|k ≤ hH i < N (22a)

zk+i|k ∈S
( j)

t =⇒ FHxk+i|k + GHuk+i|k ≤ hH i≥ N (22b)

for j = 1, . . . ,r. Then sufficient conditions for satisfaction of both hard and proba-
bilistic constraints are given by the following lemma.

Lemma 3.1. The constraints of (2) and (4) are necessarily satisfied along predicted
state and input trajectories of (6)-(7) if the conditions on: transition probabilities
(17a,b), terminal sets (18), probabilities of soft constraint violation (20a,b), and
hard constraints (22a,b), are satisfied for Π and p j, j = 1, . . . ,r such that:

1
Nc

Nc−1

∑
i=0

[
p1 p2 · · · pr

]
Π ie1 ≤ Nmax

Nc
. (23)

Proof. This is a direct consequence of (21) and (22a,b).

Throughout the following development we assume that Π and p j satisfy (23).

3.1 Tube Constraints

We next construct constraints that ensure satisfaction of (2) and (4), and which are
suitable for a receding horizon control law. Consider the nested sets:

Z
(1)

i|k ⊆Z
(2)

i|k ⊆ ·· · ⊆Z
(r)

i|k , Z
(1)

t ⊆Z
(2)

t ⊆ ·· · ⊆Z
(r)

t (24)

The effects of model uncertainty and linearization error cause the uncertainty in
zδk+i|k to be symmetric about the state ẑi|k of the linear model:

ẑi+1|k = Φk+i|kẑi|k + Bk+i|kcδi|k ẑ0|k = 0. (25)

Therefore define {Z ( j)
i|k } and {Z ( j)

t } as the low-complexity polytopic sets:

Z
( j)

i|k = {zδ = ẑi|k + v : |v| ≤ z̄( j)
i|k } Z

( j)
t = {z : |z| ≤ z̄( j)

t }

and define S
( j)

t and S
( j)

i|k in terms of Z
( j)

t and Z
( j)

i|k via the relations:
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S
( j)

t =

{
Z

(1)
t j = 1

Z
( j)

t −Z
( j−1)

t j = 2, . . . ,r
S

( j)
i|k =

{
Z

(1)
i|k j = 1

Z
( j)

i|k −Z
( j−1)

i|k j = 2, . . . ,r

for i = 1, . . . ,N. The transition probabilities in (17a,b) are assumed to hold with
equality, which places a strong and unrealistic restriction on the distribution of the
uncertain disturbance in (7). Here we remove this assumption by instead imposing
constraints on transition probabilities for Z

( j)
t and Z

( j)
i|k . These constraints have the

additional advantage over constraints invoked directly on S
( j)

t and S
( j)

i|k that they
are convex (in fact linear in the degrees of freedom). We show that, when combined
with conditions on the violation of system constraints (2) and (3), this formulation
provides sufficient conditions for the conditions of Lemma 3.1 for disturbances dk

with general (continuous, finitely supported) distributions.
Accordingly, let

p̃ jm =
j

∑
l=1

plm, j,m = 1, . . . ,r

(so that p̃rm = 1, m = 1, . . . ,r) and define

Π̃ = TΠ , Π̃ =

⎡⎢⎣p̃11 · · · p̃1r
...

. . .
...

p̃r1 · · · p̃rr

⎤⎥⎦ , T =

⎡⎢⎢⎢⎣
1 0 · · · 0
1 1 0
...

...
. . .

1 1 · · · 1

⎤⎥⎥⎥⎦ .

For j = 1, . . . ,r−1 and m = 1, . . . ,r, we impose the transition probabilities

Pr
(
zδk+i+1|k ∈Z

( j)
i+1|k | zδk+i|k ∈Z

(m)
i|k
)≥ p̃ jm i = 0, . . . ,N (26a)

Pr
(
zk+i+1|k ∈Z

( j)
t | zk+i|k ∈Z

(m)
t

)≥ p̃ jm i = N,N + 1, . . . (26b)

whereas for m = 1, . . . ,r we require

Pr
(
zδk+i+1|k ∈Z

(r)
i+1|k | zδk+i|k ∈Z

(m)
i|k
)

= 1 i = 0, . . . ,N (27a)

Pr
(
zk+i+1|k ∈Z

(r)
t | zk+i|k ∈Z

(m)
t

)
= 1 i = N,N + 1, . . . (27b)

The required probabilities on soft constraints are invoked for j = 1, . . . ,r by

Pr
(
FSxk+i+1|k+GSuk+i+1|k > hS | zδk+i|k∈Z

( j)
i|k
)≤ p j, i = 0, . . . ,N−1 (28a)

Pr
(
FSxk+i+1|k+GSuk+i+1|k > hS | zk+i|k∈Z

( j)
t

)≤ p j, i = N,N + 1, . . . (28b)

while the hard constraints are invoked via

zδk+i|k ∈Z
(r)

i|k =⇒ FHxk+i|k + GHuk+i|k ≤ hH i = 0, . . . ,N−1 (29a)

zk+i|k ∈Z
(r)

t =⇒ FHxk+i|k + GHuk+i|k ≤ hH i = N,N + 1, . . . (29b)
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Lemma 3.2. If p j and p̃ jm satisfy

p j ≤ p j+1, j = 1, . . . ,r−1 (30a)

p̃ jm ≥ p̃ j m+1, j = 1, . . . ,r−1. (30b)

then constraints (26), (27), (28) and (29), together with the terminal constraints that

z0
k+N|k +zδk+N|k ∈Z

( j)
t for all zδk+N|k ∈Z

( j)
N|k , j = 1, . . . ,r, are sufficient to ensure that

(2) and (4) hold along predicted trajectories of (6)-(7).

Proof. Satisfaction of the hard constraint (2) is trivially ensured by (29a,b) and
(27a,b) due to the nested property (24). On the other hand, satisfaction of (21), and
hence also the probabilistic constraint (4), can be shown using (30a,b). For i = 0 this
is obvious from (28), whereas for i = 1 we have from (28):

Pr(FSxk+2|k + GSuk+2|k > hS)

≤ [p1 · · · pr
][

Pr
(
xk+1|k ∈S

(1)
1|k
) · · · Pr

(
xk+1|k ∈S

(r)
1|k
)]T

=
[
p1− p2 · · · pr

][
Pr
(
xk+1|k ∈Z

(1)
1|k
) · · · Pr

(
xk+1|k ∈Z

(r)
1|k
)]T

≤ [p1− p2 · · · pr
]
Π̃ e1

=
[
p1 · · · pr

]
Π e1

where the last inequality follows from (30a) and (26a). Similarly, for i = 2:

Pr(FSxk+3|k + GSuk+3|k > hS)

≤ [p1 · · · pr
][

Pr
(
xk+2|k ∈S

(1)
2|k
) · · · Pr

(
xk+2|k ∈S

(r)
2|k
)]T

=
[
p1− p2 · · · pr

][
Pr
(
xk+2|k ∈Z

(1)
2|k
) · · · Pr

(
xk+2|k ∈Z

(r)
2|k
)]T

≤ [p1− p2 · · · pr
]
Π̃
[
Pr
(
xk+1|k ∈S

(1)
1|k
) · · · Pr

(
xk+1|k ∈S

(r)
1|k
)]T

=
[
p1− p2 · · · pr

]
Π̃T−1

[
Pr
(
xk+1|k ∈Z

(1)
1|k
) · · · Pr

(
xk+1|k ∈Z

(r)
1|k
)]T

≤ [p1− p2 · · · pr
]
Π̃T−1Π̃ e1

=
[
p1 · · · pr

]
Π 2 e1

where the last inequality follows from (30b) (which implies the matrix Π̃T−1 has
non-negative elements in the first r− 1 rows and [0 0 · · · 1] in the last row) and
(26a). The same arguments show that (21) also holds for all i > 2.

Remark 2. The condition (30a) is equivalent to requiring that the probability of
soft constraint violation should decrease towards the centre of the tube. This is nec-
essarily true for the linear soft constraints of (3) due to the nested property (24)
and the convexity of Z

( j)
t and Z

( j)
i|k . Furthermore, because of the linearity of (10)
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and (12), the nestedness and convexity of Z
( j)

t and Z
( j)

i|k imply that condition (30b)
can also be assumed to hold without loss of generality.

To invoke (26)-(29) we use confidence intervals for the elements of ε = Vd in (10)
inferred from the distribution for d:

Pr(|ε| ≤ ξ j) = p̃ j, Pr(|ε| ≤ ξ jm) = p̃ jm, j,m = 1, . . . ,r (31a)

Pr(|ε| ≤ ξ̄ ) = 1. (31b)

From (10) and (13) and (25) we obtain the bounds

|zδk+i+1|k− ẑi+1|k| ≤ |Φk+i|k(zδk+i|k− ẑi|k)|+Γz|zδk+i|k|+Γc|cδi|k|+ |εk+i|

and, since Z
(m)

i|k has vertices ẑi|k +Dpz̄(m)
i|k (where Dp, p = 1, . . . ,2nx are appropriate

diagonal matrices), (26a) is therefore implied by the condition

z̄( j)
i+1|k ≥ |Φk+i|kDpz̄(m)

i|k |+Γz|ẑi|k + Dpz̄(m)
i|k |+Γc|cδi|k|+ ξ jm (32)

for p = 1, . . . ,2nx , while (27a) is implied by

z̄(r)
i+1|k ≥ |Φk+i|kDpz̄(m)

i|k |+Γz|ẑi|k + Dpz̄(m)
i|k +Γc|cδi|k|+ ξ̄ (33)

for p = 1, . . . ,2nx . Similarly, from (10), (13) and (25) it follows that sufficient con-
ditions for (28a) are given by

(FS + GSK)V−1(z0
k+i+1|k + ẑi+1|k +Φk+i|kDpz̄( j)

i|k )+ GS(c0
i+1|k + cδi+1|k)

+ |(FS + GSK)V−1|(Γz|ẑi|k + Dpz̄( j)
i|k |+Γc|cδi|k|+ ξ j)≤ hS (34)

for p = 1, . . . ,2nx , whereas (29a) is implied by

(FH + GHK)V−1(z0
k+i|k + ẑi|k + Dpz̄(r)

i|k )+ GH(c0
i|k + cδi|k)≤ hH (35)

for p = 1, . . . ,2nx . Note that the conditions (32)-(35) are linear in z̄( j)
i|k and ci|k, which

are retained as variables in the online optimization described in Section 4.

3.2 Terminal Sets and Terminal Cost

In the interests of optimizing predicted performance, K in (6) should be optimal for
the cost (5) when constraints are inactive. However the constraint (27b) also requires
that Z

(r)
t is robustly invariant under (12), and this may conflict with the requirement

for unconstrained optimality. We therefore specify K as optimal for the linearized
model (∂ f/∂x|(0,0),∂ f/∂u|(0,0)) with a suitable quadratic cost, and define V in (12)
as the transformation matrix such that Φ = V∂φ/∂x|(0,0)V

−1 is in modal form (see
[4] for more details of this approach).
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To maximize the region of attraction of the resulting receding horizon control
law, it is desirable to maximize the terminal sets Z

( j)
t . This suggests the following

offline optimization problem:

(z̄(1)
t , . . ., z̄(r)

t ) = arg max
(z̄(1)

t ,...,z̄(r)t )

r

∏
j=1

vol(Z ( j)
t ) (36a)

s.t. z̄(r)
t ≥ z̄(r−1)

t ≥ ·· · ≥ z̄(1)
t > 0 (36b)

z̄( j)
t ≥ (|Φ|+Γt)z̄

(m)
t + ξ jm, m = 1, . . . ,r, j = 1, . . . ,r−1 (36c)

z̄(r)
t ≥ (|Φ|+Γt)z̄

(m)
t + ξ̄ , m = 1, . . . ,r (36d)

|(FS + GSK)V−1|{(|Φ|+Γt)z̄
( j)
t + ξ j

}≤ hS, j = 1, . . . ,r (36e)

|(FH + GHK)V−1|z̄(r)
t ≤ hH (36f)

where (36b) ensures (24), (36c) and (36d) are sufficient for (26b) and (27b) re-
spectively, while (36e) and (36f) are sufficient for (28b) and (29b) respectively. The
objective (36a) is chosen so that the optimization problem is convex, but could be
modified by introducing weights in order to obtain a more favourable solution for
Z

( j)
t , j = 1, . . . ,r.
To obtain a finite value for the infinite horizon predicted cost despite the presence

of non-decaying disturbances, we subtract a bound on the steady-state value of the
stage cost under (6), and hence redefine the performance index as

J(ck,xk) =
∞

∑
i=0

Ek
(
1T |V−1zk+i|k|+λ1T |KV−1zk+i|k + ci|k|− lss

)
(37a)

lss = 1T (|V−1|+λ |KV−1|)(I−|Φ|−Γt
)−1ζ (37b)

where ζ = E(|ε|). The following result enables the cost over the prediction interval
i = N,N + 1, . . . to be bounded in terms of a function of zk+N|k.

Lemma 3.3. If q satisfies

qT (|z|− |Φz|−Γt|z|− ζ )≥ 1T |V−1z|+λ1T |KV−1z|− lss (38)

for all z ∈Z
(r)

t , then

qT |zk+N|k| ≥
∞

∑
i=N

Ek
(
1T |V−1zk+i|k|+λ1T |KV−1zk+i|k|− lss

)
. (39)

Proof. From (12), (14) and (31b), the inequality (38) implies

qT |zk+i|k|−Ek+i(qT |zk+i+1|k|)≥ 1T |V−1z|+λ1T |KV−1z|− lss.

Taking expectations and summing over i = N,N + 1, . . . yields (39).
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Using Lemma 3.3 we determine an optimal bound on the cost-to-go for the case

that zk+N|k ∈S
( j)

t by solving the following LPs for q( j), j = 1, . . . ,r:

q( j) = argmin
q

qT z̄( j)
t

s.t. qT (z̄(r)
t −|ΦDpz̄(r)

t |−Γt z̄
(r)
t − ζ )≥

1T |V−1Dpz̄(r)
t |+λ1T |KV−1Dpz̄(r)

t |− lss, p = 1, . . . ,2nx

(40)

Given the distribution of predictions (19), this implies the following bound

r

∑
j=1

q( j)T z̄( j)
k+N|k p( j)

N ≥
∞

∑
i=N

Ek
(
1T |V−1zk+i|k|+λ1T |KV−1zk+i|k|− lss

)
.

4 Receding Horizon Control Law

Let V be the following bound on the cost J in (37a):

V (cδk ,{z̄( j)
i|k , i = 1, . . . ,N, j = 1, . . . ,r},{x0

k+i|k},c0
k) =

r

∑
j=1

{N−1

∑
i=0

max
zδi|k∈Z

( j)
i|k

(
1T |V−1zk+i|k|+λ1T |KV−1zk+i|k + c0

i|k + cδi|k|− lss
)

p( j)
i

+ q( j)T z̄( j)
k+N|k p( j)

N

} (41)

and consider the following receding horizon control strategy.

Algorithm 1. Offline: Given p j, p̃ jm satisfying (23), (30a,b): compute K,V, termi-

nal sets Z
( j)

t and terminal weights q( j) using the procedures of Section 3.2. Online:
At times k = 0,1, . . .
1. given c0

k, determine x0
k+i|k, and Φk+i|k,Bk+i|k, i = 0, . . . ,N and solve:

cδ∗k = arg min
cδk ,{z̄( j)

i|k }
V (cδk ,{z̄( j)

i|k },{x0
k+i|k},c0

k) (42a)

s.t. (32),(33),(34),(35) (42b)

Z
( j)

k+N|k + z0
k+N|k ⊆Z

( j)
t , j = 1, . . . ,r (42c)

2. set uk = Kxk + c0
0|k + cδ∗0|k and c0

k+1 = {c0
1|k + cδ∗1|k, . . . ,c

0
N−1|k + cδ∗N−1|k,0}.

Theorem 4.1. In closed-loop operation, Algorithm 1 has the properties:
(i). the optimization (42) is feasible for all k > 0 if feasible at k = 0
(ii). the optimal value V ∗({x0

k+i|k},c0
k) of the objective (42a) satisfies

Ek
[
V ∗({x0

k+i+1|k+1},c0
k+1)

]−V ∗({x0
k+i|k},c0

k)≤ lss−1T |xk|−λ1T |uk| (43)
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(iii). constraints (2) and (4) are satisfied at all times k and

lim
n→∞

1
n

n

∑
k=0

E0
(
1T |xk|+λ1T |uk|

)≤ lss. (44)

Proof. (i) and (ii) follow from feasibility of cδk = 0 in (42). Constraint satisfaction in
(iii) follows from (i), and (44) results from summing (43) over 0≤ k≤ n and noting
that V ∗({x0

i|0},c0
0) is finite.

Remark 3. The optimization (42) to be solved online in Algorithm 1 can be for-
mulated as a linear program. Note that the number of constraints in (42) depends
linearly on the horizon N and the number of tubes r, but grows exponentially with
the dimension of the model state nx due to the exponential growth in the number of
vertices of Z

( j)
i|k with nx. The required online computation therefore grows rapidly

with model size. Possible methods of mitigating this growth in computational load
are the use of tubes with ellipsoidal cross-sections and the use of robust optimiza-
tion methods [2] to invoke constraints on the probabilities of transition between
tubes and of constraint satisfaction within tubes.

Remark 4. If the constraints on online computation allow for more than one op-
timization at each sample, then setting c0

k ← c0
k + cδ∗k and repeating step 1 results

in non-increasing optimal cost values V ∗({x0
k+i|k},c0

k). This process generates a se-
quence of iterates cδ∗k that converges to an optimum point for the problem of mini-
mizing (41) for the nonlinear dynamics (7) at time k.
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Fig. 1 Evolution of bounds on eT
1 z (left) and eT

2 z (right): Z ( j)
i|k (blue), Z ( j)

t (red), for j = 1,2,
and the nominal trajectory z0

k+i|k (blue x)

5 Example

The levels h1 = x1 +xr
1 and h2 = x2 +xr

2 of fluid in a pair of coupled tanks are related
to the input flow-rate through the discrete-time system model:
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x1,k+1
x2,k+1

]
=
[

x1,k−Ta1
√

h1,k−h2,k

x2,k + Ta1
√

h1,k−h2,k−Ta2
√

h2,k

]
+

T
C1

[
uk + ur

0

]
+
[

d1,k

d2,k

]
with a1 = 0.0690, a2 = 0.0518, C1 = 159.3cm2, sampling interval T = 10s, and
where xr

1 = 30.14cm and xr
2 = 19.29cm are setpoints corresponding to flow-rate

ur = 35cm3/s. The manipulated variable is the flow-rate uk into tank 1, and d1k,d2k

are zero-mean random disturbances with normal distributions truncated at the 95%
confidence level. The system has probabilistic constraints: Pr(|x1k| > 16) ≤ 0.2
and hard constraints: |x1k| < 16, 0 ≤ uk ≤ 70. For the operating region: |xi| < 30,
i = 1,2, the Lipschitz constants were obtained as Γz =

[
0.79 0.14
0.04 0.87

]
. Choosing r =

2 and (p11, p12, p21, p22) = (0.8,0.1,0.2,0.9), terminal sets Z
(1)

t ,Z
(2)

t and cost
weights q(1),q(2) were computed offline. For a horizon N = 5, the sequence of sets
Z

(1)
i|k ,Z

(2)
i|k , i = 0, . . . ,5, obtained with one iteration of Algorithm 1 are shown in

Figure 1.
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Sequential Monte Carlo for Model Predictive
Control

N. Kantas, J.M. Maciejowski, and A. Lecchini-Visintini

Abstract. This paper proposes the use of Sequential Monte Carlo (SMC) as the
computational engine for general (non-convex) stochastic Model Predictive Control
(MPC) problems. It shows how SMC methods can be used to find global optimisers
of non-convex problems, in particular for solving open-loop stochastic control prob-
lems that arise at the core of the usual receding-horizon implementation of MPC.
This allows the MPC methodology to be extended to nonlinear non-Gaussian prob-
lems. We illustrate the effectiveness of the approach by means of numerical exam-
ples related to coordination of moving agents.

Keywords: Stochastic optimisation, Stochastic MPC, Sequential Monte Carlo.

1 Introduction

Nonlinear Model Predictive Control (MPC) usually involves non-convex optimisa-
tion problems, which in general suffer from the existence of several or even many
local minima or maxima. This motivates the use of global optimisation algorithms,
which guarantee asymptotic convergence to a global optimum. In most cases such
algorithms employ a randomised search strategy to ensure that the search process is
not trapped in some local mode. A popular example is Simulated Annealing (SA).
Apart from the issue of multi-modalities of costs or rewards, solving such problems
becomes even more complicated when stochastic processes are used to represent
model uncertainties. In general, stochastic decision problems involve nonlinear dy-
namics with arbitrary distributions on general state spaces. In this paper we are
mostly interested in continuous state spaces. Furthermore, the costs or rewards are
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usually expressed as expectations over relatively high-dimensional spaces. Monte
Carlo methods are currently the most successful methods for evaluating such ex-
pectations under very weak assumptions, and have been widely applied in many
areas such as finance, robotics, communications etc. An interesting point, which
is overlooked often by the control community, is that Monte Carlo has also been
applied for performing global optimisation, mainly in inference problems such as
Maximum Likelihood or Maximum a Posteriori estimation, as presented recently in
[1, 9, 13].

Still, solving stochastic optimal control problems on continuous state spaces for
nonlinear non-Gaussian models is a formidable task. Solutions can be obtained by
solving Dynamic Programming/ Bellman equations [3], but there is no analytical
solution to this equation — except in very specific cases, such as finite state spaces
or linear Gaussian state-space models with quadratic costs. In general, the value
function takes as argument a probability distribution, and it is extremely difficult
to come up with any sensible approximation to it. This is why, despite numerous
potential applications, the literature on applications of Monte Carlo methods for
control of non linear non Gaussian models is extremely limited [2].

MPC combined with Monte Carlo methods provides a natural approximation of
solving the Bellman equation in the stochastic case, just as deterministic MPC can
be viewed as a natural approximate method for solving deterministic optimal control
problems [12]. For details of how MPC relates to dynamic programming and the
Bellman equation, with emphasis on the stochastic case, see [4].

The most developed approaches for exploiting Monte Carlo methods for opti-
misation are based on either Markov Chain Monte Carlo (MCMC) methods [15],
or Sequential Monte Carlo (SMC) methods [5, 7]. Considerable theoretical support
exists for both MCMC and SMC under very weak assumptions, including general
convergence results and central limit theorems [15, 5].

To date the control community has investigated the use of MCMC as a tool for
evaluating approximate value functions, and SMC, in the guise of ‘particle filters’,
for state estimation — see [14] for a setting closely related to MPC. Recently, in
[10, 11] the authors proposed to use a MCMC algorithm similar to Simulated An-
nealing developed in [13], for sampling from a distribution of the maximisers of a
finite-horizon open-loop problem, as the key component of an MPC-like receding-
horizon strategy. As in any stochastic optimisation algorithm, the long execution
times needed imply that these methods can be considered only for certain control
problems, in which fast updates are not required. But even when restricted to such
problems, the computational complexity of the algorithms can be very high. It is
therefore important to take advantage of any structure that might be available in the
problem. SMC seems to manage this better than MCMC in sequential problems.
The computation can also be parallelised and requires less tuning than that required
by standard MCMC algorithms.

In this paper we investigate the use of a Sequential Monte Carlo (SMC)
approach, in contrast to the Markov chain Monte Carlo (MCMC) approach we pro-
posed previously. This approach of using SMC methods for the sampling of global
optimisers within MPC, is to the best of our knowledge novel. We propose some
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specific algorithmic choices in order to accelerate convergence of Simulated An-
nealing methods when applied to stochastic MPC problems. We shall demonstrate
the effectiveness of our approach by means of numerical examples inspired by Air
Traffic Management.

2 Problem Formulation

In general control problems one focuses on dynamical models, in which a specified
user or controller or decision maker influences the evolution of the state, Xk ∈X ,
and the corresponding observation, Yk ∈ Y , by means of an action or control input,
Ak ∈A , at each time k. Consider the following nonlinear non-Gaussian state space
model

Xk+1 = ψ (Xk,Ak+1,Vk+1) , Yk = φ (Xk,Ak,Wk) ,

where {Vk}k≥1 and {Wk}k≥0 are mutually independent sequences of independent
random variables and ψ , φ are nonlinear measurable functions that determine the
evolution of the state and observation processes. The decision maker tries to choose
the sequence {Ak}k≥0, so that it optimises some user specified sequence of criteria
{Jk}k≥0.

In this paper we shall restrict our attention to the fully observed case (Yk ≡ Xk),
although our results can be generalised for the partially observed case as well. Fur-
thermore, as our goal is to develop an algorithm for use with MPC, we will focus
only on finite horizon problems. We refer the interested reader to [2] for a treatment
on how SMC has been used for the infinite horizon case using stochastic gradients
instead.

Conditional upon {Ak}k≥0, the process {Xk}k≥0 is a Markov process with X0∼ μ
and Markov transition density f (x′|x,a), so that we can write

Xk+1|(Xk = x,Ak+1 = a)∼ f ( ·|x,a) . (1)

These models are also referred to as Markov Decision Processes (MDP) or con-
trolled Markov Chains.

We will now formulate an open loop problem solved at each MPC iteration. Let
us introduce a measurable reward function h : X ×A → R+, for the following
additive reward decision problem. At time k−1, the action Ak−1 has been selected,
the state Xk−1 is measured and then at time k one wants to maximise the function Jk

defined as

Jk (Ak:k+H−1) = E

[
k+H−1

∑
n=k

h(Xn,An)

]
, (2)

where Ak:k+H−1 denotes the joint vector Ak:k+H−1 = [Ak, ...,Ak+H−1] and the expec-
tations are with respect to the joint distribution of the states pAk:k+H−1(xk:k+H−1),
giving
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Jk (Ak:k+H−1) =∫
X H

(
k+H−1

∑
n=k

h(xn,An)

)
︸ ︷︷ ︸

u(Ak:k+H−1,xk:k+H−1)

(
k+H−1

∏
n=k+1

f (xn|xn−1,An)

)
f (xk|Xk−1,Ak)︸ ︷︷ ︸

pAk:k+H−1
(xk:k+H−1)

dxk:k+H−1, (3)

where we define

u(Ak:k+H−1,xk:k+H−1) =
k+H−1

∑
n=k

h(xn,An) . (4)

We aim to perform the following maximisation

A∗k:k+H−1 = arg max
Ak:k+H−1∈A H

Jk (Ak:k+H−1) ,

in order to obtain a solution for the open loop problem.
Of course, this is not a trivial task. If the control input took its values in a finite

set A of cardinality K, it would be possible to approximate numerically this cost
using particle methods or MCMC for the KH possible values of Ak:k+H−1 and then
select the optimal value. In [2] the authors present in detail how to get a particle
approximation of Jk using standard SMC results for filtering. Of course, in practice
such an approach cannot handle large values of H or K. Moreover if Ak takes values
in a continuous space A and Jk (Ak:k+H−1) is differentiable with respect to Ak:k+H−1,
one can still resort to a gradient search in A H . This has been presented in [2]. Using
gradients would imply, as in any local optimisation method, that multiple runs from
different initial points are needed to get a better estimate of the global optimum,
but still it is difficult to get any formal guarantees. This motivates the use of Monte
Carlo optimisation.

3 Monte Carlo Optimisation

Maximising (3) falls into the broader class of problems of maximising

J (θ ) =
∫

Z
u(θ ,z)pθ (z)dz, (5)

where we define θ = Ak:k+H−1 and z = xk:k+H−1, while θ ∗ are the maximisers of
J. In this section we show how Monte Carlo simulation can be used to maximise J.
In [1, 13] MCMC algorithms have been proposed for this and in [10] the authors
explained how they can be combined with MPC. More recently, in [9] SMC meth-
ods have been applied for solving a marginal Maximum Likelihood problem, whose
expression is similar to (5). In the remainder of this paper we shall focus on deriv-
ing a similar algorithm to [9], intended to be used for MPC. The main difference
of our approach is that our problem formulation exhibits a slightly different struc-
ture. In fact, we are using a dynamical model intended for control problems, and
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therefore are doing inference to compute time varying optimal actions instead of
static parameters, which is the purpose of parameter estimation. Although the dif-
ference seems subtle at first glance, it is important and leads to similar algorithms
showing completely different behaviour.

The basic idea is the same as in [1, 9, 13]. First we assume u(θ ,z) is nonnega-
tive. Note that this might seem restrictive at the beginning but we remark that any
maximisation remains unaffected with respect to shifting by some finite positive
constant. As in the standard Bayesian interpretation of Simulated Annealing, we
define a distribution π̃γ

π̃γ(θ ) ∝ p(θ )J (θ )γ ,

where p(θ ) is an arbitrary prior distribution, which contains the maximisers θ ∗
and encapsulates any prior information on θ not captured by the model. As such
information is not likely to be available, uninformative priors might be used. Under
weak assumptions, as γ→∞, π̃γ(θ ) becomes concentrated on the set of maximisers
of J [8].

We now introduce γ artificial replicates of z, all stacked into a joint variable z1:γ
and define the distribution πγ

πγ(θ ,z1:γ ) ∝
γ

∏
i=1

u(θ ,zi)pθ (zi).

It easy to show that the marginal of πγ is indeed proportional π̃γ , i.e.

π̃γ(θ ) ∝
∫

πγ(θ ,z1:γ )dz1:γ .

We now define a strictly increasing integer infinite sequence {γl}l≥0, which will
play the role of the inverse temperature (as in SA). For a logarithmic schedule one
can obtain formal convergence results [13]. For a large l, the distribution πγl (θ ,z1:γl )
converges to the uniform distribution of the maximisers of J, [8]. In practice loga-
rithmic schedules lead to slow convergence; more quickly increasing rates and finite
sequences {γl}l≥0 are therefore used. In general it is impossible to sample directly
from πγ , hence various Monte Carlo schemes have been proposed. In [1, 13] this
is achieved by MCMC, and in [9] an SMC sampling approach was proposed for a
Maximum Likelihood problem, based on the generic SMC algorithm found in [6].
The SMC approach can achieve more efficient sampling from πγ , and avoids some
of the fundamental bottlenecks of MCMC-based optimisation.

4 Stochastic Control Using MPC Based on SMC

SMC is a popular technique, applied widely in sequential inference problems. The
underlying idea is to approximate a sequence of distributions πl(x)1 of interest as a

1 x is not meant to be confused with xk. Later it will be apparent that we shall be using
(θk,zk,1:γl

) as the variable of interest.
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collection of N discrete masses of the variables (also referred as particles {X (i)
l }N

i=1),

properly weighted by a collection of weights {w(i)
l }N

i=1 to reflect the shape of the dis-
tribution πl . As πl can be time varying, the weights and the particles are propagated
iteratively by using a sequential importance sampling and resampling mechanism,
which uses the particles of iteration l− 1 to obtain new particles at iteration l. We

shall be referring to {X (i)
l ,w(i)

l }N
i=1 as the particle approximation π̂l of πl and this

should satisfy
N

∑
i=1

w(i)
l δ

X
(i)
l

(dx) N→∞→
a.s.

πl(dx),

where δ is a Dirac delta mass. For more details, see [5, 6, 7]. In Figure 1, we set out
an SMC algorithm which can be used for the MPC problem defined in Section 2.

At time k,

• I) For l = 1, ..., lmax :

1. Sampling new particles:

• For each particle i = 1, ...,N sample:

A(i)
k:k+H−1,l ∼ ql(·|X (i)

k:k+H−1,1:γl−1
,A(i)

k:k+H−1,l−1)
• For each particle i = 1, ...,N sample replicas of the joint

state trajectory, for j = γl−1 +1, ...,γl ,X (i)
k:k+H−1, j ∼

k+H
∏

n=k
f (xn|xn−1,A

(i)
n,l).

2. Weighting particles: for each particle i = 1, ...,N assign

weights w(i)
l = w(i)

l−1

γl

∏
j=γl−1+1

u(A(i)
k:k+H−1,l,X

(i)
k:k+H−1, j), normalise w(i)

l = w(i)
l

N
∑
j=1

w( j)
l

.

3. Resample, if necessary, to get new particle set

{(A(i)
k:k+H−1,l,X

(i)
k:k+H−1,1:γl

)}N
i=1 with equal weights w(i)

l = 1
N .

• II) Compute the maximiser estimate Âk:k+H−1
• III) Apply Âk as the action of time k.

Obtain measurement Yk = Xk and proceed to time k +1

Fig. 1 SMC Algorithm for MPC

Steps I) 1-3 of the algorithm are iterated recursively to obtain a particle approx-
imation for the maximisers of Jk. Referring to the general description of SMC in
the previous paragraph, one can associate πγl with πl . We shall be using iteration
number l, to index the propagation of πγl . As we cannot run an infinite number
of iterations, we shall terminate the iteration at l = lmax. Note that l should not
be confused with the time index k of Section 2 regarding the real time evolution
of the state. To avoid this, we define θk = Ak:k+H−1 and zk = xk:k+H−1, and also
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add a subscript k to πγ to show the real time index. At each epoch k , we are in-
terested in obtaining lmax consecutive particle approximations of πk,γl (θk,zk,1:γl ),
where zk,1:γl = [zk,γ1 , ...,zk,γl ]

2. At each iteration l, we obtain particle approximations

π̂γl , {(Θ (i)
k,l ,Z

(i)
k,1:γl

), w(i)
l }N

i=1, by propagating the particles of the previous approx-

imation π̂k,γl−1 , {(Θ (i)
k,l−1,Z

(i)
k,1:γl−1

),w(i)
l−1}N

i=1, weighting the new particles and then
resampling.

We now explain briefly how steps 1 to 3 can be derived. Suppose we are at epoch
k and iteration l. For the sampling step, we assume in this paper that we can sample
from the model of the state, pθk(zk), by repeatedly sampling from each transition
density f . This is not always possible, but for most practical control problems it is.
If one cannot sample directly from f then importance sampling can be used. For

every particle i, to get a sample Z(i)
k, j = X (i)

k:k+H−1, j, we use the previous measured

state Xk−1 and then repeatedly sample X (i)
n, j ∼ f (·|X (i)

n−1, j,A
(i)
n,l) for n = k, ...,k + H−

1. For sampling new particles Θ (i)
k,l , an importance sampling approach has to be

used at each l. We shall be using an importance distribution ql to obtain Θ (i)
k,l ∼

ql(·|Z(i)
k,1:γl−1

,Θ (i)
k,l−1) by simulation. We have intentionally chosen ql to be varying

with l and to depend on Zk,1:γl as this is more convenient for the general design
setting. We shall not provide details on how to design ql , as this depends on the
problem specifics [7]. We shall refer the reader again to [5, 6] for a more general
treatment.

For the weighting step we use

πk,γl

πk,γl−1

∝
γl

∏
i=γl−1+1

u(θk,zi,k)pθk(zk,i)

to obtain
w

(i)
l

w(i)
l−1

as an importance ratio proportional to
γl

∏
j=γl−1+1

u(Θ (i)
k,l ,Z

(i)
k, j). To ob-

tain u(Θ (i)
k,l ,Z

(i)
k, j) – see (3) and (4) – one can evaluate h

(
X (i)

n, j,A
(i)
n,l

)
point-wise at each

step n during the sampling stage, and then get the total value of u(Θ (i)
k,l ,Z

(i)
k, j). After

normalising the weights one can perform a resampling step according to the multi-

nomial distribution {(Θ (i)
k,l ,Z

(i)
k,1:γl

),w(i)
l }N

i=1, if the variance of the weights is low; see
[7] for details.

As as regards step II, after having obtained the particle approximation π̂k,γlmax
,one

could use in principle any sample Θ (i)
k,lmax

from the final particle set as the estimator
of θ ∗k , where θ ∗k is the maximiser of Jk(θk). Given that π̂k,γlmax

should converge

close to a uniform distribution over the set of θ ∗k , then any sample Θ (i)
k,lmax

should
be sufficiently close to θ ∗k . To improve things one could either choose a sample
randomly according to its weight as in resampling, or in a deterministic fashion, by

2 Note that zk,1:γl
is the stacked vector of the γl artificial replicates of xk:k+H−1 and n is used

as a sequence index for the interval k : k +H−1.
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choosing the sample with the maximum weight. In many cases, such as if there is
some symmetry in the location of the maximisers, this should be much better than

using the empirical mean
N
∑

i=1
w(i)

lmax
Θ (i)

k,lmax
to compute θ̂k.

We can use this open loop solution for performing an MPC step at step III. Once
Âk:k+H−1 is computed, we then apply Âk. Then we proceed to time k + 1 and repeat
steps I-III for optimising Jk+1.

5 Numerical Examples

In this section we demonstrate how the proposed algorithm can be used in navigation
examples, where it is required to coordinate objects flying at constant altitude, such
as aircraft, UAVs, etc. We consider a two-dimensional constant speed model for the
position of an object controlled by changing its bearing

Xk+1 = Xk + vτ[sinφk+1,cosφk+1]T + bk+1 +Vk+1, (6)

where v is the speed of the object, τ is a measuring period, φ is the bearing , bn rep-

resents the predicted effect of the wind and Vk
iid∼N (0,Σ). Although this is a linear

kinematic model with Gaussian added noise, the algorithm in Figure 1 can handle
nonlinear and non-Gaussian cases as it requires no assumptions on the dynamics or
distributions.3 We shall be using some way points αn that the object is desired to
pass through at each time n. We shall encode this in the following reward at time k,

Jk(φk:k+H−1) = E[
k+H

∑
n=k

(c−‖Xn−αn‖2
Q−‖φn−φn−1‖2

R)],

where c > 0 is sufficiently large to ensure c−‖Xn−αn‖2
Q−‖φn−φn−1‖2

R ≥ 0, and
Q,R≥ 0 are matrices of appropriate sizes.

We shall be investigating a number of scenarios. Firstly assume there are three
way-points to be cleared, such that α1 = α2 = ... = αH1 , αH1+1 = ... = αH2 and
αH2+1 = ... = αH . If a single object obeying (6) starts at some initial position, then
choosing a maneuver to maximise Jk means that it should pass through the points
and stay near the check points as long as possible. The result of applying the algo-
rithm of Figure 1 is shown in Figure 2(a).

We proceed by adding additional objects that also obey the dynamics of (6). Sup-
pose that safety requirements impose the constraint that objects should not come
closer to each other than a distance dmin. This makes the problem much harder
as one has to ensure that constraints are not violated and the constraints have a
significant effect on the multi modality of the reward. Let X j

k denote the position

of the jth object. The feasible space X H is modified so that X H = {X j
n ∈ R2 :∥∥∥X j

n −Xi
n

∥∥∥≥ dmin,∀i �= j,n = k, ...,k+H−1}. Moreover, all expectations presented

3 Also non-convex constraints can be added.
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(a) Single-object example of MPC
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(b) Two objects flying parallel using
MPC
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(c) Four-object example open loop so-
lution at k = 1
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(d) Four-object example using MPC

Fig. 2 Application of SMC optimisation for different scenarios. A linear inverse temperature
schedule was used, γl = 5+3l and lmax = 100. For the rest of the parameters we used N = 300,
T = 100 vτ = 2, bk = [0.2,0.2]T , Σ = I, dmin = .5, Q = .1 , and R = .01. The waypoints of
each object are plotted with circles with the same colour as the track of the object. When
implemented in Intel Core Duo T2250 at 1.73GHz processor without any parallelisation, the
computational time for each k is .05 sec per H per N per plane

so far, for example equation (3), should be defined over the new feasible spaces
for each object. To account for this we could modify the instantaneous reward to

h
(

x j
n,A

j
n

)
1

X j
0:n∈X H , where 1x∈B is an indicator function for the set B. Such a simple

penalty approach means that no reward should be credited if a sampled trajectory

Z j,(i)
k, j does not obey the constraint and its corresponding weight should be set to

zero. This is a simulation based approach to deal with constraints, i.e. we propagate
state samples only from the feasible region of the state space. We also assume that
the initial condition of the system is not in violation of the constraint. Then, given
that the SMC optimisation algorithm uses a large number of particles and samples
many replicates of the state trajectories, this should allow safe decisions to be made.
For a finite number of samples one could also obtain expressions for the probability
of violating a constraints, e.g. using the Chebychev inequality. In practice, when
using large number of particles the violation probability was observed to be very
low ( 10−7).
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We have verified this using two different scenarios. In the first one seen in Fig-
ure 2(b), two objects flying in parallel towards the same direction, try to approach
parallel way-points. MPC was used for repeated number of runs and no conflict
between two objects took place. Further scenarios are depicted in Figures 2(c) and
2(d). These show a more complicated problem, in which four objects are directed to-
wards each other and their way-points would lead them to a collision if constraints
were not taken into account. In Figure 2(c) we plot the open loop solution of the
problem at time k = 1 for a random disturbance sequence and in Figure 2(d) the
MPC solution. We see that three objects try to cruise as closely as possible between
their way-points and orbit each way point for some time, while one orbits waiting
for the others. Again no conflict took place in multiple runs.

As a concluding remark, we would like to stress that little tuning was done to
produce the results shown here. Also, we have not used any structural properties of
Linear Gaussian systems with quadratic costs and just implemented the algorithm
in Figure 1. The examples show early results from ongoing work, but they already
demonstrate that the proposed SMC algorithm can be effective for non-convex de-
cision problems.
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European Commission under project iFly FP6- TREN-037180. The authors are also grateful
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An NMPC Approach to Avoid Weakly
Observable Trajectories

Christoph Böhm, Felix Heß, Rolf Findeisen, and Frank Allgöwer

Abstract. Nonlinear systems can be poorly or non-observable along specific state
and output trajectories or in certain regions of the state space. Operating the sys-
tem along such trajectories or in such regions can lead to poor state estimates being
provided by an observer. Such trajectories should be avoided if used for state feed-
back control or monitoring purposes. In this paper, we outline a possible approach
to avoid weakly observable trajectories in the frame of nonlinear model predictive
control (NMPC). To illustrate the practical relevance and applicability, the proposed
controller is used for an emergency collision avoidance maneuver for passenger
cars.

Keywords: Nonlinear model predictive control; Observability; Autonomous steer-
ing; Vehicle dynamics.

1 Introduction

Nonlinear systems can be poorly or non-observable along specific state and output
trajectories or in certain regions of the state space. Operating the system along such
trajectories or in such regions can lead to poor state estimates being provided by an
observer.

Observability for linear time-invariant systems is well understood and there ex-
ist several equivalent ways to define observability [9, 15]. Deriving measures for
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observability has been the focus of many research activities in the past. The deter-
minant of the observability matrix, the observability Gramian or e.g. the measures
for observability derived in [10] may be used to determine the degree of observ-
ability of a system. In contrast to the linear case for nonlinear systems observability
may depend on the states and inputs. Therefore, controllers might steer the system
to regions where it is non-observable or weakly observable. The loss of observ-
ability can lead to deteriorating observer performance [13], and thus, in the case of
output feedback control, to loss of performance or stability. Hence, it is desirable
to avoid regions of weak observability in order to provide a satisfying estimation of
the system states.

In this paper we recapitulate results presented in [2]. There, by imposing a con-
straint on the nonlinear local observability matrix, which is used as measure for
observability, an NMPC based approach to avoid weakly observable trajectories is
provided. The contribution of this paper is the illustration of the practical relevance
of the results proposed in [2] by applying them to an emergency collision avoidance
maneuver for passenger cars. Extending the NMPC setup for the collision avoid-
ance maneuver by an observability constraint, the degree of observability as well
as the performance of the lateral velocity observer is improved along the calculated
trajectories.

The remainder of the paper is organized as follows. In Section 2 a motivation and
the problem setup is given. Section 3 recapitulates the results presented in [2]. In
Section 4 the collision avoidance maneuver is introduced and the obtained simula-
tion results are discussed. The paper concludes with a short summary in Section 5.

2 Problem Setup and Motivation

We consider nonlinear systems of the form

ẋ = f (x,u), x(0) = x0, (1a)

y = h(x,u), (1b)

with x∈Rn, u∈Rm and y∈Rp. Additionally, the system might be subject to state and
input constraints of the form u(t) ∈U ∀ t ≥ 0 and x(t) ∈X ∀ t ≥ 0. Here X ⊆Rn

is the state constraint set and U ⊂Rm is the set of feasible inputs. The control task is
to stabilize system (1) about the origin, while avoiding regions in which the system is
weakly or non-observable. Since constraints are present, optimization based control
methods, such as NMPC, are well suited. In NMPC the future behavior of the system
is predicted. Therefore, we introduce predicted states and inputs, x̄ and ū. The cost
function J, that is minimized over the prediction horizon Tp, is

J
(
x̄(·), ū(·))=

∫ tk+Tp
tk x̄T Qx̄+ ūT Rū dτ + x̄T (tk + Tp)Px̄(tk + Tp), (2)

with 0 < Q = QT ∈ Rn×n, 0 < R = RT ∈Rm×m and 0 < P = PT ∈ Rn×n. Hence, the
open-loop optimal control problem that is solved repeatedly at the sampling instants
tk, where tk = δk with the fixed sampling time δ and k ∈N, is given by
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min
ū(·)

J
(
x̄(·), ū(·)), (3a)

subject to
˙̄x(τ) = f

(
x̄(τ), ū(τ)

)
, x̄(tk) = x(tk), (3b)

x̄(τ) ∈X , ū(τ) ∈U , ∀τ ∈ [tk, tk + Tp
]
, (3c)

x̄(tk + Tp) ∈ E . (3d)

Note that the predicted states x̄ are forced to lie in the so called terminal region E at
the end of the prediction horizon to enforce stability.

The solution to the optimization problem leads to

ū�
(
t;x(tk)

)
= argmin

ū(·)
J
(
x̄(·), ū(·)), (4)

assuming that the minima is obtained. The control input applied to system (1a) is
updated at each sampling instant tk by the repeated solution of the open-loop optimal
control problem (3), i.e. the applied control input is given by

u(t) = ū�(t;x(tk)), t ∈ [tk, tk + δ
)
. (5)

Since the solution to the optimization problem at each time instant tk depends on
the current system state x(tk), state feedback is provided. If certain well-known con-
ditions on P and E are satisfied, the presented state feedback approach guarantees
stability of the closed-loop system, see e.g. [6]. However, in most practical appli-
cations the system states have to be estimated by an observer which exploits the
available measurement information y = h(x,u) (1b). The approach presented does
not guarantee that the system is observable along the obtained optimal trajectories.
Loss of observability may lead to poor observer performance along such trajecto-
ries. Therefore, the prediction of the system behavior might be based on inaccu-
rate estimates of the states. This may lead to poor closed-loop performance or even
instability.

In the following section we outline an approach to guarantee observability along
NMPC trajectories, see also [2]. The determinant of the local observability matrix is
evaluated along the calculated trajectories and used as a measure for observability.
Introducing an additional constraint on the observability matrix we can assure a
certain degree of observability along the considered trajectories.

3 Avoiding Weakly Observable Trajectories

As discussed in the previous section, an NMPC controlled system may be steered to
non-observable or poorly observable regions by the controller. This should in gen-
eral be avoided. In [2] it is shown that by using the nonlinear local observability
matrix in the NMPC setup, a certain degree of observability along the calculated
trajectories can be guaranteed. The nonlinear local observability matrix is derived
from the n-observability map (see e.g. [11, 13]), which is for system (1) defined as

qn(x,u) = [y1, ẏ1, . . . ,y
(n−1)
1 , . . . ,yp, ẏp, . . . ,y

(n−1)
p ], where y = [y1, . . . ,yp]. Basically,
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the considered system is locally observable if the nonlinear local observability ma-
trix O , defined as the Jacobian of the n-observability map qn,

O(x,u) =
∂qn(x,u)

∂x
, (6)

has full rank n for all x ∈X and all u ∈U . It is locally observable at some point xs

if O(xs,u) has full rank at this point for all u ∈U . In the following the expression
observability is used in the sense of local observability.

For simplicity we use the determinant of the observability matrix det(O) as mea-
sure for observability, which is possible if O is a square matrix. Clearly, system (1)
is non-observable if det(O) = 0 holds. Furthermore, small values of det(O) imply
weak observability since the observability matrix is close to singular. In this paper
we consider observability along predicted trajectories x̄ and ū. Thus, system (1) is
observable along the predicted trajectory if O(x̄, ū) has full rank along the complete
trajectory.

In [2] two approaches are presented which guarantee observability along NMPC
trajectories. The first one is based on penalizing weakly observable trajectories in
a modified cost functional (2). In this paper we focus on the second approach pre-
sented in [2], which extends the optimization problem (3) by a further constraint
on the observability matrix

∣∣det
(
O(x̄, ū)

)∣∣≥ Ωmin. Therefore, the modified optimal
control problem is formulated as

min
ū(·)

J
(
x̄(·), ū(·)), (7a)

subject to

˙̄x(τ) = f
(
x̄(τ), ū(τ)

)
, x̄(tk) = x(tk), (7b)

x̄(τ) ∈X , ū(τ) ∈U , ∀τ ∈ [tk, tk + Tp
]
, (7c)

x̄(tk + Tp) ∈ E , (7d)∣∣∣det
(
O
(
x̄(τ), ū(τ)

))∣∣∣≥Ωmin, ∀τ ∈
[
tk,tk + Tp

]
. (7e)

The constraint (7e) assures that the determinant of the observability matrix is al-
ways larger than a minimum value Ωmin. Thus, with a suitable choice of the design
parameter Ωmin, the obtained optimal input ū� avoids steering the system to weakly
observable regions.

4 Collision Avoidance Maneuver with Guaranteed
Observability

In this section we illustrate the practical relevance of the approach presented above.
We consider an autonomous collision avoidance maneuver for passenger cars. The
vehicle is driving on a flat road towards an obstacle which is detected by a su-
perior safety system. Since the driver, e.g. due to inattention, does not react to
avoid a collision, the safety system takes over the control of the car and drives the
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vehicle around the obstacle as fast as possible using an active steering system based
on electric motors. The underlying NMPC controller calculates the required trajec-
tories for this emergency maneuver. As will be shown, along the obtained NMPC
trajectories observability of the lateral velocity is lost to a large extend. This causes a
non-satisfying estimation of the lateral velocity, which might be crucial since safety
systems such as e.g. ESP [14] require a precise estimation.

An approach providing a rather smooth lane change maneuver with predictive
control has been proposed in the literature [5]. In this paper we consider an emer-
gency collision avoidance maneuver with large lateral accelerations and veloci-
ties. Furthermore, we are interested in observability properties along the obtained
trajectories.

In the following, we introduce the model of the considered vehicle and discuss its
observability properties. Furthermore, we provide the NMPC setup for the collision
avoidance maneuver and discuss the obtained simulation results. For a more detailed
discussion of the considered problem we refer to [7].

4.1 Vehicle Dynamics

We consider the so called nonlinear one-track model describing the vehicle motion
given by

d
dt

⎡⎢⎢⎢⎢⎣
vy

ψ
ψ̇
Y
X

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
1
m(SR + SF cosδ )− ψ̇vx

ψ̇
1
Jz

(−lRSR + lFSF cosδ )
vx sinψ + vy cosψ
vx cosψ− vy sinψ

⎤⎥⎥⎥⎥⎦ , (8)

with the lateral velocity vy, the yaw rate and yaw angle ψ̇ and ψ , and the position
of the vehicle X and Y . The parameters of the model are the vehicle mass m, the
longitudinal velocity vx (assumed to be constant), the distances of the front and rear
axes to the center of gravity, lF and lR, and the moment of inertia Jz. The steering
angle δ is available to control the motion of the car. The vehicle dynamics depend
on the lateral forces acting on the front and rear tires, SF and SR. Both are nonlinear
functions of the lateral slip angles αF and αR, which mainly depend on vy, ψ̇ and δ ,
see e.g. [12].

Measurable outputs are the lateral acceleration ay = SF cosδ+SR

m and the yaw
rate ψ̇. Furthermore, the states X and Y are available for measurement. The lat-
eral velocity has to be estimated by an observer. In this paper we use the ob-
server ˙̂vy = −ψ̇ + ay − Kvy(ay − ây) [8], with the observer gain Kvy and with

ây = ŜF cosδ+ŜR

m . In the following we analyze the observer for large lateral veloci-
ties. Consider the case where both vy and v̂y are large, but differ significantly, i.e.
also the estimation error is large. Due to the nonlinear dependency of the forces SF

and SR on the lateral slip angles αF and αR [12], which themselves are functions of
vy, this leads to Si ≈ Ŝi, and therefore to ay ≈ ây. As a consequence, for large lateral
velocities, which usually result in large slip angles αF and αR, the correction term
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Kvy(ay− ây) in the observer vanishes and the estimation error remains unchanged.
This effect can also be explained by observability considerations. Using the mea-
surements y1 = ay and y2 = ψ̇ one obtains the observability map

q(vy, ψ̇) =

⎡⎢⎢⎣
y1

y2

ẏ1

ẏ2

⎤⎥⎥⎦=

⎡⎢⎢⎣
1
m(SR + SF cosδ )

ψ̇
d
dt

1
m(SR + SF cosδ )

1
Jz

(−lRSR + lFSF cosδ )

⎤⎥⎥⎦ . (9)

As defined in [4], the resulting nonlinear local observability matrix is

O(vy, ψ̇) =
∂q(vy, ψ̇)
∂ (vy, ψ̇)

=

⎡⎢⎢⎣
0 1

−CF+CR
mvx

CRlR−CF lF
mvx

g1(vy, ψ̇) g2(vy, ψ̇)
g4(vy, ψ̇) g3(vy, ψ̇)

⎤⎥⎥⎦ , (10)

where the functions gi linearly depend on CF and CR defined as in [1] by

CF =
∂SF

∂αF

∣∣∣∣∣
α0

v2
x cosδ0

v2
x +(vy0 + ψ̇0lF)2 , CR =

∂SR

∂αR

∣∣∣∣∣
α0

v2
x cosδ0

v2
x +(vy0− ψ̇0lR)2 . (11)

Since CF,R = ∂SF,R

∂αF,R → 0 for large values of the slip angle αF,R, in the observability
matrix (10) the functions gi vanish due to their linear dependency on CF,R. Thus, it
is easy to see that O has a rank loss for large αF,R and therefore, the system is not
observable in these regions of the state space. Hence, it is reasonable to chose det(Õ)
as measure for observability, where Õ consists of the first two rows of O .

In the following section an NMPC based autonomous emergency collision avoid-
ance maneuver is presented. Along the calculated trajectories, large slip angles occur
which cause weak observability and poor observer performance for the lateral veloc-
ity. It is shown that this problem can be overcome applying the approach presented
in Section 3.

4.2 Collision Avoidance Maneuver

In the following we present the setup of a state feedback NMPC controller which
calculates the optimal input trajectories for the collision avoidance maneuver. The
considered cost function is of the form (2), such that the input energy and the devi-
ation from regular driving on the right lane is penalized. For this, we have chosen
Q = diag(1,1,10,10,0) and R = 50 [7]. The corresponding optimization problem at
each sampling instant, which is solved based on full state information, is subject to
the one-track model (8) and subject to constraints that are derived in the following.
The vehicle has to satisfy the constraints imposed by the road, Yl and Yr. Further-
more, it has to avoid a collision with the obstacle. Therefore, for all X-positions
satisfying XO1 ≤ X ≤ XO2 the lateral position of the car has to satisfy Y ≥YO, where
XO1, XO2 and YO are defined by the vehicle’s geometry. Additionally, the steering
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Fig. 1 X −Y -position and steering wheel angle. Comparison of classical (gray line) and
modified (black line) NMPC approach

wheel angle δSW , which is linearly dependent on the front tires angle δ , and its
derivative δ̇SW have to satisfy δSW ≤ 120◦ and δ̇SW ≤ 900◦

s . If the optimization prob-
lem is subject to

c1(X ,Y ) =−Y +Yr ≤ 0, c2(X ,Y ) = Y −Yl ≤ 0, (12a)

c3(δSW ) = |δSW |−120◦ ≤ 0, c4(δ̇SW ) = |δ̇SW |− 900◦

s
≤ 0, (12b)

c5(X ,Y ) =
{

YO−Y if dX ≥ 0
YO−Y + dX if dX < 0

}
≤ 0, (12c)

in which dX = XO2−XO1
2 − ∣∣X− XO2+XO1

2

∣∣, then the obtained optimal trajectories sat-
isfy input constraints and constraints imposed by the road and the obstacle. The ter-
minal region E and the terminal penalty term to guarantee stability of the presented
approach are calculated using the method proposed in [3] based on a linearized
model which is valid in the terminal region.

The obtained input trajectories are applied to a two-track model of the vehicle
which also includes the roll angle and the roll rate as states, in order to simulate
a model-plant mismatch which has to be expected in practical realizations of the
presented approach. Along the resulting trajectories we investigate the performance
of the lateral velocity observer in order to illustrate the effect of steering the vehicle
to weakly observable regions. However, we do not feed back the estimated lateral
velocity to the controller, but provide state feedback in this paper. Future research is
necessary to investigate the closed-loop performance when the controller relies on
the estimated lateral velocity. The observer is designed for the one-track model and
thus also faces a model-plant mismatch.

In the following we compare simulation results of a classical NMPC setup
according to Section 2 to the modified approach derived in Section 3 where the ad-
ditional observability constraint 1−|det(Õ)(vy, ψ̇))| ≤ 0 is imposed. The optimiza-
tion problems inherent to both controllers are subject to the given state and input
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Fig. 2 Lateral velocity estimation error. Comparison of classical (gray line) and modified
(black line) NMPC approach

Fig. 3 Degree of observability. Comparison of classical (gray line) and modified (black line)
NMPC approach

constraints (12). Figure 1 shows the position of the vehicle and the obstacle as well
as the corresponding steering wheel angle during the collision avoidance maneuver.
Although the steering angles in both scenarios differ significantly in the time inter-
val t = [1.8s,3.0s], the position of the vehicle can hardly be distinguished. However,
as illustrated in Figure 2, with the classical NMPC controller the estimation error of
the lateral velocity observer in this interval becomes almost twice as large as when
the modified controller is applied. The poor observer performance is a result of weak
observability in the corresponding time interval. Figure 3 shows the determinant of
the observability matrix during both scenarios. Adding the constraint on the observ-
ability matrix, in the modified approach the determinant is forced to be greater than
Ωmin = 1. The obtained higher degree of observability results in a better observer
performance in the time interval where the observability constraint is active. As can
be seen in Figure 2 and Figure 3, during the whole simulation the estimation perfor-
mance deteriorates as soon as the determinant of the observability matrix decreases.
The reason for this is the present model-plant mismatch, i.e. the simulation term in
the observer does not represent the system dynamics exactly while at the same time
the influence of the correction term decreases. Using a larger value for Ωmin, one
could further increase the estimation performance, however at the cost of a slower
collision avoidance maneuver.

Remark 1. Alternatively to the determinant of the nonlinear local observability ma-
trix, in principle any other observability measures could be used. Although we only
use two rows of the observability matrix O to measure observability, any other
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observability measure would lead to similar effects, which can be explained by phys-
ical considerations.

Remark 2. Due to the present model-plant mismatch, slightly “robust” constraints
have to be introduced in order to guarantee satisfaction of the hard constraints (12).
Although this issue was considered in the simulations, due to space limitations we
do not provide a discussion here.

Remark 3. Simulations have shown that the introduction of the observability con-
straint in the NMPC setup is computationally not demanding in the case of the
collision avoidance maneuver. The authors are aware of the fact that in general
introducing the constraint (7e) might lead to computational problems.

5 Conclusions

In this paper the results presented in [2], which guarantee a certain degree of observ-
ability along NMPC trajectories, have been recapitulated. The practical relevance
of this modified NMPC approach has been illustrated via an emergency collision
avoidance maneuver for passenger cars. It has been shown that, without loss of con-
troller performance, the observability properties of the vehicle along the obtained
trajectories could be improved as well as the performance of the lateral velocity
observer when compared to a classical NMPC approach.
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2. Böhm, C., Findeisen, R., Allgöwer, F.: Avoidance of poorly observable trajectories: A
predictive control perspective. In: Proceedings of the 17th IFAC World Congress, Seoul,
pp. 1952–1957 (2008)
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State Estimation and Fault Tolerant
Nonlinear Predictive Control of an
Autonomous Hybrid System Using
Unscented Kalman Filter

J. Prakash, Anjali P. Deshpande, and Sachin C. Patwardhan

Abstract. In this work, we propose a novel fault tolerant nonlinear model
predictive control (FTNMPC) scheme for dealing with control problems asso-
ciated with an autonomous nonlinear hybrid system (NHS). To begin with,
we develop a scheme for state estimation of continuous as well as discrete
states for autonomous NHS using unscented Kalman filter (UKF), a deriva-
tive free nonlinear state estimator, and further use it for formulating an
NMPC scheme. The salient feature of the NMPC scheme is that the con-
cept of sigma point propagation in UKF is extended to carry out the future
trajectory predictions. We then proceed to develop a nonlinear version of
generalized likelihood ratio (GLR) method that employs UKF for diagnos-
ing sensor and/or actuator faults. The diagnostic information generated by
the nonlinear GLR method is used for on-line correction of the measurement
vector, the model used for state estimation/prediction and constraints in the
NMPC formulation. The efficacy of the proposed state estimation, diagnosis
and control schemes is demonstrated by conducting simulation studies on the
benchmark three-tank hybrid system. Analysis of the simulation results re-
veals that the FTNMPC scheme facilitates significant recovery in the closed
loop performance particularly on occurrence of sensor faults.
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1 Introduction

Dynamic systems that involve continuous and discrete states, broadly clas-
sified as hybrid systems, are often encountered in engineering applications.
State estimation, fault diagnosis and estimator based predictive control of
nonlinear hybrid systems poses a challenging problem as these systems in-
volve discontinuities that are introduced by switching of the discrete variables.
State estimation and model predictive control of hybrid system has gained
increased attention in the recent years [1, 2]. However, many approaches avail-
able in the literature for predictive control of hybrid systems are based on
linear or piecewise linear hybrid models and not much work has been reported
on state estimation and control of nonlinear hybrid systems (NHS). Extended
Kalman filter (EKF) is a popular choice for state estimation while formulating
estimation and predictive control schemes for nonlinear processes. However,
the state covariance propagation step in EKF requires computation of Ja-
cobian of the nonlinear state transition operator at each sampling instant.
This implies that the nonlinear state transition operator and the state-output
map should be smooth and at least once differentiable. However, the dynamic
models for hybrid systems involve discontinuities, which are introduced by
switching of the discrete variables. Therefore, EKF cannot be used for state
estimation of nonlinear hybrid systems particularly in the operating regimes
where discrete variables undergo frequent transitions. In recent years, a num-
ber of derivative free nonlinear filtering techniques have been proposed in the
literature. For example, the unscented Kalman filter (UKF) [3] has been pro-
posed as an alternative to EKF where the above limitations can be overcome
using the concept of (deterministic) sample statistics. Thus, UKF appears
to be an appropriate choice for developing state estimation based predictive
control scheme for NHS.

While the controller design and implementation forms an important com-
ponent the operating strategy for an NHS, detection and isolation of faults
(abrupt changes / drifts in models parameters / sensors / actuators) and (sen-
sor / actuator) failures during operation is equally important aspect from the
viewpoint of maintaining smooth operation over a long period of time. The
area of diagnosis of malfunctioning in hybrid systems, however, has not yet
been adequately addressed in the literature. Recently, Deshpande at al. [4]
have developed an intelligent EKF based state estimation scheme that uses
generalized likelihood ratio (GLR) based fault diagnosis strategy to isolate
and identify faults / failures on-line. The fault / failure information is used
to modify the state estimator and develop a fault tolerant NMPC scheme
that can accommodate the faults and failures. In this work, we extend this
approach to NHS using UKF based estimation and diagnosis scheme. The
efficacy of the proposed state estimation, diagnosis and control schemes is
demonstrated by conducting simulation studies on the benchmark three-tank
hybrid system.



State Estimation and Fault Tolerant Nonlinear Predictive Control 287

2 State Estimation Using UKF

Consider an autonomous hybrid system that can be represented by the fol-
lowing set of differential algebraic equations

x(k + 1) = x(k) +
∫ (k+1)T

kT

F [x(τ ), u(k), z(τ )] dτ+w(k) (1)

z(τ ) = G[x(τ )] (2)
y(k) = H[x(k)] + v(k) (3)

In the above model, x ∈Rn represents the system state vector , u ∈Rm repre-
sents manipulated input vector, w ∈Rd represents random state disturbances
with known distribution, y ∈Rr represents the measured outputs and v ∈Rr

represents the measurement noise with known distribution. In equation (2),
z ∈Rh represent discrete variables such that it can take only finite integer
values, such as {-1, 0, 1} depending on some events, which are functions of
states in the case of autonomous hybrid systems. The function vector G[.]
can be expressed using a combination of Dirac delta functions and logical
operators, such as AND, OR, XOR etc.

The UKF formulation uses a deterministic sampling technique to select a
minimal finite set of sample points {x̂(j)(k− 1|k− 1) : j = 0, 1, ...2n} around
{x̂(k − 1|k − 1)} as follows{

x̂(k − 1|k − 1), x̂(k − 1|k − 1) + η(j)(k − 1), x̂(k − 1|k − 1)− η(j)(k − 1)
}

where n represents the dimension of the state vector and the vector η(j)(k−1)

is the jth column of matrix
√

(n + κ)P̂(k − 1|k − 1), where κ is a tuning
parameter [3]. These sigma points are then propagated through the system
dynamics to compute a cloud of transformed points as follows:

x̂(j)(k|k−1)= x̂(j)(k−1|k−1)+
∫ kT

(k−1)T

F [x(τ ),u(k − 1),G[x(τ )], θ] dτ (4)

where j = 0 to 2n. The statistics of the nonlinearly transformed points are
then computed as follows:

x̂(k|k−1) =
∑2n

j=0
ωjx̂(j)(k|k−1) ; ŷ(k|k−1) =

∑2n

j=0
ωjH[x̂(j)(k|k−1) ]

(5)

Pε,e(k) =
2n∑

j=0

ωjε
(j)(k)[e(j)(k)]T ; Pe,e(k)=

2n∑
j=0

ωje(j)(k)[e(j)(k)]T (6)

ε(j)(k) = x̂(j)(k|k − 1)− x̂(k|k − 1); e(j)(k) = H[x̂(j)(k|k − 1) ]− ŷ(k|k − 1)
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Here, ωj represents fixed weights associated with sigma points, which are
chosen as follows:{

ω0 =
κ

n + κ
, ωj =

1
2(n + κ)

: j = 1, 2, ...n)
}

(7)

These estimated covariances are then used for updating Kalman gain ma-
trix, L(k) = Pε,e(k)[Pe,e(k)]−1, and the estimates of continuous and discrete
states are generated as follows:

x̂(k|k) = x̂(k|k − 1) + L(k)γ(k) ; γ(k) = y(k) − ŷ(k|k − 1) (8)

ẑ(k|k) = G[x̂(k|k)] (9)

The posterior covariance necessary for generation of sigma points at the sub-
sequent time instant is estimated as

P(k|k−1) =
∑2n

j=0
ωjε

(j)(k)[ε(j)(k)]T ; P(k|k) = P(k|k−1)−L(k)Pe,e(k)L(k)T

(10)
In remainder of the text, we refer to this UKF developed under fault free
conditions as normal UKF.

3 UKF Based NMPC Formulation

A distinguishing feature of UKF is that it explicitly accounts for the un-
certainty in the initial state through propagation of sigma points in the
prediction step. We propose to use this feature for capturing the propa-
gated effects of the uncertainty in the initial state on the future trajectory
predictions. Thus, given a set of future manipulated input moves, Uk ≡
{u(k + l|k) : l = 0, 1, ..p− 1} , new sigma points are generated at each predic-
tion step along the future trajectory as follows

{
x̂(k + l|k), x̂(k + l|k) + η(j)

(k + l|k), x̂(k + l|k)− η(j)(k + l|k)
}

for l = 0, 1, ..., p− 1 where η(j)(k + l|k)
represents the jth column of matrix

√
(n + κ)P(k + l|k) and p represents

prediction horizon. The predicted mean is computed as follows

x̂(j)(k + l + 1|k) = x̂(j)(k + l|k) +
∫ (k+l+1)T

(k+l)T

F [x(τ ),u(k + l|k), G[x(τ )]] dτ

x̂(k + l + 1|k) =
∑2n

j=0
ωjx̂(j)(k + l + 1|k) (11)

for j = 0, 1, .....2n and l = 0, 1, .....p − 1. The prediction error covariance
matrix required in the above step is updated as follows

P(k + l|k) =
∑2n

j=0
ωj

[
ε(j)(k + l|k)

] [
ε(j)(k + l|k)

]T
(12)
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To account for the model plant mismatch, we propose to correct the predic-
tions as follows

x̂(k + l + 1|k) = x̂(k + l + 1|k) + L(k)β(k) (13)
ẑ(k + l + 1|k) = G[x̂(k + l + 1|k)] (14)

β(k) = Φeβ(k − 1) + [I−Φe] [y(k) − ŷ(k|k − 1)] (15a)

ŷ(k + l + 1|k) = H[x̂(k + l + 1|k)] + d(k) (16)

d(k) = Φdd(k − 1) + [I−Φd] [y(k) − ŷ(k|k)] (17)

Here, the unit gain filter matrices Φe and Φd are treated as tuning parame-
ters. At any sampling instant k, the NMPC problem is formulated as follows

min
Uk

∑p

l=1
ef (k + l|k)TWEef (k + l|k)+

∑q−1

l=0
Δu(k + l|k)TWUΔu(k + l|k)

(18)
ef (k + l|k) = r− ŷ(k + l|k) ; Δu(k + l|k) = u(k + l|k)− u(k + l − 1|k)

subject to constraints

uL ≤ u(k + l|k) ≤ uU ; ΔuL ≤ Δu(k + l|k) ≤ ΔuU

where l = 0, 1, ..., q− 1. Here, q represents control horizon such that Δu(k +
l|k) = 0 for l > q and r ∈Rr represents the setpoint.

4 Fault Diagnosis

When the process starts behaving abnormally, the first task is to detect the
deviations from the normal operating conditions. To simplify the task of fault
detection, it is further assumed that, under normal operating conditions,
the innovation sequence {γ(k)} generated by normal UKF is a zero mean
Gaussian white noise sequence with covariance Pe,e(k). A significant and
sustained departure from this behavior is assumed to result due to occurrence
of a fault. To detect such departures systematically, simple statistical tests,
namely fault detection test and fault conformation test, which are based on
comparison of the log likelihood function of innovations with thresholds from
standard chi-square distribution, are applied on the innovations obtained
from the normal UKF [4].

To identify the fault(s) that might have occurred, it is necessary to develop
a model for each hypothesized fault that describes its effect on the evolution
of the process variables. It is assumed that a bias in sensor measurement
develops as an abrupt (step-like) change. Suppose a bias develops in ith sensor
at instant t, then it is modeled as follows:
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yyi(k) = H [x(k)] + byieyiσ(k − t) + v(k) (19)

where byi represents bias magnitude, eyi represents a unit vector with ith

element equal to unity and all other elements equal to zero and σ(k − t)
represents a unit step function. Similarly, if a bias of magnitude bui occurs
in actuator i at time t, then

m(k) = u(k)+buieuiσ(k − t) (20)

where represents u(k) controller output and m(k) represents input to plant
and eui is the corresponding fault direction vector. It is possible to develop
models for abrupt changes in model parameters and unmeasured disturbances
in a similar manner (ref. [4]).

Once occurrence of a fault is detected at instant t, we collect data over
time window [t, t + N ]. Following the nonlinear GLR approach developed by
Deshpande et al. [4], a separate UKF is formulated for each hypothesized fault
model (referred to as fault mode UKF ) over the time window [t, t + N ] with
the assumption that the fault has occurred at time instant t. For example,
assuming that a bias in ith sensor has occurred at instant t, the process
behavior over window [t, t + N ] can be described by equations (1), (2) and
(19). These equations are used to formulate the corresponding fault mode
UKF and the innovation sequence is computed as γyi

(k) = y(k)−ŷyi(k|k−1)
where ŷyj represents predicted mean output under the fault hypothesis that
ith sensor has developed a bias. For each hypothesized fault, the the fault
magnitude is estimated by formulating and solving a nonlinear optimization
problems over the time window [t, t + N ] as follows

min
b̂fi

(Jfi) =
∑t+N

k=t
γfi

(k)[Pefi
,efi

(k)]−1γfi
(k) (21)

where, γfi
(k) represent innovations and [Pefi

,efi
(k)]−1 the innovations co-

variance matrices, respectively, computed using the fault mode UKF corre-
sponding to fault fi. The fault mode UKF that best explains the measurement
sequence {y(t)......y(t + N)} is one for which the value of (Jfi) is minimum.
Thus, the fault fi that corresponds to minimum value of (Jfi ) is isolated as
the fault that has occurred at time t with b̂fi as its corresponding magnitude
estimate.

5 NMPC with Fault Accommodation

Consider a situation when a fault is detected for the first time at instant t
and assume that at instant t + N a fault fi has been identified using the
UKF based NLGLR method. During the interval [t, t + N ], the NMPC for-
mulation is based on the normal behavior prediction model. However, after
the identification of the fault at instant t + N for k ≥ t + N , the model used
for estimation and control is modified as follows:
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• Compensation for Sensor bias: If ith sensor bias is isolated, the mea-
sured output is compensated as yc(k) = y(k)− b̂yieyi and used in FDI as
well as NMPC formulation for computing innovation sequence.

• Compensation for Actuator bias: If ith actuator bias is isolated, the
model used for state estimation and NMPC is modified as follows

x(k + 1) = x(k) +
∫ (k+1)T

kT

F
[
x(τ ),u(k) + bui

eui ,z(τ )
]
dτ+w(k) (22)

The main concern with the above approach is that the magnitude and
the position of the fault may not be accurately estimated. Thus, there is a
need to introduce integral action in such a way that the errors in estimation
of fault magnitude or position can be corrected in the course of time. Fur-
thermore, other faults may occur at subsequent times. Thus, in the on-line
implementation of NMPC, application of FDI method resumes at t + N + 1.
The FDI method may identify a fault in the previously identified location or
a new fault may be identified. In either case, the fault compensation can be
modified using cumulative estimates [4], which are computed as

b̃fi =
∑nf

s=1
b̂fi(s) with initial value b̂fi(0) = 0 (23)

where f ∈ [u, y] denotes the fault type occurring at ith position and nf rep-
resents the number of times a fault of type f was confirmed and isolated
in the ith position. Thus, the measurement vector used in equations 8, 15a
and 17 is replaced by corrected measurement, yc(k) = y(k) −∑m

i=1 b̃yieyi ,
compensated using cumulative bias estimates. To accommodate biases in ma-
nipulated inputs, the model predictions (11) are generated using bias com-
pensated future inputs, u(k + l|k) +

∑m
i=1 b̃uieui , and the constraints on the

future manipulated input in NMPC formulation are modified as follows

uL ≤ u(k + l|k) +
∑m

i=1
b̃uieui ≤ uU

6 Simulation Study

The system considered to verify the proposed FTNMPC strategy is the
benchmark three-tank hybrid system, (Prakash et. al. [5]). This system con-
sists of three interconnected tanks and has three continuous states (level
h1, h2 and h3 in each tank). The three tanks are connected at the bottom
and in the middle through pipes. Inflows to Tank 1 (u1) and to Tank 3 (u5)
are treated as manipulated inputs. The governing equations for the three-tank
hybrid system can be found in [5]. In this model, the dynamics due to the
middle level connections between the tanks is captured through two discrete
states, z1 and z2, which can take only finite integer values, such as {-1,0,1}
depending on the level of fluids in the tanks. The control problem is to track
level in the first and second tanks (h1 and h2) by manipulating valves u1 and
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Fig. 1 Closed loop response of FTNMPC in presence of sensor biases

u5. The inputs are constrained as 0 < u1 < 1 and 0 < u5 < 1. The online
FDI and compensation scheme has been integrated with state space based
NMPC. The controller tuning parameters and the NLGLR tuning parameters
are as follows

N = 30 ; αFDT = 0.75 ; αFCT = 0.01
p = 5, q = 1, WE = I ; WΔU = [0] ; r =

[
0.3117 0.24

]
The covariance matrices of measurement noise and state noise are assumed as

R = diag
[
6.2× 10−5 4.8× 10−5 5.4× 10−5

]
; Q = 0.1R

To test the efficacy of the proposed on-line FTC scheme, five simulation trials
were performed with each trial lasting for 300 sampling instants. Simulation
runs were carried out in the presence of multiple faults that occur sequentially
in time. Four faults were hypothesized, namely biases in two sensors and two
actuators. We have simulated the case in which the 0.05m (≈ 5σ) bias in
level sensor of Tank 2 occur at 1st sampling instant, which is followed by a
0.05m (≈ 5σ) bias in the level sensor of Tank 1 at 101th sampling instant.
The proposed FDI scheme successfully isolated the multiple sequential faults
in the simulation trail. The cumulative bias estimates of fault magnitudes at
the end of a simulation trial averaged over all trials are found to be 0.0487
m and 0.0494 m, respectively. These bias magnitudes have been used for
on-line correction of measurements that are used in controller calculations.
The response is shown in Figure 1. Figure 2 shows the evolution of true and
estimated values of discrete states (z1 and z2). It can be observed from Figure
1 that, in the presence of bias in the sensor, the estimated states deviate from
their true values and this results in offset in the outputs. However, when the
measurements of the faulty sensors are compensated for sensor faults, state
estimation improves and the outputs follow the given trajectory.
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Fig. 2 Evolution of Discrete States

7 Conclusions

Analysis of the simulation results indicates that the proposed UKF based
version of nonlinear GLR method accurately identifies the multiple sequential
sensor faults. The proposed FTNMPC approach facilitates recovery of closed
loop performance after the faults have been isolated and results in offset free
behavior in the presence of sensor biases. The future work involves isolation
of abrupt changes in model parameters and unmeasured disturbances.
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Design of a Robust Nonlinear Receding-Horizon
Observer - First-Order and Second-Order
Approximations

G. Goffaux and A. Vande Wouwer

Abstract. The objective of this study is to design a robust receding-horizon observer
for systems described by nonlinear models with uncertain parameters. Robustifica-
tion in the presence of model uncertainties naturally leads to the formulation of a
nonlinear min-max optimization problem, which can be converted to a simpler min-
imization problem using approximation along a nominal trajectory. In this study,
the suitability of first-order and second-order approximations is investigated. These
methods are evaluated in simulation and with experimental data from continuous
cultures of phytoplankton.

Keywords: State Estimation, Receding-horizon, Uncertain Systems, Bioprocesses.

1 Introduction

Software sensors play an increasingly important role in bioprocess monitoring.
Facing uncertainties associated to the underlying bioprocess model, robust state es-
timation techniques are a solution of choice.

In this study, our objective is to design a receding-horizon state estimation
method, which would be robust to parameter uncertainties. Receding-horizon es-
timation is a popular method and several applications can be found in, e.g., [1],[5].

A robust formulation of the problem naturally leads to a nonlinear min-max opti-
mization problem. The latter can be converted to a simpler minimization problem by
using a model linearization along a nominal trajectory (defined by nominal param-
eter values and the most likely initial conditions) and recent results in linear robust
receding-horizon estimation developed in [2] can be used. However, this method is
suboptimal as it deals with a first-order approximation of nonlinear functions. In this
paper, a second-order error term is taken into account in the optimization problem.
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The performance of this method is assessed with the estimation of the internal
nitrogen quota and nitrate concentration in continuous cultures of phytoplankton,
based on on-line measurements of the biovolume and an uncertain Droop model
[6]. Both simulation and experimental data are considered.

This paper is organized as follows. Section 2 describes the class of nonlinear
systems that we are considering and formulates the optimization problems underly-
ing receding-horizon estimation. Section 3 describes the suboptimal method which
makes uses of a model linearization and of recent results in linear robust estima-
tion theory. The next section extends to second-order approximation and gives an
upper bound of the corresponding error. In Section 5, the continuous culture of
phytoplankton and Droop model are presented and the algorithm performance is
demonstrated. Section 6 draws some conclusions.

2 Problem Statement

Let us first assume that the system can be modelled by the following equations for
t ≥ t0:

(Σ) :

{
ẋ = f(x(t),u(t),θθθ) x(t0) = x0

yk = y(tk) = Cx(tk)+εεε(tk)
(1)

The first part in (Σ) is the evolution equation and is represented by continuous-
time differential equations where f is a vector of nonlinear functions, x(t) ∈ ℜnx

is the vector of state variables, u(t) ∈ U ⊂ ℜnu is the vector of inputs with U the
set of admissible controls, a subset of the space of measurable bounded functions
and θθθ ∈ℜnθ is a parameter vector. The second part is the observation equation and
is modelled by linear discrete-time equations where C is the measurement matrix,
y(tk) ∈ ℜny is the vector of sampled measurements and εεε(tk) ∈ ℜny is the mea-
surement noise vector described by a Gaussian white noise sequence with a zero
mean and a covariance matrix Q(tk). x0 is the initial state vector containing val-
ues of the state at the initial time t0. As usual in practice, the parameter vector has
been estimated using some identification procedure based on experimental data, and
parameter intervals [θθθ−θθθ+] have been evaluated (for instance using the knowledge
about the error covariance matrix) which are likely to enclose the unknown vector
θθθ. Finally, let us define x(t) = gt0(t,x0,θθθ) the state vector at t computed thanks to
(1) from the initial state x0 at t0 and corresponding to the input trajectory from u(t0)
to u(t).

2.1 Receding-Horizon Estimation

The basic principle of the receding-horizon observer is to compute estimates of the
state trajectories using the process model and the best knowledge of the initial state
vector resulting from an optimization procedure. Typically, the initial condition of a
moving time frame is computed by minimizing the distance between the measure-
ment data collected in the considered time frame and model prediction.
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Let us consider a time interval containing N + 1 measurement instants
{tn−N , . . . ,tn} with measurements

{
yn−N , . . . ,yn

}
. The typical receding-horizon op-

timization problem computes an estimation x̂◦n−N,n of the initial state x(tn−N) :

x̂◦n−N,n = arg min
x̂n−N,n

Jn,N(x̂n−N,n) with (2)

Jn,N(x̂n−N,n) =
∥∥x̂n−N,n− x̄◦n−N

∥∥2
M +

n

∑
k=n−N

∥∥∥Cgtn−N
(tk, x̂n−N,n,θθθ)−yk

∥∥∥2

Q−1(tk)
(3)

where ‖v‖P =
(
vT Pv

)1/2
is a weighted norm. Knowing x̂◦n−N,n, estimations until the

next measurement time tn+1 are given by : x̂(t) = gtn−N

(
t, x̂◦n−N,n,θθθ

) ∀t ∈ [tn, tn+1].
The first term in (3), weighted by the matrix M, expresses the belief in the estimation
of the initial conditions obtained from all the information collected up to n. Matrix
M is assumed to be positive definite and can be considered as a design parameter.
Depending on the value of n, three situations can be distinguished [5]:

• 0 ≤ n ≤ Nmin− 1
(
s.t. Nminny < nx

)
: x̂◦0,n = x̄0 i.e. the best a priori available

initial guess, in the absence of more on-line information.

• Nmin ≤ n ≤ N : A full-horizon estimation scheme is then applied (computing
x̂◦0,n). x̄◦0 = x̂◦0,n−1 is the solution of the optimization problem (2) on a time window
of n≤ N time instants.
• n > N : In this case, enough information is available and a receding-horizon

can be used. The “reference” initial conditions of the time window x̄◦n−N are based
on the optimal estimation computed in the previous step (tn−N−1) and a one-step
prediction computed with the system model : x̄◦n−N = gtn−N−1

(
tn−N , x̂◦n−N−1,n−1,θθθ

)
.

2.2 Robust Receding-Horizon Estimation

The previous procedure assumes a perfect knowledge of the parameter vector θθθ. In
the case of uncertain parameters (a parameter interval [θθθ−,θθθ+] is nonetheless avail-
able), an alternative procedure can be proposed implying a min-max optimization
(see [2] for the linear formulation):

x̂◦n−N,n = arg min
x̂n−N,n

max
θ̂θθ∈[θθθ−,θθθ+]

J̄n,N

(
x̂n−N,n,θ̂θθ

)
with (4)

J̄n,N () =
∥∥x̂n−N,n− x̄◦n−N

∥∥2
M +

n

∑
k=n−N

∥∥∥Cgtn−N

(
tk, x̂n−N,n,θ̂θθ

)
−yk

∥∥∥2

Q−1(tk)

• If Nmin ≤ n≤ N : x̄◦0 = x̂◦0,n−1

• If n > N : x̄◦n−N = gtn−N−1

(
tn−N , x̂◦n−N−1,n−1,θθθnom

)
with θθθnom = θθθ−+θθθ+

2 .

When n > N, the “reference” initial conditions of the time window x̄◦n−N are based
on the optimal estimation computed in the previous step (tn−N−1) and a one-step
prediction computed with a nominal model. Indeed, as the time window is shifted
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of one step ahead, the previous knowledge on the initial conditions is “extrapolated”
using an average process model.

3 On the Use of Linearization Techniques

To reduce the computational demand, we will make use of linearization techniques.
Indeed, in the linear case, a theorem is available [9] for converting a min-max opti-
mization problem into a standard minimization problem (computing λ◦ ∈ℜ):

Theorem 3.1. Consider a regularized robust least-squares problem of the form :

min
z

max
‖S‖≤1

‖z‖2
V +‖[D+ δD(S)]z− [e+ δe(S)]‖2

W (5)

δD(S) and δe(S) are additive perturbations modelled by

δD(S) = HSEd, V > 0, δe(S) = HSEe, W ≥ 0

H,Ed and Ee are known matrices of appropriate dimensions. S is an arbitrary con-
traction, ‖S‖ ≤ 1.

Problem (5) has a unique global minimum z◦ given by:

z◦ =
(
V̂ + DTŴD

)−1 (
DTŴe+λ◦ET

d Ee
)

where V̂ = V +λ◦ET
d Ed, Ŵ = W +WH

(
λ◦I−HTWH

)†
HTW and the scalar pa-

rameter λ◦ is determined as

λ◦ = arg min
λ≥‖HT W H‖

‖z(λ)‖2
V +λ‖Edz(λ)−Ee‖2 +‖Dz(λ)− e‖2

Ŵ (λ)

z(λ) =
(
V̂ (λ)+ DTŴ (λ)D

)−1 (
DTŴ (λ)e +λET

d Ee
)

V̂ (λ) = V +λET
d Ed

Ŵ (λ) = W +WH
(
λI−HTWH

)†
HTW

Matrix norm, like e.g. ‖P‖ is related to the maximum singular value of the corre-

sponding matrix i.e. ‖P‖=
(
σ̄
(
PT P

))1/2
with σ̄(P) the maximum eigenvalue of P.

† denotes the left pseudoinverse.

Proof. A demonstration can be found in [9].

In order to apply this theorem to the min-max optimization problem (4), we have
to linearize the nonlinear function gtn−N

(tk, x̂n−N,n,θθθ) with respect to x̄◦n−N and
θθθnom [4]:

gtn−N
(tk, x̂n−N,n,θθθ)≈

gnom (n−N,tk)+ Gx (n−N,tk)
(
x̂n−N,n− x̄◦n−N

)
+ Gθ (n−N, tk)(θθθ−θθθnom)
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with gnom (n−N,tk) = gtn−N

(
tk, x̄

◦
n−N ,θθθnom

)
(6)

Gx (n−N, tk) =
∂gtn−N

(tk,xn−N ,θθθ)
∂xn−N

∣∣∣∣ xn−N=x̄◦n−N

θθθ=θθθnom

(7)

Gθ (n−N, tk) =
∂gtn−N

(tk,xn−N ,θθθ)
∂θθθ

∣∣∣∣ xn−N=x̄◦n−N

θθθ=θθθnom

(8)

Jacobian matrices defined in (7) and (8) can be computed for time t ∈ [tn−N , tn]
by solving numerically the following differential equations together with (1) (for
x(tn−N) = x̄◦n−N and θθθ = θθθnom):

Ġx (n−N,t) =
∂f(x(t),u(t),θθθnom)

∂x
Gx (n−N, t) (9)

Ġθ (n−N,t) =
∂f(x(t),u(t),θθθnom)

∂x
Gθ (n−N, t)+

∂f(x(t),u(t),θθθ)
∂θθθ

∣∣∣∣
θθθ=θθθnom

(10)

The initial conditions of (9) and (10) are respectively given by :

Gx (n−N,tn−N) =
∂gtn−N

(tn−N ,xn−N ,θ)
∂xn−N

=
∂xn−N

∂xn−N
= Inx

Gθ (n−N,tn−N) = 0nx

Inx ∈ℜnx×nx is the identity matrix and 0nx ∈ℜnx×nx is the zero matrix. A new cost
function can now be given by the following expression :

J̌n,N

(
x̂n−N,n,θ̂θθ

)
=
∥∥x̂n−N,n− x̄◦n−N

∥∥2
M (11)

+
∥∥Ḡn

x,n−N

(
x̂n−N,n− x̄◦n−N

)− (Y n
n−N− ḡn

n−N− Ḡn
θ,n−NSΔθθθmax

)∥∥2
W

with Δθθθmax = θθθ+−θθθ−
2 and ‖S‖ ≤ 1.

W= diag
(
Q−1(tn−N), . . . ,Q−1(tn)

)
is a bloc diagonal matrix, Y n

n−N=
[
yT (tn−N),

. . . ,yT (tn)
]T

the column vector containing all the measurements,
ḡn

n−N =
[
gT

nom (n−N ,tn−N)CT , . . . ,gT
nom (n−N, tn)CT ]T the column

vector containing the measured state vectors for the “nominal” case(
x̄◦n−N ,θθθnom

)
, Ḡn

x,n−N = [GT
x (n−N, tn−N)CT , . . . ,GT

x (n −N,tn)CT ]T re-
grouping the Jacobian matrices related to the initial state variables and
Ḡn
θ,n−N = [GT

θ (n−N,tn−N)CT , . . . ,GT
θ (n−N, tn)CT ]T regrouping the Jaco-

bian matrices related to the parameters. Finally, the solution of the robust
receding-horizon problem is summarized as :

Theorem 3.2. The problem defined by (4) with (11) as cost function has a unique
solution given by
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x̂◦n−N,n = x̄◦n−N +
(

M + Ḡn,T
x,n−NŴḠn

x,n−N

)−1
Ḡn,T

x,n−NŴ
(
Y n

n−N− ḡn
n−N

)
with Ŵ (λ◦) = W +WḠn

θ,n−N

(
λ◦I− Ḡn,T

θ,n−NWḠn
θ,n−N

)†
Ḡn,T
θ,n−NW

λ◦ is computed from the following minimization

λ◦ = arg min
λ≥
∥∥∥Gn,T

θ,n−NW Gn
θ,n−N

∥∥∥‖z̄(λ)‖2
M +λ‖Δθθθmax‖2

+
∥∥Gn

x,n−N z̄(λ)− (Y n
n−N− ḡn

n−N

)∥∥2
Ŵ(λ)

with z̄(λ) =
(

M + Ḡn,T
x,n−NŴ (λ)Gn

x,n−N

)−1
Ḡn,T

x,n−NŴ (λ)
(
Y n

n−N− ḡn
n−N

)
Ŵ (λ) = W +WḠn

θ,n−N

(
λ◦I− Ḡn,T

θ,n−NWḠn
θ,n−N

)†
Ḡn,T
θ,n−NW

Proof: a trivial application of Theorem 3.1.

The linearized model differs from the nonlinear one, and results in an approximation
of the original problem. The quality of this approximation will mostly depend on the
fact that the worst linearized model is as worse as the worst nonlinear one. In order
to better handle this approximation, a second-order extension is considered.

4 Extension to Second-Order

Applying the mean value theorem, a remainder term to the first-order approximation
(6)-(8) is given in (12). A more compact notation is used : ΔΔΔθ = θθθ−θθθnom, ΔΔΔx0 =
x̂n−N,n− x̄◦n−N .

R
(
tk, x̄,θ̄θθ

)
=

1
2

⎡⎢⎣
[
ΔΔΔT

x0
, ΔΔΔT

θ
]

H1
(
tk, x̄,θ̄θθ

)
...[

ΔΔΔT
x0

, ΔΔΔT
θ
]

Hnx

(
tk, x̄,θ̄θθ

)
⎤⎥⎦[ΔΔΔx0

ΔΔΔθ

]
(12)

x̄ ∈ℜnx and θ̄θθ ∈ℜnθ are two vectors between
{

x̂n−N,n, x̄◦n−N

}
and {θθθ,θθθnom} respec-

tively. These conditions can be expressed using the Euclidean distance:∥∥x̂n−N,n− x̄◦n−N

∥∥ ≥ ∥∥x̄− x̄◦n−N

∥∥
≥ ‖x̂n−N,n− x̄‖

‖θθθ−θθθnom‖ ≥
∥∥θ̄θθ−θθθnom

∥∥
≥ ∥∥θθθ− θ̄θθ

∥∥
Hi
(
tk, x̄,θ̄θθ

)
is the Hessian matrix related to the ith state variable and can

be partitioned w.r.t. x̄ and θ̄θθ. To simplify notations, the nonlinear function
gtn−N

(tk, x̂n−N,n,θθθ) is noted : gT = [g1, . . . ,gnx ] and one has the following partition.

Hi
(
tk, x̄,θ̄θθ

)
=
[

Hi
xx(tk) Hi

xθ(tk)
Hi
θx(tk) Hi

θθ(tk)

]
=

[
∂2gi
∂x∂x

∂2gi
∂x∂θθθ

∂2gi
∂θθθ∂x

∂2gi
∂θθθ∂θθθ

]
with

x = x̄
θθθ = θ̄θθ (13)
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Moreover, Jacobian and Hessian matrices related to the evolution equations fT =
[ f1, . . . , fnx ] with respect to the state vector x and the parameter vector θθθ are written

Fx = ∂f()
∂x , Fθ = ∂f()

∂θθθ , Fi
xx = ∂2 fi()

∂x2 , Fi
θθ = ∂2 fi()

∂θθθ2 , Fi
xθ = ∂2 fi()

∂x∂θθθ and Fi
θx = ∂2 fi()

∂θθθ∂x . Hessian
matrices (13) are computed by solving the following differential equations given in
a matrix form:

Ḣi
xx = GT

x Fi
xxGx +

nx

∑
j=1

∂ fi

∂x j
H j

xx

Ḣi
xθ = GT

x Fi
xθ + GT

x Fi
xxGθ +

nx

∑
j=1

∂ fi

∂x j
H j

xθ (14)

Ḣi
θx = Fi

θxGx + GT
θ Fi

xxGx +
nx

∑
j=1

∂ fi

∂x j
H j
θx

Ḣi
θθ = Fi

θθ + Fi
θxGθ + GT

θ Fi
xθ + GT

θ Fi
xxGθ +

nx

∑
j=1

∂ fi

∂x j
H j
θθ

Their initial conditions are given by zero matrices with appropriate dimensions.
As x̄ and θ̄θθ are unknown, the remainder term (12) has to be upper bounded. Conse-
quently, cost function (11) is modified so as to take this additional term into account
and Theorem 3.2 can be applied again.

J̌n,N

(
x̂n−N,n,θ̂θθ

)
=
∥∥x̂n−N,n− x̄◦n−N

∥∥2
M +

∥∥(Ḡn
x,n−N + Ḡn

xx,n−N

)(
x̂n−N,n− x̄◦n−N

)
− (

Y n
n−N− ḡn

n−N−
(
Ḡn
θ,n−N + Ḡn

θθ,n−N

)
SΔθθθmax

)∥∥2
W

(15)

Ḡn
xx,n−N = [|CR+

x (tn−N)|T , . . . , |CR+
x (tn)|T ]T R+

x (t) = [R1,+,T
x (t), . . . ,Rnx,+,T

x (t)]T

Ḡn
θθ,n−N = [

∣∣CR+
θ (tn−N)

∣∣T , . . . ,
∣∣CR+

θ (tn)
∣∣T ]T R+

θ (t) = [R1,+,T
θ (t), . . . ,Rnx,+,T

θ (t)]T

R j,+
x and R j,+

θ are worst-case terms related to R j
x and R j

θ deduced from (12)-(13):

R j
x(t) = 1

2

(
ΔΔΔT

x0
H j

xx(t)+ΔΔΔT
θ H j

θx(t)
)

R j
θ(t) = 1

2

(
ΔΔΔT

x0
H j

xθ(t)+ΔΔΔT
θ H j

θθ(t)
)

Then, R j,+
x and R j,+

θ are given by

R j,+
x (t) = 1

2

(
ΔΔΔ+,T

x0 H+, j
xx (t)+ΔθθθT

maxH+, j
θx (t)

)
R j,+
θ (t) = 1

2

(
ΔΔΔ+,T

x0 H+, j
xθ (t)+ΔθθθT

maxH+, j
θθ (t)

)
where ΔΔΔ+,T

x0 =
∣∣∣x̂+

n−N,n− x̄◦n−N

∣∣∣≥ ∣∣x̂n−N,n− x̄◦n−N

∣∣. x̂+
n−N,n matches to the maximum

distance with respect to x̄◦n−N .

Remark 4.1. x̂+
n−N,n is not a priori known and is derived by applying Theorem 3.2

twice. At first, cost function (11) is minimized using an initial estimation of x̂+
n−N,n.

Then, cost function (15) is minimized starting from the previous results. This proce-
dure can be iterated.
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H+, j
xx (t), H+, j

θx (t), H+, j
xθ (t) and H+, j

θθ (t) are computed from (14).
{

x̄,θ̄θθ
}

corresponds
to the worst-case combination of x̂+

n−N,n, x̄◦n−N , θθθ− and θθθ+.

5 Continuous Cultures of Phytoplankton

The application under consideration is the estimation of biological variables describ-
ing the behaviour of the green algae Dunaliella tertiolecta in the chemostat. Three
state variables are considered: the biovolume X which is the total amount of biomass
per unit of volume (µm3/L), the internal nitrogen quota Q which is defined as the
quantity of nitrogen per unit of biomass (µmol/µm3) and the substrate (nitrate) con-
centration S (µmol/L). Droop model is used to predict the temporal evolution of the
three above-mentioned state variables.⎧⎨⎩

Ẋ(t) =−D(t)X(t)+ µ(Q)X(t)
Q̇(t) = ρ(S)−µ(Q)Q(t)
Ṡ(t) = D(t)(Sin(t)−S(t))−ρ(S)X(t)

(16)

with ρ(S) = ρm
S(t)

S(t)+kS
the uptake rate (µmol/(µm3d)), and µ(Q) = µ̄

(
1− kQ

Q(t)

)
, the

growth rate (1/d). In these equations, D represents the dilution rate (1/d, d : day),
Sin the input substrate concentration (µmol/L). Moreover, to complete the model
description, an observation equation is defined by measurements of biovolume X at
measurement time tk: yk = X(tk) (see [3] for further details).

Concerning the simulation data, the reference model parameters are the fol-
lowing : ρm = 9.3× 10−9 µmolµm−3d−1, kS = 0.105 µmolL−1, µ̄ = 2 d−1 and
kQ = 1.8×10−9 µmolµm−3. The uncertain parameter subspace [θθθ−,θθθ+] is given by
[0.8θθθ,1.5θθθ]. The input parameters (Sin,D) are assumed perfectly known. The initial
estimation x̄0 is randomly chosen in the interval [0.7x0,3x0] with x0, the reference
initial conditions given by : X0 = 0.1× 109 µm3/L, Q0 = 4.5× 10−9 µmol/µm3

and S0 = 50 µmol/L. The measurements of biovolume yk are corrupted by a Gaus-
sian white noise (with a relative standard deviation of 0.08 and a minimum s.d. of
1.5× 109 µm3/L). Figure 1 (up) shows some estimation results with the linearized
robust receding-horizon algorithm (Section 3) and the second-order algorithm (Sec-
tion 4). The comparison shows better properties for the second-order version which
is less sensitive than the linear approximation. However, the computation time is
heavier (∼ 3×) mainly due to the iterative procedure (Remark 4.1) but is still quite
competitive as compared to the original nonlinear problem.

Concerning the experimental data, parameters are identified and their corre-
sponding intervals are (units are the same as previously): ρm ∈ [9.25, 9.55], kS ∈
[0.01, 0.20], µ̄ ∈ [1.70, 2.30] and kQ ∈ [1.60, 2.00]. The initial intervals are : X0 ∈[
10−6, 0.20

]×109µm3/L, Q0 ∈ [1, 8]×10−9 µmol/µm3 and S0 ∈ [40, 60]µmol/L
(see [8] for further details). Figure 1 (bottom) shows estimation with experimental
biovolume measurements using the second-order algorithm. An interval observer
[8] is used for comparison and shows that the estimation is in agreement with the
available knowledge on the model.
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Fig. 1 Up : comparison of first (dashed) and second (solid black line) - order versions in a
simulated example (N = 5 and M = 0.1I). Real trajectories are in grey. Bottom : second-order
version (N = 5 and M = 10I) with experimental data. Biovolume is the only available mea-
surement to the observer and the other measurements are used for cross-validation (circles).
The results are enclosed by an interval observer [8]

6 Conclusions

Tests in simulation and real life applications show good performance of robust state
estimation methods with respect to model uncertainties. Approximations (first and
second order) allow the computational load to be significantly reduced. Tuning is
easy because it is only related to the length of the time window and to the weighting
matrix of the a priori initial estimation.
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State Estimation in Nonlinear Model Predictive
Control, Unscented Kalman Filter Advantages

Giancarlo Marafioti, Sorin Olaru, and Morten Hovd

Abstract. Model predictive control (NMPC) proves to be a suitable technique for
controlling nonlinear systems, moreover the simplicity of including constraints in its
formulation makes it very attractive for a large class of applications. Due to heavy
online computational requirements, NMPC has traditionally been applied mostly
to systems with slow dynamics. Recent developments is likely to expand NMPCs
applicability to systems with faster dynamics.

Most NMPC formulations are based on the availability of the present state. How-
ever, in many applications not all states are directly measurable. Although there
is no Separation Theorem which is generally applicable for nonlinear systems, the
control and state estimation problems are usually handled separately.

State estimation introduces extra computational load which can be relevant in
case of systems with relatively fast dynamics. In this case accurate estimation meth-
ods with low computational cost are desired, for example the Extended Kalman
Filter (EKF). Clearly, the EKF does not perform well with all nonlinear systems,
but its straightforwardness is the main reason of its popularity.

In this work, a type of locally weakly unobservable system is studied. For this
type of system, we find that the EKF drifts because the system is unobservable at
the desired operation point. The Unscented Kalman Filter (UKF) is described, and
similarities with the EKF are discussed. Finally, it is shown how the UKF is used
for state estimation in this type of nonlinear systems, and that it provides a stable
state estimate, despite the fact that the system is locally unobservable.
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1 Introduction

Model Predictive Control (MPC) is one of the most attractive advanced control tech-
nique. The principal reasons of its success are the capability to directly handle the
control problem in the time domain, and the simplicity of considering physical con-
straints. Essentially, this is done by using a model for predicting the future process
output. An objective function is optimized, yielding an input sequence which is ap-
plied to the process using a receding horizon strategy.

The development of NMPC is not straightforward, remarkable complications are
required to verify nominal stability and optimization problem solution. A compre-
hensive analysis of linear MPC can be found in the literature, (e.g. [1]). However,
most real world systems are nonlinear, and a continuous search for better perfor-
mance shows the limitations of linear MPC. Thus, using a nonlinear model in the
MPC framework seems to be a practical solution. An introduction to nonlinear
model predictive control can be found in [2], and more details on stability are in [3].

A detailed survey of industrial MPC applications can be found in [4]. A limitation
for the application of NMPC is that at every time step the state of the system is
needed for prediction. However, it is not always possible to measure all the states,
thus a filter or observer may be used. For nonlinear systems a Separation Theorem
does not exist, then even if the state feedback controller and the observer are both
stable, there is no guarantee of closed loop nominal stability. Findeisen et al. [5]
give an interesting overview on both state and output feedback NMPC.

In Section 2 the nonlinear model predictive control formulation adopted in this
work is described. More precisely, an output feedback NMPC is used where both the
EKF and the UKF are implemented for state estimation. The EKF is a well known
filter, it is an extension of the Kalman Filter [6] to nonlinear systems. In Section
3 the UKF is introduced as a valid alternative to the EKF. In Section 4 a locally
weakly unobservable system is described and used to show, by simulations, how the
UKF is able to give a stable state estimate where the EKF fails.

2 Nonlinear Model Predictive Control

Consider the discrete nonlinear state space model

xk+1 = f (xk,uk)
yk = h(xk,uk−1) (1)

where xk is the state vector, uk is the control input vector, yk is the measurement
vector. The subscript k represents the sampling time index.

The NMPC optimization problem for regulation can be stated as follows:

min
u0,u1,...,unp−1

np−1

∑
k=0

G(xk+1,uk) (2)

subject to
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x0 = given (3a)

xk+1− f (xk,uk) = 0 (3b)

cx(xk) ≤ 0 (3c)

cu(uk) ≤ 0 (3d)

The optimization problem is solved at each sample instant, obtaining the optimal
solution [u∗0,u

∗
1, ...,u

∗
np−1]. However, only the first element, u∗0, of this sequence is

applied, before the optimization problem is solved again at the next timestep.
The stage cost G(·) is typically quadratic, that is G(x,u) = x′Qx + u′Ru, where

Q = Q′ & 0 and R = R′  0. Equations (3c) and (3d) can be either linear or nonlinear,
and are used to introduce state and input constraints, respectively.

The nonlinear model (1) and the inequality constraints (3c), (3d) make the prob-
lem (2-3) a non convex nonlinear program. The Sequential Quadratic Programming
technique (SQP) may be used to solve it, but compared to the convex QP case ob-
tained in linear MPC, the solution is more difficult. For instance, there is no guar-
antee of the existence of unique optimal solution and that the global optimum can
always be found. The prediction horizon length np affects the computational com-
plexity, and influences the global stability at the same time. However, since this
paper is not intended as a comprehensive analysis on NMPC, the reader is referred
to the literature, some of which can be found in the references. Thus, in the next sec-
tion we focus on the state estimation problem and in particularly on the Unscented
Kalman Filter.

3 State Estimation: Unscented Kalman Filter

From a wide point of view, the state estimation problem can be seen as a probabilis-
tic inference problem, which is the problem of estimating hidden variables (state)
using a noisy set of observations (measurement), in an optimal way. In probability
theory, this solution is obtained using the recursive Bayesian estimation algorithm.
For linear Gaussian systems, it can be shown that the closed form of the optimal
recursive solution is given by the well known Kalman Filter.

For real world applications, which are neither linear nor Gaussian, the Bayesian
approach is intractable. Thus, a sub-optimal approximated solution has to be found.
For instance, in case of nonlinear system with non Gaussian probability density
function (pdf), the EKF algorithm approximates the nonlinear system with its trun-
cated Taylor series expansion around the current estimate. Moreover, the non Gaus-
sian pdf is approximated with its first two moments, mean and covariance. A more
elaborate approach is to use a Sequential Monte-Carlo method, where instead of ap-
proximating the system or the probability distribution, the integrals in the Bayesian
solution are approximated with finite sums. One famous Monte-Carlo filter is the
Particle Filter, but in this work we focus on Kalman filtering for two simple reasons.
Firstly, Kalman algorithms are easy to understand and to implement. Secondly, they
do not have a high computational complexity, making them suitable to be coupled
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with a NMPC. This will allow the controller to obtain more resource which can be
used to solve the optimization problem.

A more recent approach than the EKF, to the state estimation problem, is the
Unscented Kalman Filter. The UKF uses the Unscented Transformation (UT), which
is based on the idea that is easier to approximate a probability distribution than an
arbitrary nonlinear function or transformation [7]. This approximation is done using
a finite set of points, called sigma points.

An important feature of the UKF, with respect to the EKF, is that no Jacobians
need to be computed. This is relevant especially in the case of strong nonlineari-
ties, as long as the introduction of linearization errors is avoided. In general both
filters have the same computational complexity [8], and the UKF implementation is
straightforward, similarly to the EKF one.

In the present work only the UKF formulation is detailed, more precisely the one
used in [9], while the EKF can be easily found in the vast literature. Moreover, it is
assumed that the process and the measurement disturbances are modeled as additive
noise with zero means. As it can be seen in the next section, the UKF algorithm
has a structure similar to that of the EKF. There is an initialization part (7-8), and
a set of equations executed recursively: the time update equations (10-14) and the
measurement update equations (15-19). In addition, at every time step the sigma
points have to be computed by (9).

3.1 UKF Formulation

Before describing the particular UKF implementation used in the present frame-
work, we introduce some notations. E[·] is the expectation operator, x̂k = E[xk] is
the mean value of xk, Pk = E[(xk− x̂k)(xk− x̂k)

′] is the error covariance matrix. PW

and PV are the process noise covariance and the measurement noise covariance, re-
spectively. Chk = chol(Pk) is the Cholesky factorization of Pk, L is the system state
dimension, F[·] and H[·] are the nonlinear dynamics and the measurement equation,
respectively. Wi are scalar weights calculated as follow

W (m)
0 = λ/(L+λ ) (4)

W (c)
0 = λ/(L+λ )+ (1−α2 +β ) (5)

W (m)
i = W (c)

i

= 1/[2(L+λ )], i = 1, ...2L (6)

where λ = α2(L + κ)− L, and α , β , κ are parameters to be chosen as described
in [9]. Finally we define γ =

√
L+λ , which can be interpreted as a scaling factor

used to move the position of sigma points around the mean value x̂ (Equation (9)).
Indeed, there are three independent design parameters that have to be chosen (α , β ,
κ). In most cases typical values are β = 2, and κ = 0 or κ = 3− L, leaving only
the parameter α as design parameter. Moreover, considering that 1≤ α ≤ 1e−5 the
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tuning of the UKF becomes simpler. For a finer tuning and a better description of
the UKF parameters we remand to [9]. As it is the case for the EKF, the covariance
matrices can be also used for performance tuning.

We state here the main steps of the UKF construction which starts with a given

x̂0 = E[x0] (7)

P0 = E[(x0− x̂0)(x0− x̂0)
′] (8)

Then for each sample k = 1, ...,∞

- calculate the sigma points, represented as column vectors in the following matrix
of dimension 2L+ 1:

Xk−1 =
[
x̂k−1, x̂k−1 + γChk−1, x̂k−1− γChk−1

]
(9)

- propagate the sigma points through the nonlinear dynamics F[·], and compute the
predicted state estimate, where the index i is used to select the appropriate sigma
point column:

Xk|k−1 = F
[
Xk−1,uk−1

]
(10)

x̂−k =
2L

∑
i=0

W (m)
i Xi,k|k−1 (11)

- compute the predicted covariance, instantiate the prediction points through the
observation mapping H[·], and calculate the predicted measurement:

P−k =
2L

∑
i=0

W (c)
i

[
Xi,k|k−1− x̂−k

][
Xi,k|k−1− x̂−k

]′+ Pw (12)

Yk|k−1 = H
[
Xk|k−1

]
(13)

ŷ−k =
2L

∑
i=0

W (m)
i Yi,k|k−1 (14)

- obtain the innovation covariance and the cross covariance matrices:

Pỹkỹk
=

2L

∑
i=0

W (c)
i

[
Yi,k|k−1− ŷ−k

][
Yi,k|k−1− ŷ−k

]′+ Pv (15)

Pykxk
=

2L

∑
i=0

W (c)
i

[
Xi,k|k−1− x̂−k

][
Yi,k|k−1− ŷ−k

]′
(16)
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- perform the measurement update using the normal Kalman filter equations:

Kk = Pykxk
P−1

ỹkỹk
(17)

x̂k = x̂−k +Kk
(
yk− ŷ−k

)
(18)

Pk = P−k −KkPỹkỹk
K ′

k (19)

Note that no linearization procedure is required, and the most time demanding op-
eration is the Cholesky factorization. The algorithm implementation is straightfor-
ward, since only simple operations need to be performed, e.g. weighted sums. There
are several UKF formulations available in literature, see for instance [9], however
the one chosen in this work has the benefit of a reduced number of sigma points.
Since both process and measurement noise realizations are assumed additive, there
is no need to associate sigma points to approximate their statistics. However, their
effect is considered in (12) for the process noise, and in (15) for the measurement
noise.

To understand how the UT is used in this framework let us consider (9). The mean
x̂k−1 and covariance Pk−1 are approximated with a set of 2L+ 1 points (columns of
(9)). The nonlinear function (10) is directly applied to each sigma point, yielding a
cloud of transformed points. The statistics of the transformed points are then com-
puted, by (11) and (12), to obtain an estimate of the transformed mean and covari-
ance. This is done, in a similar way by (13-16), for the nonlinear function associated
to the observation model .

4 A Locally Weakly Unobservable System

It is well known, that the fundamental requirement for an observer to work properly
is to be associated to an observable system. While for linear system this condition
is trivial to check, using the Kalman rank condition of the observability matrix,
for nonlinear systems things are more complicated. The principal motivation is that

(a) System state, state estimate, control input (b) State and its estimate: first 40 time steps

Fig. 1 Simulation based results: EKF as state estimator
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(a) System state and its estimate, state estimation error

(b) Control input and system measurement

Fig. 2 Simulation based results: UKF as state estimator

in general the observability of a nonlinear system depends on the system input it-
self. In [10] the authors show how to extend the Kalman rank condition for both
controllability and observability of nonlinear systems using a differential-geometric
approach. In [11] a viewpoint on observability and nonlinear observer design is
given. In both works the Lie algebra is used, and for our purpose it is sufficient to
know that a nonlinear system that does not satisfied the observability rank condition
derived in [10] it is not locally weakly observable, meaning that the estimator may
have problems once reaches an unobservability region.
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As an illustrative example we consider the system

xk+1 = xk +(0.1xk + 1)uk + wk

yk = x3
k + vk

(20)

where x is the state, u is the input, y is the measurement, w is the excitation state
noise, v is the measurement noise, and the subscript k is the sampling time index.
The noise sequences are both assumed to be Gaussian white noise.

System (20) is a locally weakly unobservable system, in the sense that the rank
condition fails for the point (x̄, ū) = (0,0). Simulation based results will show that
while the EKF fails to estimate the state, the UKF is able to give a stable state
estimate. This is due to the fact that the UKF does not use any linearization and in
addition the pdf approximation obtained with the sigma points is more accurate than
the EKF one.

Simulation based results: In the simulations a quadratic NMPC cost function is
used, where Q = 2 and R = 1. The prediction horizon length is np = 10 and a sam-
pling time of 1 second is used. The process and measurement noises have additive
white Gaussian distributions with zero means and variances σ2

ω = 0.01, σ2
v = 0.1,

respectively. All the simulations are started from an initial condition x0 = 0.5, with
initial state variance P0 = 0.02. The UKF tuning parameters are L = 1, α = 1, β = 2,
and κ = 2.

Figure 1 shows how the EKF fails. It is possible to notice how once both state
and its estimate reach zero, the estimator is not able anymore to reconstruct the
actual state (Figure 1(b)). This is due to the observability problem, in fact at zero
the Kalman gain becomes zero and the filter is not able anymore to correct the
estimate with the future measurements. The controller uses the estimate, yielding a
zero control signal as soon as the state estimate is null. As a result the controller is
not able to regulate the state anymore and the state itself drifts.

In Figure 2 the UKF is used instead. It is possible to observe how the filter is able
to estimate the state, and in the meantime there is no drift in the state estimation. By
consequence, the NMPC law can regulate the state, achieving its goal.

5 Conclusions

In this work an output feedback Nonlinear Model Predictive Control was imple-
mented for a regulation problem of a locally weakly unobservable system. For this
kind of systems the Extended Kalman Filter may fail to give a correct state es-
timate, leading to a drift in the state estimation. The Unscented Kalman Filter was
introduced as an alternative estimation algorithm, and its main ingredients were pre-
sented. Using a simple but effective example, a set of simulations were carried out to
show how the UKF gives a stable state estimate, even in presence of unobservability
regions. Other estimation algorithms could be used, for instance Monte-Carlo based
methods, but the choice of a Kalman based filter gives the advantage of a lower
overall computational complexity.
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MPC for Tracking of Constrained Nonlinear
Systems

D. Limon, A. Ferramosca, I. Alvarado, T. Alamo, and E.F. Camacho

Abstract. This paper deals with the tracking problem for constrained nonlinear sys-
tems using a model predictive control (MPC) law. MPC provides a control law suit-
able for regulating constrained linear and nonlinear systems to a given target steady
state. However, when the target operating point changes, the feasibility of the con-
troller may be lost and the controller fails to track the reference. In this paper, a
novel MPC for tracking changing constant references is presented. This controller
extend a recently presented MPC for tracking for constrained linear systems to the
nonlinear case. The main characteristics of this controller are: considering an arti-
ficial steady state as a decision variable, minimizing a cost that penalizes the error
with the artificial steady state, adding to the cost function an additional term that
penalizes the deviation between the artificial steady state and the target steady state
(the so-called offset cost function) and considering an invariant set for tracking as
extended terminal constraint. The properties of this controller has been tested on a
constrained CSTR simulation model.

Keywords: Nonlinear systems; Nonlinear Model Predictive Control; Tracking.

1 Introduction

Model predictive control (MPC) is one of the most successful techniques of ad-
vanced control in the process industry. This is due to its control problem formula-
tion, the natural usage of the model to predict the expected evolution of the plant, the
optimal character of the solution and the explicit consideration of hard constraints
in the optimization problem. Thanks to the recent developments of the underly-
ing theoretical framework, MPC has become a mature control technique capable to
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provide controllers ensuring stability, robustness, constraint satisfaction and
tractable computation for linear and for nonlinear systems [1].

The control law is calculated by predicting the evolution of the system and
computing the admissible sequence of control inputs which makes the system
evolves satisfying the constraints and minimizing the predicted cost. This problem
can be posed as an optimization problem. To obtain a feedback policy, the obtained
sequence of control inputs is applied in a receding horizon manner, solving the op-
timization problem at each sample time. Considering a suitable penalization of the
terminal state and an additional terminal constraint, asymptotic stability and con-
straints satisfaction of the closed loop system can be proved [2].

Most of the results on MPC consider the regulation problem, that is steering the
system to a fixed steady-state (typically the origin), but when the target operating
point changes, the feasibility of the controller may be lost and the controller fails
to track the reference [3, 4, 5, 6]. Tracking control of constrained nonlinear systems
is an interesting problem due to the nonlinear nature of many processes in industry
mainly when large transitions are required, as in the case of changing operating point.

In [7] a nonlinear predictive control for set point families is presented, which
considers a pseudolinearization of the system and a parametrization of the set points.
The stability is ensured thanks to a quasi-infinite nonlinear MPC strategy, but the
solution of the tracking problem is not considered.

In [8] an output feedback receding horizon control algorithm for nonlinear
discrete-time systems is presented, which solves the problem of tracking exogenous
signals and asymptotically rejecting disturbances generated by a properly defined
exosystem. In [9] an MPC algorithm for nonlinear systems is proposed, which guar-
antees local stability and asymptotic tracking of constant references. This algorithm
need the presence of an integrator preliminarily plugged in front of the system to
guarantee the solution of the asymptotic tracking problem.

Another approach to the tracking of nonlinear systems problem are the so-called
reference governors [10, 4, 11]. A reference governor is a nonlinear device which
manipulates on-line a command input to a suitable pre-compensated system so as to
satisfy constraints. This can be seen as adding an artificial reference, computed at
each sampling time to ensure the admissible evolution of the system, converging to
the desired reference.

In [12] the tracking problem for constrained linear systems is solved by means
of an approach called dual mode: the dual mode controller operates as a regula-
tor in a neighborhood of the desired equilibrium wherein constraints are feasible,
while it switches to a feasibility recovery mode, whenever this is lost due to a
set point change, which steers the system to the feasibility region of the MPC as
quickly as possible. In [13] this approach is extended to nonlinear systems, consid-
ering constraint-admissible invariant sets as terminal regions, obtained by means of
a LPV model representation of the nonlinear plant.

In [14] an MPC for tracking of constrained linear systems is proposed, which
is able to lead the system to any admissible set point in an admissible way. The
main characteristics of this controller are: an artificial steady state is considered as
a decision variable, a cost that penalizes the error with the artificial steady state
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is minimized, an additional term that penalizes the deviation between the artificial
steady state and the target steady state is added to the cost function (the so-called
offset cost function) and an invariant set for tracking is considered as extended ter-
minal constraint. This controller ensures that under any change of the target steady
state, the closed loop system maintains the feasibility of the controller and ensures
the convergence to the target if admissible. In this paper, this controller is extended
to the case of nonlinear constrained systems.

The paper is organized as follows. In section 2 the constrained tracking prob-
lem is stated. In section 3 the new MPC for tracking is presented. In section 4 an
illustrative example is shown. Finally, in section 5 some conclusions are drawn.

2 Problem Description

Consider a system described by a nonlinear invariant discrete time model

x+ = f (x,u) (1)

y = h(x,u)

where x ∈ IRn is the system state, u ∈ IRm is the current control vector, y ∈ IRp

is the controlled output and x+ is the successor state. The function model f (x,u)
is assumed to be continuous. The solution of this system for a given sequence of
control inputs u and initial state x is denoted as x( j) = φ( j,x,u) where x = φ(0,x,u).
The state of the system and the control input applied at sampling time k are denoted
as x(k) and u(k) respectively. The system is subject to hard constraints on state and
control:

x(k) ∈ X , u(k) ∈U (2)

for all k ≥ 0. X ⊂ Rn and U ⊂ Rm are compact convex polyhedra containing the
origin in its interior.

The steady state, input and output of the plant (xs,us,ys) are such that (1) is ful-
filled, i.e. xs = f (xs,us) and ys = h(xs,us). Due to the relation derived from these
equalities, it is possible to find a parameter vector θ ∈ IRq which univocally de-
fines each triplet (xs,us,ys), i.e., these can be posed as xs = gx(θ ), us = gu(θ ) and
ys = gy(θ ). This parameter is typically the controlled output ys although another
parameter could be chosen for convenience.

For a (possible time-varying) target steady condition (xt ,ut ,yt) given by θt , the
problem we consider is the design of an MPC controller κMPC

N (x,θt ) such that the
system is steered as close as possible to the target while fulfilling the constraints.

3 MPC for Tracking

In this section, the proposed MPC for tracking is presented. This predictive con-
troller is characterized by the addition of the steady state and input as decision vari-
ables, the use of a modified cost function and an extended terminal constraint.
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The proposed cost function of the MPC is given by:

VN(x,θt ;u,θ )=
N−1

∑
i=0


((x(i)−xs),(u(i)−us))+Vf (x(N)−xs,θ )+VO(θ−θt)

where x( j) = φ( j,x,u), xs = gx(θ ), us = gu(θ ) and ys = gy(θ ). The controller is
derived from the solution of the optimization problem PN(x,θt ) given by:

V ∗N(x,θt ) = min
u,θ

VN(x,θt ;u,θ )

s.t. x( j) = φ( j,x,u), j=0, · · · ,N
x( j) ∈ X ,u( j) ∈U, j=0, · · · ,N−1

xs = gx(θ ),us = gu(θ )
(x(N),θ ) ∈ Γ

Considering the receding horizon policy, the control law is given by

κMPC
N (x,θt) = u∗(0;x,θt )

Since the set of constraints of PN(x,θt ) does not depend on θt , its feasibility region
does not depend on the target operating point θt . Then there exists a region XN ⊆ X
such that for all x ∈XN , PN(x,θt) is feasible. This is the set of initial states that can
be admissibly steered to the projection of Γ onto x in N steps or less.

Consider the following assumption on the controller parameters:

Assumption 1

1. Let gx, gu and gy be the functions of the parameter θ which define the steady
state, input and output of system (1) respectively, i.e., xs = gx(θ ), us = gu(θ ) and
ys = gy(θ ). Assume that gx is a Lipschitz function.

2. Let Θ be a given convex set of admissible targets, i.e. gx(θ ) ∈ X and gu(θ ) ∈U
for all θ ∈Θ . This set defines the set of potential target equilibrium points.

3. Let k(x,θ ) be a continuous control law such that for all θ ∈ Θ , system x+=
f (x,k(x,θ )) has xs = gx(θ ) and us = gu(θ ) as steady state and input, and it is
asymptotically stable.

4. Let Γ ⊂ IRn+q be a set such that for all (x,θ ) ∈ Γ , x ∈ X, θ ∈Θ , k(x,θ ) ∈U
and ( f (x,k(x,θ )),θ ) ∈ Γ .

5. Let Vf (x−gx(θ ),θ ) be a Lyapunov function for system x+= f (x,k(x,θ )):

Vf ( f (x,k(x,θ ))−gx(θ ),θ )−Vf (x−gx(θ ),θ )≤−l(x−gx(θ ),k(x,θ )−gu(θ ))

for all (x,θ ) ∈ Γ . Moreover, there exist b > 0 and σ > 1 which verify Vf (x1−
x2,θ )≤ b‖x1− x2‖σ for all (x1,θ ) and (x2,θ ) contained in Γ .

6. Let l(x,u) be a positive definite function and let the offset cost function VO :
IRp → IR be a convex, positive definite and subdifferentiable function.
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The following theorem proves asymptotic stability and constraints satisfaction of
the controlled system.

Theorem 1 (Stability). Consider that assumption 1 holds and consider a given
target operation point parametrization θt , such that xt = gx(θt), ut = gu(θt) and
yt = gy(θt). Then for any feasible initial state x0 ∈ XN = Pro jx(Γ ), the system
controlled by the proposed MPC controller κ(x,θt) is stable, fulfils the constraints
along the time and, besides

(i) If θt ∈Θ then the closed loop system asymptotically converges to a steady state,
input and output (xt ,ut ,yt), that means limk→∞ ‖x(k)− xt‖ = 0, limk→∞ ‖u(k)−
ut‖= 0 and limk→∞ ‖y(k)− yt‖= 0.

(ii)If θt �∈Θ , the closed loop system asymptotically converges to a steady state and
input (x̃s, ũs), such that limk→∞ ‖x(k)− x̃s‖ = 0 and limk→∞ ‖u(k)− ũs‖ = 0,
where x̃s = gx(θ̃s), ũs = gu(θ̃s) and

θ̃s = argmin
θ∈Θ

VO(θ −θt)

Proof
Feasibility. The first part of the proof is devoted to prove the feasibility of the con-
trolled system, that is x(k + 1) ∈XN , for all x(k) ∈XN and θt . Assume that x(k) is
feasible and consider the optimal solution of PN(x(k),θt ), u∗(x(k),θt ), θ ∗(x(k),θt ).
Define the following sequences:

u(x(k + 1),θt)
Δ= [u∗(1;x(k),θt ), · · · ,u∗(N−1;x(k),θt),

K(x∗(N;x(k),θt ),θ ∗(x(k),θt ))]

θ̄ (x(k + 1),θt)
Δ= θ ∗(x(k),θt )

Then, due to the fact that x(k + 1) = f (x(k),u∗(0;x(k),θt )) and to condition 4 in
assumption 1, it is easy to see that u(x(k + 1),θt) and θ̄(x(k + 1),θt) are feasible
solutions of PN(x(k + 1),θt). Consequently, x(k + 1) ∈XN .

Convergence. Consider the feasible solution at time k + 1 previously presented.
Following standard steps in the stability proofs of MPC [2], we get that

V ∗N(x(k+1),θt)−V ∗N(x(k),θt )≤−l(x(k)−gx(θ ∗(x(k),θt )),u(k)−gu(θ ∗(x(k),θt )))

Due to the definite positiveness of the optimal cost and its non-
increasing evolution, we infer that limk→∞ ‖x(k) − gx(θ ∗(x(k),θt )‖ = 0 and
limk→∞ ‖u(k)−gu(θ ∗(x(k),θt )‖= 0.

Optimality. Define x∗s (x(k),θt )= gx(θ ∗(x(k),θt ) and u∗s (x(k),θt )= gu(θ ∗(x(k),θt ).
Let Θ̃ be the convex set such that Θ̃ = {θ̃ : θ̃ = argmin

θ∈Θ
VO(θ −θt)}.
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We proceed by contradiction. Consider that θ ∗ �∈ Θ̃ and take a θ̃ ∈ Θ̃ , then VO(θ ∗−
θt) > VO(θ̃ −θt). Due to continuity of the model and the control law, there exists a
λ̂ ∈ [0,1) such that, for every λ ∈ [λ̂ ,1), the parameter θ̄ = λθ ∗+(1−λ )θ̃ fulfils
(x∗s , θ̄ ) ∈ Γ .

Defining as u the sequence of control actions derived from the control law k(x, θ̄ ),
it is inferred that (u,x∗s , θ̄ ) is a feasible solution for PN(x∗s ,θt). Then from assump-
tion 1 and using standard procedures in MPC, we have that

V ∗N(x∗s ,θt ) = VO(θ ∗ −θt) ≤ VN(x∗s ,θt ;u, θ̄ )

=
N−1

∑
i=0


((x(i)− x̄),(k(x(i),θ )− ū))

+Vf (x(N)− x̄,θ )+VO(θ̄ −θt)
≤ Vf (x∗s − x̄,θ )+VO(θ̄ −θt)
≤ LVf ‖θ ∗ − θ̄‖σ +VO(θ̄ −θt)

= LVf (1−λ )σ‖θ ∗ − θ̃‖σ +VO(θ̄ −θt)

where LVf = Lσ
g b and Lg is the Lipshitz constant of gx(·).

Define W (x∗s ,θt ,λ ) Δ= LVf (1 − λ )σ‖θ ∗ − θ̃‖σ + VO(θ̄ − θt ). Notice that
W (x∗s ,θt ,λ ) = V ∗N(x∗s ,θt) for λ = 1. Taking the partial of W about λ , we
have that

∂W
∂λ

= −LVf σ(1−λ )σ−1‖θ ∗− θ̃‖σ + gT (θ ∗ − θ̃)

where gT ∈ ∂VO(θ̄ −θt) , defining ∂VO(θ̄−θt) as the subdifferential of VO(θ̄−θt).
Evaluating this partial for λ = 1 we obtain that:

∂W
∂λ

∣∣∣∣
λ=1

= g∗T (θ ∗ − θ̃)

where g∗T ∈ ∂VO(θ ∗ −θt), defining ∂VO(θ ∗−θt) as the subdifferential of VO(θ ∗−
θt). Taking into account that VO is a subdifferentiable function, from convexity [15]
we can state that

g∗T (θ ∗ − θ̃)≥VO(θ ∗ −θt)−VO(θ̃ −θt)

Considering that VO(θ ∗ −θt)−VO(θ̃ −θt) > 0, it can be derived that

∂W
∂λ

∣∣∣∣
λ=1

≥ VO(θ ∗ −θt)−VO(θ̃ −θt) > 0

This means that there exists a λ ∈ [λ̂ ,1) such that W (x∗s ,θt ,λ ) is smaller than the
value of W (x∗s ,θt ,λ ) for λ = 1, which equals to V ∗N(x∗s ,θt).
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This contradicts the optimality of the solution and hence the result is proved,
finishing the proof.

Remark 1. The problem of computing the terminal conditions is not easy to solve. In
literature, this problem is handled in many ways, such as LDI [16] or LPV [13, 12]
model representations of the system. In [10] the authors state that the command
governors strategy ensures the viability property, which implies the existence of
such a not trivial invariant set.

Remark 2. The local nature of the terminal controller and the difficulty of computing
set Γ makes this set potentially small. In fact, a sensible choice of Γ is as level sets
of the local Lyapunov function. In order to minimize the effect of the conservative
nature of the terminal ingredients, a formulation with a prediction horizon larger
that the control horizon [17] can be used. This provides an enhanced closed loop
performance and a larger domain of attraction maintaining the stabilizing properties.

4 Example

This section presents the application of the proposed controller to the highly non-
linear model of a continuous stirred tank reactor (CSTR), [17]. Assuming constant
liquid volume, the CSTR for an exothermic, irreversible reaction, A → B, is de-
scribed by the following model:

ĊA =
q
V

(CA f −CA)− koe(−E
RT )CA (3)

Ṫ =
q
V

(Tf −T)− ΔH
ρCp

koe(−E
RT )CA +

UA
VρCp

(Tc−T )

where CA is the concentration of A in the reactor, T is the reactor temperature and
Tc is the temperature of the coolant stream. The objective is to regulate y = x2 = T
and x1 = CA by manipulating u = Tc. The constraints are 0≤CA ≤ 1 mol/l, 280K ≤
T ≤ 370K and 280K ≤ Tc ≤ 370. The nonlinear discrete time model of system (3)
is obteined by defining the state vector x = [CA−Ceq

A ,T −T eq]T and u = Tc−T eq
c

and by discretizing equation (3) with t = 0.03 min as sampling time. We considered
an MPC with Nc = 3 and Np = 10 and with Q = diag(1/0.5,1/350) and R = 1/300
as weighting matrices.

The output y = x2 has been chosen as the parameter θ . To illustrate the proposed
controller, three references has been considered, Re f1 = 335 K, Re f2 = 365 K and
Re f3 = 340 K. In figures 1(a) and 1(b) the evolutions of the states (solid lines), the
artificial references (dashed lines) and the real one (dashed-dotted line) are showed.
See how the controller leads the system to track the artificial reference when the
real one is unfeasible. The artificial reference represents the feasible trajectory de-
termined by the value of θ̃s that minimizes VO(θ −θt).

The terminal region and cost function have been computed in an explicit form,
depending on θ . Linearizing the system around θ , the control gain has been
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Fig. 1 Evolutions of the states

computed explicitly, depending on θ , K(θ ). Defining AK(θ ) = A + BK(θ ) and
Q(θ )∗= Q+K(θ )T RK(θ ), P(θ ) has been found as solution of AK(θ )T P(θ )AK(θ )−
P(θ ) = −Q(θ )∗. Then, Vf (x−gx(θ ),θ ) = (x−gx(θ ))T P(θ )(x−gx(θ )) and Γ =
{(x,θ ) ∈ IRn+q : Vf (x−gx(θ ),θ )≤ α}, where α > 0 is such that for all (x,θ ) ∈ Γ ,
x ∈ X , u = K(θ )(x−gx(θ ))+ gu(θ ) ∈U and

Vf ( f (x,k(x,θ ))−gx(θ ),θ )−Vf (x−gx(θ ),θ )≤−(x−gx(θ ))T Q(θ )∗(x−gx(θ )).

5 Conclusion

In this paper a novel MPC controller for tracking changing references for con-
strained nonlinear systems has been presented, as extension, to the nonlinear case,
of the one presented in [14]. This controller ensures feasibility by means of adding
an artificial steady state and input as decision variable of the optimization problem.
Convergence to an admissible target steady state is ensured by using a modified
cost function and a stabilizing extended terminal constraint. Optimality is ensured
by means of an offset cost function which penalizes the difference between the ar-
tificial reference and the real one. The proposed controller can be formulated with
a prediction horizon larger than the control horizon. This formulation provides an
enhanced closed loop performance and a larger domain of attraction maintaining
the stabilizing properties. The properties of the controller have been illustrated in an
example.
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A Flatness-Based Iterative Method for Reference
Trajectory Generation in Constrained NMPC

J.A. De Doná, F. Suryawan, M.M. Seron, and J. Lévine

Abstract. This paper proposes a novel methodology that combines the differential
flatness formalism for trajectory generation of nonlinear systems, and the use of a
model predictive control (MPC) strategy for constraint handling. The methodology
consists of a trajectory generator that generates a reference trajectory parameterised
by splines, and with the property that it satisfies performance objectives. The refer-
ence trajectory is generated iteratively in accordance with information received from
the MPC formulation. This interplay with MPC guarantees that the trajectory gen-
erator receives feedback from present and future constraints for real-time trajectory
generation.

Keywords: flatness, trajectory generation, B-splines, Nonlinear MPC.

1 Introduction

Differential flatness [1] is a property of some controlled (linear or nonlinear) dy-
namical systems, often encountered in applications, which allows for a complete
parameterisation of all system variables (inputs and states) in terms of a finite num-
ber of independent variables, called flat outputs, and a finite number of their time
derivatives. We consider a general system

ẋ(t) = f
(
x(t),u(t)

)
, (1)
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where x(t) ∈Rn is the state vector and u(t) ∈Rm is the input vector. If the system is
flat [1], we can write all trajectories (x(t),u(t)) satisfying the differential equation
in terms of a finite set of variables, known as the flat output, y(t) ∈ Rm and a finite
number of their derivatives:

x(t) =ϒ
(
y(t), ẏ(t), ÿ(t), . . . ,y(r)(t)

)
,

u(t) =Ψ
(
y(t), ẏ(t), ÿ(t), . . . ,y(r+1)(t)

)
.

(2)

The parameterisation (2), afforded by the flatness property, allows to simplify (espe-
cially in the case of nonlinear flat systems) the generation of reference trajectories
(trajectory planning). Typically, some ‘desired’ reference trajectory is prescribed
for the flat output, yref, and the corresponding input and state trajectories for the
system are obtained from (2); namely, uref(t) =Ψ

(
yref(t), ẏref(t), . . . ,(yref(t))(r+1)),

xref(t) = ϒ
(
yref(t), . . . ,(yref(t))(r)

)
. However, a very common requirement in en-

gineering applications is for some of the variables of the dynamical system to
satisfy a number of constraints, usually expressed as inequality constraints. For
example the input and state of the system can be required to satisfy u ∈ U and
x ∈ X, where U ⊂ Rm and X ⊂ Rn are specified constraint sets. The presence of
such constraints makes trajectory generation for nonlinear systems (in general) a
highly nontrivial task, due to the ensuing nonlinearity of the mappings ϒ (·) and
Φ(·) in (2). (In particular, it is typically very difficult, to specify constraint sets for
the flat output variables y in terms of the constraint sets for u and x, respectively, U

and X.)
In this paper, we propose a novel methodology that exploits the flatness parame-

terisation (2) for trajectory generation and the use of the Model Predictive Control
(MPC) strategy for constraints handling. The methodology consists of a trajectory
generator module, that generates a reference trajectory yref(t) with the property that
it satisfies performance objectives (e.g., satisfies given initial and final conditions,
passes through a given set of way-points, etc.). There are points of contact between
some aspects of the approach advocated in this paper and, for example, the work
in [3] where the problem of generation of a reference trajectory for a nonlinear flat
system subject to constraints is formulated as a NonLinear Programming (NLP)
problem. One of the main drawbacks of posing the problem as a NLP optimisation
problem is that, in general, it is very difficult to prove convergence, or convergence
to a global optimum. Hence, in this paper we explore an alternative algorithm for
trajectory generation for nonlinear flat systems, in the presence of constraints, that
is based on the information provided by a model predictive control (MPC) formula-
tion. The approach is, to the best of the authors knowledge, the first attempt to com-
bine the differential flatness formalism with model predictive control techniques in
an iterative algorithm for constrained nonlinear trajectory generation. No proofs of
convergence are available at present, due to the challenging nature of these prob-
lems, and this will be of concern in future work. However, simulation results, as the
ones presented in this paper, are promissory and indicate that the effort of develop-
ing such algorithms and investigating formal proofs of convergence is worthwhile.
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Thus, in the methodology investigated in this paper, the reference trajectory
yref(t) is generated iteratively in accordance with information (predicted in real time)
received from an MPC formulation. That way, the trajectory generator receives
“feedback from the (present and future) constraints” of the system while generating
the desired trajectory. Thus, the proposed method unites two important properties.
Firstly, since the trajectories are generated via the flatness parameterisation (2), with
“feedback from the constraints,” they constitute natural trajectories for the nominal
model to follow. And, secondly, the information generated by an MPC formulation
(via the solution of a Quadratic Programming optimisation, based on the linearised
dynamics around the given reference trajectory) ensures that the system constraints
are taken into account.

2 Flatness and Trajectory Parameterisation

We consider the problem of steering system (1) from an initial state at time t0 to
a final state at time t f . Note that, in a Model Predictive Control context, this fixed
interval problem is one window of a bigger scheme, implemented repeatedly in a
receding horizon fashion. In order to generate a suitable reference trajectory, we
will use a spline parameterisation, as explained in the following sections.

2.1 Parameterisation of Flat Outputs and Their Derivatives

We parameterise each of the flat outputs y j(t), j = 1, . . . ,m, as

y j(t) =
N

∑
i=1

λi(t)Pi j; t ∈ [t0 , t f ], (3)

where λi, i = 1, . . . ,N, is a set of basis functions, which is the same for each flat
output y j. The basis functions are assumed to be λi ∈ C r+1[t0, t f ], i = 1, . . . ,N. This
reduces the problem of characterising a function in an infinite dimensional space
to finding a finite set of parameters Pi j. In a discrete set of M + 1 sampling times,
t0,t1, . . . ,tM = t f , this parameterisation becomes

Yj = G0Pj, (4)

where Yj � [y j(t0),y j(t1), . . . ,y j(t f )]T, Pj � [P1 j, . . . ,PN j]T is a vector containing the
parameters Pi j, i = 1, . . . ,N, defined in (3), and

G0 �

⎡⎢⎣λ1(t0) . . . λN(t0)
...

. . .
...

λ1(t f ) . . . λN(t f )

⎤⎥⎦ (5)

is the basis function matrix (also known as blending matrix). Collecting all the m
flat outputs, we have
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Y �
[
Y1 Y2 . . . Ym

]
=

⎡⎢⎣y1(t0) y2(t0) . . . ym(t0)
...

...
. . .

...
y1(t f ) y2(t f ) . . . ym(t f )

⎤⎥⎦
= G0 ·

[
P1 P2 . . .Pm

]
= G0 P = Y (P),

(6)

where Y is an (M + 1)×m output matrix, G0 is the (M + 1)×N blending matrix,
and P �

[
P1 P2 . . .Pm

]
is an N ×m matrix containing the coefficients Pi j of the

parameterisation (3). The rows of P are m-dimensional vectors called control points.
Furthermore, we can also build the time-derivatives of yi at discrete points in

time, by successively differentiating (3) followed by time-discretisation. Doing this
and using the notation as in (6), we obtain

Y (1) = G1P ; Y (2) = G2P ; Y (3) = G3P ; . . . Y (r+1) = Gr+1P ; (7)

where Y (q) � [Y (q)
1 Y (q)

2 . . . Y (q)
m ], and

Y (q)
j �

⎡⎢⎢⎣
dq

dtq y j(t)
∣∣
t=t0

...
dq

dtq y j(t)
∣∣
t=t f

⎤⎥⎥⎦ ; Gq �

⎡⎢⎢⎣
dq

dtq λ1(t)
∣∣
t=t0

. . . dq

dtq λN(t)
∣∣
t=t0

...
. . .

...
dq

dtq λ1(t)
∣∣
t=t f

. . . dq

dtq λN(t)
∣∣
t=t f

⎤⎥⎥⎦ , (8)

with j = 1, . . . ,m and q = 1, . . . ,r + 1.

2.2 Trajectory Parameterisation Using Splines

Given a reference trajectory parameterised as in (6), Y ref = G0Pref, with specified
reference control points Pref, in this section we will show how to parameterise
variations around that reference trajectory using splines. In this paper, clamped B-
splines [2] are chosen as basis functions which results in the blending matrix G0

having a particular structure. Namely, G0 has only one non-zero element in the first
row (which lies in the first column) and only one non-zero element in the last row
(which lies in the last column). The matrix G1 has two non-zero elements in the first
row (which lie in the first and second column) and two non-zero elements in the
last row (which lie in the last and second-last column). The matrix G2 has a simi-
lar property with three non-zero elements, etc. More properties of B-splines can be
found in, e.g., [2].

Notice from (3) that,

dq

dtq y j(t)
∣∣
t=t0

=
N

∑
i=1

dq

dtqλi(t)
∣∣
t=t0

Pi j, (9)

for q = 0,1, . . . ,r + 1; j = 1, . . . ,m. We can see from (9) and the structure of G0

discussed above that y j(t0) = λ1(t0)P1 j, j = 1, . . . ,m, and hence, by fixing the first
row of P, P1 j = Pref

1 j , j = 1, . . . ,m, the flat outputs at time t0 are fixed and equal to the
corresponding values of the reference trajectory. Fixing more rows of P (up to the
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order of the B-spline) fixes the flat output derivatives at time t0 (e.g. fixing two rows
fixes the first derivatives, three rows fixes the second derivatives, etc.). This property
(made possible by the structure of Gq, q = 0,1, . . . ) can be used to maintain fixed
end-points. For example, prescribed position and first and second order derivatives
of the flat output at times t0 and t f , as in the rest-to-rest case, can be maintained by
holding the ‘external’ control points (the three topmost and the three bottommost
rows of P in Eq. (6)) fixed. This can be achieved by reparameterising P as:

P = Pref +ρP̂; ρ = [0 I 0]T, (10)

where matrix P̂ is an [N−(l1 + l2)]×m matrix that parameterises the deviation from
the ‘internal’ control points of Pref and ρ is an N× [N− (l1 + l2)] matrix with the
l1 top rows set equal to zero, the l2 bottom rows set equal to zero and the identity
matrix of dimension [N− (l1 + l2)]× [N− (l1 + l2)] in the middle.

3 Using MPC to Shape the Reference Trajectory

In this section we will develop an iterative algorithm for trajectory generation for
nonlinear systems, subject to constraints, that is based on information provided by
model predictive control (MPC). The main motivation for resorting to MPC is to ex-
ploit the well-known capabilities for handling constraints of this control technique.
The basic idea is to propose an initial reference trajectory based purely on perfor-
mance considerations, parameterised as in (6), i.e. Y ref,0 = G0Pref,0 (it is assumed
here that an initial set of reference control points Pref,0 is specified), and to then
use an MPC formulation to give information as to how well that trajectory can be
followed in the presence of constraints and, moreover, which parts of the original
trajectory are problematic and should be modified. Then a new reference trajectory
is generated based on a trade-off between the information obtained from MPC (this
information can be regarded as the feedback from the constraints) and the origi-
nal performance specifications. This interplay between performance objectives and
MPC (feedback from constraints) is then iterated, and the challenge is to devise an
algorithm such that the iteration converges to a suitable reference trajectory.

3.1 MPC Formulation

We will assume, for simplicity, that the flat output is given by a (possibly nonlinear)
combination of the states:

y(t) = h
(
x(t)

)
. (11)

Note that, although this is not the most general case for flat systems, many
examples of practical interest satisfy this assumption (e.g., models of cranes, non-
holonomic cars, etc.). Given a specified reference trajectory for the flat output, pa-
rameterised by control points Pref as explained in the preceding section:
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yref
j (t) =

N

∑
i=1

λi(t)Pref
i j ; t ∈ [t0,t f ], (12)

for j = 1, . . . ,m, we compute the corresponding state and input reference tra-
jectories, xref(t) and uref(t), respectively, from (2). Note, in particular, that the
flatness formulation implies that these trajectories satisfy the system’s equation
ẋref(t) = f

(
xref(t),uref(t)

)
. Then, the dynamics of (1) together with the output equa-

tion (11) are linearised along the reference trajectory
(
uref(t),xref(t),yref(t)

)
as fol-

lows: ˙̃x(t) = A(t)x̃(t)+ B(t)ũ(t), ỹ(t) = C(t)x̃(t), where:

ũ(t) � u(t)−uref(t), x̃(t) � x(t)− xref(t), ỹ(t) � y(t)− yref(t), (13)

and A(t) =
(
∂ f/∂x

)∣∣
xref(t),uref(t), B(t) =

(
∂ f/∂u

)∣∣
xref(t),uref(t) and C(t) =(

∂h/∂x
)∣∣

xref(t). The resulting linear time varying system is then discretised in
time, so that the following time varying discrete time system is obtained:

x̃k+1 = Akx̃k + Bkũk, ỹk = Ckx̃k. (14)

In the discretisation (14) we consider a sampling interval Ts � (t f − t0)/M, so that
exactly M sampling intervals fit in the interval of definition of the splines, [t0,t f ].
Moreover, we define a grid of equally spaced sampling times, tk = t0 + kTs, k =
0, . . . ,M. Note that the variables in (14) (cf. (13)) are measured with respect to the
reference trajectory. Thus we will consider an MPC formulation for the time varying
system (14) where the performance objective is regulation to the origin (this will
ensure tracking of the respective reference trajectories).

Given the current state of the plant at time t, x(t), we compute x̃0 � x(t)−xref(t0)
(where xref(t0) is obtained from (12) using (2)). The aim is to find the M-move
control sequence {ũk} � {ũ0, . . . , ũM−1} that minimises the finite horizon objective
function:

VM({x̃k},{ũk},{ỹk}) � 1
2

x̃T
MPx̃M +

1
2

M−1

∑
k=0

ỹT
k Qỹk +

1
2

M−1

∑
k=0

ũT
k Rũk, (15)

subject to the system equations (14) and x̃0 � x(t)− xref(t0), and where P≥ 0, Q≥
0, R > 0, and M is the prediction horizon. Using the standard vectorised notation
x̃ � [x̃T

1 . . . x̃T
M]T, ũ � [ũT

0 . . . ũT
M−1]

T, the cost function (15) can be written in compact
form as:

VM =
1
2

x̃T
0CT

0 QC0x̃0 +
1
2

x̃TQx̃+
1
2

ũTRũ, (16)

where Q � diag{CT
1 QC1, . . . ,CT

M−1QCM−1,P} and R � diag{R, . . . ,R}.
The system’s state evolution from k = 0 to M can be expressed as x̃ =Γ ũ+Ω x̃0,

where Γ and Ω are formed from the system’s Ak and Bk matrices (see, e.g., [4]).
Substituting this expression for x̃ into (16) yields: VM = V̄ + 1

2 ũTHũ+ ũTFx̃0, where
V̄ is a constant term, H � Γ TQΓ + R and F � Γ TQΩ .
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If the problem is constrained, for example with input constraints |u(t)| ≤ umax,
then the solution is obtained from the following quadratic program:

ũopt = [(ũopt
0 )T . . . (ũopt

M−1)
T]T �argmin

ũ

1
2

ũTHũ+ ũTFx̃0

subject to

|uref + ũ| ≤Umax,

(17)

where uref � [(uref(t0))T (uref(t1))T . . .(uref(tM−1))T]T, Umax � [uT
max . . .uT

max]T, and
the absolute value and the inequality are interpreted element-wise. (Other types
of constraints, e.g., state and output constraints, can be incorporated in (17) in a
straightforward manner.)

The corresponding j-th flat output trajectory, j = 1, . . . ,m, obtained by MPC is
computed from the result of (17), using (13) and (14). Using the expression x̃ =
Γ ũ+Ω x̃0, the MPC flat output trajectory can be expressed as:

Y mpc
j � C j

[
x̃0

Γ ũopt +Ω x̃0

]
+Y ref

j , (18)

where Y mpc
j and Y ref

j are the j-th flat output sequences stacked over time [defined

similarly to Yj in (4)], and C j � diag{C0, j, . . . ,CM, j}, where Ck, j is the j-th row of
the time-varying matrix Ck, defined in (14) for k = 0, . . . ,M. In an MPC implemen-
tation, one then applies the first control move obtained in (17), ũopt

0 , and the process
is repeated in a receding horizon fashion. However, in our proposed implementa-
tion (see next subsection) this process is iterated before the actual control input is
applied.

3.2 Iterative Method for Reference Trajectory Generation

In this section we present the iterative algorithm that is proposed in this paper. The
algorithm starts from a set of specified initial control points Pref,0 that parameterise
an initial reference trajectory Y ref,0 = G0Pref,0 which is generated based on perfor-
mance considerations, and then it utilises the information about the effect of the
constraints, provided by the MPC formulation, to update the reference trajectory
through successive sets of control points, Pref,0,Pref,1, . . . ,Pref,k, . . ., etc.

Step 1. Given a set of control points Pref,k ;
Step 2. Compute, from (6), Y ref,k = G0Pref,k;
Step 3. Compute Y mpc,k

j from (12)–(18). Note that Y mpc,k so obtained is a (in general

nonlinear) function of Pref,k, that is, Y mpc,k = G
(
Pref,k

)
.

Step 4. Given Y mpc,k, find the variation of the ‘internal’ control points in the pa-
rameterisation (10), denoted P̂mpc,k, that gives a reference trajectory that is
closest in a least-squares sense to Y mpc,k. Namely,

P̂mpc,k
j =

(
(G0 ρ)TG0ρ

)−1(
G0ρ

)T(
Y mpc,k

j −G0Pref,k
j

)
. (19)
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Step 5. Update the control points according to: Pref,k+1 = Pref,k +ρP̂mpc,k.
Step 6. While (a weighted 2-norm of) the difference

(
Pref,k+1−Pref,k

)
is larger than

a prescribed tolerance level and the maximum number of iterations is not
reached: assign Pref,k ← Pref,k+1 and go to Step 1.

Note from Steps 1–5 that the proposed algorithm implements a recursion Pref,k+1 =
F
(
Pref,k

)
, whose complexity depends predominantly on the (in general, nonlinear)

mapping Y mpc,k = G
(
Pref,k

)
. The convergence properties of the recursive mapping,

Pref,k+1 = F
(
Pref,k

)
, will be investigated in future work.

4 Simulation Example

In this section we will test the previous algorithm on a classical example of a
flat system, a nonholonomic car system. The system is modeled by the equations:
ḋx(t) = u(t)cosθ (t), ḋy(t) = u(t)sinθ (t) and θ̇ (t) = (1/l)u(t) tanϕ(t), where the
state dx(t) is the displacement in the “x-direction”, the state dy(t) is the displacement
in the “y-direction”, the state θ (t) is the angle of the car with respect to the x-axis,
the input u(t) is the velocity of the car, the input ϕ(t) is the angle of the steering
wheels, and l is the distance between the front and the rear wheels. It is straightfor-
ward to determine that the flat output for this system is given by y(t) =

(
dx(t),dy(t)

)
.
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A matrix of initial control points, Pref,0, is chosen so that, together with the param-
eterisation (12) using cubic B-splines λi(t), gives the initial reference trajectory yref,0

shown with a dotted line in Figure 1(a). The control inputs are assumed to be subject
to the constraints u(t) ≤ 0.8 and |ϕ | ≤ 0.45. The inputs corresponding to the ini-
tial reference trajectory yref,0 are shown with dotted lines in Figures 1(c) and (d), far
exceeding the constraint limits. The result after 2, respectively 50, iterations of the al-
gorithm is shown in Figures 1(a), 1(c), and 1(d) with dashed, respectively solid, lines.
Notice that the algorithm produces a final reference trajectory which is close to the
initial reference trajectory and with associated inputs only mildly exceeding the con-
straints. In addition, the initial and final end-point conditions are maintained. A mea-
sure of convergenceof the algorithm,ηk =∑m

j=1(P
ref,k
j −Pref,k-1

j )TGT
0 G0(P

ref,k
j −Pref,k-1

j ),
is shown in Figure 1(b).

5 Conclusion

A novel methodology combining the differential flatness formalism for trajectory
generation of nonlinear systems, and the use of a model predictive control strategy
for constraint handling has been proposed. The methodology consists of a trajectory
generator that generates a reference trajectory parameterised by splines, and with
the property that it satisfies performance objectives. The reference trajectory is gen-
erated iteratively in accordance with information received from the MPC formula-
tion. The performance of the iterative scheme has been illustrated with a simulation
example. Future work will focus on investigating the conditions required to estab-
lish the convergence of the iterative algorithm, and on evaluating its computational
performance for real-time applications.
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Nonlinear Model Predictive Path-Following
Control

Timm Faulwasser and Rolf Findeisen

Abstract. In the frame of this work, the problem of following parametrized refer-
ence paths via nonlinear model predictive control is considered. It is shown how
the use of parametrized paths introduces new degrees of freedom into the con-
troller design. Sufficient stability conditions for the proposed model predictive path-
following control are presented. The method proposed is evaluated via simulations
of an autonomous mobil robot.

Keywords: reference tracking, path-following, nonlinear systems, model predic-
tive control, parametrized reference, stability.

1 Introduction

The design of feedback controllers for dynamical systems is usually subject to one
of the following purposes: either suppress disturbances to stabilize a system around
a fixed reference state via an appropriate input, or influence its dynamic behavior
such that the system states or outputs converge to a time-varying reference sig-
nal. The presence of input and state constraints makes both problems considerably
tougher.

Even in the absence of input and state constraints the controller design for tracking
and tracking-related problems is a non-trivial task, especially for nonlinear systems.
For example the design of output tracking controllers for non-minimum phase sys-
tems is subject to fundamental limits of achieveable tracking performance. These
limits can arise from unstable zero-dynamics of non-minimum phase systems – see
inter alia [12] for details on the linear case and [14] for the nonlinear case –. Recently,
path-following approaches have shown their ability to circumvent these fundamental
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performance limits [1, 15]. Most of the existing methods are based on the idea of us-
ing parametrized reference signals instead of time-dependent reference trajectories.
However, the aforementioned results on path-following are limited, since input and
state constraints are not considered.

One control strategy that allows to take constraints on states and inputs into ac-
count is nonlinear model predictive control (NMPC). In [11] one of the first results
on the application of NMPC to tracking problems is outlined. Robust output feed-
back tracking for time discrete systems is discussed in [8]. [9] presents results on
the tracking of asymptotically constant references for the continuous case. Further-
more, NMPC can be applied to the tracking of non-holonomous wheeled robots as
well, e.g. [6]. All these NMPC approaches towards the tracking problem rely on the
definition of the tracking error as the difference between the output or state and a
time-depending reference. Parametrized references in the context of (N)MPC have
previously been discussed inter alia in [7]. There, tracking of piecewise constant
reference signals is considered. As it will be shown, the use of parametrized refer-
ence signals leads to a control structure which affects both the system inputs and
the evolution of reference signals. Feedback control of reference evolution can be
also considered by applying reference governors. Reference governors, as presented
inter alia in [2, 13], are usually hierarchically structured. An inner control loop stabi-
lizes the system, while an outer loop controls the reference evolution such that input
and state constraints are fulfilled. Unlike these approaches the results presented here
only rely on one control loop.

The contribution of this paper is a scheme for model predictive path-following
control (MPFC) which implements parametrized references into a NMPC setup
while guaranteeing stability. Combining NMPC and the core idea of path-following
leads to additional degrees of freedom in the controller design. These can be uti-
lized to guarantee stability and to achieve better performance. In contrast to other
works on path-following [1, 15], which apply back-stepping techniques to construct
output-feedback controllers, here the results are based on state-feedback.

The remain of this work is structured as follows: Section 2 introduces the
path-following problem and shows how parametrized references can be utilized in
NMPC. Furthermore, results on the stability of the proposed model predictive path-
following control are given. In Section 3 MPFC is applied to a model of a simple
wheeled robot. Section 4 gives final conclusions and remarks.

2 Model Predictive Path-Following Control

Consider a continuous time nonlinear system, subject to input and state constraints:

ẋ = f (x,u), x(0) = x0, (1)

where x ∈X ⊆Rn, u ∈U ⊂Rm. Tracking of system (1) refers to the design of a
controller such that the difference between the system state x(t) and a time-varying
reference signal r(t) vanishes. Furthermore, it has to be guaranteed that the state
x(t) is in the state constraint set X ⊆Rn and that the inputs u(t) are taken out of the
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set of admissible inputs U ⊂ Rm. The tracking problem is often defined in terms of
the time-dependent tracking error:

eT (t) = x(t)− r(t). (2)

Usually, the time-dependent reference signal r(t) is assumed to be generated by an
exo-system. Hence, the tracking problem can be reformulated as a stabilization prob-
lem. Typical applications of tracking are synchronization tasks, movement of robots
or tracking of optimal state trajectories, which have been calculated previously.

Path-following refers to a different problem. Instead of a reference trajectory, a
parametrized reference r(Θ) is considered. This reference is called path and it is
often given by a regular curve in the state space Rn:

r(Θ) : [Θ̂ ,0]⊂ R �→ r(Θ) ∈ R
n, r(0) = 0. (3)

It should be noted that in this paper the path as stated by (3) is negatively
parametrized and ends in the origin. It is assumed that r(Θ) is sufficiently often
continuously differentiable with respect to the parameter Θ . This path formulation
does not distinguish between finitely and infinitely long paths, since the real interval
[Θ̂ ,0] can be mapped onto both. The considered system (1) is subject to constraints,
hence the path has to fulfill the state constraints r(Θ) ∈X for allΘ ∈ [Θ̂ ,0]. A path
is denoted as regular if it is a non-singular curve and for each state x ∈X there ex-
ists a unique path parameter Θ̃ , such that the distance between the path point r(Θ̃ )
and x is minimal. Combining (2) and (3) yields to the path-following error:

eP(t) = x(t)− r(Θ). (4)

Comparing the definition of eP(t) to (2) reveals important differences between track-
ing and path-following. Trajectory tracking implies that the reference signal inheres
an explicit requirement when to be where in the state space. This arises from the
fact that r(t) is a reference trajectory. In path-following these requirements are re-
laxed. In general, the path parameterΘ =Θ(t) is time dependent, but since its time
evolution Θ̇ is not given a priori, it has to be obtained in the controller. Therefore,
the timing law Θ̇ serves as an additional degree of freedom in the design of path-
following controllers.

Typical practical path-following problems are the car-parking problem, autono-
mous ship control, the control of CNC-machines or the control of batch crystalli-
sation processes. In these and many other applications it is desireable to stay very
close to a given path even if this implies slower movement.

Considered Path-Following Problem
In the frame of this work, the subsequently stated path-following problem is consid-
ered. Find a controller, such that the following is satisfied:

P1Path convergence: The path-following error vanishes, lim
t→∞

eP(t) = 0.
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P2Forward motion: The system moves forward in path direction. Θ̇(t) > 0 holds
for all t > 0 and all Θ ∈ [Θ̂ ,0).

P3Constraint satisfaction: The state and input constraints x ∈ X ⊆ Rn, u ∈
U ⊂ Rm are fulfilled.

Proposed Control Strategy
Since a predictive control strategy is considered, predicted states and inputs are re-
ferred as x̄ and ū. At the sampling instants tk = kδ , where δ is the constant sampling
time, the cost functional to be minimized over the prediction horizon TP is given by:

J (x̄, ū,Θ ,v) =
∫ tk+TP

tk
F (x̄, ū,Θ ,v)dτ + E (x̄(tk + TP),Θ(tk + TP)) . (5)

In contrast to standard NMPC approaches, this cost functional does not only
depend on the predicted states and inputs (x̄ and ū) but also on the path parameter
Θ and a to be defined path parameter input v.Θ is regarded as an internal or virtual
state, hence the end penalty E is a function of x̄(tk + TP) and Θ(tk + TP). Similarly,
the stage cost F depends on the variables (x̄, ū,Θ ,v). Nonlinear model predictive
path-following control can then be stated as the repeated solution of the following
open-loop optimal control problem:

minimize
ū(·), v(·)

J (x̄, ū,Θ ,v) (6)

subject to the usual constraints

˙̄x = f (x̄(τ), ū(τ)), x̄(tk) = x(tk), (7a)

∀τ ∈ [tk,tk + TP] : x̄(τ) ∈X , ū(τ) ∈U , (7b)

x̄(tk + TP) ∈ E ⊆X ⊆ R
n. (7c)

The constraint (7c) indicates that at the end of each prediction the predicted state
x̄(tk + TP) has to be in the terminal region E and E ⊆X is a closed subset of Rn.
Additonal path-following constraints must also be respected:

Θ̇ = g(Θ(τ),v(τ)), Θ(tk) = argmin
Θ

‖x(tk)− r(Θ)‖, (8a)

∀τ ∈ [tk,tk + TP] : Θ(τ) ∈ [Θ̂ ,0]⊂ R, v(τ) ∈ V ⊆ R. (8b)

These additional constraints state that the path parameter evolution is given by
Θ̇ = g(Θ ,v), where g is called timing law and v ∈ V is a virtual input which influ-
ences the path parameter evolution. To solve the open-loop control problem at any
sampling instance tk, it is necessary to calculate the path point closest to the sys-
tem state x(tk), since it serves as initial condition for Θ̇ = g(Θ ,v), see (8a). This
initial condition is calculated via an extra minimisation. To ensure that the sys-
tem moves forward along the path, this minimisation is subject to the constraint
Θ(tk) > Θ(tk−1) for all Θ(tk) ∈ [Θ̂ ,0). The timing law g(Θ ,v) in (8a) provides
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an additional degree of freedom in the controller design. This function has to be
chosen such that Θ̇ = g(Θ ,v) > 0 holds for all Θ ∈ [Θ̂ ,0) and all v ∈ V (compare
with requirement P2).

The solution to the optimal control problem defined by (5) – (8) leads to the
optimal input trajectory ū�(t,x(tk)) which defines the input to be applied:

u(t) = ū�(t,x(tk)), t ∈ [tk, tk + δ ]. (9)

It should be noted that the additional virtual input v and the path parameter Θ
are internal variables of the controller. The MPFC algorithm, as defined by (5) –
(9), is a modified NMPC scheme, which chooses the velocity on the path such that
the system stays close to it. Metaphorically speaking, if the system is far away from
the path, first approach the path and then try to follow it along. Considering this
MPFC scheme path convergence is more important than speed. In general, the con-
sidered approach does not lead to the fastest feasible path evolution. In contrast to
the tracking of previously calculated optimal reference trajectories (which might be
time-optimal), the MPFC scheme will iteratively adjust the reference evolution such
that good path convergence is achieved. This online adjustment can be used to com-
pensate disturbances or model-plant mismatch.

Stability
Sufficient conditions to prove the stability of NMPC schemes have been discussed
widely throughout literature, e. g. in [4, 5, 10]. Since the proposed scheme is a
modified NMPC scheme with expanded states and inputs, the following usual as-
sumptions are made [3]:

A1X ⊆ Rn contains the origin in its interior. X is closed and connected.
A2U ⊂ Rm is compact and the origin is contained in the interior of U .
A3 f : Rn×Rm �→Rn is a continuous and locally Lipschitz vector field. Furthermore,

f (0,0) = 0.
A4For all initial conditions in the region of interest and any piecewise continuous

input function u(·) : [0,TP] �→U , (1) has a unique continuous solution.
A5The cost function F : X ×U × [Θ̂ ,0]×V �→ R is continuous and positive defi-

nite in the domain X ×U × [Θ̂ ,0]×V .

Subsequently it is shown that the following additional assumptions are required to
ensure stability of the proposed MPFC scheme:

A6The path r(Θ) is regular and negatively parametrized, such that ∀Θ ∈ [Θ̂ ,0] :
r(Θ) ∈X ⊆ Rn and r(0) = 0 hold.

A7The timing law g(Θ ,v) has equivalent properties as required for f (x,u) in as-
sumptions A3 and A4. Furthermore, ∀ v ∈ V and ∀ Θ ∈ [Θ̂ ,0) : g(Θ ,v) > 0,
where V ⊆ R is compact and 0 ∈ V .

If these conditions are fulfilled, then the following theorem holds.
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Theorem 1 (Stability of Model Predictive Path-Following Control). Consider
the path-following problem for (1) as given by P1–P3 and assume that assumptions
A1–A7 are fulfilled. Suppose that:

(i) The terminal region E × [Θ̂ , 0] is closed and ∀Θ ∈ [Θ̂ ,0] : r(Θ) ∈ E . The ter-
minal penalty E(x,Θ) is continuously differentiable and positive semidefinite.
Furthermore E(0,0) = 0 holds.

(ii)∀(x,Θ) ∈ E × [Θ̂ , 0] there exists a pair of admissible inputs (uE ,vE ) ∈U ×V
such that

∇E(x,Θ) ·
(

f (x,uE )
g(Θ ,vE )

)
+ F

(
x,Θ ,uE ,vE

)≤ 0 (10)

and the solutions of ẋ = f (x,uE ) and Θ̇ = g(Θ ,vE ) starting at (x,Θ)∈E × [Θ̂ ,0]

stay in E × [Θ̂ ,0] for all times.
(iii) The NMPC open-loop optimal control problem is feasible for t0.

Then, for the closed-loop system defined by (1), (5)–(9), the path-following error
eP(t) = x(t)− r(Θ) converges to zero for t → ∞. Furthermore the region of attrac-
tion is given by the set of states for which the open-loop optimal control problem
(5)–(8) has a feasible solution.

The stability conditions contained in Theorem 1 are very similar to wellknown con-
ditions for standard sampled data NMPC and the approach to establish stablity is
very similar to [5, 10]. Hence, only a concise draft of the proof is provided. Mainly
it is shown how the MPFC problem, as given by (5)–(9), can be reformulated such
that it is equal to a standard NMPC problem.

Proof. Consider the following coordinate changes:

y = (x− r(Θ),Θ)T , y ∈ Rn+1

w = (u,v)T , w ∈Rm+1.
(11)

The problem specified by (5) – (8) can be reformulated for the expanded state
and input y and w. In the new coordinates the state to be stabilized is the origin 0 ∈
Rn+1. Hence, the problem is equivalent to a stabilization NMPC problem. Start by
applying the sufficient conditions for nominal stability of NMPC as given inter alia
by [3, 5, 10] to the NMPC problem in y,w-coordinates. This leads to straightforward
conditions on the feasibility of the open-loop optimal control problem at t0 (compare
with (iii)) and the invariance of x andΘ in the terminal region E × [Θ̂ ,0] in (ii). With
respect to the coordinate transformation (11), the sufficient stability condition in y
and w can be reformulated in the orginal coordinates x, u, Θ and v. This approach
directly yields the condition as given in (ii) of Theorem 1.

Theorem 1 implies that the definition of suitable terminal penalties is relaxed in
the MPFC setup compared to a straightforward tracking via NMPC. Starting with
E(x,Θ) = E1(x)+ E2(Θ), the degrees of freedom to choose the timing law g(Θ ,v)
and E2(Θ) can be utilized to assure that (10) holds.
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3 Simulation Results

To illustrate the performance properties of the method proposed, an autonomous
mobil robot in a fixed coordinate frame is considered:(

ẋ1
ẋ2
ẋ3

)
=
(

u1·cos(x3)
u1·sin(x3)

u2

)
. (12)

x1 and x2 refer to the vehicle position in the x1-x2 plane and x3 denotes the yaw
angle. u1 is the velocity of the vehicle and u2 is the time derivative of the ve-
hicles steering angle. The inputs u1,u2 are subject to the contraints (u1,u2)T ∈
U = ([0,12.5], [− π

4 , π4 ])T . For the path-following case the timing law is cho-
sen to be: Θ̇ = −λΘ + 0.6− v, λ = 10−3, v ∈ V = [0,0.6]. The cost func-
tion is given by F(·) = yT Qy + wT Rw, where y and w are taken from (11) and
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Fig. 1 Plot a) shows the motion of the vehicle in the x1–x2 plane for tracking and path-
following. Plot b) depicts the corresponding input signals. Plots c) and d) show state and
reference signals for tracking and path-following
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Q = diag(105,105,105,10), R = diag(10−1,10−2,103). In [6] a NMPC controller,
which solves the tracking task for this system, was presented.

Plot a) of Figure 1 shows the movement of the vehicle (12) for tracking and path-
following. While the projection of the reference trajectory into the x1-x2 plane is
depicted by the thick grey line, the black line marks the vehicle movement when a
NMPC tracking controller is applied. The dashed line shows the movement if the
proposed scheme for predicitve path-following is considered. The triangles indicate
the yaw angle at selected locations. In plot b) of Figure 1 the corresponding input
signals for tracking (solid black lines), path-following (dashed lines) and the con-
sidered input constraints (solid grey lines) are shown.

The reference trajectory in the tracking case of Figure 1 is such that the approach
used by [6] fails, since inputs constraints have to be violated to stay on the reference
trajetory. Metaphorically speaking, the last turn of the reference, as depicted in plot
a) of Figure 1, is too sharp to be realized by an admissible input in the tracking case.
The time plots for all states of (12) are depicted in plots c) and d) of Figure 1. c)
refers to the tracking case, d) shows the path-following results.

The MPFC results, as depicted by the dashed lines in plots a)-d) of Figure 1,
show that the system under MPFC feedback is able to stay on the path. It needs to be
pointed out that the MPFC controller requires less time to accomplished the whole
path, therefore all states for path-following are stabilized at the final path point in
plot d) of Figure 1. Nevertheless path-following slows down the path evolution in
the turns to make the vehicle stay on the path.

The acceleration of the reference evolution in easy sections of the path – as
it can be observed in plot d) of Figure 1 – is a direct consequence of the cho-
sen reference value for the virtual input v. Not in every practical application this
speed-up property might be desired. To avoide this, the reference evolution can
be bounded by choosing the constant reference value for the path parameter input
v such that the corresponding evolution Θ̇ = g(Θ ,v) matches a desired reference
evolution.

4 Conclusions

It has been shown how the main idea of path-following can be implemented into a
NMPC framework. Combining these approaches leads to a control scheme which
computes the evolution of a reference signal and the input signals to follow this
reference at the same time. Sufficient stability conditions for the proposed MPFC
scheme have been presented. To investigate the performance of the method a simple
vehicle has been considered as an example.

Future work will investigate the robustness of the proposed scheme as well as the
robust design. In particular, the differences between the proposed approach and the
tracking of offline calculated optimal trajectories will be discussed.
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A Survey on Explicit Model Predictive Control�

Alessandro Alessio and Alberto Bemporad

Abstract. Explicit model predictive control (MPC) addresses the problem of re-
moving one of the main drawbacks of MPC, namely the need to solve a mathematical
program on line to compute the control action. This computation prevents the appli-
cation of MPC in several contexts, either because the computer technology needed to
solve the optimization problem within the sampling time is too expensive or simply
infeasible, or because the computer code implementing the numerical solver causes
software certification concerns, especially in safety critical applications.

Explicit MPC allows one to solve the optimization problem off-line for a given
range of operating conditions of interest. By exploiting multiparametric program-
ming techniques, explicit MPC computes the optimal control action off line as an
“explicit” function of the state and reference vectors, so that on-line operations re-
duce to a simple function evaluation. Such a function is piecewise affine in most
cases, so that the MPC controller maps into a lookup table of linear gains.

In this paper we survey the main contributions on explicit MPC appeared in the
scientific literature. After recalling the basic concepts and problem formulations of
MPC, we review the main approaches to solve explicit MPC problems, including a
novel and simple suboptimal practical approach to reduce the complexity of the ex-
plicit form. The paper concludes with some comments on future research directions.

Keywords: Model predictive control, explicit solutions, multiparametric program-
ming, piecewise affine controllers, hybrid systems, min-max control.

1 Model Predictive Control

In Model Predictive Control (MPC) the control action is obtained by solving a
finite horizon open-loop optimal control problem at each sampling instant. Each
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optimization yields a sequence of optimal control moves, but only the first move
is applied to the process: At the next time step, the computation is repeated over a
shifted time-horizon by taking the most recently available state information as the
new initial condition of the optimal control problem. For this reason, MPC is also
called receding or rolling horizon control.

The solution relies on a dynamic model of the process, respects all input and out-
put (state) constraints, and optimizes a performance index. This is usually expressed
as a quadratic or a linear criterion, so that, for linear prediction models, the resulting
optimization problem can be cast as a quadratic program (QP) or linear program
(LP), respectively, while for hybrid prediction models, the resulting optimization
problem can be cast as a mixed integer quadratic or linear program (MIQP/MILP),
as will be reviewed in the next sections. The main difference between MPC and con-
ventional control is therefore that in the latter the control function is pre-computed
off-line. The reason for the success of MPC in industrial applications is due to its
ability to handle processes with many manipulated and controlled variables and con-
straints on them in a rather systematic manner.

The process to be controlled is usually modeled by the system of difference
equations

x(t + 1) = f (x(t),u(t)) (1)

where x(t) ∈Rn is the state vector, and u(t)∈Rm is the input vector. We assume for
simplicity that f (0,0) = 0. The control and state sequences are requested to satisfy
the constraints

x(t) ∈X ,u(t) ∈U (2)

where U ⊆Rm and X ⊆ Rn are closed sets containing the origin in their interior1.
Assuming that the control objective is to steer the state to the origin, MPC solves
the constrained regulation problem as follows. Assume that a full measurement of
the state x(t) is available at the current time t. Then, the following finite-horizon
optimal regulation problem is solved

PN(x(t)) : min
z

N−1

∑
k=0

l(xk,uk)+ F(xN) (3a)

s.t. xk+1 = f (xk,uk), k = 0, . . . ,N−1 (3b)

x0 = x(t), (3c)

uk ∈U , k = 0, . . . ,Nu−1 (3d)

xk ∈X , k = 1, . . . ,N−1 (3e)

xN ∈XN , (3f)

uk = κ(xk), k = Nu, . . . ,N−1 (3g)

where z ∈ R
, is the vector of optimization variables, z = [u′0 . . . u′Nu−1]
′, 
 = mNu

(more generally, z includes command inputs and additional optimization variables),

1 Mixed constraints on (x,u) can be treated as well, for instance to handle constraints on
outputs with direct feedthrough y(t) = fy(x(t),u(t)).
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and the choice of the closed set XN ⊆ X , terminal cost F , and terminal gain κ
ensure closed-loop stability of the MPC scheme [54]. At each time-step t, xk denotes
the predicted state vector at time t + k, obtained by applying the input sequence
u0, ..,uk−1 to model (1), starting from x0 = x(t). The number N > 0 is the prediction
horizon, Nu is the input horizon (1 ≤ Nu ≤ N), and “≤” denotes component-wise
inequalities. Because N is finite, if f , l and F are continuous and U is also compact
the minimum in (3a) exists. At each time-step t a solution to problem PN(x(t)) is
found by solving the mathematical program

min
z

h(z,x(t))

s.t. g(z,x(t))≤ 0, g ∈ Rq
(4)

obtained from (3), yielding the optimal control sequence z∗(x(t)). Only the first
input is applied to system (1)

u(t) = u∗0(x(t)) (5)

and the optimization problem (3) is repeated at time t + 1, based on the new state
x(t + 1).

The basic MPC setup (3) can be specialized to different cases, depending on the
prediction model, performance index, and terminal conditions used.

1.1 Linear Model and Quadratic Cost

A finite-horizon optimal control problem (3) with quadratic stage costs is formulated
by setting

l(xk,uk) = x′kQxk + u′kRuk, F(xN) = x′NPxN (6)

in (3a), where Q = Q′ ≥ 0, R = R′ > 0, and P = P′ ≥ 0 are weight matrices of
appropriate dimensions. Let (3b) be a deterministic linear discrete-time prediction
model

f (xk,uk) = Axk + Buk (7)

κ(x) = Kx in (3g), U , X be polyhedral sets, for example U = {u ∈ R
m : umin ≤

u ≤ umax, X = {x ∈ Rn : xmin ≤ x ≤ xmax}, and also XN be polyhedral. Then,
by substituting xk = Akx(t) +∑k−1

j=0 A jBuk−1− j, problem (4) becomes a quadratic
program (QP):

h(z,x(t)) =
1
2

z′Hz+ x′(t)C′z+
1
2

x′(t)Y x(t) (8a)

g(z,x(t)) =Gz−W −Sx(t), (8b)

where H = H ′ > 0 and C, Y , G, W , S are matrices of appropriate dimensions [18].
Note that Y is not really needed to compute z∗(x(t)), it only affects the optimal value
of (8a).
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1.2 Linear Model and Linear Cost

Let ∞- or 1-norms be used to measure performance

l(xk,uk) = ‖Qxk‖p +‖Ruk‖p, F(xN) = ‖PxN‖p, p = 1,∞ (9)

where R ∈ RnR×m, Q ∈ R
nQ×n, P ∈ RnP×n, and use the same setup as described in

Section 1.1. In case of∞-norms, by introducing auxiliary variables εu
0 , . . . , εu

N−1, ε
x
1 ,

. . . , εx
N satisfying εu

k ≥ ‖Ruk‖∞ (k = 0, . . . ,Nu−1), εx
k ≥ ‖Qxk‖∞ (k = 1, . . . ,N−1),

εx
N ≥ ‖PxN‖∞, or, equivalently,

εu
k ≥±Riuk, i = 1, . . . ,nR, k = 0, . . . ,Nu−1
εx

k ≥±Qixk, i = 1, . . . ,nQ, k = 1, . . . ,N−1
εx

N ≥±PixN , i = 1, . . . ,nP

(10)

where the superscript i in (10) denotes the ith row, problem (3) can be mapped into
the linear program (LP) [12]

h(z,x(t)) =[

Nu−1︷ ︸︸ ︷
1 . . . 1 α

N︷ ︸︸ ︷
1 . . . 1

mNu︷ ︸︸ ︷
0 . . . 0]z (11a)

g(z,x(t)) =Gz−W −Sx(t), (11b)

where α = N−Nu + 1 is the number of times the last input move is repeated over
the prediction horizon, z � [εu

0 . . . εu
Nu−1 ε

x
1 . . . εx

N u′0 . . . u′Nu−1]
′ is the optimization

vector, and G, W , S are obtained from weights Q, R, P, model matrices A, B, (10),
constraint sets U , X , XN , and gain K. The case of 1-norms can be treated similarly
by introducing slack variables εu

ik ≥±Riuk, εx
ik ≥±Qixk, εx

iN ≥±PixN .
Note that the above reformulation extends beyond 1/∞-norms to any convex

piecewise affine cost l, F , that, thanks to the result of [62], can be rewritten as
the max of a finite set of affine functions. The use of linear programming in
optimization-based control dates back to the early sixties [60].

1.3 Linear Uncertain Model and Min-Max Costs

Robust MPC formulations [73] explicitly take into account uncertainties in the pre-
diction model

f (xk,uk,wk,vk) = A(wk)xk + B(wk)uk + Evk (12)

where

A(w) = A0 +
q

∑
i=1

Aiwi, B(w) = B0 +
q

∑
i=1

Biwi

wk ∈W ∈ R
nw , vk ∈ V ∈ R

nv

Let vk, wk be modeled as unknown but bounded exogenous disturbances and para-
metric uncertainties, respectively, and W , V be polytopes. A robust MPC strategy
often used consists of solving a min-max problem that minimize the worst-case
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performance while enforcing input and state constraints for all possible distur-
bances. The following min-max control problem is referred to as open-loop con-
strained robust optimal control problem (OL-CROC) [13]

min
u0, ..., uN−1

⎧⎪⎨⎪⎩ max
v0, . . . ,vN−1 ∈ V
w0, . . . ,wN−1 ∈W

N−1

∑
k=0

l(xk,uk)+ F(xN)

⎫⎪⎬⎪⎭
s.t. dynamics (12)

(3d), (3e), (3f) satisfied ∀vk ∈ V , ∀wk ∈W

(13)

The min-max problem (12)–(13) can be solved via linear programming if 1- or ∞-
norms are used [24, 4], or by quadratic programming if quadratic costs are used [56].
Being based on an open-loop prediction, in some cases the approach can be quite
conservative. It is possible to reformulate the robust MPC problem using a closed-
loop prediction scheme as described in [63], whose approach reminds the methods
used in multi-stage stochastic optimization based on scenario trees. An alternative
method in which the min and max problems are interleaved and dynamic program-
ming is used is described in [13] to solve the (closed-loop constrained robust opti-
mal control problem, CL-CROC):

For j = N−1, . . . ,0 solve

J∗j (x j) � min
u j∈U

Jmax, j(x j,u j)

s.t. A(wj)x j + B(wj)u j + Ev j ∈X j+1, ∀v j ∈ V , ∀wj ∈W

where

Jmax, j(x j,u j) � max
v j ∈ V
w j ∈W

{
l(x j,u j)+ J∗j+1(A(wj)x j + B(wj)u j + Ev j)

}
(14)

and

X j =
{

x ∈X : ∃u ∈U such that A(w)x + B(w)u + Ev∈X j+1,∀v ∈ V ,w ∈W
}

(15)
with boundary condition

J∗N(xN) = ‖PxN‖p. (16)

1.4 Hybrid Model and Linear or Quadratic Costs

The MPC setup also extends to the case in which (1) is a hybrid dynamical model.
When the hybrid dynamics and possible mixed linear/logical constraints on discrete
and continuous input and state variables are modeled using the language HYS-
DEL [71], (3b) can be automatically transformed into the set of linear equalities
and inequalities
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f (xk,uk,δk,ζk) = Axk + B1uk + B2δk + B3ζk (17a)

E2δk + E3ζk ≤ E1uk + E4xk + E5, (17b)

involving both real and binary variables, denoted as the Mixed Logical Dynamical
(MLD) model, where xk ∈ R

nc ×{0,1}nb is the state vector, uk ∈ R
mc ×{0,1}mb

is the input vector, and ζk ∈ Rrc , δk ∈ {0,1}rb are auxiliary variables implicitly
defined by (17b) for any given pair (xk,uk). Matrices A, Bi, (i = 1,2,3), and Ei (i =
1, . . . ,5) denote real constant matrices, and inequalities (17b) must be interpreted
component-wise.

The associated finite-horizon optimal control problem based on quadratic costs
takes the form (8) with z = [u′0 ... u′N−1 δ ′0 ... δ ′N−1 ζ ′0 ... ζ ′N−1 ]′ and subject to the fur-
ther restriction that some of the components of z must be binary. The hybrid MPC
problem maps into a Mixed-Integer Quadratic Programming (MIQP) problem when
the quadratic costs (6) are used in (3a) [17], or a Mixed-Integer Linear Program-
ming (MILP) problem when ∞- or 1-norms are used as in (9) [11]. For both prob-
lems very efficient commercial and public domain solvers are available (see, e.g.,
http://plato.asu.edu/bench.html).

1.5 Extensions of the MPC Formulation

Tracking

The basic MPC regulation setup (3) can be extended to solve tracking problems.
Given an output vector y(t) = Cx(t) ∈ Rp and a reference signal r(t) ∈ Rp to track
under constraints (3d)–(3e), the cost function (3a) is replaced by

N−1

∑
k=0

(yk− r(t))Qy(yk− r(t))+Δu′kRΔuk (18)

where Qy = Q′y ≥ 0 ∈ Rp×p is a matrix of output weights, and the increments of

command variables Δuk � uk−uk−1, u−1 � u(t−1), are the new optimization vari-
ables, possibly further constrained by Δumin ≤ Δuk ≤ Δumax. In the above tracking
setup vector [x′(t) r′(t) u′(t− 1)]′ replaces x(t) in (4) and the control law becomes
u(t) = u(t−1)+Δu∗0(x(t),r(t),u(t−1)).

Rejection of Measured Disturbances

In order to take into account measured disturbances v(t) ∈ Rnv entering the system,
one can simply change (3b) into

f (xk,uk) = Axk + Buk + Ev(t) (19)

where v(t) is the most recent available measurement of the disturbance entering
the process, and is supposed constant over the prediction horizon. In this case the
extended vector [x′(t) v′(t)] enters problem (4).

http://plato.asu.edu/bench.html
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Soft Constraints and Time-Varying Constraints

Soft constraints g(z,x(t)) ≤
[

1
...
1

]
ε , ε ≥ 0, are also easily taken into account by

adding a large penalty on ε or ε2 in h(z,x(t)) in (4) and by including the new opti-
mization variable ε in vector z.

Time-varying constraints g(z,x(t)) ≤ γ(t), γ(t) ∈ Rq, t = 0,1, . . ., can be also
immediately taken into account, in this case the optimization problem (4) depends
on both x(t) and γ(t).

2 Explicit Model Predictive Control

The MPC strategies described in Section 1 require running on-line optimization
algorithms to solve the optimization problem (4) at each time-step t, based on the
value of the current state vector x(t) (or, more generally, based on x(t), r(t), u(t−1),
v(t), γ(t)). For this reason, MPC has been traditionally labeled as a technology for
slow processes. Advances in microcontroller and computer technology are progres-
sively changing the concept of “slow”, but still solving (4) on line prevents the
application of MPC in many contexts, even for the simplest case of QP or LP. Com-
putation speed is not the only limitation: the code implementing the solver might
generate concerns due to software certification issues, a problem which is particu-
larly acute in safety critical applications.

The idea of explicit MPC is to solve the optimization problem (4) off-line for all
x(t) within a given set X , that we assume here polytopic

X = {x ∈ R
n : S1x≤ S2} ⊂ R

n (20)

and to make the dependence of u(t) on x(t) explicit, rather than implicitly defined
by the optimization procedure that solves problem (4). It turns out that, as intuited
in [74], such a dependence is piecewise affine in most of the formulations seen in
Section 1, so that the MPC controller defined by (3), (5) can be represented in a
totally equivalent way as

u(x) =

⎧⎪⎨⎪⎩
F1x + g1 if H1x≤ k1

...
...

FMx + gM if HMx≤ kM.

(21)

Consequently, on-line computations are reduced to the simple evaluation of (21),
which broadens the scope of applicability of MPC to fast-sampling applications.
Explicit solutions of the form (21) to MPC problems can be obtained by solving
multiparametric programs.
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2.1 Multiparametric Programming: General Formulation

Consider the following mathematical program

N P(x) : min
z

f (z,x) (22a)

s.t. g(z,x)≤ 0 (22b)

Az+ Bx + d = 0 (22c)

where z ∈ R
 collects the decision variables, x ∈ Rn is a vector of parameters,
f : R
 ×Rn → R is the objective function, g : R
 ×Rn → Rq, A is a qe× 
 real
matrix, B is a qe× n real matrix, and d ∈ Rqe . Problem (22) is referred as a mul-
tiparametric programming problem. We are interested in characterizing the solu-
tion of problem (22) for a given polytopic set X of parameters. The solution of a
multiparametric problem is a triple (V ∗,Z∗,Xf ), where (i) the set of feasible pa-
rameters Xf is the set of all x ∈ X for which problem (22) admits a solution,
Xf = {x ∈ X : ∃z ∈ R
, g(z,x) ≤ 0, Az + Bx + d = 0}; (ii) The value function
V ∗ : Xf → R associates with every x ∈ Xf the corresponding optimal value of (22);

(iii) The optimal set Z∗ : Xf → 2R

associates to each parameter x ∈ Xf the corre-

sponding set of optimizers Z∗(x) = {z ∈R

 : f (z,x) = V ∗(x)} of problem (22); (iv)

An optimizer function z∗ : Xf →R
 associates to each parameter x∈ Xf an optimizer
z ∈ Z∗(x) (Z∗(x) is just a singleton if N P(x) is strictly convex).

Let z be a feasible point of (22) for a given parameter x. The active constraints
are the constraints that fulfill (22b) at equality, while the remaining constraints are
called inactive constraints. The active set A (z,x) is the set of indices of the active
constraints, that is,

A (z,x) � {i ∈ {1, ..,q}|gi(z,x) = 0}.

The optimal active set A ∗(x) is the set of indices of the constraints that are active
for all z ∈ Z∗(x), for a given x ∈ X ,

A ∗(x) � {i|i ∈A (z,x), ∀z ∈ Z∗(x)}.

Given an index set A ⊆ {1, ..,q}, the critical region CRA is the set of parameters
for which the optimal active set is equal to A , that is

CRA � {x ∈ X |A ∗(x) = A }. (23)

The following basic result for convex multiparametric programming was proved
in [50] in the absence of equality constraints:

Lemma 1. Consider the multiparametric problem (22) and let f , and the compo-
nents gi of g be jointly convex functions of (z,x), for all i = 1, ..,q. Then, Xf is a
convex set and V ∗ is a convex function of x.

The result can be easily generalized to the presence of linear equality constraints.
For generic nonlinear functions f , gi, the critical regions CRA and an optimizer
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function z∗ are not easily characterizable, and suboptimal methods have been pro-
posed [38, 15]. Procedures for solving at optimality the multiparametric programs
arising from the MPC problems introduced in Section 1 are described in the follow-
ing sections.

2.2 Multiparametric Quadratic Programming

By treating x(t) as the vector of parameters, the QP problem arising from the linear
MPC formulation of Section 1.1 can be treated as the multiparametric QP (mpQP)

QP(x) : V ∗(x) =
1
2

x′Yx + min
z

1
2

z′Hz+ x′F ′z (24a)

s.t. Gz≤W + Sx. (24b)

In [18], the authors investigated the analytical properties of the mpQP solution, that
are summarized by the following theorem.

Theorem 1. Consider a multiparametric quadratic program with H > 0,
[

H F
F ′ Y

]≥ 0.
The set Xf of parameters x for which the problem is feasible is a polyhedral set, the
value function V ∗ : Xf �→R is continuous, convex, and piecewise quadratic, and the
optimizer z∗ : Xf �→ R
 is piecewise affine and continuous.

The immediate corollary of the above theorem is that the linear MPC approach
based on linear costs described in Section 1.2 admits a continuous piecewise-affine
explicit solution of the form (21).

The arguments used to prove Theorem 1 rely on the first-order Karush-Kuhn-
Tucker (KKT) optimality conditions for the mpQP problem (24)

Hz+ Fx + G′λ = 0 λ ∈ R
q (25a)

λi(Giz−Wi−Six) = 0, i = 1, . . . ,q, (25b)

λ ≥ 0, (25c)

Gz≤W + Sx, (25d)

where the superscript i denotes the ith row. Let us solve (25a) for z,

z =−H−1(G′λ + Fx) (26)

and substitute the result in (25b). Taken any point x0 ∈ Xf (easily determined by a
linear feasibility test on [G −S] [ z

x ]≤W , for instance), solve QP(x0) and determine
the optimal active set A0 = A ∗(x0). Let λ̂ and λ̃ denote the Lagrange multipliers
corresponding to inactive and active constraints, respectively, and assume that the
rows of G̃ are linearly independent. For inactive constraints, set λ̂ ∗(x)= 0. For active
constraints,−G̃H−1G̃′λ̃ −W̃ − S̃x = 0, and therefore set

λ̃ ∗(x) =−(G̃H−1G̃′)−1(W̃ +(S̃+ G̃H−1F)x), (27)
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where G̃, W̃ , S̃ correspond to the set of active constraints, and (G̃H−1G̃′)−1 exists
because the rows of G̃ are linearly independent. Thus, λ ∗(x) is an affine function of
x. By simply substituting λ ∗(x) into (26) it is easy to obtain

z∗(x) = H−1G̃′(G̃H−1G̃′)−1(W̃ +(S̃+ G̃H−1F)x) (28)

and note that z∗ is also an affine function of x. Vector z∗ in (28) must satisfy the
constraints in (25d), and by (25c), the Lagrange multipliers in (27) must remain
non-negative. The set of inequalities defining the critical region CRA0 in the x-space
is hence given by the polyhedron

CRA0 = {x ∈ R
n : Ĝz∗(x)≤ Ŵ + Ŝx, λ̃ ∗(x)≥ 0}. (29)

The critical region CRA0 is the largest set of parameters for which the fixed combi-
nation of constraints A0 is the optimal active set and for which z∗(x) is the optimizer
function, because it satisfies all the KKT conditions (25) together with the dual so-
lution λ ∗(x).

Different algorithms proposed to complete the characterization of the optimal
solution z∗(x) on the remaining set CRrest = X \CRA0 are reviewed below.

In [18] the authors provided an algorithm for exploring CRrest in order to generate
all possible critical regions. The method proceeds recursively by (i) partitioning the
set X ⊆ R

n into a finite number of polyhedra {CRA0 , R1, . . ., RN}, where Ri = {x ∈
X : Aix > Bi, A jx≤ B j, ∀ j < i} and A, B define a minimal representation Ax≤ B of
CRA0 , (ii) computing a new critical region CRi in each region Ri through the KKT
conditions (25), partitioning Ri \CRi, and so on. The procedure terminates when
no more new optimal combinations of active constraints are found. Note that the
number of critical regions for an mpQP problem is upper-bounded by the number
2q of possible combinations of active constraints. Such an upper-bound is usually
very conservative, as most of the combinations are never optimal for any x ∈ X .

A faster method is suggested in [68]. The active set of a neighboring region is
found by using the active set of the current region and the knowledge of the type of
the hyperplane that is crossed. That is, if an hyperplane of type Ĝiz∗(x) ≤ Ŵ i + Ŝix
is crossed, then the corresponding constraint is added to the active set, while if an
hyperplane of type λ̃ ∗i (x)≥ 0 is crossed, the corresponding constraint is withdrawn
from the active set.

The approach described in [5] is based on the idea that neighboring regions of
a given region CR can be determined by stepping out from each facet of CR by a
very small distance2, in order to determine new parameter vectors x around which
to blow a new critical region.

The approaches of [68, 5] implicitly rely on the assumption that the intersection
of the closures of two adjacent critical regions is a facet of both closures, a condi-
tion which is referred to as the facet-to-facet property. Conditions for the property to
hold are provided in [68]. The property is usually satisfied, however an example of

2 This is usually a fixed tolerance. To be exact, a simple mono-parametric QP should be par-
tially solved over a line stemming out of the facet, to avoid missing narrow critical regions.
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non-degenerate mpQP where the facet-to-facet property does not hold is shown
in [65], where the authors suggest to combine the algorithms of [68, 18] to over-
come the issue.

Once the optimizer function z∗ and Xf are found, the explicit MPC controller is
immediately obtained by saving the component u∗0 of z∗. The regions where u∗0(x) is
the same can be combined, provided that their union is polyhedral [16].

An alternative approach was taken in [64], where the authors derive a closed-
form expression for the global, analytical solution to the MPC problem for linear,
time-invariant, discrete-time models with a quadratic performance index and mag-
nitude constraints on the input. The approach exploits the geometric properties of
constrained MPC to obtain global analytic solutions which can be precomputed off-
line. A further approach to determine explicit MPC solutions was suggested inde-
pendently in [42], based on the idea of approximating the constrained LQR problem.

A reverse transformation procedure was introduced in [52] and later refined
in [51] to solve the finite-horizon problem (3) with linear prediction model and
quadratic costs using dynamic programming, by treating each stage of the dynamic
programming recursion as a parametric piecewise quadratic programming problem.

In [53, 55] also suggest reverse transformation to solve mpQP problems arising
from MPC formulations. In particular in [55] the authors presented an algorithm
based on dynamic programming, which explores all the possible solution condi-
tions in such a way that the combinatorial explosion of enumeration of active sets is
avoided.

From a practical viewpoint, the approaches mostly used for solving explicit MPC
based on mpQP are those of [68, 5].

Degeneracy in Multiparametric QP

Definition 1. Given an active set A , the linear independence constraint qualifica-
tion (LICQ) property is said to hold if the set of active constraint gradients are
linearly independent, i.e., the associated matrix G̃ has full row rank.

When LICQ is violated, we refer to as primal degeneracy. In this case the solution
λ̃ ∗(x) may not be uniquely defined (instead, z∗(x) is always unique if H > 0). We
refer to dual degeneracy if the dual problem of (24) is primal degenerate. In this case
the solution z∗(x) may not be unique, so clearly dual degeneracy can only happen if
H ≥ 0, detH = 0. The absence of primal degeneracy ensures the following property
of the value function V ∗ [6]:

Theorem 2. Assume that the multiparametric QP (24) is not primal degenerate.
Then the value function V ∗ is of class C 1.

In [18] the authors suggest two ways to handle primal degeneracy. The first one
is to compute a QR decomposition of G̃, recognize whether the associated critical
region is full-dimensional, and in this case project away the Lagrange multipliers
to get the critical region. The second way consists simply of collecting 
 linearly
independent constraints arbitrarily chosen, and proceed with the new reduced set,
therefore avoiding the computation of projections. Due to the recursive nature of
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the algorithm, the remaining other possible subsets of combinations of constraints
leading to full-dimensional critical regions will be automatically explored later.

A different approach is suggested in [70] for extending the algorithm of [68] to
handle both primal and dual degeneracy. In [43] the authors propose an algorithm for
solving multiparametric linear complementarity (mpLC) problems defined by pos-
itive semidefinite matrices. The approach is rather elegant, as it covers in a unified
way both (degenerate) mpQP and the multiparametric LP case, which is described
in the next Section 2.3.

2.3 Multiparametric Linear Programming

By treating x(t) as the vector of parameters, the linear MPC formulation of Sec-
tion 1.2 can be treated as the multiparametric LP (mpLP)

L P(x) : min
z

c′z (30a)

s.t. Gz≤W + Sx, (30b)

where z ∈ R

 is the optimization vector, x ∈ X ⊂ R

n is the vector of parameters,
c, G, W , S are suitable constant matrices and X is the set of parameters of interest
defined in (20). The following result is proved in [29].

Theorem 3. Consider the mpLP problem (30). Then, the set Xf is a convex polyhe-
dral set, there exists an optimizer function z∗ : Rn → Rl which is a continuous and
piecewise affine function of x, and the value function V ∗ : Rn → R is a continuous,
convex, and piecewise affine function of x.

The first methods for solving parametric linear programs appeared in 1952 in the
master thesis published in [58], and independently in [32]. Since then, extensive
research has been devoted to sensitivity and (multi)parametric analysis, see the ref-
erences in [29] and also [30] for advances in the field. Gal and Nedoma provided the
first method for solving multiparametric linear programs in 1972 [31]. Subsequently,
until the beginning of the new millennium only a few authors [29, 28, 62] have dealt
with multiparametric linear programming solvers. Subsequently, a renewed interest
has arisen, mainly pushed by the application of mpLP in explicit MPC. For a recent
survey on multiparametric linear programming the reader is referred to [44].

The KKT conditions related to the mpLP (30) are

Gz≤W + Sx, (31a)

G′λ = c, (31b)

λ ≥ 0, (31c)

(Giz−Wi−Six)λi = 0, ∀i. (31d)

For a given fixed parameter x0 ∈ X , by solving L P(x0) one finds a solution z∗0, λ ∗0
and defines an optimal set of active constraints A (x0). By forming submatrices G̃,
W̃ , S̃ of active constraints and Ĝ, Ŵ , Ŝ of inactive constraints, as in the mpQP case,
and by assuming G̃ square and full rank, one gets that
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z∗(x) = (G̃−1S̃)x +(G̃−1W̃ ), (32)

is an affine function of x, λ ∗(x)≡ λ ∗(x0) is constant, and the value function

V ∗(x) = (W + Sx)′λ ∗(x0), (33)

is also affine. Eqs. (32)–(33) provide the solution to (30) for all x ∈ X such that

Ĝ((G̃−1S̃)x +(G̃−1W̃ )) < Ŵ + Ŝx, (34)

which defines the polyhedral critical region CRA0 of all x for which the chosen
combination of active constraints A (x0) is the optimal one.

In [31] a critical region is defined as the set of all parameters x for which a
certain basis is optimal for problem (30). The algorithm proposed in [31] for solving
mpLPs generates non-overlapping critical regions by generating and exploring the
graph of bases. In the graph of bases, the nodes represent optimal bases of the given
multiparametric problem and two nodes are connected by an edge if it is possible to
pass from one basis to another by one pivot step (in this case, the bases are called
neighbors).

In [22] the authors proposed a geometric algorithm based on the direct explo-
ration of the parameter space as in [18]. The definition of critical regions in [22]
is not associated with the bases but with the set of active constraints and is related
directly to the definition given in [28, 2].

The approach of [5] is also easily applicable to solve multiparametric linear pro-
grams. The facet-to-facet property however is not always guaranteed to hold also in
mpLP problems. Conditions for ensuring that the property holds are reported in [46]
and depend on degeneracy situations.

Degeneracy in Multiparametric LP

An LP problem (30) is said to be primal degenerate for some x ∈ X if there exists a
z∗ (x)∈ Z∗(x) such that the number of active constraints at the optimizer larger than
the number 
 of optimization variables. In this case more than one basis describes
the optimal primal solution. Dual degeneracy occurs when the dual problem of (30)
is primal degenerate. In this case more than one primal solution z∗(x) is optimal.

Dual degeneracy is undesired in linear MPC formulations based on linear costs
as, depending on the on-line LP solver used, the solution may chatter from one opti-
mizer to another, with consequent stress of the actuators without a real performance
benefit.

Ways to handle degeneracy in mpLP are reported in [22] and in [46].

2.4 Explicit Solution of Min-Max MPC

In [13] the authors proposed an approach based on a combination of multiparametric
linear programming and dynamic programming to obtain solutions to constrained
robust optimal control problems in state feedback form. In particular, the solution
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of closed-loop constrained robust optimal control problems is a piecewise affine
function of the state, obtained by solving N mpLPs, while the solution z∗ to open-
loop constrained robust optimal control problems with parametric uncertainties in
the B matrix only can be found by solving an mpLP. A different approach was taken
in [47] to solve the CL-CROC formulation of [63] through a single (but larger)
mpLP.

For explicit MPC based on linear parameter-varying (LPV) models one could
in principle embed the problem into the robust min-max formulation of [13, 47].
However, this would unavoidably lead to a loss of performance. The ability to mea-
sure the parameter information is exploited in [19] to derive an explicit LPV-MPC
approach also based on dynamic programming and mpLP.

For min-max problems based on quadratic costs, the solution was proved to be
piecewise affine in [61], where the authors also showed that the critical regions were
defined not only by a set of active constraints, but also by a set of active vertices. In
[56] the problem was reformulated as a single mpQP.

2.5 Explicit Solution of Hybrid MPC

As detailed in [11], the MPC formulation based on ∞- or 1-norms subject to the
MLD dynamics (17) can be solved explicitly by treating the optimization problem
associated with MPC as a multiparametric mixed integer linear programming (mp-
MILP) problem.

An algorithm for solving mpMILPs was proposed in [1], based on a branch and
bound procedure in which an mpLP problem is solved at each node of the tree.
In [27] an alternative algorithm was proposed, which only solves mpLPs where the
integer variables are fixed to the optimal value determined by an MILP, instead of
solving mpLP problems with relaxed integer variables. More in detail, the mpMILP
problem is alternatively decomposed into an mpLP and an MILP subproblem. It
is easy to show that the explicit hybrid MPC controller has the form (21), but the
control law u(x) may be discontinuous across neighboring polyhedra [20].

It turns out that mpMILP is not very efficient in practice for solving hybrid MPC
problems based on linear costs explicitly. In addition, good algorithms for multi-
parametric mixed integer quadratic programming (mpMIQP) problems for dealing
with quadratic costs have not yet been proposed in the literature. Better ways to
handle hybrid MPC problems explicitly in the case of linear and quadratic costs use
piecewise affine (PWA) hybrid models. PWA models are defined by partitioning the
space of states and inputs into polyhedral regions and associating with each region
a different linear state-update equation

f (xk,uk) = Aixk + Biuk + fi if

[
xk

uk

]
∈Xi, (35)

where {Xi}s
i=1 is a polyhedral partition of the state+input set. Hybrid systems of

the form (35) can be obtained for instance by converting HYSDEL/MLD models
using the method of [8] or [34].
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In [20] the authors propose an algorithm for computing the solution to prob-
lem (3) with linear or quadratic costs and PWA models. The procedure is based on
dynamic programming (DP) iterations. Multiparametric QPs are solved at each it-
eration, and quadratic value functions are compared to possibly eliminate regions
that are proved to never be optimal. In typical situations the total number of solved
mpQPs (as well as of generated polyhedral regions) grows exponentially with the
prediction horizon N, and may suffer the drawback of an excessive partitioning of
the state space. Nonetheless, the approach is preferable to gridding approaches usu-
ally employed to solve DP problems, especially in the case of nontrivial state-space
dimensions.

A different approach was proposed in [52, 53], where the authors propose a re-
verse transformation procedure to enumerate all possible switching sequences, and
for each sequence convert the PWA dynamics into a time-varying system and solve
an optimal control problem explicitly via mpQP. In [3] the authors propose a re-
lated approach that exploits dynamic programming ideas (more precisely, back-
wards reachability analysis) to obtain all the feasible mode sequences (therefore
avoiding an explicit enumeration of all of them), and that, after solving an mpQP
for each sequence, post-processes the resulting polyhedral partitions to eliminate
all the regions (and their associated control gains) that never provide the lowest
cost, using a DC (Difference of Convex functions) algorithm. A similar algorithm
is also used for explicit hybrid MPC based linear costs in the Hybrid Toolbox for
Matlab [9].

The partition associated with the fully explicit optimal solution to problem (3) in
the hybrid system case may not be polyhedral [20]. In this case, most explicit hybrid
MPC algorithms for quadratic costs keep possible overlapping critical regions (gen-
erated by different mpQPs) and also store either the value function V ∗ or the full
optimizer z∗, so that the optimal MPC move can be determined on-line by compar-
ing the optimal values of all regions (in most cases just one, or a only a few) where
x(t) belongs.

Finally, we mention that for the special class of hybrid models given by linear sys-
tems with quantized inputs u(t) problem (4) maps into a multiparametric nonlinear
integer programming problem, for which a solution algorithm was provided in [7].

3 Reducing Complexity of Explicit MPC

The complexity of the piecewise affine explicit MPC law can be easily assessed
after the MPC optimization problem is pre-solved off-line via the multiparametric
techniques described in the previous sections. For a fixed number of parameters
(states and reference signals), the complexity of the solution is given by the number
M of regions that form the explicit solution (21). The number M mainly depends
(exponentially, in the worst case) on the number q of constraints (and also of binary
variables/system modes in the hybrid case) included in the MPC problem formula-
tion (3), and only mildly on the number n of states. It also depends on the number 

of optimization variables, but mainly because q depends on 
 (consider for instance
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input constraints). In [10, Table I], a table shows such dependencies on random lin-
ear MPC problems. In the multiparametric QP case, an upper-bound to M is 2q,
which is the number of all possible combination of active constraints at optimality.

At the price of a possible loss of closed-loop performance, one way of reducing
complexity is to shorten the prediction horizons (and/or blocking input moves [67])
in order to decrease q and 
. In practice, explicit MPC is limited to relatively small
problems (typically one/two inputs, up to five-ten states, up to three/four free control
moves) but allows one to reach very high sampling frequencies (up to 1 MHz) and
requires a very simple control code to be embedded in the system.

To address such limitations, several attempts have been made in different direc-
tions. Starting with a given piecewise affine solution, in [33] the authors provide an
approach to reduce the number of partitions by optimally merging regions where the
affine gain is the same, so that the original solution is maintained but equivalently
expressed with a minimal number of partitions. However, techniques for achieving
a more drastic reduction of complexity require changing the solution, by accepting
a certain level of suboptimality with respect to the original problem formulation (3).

Suboptimal mpQP solutions were proposed in [14] by relaxing the KKT condi-
tions, such as nonnegativity of optimal dual variables. For explicit MPC controllers
based on linear costs, a quite efficient “beneath/beyond” approximate mpLP algo-
rithm has been proposed in [44]. In [40, 39] the authors propose recursive rectangu-
lar partitions of the parameter space to determine a suboptimal solution to general
classes of multiparametric programming problems. Simplicial recursive partitions
are instead proposed in [15] for general classes of nonlinear multiparametric pro-
grams that are jointly convex with respect to optimization variables and parameters,
used in [57] for solving robust MPC formulations explicitly in approximate form.
Rather than looking directly at the multiparametric programming problem, in [36]
the authors propose to change the MPC formulation by recursively solving a se-
quence of simpler explicit MPC problems with horizon N = 1, where the terminal
set XN is varied at each iteration and obtained from the previous iteration. A re-
lated approach is given in [35] for PWA systems, which leads to minimum-time
controllers. Based on a dynamic programming formulation of the finite-horizon op-
timal control problem, in [49] the authors propose an approach to relax optimality
within a prescribed bound in favor of the reduced complexity of the solution, which
in the case of linear systems and piecewise affine convex costs leads to another form
of computing approximate mpLP solutions. In the hybrid case, suboptimal solutions
can be simply obtained by constraining the sequence of switching modes a priori,
like for example has been proposed in [37], and then applying any of the solution
methods proposed in Section 2.5.

More recently, authors have realized that a different way of obtaining suboptimal
explicit MPC solutions is to avoid storing a full partition, by keeping only a subset
of critical regions. For treating large MPC problems, in [59] the authors suggest the
partial enumeration of the possible combinations of active constraints at optimality,
so that the solution can be searched on line (explicitly or implicitly) within that
small subset. An off-line training session of simulations is suggested to identify the
subset of most important combinations of active constraints. In [26], the authors also
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suggest to remove combinations of active constraints repeatedly, as long as closed-
loop stability of the suboptimal solution is preserved. The drawback of the approach
is that it need to start from the full exact solution, which may be very expensive to
compute. A different novel approach which has analogies with both [59] and [26] is
described below.

3.1 A Novel Practical Approach for Reducing Complexity of
Explicit MPC

Under the assumption that only input constraints and soft state constraints can be
enforced, given a maximum number L of regions accepted in the suboptimal solu-
tion, the proposed approach can be summarized as follows:

Off-line computations

1. Run extensive simulations of closed-loop MPC (using on-line QP evaluations)
from several initial conditions and for several references and disturbances, as
in [59]. Collect the L most recurrent combinations of active constraints I1, I2, . . .,
IL at optimality. Alternatively, if a full explicit solution is available, pick up the
L regions with largest Chebychev radius.

2. Generate the corresponding critical regions CR1, CR2, . . ., CRL, where CRi = {x :
Hix≤ Ki}.

On-line computations

Let x = x(t) be the current state (or, more generally, the current parameter vector
including also r(t), u(t−1), v(t), γ(t)).

1. Compute βi(x) = max j{H j
i x−K j

i }, that is the maximum violation of a facet
inequality3, for all regions j = 1, . . . ,L;

2. Let h ∈ {1, . . . ,L} such that βh(x) = mini=1,...,L βi(x);
3. If βh(x)≤ 0, then x ∈CRh and u(x) = Fhx + gh; stop;
4. Otherwise all βi(x) > 0, and either compute the average

ū(x) =

(
∑

i=1,...,L

1
βi(x)

)−1

∑
i=1,...,L

1
βi(x)

(Fix + gi) (36a)

or extrapolate the solution from the critical region CRh corresponding to the least
violation βh(x)

ū(x) = Fhx + gh (36b)

3 Alternatively, one can compute the largest distance of x from a violated facet half-space

βi(x) = max j{ H j
i x−K j

i√
H j

i (H j
i )′
}.
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5. Create a suboptimal input move by saturating u(x) = sat ū(x), where sat is a suit-
able saturation function (for instance, the standard saturation function in case U
is the box {u ∈Rm : umin ≤ u≤ umax} and X = Rn).

Note that the procedure is very general, as it can be applied to any of the MPC
formulations described in Section 1, and in particular to linear and hybrid MPC with
linear or quadratic costs4. While stability properties of the suboptimal solution can
only be checked a posteriori, contrary to [59] the number of regions is bounded
a priori, and off-line computations are much simpler, as numerical manipulations
over the exact full partition are not required. Note that for a given reduced partition
and a set X of parameters of interest as defined in (20), the largest minimal vio-
lation βmax = maxx∈X βh(x) can be computed by solving the mixed-integer linear
programming problem

βmax = max
x,ε,{δ j

i }
ε

s.t. [δ j
i = 1]↔ [H j

i x≤ K j
i + 1ε], ∀ j = 1, . . . ,ni, ∀i = 1, . . . ,L

∑ni
j=1 δ

j
i ≤ ni−1

δi ∈ {0,1}ni, ∀i = 1, . . . ,L
S1x≤ S2

(37)
where ni = dim(Ki) is the number of inequalities defining the ith critical region,
superscript j denotes the jth row or component, and 1 is a vector of all ones. Note
that, as the aim is to have L very small, the number ∑L

i=1 ni of binary variables in
the MILP (37) is also small. The quantity βmax can be used as a tuning parameter to
decide the number L of regions to include in the suboptimal explicit MPC controller.

An Example

Consider the double integrator example described in [18, Example 7.3] with N =
Nu = 8, but with the different sampling time Ts = 0.1. The exact explicit solution,
computed in about 3 s on a Laptop PC Intel Core Duo 1.2 GHz using the Hybrid
Toolbox for Matlab [9], consists of M = 99 regions and is depicted in Figure 1(a),

The solution with L = 3 regions reported in Figure 1(b), corresponds to ε =
1.4661 in (37) and leads to the closed loop trajectories of Figure 1(c), obtained by
averaging as in (36a).

For the hybrid explicit MPC controller described in [23, Figure 6b], which con-
sists of 671 regions, experiments have shown that, after simulation training, the
suboptimal approach described above with L = 60 regions leads to almost indistin-
guishable closed-loop MPC trajectories.

4 In case of hybrid MPC based on quadratic costs, polyhedral critical regions may be over-
lapping. In this case, the explicit form of the cost function V (x) on those regions must be
also taken into account, in order to define a value for ū(x) that penalizes both a large β (x)
and a large cost V (x).
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(a) Exact explicit MPC con-
troller

(b) Reduced partition and exact
(♦) vs. suboptimal (∗) closed-
loop state trajectories
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(c) Exact (solid) vs. suboptimal (dashed) closed-loop trajectories

Fig. 1 Exact and suboptimal explicit MPC controller (L = 3)

4 Implementation of Explicit MPC

The explicit MPC solution (21) pre-computed off-line is a lookup table of linear
feedback gains. The right gain is selected on-line by finding the region {x : Hix≤ ki}
of the polyhedral partition where the current state x(t) (or, more generally, the cur-
rent vector of parameters) lies. This problem has been referred to as point-location
problem. The most simple solution is to store all the M polyhedra of the partition
and on-line search through them until the right one is found. While this procedure
is extremely easy to implement in a computer code, more efficient ways have been
proposed for evaluating explicit MPC controllers, which become appealing when
the number M of regions is large.

By exploiting the properties of multiparametric linear and quadratic solutions,
in [6] two new algorithms are proposed that avoid storing the polyhedral regions,
significantly reducing the on-line storage demands and computational complexity
of the evaluation of control. In [69] the authors suggest to organize the hyperplanes
defining the regions on a binary search tree (possibly further subdividing some of
the regions), so that the time to locate the state vector on-line within the partition
becomes logarithmic in the number of stored cells and memory space is saved. For
the multiparametric linear case, another method is given in [45], where additively
weighted nearest neighbour search ideas are used to solve the point location problem
logarithmically in the number N of regions. Assuming that a bound between the
evolution of the real process and the prediction model is known, in [66] the authors
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suggest to limit the point location problem only to those regions that are reachable
in one time step from the currently active one. In [25] the authors propose a search
tree algorithm based on bounding boxes and interval trees. A subdivision walking
method is proposed in [72].

From the hardware synthesis viewpoint, [41] showed that explicit MPC solutions
can be implemented in an application specific integrated circuit (ASIC) with about
20,000 gates, leading to computation times in order of 1 μs.

Whether the explicit form (21) is preferable to the one based on on-line opti-
mization depends on available CPU time, data memory, and program memory (see
e.g. [10, Table II] for a comparison in the linear quadratic case).

5 Tools for Explicit MPC

The Hybrid Toolbox for Matlab [9] allows one to design explicit MPC control laws
for linear and hybrid systems. Various functions for the design, visualization, simu-
lation, and C-code generation of explicit MPC controllers are provided. Similar and
other functionalities can be found in the Multi Parametric Toolbox for Matlab [48].

6 Explicit MPC in Applications

Industrial problems addressed through explicit MPC techniques have been reported
in dozens of technical papers, starting from what is probably the first work in this do-
main [21]. The most suitable applications for explicit MPC are fast-sampling prob-
lems (in the order of 1-50 ms) and relatively small size (1-2 manipulated inputs,
5-10 parameters). Most of the applications of explicit MPC have been reported in
the automotive domain and electrical power converters.

7 Conclusions

At the time of writing this survey, exact explicit characterizations of MPC for lin-
ear and hybrid systems have been quite well studied. Efficient algorithms exist to
compute solutions to multiparametric linear and quadratic programming problems
and explicit control laws, and Matlab toolboxes are available to let control engineers
apply these ideas in practical applications. Nonetheless, the field is far from being
mature. The clear limitation of exact explicit MPC solutions is that the number of re-
gions composing the solution grows massively with the size of the problem (mainly
with the number of constraints in the MPC problem).

Future research efforts should therefore pursue three main directions. First, new
suboptimal methods that allow trading off between loss of closed-loop performance
and number of partitions are needed; the whole concept of looking for optimal open-
loop performance is actually weak, as the MPC cost function is usually chosen by
trial and error. Second, PWA solutions are not necessarily the best way to define
suboptimal MPC laws, other piecewise-nonlinear ways of defining the solution may
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lead to more compact representations; in this respect, links to nonlinear approx-
imation approaches could be sought to approximate samples of the MPC control
profile computed through (4) within guaranteed error bounds. Third, semi-explicit
methods should be also sought, in order to pre-process of line as much as possible
of the MPC optimization problem without characterizing all possible optimization
outcomes, but rather leaving some optimization operations on-line.
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Explicit Approximate Model Predictive Control
of Constrained Nonlinear Systems with
Quantized Input

Alexandra Grancharova and Tor A. Johansen

Abstract. In this paper, a Model Predictive Control problem for constrained nonlin-
ear systems with quantized input is formulated and represented as a multi-parametric
Nonlinear Integer Programming (mp-NIP) problem. Then, a computational method
for explicit approximate solution of the resulting mp-NIP problem is suggested.
The proposed approximate mp-NIP approach is applied to the design of an explicit
approximate MPC controller for a clutch actuator with on/off valves.

Keywords: MPC, multi-parametric Nonlinear Integer Programming.

1 Introduction

In several control engineering problems, the system to be controlled is characterized
by a finite set of possible control actions. Such systems are referred to as systems
with quantized control input and the possible values of the input represent the lev-
els of quantization. For example, hydraulic systems using on/off valves are systems
with quantized input. In order to achieve a high quality of the control system per-
formance it would be necessary to take into account the effect of the control input
quantization. Thus, in [8] receding horizon optimal control ideas were proposed
for synthesizing quantized control laws for linear systems with quantized inputs
and quadratic optimality criteria. Further in [1], a method for explicit solution of
optimal control problems with quantized control input was developed. It is based
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on solving multi-parametric Nonlinear Integer Programming (mp-NIP) problems,
where the cost function and the constraints depend linearly on the vector of pa-
rameters. In this paper, a Model Predictive Control (MPC) problem for constrained
nonlinear systems with quantized input is formulated and represented as an mp-NIP
problem. Then, a computational method for explicit approximate solution of the re-
sulting mp-NIP problem is suggested. The benefits of the explicit solution consist
in efficient on-line computations using a binary search tree and verifiability of the
design and implementation. The mp-NIP method proposed here is more general
compared to the mp-NIP method in [1], since it allows the cost function and the
constraints to depend nonlinearly on the vector of parameters.

In the paper, A 0 means that the square matrix A is positive definite. For x∈Rn,
the Euclidean norm is ‖x‖=

√
xT x and the weighted norm is defined for some sym-

metric matrix A 0 as ‖x‖A =
√

xT Ax.

2 Formulation of Quantized Nonlinear Model Predictive
Control Problem

Consider the discrete-time nonlinear system:

x(t + 1) = f (x(t),u(t)) (1)

y(t) = Cx(t), (2)

where x(t) ∈Rn is the state variable, y(t) ∈Rp is the output variable, and u(t) ∈Rm

is the control input, which is constrained to belong to the finite set of values UA =
{u1,u2, ... ,uL}, ui ∈ Rm, ∀i = 1,2, ... ,L, i.e. u ∈UA. Here, u1,u2, ... ,uL represent
the levels of quantization of the control input u. In (1), f : R

n×UA �−→ R
n is a

nonlinear function.
We consider a reference tracking problem where the goal is to have the output

variable y(t) track the reference signal r(t) ∈ Rp. Suppose that a full measurement
of the state x(t) is available at the current time t. For the current x(t), the reference
tracking quantized NMPC solves the following optimization problem:

Problem P1

V ∗(x(t),r(t)) = min
U∈UB

J(U,x(t),r(t)) (3)

subject to xt|t = x(t) and:

ymin ≤ yt+k|t ≤ ymax, k = 1, ... ,N (4)

ut+k ∈UA = {u1,u2, ... ,uL}, k = 0,1, ... ,N−1 (5)∥∥yt+N|t − r(t)
∥∥≤ δ (6)

xt+k+1|t = f (xt+k|t ,ut+k), k ≥ 0 (7)

yt+k|t = Cxt+k|t , k≥ 0 (8)
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Here, U = [ut ,ut+1, ... ,ut+N−1] ∈ RNm is the set of free control moves, UB =
(UA)N = UA× ... ×UA and the cost function is given by:

J(U,x(t),r(t)) =
N−1

∑
k=0

[∥∥yt+k|t − r(t)
∥∥2

Q
+
∥∥h(xt+k|t ,ut+k)

∥∥2
R

]
+
∥∥yt+N|t − r(t)

∥∥2
P

(9)

Here, N is a finite horizon and h : Rn×UA �−→ Rs is a nonlinear function. It is
assumed that P,Q,R  0. From a stability point of view it is desirable to choose δ
in (6) as small as possible. However, in the case of quantized input, the equilibrium
point of the closed-loop system may either have an offset from the reference, or
there may be a limit cycle about the reference. Therefore, the feasibility of (3)–(9)
will rely on δ being sufficiently large. A part of the NMPC design will be to address
this tradeoff. We introduce an extended state vector:

x̃(t) = [x(t), r(t)] ∈ R
ñ, ñ = n + p (10)

Let x̃ be the value of the extended state at the current time t. Then, the optimization
problem P1 can be formulated in a compact form as follows:

Problem P2

V ∗(x̃) = min
U∈UB

J(U, x̃) subject to G(U, x̃)≤ 0 (11)

The quantized NMPC problem defines a multi-parametric Nonlinear Integer Pro-
gramming problem (mp-NIP), since it is a Nonlinear Integer Programming prob-
lem in U parameterized by x̃. An optimal solution to this problem is denoted
U∗ = [u∗t ,u∗t+1, ... ,u

∗
t+N−1] and the control input is chosen according to the receding

horizon policy u(t) = u∗t . Define the set of N-step feasible initial states as follows:

Xf = {x̃ ∈R
ñ |G(U, x̃)≤ 0 for some U ∈UB} (12)

If δ in (6) is chosen such that the problem P1 is feasible, then Xf is a non-empty set.
In parametric programming problems one seeks the solution U∗(x̃) as an explicit

function of the parameters x̃ in some set X ⊆ Xf ⊆ Rñ [2]. In this paper we sug-
gest a computational method for constructing an explicit piecewise constant (PWC)
approximate solution of the reference tracking quantized NMPC problem.

3 Approximate mp-NIP Approach to Explicit Quantized NMPC

3.1 Computation of Feasible PWC Solution

Definition 1 (Feasibility on a discrete set)
Let X̄ ⊂ Rñ be a hyper-rectangle and VX̄ = {v1,v2, ... ,vQ} ⊂ X̄ be a discrete set. A
function U(x̃) is feasible on VX̄ if G(U(vi),vi)≤ 0, i ∈ {1,2, ... ,Q}.
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We restrict our attention to a hyper-rectangle X ⊂ Rñ where we seek to approx-
imate the optimal solution U∗(x̃) to problem P2. We require that the state space
partition is orthogonal and can be represented as a k−d tree. The main idea of the
approximate mp-NIP approach is to construct a feasible on a discrete set piecewise
constant (PWC) approximation Û(x̃) to U∗(x̃) on X , where the constituent constant
functions are defined on hyper-rectangles covering X . The solution of problem P2 is
computed at the 2ñ vertices of a considered hyper-rectangle X0, as well as at some
interior points. These additional points represent the vertices and the facets centers
of one or more hyper-rectangles contained in the interior of X0. The following pro-
cedure is used to generate a set of points V0 = {v0,v1,v2, ... ,vN1} associated to a
hyper-rectangle X0:

Procedure 1 (Generation of set of points)
Consider any hyper-rectangle X0 ⊆ X with vertices Λ0 = {λ 0

1 ,λ 0
2 , ... ,λ 0

Nλ
} and

center point v0. Consider also the hyper-rectangles X j
0 ⊂ X0, j = 1,2, ... ,N0 with

vertices respectively Λ j = {λ j
1 ,λ j

2 , ... ,λ j
Nλ
}, j = 1,2, ... ,N0. Suppose X1

0 ⊂ X2
0 ⊂

... ⊂ XN0
0 . For each of the hyper-rectangles X0 and X j

0 ⊂ X0, j = 1,2, ... ,N0, denote

the set of its facets centers with Φ j = {φ j
1 ,φ j

2 , ... ,φ j
Nφ
}, j = 0,1,2, ... ,N0. Define

the set of all points V0 = {v0,v1,v2, ... ,vN1}, where vi ∈
{

N0⋃
j=0

Λ j

}⋃{ N0⋃
j=0

Φ j

}
,

i = 1,2, ... ,N1.

A close-to-global solution U∗(vi) of problem P2 at a point vi ∈ V0 is computed by
using the routine ’glcSolve’ of the TOMLAB optimization environment in Matlab
[4]. The routine ’glcSolve’ implements an extended version of the DIRECT algo-
rithm [5], that handles problems with both nonlinear and integer constraints. The
DIRECT algorithm (DIviding RECTangles) [5] is a deterministic sampling algo-
rithm for searching for the global minimum of a multivariate function subject to
constraints, using no derivative information. It is a modification of the standard Lip-
schitzian approach that eliminates the need to specify a Lipschitz constant.

Based on the close-to-global solutions U∗(vi) at all points vi ∈ V0, a local con-
stant approximation Û0(x̃) = K0 to the optimal solution U∗(x̃), feasible on the set V0

and valid in the whole hyper-rectangle X0, is determined by applying the following
procedure:

Procedure 2 (Computation of explicit approximate solution)
Consider any hyper-rectangle X0 ⊆ X with a set of points V0 = {v0,v1, ... ,vN1} de-
termined by applying Procedure 1. Compute K0 by solving the following NIP:

min
K0∈UB

N1

∑
i=0

(J(K0,vi)−V ∗(vi)) subject to G(K0,vi)≤ 0 , ∀vi ∈V0 (13)
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3.2 Estimation of Error Bounds

Suppose that a constant function Û0(x̃) = K0 that is feasible on V0 ⊂ X0 has been de-
termined by applying Procedure 2. Then, for the cost function approximation error
in X0 we have:

ε(x̃) = V̂ (x̃)−V ∗(x̃)≤ ε0 , x̃ ∈ X0 (14)

where V̂ (x̃) = J(Û0(x̃), x̃) is the sub-optimal cost and V ∗(x̃) denotes the cost corre-
sponding to the close-to-global solution U∗(x̃), i.e. V ∗(x̃) = J(U∗(x̃), x̃). The follow-
ing procedure can be used to obtain an estimate ε̂0 of the maximal approximation
error ε0 in X0.

Procedure 3 (Computation of error bound approximation)
Consider any hyper-rectangle X0 ⊆ X with a set of points V0 = {v0,v1, ... ,vN1} de-
termined by applying Procedure 1. Compute an estimate ε̂0 of the error bound ε0

through the following maximization:

ε̂0 = max
i∈{0,1,2, ... ,N1}

(V̂ (vi)−V ∗(vi)) (15)

3.3 Approximate mp-NIP Algorithm

Assume the tolerance ε̄ > 0 of the cost function approximation error is given.
The following algorithm is proposed to design explicit reference tracking quantized
NMPC:

Algorithm 1 (explicit reference tracking quantized NMPC)

1. Initialize the partition to the whole hyper-rectangle, i.e. Π = {X}. Mark the
hyper-rectangle X as unexplored.

2. Select any unexplored hyper-rectangle X0 ∈Π . If no such hyper-rectangle exists,
terminate.

3. Generate a set of points V0 = {v0,v1,v2, ... ,vN1} associated to X0 by applying
Procedure 1.

4. Compute a solution to problem P2 for x̃ fixed to each of the points vi , i =
0,1,2, ... ,N1 by using routine ’glcSolve’ of TOMLAB optimization environ-
ment. If problem P2 has a feasible solution at all these points, go to step 6.
Otherwise, go to step 5.

5. Compute the size of X0 using some metric. If it is smaller than some given toler-
ance, mark X0 infeasible and explored and go to step 2. Otherwise, split X0 into
hyper-rectangles X1, X2, ... , XNs by applying the heuristic rule 1 from [3]. Mark
X1, X2, ... , XNs unexplored, remove X0 from Π , add X1, X2, ... , XNs to Π , and go
to step 2.

6. Compute a constant function Û0(x̃) using Procedure 2, as an approximation to be
used in X0. If no feasible solution was found, split X0 into two hyper-rectangles
X1 and X2 by applying the heuristic rule 3 from [3]. Mark X1 and X2 unexplored,
remove X0 from Π , add X1 and X2 to Π , and go to step 2.
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7. Compute an estimate ε̂0 of the error bound ε0 in X0 by applying Procedure 3. If
ε̂0 ≤ ε̄ , mark X0 as explored and feasible and go to step 2. Otherwise, split X0

into two hyper-rectangles X1 and X2 by applying Procedure 4 from [3]. Mark X1

and X2 unexplored, remove X0 from Π , add X1 and X2 to Π , and go to step 2.

4 Explicit Quantized NMPC of an Electropneumatic Clutch
Actuator Using On/Off Valves

Here, a pneumatic actuator of an electropneumatic clutch system is considered. The
pneumatic actuator acts on the clutch plates through the clutch spring, and the state
of the clutch directly depends on the actuator position. The actuator is controlled
by using on/off valves. In comparison to proportional valves, the on/off valves are
smaller and cheaper. In [7], [9] the case when only fully open and closed are possible
states of the valves is considered. Then, a controller is designed to govern switches
between these states based on backstepping and Lyapunov theory. It should be noted
however, that the methods in [7], [9] can not explicitly handle the constraints im-
posed on the clutch actuator position. On the other hand, Model Predictive Control
(MPC) is an optimization based method for control which can explicitly handle
both state and input constraints. This makes the MPC methodology very suitable to
the optimal control of the clutch actuator. The fast dynamics of the clutch actuator,
characterized with sampling time of about 0.01 [s] requires the design of an explicit
MPC controller, where the only computation performed on-line would be a simple
function evaluation.

4.1 Description of the Electropneumatic Clutch Actuator

The clutch actuator system is shown in Figure 1. To control both supply to and exhaust
from the clutch actuator chamber, at least one pair of on/off valves are needed. As we
only allow these to be fully open or closed, with two valves and under the assumption

Electronic
Control Unit 

(ECU)

wv

Exhaust
valve

Supply
valve

P0

PS

control
signals

Fig. 1 Electropneumatic clutch actuator ([6], [9])
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of choked flow, we restrict the flow of the clutch actuator to three possible values:
maximum flow into the volume, maximum flow out of the volume, or no flow [7],
[9]. The electronic control unit (ECU) calculates and sets voltage signals to control
the on/off valves. These signals control whether the valve should open or close, and
thus also the flow into the actuator. A position sensor measures position and feeds it
back to the ECU. To calculate the control signals, knowledge of other states of the
system are also needed, and these can be obtained either by sensors or by estimation.
The full 5-th order model of the clutch actuator dynamics is the following [6]:

ẏ = v (16)

v̇ =
1
M

(A0P0 + AApA−AB pB− f f (v,z)− fl(y)) (17)

ṗA =− AA

VA(y)
vpA +

RT0

VA(y)
wv(pA,u) (18)

ṗB =
AB

VB(y)
vpB +

RT0

VB(y)
wr(pB) (19)

ż = v− Kz

FC
|v|qz (20)

where y is the position, v is the velocity, pA is the pressure in chamber A, pB is the
pressure in chamber B, z is the friction state, wv(pA,u) is the flow to/from chamber
A, wr(pB) is the flow to/from chamber B, u is an integer control variable introduced
below, and VA(y) and VB(y) are the volumes of chambers A and B. The meaning
of the parameters is the following: AA and AB are the areas of chambers A and B,
A0 = AB−AA is piston area, M is piston mass, P0 is the ambient pressure, T0 is the
temperature, R is the gas constant of air, Kz is asperity stiffness, FC is Coulomb fric-
tion. In (20), |v|q =

√
v2 +σ2, where σ > 0 is an arbitrary small design parameter.

In (17), fl(y) and f f (v,z) are the clutch load and the friction force, described by:

fl(y) = Kl(1− e−Lly)−Mly , f f (v,z) = Dvv + Kzz+ Dżż(v,z) (21)

An integer control variable u ∈UA = {1,2,3} is introduced which is related to the
flow wv(pA,u) to/from chamber A in the following way:

u = 1⇒ wv(pA,1) =−ρ0Cv,outψ(r,Bv,out)pA , r =
P0

pA
(22)

u = 2⇒ wv(pA,2) = 0 (23)

u = 3⇒ wv(pA,3) = ρ0Cv,inψ(r,Bv,in)PS , r =
pA

PS
(24)

In (24), PS is the supply pressure. Therefore, u = 1 corresponds to maximal flow
from chamber A, u = 2 means no flow, and u = 3 corresponds to maximal flow to
chamber A. The expressions for the valve flow function ψ(r,Bv,in/out), as well as for
the flow wr(pB) to/from chamber B can be found in [6].
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4.2 Design of Explicit Quantized NMPC

In order to reduce the computational burden, the design of the explicit quantized
NMPC controller is based on a simplified 3-rd order model of the clutch actuator,
where the states are the actuator position ys, the velocity vs and the pressure ps

A in
chamber A:

ẏs = vs (25)

v̇s =
1
M

(−AAP0 + AAps
A− f ∗f (v

s)− fl(ys)) (26)

ṗs
A =− AA

VA(ys)
vs ps

A +
RT0

VA(ys)
wvs(ps

A,u) (27)

In (26), f ∗f (v
s) = Dvvs +FC

vs√
vs2+σ2

is a static sliding friction characteristic [6]. The

system (25)–(27) is discretized using a sampling time Ts = 0.01 [s] and zero-order
hold (the control input is assumed constant over the sampling interval). The forward
Euler method with stepsize TE = 0.0001 [s] is used to integrate the equations (25)–
(27). The control objective is to have the actuator position ys track a reference signal
r(t) > 0, which is achieved by minimizing the following cost function:

J(U,ys(t),r(t)) =
N−1

∑
k=0

⎡⎣Q

(
ys

t+k|t − r(t)

r(t)

)2

+ R

(
wvs(ps

A,t+k|t ,ut+k)

wvs,max−wvs,min

)2
⎤⎦

+P

(
ys

t+N|t − r(t)

r(t)

)2

(28)

where N = 10 is the horizon, Q = 1, R = 0.1, P = 1 are the weighting coefficients,
and wvs,max and wvs ,min are the maximal and the minimal flows to/from chamber A.
The following constraints are imposed:

ymin ≤ ys
t+k|t ≤ ymax,k = 1, ...,N;ut+k ∈UA = {1,2,3},k = 0,1, ...,N−1 (29)

where ymin = 0, ymax = 0.025 [m]. In (28), U ∈UB = (UA)N . The quantized NMPC
minimizes the cost (28) subject to the system equations (25)–(27) and the constraints
(29). The extended state vector is x̃(t) = [e(t),vs(t), ps

A(t),r(t)]∈R4, where the state
e(t) is the projected reference tracking error defined as:

e(t) =

⎧⎨⎩
r(t)− ys(t) , if −0.005≤ r(t)− ys(t)≤ 0.005
−0.005 , if r(t)− ys(t) <−0.005
0.005 , if r(t)− ys(t) > 0.005

(30)

The state space to be partitioned is 4-dimensional and it is defined by X =
[−0.005;0.005]× [−0.05;0.15]× [P0;PS]× [0.0001;0.024]. The cost function ap-
proximation tolerance is chosen as ε̄(X0) = max(ε̄a, ε̄rmin

x̃∈X0
V ∗(x̃)), where ε̄a = 0.001

and ε̄r = 0.02 are the absolute and the relative tolerances. The partition has 10871
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Fig. 2 Left: The valve flow wv(pA,u). Right: The clutch actuator position y. The dotted
curves are with the approximate explicit quantized NMPC, the solid curves are with the exact
quantized NMPC and the dashed curve is the reference signal

regions and 17 levels of search. Thus, 17 arithmetic operations are needed in real-
time to compute the control input (17 comparisons).

The performance of the explicit quantized NMPC controller was simulated for
a typical clutch reference signal and the resulting response is depicted in Figure 2.
The simulations are based on the full 5-th order model (16)–(20).
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Parametric Approach to Nonlinear Model
Predictive Control

M. Herceg, M. Kvasnica, and M. Fikar

Abstract. In model predictive control (MPC), a dynamic optimization problem
(DOP) is solved at each sampling instance for a given value of the initial condi-
tion. In this work we show how the computational burden induced by the repetitive
solving of the DOP for nonlinear systems can be reduced by transforming the un-
constrained DOP to a suboptimal DOP with horizon one. The approach is based on
solving the stationary Hamilton-Jacobi-Bellman (HJB) equation along a given path
while constructing control Lyapunov function (CLF). It is illustrated that for par-
ticular cases the problem can be further simplified to a set of differential algebraic
equations (DAE) for which an explicit solution can be found without performing
optimization.

Keywords: Nonlinear Model Predictive Control, Control Lyapunov Function.

1 Introduction

Model predictive control [9] is a well established control strategy where the op-
timal control actions are obtained by optimizing the predicted plant behavior. The
predictions are obtained by employing a model of the controlled plant. MPC is tradi-
tionally implemented in the so-called Receding Horizon fashion, which introduces
feedback by repeating the optimization at each time instance based on the actual
measurements of the state variables. If the model of the plant is nonlinear, a nonlin-
ear optimization problem needs to be solved at each time step. Even though many
efficient strategies for fulfilling this task have been proposed, see e.g. [1, 3, 5], they
could be of prohibitive complexity when considering real-time implementation. If
the model of the plant is linear or piecewise linear, it was shown e.g. by [2] that
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the optimal solution to MPC problems can be obtained as a piecewise affine explicit
function of the state. Hence, the on-line implementation can be reduced to a sim-
ple set-membership test, mitigating the implementation effort. This scheme is often
referred to as the explicit or parametric approach to MPC.

If the model of the plant is nonlinear, however, little is known about the existence
of explicit solutions to nonlinear MPC problems. The parametric approach of [8]
uses approximations of the nonlinearities to come up with an explicit representation
of the feedback law, leading to suboptimal solutions. It was shown in [4] that optimal
MPC feedback laws could be obtained in an explicit form if the prediction model is
assumed to be nonlinear and input-affine. The predictions are then based on Taylor
series expansion. However, as the Taylor series are valid only locally, the MPC is
formulated over a short finite horizon. As investigated by [10], exact solutions can
be found even for an infinite horizon. The disadvantage is, though, that approach of
[10] proceeds with the synthesis in a reversed order, i.e. starts with a known optimal
solution and constructs the corresponding nonlinear model.

This contribution illustrates a way towards obtaining parametric solutions of
MPC problems for unconstrained nonlinear systems. The idea is based on replacing
the unconstrained DOP formulated over an infinite horizon by a different optimiza-
tion problem, where optimization is performed along the shortest path from the ori-
gin to a given initial condition. The problem is parametrized by a set of parameters,
which originate from the first order optimality conditions, expressed by the station-
ary HJB equation. The task is hence to find these parameters such that the resulting
closed-loop system is stable. For this purpose the concept of CLF [12] is employed
which imposes additional constraints for finding these parameters. The link between
HJB equation and CLF has been already pointed out by [11, 13], but here the DOP
problem is formulated in a parametrized form. However, CLF constraints do not
uniquely determine the missing parameters and solution of the original problem
can be suboptimal. Therefore, in this paper we concentrate on a two-dimensional
case where additional constraints are provided and the shortest path DOP is fur-
ther transformed to a set of DAE equations, which are parametrized in states. The
DAE equations create an implicit solution of the original DOP and by integrating
the DAE system along a given path, the optimal solution to the original problem can
be recovered.

2 Problem Statement

Consider a non-linear time-invariant dynamical system in a state-space form:

ẋ = f (x,u), x(0) = x0, (1a)

satisfying f (0,0) = 0 where f (·) is at least twice differentiable, x(t) ∈ Rn denotes
a state vector and u(t) ∈ Rm is a vector of manipulated variables (inputs). Under
the assumption that all states are measurable, and the system described by (1a) is
controllable, the objective is to regulate the system (1a) from any admissible initial
condition x0 to its origin (0,0) while minimizing a given performance index F(x,u),
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which is a positive semi-definite, at least twice differentiable function satisfying
F(0,0) = 0. The optimal solution to the regulation problem can be found by solving
the following optimization problem on-line for a known value of x0:

V (x) = min
u

∫ ∞

0
F(x,u)dt (1b)

s.t. (1a),

which leads to an infinite-dimensional problem. In order to solve such problems nu-
merically, it is a usual practice to truncate the infinite time horizon to a finite horizon
plus some terminal cost and terminal set constraint. For practical reasons the finite
horizon is usually large, rendering the optimization a complex task. Therefore in
the next section we show how to transform the DOP problem (1) to a simpler opti-
mization problem which doesn’t rely on terminal cost and terminal set to guarantee
stability.

3 Transformation to Shortest Path DOP

3.1 Optimality Conditions

The necessary conditions of optimality stem from defining the Hamiltonian function
H(x,u,λ ) = F(x,u)+λ T f (x,u) by introducing adjoint variables λ ∈Rn, which are
orthogonal to the system dynamics equation (1a) and represent partial derivatives of
the value function V (x) at the optimum λ = ∂V (x)/∂x. By appending the constraints
represented by (1a) to the functional (1b), the optimum can be found by expressing
the first variation of the Hamiltonian and by setting it equal to zero. This operation
yields a set of criteria differential equations [14] which are not mentioned here due
to lack of space. Essentially, these equations define a two-point boundary value
problem, because state equations are determined by the initial condition x(0) = x0

and by the equations for adjoint variables with the terminal condition λ(t →∞) = 0.
The latter condition is associated with the infinite-time horizon, and moreover, as
shown by [14], in this case the Hamiltonian is equal to zero, i.e. H(x,u,λ ) = 0.

Suppose that the adjoint variables λ are only functions of states. Thus, denoting
λ = λ (x), and λ̇ = (∂λ/∂x)ẋ it is possible to rewrite the optimality conditions in
the state space as

∂F(x,u)
∂x

+
∂λ (x)
∂x

f (x,u)+
∂ f (x,u)T

∂x
λ (x) = 0, (2a)

∂F(x,u)
∂u

+
∂ f (x,u)T

∂u
λ (x) = 0. (2b)

Equations (2a)–(2b) represent the HJB equations in the state-space domain with
λ (x) as the unknown variable. However, the explicit solution to this equation is not
trivial, unless considering some special cases.
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3.2 Parametrization of the HJB Equation

Since the HJB equation (2) is time-independent, it is possible to express the initial
and terminal conditions by λ (0) = 0 and u(0) = 0. Clearly, these conditions express
optimal values at the origin and unknown values are those corresponding to the point
x0, namely λ (x0) and u(x0). Recalling the principles of receding horizon control,
only these values are of interest, because the rest of the computed trajectory is not
used anyway. The motivation is thus to find these unknown values as quickly as
possible without taking care of the rest of the trajectory. That is, not to solve the
HJB equation (2) for the whole state space, but only for the point x0. However,
because the HJB equation is in differential form, the solution is given by initial
conditions which are only known at the origin. Therefore, the only way to solve the
HJB equation is to integrate it from the origin towards x0. Intuitively, the shortest,
and possibly fastest path in the state space how to reach the point (x0,u(x0)) is to
integrate along a straight line. Consider that initial conditions for states x0 can be
treated as symbolic parameters. Then, the states can be parametrized with help of
new variable l ∈ R, which ranges from l ∈ [0, 1] as follows:

x = lx0. (3)

Starting from (3), the total differential of λ (x) reads

dλ(x) =
∂λ (x)T

∂x
dx =

∂λ (x)T

∂x
x0dl. (4)

Exploiting the fact that the matrix ∂λ (x)T /∂x is symmetric, its non-diagonal ele-
ments can be replaced with new variables

vk =
∂λi

∂x j
, (5)

where the number k depends on the dimension of the state. Substituting the diagonal
elements of the matrix ∂λ (x)T /∂x in (2a) by (4) one obtains a system of equations
written in a condensed form by

0 = diag( f )
dλ
dl

+ diag(x0)

[(
∂ f
∂x

)T

λ +
∂F
∂x

]
+ R( f ,x0)v, (6a)

0 =
∂F
∂u

+
∂ f T

∂u
λ . (6b)

where the state is parametrized by (3), v = [v1, . . . ,vk]T is a vector of mixed partial
derivatives (5) with dimension k = 0.5n(n− 1), and R( f ,x0) is a matrix built by
elements of vectors f , x0, e.g. in the 2-dimensional case (i.e. n = 2 and k = 1), the
matrix takes the form

R( f ,x0) = diag(x0) f̄ −diag( f )x̄0,
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where the bar denotes the reverted vectors f̄ = [ f2, f1]T , x̄0 = [x02, x01]T . Function
arguments are omitted for brevity. The vector of initial conditions x0 is left as a
parameter while the unknown variables v are to be determined.

3.3 Shortest Path DOP

The parametrization (3) of the HJB equation (2) thus results in a set of DAE
equations (6a) and (6b). These equations have been obtained by substituting the
off-diagonal elements of ∂λ (x)/∂x by new unknown variables v. Obviously, such
substitution is not complete, since the fully determined system of HJB equations
is now undetermined, that is, contains more unknowns than equations. To be able
to find the remaining unknowns, the concept of CLF is adopted [12]. As shown
by [11, 13], the CLF approach imposes additional constraints to the DOP formula-
tion, which help to specify the solution more closely. Here we pursue the same idea,
but we formulate the DOP over a parameter domain.

Simply speaking, the function V (x) is called CLF if it fulfills three fundamental
conditions: (i) it is radially unbounded, (ii) the time derivative along the system
trajectories is negative, and (iii) it is positive semi-definite. These conditions can be
incorporated to our approach as follows. The third property is automatically satisfied
by the selection of the cost function as F(x,u) > 0. Second property is fulfilled
by the zero Hamiltonian, i.e. F(x,u) + λ T f (x,u) = 0 and since F(x,u) > 0 then
λ T f (x,u) (time derivative of CLF along system trajectory) is negative. The first
property is enforced via additional constraint, which requires the value function to
be increasing along the path l, i.e.

dV
dl

=
∂V
∂x

T dx
dl

= λ T x0 > 0. (7)

The transformed DOP can be formulated as follows:

find v(l)l∈[0,1] (8a)

s.t. 0 = diag( f )
dλ
dl

+ diag(x0)

[(
∂ f
∂x

)T

λ +
∂F
∂x

]
+ R( f ,x0)v, (8b)

0 =
∂ f T

∂u
λ +

∂F
∂u

, (8c)

0 < λ T x0, (8d)

0 = λ (0), (8e)

0 = u(0), (8f)

which constructs a CLF along the path l ∈ [0,1] for a given initial condition x0.
This problem should be solved at each sampling instant, as a suboptimal replace-
ment of the infinite horizon DOP (1). As our primal goal is to solve the optimization
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problem as quickly as possible, in the next section we show how to transform the
problem (8) to a set of DAE equations, solution to which can be found on-line by
mere integration.

4 Parametric Solutions for 2D Cases

A two dimensional case with one input is of special interest here, because one equa-
tion can make the undetermined system (6) fully determined. By differentiating the
equation (6b) with respect to l one obtains

0 =
(
∂ 2F
∂u2 +λT ∂ 2 f

∂u2

)
du
dl

+
∂ 2F
∂u∂ l

+
∂ f T

∂u
dλ
dl

+λT ∂ 2 f
∂u∂ l

, (9)

which creates an implicit constraint for v. Exact solution can be recovered by sub-
stituting dλ/dl from (6a) to (9).

Equations (6a), (6b) and (9) now form ’parametric’ solution to original DOP (1)
in the sense that, for a given parameter x0, the value u(x0) can be obtained by sim-
ple integration. Thus, the whole optimization problem with infinite-time horizon (1)
is reduced to an initial value problem which can be solved very fast using standard
integration algorithms. Overall procedure consists of two steps. First, the HJB equa-
tions (2a), (2b) are parametrized to obtain DAE equations (6a), (6b), and (9). This
step can be performed off-line. Then, in the on-line implementation phase, the opti-
mal control action is found by forward integration of (6a), (6b), (9) for a given x0.

The benefit of this approach is that the computational burden involved in the
on-line part relies only on one integration of the DAE system (6a), (6b) and (9).
However, the extension to higher dimensional cases is not trivial as the number of
additional equations determining v grow with the dimension of state quadratically.
Furthermore, additional assumptions are required in order to guarantee existence of
a solution and this is a subject of further research.

5 Illustrative Example

Consider the following example adopted from [13]:

min
u(t)

∫ ∞

0
(x2

2 + u2)dt (10a)

s.t. ẋ1 = x2, (10b)

ẋ2 =−x1ex1 + 0.5x2
2 + ex1u (10c)

where x(0) = x0. For this setup, the analytic optimal solution exists and is given by

u =−x2, V (x) = x2
1 + x2

2e−x1 . (11)

The aim of this section is to compare this explicit solution with the parametric so-
lution, obtained by parametrizing the HJB equation. First, optimality conditions for
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the unconstrained problem (10) are obtained. Then, the parametrization x1 = x01l
and x2 = x02l gives

0 = x02lλ ′1 + x01(−ex01l− x01lex01l + ex01lu)λ2− r( f ,x0)v,
0 = (−x01lex01l + 0.5x2

02l2 + ex01lu)λ ′2 + x02λ1 + x2
02lλ2 + 2x2

02l + r( f ,x0)v,
0 = 2u +λ2ex01l,

where r( f ,x0) = x2
02l− x01(−x01lex01l + 0.5x2

02l2 + ex01lu). By applying (9), the ex-
pression for v can be found analytically, but is omitted due to space restrictions.
Substituting for v back, the following DAE system is obtained:

0 = x02lλ ′1−λ2x01ex01l + x02λ1 + x2
02lλ2 + 2x2

02l

+2u′x01l− e−x01lu′x2
02l2−2u′u−0.5λ2x01x2

02l2, (12a)

0 = −λ ′2x01lex01l + 0.5λ ′2x2
02l2 +λ ′2ex01lu−2u′x01l + e−x01lu′x2

02l2

+2u′u−λ2x2
01ex01l l + 0.5λ2x01x2

02l2 +λ2x01ex01lu, (12b)

0 = 2u +λ2ex01l. (12c)

Note that the DAE system (12) is of index 2. To remedy this, a new additional
variable z = u′ is introduced, which leads (12) to

0 = x02lλ ′1−λ2x01ex01l + x02λ1 + x2
02lλ2 + 2x2

02l

+2zx01l− e−x01l zx2
02l2−2zu−0.5λ2x01x2

02l2, (13a)

0 = −λ ′2x01lex01l + 0.5λ ′2x2
02l2 +λ ′2ex01lu−2zx01l + e−x01l zx2

02l2

+2zu−λ2x2
01ex01l l + 0.5λ2x01x2

02l2 +λ2x01ex01lu, (13b)

0 = 2u +λ2ex01l, (13c)

0 = 2z+λ ′2ex01l +λ2x01ex01l. (13d)

which is now an index-1 DAE parametrized in the initial state x0. Integrating (13)
along the path l = [0,1] yields the same solution as solving the DOP problem (10)
for x0. This equivalence can be proved by substituting the explicit solution (11) to
(12). Using the SUNDIALS Toolbox [6], the DAE system was integrated on-line
for a changing value of x0 with sampling time 0.1s and the closed loop control is
depicted in Fig. 1. For this path, the HJB solution gives V = 33.9283, while the
optimal controller (11) results in V ∗ = 33.9166. This shows very good performance
of the proposed scheme. The minor difference is attributed to numerical issues of
the integration routine. What is more interesting is the elapsed CPU time needed
to perform the on-line DAE integration. In the worst case, the integration took as
much as 0.7872 s for x0 = [−2, 2]T . This number was steadily decreasing as the
states approached the origin. If, on the other hand, the original DOP (10a) would be
solved by approximating the infinite-time horizon by a horizon of 5 s, using 50 equal
discretizations steps, the optimization would take 27.27 s on the same computer
using the DOTcvp Toolbox [7].



388 M. Herceg et al.

Fig. 1 NMPC control with
online integration of DAE
system (13)
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6 Conclusion

In this work parametrization of HJB equations in the state-space domain along the
shortest path was used to transform an infinite-time horizon dynamic optimization
problem into a simpler problem. It was shown that for a two-dimensional case, this
procedure leads to a set of DAE equations, parametrized in the initial conditions.
The optimal solution can then be obtained by a mere integration of these differential
equations. Issues of feasibility of the proposed scheme, as well as complexity issues,
will be subject to future research.
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Efficient Numerical Methods for
Nonlinear MPC and Moving Horizon
Estimation

Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke

Abstract. This overview paper reviews numerical methods for solution of
optimal control problems in real-time, as they arise in nonlinear model pre-
dictive control (NMPC) as well as in moving horizon estimation (MHE).
In the first part, we review numerical optimal control solution methods,
focussing exclusively on a discrete time setting. We discuss several algorith-
mic ”building blocks” that can be combined to a multitude of algorithms.
We start by discussing the sequential and simultaneous approaches, the first
leading to smaller, the second to more structured optimization problems. The
two big families of Newton type optimization methods, Sequential Quadratic
Programming (SQP) and Interior Point (IP) methods, are presented, and
we discuss how to exploit the optimal control structure in the solution of the
linear-quadratic subproblems, where the two major alternatives are “condens-
ing” and band structure exploiting approaches. The second part of the paper
discusses how the algorithms can be adapted to the real-time challenge of
NMPC and MHE. We recall an important sensitivity result from parametric
optimization, and show that a tangential solution predictor for online data
can easily be generated in Newton type algorithms. We point out one impor-
tant difference between SQP and IP methods: while both methods are able to
generate the tangential predictor for fixed active sets, the SQP predictor even
works across active set changes. We then classify many proposed real-time
optimization approaches from the literature into the developed categories.

Keywords: real-time optimization, numerical optimal control, Newton type
methods, structure exploitation.
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1 Introduction

Nonlinear optimal control algorithms are at the core of all nonlinear MPC
or moving horizon estimation (MHE) schemes. In contrast to linear MPC,
where convex quadratic programs are mostly solved exactly at each sampling
time, nonlinear MPC faces a dilemma: either the nonlinear iteration proce-
dure is performed until a pre-specified convergence criterion is met, which
might introduce considerable feedback delays, or the procedure is stopped
prematurely with only an approximate solution, so that a pre-specified com-
putation time limit can be met. Fortunately, considerable progress has been
achieved in the last decade that allows to reduce both, computational delays
and approximation errors. This progress would not have been possible by
using just off-the-shelf optimal control codes; it is the development of ded-
icated real-time optimization algorithms for NMPC and MHE that allows
to nowadays apply NMPC to plants with tens of thousands of states or to
mechatronic applications.

While several excellent numerical optimization textbooks exist [25, 28, 44],
in the field of numerical optimal control there are only a few [2, 11], and when
it comes to real-time optimal control algorithms there is even less overview
material [5]. The aim of the present article is to help closing this gap and to
summarize the state-of-the-art in this field by presenting those algorithmic
ideas that appear to be crucial to the authors. We choose a rather simplified
setting, leaving many important special cases aside, in order to present the
major ideas as clearly as possible.

The article is organized as follows: In Section 2 the NMPC and MHE prob-
lems are stated, in Section 3 we review Newton type optimization methods
of different flavor, and in Section 4 we discuss how to exploit the optimal
control structure of the linear equation systems to be solved in each Newton
type iteration. In Section 5 we present online initialization strategies for sub-
sequent NMPC problems, and in Section 6 the online algorithms of different
flavours are discussed, and we finally conclude the paper in Section 7.

2 Problem Formulation

Throughout this paper we regard discrete time dynamical systems augmented
with algebraic equations, as follows:

xk+1 = fk(xk, zk, uk) (1a)
gk(xk, zk, uk) = 0 (1b)

Here, xk ∈ Rnx is the differential state, zk ∈ Rnz the algebraic state, and
uk ∈ Rnu is the control. Functions fk and gk are assumed twice differentiable
and map into Rnx and Rnz , respectively. The algebraic state zk is uniquely
determined by (1b) when xk and uk are fixed, as we assume that ∂gk

∂z is
invertible everywhere.
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We choose to regard this difference-algebraic system form because it cov-
ers several parametrization schemes for continuous time dynamic systems
in differential algebraic equation (DAE) form, in particular direct multiple
shooting with DAE relaxation [39] and direct collocation [3, 59]. Note that
in the case of collocation, all collocation equations on a collocation interval
would be collected within the function gk and the collocation node values in
the variables zk.

2.1 NMPC Optimal Control Problem

Based on this dynamic system form, we regard the following simplified opti-
mal control problem in discrete time:

minimize
x, z, u

N−1∑
i=0

Li(xi, zi, ui) + E (xN ) (2a)

subject to x0 − x̄0 = 0, (2b)
xi+1 − fi(xi, zi, ui) = 0, i = 0, . . . , N − 1, (2c)

gi(xi, zi, ui) = 0, i = 0, . . . , N − 1, (2d)
hi(xi, zi, ui) ≤ 0, i = 0, . . . , N − 1, (2e)

r (xN ) ≤ 0. (2f)

Here, the free variables are the differential state vector x =
(xT

0 , xT
1 . . . , xT

N−1, x
T
N )T at all considered time points and the algebraic and

control vector on all but the last time points: z = (zT
0 , zT

1 . . . , zT
N−1)

T and
u = (uT

0 , uT
1 . . . , uT

N−1)
T .

Remark on fixed and free parameters: In most NMPC applications there
are some constant parameters p̄ that are assumed constant for the NMPC
optimization, but that change for different problems, like x̄0. We do not regard
them here for notational convenience, but note that they can be regarded as
constant system states with fixed initial value p̄. In some NMPC applications
free parameters p exist that are part of the optimization variables, but that
are – in contrast to the controls uk – constant in time. Again, we disregard
this case for notational simplicity.

2.2 Moving Horizon Estimation: Nearly a Dual
Problem

For moving horizon estimation (MHE), see e.g. [21, 48, 65], we typically
choose convex functions to penalize the mismatch between the real mea-
surements yk and the corresponding model predictions mk(xk, zk, uk, wk).
For notational simplicity, we regard only weighted Euclidean norms here,
‖yk − mk(xk, zk, uk, wk)‖2Q, but point out that it is often useful to regard
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other penalty functions like e.g. the 
1 penalty, which necessitate slight adap-
tations in the numerical solution algorithms presented later. The controls uk

are here regarded as fixed and known and enter the system dynamics only as
constant but time varying parameters. However, time varying disturbances
wk are often introduced in the MHE problem to account for plant-model mis-
match. They take the same role as the controls in the NMPC problem and
are often 
2 penalized.

minimize
x, z, w

‖x0 − x̄0‖2P +
N−1∑
i=0

‖yi −mi(xi, zi, ui, wi)‖2Q + ‖wi‖2R (3a)

subject to
xi+1 − fi(xi, zi, ui, wi) = 0, i = 0, . . . , N − 1, (3b)

gi(xi, zi, ui, wi) = 0, i = 0, . . . , N − 1, (3c)
hi(xi, zi, ui, wi) ≤ 0, i = 0, . . . , N − 1, (3d)

Due to the fact that the MHE problem has the same optimal control structure
as the NMPC problem, they are often called “dual” to each other, in a slight
abuse of terminology. However, the starkest contrast to the NMPC problem
is the fact that the MHE problem has a free initial value x0 and often has
a much higher dimensional “control vector” wk. This necessitates possibly
different linear algebra solvers in the solution procedures described below.

2.3 Sequential vs. Simultaneous Optimal Control

For simplicity of presentation, we will in this subsection only focus on the
NMPC problem (2a)-(2f). Here, the equality constraints (2b)-(2d) uniquely
determine the variables x and z if the vector u is fixed. Thus, they can
be inverted to yield the implicit functions x̃(u) and z̃(u) that satisfy (2b)-
(2d) for all u, by a system simulation. It allows to reduce the optimization
problem to

minimize
u

N−1∑
i=0

Li(x̃i(u), z̃i(u), ui) + E (x̃N (u)) (4a)

subject to hi(x̃i(u), z̃i(u), ui) ≤ 0, i = 0, . . . , N − 1, (4b)
r (x̃N (u)) ≤ 0. (4c)

This problem has a strongly reduced variable space compared to the original
problem, and it is thus an appealing idea to use the reduced problem within an
optimization procedure. This gives rise to the so called “sequential” approach
to optimal control problems, where in each optimization iteration the two
steps, system simulation and optimization, are performed sequentially, one
after the other. This approach emerged early in the nonlinear optimal control
literature [50].
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In contrast to the sequential approach, the so called “simultaneous”
approach addresses the full nonlinear program as stated above in (2a)-(2f)
directly by a Newton type optimization algorithm, i.e., optimization and
simulation are performed simultaneously. It comes in the form of direct collo-
cation methods [3, 59, 64] as well as in form of direct multiple shooting [9, 39].

The optimization problem of the sequential approach has much less vari-
ables, but also less structure in the linear subproblems than the simultaneous
approach (an interesting structure preserving sequential algorithm was how-
ever presented in [58]). Even more important, the Newton type optimization
procedure behaves quite differently for both approaches: typically, faster local
convergence rates are observed for the simultaneous approach, in particular
for unstable or highly nonlinear systems, because – intuitively speaking – the
nonlinearity is equally distributed over the nodes.

3 Newton Type Optimization

Newton’s method for solution of a nonlinear equation R(W ) = 0 starts with
an initial guess W 0 and generates a series of iterates W k that each solves a
linearization of the system at the previous iterate, i.e., for given W k the next
iterate W k+1 shall satisfy R(W k) +∇R(W k)T (W k+1 −W k) = 0. The hope
is that the linearizations – that can be solved w.r.t. W k+1 by standard linear
algebra tools – are sufficiently good approximations of the original nonlin-
ear system and that the iterates converge towards a solution W ∗. Newton’s
method has locally a quadratic convergence rate, which is as fast as making
any numerical analyst happy. If the Jacobian ∇R(W k)T is not computed
or inverted exactly, this leads to slower convergence rates, but cheaper it-
erations, and gives rise to the larger class of “Newton type methods”. An
excellent overview of the field is given in [13]. But how are these ideas gen-
eralized to nonlinear optimization?

The NMPC and MHE problems as stated above are specially structured
cases of a generic nonlinear program (NLP) that has the form

minimize
X

F (X) s.t.
{

G(X) = 0
H(X) ≤ 0 (5)

Under mild assumptions, any locally optimal solution X∗ of this problem
has to satisfy the famous Karush-Kuhn-Tucker (KKT) conditions: there exist
multiplier vectors λ∗ and μ∗ so that the following equations hold:

∇XL(X∗, λ∗, μ∗) = 0 (6a)
G(X∗) = 0 (6b)

0 ≥ H(X∗) ⊥ μ∗ ≥ 0. (6c)
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Here we have used the definition of the Lagrange function

L(X, λ, μ) = F (X) + G(X)T λ + H(X)T μ (7)

and the symbol ⊥ between the two vector valued inequalities in Eq. (6c)
states that also the complementarity condition

Hi(X∗) μ∗
i = 0, i = 1, . . . , nH , (8)

shall hold. All Newton type optimization methods try to find a point satis-
fying these conditions by using successive linearizations of the problem func-
tions. Major differences exist, however, on how to treat the last condition (6c)
that is due to the inequality constraints, and the two big families are Sequen-
tial Quadratic Programming (SQP) type methods and Interior Point (IP)
methods.

3.1 Sequential Quadratic Programming

A first variant to iteratively solve the KKT system is to linearize all non-
linear functions appearing in Eqs. (6a)–(6c). It turns out that the resulting
linear complementarity system can be interpreted as the KKT conditions of
a quadratic program (QP)

minimize
X

F k
QP(X) s.t.

{
G(Xk) +∇G(Xk)T (X −Xk) = 0
H(Xk) +∇H(Xk)T (X −Xk) ≤ 0 (9)

with objective function

F k
QP(X) = ∇F (Xk)T X +

1
2
(X −Xk)T∇2

XL(Xk, λk, μk)(X −Xk). (10)

In the case that the so called Hessian matrix∇2
XL(Xk, λk, μk) is positive semi-

definite, this QP is convex so that global solutions can be found reliably. This
general approach to address the nonlinear optimization problem is called Se-
quential Quadratic Programming (SQP). Apart from the presented ”exactHes-
sian” SQP variant presented above, several other – and much more widely used
– SQP variants exist, that make use of inexact Hessian or Jacobian matrices.

3.1.1 Powell’s Classical SQP Method

One of the most successfully used SQP variants is due to Powell [47]. It uses
exact constraint Jacobians, but replaces the Hessian matrix ∇2

XL(Xk, λk, μk)
by an approximation Ak. Each new Hessian approximation Ak+1 is ob-
tained from the previous approximation Ak by an update formula that uses
the difference of the Lagrange gradients, γ = ∇XL(Xk+1, λk+1, μk+1) −
∇XL(Xk, λk+1, μk+1) and the step σ = Xk+1 − Xk. Aim of these
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”Quasi-Newton” or ”Variable-Metric” methods is to collect second order
information in Ak+1 by satisfying the secant equation Ak+1σ = γ. The
most widely used update formula is the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update Ak+1 = Ak +γγT /(γT σ)−AkσσT Ak/(σT Akσ), see e.g. [44].
Quasi-Newton methods can be shown to converge superlinearly under mild
conditions, and had a tremendous impact in the field of nonlinear optimiza-
tion. Successful implementations are the packages NPSOL and SNOPT for
general NLPs [27], and MUSCOD-II [39] for optimal control. Note that in
this paper we omit all discussion on the usually crucial issue of globalisation
strategies, because these are less important in online optimization.

3.1.2 Constrained Gauss-Newton Method

Another particularly successful SQP variant – the Constrained (or General-
ized) Gauss-Newton method – is also based on approximations of the Hessian.
It is applicable when the objective function is a sum of squares:

F (X) =
1
2
‖R(X)‖22. (11)

In this case, the Hessian can be approximated by

Ak = ∇R(Xk)∇R(Xk)T (12)

and the corresponding QP objective is easily seen to be

F k
QP(X) =

1
2
‖R(Xk) +∇R(Xk)T (X −Xk)‖22 (13)

The constrained Gauss-Newton method has only linear convergence but often

with a surprisingly fast contraction rate. The contraction rate is fast when the
residual norm ‖R(X∗)‖ is small or the problem functions R, G, H have small
second derivatives. It has been developed and extensively investigated by
Bock and coworkers, see e.g. [6, 53]. The constrained Gauss-Newton method
is implemented in the packages PARFIT [6], FIXFIT [53], and also as one
variant within MUSCOD-II [14, 39].

Remark on adjoint based SQP variants: Newton type SQP methods
may not only use an approximation of the Hessian, but also of the con-
straint Jacobians. The most general formulation including inexact inequali-
ties, which is originally due to [7] and was analysed in [61], uses approxima-
tions Ak, Bk, Ck of the matrices ∇2

XL(·),∇G(Xk),∇H(Xk), and a so called
“modified gradient”

ak = ∇XL(Xk, λk, μk)−Bkλk − Ckμk (14)
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in the QP objective

F k
adjQP(X) = aT

k X +
1
2
(X −Xk)T Ak(X −Xk). (15)

The following QP is solved in each iteration:

minimize
X

F k
adjQP(X) s.t.

{
G(Xk) + BT

k (X −Xk) = 0
H(Xk) + CT

k (X −Xk) ≤ 0.
(16)

It can be shown that using a modified gradient ak allows to locally converge
to solutions of the original nonlinear NLP even in the presence of inexact
inequality constraint Jacobians [7, 20, 61]. A crucial ingredient of the ad-
joint based SQP scheme is the fact that the Lagrange gradient needed for ak

in (14) can be evaluated efficiently by adjoint based techniques or, equiva-
lently, by the reverse mode of automatic differentiation [30]. Adjoint based
SQP schemes are at the core of the multi-level real-time iterations described
in Section 6.1. Even quasi Newton update schemes can be used in order to
approximate the Jacobians [32].

3.2 Interior Point Methods

In contrast to SQP methods, an alternative way to address the solution of
the KKT system is to replace the last nonsmooth KKT condition in Eq. (6c)
by a smooth nonlinear approximation, with τ > 0:

∇XL(X∗, λ∗, μ∗) = 0 (17a)
G(X∗) = 0 (17b)

Hi(X∗) μ∗
i = τ, i = 1, . . . , nH . (17c)

This system is then solved with Newton’s method. The obtained solution is
not a solution to the original problem, but to the problem

minimize
X

F (X)− τ

nH∑
i=1

log(−Hi(X)) s.t. G(X) = 0. (18)

Thus, the solution is in the interior of the set described by the inequality
constraints, and closer to the true solution the smaller τ gets. The crucial
feature of the family of “interior point methods” is the fact that, once a
solution for a given τ is found, the parameter τ can be reduced by a constant
factor without jeopardising convergence of Newton’s method. After only a
limited number of Newton iterations a quite accurate solution of the original
NLP is obtained. We refer to the excellent textbooks [10, 63] for details.
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A widely used implementation of nonlinear Interior Point methods is the
open source code IPOPT [60].

Remark on the structure of the linear subproblems: It is interesting
to note that the linearization of the smoothed KKT system (17a)-(17c) is
a linear system that is equivalent – after elimination of the variable μk+1

– to the KKT conditions of an equality constrained quadratic program. It
is important to remark that most structure exploiting features of SQP type
methods also have an equivalent in IP methods, like globalisation strategies,
use of adjoints, structure preserving linear algebra, etc., and we will mention
them when applicable.

Remark on Ohtsuka’s inequality treatment: An interesting treatment of
inequality constraints that is similar to interior point methods was proposed
and successfully used in the context of NMPC by Ohtsuka [45]. He proposes
to approximate the inequality constrained NLP (5) by a formulation

minimize
X, Y

F (X)− τ

nH∑
i=1

Yi s.t.
{

G(X)=0
Hi(X) + Y 2

i =0, i = 1, . . . , nH .
(19)

which is equivalent to

minimize
X

F (X)− τ

nH∑
i=1

√
−Hi(X) s.t. G(X) = 0. (20)

This barrier is not self-concordant and does not connect easily to the dualtiy
theory of interior-point methods, but we will nevertheless call this approach
a variant of IP methods in this paper.

4 Numerical Optimal Control

When Newton type optimization strategies are applied to the optimal con-
trol problem (2a)-(2f), the first question is, if a simultaneous or a sequential
approach is used. In the case of a sequential approach, where all state vari-
ables x, z are eliminated and the optimization routine only sees the control
variables u, the specific optimal control problem structure plays a minor
role. Thus, often an off-the-shelf code for nonlinear optimization can be used.
This makes practical implementation very easy and is a major reason why the
sequential approach is used by many practitioners. It is in strong contrast to
the simultaneous approach, that addresses the optimal control problem (2a)-
(2f) in the full variable space x, z, u, and thus allows – and necessitates –
to exploit the specific problem structure. In all Newton type optimization
routines there are two crucial and often costly computational steps, namely
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(a) Derivative Computation and (b) Solution of the Quadratic Subproblems.
In both areas, specific structures can be exploited. In this paper we will focus
on (b), the solution of the QPs, but add suitable remarks on how to treat
derivative computations when necessary.

4.1 The Linearized Optimal Control Problem

Let us regard the linearization of the optimal control problem (2a)-(2f) within
an SQP method, which is a structured QP. It turns out that due to the dy-
namic system structure the Hessian of the Lagrangian function has the same
separable structure as the Hessian of the original objective function (2a),
so that the quadratic QP objective is still representable as a sum of linear-
quadratic stage costs, which was first observed by Bock and Plitt [9]. Thus,
the QP subproblem has the following form, where we left out the SQP it-
eration index k for notational simplicity, and where the summands of the
objective each are linear-quadratic.

minimize
x, z, u

N−1∑
i=0

LQP,i(xi, zi, ui) + EQP (xN ) (21a)

subject to x0 − x̄0 = 0, (21b)
xi+1 − f ′

i − F x
i xi − F z

i zi − Fu
i ui = 0, i = 0, . . . , N − 1, (21c)

g′i + Gx
i xi + Gz

i zi + Gu
i ui = 0, i = 0, . . . , N − 1, (21d)

h′
i + Hx

i xi + Hz
i zi + Hu

i ui ≤ 0, i = 0, . . . , N − 1, (21e)
r′ + RxN ≤ 0. (21f)

When the linear algebra within the QP solution is concerned, the dynamic
system structure can be exploited in different ways.

Remark on high rank Hessian updates: The fact that the Hessian matrix
of the optimal control problem is block diagonal does not only allow to write
down the objective (21a) in a separable form and exploit this sparsity in the
linear algebra; when quasi Newton Hessian update methods are used, it also
allows to perform “partitioned variable metric” or “high rank updates” of
the Hessian, by updating all Hessian blocks separately [9, 31].

4.2 Elimination of Algebraic Variables

We consider now several algorithmic building blocks helping to solve the QP
problem (21a)-(21f). Let us first regard Eq. (21d). Due to our assumptions in
the problem statement of (2a)-(2f), we know that the Jacobian matrix Gz

i is
invertible. Thus, Eq. (21d) can directly be inverted by a factorization of the
matrix Gz

i , yielding an explicit expression for zi:

zi = − (Gz
i )

−1 [g′i + Gx
i xi + Gu

i ui] (22)
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Note that the matrix Gz
i is often sparse and might best be factorized by a

direct sparse solver. Once this factorization is performed, it is possible to
reduce problem (21a)-(21f) to a smaller scale QP in the variables x and u
only, which has the following form:

minimize
x, u

N−1∑
i=0

LredQP,i(xi, ui) + EQP (xN ) (23a)

subject to x0 − x̄0 = 0, (23b)
xi+1 − ci −Aixi −Biui = 0, i = 0, . . . , N − 1, (23c)

h̄i + H̄x
i xi + H̄u

i ui ≤ 0, i = 0, . . . , N − 1, (23d)
r′ + RxN ≤ 0. (23e)

This partially reduced QP can be post-processed either by a condensing or a

band structure exploiting strategy.

Remark on Leineweber’s Partially Reduced SQP Method: In the
context of a direct multiple shooting method, the evaluation of the Jacobian
matrices F x

i , F z
i , Fu

i in (21c) is a very CPU intensive step. Given the fact
that finally only the reduced matrices Ai and Bi are needed in the reduced
QP, Leineweber [39] proposed a partially reduced SQP method that never
computes the matrices needed in the QP (21a)-(21f). Instead, it first performs
the sparse matrix factorization of Gz

i needed for elimination of the variables
zi via Eq. (22), and then it computes the matrices Ai and Bi directly as
directional derivatives of fi(xi, zi, ui):

Ai =
∂fi(·)

∂(x, z, u)

⎡⎣ I

− (Gz
i )

−1 Gx
i

0

⎤⎦ and Bi =
∂fi(·)

∂(x, z, u)

⎡⎣ 0
− (Gz

i )
−1 Gu

i

I

⎤⎦ . (24)

This allows to reduce the computational burden significantly in case of many
algebraic variables zi and expensive evaluation of fi.

4.3 Condensing

In order to see how the variable space of a QP can be reduced further in a very
simple way, let us recall that it was possible to reduce the large scale NLP
via a nonlinear system simulation in the sequential approach. The basic idea
of the ”condensing” approach that was first proposed by Bock and Plitt [9]
is to use the same fact, but apply it only to the linearized dynamic system.
For this aim let us note that Eqs. (23b) and (23c) describe nothing else than
a linear time varying discrete time system, and that for fixed u the values
for x can easily be obtained by a forward simulation of the linear dynamics.
Hence, the vector x is completely determined by the vector u and the given
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initial state x̄0. Therefore, the states can be eliminated from the linearized
problem resulting in a smaller, but dense quadratic program of the form

minimize
u

fcondQP,i(x̄0, u) (25a)

subject to r̄ + R̄x0 x̄0 + R̄uu ≤ 0. (25b)

Here, the inequalities (25b) contain both types of the original inequali-
ties, (23d) and (23e), in “condensed” form. If the dimension of the vector
u = (uT

0 , uT
1 , . . . , uT

N−1)
T is not too large, this QP can be solved fast using

dense general purpose QP solvers. By doing so, the cost of solving one QP
subproblem grows with O(N3n3

u), i.e. cubically with the horizon length N .

Remark on Schlöder’s Reduction Trick: In the context of direct multi-
ple shooting methods, the generation of the matrices Ai and Bi in (23c) is
expensive if the differential state dimension nx is large. It needs O(N(nx +
nu)) stage wise directional derivatives. We might instead, as in Leineweber’s
partially reduced SQP method, directly compute the quantities needed in
the objective and the constraints of the condensed QP (25a)-(25b). This idea
was first proposed by Schlöder [53], in the context of the Generalized Gauss-
Newton method. The method is implemented in the codes FIXFIT [53] and
MSOPT [52]. It is only advantageous for large state but small control dimen-
sions (nu + nx), and it exploits the fact that the initial value x0 is fixed
in the NMPC problem. Thus, it offers no advantages in the MHE problem
where the initial value is free for optimization.

4.4 Band Structure Exploiting Riccati Based
Solutions

Instead of condensing the linearized problem, one can opt to keep the con-
straints (23b) and (23c) and the variables x as unknowns in the QP. To sketch
the idea, let us regard a QP without the inequalities (23d) and (23e). The
KKT conditions of this equality constrained QP (23a)-(23c) in the primal
and dual variables w = (λT

0 , xT
0 , uT

0 , λT
1 , xT

1 , uT
1 , . . . , λT

N , xT
N )T are a symmet-

ric linear system Mw = b with KKT matrix

M =

⎡⎢⎢⎢⎢⎢⎣
I

I Q0 S0 −AT
0

ST
0 R0 −BT

0

−A0 −B0
. . . I

I QN

⎤⎥⎥⎥⎥⎥⎦ (26)

The almost block diagonal structure of this linear system allows it to be
efficiently factorized by a (discrete time) Riccati recursion. This was shown for
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optimal control problems within an active set framework in [29] and within an
interior point framework in [56]. For linear model predictive control, Riccati
based solutions are described in [35, 49]. The cost of this factorization, which
is usually dominating the cost for solving the QP, is O(N(nx + nu)3). The
cost grows only linearly with the horizon length N , in contrast to condensing
with its cubic growth O(N3n3

u). This makes the Riccati method favorable for
larger horizon lengths N and when nx ≈ nu. A Riccati based factorization is
particularly advantageous for the MHE problem where the dimension of the
“controls” w is typically as big as the state dimension.

Remark on direct or iterative sparse solvers: Note that it is not nec-
essary to use a Riccati based solution in order to obtain the complexity
O(N(nx + nu)3), but that this can also be achieved by using a direct sparse
solver, as e.g. done in the general purpose and open-source NLP package
IPOPT [60]. Also, iterative linear solvers might be used.

Remark on Tenny’s Feasibility Perturbed SQP Method: An interest-
ing method for optimal control and NMPC was proposed by Tenny, Wright
and Rawlings [58], who regard a simultaneous formulation within an SQP
type framework, but “perturb” the result of each SQP iteration in order to
make the state trajectory consistent, i.e., they close all nonlinear continuity
conditions (2c). This can be done by a simple “open loop” forward simula-
tion of the system given the new controls, or by more complex “closed loop”
simulations. In the open loop variant, this is nearly a sequential approach
and performs, if exact Hessians are used, even the same SQP iterations.
But it differs in one important aspect: it allows to exploit the same sparsity
structure as a simultaneous approach, e.g. full space derivative computation,
Riccati based linear algebra, or high rank updates for the block structured
Hessian [9]. This makes it an interesting cross-over between typical features
of sequential and simultaneous methods.

4.5 A Classification of Optimal Control Methods

It is an interesting exercise to try to classify Newton type optimal control
algorithms. Let us have a look at how nonlinear optimal control algorithms
perform their major algorithmic components, each of which comes in several
variants:

(a) Treatment of Inequalities: Nonlinear IP vs. SQP
(b) Nonlinear Iterations: Simultaneous vs. Sequential
(c) Derivative Computations: Full vs. Reduced
(d) Linear Algebra: Banded vs. Condensing

In the last two of these categories, we observe that the first variants each ex-
ploit the specific structures of the simultaneous approach, while the second
variant reduces the variable space to the one of the sequential approach. Note
that reduced derivatives imply condensed linear algebra, so the combination
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[Reduced,Banded] is excluded. In the first category, we might sometimes dis-
tinguish two variants of SQP methods, depending on how they solve their
underlying QP problems, via active set QP solvers (SQP-AS) or via interior
point methods (SQP-IP).

Based on these four categories, each with two alternatives, and one
combination excluded, we obtain seven possible combinations. In these
categories, the classical single shooting method [50] could be classified
as [SQP,Sequential,Reduced] or as [SQP,Sequential,Full,Condensing] be-
cause some variants compute directly the reduced derivatives R̄u in (25b),
while others compute first the matrices Ai and Bi in (23c) and con-
dense then. Tenny’s feasibility perturbed SQP method [58] could be
classified as [SQP,Sequential,Full,Banded], and Bock’s multiple shooting [9]
as well as the classical reduced SQP collocation methods [2, 3, 59] as
[SQP,Simultaneous,Full,Condensing]. The band structure exploiting SQP
variants from Steinbach [56] and Franke [26] are classified as [SQP-
IP,Simultaneous,Full,Banded], while the widely used interior point direct col-
location method in conjunction with IPOPT by Biegler and Wächter [60]
as [IP,Simultaneous,Full,Banded]. The reduced Gauss-Newton method of
Schlöder [53] would here be classified as [SQP,Simultaneous,Reduced].

5 Online Initialization and NLP Sensitivities

For exploiting the fact that NMPC requires the solution of a whole sequence
of ”neighboring” NLPs and not just a number of stand-alone problems, we
have first the possibility to initialize subsequent problems efficiently based
on previous information. In this section we introduce several concepts for
such initializations, in particular the important concept of NLP sensitivities.
On the other hand, in Section 6 we will give an overview of specially tai-
lored online algorithms for approximately solving each NLP, that deliver on
purpose inaccurate solutions and postpone calculations from one problem to
the next.

5.1 Shift Initialization

A first and obvious way to transfer solution information from one solved
NMPC problem to the initialization of the next one is based on the principle
of optimality of subarcs, also called the dynamic programming principle. It
states the following: Let us assume we have computed an optimal solution
(x∗

0, z
∗
0 , u∗

0, x
∗
1, z

∗
1 , u∗

1, . . . , x
∗
N ) of the NMPC problem (2a)-(2f) starting with

initial value x̄0. If we regard a shortened NMPC problem without the first
interval, which starts with the initial value x̄1 chosen to be x∗

1, then for this
shortened problem the vector (x∗

1, z
∗
1 , u∗

1, . . . , x
∗
N ) is the optimal solution.

Based on the expectation that the measured or observed true initial value
for the shortened NMPC problem differs not much from x∗

1 – i.e. we believe
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our prediction model and expect no disturbances – this “shrinking” horizon
initialization is canonical, and it is used in MPC of batch or finite time
processes, see e.g. [15, 34].

However, in the case of moving (finite) horizon problems, the horizon is
not only shortened by removing the first interval, but also prolonged at the
end by appending a new terminal interval – i.e. the horizon is moved forward
in time. In the moving horizon case, the principle of optimality is thus not
strictly applicable, and we have to think about how to initialize the appended
new variables zN , uN , xN+1. Often, they are obtained by setting uN := uN−1

or setting uN as the steady state control. The states zN and xN+1 are then
obtained by forward simulation. This transformation of the variables from one
problem to the next is called “shift initialization”. It is not as canonical as the
“shrinking horizon” case, because the shifted solution is not optimal for the
new undisturbed problem. However, in the case of long horizon lengths N we
can expect the shifted solution to be a good initial guess for the new solution.
Moreover, for most NMPC schemes with stability guarantee (for an overview
see e.g. [42]) there exists a canonical choice of uN that implies feasibility (but
not optimality) of the shifted solution for the new, undisturbed problem. The
shift initialization is very often used e.g. in [4, 19, 41, 43].

A comparison of shifted vs. non-shifted initializations was performed in [8]
with the result that for autonomous NMPC problems that shall regulate a
system to steady state, there is usually no advantage of a shift initialization
compared to the “primitive” warm start initialization that leaves the vari-
ables at the previous solution. In the extreme case of short horizon lengths,
it turns out to be even advantageous NOT to shift the previous solution,
as subsequent solutions are less dominated by the initial values than by the
terminal conditions. On the other hand, shift initialization are a crucial pre-
requisite in periodic tracking applications [19] and whenever the system or
cost function are not autonomous.

5.2 Parametric Sensitivities

In the shift initialization discussed above we did assume that the new ini-
tial value corresponds to the model prediction. This is of course never the
case, because exactly the fact that the initial state is subject to disturbances
motivates the use of MPC. By far the most important change from one opti-
mization problem to the next one are thus the unpredictable changes in the
initial value. Is there anything we can do about this in the initialization of a
new problem?

It turns out that we can, if we use the concept of parametric NLP sensitiv-
ities to construct a new initial guess. To illustrate the idea, let us first regard
the parametric root finding problem R(x̄0, W ) = 0 that results from the nec-
essary optimality conditions of an IP method, i.e. the system (17a)–(17c) in
variables W = (X, λ, μ). In the NMPC context, this system depends on the
uncertain initial value x̄0. We denote the solution manifold by W ∗(x̄0). When
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W ∗

x0

(a) Linearizing at approximate solution

W ∗

x0

(b) Linearizing at active set change

Fig. 1 Tangential predictors for interior point method using a small τ

W ∗

x0

(a) Linearizing at approximate solution

W ∗

x0

(b) Linearizing at active set change

Fig. 2 Tangential predictors for interior point method using a larger τ

we know the solution W = W ∗(x̄0) for a previous initial value x̄0 and want to
compute the solution for a new initial value x̄′

0, then a good solution predic-
tor for W ∗(x̄′

0) is provided by W ′ = W + dW∗
dx̄0

(x̄0)(x̄′
0− x̄0) where dW∗

dx̄0
(x̄0) is

given by the implicit function theorem. An important practical observation
is that an approximate tangential predictor can also be obtained when it is
computed at a point W that does not exactly lie on the solution manifold.
This more general predictor is given by the formula

W ′ = W −
(

∂R

∂W
(x̄0, W )

)−1 [
∂R

∂x̄0
(x̄0, W )

(
x̄′

0 − x̄0

)
+ R(x̄0, W )

]
. (27)

This fact, that is illustrated in Fig. 1(a), and that leads to a combination
of a predictor and corrector step in one linear system, is exploited in the
continuation method by Ohtsuka [45] and in a generalized form in the real-
time iteration scheme [16], both described below. When R(x̄0, W ) = 0 the
formula simplifies to the tangential predictor of the implicit function theorem,
which is e.g. employed in the advanced step controller[64].

Remark on IP Sensitivities at Active Set Changes: Unfortunately,
the interior point solution manifold is strongly nonlinear at points where the
active set changes, and the tangential predictor is not a good approximation
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when we linearize at such points, as visualized in Fig. 1(b). One remedy
would be to increase the path parameter τ , which decreases the nonlinearity,
but comes at the expense of generally less accurate IP solutions. This is
illustrated in Figs. 2(a) and 2(b) for the same two linearization points as
before. In Fig. 2(b) we see that the tangent is approximating the IP solution
manifold well in a larger area around the linearization point, but that the IP
solution itself is more distant to the true NLP solution.

5.3 Generalized Tangential Predictors via SQP
Methods

In fact, the true NLP solution is not determined by a smooth root find-
ing problem (17a)–(17c), but by the KKT conditions (6a)–(6c). It is a well-
known fact from parametric optimization, cf. [33], that the solution manifold
has smooth parts when the active set does not change (and bifurcations are
excluded), but that non-differentiable points occur whenever the active set
changes. Is there anything we can do in order to “jump” over these non-
smooth points in a way that delivers better predictors than the IP predictors
discussed before?

In fact, at points with weakly active constraints, we have to regard di-
rectional derivatives of the solution manifold, or “generalized tangential pre-
dictors”. These can be computed by suitable quadratic programs [33, Thm
3.3.4] and are visualized in Fig. 3(b). The theoretical results can be made a
practical algorithm by the following procedure proposed in [14]: first, we have
to make sure that the parameter x̄0 enters the NLP linearly, which is auto-
matically the case for simultaneous optimal control formulations, cf. Eq. (2b).
Second, we address the problem with an exact Hessian SQP method. Third,
we just take our current solution guess W for a problem x̄0, and then solve
the QP subproblem (21a)–(21f) for the new parameter value x̄′

0, but initial-
ized at W . It can be shown [14, Thm. 3.6] that this “initial value embedding”
procedure delivers exactly the generalized tangential predictor when started

W ∗

x0

(a) Linearizing at approximate solution

W ∗

x0

(b) Linearizing at active set change

Fig. 3 Generalized tangential predictors for SQP method
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at a solution W = W ∗(x̄0), as in Fig. 3(b). It is important to remark that the
predictor becomes approximately tangential when (a) we do not start on the
solution manifold, see Fig. 3(a), or (b) we do not use an exact Hessian or Ja-
cobian matrix or (c) we do not evaluate the Lagrange gradient or constraint
residuals exactly.

6 Online Algorithms

In NMPC and MHE we would dream to have the solution to a new optimal
control problem instantly, which is impossible due to computational delays.
Several ideas help to deal with this issue, which we discuss before explaining
in detail several of the existing online algorithms. We focus on the NMPC
problem but remark that all ideas are also transferable to the MHE problem,
which we sometimes mention explicitly.

Offline precomputations: As consecutive NMPC problems are similar,
some computations can be done once and for all before the controller starts.
In the extreme case, this leads to an explict precomputation of the NMPC
control law that has raised much interest in the linear MPC community [1], or
a solution of the Hamilton-Jacobi-Bellman Equation, both of which are pro-
hibitive for state and parameter dimensions above ten. But also when online
optimization is used, code optimization for the model routines is often essen-
tial, and it is in some cases even possible to precompute and factorize Hessians
or even Jacobians in Newton type Optimization routines, in particular in the
case of neighboring feedback control along reference trajectories [12, 37].

Delay compensation by prediction: When we know how long our com-
putations for solving an NMPC problem will take, it is a good idea not to
address a problem starting at the current state but to simulate at which state
the system will be when we will have solved the problem. This can be done
using the NMPC system model and the open-loop control inputs that we will
apply in the meantime [24]. This feature is used in many practical NMPC
schemes with non-negligible computation time.

Division into preparation and feedback phase: A third ingredient of
several NMPC algorithms is to divide the computations in each sampling
time into a preparation phase and a feedback phase [16]. The more CPU
intensive preparation phase (a) is performed with an old predicted state x̄0

before the new state estimate, say x̄′
0, is available, while the feedback phase

(b) then delivers quickly an approximate solution to the optimization problem
for x̄′

0. Often, this approximation is based on one of the tangential predictors
discussed in the previous section.

Iterating while the problem changes: A fourth important ingredient of
some NMPC algorithms is the idea to work on the optimization problem while
it changes, i.e., to never iterate the Newton type procedure to convergence
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for an NMPC problem getting older and older during the iterations, but to
rather work with the most current information in each new iteration. This
idea is used in [16, 41, 45].

6.1 A Survey of Online Optimization for NMPC

We will in the following review several of the approaches suggested in the
literature, in a personal and surely incomplete selection, and try to classify
them along the algorithmic lines discussed in this paper.

The Newton-Type Controller of Li and Biegler [40]: This was probably
one of the first true online algorithms for NMPC. It is based on a sequential
optimal control formulation, thus it iterated in the space of controls u =
(u0, u1, . . . , uN−1) only. It uses an SQP type procedure with Gauss-Newton
Hessian and line search, and in each sampling time, only one SQP iteration
is performed. The transition from one problem to the next uses a shift of
the controls unew = (u1, . . . , uN−1, u

new
N ). The result of each SQP iterate is

used to give an approximate feedback to the plant. As a sequential scheme
without tangential predictor, it seems to have had sometimes problems with
nonlinear convergence, though closed-loop stability was proven for open-loop
stable processes [41], and in principle, the theoretical NMPC stability analysis
from [18] is applicable.

The Continuation/GMRES Method of Ohtsuka [45]: Similar to the
Newton-Type controller, the Continuation/GMRES method performs only
one Newton type iteration in each sampling time, and is based on a sequential
formulation. It is different in that it is based on an IP treatment of the
inequalities with fixed path parameter τ > 0, see Section 3.2, that it uses an
exact Hessian, and that it uses the iterative GMRES method for linear system
solution in each Newton step. Most important, it makes no use of a shift, but
instead use of the tangential predictor described in Eq. (27). This features
seems to allow it to follow the nonlinear IP solution manifold well – which
is strongly curved at active set changes. For a visualization, see Fig. 4(a). In
each sampling time, only one linear system is built and solved by the GMRES
method, leading to a predictor-corrector pathfollowing method. The closed-
loop stability of the method is in principle covered by the stability analysis for
the real-time iterations without shift given in [17]. A variant of the method
is given in [54], which uses a simultanous approach and condensing and leads
to improved accuracy and lower computational cost in each Newton type
iteration.

The Real-Time Iteration Scheme [16]: Similar to the Newton-Type con-
troller, the real-time iteration scheme presented in [14, 16] performs one
SQP type iteration with Gauss-Newton Hessian per sampling time. How-
ever, it employs a simultaneous NLP parameterization, Bock’s direct multiple
shooting method, with full derivatives and condensing. Moreover, it uses the
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1

2

3W ∗

x̄0

(a) Ohtsuka’s C/GMRES method

1

2

3W ∗

x̄0

(b) Real-Time Iteration scheme

Fig. 4 Subsequent solution approximations

generalized tangential predictor of the “initial value embedding” discussed in
Section 5.3 to correct for the mismatch between the expected state x̄0 and the
actual state x̄′

0. In contrast to the C/GMRES method, where the predictor
is based on one linear system solve from Eq. (27), here an inequality con-
strained QP is solved. The computations in each iteration are divided into a
long “preparation phase” (a), in which the system linearization, elimination
of algebraic variables and condensing are performed, as described in Sec-
tions 4.1–4.3, and a much shorter “feedback phase” (b). The feedback phase
solves just one condensed QP (25a)–(25b), more precisely, an “embedded”
variant of it, where the expected state x̄0 is replaced by the actual one, x̄′

0.
Depending on the application, the feedback phase can be several orders of
magnitude shorter than the feedback phase. The iterates of the scheme are
visualized in Fig. 4(b). The same iterates are obtained with a variant of the
scheme that uses Schlöder’s trick for reducing the costs of the preparation
phase in the case of large state dimensions [51]. Note that only one system
linearization and one QP solution are performed in each sampling time, and
that the QP corresponds to a linear MPC feedback along a time varying tra-
jectory. In contrast to IP formulations, the real-time iteration scheme gives
priority to active set changes and works well when the active set changes
faster than the linearized system matrices. In the limiting case of a linear
system model it gives the same feedback as linear MPC. Error bounds and
closed loop stability of the scheme have been established for shrinking horizon
problems in [15] and for NMPC with shifted and non-shifted initializations
in [18] and [17].

Advanced Step Controller by Zavala and Biegler [64]: In order to
avoid the convergence issues of predictor-corrector pathfollowing methods,
in the “advanced step controller” of Zavala and Biegler a more conservative
choice is made: in each sampling time, a complete Newton type IP procedure
is iterated to convergence (with τ → 0). In this respect, it is just like of-
fline optimal control – IP, simultaneous, full derivatives with exact Hessian,
structure exploiting linear algebra. However, two features qualify it as an
online algorithm: first, it takes computational delay into account by solving
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an “advanced” problem with the expected state x̄0 as initial value – similar
as in the real-time iterations with shift – and (b), it applies the obtained
solution not directly, but computes first the tangential predictor which is
correcting for the differences between expected state x̄0 and the actual state
x̄′

0, as described in Eq. (27) with R(W, x̄0) = 0. Note that in contrast to the
other online algorithms, several Newton iterations are performed in part (a)
of each sampling time, the “preparation phase”. The tangential predictor (b)
is computed in the “feedback phase” by only one linear system solve based
on the last Newton iteration’s matrix factorization. As in the C/GMRES
method, the IP predictor cannot “jump over” active set changes as easily as
the SQP based predictor of the real-time iteration. Roughly speaking, the ad-
vanced step controller gives lower priority to sudden active set changes than
to system nonlinearity. As the advanced step controller solves each expected
problem exactly, classical NMPC stability theory [42] can relatively easily be
extended to this scheme [64].

Multi-Level Real-Time Iterations [7]: While the advanced step con-
troller deviates from the other online NMPC schemes in that it performs
many Newton iterations per sampling time, the opposite choice is made in
the multi-level real-time iterations presented in [7], where even cheaper cal-
culations are performed in each sampling time than one Newton step usually
requires. At the lowest level (A), only one condensed QP (25a)–(25b) is
solved, for the most current initial value x̄0. This provides a form of lin-
ear MPC at the base level, taking at least active set changes into account
with a very high sampling frequency. On the next two intermediate levels,
that are performed less often than every sampling time, only the nonlinear
constraint residuals are evaluated (B), allowing for feasibility improvement,
cf. also [12], or the Lagrange gradient is evaluated (C), allowing for optimal-
ity improvement, based on the adjoint based SQP presented in Section 3.1.2.
Note that in all three levels A, B, and C mentioned so far, no new QP ma-
trices are computed and that even system factorizations can be reused again
and again. Level C iterations are still considerably cheaper than one full SQP
iteration [61], but also for them optimality and NMPC closed-loop stability
can be guaranteed by the results in [17] – as long as the system matrices are
accurate enough to guarantee Newton type contraction. Only when this is not
the case anymore, an iteration on the highest level, D, has to be performed,
which includes a full system linearization and is as costly as a usual Newton
type iteration.

Remark on Critical Regions and Online Active Set Strategies: It is
interesting to have a look at the parameter space x̄0 visualized in Fig.5(b).
The picture shows the “critical regions” on each of which the active set in
the solution is stable. It also shows three consecutive problems on a line that
correspond to the scenario used in Figures 4(a), 4(b), and 5(a). Between
problem 1 and 2 there is one active set change, while problems 2 and 3
have the same active set, i.e., are in the same critical region. The C/GMRES
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(a) Solutions of Advanced Step Controller
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(b) Critical regions of a parametric NLP

Fig. 5 Subsequent solution approximations (left), and critical regions (right)

method and Advanced Step Controller exploit the smoothness on each critical
region in order to obtain the conventional Newton predictor that, however,
looses validity when a region boundary is crossed. The real-time iteration
basically “linearizes” the critical regions which then become polytopic, by
using the more accurate, but also more expensive QP predictor.

As the QP cost can become non-negligible for fast MPC applications, a
so-called online active set strategy was proposed in [23]. This strategy goes
on a straight line in the space of linearized regions from the old to the new
QP problem. As long as one stays within one critical region, the QP solution
depends affinely on x̄0 – exactly as the conventional Newton predictor. Only if
the homotopy crosses boundaries of critical regions, the active set is updated
accordingly. The online active set strategy is available in the open-source QP
package qpOASES [22], and is particularly suitable in combination with real-
time iterations of level A, B, and C, where the QP matrices do not change,
see [62].

Remark on Online MHE Algorithms: Many algorithmic NMPC ideas
have been generalized to MHE problems. For example, a Newton-type con-
trol framework was used for MHE in [43], the C/GMRES method in [55],
cf. also [46], the real-time iteration in [21] and [38], and the advanced step
framework in [65]. A somewhat interesting online MHE approach related to
the Newton-type control framework was presented in [36], which uses back-
wards single shooting making it not suitable for stiff systems. Other numerical
MHE schemes were presented in [35] and [57].

7 Conclusions

In this paper we have tried to give a self-contained overview of Newton type
methods for online solution of nonlinear optimal control problems. We first
reviewed several categories in which offline algorithms differ, such as simul-
tanous vs. sequential approaches, Interior Point (IP) vs. Sequential Quadratic
Programming (SQP) methods, band structure exploiting linear algebra
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vs. condensing, and different ways to compute the derivatives needed in New-
ton type iterations. We then categorized several offline approaches along these
lines. The second part started by a discussion of online initializations. We
stressed the importance of sensitivity results from parametric optimization,
which in SQP type frameworks even allow to obtain cheaply a solution pre-
dictor across active set changes. We then classified many proposed real-time
optimization approaches from the literature into the developed categories,
starting with the ”Newton-type controller” [40] and the related ”continuation
method” [45], both based on sequential approaches, and then went over to the
”real-time iteration scheme” [16], a simultaneous approach characterized by
an SQP type solution predictor and iterations that perform only one system
linearization at each sampling time. We also discussed the recently proposed
simultaneous ”advanced step controller” [64] and ”multi-level real-time itera-
tions” [7], as well as fast online QP solutions [23].
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[15] Diehl, M., Bock, H.G., Schlöder, J.P.: A real-time iteration scheme for nonlin-
ear optimization in optimal feedback control. SIAM Journal on Control and
Optimization 43(5), 1714–1736 (2005)
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Nonlinear Programming Strategies for
State Estimation and Model Predictive
Control

Victor M. Zavala and Lorenz T. Biegler

Abstract. Sensitivity-based strategies for on-line moving horizon estimation
(MHE) and nonlinear model predictive control (NMPC) are presented both
from a stability and computational perspective. These strategies make use of
full-space interior-point nonlinear programming (NLP) algorithms and NLP
sensitivity concepts. In particular, NLP sensitivity allows us to partition the
solution of the optimization problems into background and negligible on-line
computations, thus avoiding the problem of computational delay even with
large dynamic models. We demonstrate these developments through a dis-
tributed polymerization reactor model containing around 10,000 differential
and algebraic equations (DAEs).

Keywords: large-scale, MHE, NMPC , nonlinear programming, sensitivity,
interior-point methods, sparse linear algebra.

1 Introduction

General model-based control frameworks based on MHE and NMPC repre-
sent an attractive alternative for the operation of complex processes. These
frameworks allow the incorporation of highly sophisticated dynamic process
models and the direct handling of multivariable interactions and operational
constraints. In addition, the potential of incorporating detailed first-principles
models allows a closer interaction of the controller with traditional economic
optimization layers such as real-time optimization (RTO). Crucial enabling
developments for this include: a) increased process understanding leading to
highly-detailed first-principles dynamic process models, b) enhanced formu-
lations with stability and robustness guarantees, c) advances in numerical
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strategies for DAE-constrained optimization and NLP algorithms, and d)
advances in computational resources including the availability of parallel and
multi-core technology.

In this work, special emphasis is made on the numerical solution aspects
and performance of combined MHE and NMPC strategies. In particular, a
general solution framework based on interior-point NLP solvers and sensi-
tivity concepts is considered. In the following section, we introduce some
basic concepts and notation and describe specific formulations of the MHE
and NMPC nonlinear programming problems. In Section 3 we discuss advan-
tages of interior-point NLP solvers and present some basic NLP sensitivity
results. In Section 4 we derive advanced-step approximation strategies for
MHE and NMPC, based on NLP sensitivity to reduce on-line computational
time. We also discuss their general stability and performance properties, es-
pecially when both are applied together. In Section 5, the potential of the
combined MHE and NMPC solution framework is demonstrated on a large-
scale case study involving the simultaneous monitoring and control of a dis-
tributed low-density polyethylene tubular reactor. The paper then closes with
general conclusions and recommendations.

2 MHE and NMPC Formulations

We begin with a discrete-time dynamic model of an uncertain plant of the
form,

xk+1 = f(xk, uk) + ξk, yk+1 = χ(xk+1) + vk+1 (1a)

where xk ∈ ,nx is the true plant state at time instant tk and uk ∈ ,nu

is the implemented control action. The nonlinear dynamic model f(·, ·) :
,nx+nu → ,nx is the nominal model and satisfies f(0, 0) = 0. The observed
output yk ∈ ,ny with ny ≤ nx is related to the state-space xk through
the nonlinear mapping χ(·) : ,nx → ,ny . The true plant deviates from the
nominal prediction due to the process disturbance ξk ∈ ,nx and measurement
noise vk ∈ ,ny .

Assume that the plant is currently located at sampling time tk with the
output and input measurements ηmhe

k := {yk−N , ..., yk, uk−N , ..., uk−1} dis-
tributed over a horizon containing N steps. The output measurement covari-
ance is given by R ∈ ,ny×ny . The a priori estimate of the past state of the
plant is denoted as x̄k−N and has an associated covariance Π0,k ∈ ,nx×nx .
Using this information, we would like to compute an estimate x̃k of the cur-
rent state xk. In order to do this, we solve the MHE problem,

M(ηmhe
k ) min

z0
‖z0 − x̄k−N‖2Π−1

0,k

+
N∑

l=0

‖yk+l−N − χ(zl)‖2R−1 (2a)

s.t. zl+1 = f(zl, uk+l−N ), l = 0, ..., N − 1 (2b)
zl ∈ X (2c)
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All the MHE problem data can be summarized in the vector ηmhe
k . Symbols

zl ∈ ,nx are internal decision variables of the optimization problem. This
problem has nx degrees of freedom corresponding to z0. From the solution
trajectory, {z∗0 , ..., z∗N}, we obtain the optimal estimate x̃k = z∗N with as-
sociated estimation error ek := x̃k − xk. Using this estimate, we define the
problem data ηmpc

k := x̃k for the NMPC problem,

P(ηmpc
k ) min

vl

Ψ(zN ) +
N−1∑
l=0

ψ(zl, vl) (3a)

s.t. zl+1 = f(zl, vl) l = 0, . . .N − 1 (3b)
z0 = x̃k (3c)
zl ∈ X, vl ∈ U (3d)

where vl ∈ ,nu are internal decision variables. This problem has (N−1)×nu

degrees of freedom corresponding to vl, l = 0, ..., N −1. Here, we assume that
the states and controls are restricted to the domains X and U, respectively.
The stage cost is defined by ψ(·, ·) : ,nx+nu → ,, while the terminal cost
is denoted by Ψ(·) : ,nx+nu → ,. The control action is extracted from the
trajectory optimal trajectory {z∗0 ...z∗N v∗0 , ..., v

∗
N−1} as uk = v∗0 := h(x̃k), and

h(·) denotes the feedback law. Note that this control action is inaccurate
because the true state of the plant is xk and not the estimate x̃k. That is,
the estimation error acts as an additional disturbance. At the next time, the
plant will evolve as,

xk+1 = f(xk, h(x̃k)) + ξk, yk+1 = h(xk+1) + vk+1 (4)

With this, we shift the measurement sequence one step forward to obtain
ηmhe

k+1 := {yk−N+1, ..., yk+1, uk−N+1, ..., uk}, and we solve the new MHE prob-
lem. Having the new state estimate x̃k+1 we solve the next NMPC problem.

Note that the above formulations are rather simplified. This makes them
convenient for the conceptual analysis in subsequent sections. In practical ap-
plications, both NMPC and MHE problems are solved as general continuous-
time DAE-constrained optimization problems. In this work, we assume that
a full discretization approach is used to derive the discrete-time NMPC and
MHE formulations. In this case, these NLP problems will be sparse. This is
a crucial property to be exploited in the following sections.

A problem that is normally encountered in model-based control frame-
works is that there exists a computational feedback delay equal to the solu-
tion time of the MHE and NMPC problems. In large-scale applications (say
nx ≈ 100− 10, 000), this computational delay might dominate the time con-
stant of the plant and destabilize the process. Therefore, we seek to derive
strategies to reduce the on-line computational time. The first crucial com-
ponent of these strategies is a fast NLP algorithm. In the next section, we
discuss some of the advantages that interior-point NLP solvers offer for the
solution of very large problems.
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3 Full-Space Interior-Point NLP Solvers

The NLP problems (2) and (3) can be posed in the general form,

N (η) min
x

F (x, η) (5a)

s.t. c(x, η) = 0 (5b)
x ≥ 0 (5c)

where x ∈ ,nx is variable vector containing all the states and controls and η
is the data vector.

Full-space interior-point solvers have become a popular choice for the
solution of large-scale and sparse NLPs. In particular, the solvers LOQO,
KNITRO and IPOPT are widely used. In this work, we use IPOPT, an
open-source NLP solver originally developed in our research group [1]. In
interior-point solvers, the inequality constraints of problem (5) are handled
implicitly by adding barrier terms to the objective function,

min
x

F (x, η)− μ�

nx∑
j=1

ln(x(j)), s.t. c(x, η) = 0 (6)

where x(j) denotes the jth component of vector x. Solving (6) for a decaying
sequence of μ� → 0, �→∞ results in an efficient strategy to solve the original
NLP (5). IPOPT solves the Karush-Kuhn-Tucker (KKT) conditions of this
sequence of barrier problems (6),

∇xF (x, η) +∇xc(x, η)λ − ν = 0 (7a)
c(x, η) = 0 (7b)
X ·V e = μ�e (7c)

where X = diag(x),V = diag(ν) and e ∈ ,nx is a vector of ones. Symbols
λ ∈ ,nλ and ν ∈ ,nx are Lagrange multipliers for the equality constraints
and bounds, respectively. To solve this system of nonlinear equations we
apply an exact Newton method with the iteration sequence initialized at
sT

o := [xT
o λT

o νT
o ]. At the ith iteration, the search direction Δsi = si+1 − si

is computed by linearization of the KKT conditions (7),⎡⎣ Hi Ai −Inx

Ai
T 0 0

Vi 0 Xi

⎤⎦⎡⎣Δxi

Δλi

Δνi

⎤⎦= −
⎡⎣∇xF (xi)+Aiλi−νi

c(xi)
XiVie− μ�e

⎤⎦ (8)

where Ai := ∇xc(xi, η), Hi ∈ ,nx×nx is the Hessian of the Lagrange function
LF (xi, η) + λT

i c(xi, η)− νi
T xi and Inx denotes the identity matrix.

We provide exact Hessian and Jacobian information through the mod-
eling platform AMPL. With this, Newton’s method guarantees fast local
convergence and is able to handle problems with many degrees of freedom
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without altering these convergence properties. After solving a sequence of
barrier problems for μ� → 0, the solver returns the optimal solution triplet
sT
∗ = [xT

∗ λT
∗ νT

∗ ] which implicitly defines the active-set (set of variables
satisfying x(j) = 0).

3.1 Computational Issues

Solving the KKT system (8) is the most computationally intensive step in
the solution of the NLP. A crucial advantage that interior-point solvers of-
fer over active-set solvers is that the structure of the KKT matrix in (8)
does not change between iterations. This facilitates the design of tailored lin-
ear algebra strategies to exploit special structures. For instance, the KKT
matrix arising from DAE-constrained optimization problems has a natural
forward structure (almost-block-diagonal) in time and classical Riccati-like
recursions and condensing techniques are often applied, where the complex-
ity of these solution strategies scales linearly with the horizon length N , but
cubically with the number of states nx and controls nu. On the other hand,
specialized strategies have been developed that reduce the cubic computa-
tional complexity and also preserve numerical stability in the face of unstable
dynamics [3, 4].

In IPOPT, we use a symmetric indefinite factorization of the KKT matrix
(with Δνi eliminated). With this, we exploit only the sparsity pattern of the
KKT matrix. The computational complexity of this strategy is in general
very favorable, scaling nearly linearly and at most quadratically with the
overall dimensions of the NLP (e.g. length of prediction horizon, number
of states and number of degrees of freedom). This general approach also
remains stable in the face of unstable dynamics. However, significant fill-in
and computer memory bottlenecks might arise during the factorization step if
the sparsity pattern is not properly exploited. In order to factorize the KKT
matrix, we use the linear solver MA57 from the Harwell library [5]. Since the
structure of the KKT matrix does not change between iterations, the linear
solver needs to analyze the sparsity pattern only once. During this analysis
phase, the linear solver permutes the matrix to reduce fill-in and computer
memory requirements in the factorization phase. Two reordering strategies
are normally used in MA57. The first is an approximate minimum degree
(AMD) ordering algorithm while the second is a nested dissection algorithm
based on the multi-level graph partitioning strategy, implemented in Metis
[6]. For very large-scale problems, these nested dissection techniques excel
at identifying high-level (coarse-grained) structures and thus play a crucial
role in the factorization time and reliability of the linear solver. These notable
advances in numerical linear algebra can dramatically expand the application
scope of NMPC and MHE.

IPOPT also applies a regularization scheme to the KKT matrix in order
to account for directions of negative curvature and rank-deficient Jacobians
which are commonly encountered in highly nonlinear NLPs and/or ill-posed



424 V.M. Zavala and L.T. Biegler

formulations. Directions of negative curvature are detected implicitly through
the linear solver, which returns the so-called inertia of the KKT matrix (num-
ber of positive, negative and zero eigenvalues). If the inertia is correct at the
solution, no regularization is necessary and we can guarantee that the opti-
mal point is a well-defined minimum satisfying strong second order conditions
(SSOC) and the linear independence qualification of the constraints (LICQ)
[7]. In the context of NMPC and MHE, checking for SSOC is important
since this is directly related to properties of the dynamic system such as
controllability and observability. Consequently, checking for SSOC through
the inertial properties of the KKT matrix is another important advantage
of using a general factorization strategy, as opposed to other tailored linear
algebra strategies.

3.2 NLP Sensitivity and Warm-Starts

Problem (5) is parametric in the data η and the optimal primal and dual
variables can be treated as implicit functions of η. For a sufficiently small
μ�, the KKT conditions (7) of the barrier problem (6) can be expressed as
ϕ(s(η), η) = 0 and we define K∗(η0) as the KKT matrix in (8).

We are interested in computing fast approximate solutions for neighboring
problems around an already available nominal solution s∗(η0). In order to do
this, we make use of the following classical results,

Theorem 1. (NLP Sensitivity) [7, 8]. If F (·) and c(·) of the parametric prob-
lem N (η) are twice continuously differentiable in a neighborhood of the nomi-
nal solution s∗(η0) and this solution satisfies LICQ and SSOC, then s∗(η0) is
an isolated local minimizer of N (η0) and the associated Lagrange multipliers
are unique. Moreover, for η in a neighborhood of η0 there exists a unique,
continuous and differentiable vector function s∗(η,N) which is a local min-
imizer satisfying SSOC and LICQ for N (η). Finally, there exists a positive
Lipschitz constant L such that ‖s∗(η,N)−s∗(η0, N)‖ ≤ L‖η−η0‖ along with
a positive Lipschitz constant LF such that the optimal values F (η) and F (η0)
satisfy ‖F (η)− F (η0)‖ ≤ LF‖η − η0‖.
Under these results, a step Δs(η) computed from,

K∗(η0)Δs(η) = − (ϕ(s∗(η0), η)− ϕ(s∗(η0), η0))
= −ϕ(s∗(η0), η). (9)

with Δs(η) = s̃(η)− s∗(η0), is a Newton step taken from s∗(η0) towards the
solution of a neighboring problem N (η). Consequently, s̃(η) satisfies,

‖s̃(η)− s∗(η)‖ ≤ Ls‖η − η0‖2 (10)

with Ls > 0. Furthermore, since the KKT matrix K∗(η0) is already available
from the solution of the nominal problemN (η0), computing this step requires
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only a single backsolve which can be performed orders of magnitude faster
than the factorization of the KKT matrix.

Since the approximate solution s̃(η) is accurate to first order, we can use
it as the initial guess so(η) to warm-start the NLP N (η). For instance, if the
perturbation (η− η0) does not induce an active-set change, we can fix μ to a
small value (e.g. say 1× 10−6) and reuse the KKT matrix K∗(η0) to perform
fast fixed-point iterations on the system,

K∗(η0)Δsi(η) = −ϕ(si(η), η) (11)

with so = s∗(η0). With this, we can reduce the primal and dual infeasibility
of the perturbed problem N (η) until no further progress can be made with
the fixed KKT matrix. For sufficiently small perturbations, these fast fixed-
point iterations can converge to the solution of the perturbed problem s∗(η).
However, for large perturbations, the KKT matrix needs to be reevaluated
and refactorized.

When the perturbation η − η0 induces an active-set change, the lineariza-
tion of the complementarity relaxation (7c) contained in the nominal KKT
matrix K∗(η0) will drive the first Newton iteration outside of the feasible
region and the sensitivity approximation is inconsistent. To compute a fast
sensitivity approximation, one could reuse the factorization of the KKT ma-
trix through a Schur complement scheme to correct the active-set (e.g. add
slack variables and constraints to drop and fix variables and bound multipli-
ers) [9]. This is equivalent to an active-set sequential quadratic programming
(SQP) iteration. Fixed-point iterations can also be performed in this way.

In the context of the proposed MHE and NMPC formulations, we define
the optimal solutions,

s∗MHE := {z∗0 , ..., z∗N−1, z
∗
N , λ∗

1, ..., λ
∗
N−1, λ

∗
N} (12a)

s∗MPC := {z∗0 , ..., z∗N−1, z
∗
N , v∗0 , ..., v

∗
N−2, v

∗
N−1, λ

∗
0, ..., λ

∗
N−1, λ

∗
N}. (12b)

The associated sensitivity approximations are denoted as s̃MHE and s̃MPC ,
respectively, and the corresponding warm-start vectors as so

MHE and so
MPC .

Notice that we have not included the bound multipliers in order to simplify
the presentation.

4 Advanced-Step MHE and NMPC Strategies

It is possible to minimize the on-line time required to solve the MHE problem
and then the NMPC problem to two fast backsolves using an advanced-step
framework [2, 10]. Imagine that at time tk we know the control action uk and
we would like to obtain an estimate of the future state xk+1 but we don’t know
the future measurement yk+1. Nevertheless, we can use the current estimate
x̃k and control uk to predict the future state and associated measurement,
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x̄k+1 = f(x̃k, uk), ȳk+1 = χ(x̄k+1) (13)

to complete the problem data η̄mhe
k+1 := {yk+1−N , ..., ȳk+1, uk−N , ..., uk} and

start the solution of the predicted problem M(η̄mhe
k+1 ). Simultaneously, we

can use the predicted state to define η̄mpc
k+1 := x̄k+1 and start the solution of

the predicted problem P(η̄mpc
k+1 ). Note that both problems are decoupled so

this can be done simultaneously and thus reduce the sampling time. At the
solution of these problems, we hold the corresponding KKT matrices Kmhe

∗
and Kmpc

∗ .
Once the true measurement yk+1 becomes available, we compute a fast

backsolve with Kmhe
∗ to obtain an approximate state estimate x̃as

k+1 which
differs from the optimal state estimate x̃k+1 and the true state xk+1. Using
the approximate state estimate we perform a fast backsolve with Kmpc

∗ to
obtain the approximate control action uk+1 = has(x̃as

k+1). Of course, this also
differs from the ideal NMPC control h(x̃k+1).

To warm-start the background problems at the next sampling time, we use
the approximate solutions s̃MHE and s̃MPC to generate the shifted warm-
start sequences for the next problems M(η̄mhe

k+2 ) and P(η̄mpc
k+2 ) [11],

so
MHE := {z̃1, ..., z̃N , f(x̃as

k+1, uk+1), λ̃2, ..., λ̃N , 0} (14a)

so
MPC := {z̃1, ..., z̃N , z̃N , ṽ1, ..., ṽN−1, ṽN−1, λ̃1, ..., λ̃N , λ̃N}. (14b)

from which we update the KKT matrices in between sampling times. Note
that the approximate solutions s̃MHE and s̃MPC can also be refined in back-
ground using fixed-point iterations with Kmhe∗ and Kmpc

∗ before using them to
generate the warm-start sequences. We summarize the proposed framework
for the advanced-step MHE and NMPC strategies, asMHE and asNMPC,
respectively, as follows:

In background, between tk and tk+1:

1. Use current estimate x̃as
k and control uk to predict the future state x̄k+1 =

f(x̃as
k , uk) and corresponding output measurement ȳk+1 = χ(x̄k+1).

2. Define the data η̄mhe
k+1 = {yk+1−N ...yk, ȳk+1, uk+1−N , ..., uk} and η̄mpc

k+1 =
x̄k+1. Use the available warm-start points so

MHE and so
MPC to solve the

predicted problems MN (η̄mhe
k+1 ) and PN (η̄mhe

k+1 ).
3. Hold the KKT matrices Kmhe∗ and Kmpc

∗ .

On-line, at tk+1:

1. Obtain the true measurement yk+1 and define the true MHE data ηmhe
k+1 .

Reuse factorization of Kmhe
∗ to quickly compute s̃MHE from (9) and ex-

tract x̃as
k+1.

2. Use x̃as
k+1 to define the true NMPC problem data ηmpc

k+1 . Reuse factorization
of Kmpc

∗ to quickly compute s̃MPC from (9) and extract uk+1 = has(x̃as
k+1).

3. If necessary, refine s̃MHE and s̃MPC . Generate the warm-starts so
MHE and

so
MPC , set k := k + 1, and return to background.
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4.1 Stability Issues

It is clear that both the state estimate and the associated control action are
suboptimal due to the presence of NLP approximation errors. Here, we are
interested in assessing the impact of these errors in the stability of the closed-
loop system. From the controller point of view, we are interested in finding
sufficient conditions under which the closed-loop remains stable in the face of
disturbances and NLP sensitivity errors. Due to space limitations we outline
the main results here and refer the interested reader to [2] for more details.

To start the discussion, we first note that solving the predicted prob-
lem P(x̄k+1) in the asNMPC controller is equivalent to solving the extended
problem,

PN+1(η
mpc
k ) min

vl

Ψ(zN ) + ψ(xk, uk) +
N−1∑
l=0

ψ(zl, vl) (15a)

s.t. zl+1 = f(zl, vl) l = 0, . . .N − 1 (15b)
z0 = f(xk, uk) (15c)
zl ∈ X, vl ∈ U (15d)

with fixed xk, uk = h(xk) and ηmpc
k = {xk, h(xk)}. For the optimal or

ideal NMPC controller (instantaneous optimal solutions), we consider the
neighboring costs of the extended problems with perfect state information
J

h(xk)
xk := JN+1(xk, h(xk)) and J

h(xk+1)
xk+1 := JN+1(xk+1, h(xk+1)) as reference

points. As observed by Muske and Rawlings [12], since the implemented con-
trol action is based on the state estimate x̃k coming from MHE and not on
the true state xk, we consider this as an additional disturbance to the closed-
loop system through the cost J

h(x̂k+1)
x̂k+1

where x̂k+1 = f(xk, h(x̃k)) + ξk. From
Lipschitz continuity of the cost function we have,

|Jh(x̂k+1)
x̂k+1

− Jh(xk+1)
xk+1

| ≤ LJLfLh‖xk − x̃k‖.

Explicit bounds and convergence properties on the estimator error ‖xk− x̃k‖
can be established for the MHE formulation (2) [15]. Moreover, we can also
treat this error as another disturbance ξk and define x̃k := xk + ξk. This
allows us to restate the following robustness result for the combined asMHE
and asNMPC strategies.

Theorem 2 (Theorem 6 in [2] ). Assume that the NLPs for (2) and (3) can
be solved within one sampling time. Assume also that nominal and robust sta-
bility assumptions for ideal NMPC hold (see [2]), then there exist bounds on
the noise ξ and v for which the cost function JN+1(x), obtained from the com-
bined asMHE-asNMPC strategy, is an input to state stable (ISS) Lyapunov
function, and the resulting closed-loop system is ISS stable.
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5 Case Study

We demonstrate the performance of the proposed advanced-step framework
on a low-density polyethylene (LDPE) tubular reactor process. A schematic
representation of a typical multi-zone LDPE reactor is presented in Fig-
ure 1. In these reactors, high-pressure (2000-3000 atm) ethylene polymer-
izes through a free-radical mechanism in the presence of peroxide initiators,
which are fed at multiple zones in order to start and stop the polymeriza-
tion. The large amounts of heat produced by polymerization are removed
at each zone using cooling water, along with multiple feeds of ethylene that
cool the ethylene-polymer reacting mixture flowing inside the reactor core.
Initiator flow rates, ethylene side-streams flow rates and temperatures, and
the cooling water inlet temperatures and flow rates can be manipulated to
achieve an axial reactor temperature profile that produces a desired polymer
grade. A common problem in these reactors is that polymer accumulates (i.e.,
fouls) on the reactor walls. The resulting fouling layer blocks heat flow to the
jacket cooling water and can be seen as a persistent dynamic disturbance.
In the absence of a suitable control system, this fouling layer will eventually
lead to thermal runaway. A centralized model-based control strategy based
on a first-principles reactor model can deal effectively with fouling monitor-
ing, zone control decoupling and direct optimization of the overall process
economics (e.g. maximize production, minimize energy consumption). Nev-
ertheless, LDPE reactor models consist of very large sets of PDAEs that
describe the evolution of the reactor mixture and of the cooling water tem-
perature along the axial and time dimension. After axial discretization, a
typical LDPE reactor model can easily contain more than 10,000 DAEs.

An MHE estimator and an NMPC controller based on first-principles
LDPE reactor models have been reported in [13, 14]. While these reports
stress the benefits of these strategies for the LDPE process, little emphasis
has been placed on the computational limitations associated to their on-line
solution. Here, we consider these issues through the proposed advanced-step
control framework where we effectively minimize the on-line computation
with negligible approximation errors. We simulate the scenario in which the
reactor is fouled and cleaned over time, by ramping the reactor heat-transfer
coefficients (HTCs) down and up. Because this effect is directly reflected
through HTCs in the LDPE reactor model, we do not estimate the process
disturbance ξk, and instead use the MHE estimator to estimate the HTCs

Fig. 1 Schematic representation of multi-zone LDPE tubular reactor
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Fig. 2 Performance of advanced-step MHE and NMPC in LDPE case study

and the unmeasured model states (e.g. wall temperature profile) at each time
step. For the MHE estimator, yk consists of multiple measurements of the re-
actor core temperature and the output jacket temperatures in each zone. The
objective of the NMPC controller is to use the estimated reactor state x̃as

k to
drive the axial reactor temperature profile to the specified target profile. In
order to do this, the NMPC controller uses the multiple inputs distributed
along the reactor to obtain uk = has(x̃as

k ). In this simulated scenario, we gen-
erate the plant response xk from the model with the true HTCs. In addition,
the plant is initialized at a different state from that of the NMPC controller.
Finally, we corrupt the output measurements with Gaussian noise.

Since the plant response differs from that of the NMPC controller pre-
diction and we introduce noise, the asMHE estimator will see a difference
between the measured and the predicted outputs (see top graph of Figure
2) and will correct on-line using NLP sensitivity. We have found that the
approximation errors are negligible and the asMHE estimator has almost
identical convergence properties to that of the ideal MHE estimator. In the
middle graph of Figure 2, we see that while the estimate of the reactor wall
profile is inaccurate at t0, the dashed and solid lines coincide by t10, and
the asMHE estimator converges to the true reactor wall profile (and the one
obtained from ideal MHE) using reactor core measurements in about 10 time
steps. Using the estimated states and HTCs, the asNMPC controller then up-
dates the predicted state on-line. In the bottom graph of Figure 2 we present
the closed-loop response of one of the jacket water inlet temperatures for the
asNMPC controller and its ideal NMPC counterpart. As can be seen, both
control actions are identical. In this graph we can also appreciate how the
HTC cycles influence the controller response.

In the top graph of Figure 3 we present the total wall-clock time required
to refine the perturbed solution, generate the warm-start point and solve the
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background NMPC problem. This time also includes some overhead coming
from I/O communication tasks and from AMPL, which requires some time
to generate the derivative information before calling the NLP solver. A pre-
diction horizon of N = 10 time steps (20 minutes) and sampling times of
2 minutes have been used. The NMPC problem consists of an NLP with
80,950 constraints and 370 degrees of freedom. As can be seen, the overall
background time is around 60 seconds and is well below the specified sampling
time. A single factorization of the KKT matrix takes 15.34 seconds, a single
fixed-point iteration requires 0.1 seconds, and an average of 5 fixed point
iterations are required to solve the NLP. In the middle graph of Figure 3, we
present total background times for the MHE estimator. The estimator is ini-
tialized in batch mode (accumulate measurements until an estimator horizon
of N time steps is filled). Once the estimation horizon is complete, the back-
ground tasks take around 70 seconds to be completed. The MHE problem
consists of an NLP with 80,300 constraints and 648 degrees of freedom. One
fixed-point iteration requires 0.12 seconds and an average of 10 fixed point it-
erations solve the NLP. In the bottom graph of Figure 3, we present scale-up
results of the solution time for the NMPC problem with increasing horizon
length. We compare the impact of AMD and nested dissection sparse matrix
reordering on the solution time of the background NLP problem (without
refinement or overhead). The multi-level nested dissection strategy is more
efficient here and achieves a linear scale-up. Using this strategy, a N = 30
NMPC problem with 242,850 constraints and 1,110 degrees of freedom is
solved in around 2 minutes, the factorization of the KKT matrix takes 32.31
seconds and a fixed-point iteration requires 0.33 seconds. The AMD strat-
egy shows quadratic scale-up and the largest problem requires 4 minutes.
This difference can be attributed to the fact that the Metis nested dissection
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algorithm is much more efficient in identifying coarse-grained structures in
the NMPC problem (LDPE multi-zone model, DAE forward structure, etc.),
while AMD tends to focus on fine-grained structures. All calculations were
obtained using a quad-core Intel processor running Linux at 2.4 GHz.

6 Conclusions

In this work, we present computational strategies for MHE and NMPC prob-
lems. In particular, a general solution framework based on interior-point NLP
solvers and sensitivity concepts is considered. We emphasize that exploiting
the overall sparsity pattern of the KKT matrix arising in NMPC and MHE
problems leads to a computationally efficient and stable strategy to compute
the Newton step. We analyze the impact of different reordering techniques
of the KKT matrix on the factorization time and computer memory limita-
tions. In particular, we present NLP sensitivity-based strategies for MHE and
NMPC that reduce the on-line computation time to only two fast backsolves.
This negligible computation effectively removes the problem of computational
delay even for very large NLP models. Finally, we discuss stability issues of
the NMPC controller in the face of sensitivity errors and demonstrate the
developments in a distributed polymerization reactor process, where highly
accurate solutions can be obtained in a negligible amount of time.
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A Framework for Monitoring Control
Updating Period in Real-Time NMPC
Schemes

Mazen Alamir

Abstract. In this contribution, a general scheme for on-line monitoring of
the control updating period in real-time Nonlinear Model Predictive Control
(NMPC) schemes is proposed. Such a scheme can be of a great interest when
applying NMPC to systems with fast dynamics. The updating scheme is
based on the on-line identification of generic models for both solver efficiency
and disturbance effects on the optimal cost behavior. A simple example is
used to illustrate the efficiency of the proposed methodology.

Keywords: Nonlinear Model Predictive Control; Real-Time Implementa-
tion; Fast Systems; Updating Period Monitoring.

1 Introduction

The classical stability theory of NMPC schemes relies on the availability of an
optimal solution in within a fraction of the basic sampling period [7]. When
applying NMPC to fast systems, this assumption can be questionable and
many realistic approaches have been proposed during the last decades to come
closer to concrete implementation schemes. The common feature in these
new approaches is to distribute the iterations of some optimization scheme
over the real lifetime of the system. Various optimization schemes have been
investigated such as multiple shooting [5, 6], continuation [8] or gradient-
based descent scheme [4]. Although the very idea of distributing the iteration
was early in the air in an intuitive way [2], the recent works mentioned above
address its implications on the stability and the robustness of the resulting
closed-loop for each particular scheme. All these schemes however may not
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be suitable when an implicit parametrization of the control profile is used
[1] since theoretical and/or computational differentiability issues may arise.
Moreover, even in the very precise frameworks of these approaches, there is
no evidence that the optimization time and the real system’s lifetime have
to be taken strictly equal. Some trade-off may be needed especially in the
presence of model mismatch and/or unpredictable external disturbance.

The aim of the present paper is to provide a general framework addressing
the following issue: Given an optimization subroutine S, a control profile
bandwidth leading to a basic sampling period τ > 0 and a computation time
τc needed to perform one basic iteration, how to monitor the control updating
period to be used? Namely, how many iterations one has to perform in order
between two successive update of the future control sequence. The existence
of an optimal trade-off is clearly shown and a general updating framework
is suggested that can be used as a monitoring layer in any existing real-time
NMPC scheme.

The paper is organized as follows: First, the problem is stated in section 2.
The theoretical framework is described in section 3. Some computational is-
sues related to on-line identification of unknown maps are discussed in section
4. Finally, an illustrative example is proposed in section 5.

2 Problem Statement

2.1 Recall on Parameterized NMPC

Let us consider nonlinear systems that admit the following implicit model:

x(t) = X(t, x0,u) ; t ≤ T (1)

where x(·) ∈ Rn is the state trajectory that starts at the initial value x(0) =
x0 under the control profile u ∈ U[0,T ] for some subset U ⊂ Rm of admissible
control inputs. The implicit map X is obtained by any suitable integrating
a suitable process model. T is some prediction horizon over which the model
(1) is meaningful.

In what follows, the evolution of the real system is clearly distinguished
from that of the model (1) by adopting the following notation:

x(t) = Xr(t, x0,u,w) ; t ≤ T (2)

where w represents the unknown uncertainty/disturbance profile that may
affect the system during the time interval.

When the model (1) is used in a parameterized NMPC scheme [1], it
is quite common to use some fixed sampling period τ > 0 that reflects the
characteristic time of the system together with some piecewise-constant open-
loop control parametrization:

Upwc(p) :=
(
u(1)(p), . . . , u(N)(p)

) ∈ U
N ; Nτ = T (3)
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where u(k)(p) defines the open-loop control value to be applied during the
future interval [(k − 1)τ, kτ ]. As soon as such a parametrization is fixed, the
implicit model can be written in terms of the parameter vector p with an
obvious overloaded notations:

x(t) = X(t, x0, p) ; t ≤ T (4)

By doing so, NMPC related cost functions can be viewed as functions of the
initial state and the parameter vector p, namely J(p, x0) that is assumed
to be positive. This enables to define a state dependent optimal parameter
p̂(x) by:

p̂(x) := arg min
p∈P(x)⊂P

J(p, x) (5)

where P(x) ⊂ P ⊂ Rnp is some set of admissible parameter values that may
depend on the state. In what follows, the above optimization problem is
denoted by P(x).

According to (3), the optimal value p̂(x) defines a sequence of control
inputs by:

Upwc(p̂(x)) :=
(
u(1)(p̂(x)), . . . , u(N)(p̂(x))

) ∈ U
N ; Nτ = T (6)

Classically, NMPC schemes use τ as updating period with the following time
sampled state feedback law:

K = u(1) ◦ p̂ (7)

that is, only the first input in the optimal sequence Upwc(p̂(x(tk)) is applied
during the time interval [tk, tk + τ = tk+1] before a new optimal sequence is
computed by solving the optimization problem associated to the next state
x(tk+1) and so on.

Such scheme assumes that the optimization problem can be solved, or at
least a sufficient number of iterations towards its solution can be done in
less than τ time units. For fast systems where τ needs to be very small, this
condition may become hard to satisfy and some dedicated scheme has to be
adopted as shown in the following section. Note that throughout the paper,
the number of iterations refers to the number of functions evaluations as it is
the key operation in NMPC schemes.

2.2 Implementation Scheme for Fast Systems

As the basic sampling period τ may be too small for control updating, the
control updating period can be taken equal to some multiple τu = Nuτ of the
basic sampling period τ . So let us denote by tui = iτu the so-called updating
instants (see later for a precise definition of the updating process). At instant
t = 0, some initial parameter vector p(tu0 = 0) ∈ P(x0) is chosen (arbitrarily
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or according to some ad-hoc initialization rule). The corresponding sequence
of control inputs

Upwc(p(tu0 )) =
(
u(1)(p(tu0 )) . . . u(Nu)(p(tu0 )) . . . u(N)(p(tu0 ))

)
is computed. During the time interval [tu0 , tu1 ], the first Nu control inputs(

u(1)(p(tu0 )) . . . u(Nu)(p(tu0 ))
)

are applied. In parallel, the computation unit performs successively the fol-
lowing two tasks:

1. Compute the model based prediction of the state at the future instant tu1
according to:

x̂(tu1 ) = X(τu, x(tu0 ), p(tu0 ))

This prediction involves only the first Nu elements of Upwc(p(tu0 )).
2. Try to solve the optimization problem P(x̂(tu1 )) by performing q steps of

some optimization process S with an initial guess p+(tu0 ) such that:

J
(
p+(tu0 ), x̂(tu1 )

) ≤ J
(
p(tu0 ), x(tu0 )

)
(8)

The later may be obtained from p(tu0 ) by some appropriate transforma-
tion. For instance, the translatability property invoked in [1] can be used.
However, the precise choice of the transformation p+(tu1 ) is meaningless
for the remainder of the sequel. This is shortly denoted as follows:

p(tu1 ) = Sq
(
p+(tu0 ), x̂(tu1 )

)
(9)

Note that p(tu1 ) is generally different from the optimal value p̂(x̂(tu1 )) that
may need much more iterations to be obtained. During the time interval
[tu1 , tu2 ], the Nu control inputs(

u(1)(p(tu1 )) . . . u(Nu)(p(tu1 ))
)

are applied and so on.
To summarize

Under the above implementation rules, the state of the real system
at the updating instants {tui }i≥0 is governed by the following coupled
dynamic equations:

x(tui ) = Xr
(
τu, x(tui−1), p(t

u
i−1),w

)
(10)

p(tui ) = Sq
(
p+(tui−1), X(τu, x(tui−1), p(t

u
i−1))︸ ︷︷ ︸

x̂(tu
i )

)
(11)

that clearly involve an extended dynamic state z =
(
pT xT

)T ∈ Rn+np

and that heavily depend on the design parameters τu, S and q.
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2.3 The Scope of the Present Contribution

In the present contribution, the interest is focused on the following issue:

Given some optimization process S , propose a concrete updating
rules for both the control updating period τu and the number of
iterations q in order to improve the closed-loop behavior under the
real-time NMPC implementation framework proposed in section 2.2.

In particular, it is worth emphasizing here that the choice of the optimization
process S that may be used in order to come closer to the optimal value
p̂(x(tui )) is not the issue of this paper. The updating rule proposed hereafter
can be used as an additional layer to any specific choice of the optimization
process S.

3 Theoretical Framework

Although we seek a general framework, we still need some assumptions on
the optimization process S being used. In particular, it is assumed that the
process is passive in the following trivial sense

Assumption 1 [The optimizer is passive]
For all q ∈ N and all z := (p, x) ∈ R

np × R
n, the following inequality holds:

J(Sq(p, x), x) ≤ J(p, x) (12)

which simply means that at worst, the optimize returns the initial guess p.

A key property in the success of the real-time NMPC scheme is the efficiency
of the optimizer, namely, its ability to lead to a best value Sq(p, x) of the
parameter vector starting from the initial guess p. This efficiency may heav-
ily depend on the pair (p, x) and can be quantified through the following
definition:

Definition 1 [Efficiency of the optimizer]
For all (p, x) ∈ Rnp × Rn, the map defined by:

Ef
(p,x)(q) :=

J
(Sq(p, x), x

)
J(p, x)

(13)

is called the efficiency map at (p, x).

Note that by virtue of assumption 1, the efficiency map satisfies the inequality
Ef

(p,x)(q) ≤ 1 for all q and all (p, x).
The last element that plays a crucial role in determining what would be

an optimal choice is the level of model discrepancy. More precisely, how this
discrepancy degrades the value of the resulting cost function at updating
instants. This may be handled by the following definition:
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Definition 2 [Model Mismatch Indicator]
For all pair (p, x), the map defined by:

D(p,x)(τu) := sup
(p̄,w)∈P×W

[J(p̄, Xr(τu, x, p,w))
J(p̄, X(τu, x, p))

]
(14)

is called the model mismatch indicator at (p, x).

Note that by definition, D(p,x)(0) = 1 for all (p, x) since one clearly has
X(0, x, p) = Xr(0, x, p,w) = x. As a matter of fact, D(p,x)(τu) represents a
worst case degradation of the cost function that is due to the bad prediction
x̂(tui+1) of the future state x(tui+1) at the next decision instant.

Based on the above definitions, the following result is straightforward:

Lemma 1 [A Small Gain Result]
Under the real-time implementation scheme given by (10)-(11), the dynamic
of the cost function satisfies the following inequality:

J(p(tui+1), x(tui+1)) ≤
[
Ef

(i)(q)
][
D(i)(τu)

] · J(x(tui ), p(tui )) (15)

where the following short notations are used:

Ef
(i)(q) := Ef

(p(tu
i ),x(tu

i ))(q) ; D(i)(τu) := D(p(tu
i ),x(tu

i ))(τu)

Consequently, if the following small gain condition is satisfied for all i:

K(i)(q, τu) :=
[
Ef

(i)(q)
][
D(i)(τu)

] ≤ γ < 1 (16)

then the closed loop evolution of (p, x) is such that J(·, x(tui )) asymptotically
converges to 0. ♥
Recall that our aim is to define a rationale in order to choose the parameters
of the real-time scheme, namely q and τu. The small gain condition (16) of
lemma 1 provides a constraint guiding this choice (provided that estimations
of the maps Ef

(i) and D(i) are available). Another trivial constraint expresses
the fact that the time needed to perform q iterations is lower than the control
updating period τu, this constraint can be written as follows:

q =
[τu

τc

]
(17)

where τc is the time needed to perform a single iteration (function evaluation)
while for all ρ ∈ R, [ρ] stands for the greatest integer lower than ρ.

Note that inequalities (16)-(17) are constraints that take account for con-
vergence and feasibility issues respectively. The quality of the closed loop
may be expressed in term of the settling time, that is the predicted time
necessary to contract the cost function by a given ratio. Using (17), this can
be expressed by the following cost function:
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tr(τu) :=
τu

| log(K(i)(
[

τu

τc

]
, τu))| (18)

Therefore, provided that an approximation of the map K(i)(q, τ) is obtained
(via on-line identification), the following constrained optimization problem
may be used to compute at each updating instant tui the value of the next
optimal control updating period τu(tui ) and the number of iterations q(tui ) [by
virtue of (17)]:

τu(tui ) :=

⎧⎨⎩
arg min

τu∈N

[
tr(τu)

]
under K(i)(

[
τu

τc

]
, τu) < 1 when feasible

arg min
τu∈N

[
K(i)(

[τu

τc

]
, τu)

]
otherwise

(19)

In the remainder of this paper, a scheme is proposed to identify the key
function map K(i)(·, ·) based on on-line available measurements.

4 On-Line Identification of the Key Maps

The identification of the map

K(i)(q, τ) = Ef
(i)(q) ·D(i)(τu) (20)

can be done by identifying both the efficiency map Ef
(i) and the model un-

certainty related map D(i) using the definitions (13) and (14) respectively. In
order to do this, some notations are introduced hereafter in order to simplify
the expressions. For instance, the following short expressions related to the
cost function are used:

J+
(i) = J(p+(tui−1), x̂(tui )) The value when the iterations start

Ĵ(i) = J(p(tui ), x̂(tui )) The value when the iterations stop
J(i) = J(p(tui ), x(tui )) The effective value given the true state x(tui )

More precisely, at instant tui−1, the iterations start with the initial guess
J+

(i) = J(p+(tui−1), x̂(tui )). During the interval [tui−1, t
u
i ], q(tui−1) iterations are

performed and the predicted sub-optimal value

Ĵ(i) = J(p(tui ), x̂(tui )) ; p(tui ) := Sq(tu
i−1)

(
p+(tui−1), x̂(tui )

)
(21)

is achieved. However, the true value of the cost function at instant tui is
given by

J(i) = J(p(tui ), x(tui ))

which is generally different from the predicted value Ĵ(i) because of model
mismatches. Now, the next optimization process (to be performed over
[tui , t

u
i+1]) is initialized using the value p+(tui ) and the predicted future state
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x̂(tui+1) leading to the initial guess J+
(i+1) that may be slightly different from

the present value J(i) and so on.
Recall that at each instant tui , the computation of the next updating instant

tui+1 = tui + τu(tui ) and the corresponding number of iterations q(tui ) is based
on the solution of the constrained optimization problem (19). This needs the
maps Ef

(i) and D(i) to be identified based on the past measurements. However,
the identification step has to rely on some beforehand given structure of the
functions to be identified. The following structures may be used among many
others for Ef

(i) and D(i):

Ef (q) :=
1

αf ·max{0, q − qf}+ 1
; D(τu) := 1 + αD · τd

u (22)

where αf , qf and αD are the parameters to be identified while d ∈ N is chosen
in accordance with the definition of the cost function. Note that αf monitors
the speed of convergence of the optimizer while qf stands for the minimum
number of function evaluations before a decrease in the cost function may be
obtained. This dead-zone like property is observed in many optimization al-
gorithms. Finally, the coefficient αD reflects the effect of the model mismatch
on the evolution of the cost function.

Consequently, by the very definition of the map D(i), the following straight-
forward identification rule for αD can be adopted:

αD
(i) :=

J(i) − Ĵ(i)

τd
u(tui−1) · Ĵ(i)

The estimation of the efficiency map’s parameters qf
(i) and αf

(i) is obtained
based on the behavior of the iterations that are performed during the last up-
dating period [tui−1, t

u
i ]. This behavior is described by the following sequence:{

d(i,j) :=
Ĵ(i,j)

J+
(i)

}q(tu
i−1)

j=0

:=

{
Sj(p+(tui ), x̂(tui ))
S0(p+(tui ), x̂(tui ))

}q(tu
i−1)

j=0

(23)

where the notation Ĵ(i,j) := Sj(p+(tui ), x̂(tui )) is used to refer to the value of
the estimated cost after j function evaluations.

Indeed, based on the computed sequence (23), the following estimations of
qf
(i) and αf

(i) can be obtained:

qf
(i) = max

{
j ∈ {1, . . . , q(tui−1)

}
| d(i,j) = 1

}
(24)

αf
(i) is the least squares solution of the following system [see (22)][
d(i,j) ·max(0, j − qf

(i))
]
· αf

(i) = 1− d(i,j) ; j = 1, . . . , q(tui−1) (25)
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where the least squares problem is obtained by putting together all the linear
equations (25) (in the unknown αf

(i)) corresponding to the different values of
j. Note that the computations in (24) and (25) are straightforward and can
therefore be done without significant computational burden when compared
to NMPC-related computations.

5 Numerical Investigations

In this section, numerical examples are given in order to illustrate the con-
cepts presented in the preceding sections. First, the form of the cost function
used in (19) to determine the optimal updating period is first illustrated un-
der several configurations of the problem’s parameters qf , αf and αD. Then a
concrete and simple example of closed-loop behavior under model mismatches
is proposed to illustrate the efficiency of the proposed scheme.

5.1 Qualitative Analysis

Let us consider an efficiency map Ef and an uncertainty map D that have
the structure given by (22). Other structures may be used, our conjecture is
that the qualitative conclusions of this paper would remain unchanged. The
aim of this section is to show how different sets of parameters involved in
(22), namely qf , αf and αD influence the resulting optimal updating period
τu. More precisely, Figures 1 and 2 underline the influence of the efficiency
parameter αf (Figure 1) and the uncertainty parameter αD (Figure 2).

K( τu

τc
, τu) (- -) | tr( τu

τc
, τu) (–)

τu

(a)

K( τu

τc
, τu) (- -) | tr( τu

τc
, τu) (–)

τu

(b)

Fig. 1 Variations of the stability indicator K(τu/τc, τu) [dotted line] and the set-
tling time tr(τu/τc, τu) [solid line] as functions of the updating period τu. Figures
(a) and (b) correspond to two different values of the efficiency parameter αf respec-
tively equal to 0.1 (a) and 2 (b). The remaining parameters are identical [qf = 4,
τc = 0.005, αD = 8 and d = 1]. Note the two different corresponding optimal up-
dating periods (minimum of the curve tr(τu/τc, τu)) respectively equal to 90 ms
(a) and 35 ms (b)
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, τu) (- -) | tr( τu
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τu
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K( τu

τc
, τu) (- -) | tr( τu

τc
, τu) (–)

τu

(b)

Fig. 2 Variations of the stability indicator K(τu/τc, τu) [dotted line] and the set-
tling time tr(τu/τc, τu) [solid line] as functions of the updating period τu. Figures
(a) and (b) correspond to two different values of the uncertainty parameter αD

respectively equal to 8 (a) and 30 (b). The remaining parameters are identical
[qf = 10, τc = 0.005, αf = 2 and d = 1]. Note the two different corresponding
optimal updating periods (minimum of the curve tr(τu/τc, τu)) respectively equal
to 88 ms (a) and 120 ms (b). Moreover, the use of an updating period τu ≤ 0.052
for the case (a) or τu ≤ 0.065 for case (b) may lead to instability

5.2 An Illustrative Example

Let us consider the discrete version of the nonholonomic system in power
form

x+
1 = x1 + u1 ; x+

j+1 = xj+1 + xj
1u2 ; j = 1, . . . , n− 1

that one aims to stabilize at x = xd using receding-horizon scheme. In [3],
a scalar parametrization of open loop control has been suggested. According
to this parametrization, the discrete time open-loop trajectory of x1 is given
by:

X1(0, x0, p) = x0
1 (26)

X1(k, x0, p) = (x0
1 + p) · (1− k − 1

Np − 1
) +

k − 1
Np − 1

(xd
1 − (x0

1 + p)) (27)

and a corresponding piecewise constant control sequence u1(·) = Upwc,1(p)
can be computed. Note that the trajectory defined by (27) is nothing but a
piecewise-affine trajectory that passes through p at the next sampling instant
and then goes following a straight line to some desired value xd

1 . Injecting this
candidate trajectory of x1 in the equations of the sub-state z = (x2, . . . , xn−1)
results in the following time varying p-dependent linear system:

zk+1 = [Ak(x0
1, p)]zk + [Bk(x0

1, p)]u2(k)
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which can be used to to compute the sequence u2(·) = Upwc,2(p) that mini-
mizes the quadratic cost

∑Np

i=0

[‖z(i)−zd‖2+‖u2(i)‖2R
]
while meeting the final

constraint z(Np) = zd. Consequently, for each choice of the scalar parameter
p, a control profile is obtained and the framework of the paper can be applied
with the following cost function J(p, x0) =

∑Np

i=1 ‖X(i, x0, p)‖2 + β · |p|. For
more details on the parametrization, the reader may refer to [3].

Uncertainty on the system comes form the fact that xd is not constant but
varies according to some unknown dynamics. Moreover, two drift terms η1

and η2 are added so that the equations of the real system are given by:

x+
1 = x1 + u1 + η1 ; x+

j+1 = xj+1 + xj
1u2 + η2 ; j = 1, . . . , n− 1

The following parameters have been used in the simulations:

Np = 100 ; τc = 4τ ; R = 1 ; η = (−0.01, 0.02) τ = 0.01 ; τu/τ ∈ [5 , 40]
n = 2 ; β = 0.1

The main Matlab constrained optimizer fmincon has been used. The
admissible set P = [−10,+10] has been used for the control parameter p.
Finally, in order to meet the translatability property [1] the updating value
p+ = X1(2, x0, p) has been used in accordance with the very definition of p.
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Closed-loop evolution under different updating conditions

time

Reference x2
d

Reference x1
d

Nu=Cste=40

Nu=Cste=5

Nu(0)=5 (adaptation)

Nu(0)=40 (adaptation)

Fig. 3 Closed-loop trajectories under different updating conditions. Namely: two
constant updating periods Nu = 40 (dashed) and Nu = 5 (dotted-dashed) and
two different initialization values for the closed-loop updating using the proposed
scheme: Nu(0) = 40 (solid line) and Nu(0) = 5 (dotted)
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Closed-loop cost with (solid) and without (dotted) adaptation for 
the initial conditions Nu(0)=40 (left) and Nu(0)=5 (right)
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Fig. 4 Evolution of the closed-loop cost (28) with and without updating mechanism
for two different initial values Nu(0) = 40 (left) and Nu(0) = 5 (right)
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Fig. 5 Evolution of the optimal value Nu(tu
i ) = τu(tu

i )/τ for two different initiali-
sation of Nu(0) = 40 and Nu(0) = 5 (left) and their filtered values (right)

Figure 3 shows the closed-loop trajectory with a fixed or adaptive updating
period and for different initial values. The tracking performance is clearly
improved by the adaptation mechanism.

This improvement can also be observed on Figure 4 where the evolutions
of the closed-loop cost function given by:



A Framework for Monitoring Control Updating Period 445

Jcl(k) :=
i=k∑
i=0

[‖x(iτ) − xd(iτ)‖2 + β|p(i)|] (28)

is depicted.
Finally, the evolution of the closed-loop evolution of the updating period

τu(tui ) = Nu(tui ) · τ during the simulation corresponding to two different ini-
tial values Nu(0) = 40 and Nu(0) = 5 are shown on Figure 5 together with
their filtered value. The later is obtained by moving horizon mean computa-
tion over 5 successive values. The fact that despite the different initial values,
the mean values quickly reach the same region suggests that the latter cor-
responds to some near optimal behavior.

6 Conclusion

In this paper, a general framework has been proposed for on-line monitoring
of control updating period in fast NMPC schemes. The proposed framework
can be superposed to any existing framework in which iterations are dis-
tributed over time. Further investigations are needed to understand how this
scheme behave when used for different solvers. Deeper insight on the choice
of the mathematical structure of the efficiency function is also to be carefully
studied.
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Practical Issues in Nonlinear Model
Predictive Control: Real-Time
Optimization and Systematic Tuning

Toshiyuki Ohtsuka and Kohei Ozaki

Abstract. In this paper, we discuss two important practical issues in nonlin-
ear model predictive control (NMPC): real-time optimization and systematic
tuning. First, we present a couple of efficient algorithms based on the as-
sumption that the sampling period is sufficiently short. Real-time algorithms
are obtained in a unified manner as initial-value problems of ordinary differ-
ential equations (ODEs) for unknown quantities. A brief survey is given on
applications of such ODE-type real-time algorithms in mechanical systems.
Furthermore, as a first step toward systematic tuning of a performance index,
we propose combining feedback linearization with NMPC. The proposed per-
formance index can be tuned with only one parameter to adjust the output
response and the magnitude of the control input. The effectiveness of the
proposed method is demonstrated in numerical examples.

Keywords: real-time algorithm; continuation method; reference input.

1 Introduction

Real-time computation of nonlinear model predictive control (NMPC) poses
a challenging problem with regard to its practical implementation and as an
area of active research [1, 2, 3, 4]. From a computational viewpoint, the longer
the sampling period available for real-time computation, the easier it is to
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implement NMPC. In this paper, on the contrary, we review a couple of real-
time algorithms [5, 6, 7] that involve no iterative search and are efficient when
the sampling period is sufficiently short. The key idea behind them is the
representation of a real-time optimization algorithm as a differential equation
rather than iterative processes at each sampling time, which is justified by
the short sampling period. Then, real-time algorithms can be obtained as
initial-value problems of ordinary differential equations (ODEs) for unknown
quantities, which are derived by differentiating optimality conditions with
respect to time and can be solved without any iterative search. This paper
also gives a brief survey on applications of ODE-type real-time algorithms in
mechanical systems including a hardware experiment with a sampling period
of the order of milliseconds.

Even if real-time optimization becomes a realistic option in implementing
NMPC, another fundamental problem for practical application remains—
how to choose an NMPC performance index. Since an explicit solution is
not available for a nonlinear optimal control problem, it is difficult to clearly
relate the closed-loop response to free parameters in a performance index
such as weighting matrices and horizon length. Therefore, tuning the perfor-
mance index to achieve a desired closed-loop performance is laborious. As a
first step toward systematic tuning of a performance index, we propose com-
bining feedback linearization with NMPC. If the system output is governed
by a linear system with a sufficient number of free parameters, the output
response can be specified arbitrarily using linear control theory, though it
may require an unrealistic control effort to cancel nonlinearities. To achieve
a reasonable trade-off between output response and control effort, we use a
performance index to penalize both deviation of the actual control input from
the linearizing input and the magnitude of the actual control input. Then,
the performance index can be tuned with a single parameter to adjust the
characteristic to be emphasized—output response or the magnitude of the
control input. The effectiveness and weakness of the proposed method are
assessed through numerical simulations.

2 Problem Formulation

We consider a continuous-time system in this paper and assume that every
function is differentiable as many times as necessary. The state vector is
denoted by x(t) ∈ Rn, and the control input vector is denoted by u(t) ∈
Rmu . The state equation and an mc-dimensional equality constraint are given
respectively by

ẋ = f(x(t), u(t)), C(x(t), u(t)) = 0.

An inequality constraint can be converted into an equality constraint by
introducing a dummy input [7]. In NMPC, an optimal control problem is
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solved at each time t to minimize the following performance index with the
initial state given by the actual state x(t):

J = ϕ(x(t + T )) +
∫ t+T

t

L(x(t′), u(t′)) dt′. (1)

The horizon is defined over [t, t + T ], i.e., from the current time t to a finite
future t+T . The optimal control u∗(t′; t, x(t)) minimizing J is computed over
t′ ∈ [t, t + T ], and only its initial value at t, u∗(t; t, x(t)) is used as an actual
system control input u(t). Then, NMPC results in a kind of state feedback
control.

The NMPC problem is essentially a family of finite-horizon optimal control
problems along a fictitious time τ as follows:

Minimize : J = ϕ(x∗(T, t)) +
∫ T

0

L(x∗(τ, t), u∗(τ, t)) dτ,

Subject to :
{
x∗

τ (τ, t) = f(x∗(τ, t), u∗(τ, t)), x∗(0, t) = x(t),
C(x∗(τ, t), u∗(τ, t)) = 0,

where subscript τ denotes partial differentiation with respect to τ . The new
state vector x∗(τ, t) represents a trajectory along the τ axis starting from x(t)
at τ = 0. The optimal control input u∗(τ, t) is determined on the τ axis as
the solution of the finite-horizon optimal control problem for each t, and the
actual control input is given by u(t) = u∗(0, t). The horizon T is a function
of time, T = T (t) in general.

Let H denote the Hamiltonian defined by

H(x, λ, u, μ) := L(x, u) + λTf(x, u) + μTC(x, u),

where λ ∈ Rn denotes the costate, and μ ∈ Rmc denotes the Lagrange
multiplier associated with the equality constraint. The first-order conditions
necessary for the optimal control are obtained by the calculus of variation as
the Euler–Lagrange equations [8]:⎧⎪⎪⎨⎪⎪⎩

x∗
τ = f(x∗, u∗), x∗(0, t) = x(t),

λ∗
τ = −HT

x (x∗, λ∗, u∗, μ∗), λ∗(T, t) = ϕT
x (x∗(T, t)),

Hu(x∗, λ∗, u∗, μ∗) = 0,
C(x∗, u∗) = 0.

The Euler–Lagrange equations define a two-point boundary-value problem
(TPBVP), in which the initial state is given while the terminal costate is
a function of the terminal state. The control input u∗ and the Lagrange
multiplier μ∗ at each time τ on the horizon are determined from x∗ and λ∗

by algebraic equations Hu = 0 and C = 0. The nonlinear TPBVP has to
be solved within the sampling period for the measured state x(t) at each
sampling time, which is one of the major difficulties in NMPC.
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3 Real-Time Algorithms

In this section, we derive two real-time NMPC algorithms assuming a suf-
ficiently short sampling time. That is, we regard the update of the optimal
solution (more precisely, a stationary solution) as a continuous-time dynamic
process described as a differential equation. In the first algorithm, the differ-
ential equation for the unknown initial costate λ∗(0, t) is derived in a closed
form without discretization. The differential equation can be solved as an
initial-value problem, which can be viewed as a real-time algorithm without
an iterative search for the optimal solution. In the second algorithm, the fic-
titious time τ on the horizon is discretized, while the real time t remains
continuous. Then, the discretized sequence of the control input over the hori-
zon is updated by integrating a differential equation in real time. In the sense
that the variation of a solution is traced according to the variation in time
t as a parameter, both algorithms can be viewed as a type of continuation
method [9].

3.1 Real-Time Costate Equation

If a certain initial value for the costate λ∗(0, t) is assumed, the state and
costate over the horizon are determined by the initial value problem, although
the terminal condition is not necessarily satisfied. To find the initial costate
λ∗(0, t) without an iterative search, its differential equation along real time
t is derived. We denote the unknown quantity λ∗(0, t) by λ(t). Note that
λ̇(t) = λ∗

t (0, t) holds and λ∗
t is unknown while λ∗

τ is given as λ∗
τ = −HT

x .
In this subsection, we regard μ as part of u to simplify expressions, because
C = 0 is equivalent to Hμ = 0.

To express λ∗
t in terms of the perturbation in λ∗

τ = −HT
x , we derive the fol-

lowing linear TPBVP for (x∗
t −x∗

τ , λ
∗
t −λ∗

τ ) along the τ axis by differentiating
the Euler–Lagrange equations with respect to either t or τ :⎧⎪⎪⎨⎪⎪⎩

∂

∂τ

[
x∗

t − x∗
τ

λ∗
t − λ∗

τ

]
=
[

A −B
−C −AT

] [
x∗

t − x∗
τ

λ∗
t − λ∗

τ

]
,

x∗
t (0, t)− x∗

τ (0, t) = 0,
λ∗

t (T, t)− λ∗
τ (T, t) = ϕxx(x∗

t (T, t)− x∗
τ (T, t)) + (HT

x + ϕxxf)|τ=T (1 + Ṫ ),

where matrices A,B, and C are defined along the trajectory (x∗, λ∗) as

A = fx − fuH
−1
uu Hux, B = fuH

−1
uu fT

u , C = Hxx −HxuH
−1
uu Hux.

It is well known that a linear TPBVP can be solved with backward sweep [8].
In this case, we assume the following relationship and derive the conditions
for S∗ and c∗.

λ∗
t (τ, t)− λ∗

τ (τ, t) = S∗(τ, t)(x∗
t (τ, t)− x∗

τ (τ, t)) + c∗(τ, t), (2)
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where the matrix S∗(τ, t) represents the sensitivity of the costate with respect
to the state or, equivalently, the Hessian of the optimal cost function along
the optimal trajectory [8].

Since λ∗
t (0, t) = λ̇(t) and x∗

t (0, t) = x∗
τ (0, t) hold, the differential equation

of the unknown quantity λ(t) = λ∗(0, t) with respect to the real time t is
obtained from (2) for τ = 0 as follows [6]:

λ̇(t) = −HT
x (x(t), λ(t), u(t)) + c∗(0, t), (3)

where u(t) is determined from x(t) and λ(t) by Hu(x(t), λ(t), u(t)) = 0, and
c∗(0, t) is determined as follows:{

x∗
τ (τ, t) = f, λ∗

τ (τ, t) = −HT
x , Hu = 0,

x∗(0, t) = x(t), λ∗(0, t) = λ(t). (4){
S∗

τ (τ, t) = −ATS∗ − S∗A + S∗BS∗ − C, S∗(T, t) = ϕxx|τ=T ,

c∗τ (τ, t) = −(AT − S∗B)c∗, c∗(T, t) = (HT
x + ϕxxf)|τ=T (1 + Ṫ ).

(5)

The differential equation (3) has a form similar to costate equation in the
Euler–Lagrange equations. However, (3) can be integrated in real time as an
initial value problem, while the Euler–Lagrange equations define a TPBVP.
At each time t, (4) is integrated from τ = 0 to τ = T as an initial value
problem, and (5) is integrated backward from τ = T to τ = 0. Then, λ(t) is
updated by integrating (3) along the real time t. It is also possible to explicitly
derive an equivalent but different form of the costate equation depending on
ẋ(t) as λ̇(t) = S∗(0, t)ẋ(t)+d∗(0, t), where d∗ = c∗+λ∗

τ −S∗x∗
τ is determined

by the same differential equation as c∗ with a different boundary condition [5].
In practice, the initial value λ(0) = λ∗(0, 0) is given by the trivial solution

to the TPBVP for T = 0, and the horizon length T is smoothly increased
to some constant value. Moreover, an error feedback term in the terminal
condition is also added in c∗(T, t) to attenuate the error as time increases [6].

One drawback of the algorithm based on the real-time costate equation
(3) is that the Riccati-type differential equation for S∗ in (5) often involves
complicated nonlinear functions due to the second-order partial derivative
Hxx in the matrix C. Moreover, the number of unknown elements in the
symmetric matrix S∗ is n(n− 1)/2, which grows quadratically in the system
dimension n. Therefore, even if an iterative search is not needed, it is com-
putationally demanding to solve the differential equations over the horizon
at each sampling time.

Another drawback is that the forward integration of the Euler–Lagrange
equations is often numerically unstable; this is the same drawback as the
classical shooting method for solving an optimal control problem. To avoid
the forward integration of the Euler–Lagrange equations, it is common to
regard the control input function as the unknown quantity instead of the
initial costate. This motivates us to develop the real-time algorithm based on
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a differential equation for the input sequence, which is described in the next
subsection.

3.2 Continuation/GMRES Method

In this subsection, we regard the control input function over the horizon
as the unknown quantity in the TPBVP. To represent the unknown control
input function with a finite number of parameters, we discretize the horizon
of the optimal control problem into N steps. Then, the discretized conditions
for optimality are given as follows:

x∗
i+1(t) = x∗

i (t) + f(x∗
i (t), u

∗
i (t))Δτ, x∗

0(t) = x(t), (6)

λ∗
i = λ∗

i+1 + HT
x (x∗

i (t), λ
∗
i+1(t), u

∗
i (t), μ

∗
i (t))Δτ, λ∗

N (t) = ϕT
x (x∗

N (t)), (7)

HT
u (x∗

i (t), λ
∗
i+1(t), u

∗
i (t), μ

∗
i (t)) = 0, (8)

C(x∗
i (t), u

∗
i (t)) = 0, (9)

where Δτ := T/N . Note that the real time t remains continuous while the fic-
titious time τ is discretized. On the discretized horizon, sequences of the state,
costate, input, and Lagrange multiplier associated with the equality con-
straint are denoted by {x∗

i (t)}N
i=0, {λ∗

i (t)}N
i=0, {u∗

i (t)}N−1
i=0 , and {μ∗

i (t)}N−1
i=0 ,

respectively. As a result, NMPC is formulated as a discrete-time TPBVP
(6)–(9) for a measured state x(t) at time t.

Let us define vector U(t) ∈ RmN (m := mu + mc) composed of the se-
quences of the input vectors and multipliers as

U(t) :=
[
u∗T

0 (t) μ∗T
0 (t) · · · u∗T

N−1(t) μ∗T
N−1(t)

]T
. (10)

The sequences of {x∗
i (t)}N

i=0 and {λ∗
i (t)}N

i=1 can be regarded as functions of
U(t) and x(t) because {x∗

i (t)}N
i=0 and {λ∗

i (t)}N
i=1 can be calculated by (6)

and (7) for given U(t) and x(t). Namely, the states {x∗
i (t)}N

i=0 are calculated
recursively by (6), λ∗

N (t) is given by (7), and the costates {λ∗
i (t)}N−1

i=1 are also
calculated recursively by (7). Note that the costate equation is integrated
backward, as opposed to the algorithm in the previous subsection.

Then, the optimality conditions (8) and (9) can be regarded as an mN -
dimensional equation system given by

F (U(t), x(t), t) :=

⎡⎢⎢⎢⎢⎢⎣
HT

u (x∗
0, λ

∗
1, u

∗
0, μ

∗
0)

C(x∗
0, u

∗
0)

...
HT

u (x∗
N−1, λ

∗
N , u∗

N−1, μ
∗
N−1)

C(x∗
N−1, u

∗
N−1)

⎤⎥⎥⎥⎥⎥⎦ = 0, (11)

where F depends on t when the horizon length T is time dependent.
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Now, let us define a projection P0 : RmN → Rmu as P0(U(t)) := u∗
0(t).

If (11) is solved with respect to U(t) for the measured x(t) at each sampling
time, the control input is determined as u(t) = P0(U(t)), which results in
state feedback because the solution U(t) implicitly depends on the current
state x(t).

Solving (11) at each time by an iterative method such as Newton’s method
is computationally expensive and thus inefficient. Instead, we apply the con-
tinuation method [9], considering the real time t as the continuation param-
eter. That is, the time derivative of U is obtained so that (11) is satisfied
identically. If the initial solution U(0) of the problem is determined so as
to satisfy F (U(0), x(0), 0) = 0, then we can trace U(t) by integrating U̇(t)
fulfilling the condition:

Ḟ (U(t), x(t), t) = −ξF (U(t), x(t), t), (12)

where ξ is a positive real number. The right-hand side of (12) stabilizes F = 0.
Equation (12) is equivalent to a linear equation with respect to U̇ given by

FU U̇ = −ξF − Fxẋ− Ft. (13)

If the matrix FU is nonsingular, (13) is solved efficiently by GMRES [10],
one of the Krylov subspace methods for linear equations. We can update the
unknown quantity U by integrating the obtained U̇ by, for example, the Euler
method in real time. In the case of the explicit Euler method, the compu-
tational cost for updating U corresponds to only one iteration in Newton’s
method but achieves higher accuracy by taking the time dependency of the
equation into account. It is worth noting that the optimal control input can be
updated by the trail of its derivative with respect to time without using any
iterative optimization methods. Since the continuation method is combined
with GMRES, this algorithm is called C/GMRES [7]. It is also worth noting
that U̇ can be integrated with more sophisticated schemes at the expense
of simplicity and computational burden. For example, the linearly implicit
Euler method [11] could be used for a stiff problem at the expense of approx-
imating the Jacobian of the right-hand side of (13). Developing efficient and
reliable integration schemes tailored for NMPC is a topic of future research.

3.3 Applications

Both algorithms in the previous subsection have been implemented in var-
ious applications. The real-time costate equation in the form of λ̇(t) =
S∗(0, t)ẋ(t) + d∗(0, t) has been applied to a hardware experiment with a
two-wheeled mobile robot [5]. The algorithm was successfully implemented
for a three-dimensional state space model with a sampling period of 1/30 s
on a 16 MHz CPU. The same idea has also been applied to derive an algo-
rithm for moving horizon state estimation [12, 13], which is a dual of NMPC.
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In the state estimation problem, the unknown state is updated by a differen-
tial equation, which can be viewed as a generalization of the Kalman filter.

C/GMRES has been applied to a hardware experiment of position control
for an underactuated hovercraft [14, 15]. The algorithm was implemented for
a six-dimensional state space model with a sampling period of 1/120 s on a
900 MHz CPU. The sampling period was specified by the frame rate of the
CCD camera used in the experiment, and the actual computational time for
the algorithm was 1.5 ms. Since the laboratory experiment, C/GMRES has
been employed in a commercial autopilot system for ships [16] and in an au-
tonomous area avoidance experiment of an experimental airplane [17]. Other
applications of C/GMRES include path generation for automobiles [18], a
tethered satellite system [19], and other mechanical systems [20, 21, 22].
C/GMRES has also been applied to nonlinear moving horizon state esti-
mation [23]. To avoid laborious calculation and coding of complicated partial
derivatives, an automatic code generation program was developed in Math-
ematica. Given the state equation and the performance index, the Math-
ematica program generates C codes for simulation of NMPC [24]. Further
attempts to improve C/GMRES includes multiple shooting to distribute nu-
merical errors not only in F but also in the state and costate equations [25].

4 Tuning of Performance Index

In the NMPC problem, the performance index is not necessarily restricted
to quadratic form for the state and control input, and the characteristics of
NMPC depend on the performance index. Therefore, selection of the per-
formance index is as important a problem as real-time algorithms. From a
practical viewpoint, it is desirable to choose a performance index consisting
of a few parameters that are linked directly with the closed-loop characteris-
tics. As a first step toward developing a systematically tunable performance
index, we focus on the transient responses of the controlled output and the
control input. The NMPC problem is used for a reasonable trade-off between
a desired output response and the necessary control input.

4.1 Reference Model

We consider an n-dimensional single-input single-output nonlinear system:{
ẋ = f(x) + g(x)u,
y = h(x).

(14)

The present discussion can be readily extended to a multiple-output multiple-
input system as long as the number of the outputs is same as that of the
inputs.
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To construct a reference model for specifying the closed-loop response sys-
tematically, we first apply input–output linearization [26]. We assume the
system has the relative degree r. That is, there exists a coordinate transfor-
mation z = T (x) to transform the system (14) to the following normal form:

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1
...

ξr−1

ξr

η1

...
ηn−r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ2
...
ξr

Lr
fh(x)

q1(ξ, η)
...

qn−r(ξ, η)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

LgL
r−1
f h(x)
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u, (15)

where Lfh denotes the Lie derivative (∂h/∂x)f and Li
fh := Lf(Li−1

f h) (i ≥
2). The output is given by y = ξ1. The new state vector z and the coordinate
transformation T : Rn → Rn are divided accordingly as z = [ξT, ηT]T (ξ ∈
Rr, η ∈ Rn−r) and T (x) = [ψT(x), μT(x)]T (ψ : Rn → Rr, μ : Rn → Rn−r),
respectively. Then, a feedback law

uref =
−Lr

fh(x) + v

LgL
r−1
f h(x)

(16)

linearizes the input–output relation as y(r) = v, where v is the new input to
specify the closed-loop response. If v is given as

v = −(k1y
(r−1) + · · ·+ kry), (17)

then the output response is governed by the following linear differential
equation:

y(r) + k1y
(r−1) + · · ·+ kry = 0,

where k1, . . . , kr are real numbers and are specified so that all characteristic
roots are stable and a desired response is achieved. Since there are a sufficient
number of free parameters, the characteristic roots are freely assignable. For
example, all characteristic roots are set at s = −1/Ts by imposing sr +
k1s

r−1 + · · · + kr = (s + 1/Ts)r, where Ts denotes the time constant. The
design of the desired response depends on the specific control application and
is beyond the scope of this paper. By substituting (17) into (16) and using
y(i) = Li

fh (0 ≤ i ≤ r − 1), the reference control input can be expressed as a
function of state x and is denoted by u = uref(x).

In the case of r < n, even if ξ converges to zero, the dynamics of η remain:

η̇ = q(0, η).
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This is not manipulated directly by input u and is called a zero dynamics.
The zero dynamics can be ignored as long as it is stable because it does not
affect the output response.

4.2 Performance Index

Since the desired response defined by input–output linearization may require
an excessive magnitude of control input, a trade-off between output response
and control input should be made. To this end, we define a performance index
as follows.

J :=
∫ t+T

t

[γ(u− uref(x))2 + (1 − γ)u2]dt′. (18)

The first term in the integrand penalizes the deviation of the actual input u
from the reference input uref(x), and the second term penalizes the magnitude
of the input. The parameter γ adjusts the balance between the first term and
the second term over the range 0 ≤ γ ≤ 1.

If the system has an unstable zero dynamics, the performance index should
also penalize the magnitude of the zero dynamics so that the zero dynamics
is stabilized by NMPC. In this case, the performance index is modified as

J :=
∫ t+T

t

[γ(u− uref(x))2 + (1− γ)u2 + βηTη] dt′. (19)

This performance index penalizes the magnitude of the state η = μ(x) of the
unstable zero dynamics. The additional parameter β > 0 is expected to affect
the stability of the zero dynamics, although there is no theoretical guarantee.

It should be noted that performance indices (18) and (19) involve, at most,
two parameters, γ and β, and their tuning is much simpler than tuning
weighting matrices in a widely used quadratic performance index. Although
performance indices can also be defined in more general forms, there is a
trade-off between the degrees of freedom in a performance index and the
complexity in its tuning. For simple tuning, it is necessary to restrict the
degrees of freedom to a certain extent.

4.3 Numerical Examples

System without zero dynamics

Consider the following system with the relative degree r = n:⎧⎪⎨⎪⎩
ẋ1 = x2

ẋ2 = x1 + x3
1 + x3

ẋ3 = u

, y = x1.



Practical Issues in Nonlinear Model Predictive Control 457

Since this system does not have a zero dynamics, the performance index in
(18) is used. The horizon length is given by T = Tf(1 − e−αt) with Tf = 1
and α = 0.5. The reference model is expressed as a linear system with a triple
root at −3. Figure 1 shows several simulation results for various values of the
tuning parameter γ, with the initial state fixed at x(0) = [1 0 0]T. When γ
is decreased, the magnitude of the control input decreases, especially at the
initial time, while the output response y = x1 does not change significantly.
Therefore, it is possible to make a reasonable trade-off with the proposed
performance index for a system without zero dynamics. Note that the per-
formance index (18) is valid even if the system has a stable zero dynamics,
because the state η of the stable zero dynamics also converges to zero as the
state ξ converges to zero (the simulation results are omitted).

Fig. 1 Time history of
states and input (Tf = 1)
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System with unstable zero dynamics

Next, consider the following system:⎧⎪⎨⎪⎩
ẋ1 = x2 + x2

1

ẋ2 = x3
2 + u

ẋ3 = x1 + x3
2 + x3

, y = x1.

This system has the relative degree r = 2 and an unstable zero dynamics:
ẋ3 = x3. Therefore, the performance index (19) with the additional parameter
β is used. The poles of the reference model are chosen as multiple roots
at −1. The initial state is given as x(0) = [0.3 0 0]T and the final horizon
length is Tf = 3.

Figure 2(a) shows the simulation results for various values of β with
γ = 0.5, and Fig. 2(b) indicates the simulation results for various values
of γ with β = 1. Although the zero dynamics of x3 diverges when β = 0, the
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Fig. 2 Time history of states and input using performance index (19)

zero dynamics is stabilized by choosing a positive value of β. This demon-
strates the effectiveness of the performance index (19), which places an ad-
ditional penalty on the zero dynamics. However, parameter γ does not affect
the closed-loop response in Fig. 2(b). Therefore, parameter β should be de-
termined first to balance responses of the output and zero dynamics, and γ
can then be used for fine-tuning the magnitude of the input, which imposes
additional tuning steps on a designer.

5 Conclusions

In this paper, two fundamental problems in practical NMPC, real-time al-
gorithms, and tuning of the performance index are discussed. It was shown
that algorithms for updating the optimal solution without an iterative search
can be derived as ordinary differential equations by assuming a sufficiently
short sampling period. Such algorithms have been in fact implemented suc-
cessfully in hardware experiments with short sampling periods of the order of
milliseconds. Ongoing work includes improvement of the algorithms in terms
of accuracy and numerical stability.

As a first step toward systematic tuning of the performance index, a par-
ticular form of the performance index was proposed for a trade-off between
transient responses of the controlled output and the control input. Input–
output linearization was used to specify a desired output response, and a
single parameter was used for tuning the magnitude of the control input
with an acceptable deterioration in the output response. If the zero dynam-
ics is unstable, an additional parameter is introduced to penalize the zero
dynamics as well. Numerical examples show that the proposed method is
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useful for both unstable and stable zero dynamics, although the magnitude
of the control input is not tuned effectively in the case of unstable zero dy-
namics. Although performance indices in more general forms can also be
defined, there is a trade-off between the degrees of freedom in a performance
index and the complexity of the tuning. Development of a performance in-
dex with a minimal number of design parameters, transparent relationships
between parameters and various closed-loop characteristics, and theoretical
justification is an open problem for future research.
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Fast Nonlinear Model Predictive Control
via Set Membership Approximation: An
Overview

Massimo Canale, Lorenzo Fagiano, and Mario Milanese

Abstract. The use of Set Membership (SM) function approximation tech-
niques is described, in order to compute off–line a control law κSM which
approximates a given Nonlinear Model Predictive Control (NMPC) law. The
on–line evaluation time of κSM is faster than the optimization required by
the NMPC receding horizon strategy, thus allowing application of NMPC
also on processes with “fast” dynamics. Moreover, SM methodology allows
to derive approximated control laws with guaranteed worst–case accuracy,
which can be suitably tuned to achieve closed loop stability and performance
properties that are arbitrarily close to those of the exact NMPC controller.
In particular, the properties of three different SM techniques are reviewed
here, namely the “optimal”, “nearest point” and the “local” approximations,
and their performances are compared on a numerical example.

Keywords: MPC approximation, Fast NMPC implementation.

1 Introduction

In Nonlinear Model Predictive Control (NMPC, see e.g. [1]) the control move
ut at time t, for time invariant systems, results to be a nonlinear static function
of the system state xt, i.e. ut = κ0(xt), implicitly evaluated on–line by solv-
ing a constrained optimization problem. A serious limitation in using NMPC
is the presence of fast plant dynamics, which require small sampling periods
that do not allow to perform the optimization problem online. In order to solve
this problem, a viable solution is the use of function approximation techniques,
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to compute an approximated NMPC control law requiring lower on–line com-
putational load. Contributions in this field have been given in [2], using neural
networks, and in [3], using piecewise affine approximations.The approximation
of κ0 is carried using a finite number ν of exact control moves computed off–
line. Indeed, a crucial issue, which arises when an approximated control law is
employed, is to obtain guaranteed closed loop stability, performance and con-
straint satisfaction properties. To overcome these problems, approaches based
on Set Membership (SM) approximation techniques have been introduced in
[4]–[6]. The effectiveness of these techniques has been also shown in complex
applications, like control of tethered airfoils for wind energy generation ([7])
and semi–active suspension control ([8]). SM methodology allows to obtain ap-
proximating functions κSM with guaranteed accuracy, computable in terms of
a bound on the error κ0(x)− κSM(x). Such a bound converges to zero as ν in-
creases, thus with the proper value of ν any desired level of approximation ac-
curacy can be achieved. This way, it is possible to introduce conditions under
which guaranteed closed loop stability, performance and constraint satisfac-
tion are guaranteed. Contrary to other existing techniques for NMPC approx-
imation (see e.g. [3]), the only considered assumption with the SM approaches
is the continuity of the stabilizing exact NMPC control law, over the set con-
sidered for the approximation. In this paper, the properties of three different
SM techniques, namely the “optimal” and “nearest point” approximation (see
[4]) as well as the “local” approximation (see [6]), are reviewed and their per-
formances are compared on a numerical example. Given the same value of ν,
such approaches have different approximation accuracy but also different eval-
uation times.

2 Problem Settings

Nonlinear Model Predictive Control is a model based control technique where
the control action is computed using a receding horizon (RH) strategy, solving
at each sampling time t a constrained finite horizon optimal control problem,
in which the cost function is evaluated on the basis of the predicted future
behaviour of the controlled nonlinear system. The prediction is computed by
means of a nonlinear state–space system model, i.e. xt+1 = f(xt, ut), where
xt ∈ Rn and ut ∈ Rm are the system state and control input respectively
and function f is assumed to be continuous over R

n × R
m. The prediction

is carried out using the actual measured (or estimated) state xt as initial
condition. It is assumed that the optimization problem considered in the RH
strategy is feasible over a set F ⊆ Rn, which will be referred to as the “feasi-
bility set”. The application of the RH strategy gives rise to a nonlinear state
feedback configuration, i.e. xt+1 = f(xt, κ

0(xt)) = F 0(xt), where κ0(x) re-
sults to be a nonlinear time invariant control law, i.e. ut = [ut,1 . . . ut,m]T =
[κ0

1(xt) . . . κ0
m(xt)]T = κ0(xt), κ0 : F → U, where U. It is supposed that

κ0 stabilizes the closed loop system and that it is continuous over F .
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Such property depends on the considered optimization problem (see [9] and
the references therein for further details). In the following, function κ0 will
be denoted as “nominal” or “exact” NMPC law.

A limitation in the practical use of NMPC is the presence of fast plant
dynamics, for which the required sampling time may be too low for real-time
optimization. A viable solution to this problem is the use of an approximated
control function κSM ≈ κ0, computed off-line, whose on-line evaluation time
is smaller. However, when using an approximated NMPC law, closed loop
stability and constraint satisfaction properties are critical issues that have to
be treated. In [4] and [5], sufficient conditions for κSM to guarantee closed
loop stability for linear and nonlinear systems have been derived. Such results
are now briefly resumed.

2.1 Approximated NMPC Laws: Stability Results

It is considered that κSM is defined over a compact set X ⊆ F , containing
the origin in its interior. Moreover, κSM is computed on the basis of the
knowledge of a finite number ν of exact control moves, which are computed
off–line and stored, i.e.:

ũk = κ0(x̃k), k = 1, . . . , ν (1)

where the state values x̃k define the set Xν = {x̃k, k = 1, . . . , ν} ⊆ F . It is
assumed that Xν is chosen such that lim

ν→∞ dH(X ,Xν) = 0, where dH(X,Xν)

is the Hausdorff distance between X and Xν (see e.g. [10]). Note that uniform
gridding over X satisfies such condition.

According to the stability results derived in [4], if κSM has the following
key properties :

i) Input constraint satisfaction:

κSM(x) ∈ U ∀x ∈ X (2)

ii) Bounded pointwise approximation error ΔκSM(x) = κ0(x) − κSM(x):

‖ΔκSM(x)‖ ≤ ζ, ∀x ∈ X (3)

where ‖ · ‖ is a suitable norm, e.g. Euclidean.
iii) Convergence of ζ(ν) to zero:

lim
ν→∞ ζ(ν) = 0 (4)

then it is always possible to explicitly compute a suitable finite value of ν,
such that there exists a finite value Δ ∈ R+ with the following characteristics
(see [4] for details):
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i) the distance between the closed loop state trajectories obtained with the
nominal and the approximated control laws is bounded by Δ(ν), which
can be explicitly computed

ii) lim
ν→∞Δ(ν) = 0

iii) the closed loop state trajectories, obtained when the approximated control
law is used, are kept inside the compact set X , and asymptotically converge
to an arbitrarily small neighborhood of the origin

Thus, the aim is to find approximated NMPC laws enjoying properties (2)–
(4). Indeed, this can be done in the framework of set membership (SM)
approximation ([4], [5]).

3 Set Membership Approximation Techniques for
NMPC

In this Section, three Set Membership (SM) techniques will be surveyed.
In particular, each approach gives a different compromise between accuracy,
on–line computational load and memory usage, while all of them provide
approximated control laws satisfying properties (2)–(4). The obtained SM
approximations κSM will be also denoted as Fast Model Predictive Control
(FMPC) laws, since their application can significantly reduce the computa-
tional load of NMPC.

In the remaining of the paper, for the sake of simplicity it will be assumed
that U = {u ∈ Rm : ui ≤ ui ≤ ui, ı = 1, . . . ,m}, where ui, ui ∈ R, i =
1, . . . ,m.

3.1 Prior Information

As already pointed out, the approximation of function κ0 is performed on
a compact set X ⊆ F . Since X and the image set U of κ0 are compact,
continuity of κ0 over F implies that its components κ0

i , i = 1, . . . ,m are
Lipschitz continuous functions over X , i.e. there exist finite constants γi, i =
1, . . . ,m such that ∀x1, x2 ∈ X , ∀i ∈ [1,m], |κ0

i (x
1) − κ0

i (x
2)| ≤ γi‖x1 −

x2‖2, and ∀x1, x2 ∈ X , ‖κ0(x1) − κ0(x2)‖2 ≤ ‖γ‖2 ‖x1 − x2‖2, where γ =
[γ1, . . . , γm]T .

This prior information, together with the knowledge of the off–line com-
puted values (1), can be summarized by concluding that

κ0 ∈ FFS, (5)

where the set FFS (Feasible Functions Set) is defined as FFS = {κ : X →
U, κ = [κ1, . . . , κm]T : κi ∈ FFSi, ∀i ∈ [1,m]}, with FFSi = {κi ∈ Aγi :
κi(x̃k) = ũk

i , k = 1, . . . , ν} and Aγi being the set of all continuous Lipschitz
functions κi on X , with constant γi, such that ui ≤ κi(x) ≤ ui, ∀x ∈ X . As
regards the computation of the Lipschitz constants γ = [γ1, . . . γm], which
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are needed to apply the presented SM techniques, estimates γ̂i, i = 1, . . . ,m
can be derived off-line as follows:

γ̂i = inf
(
γ̃i : ũh

i + γ̃i‖x̃h − x̃k‖2 ≥ ũk
i , ∀k, h = 1, . . . , ν

)
(6)

Convergence of γ̂i to γi, i = 1, . . . ,m has been showed e.g. in [4], i.e. lim
ν→∞ γ̂i =

γi, ∀i = 1, . . . ,m.

3.2 “Optimal” Approximation

The “optimal” (OPT) SM approximation technique and its accuracy and
stabilizing properties have been described in [4], for the case of linear systems.
With the OPT approach, for a given value of ν the obtained approximating
function κOPT gives the minimal worst–case approximation error.

For each function κ0
i , i ∈ [1,m] and for a given value x ∈ X , an approxi-

mation κOPT
i (x) ≈ κ0

i (x) is computed as (see [4]):

κOPT
i (x) = 1

2 [κi (x) + κi (x)] ∈ FFSi (7)

where κi (x)= sup
κ̃i∈FFSi

κ̃i (x) and κi (x)= inf
κ̃i∈FFSi

κ̃i (x), called optimal bounds,

are the tightest upper and lower bounds of κ0
i (x). As shown in [4], the optimal

bounds can be computed as κi(x) .= min[ui, min
k=1,...,ν

(
ũk

i + γi‖x− x̃k‖2
)
] ∈

FFSi and κi(x) .= max[ui, max
k=1,...,ν

(
ũk

i − γi‖x− x̃k‖2
)
] ∈ FFSi. Function

κOPT
i (7) is such that the related guaranteed approximation error E(κOPT

i ) .=
sup

κ̃i∈FSSi

‖κ̃i − κOPT
i ‖p is minimal for any Lp–norm, with p ∈ [1,∞], and it is

therefore equal to the radius of information rp,i (see e.g. [11]).
Then, the optimal SM approximation is defined as κOPT =

[
κOPT

1 , . . . ,

κOPT
m

]T . It can be proved that ([4]):

κOPT : X → U (8a)

‖ΔκOPT(x)‖2 = ‖κ0(x)− κOPT(x)‖2 ≤ ‖r∞‖2 = ζOPT, ∀x ∈ X (8b)

lim
ν→∞ ζOPT(ν) = 0 (8c)

with r∞ = [r∞,1, . . . , r∞,m]. Thus, function κOPT satisfies the key proper-
ties (2)–(4). As regards the computation of r∞,i, i = 1, . . . ,m, the results
presented in [12] can be employed.

3.3 “Nearest Point” Approximation

Function κOPT provides an approximation with minimal guaranteed error,
however its on–line computational load may result too high for the consid-
ered application. The “Nearest Point” (NP) approach, originally introduced
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in [5], is a very simple example of a technique that may overcome this prob-
lem, giving an approximating function whose accuracy is not the optimal one,
but whose computation is simpler. In particular, for a given value of ν, the
NP approximation leads in general to a higher approximation error bound
ζNP than OPT approximation, but to lower on-line computation times, whose
growth as a function of ν is much slower than that of OPT approximation.
Thus, the NP approximation required to guarantee given stability and per-
formance properties may need much lower on-line computation times with
respect to OPT approximation, at the expenses of longer off-line computa-
tion time and higher memory usage.

For any x ∈ X , denote with x̃NP ∈ Xν a state value such that ‖x̃NP−x‖2 =
min
x̃∈Xν

‖x̃−x‖2. Then, the NP approximation κNP(x) is computed as κNP(x) =

κ0(x̃NP). Such approximation trivially satisfies condition (2). Moreover, it can
be shown that also the key properties (3), (4) are satisfied (see [5]):

‖ΔκNP(x)‖2 = ‖κ0(x) − κNP(x)‖2 ≤ ζNP = ‖γ‖2 dH(X ,Xν), ∀x ∈ X (9a)

lim
ν→∞ ζNP(ν) = 0 (9b)

3.4 “Local” Approximation

A limitation of the optimal SM approach is that the considered prior in-
formation (5) and, consequently, the obtained guaranteed approximation er-
ror ζOPT, may prove to be too conservative, since global Lipschitz constants
γi, i = 1, . . . ,m over X are considered. Such conservativeness may be reduced
if local information on κ0 could be taken into account, e.g. by partitioning
the set X into a finite number p of subregions and computing for each one
the related local Lipschitz constants γi,j , i = 1, . . . ,m, j = 1, . . . , p. However,
with such procedure problems would arise both in the off–line computation,
e.g. regarding the choice of the subregions, and in the on–line implementa-
tion, to search for the active subregion (i.e. the subregion in which the actual
state xt lies in). A much simpler approach, to achieve the same goal, is the
“Local” SM technique (LOC), which allows to improve the performance of
the OPT technique, by reducing its conservativeness (see [6]). The key idea,
derived from [13], is to compute an optimal SM approximation of κ0, satis-
fying properties (2)–(4), starting from a preliminary approximating function
κ̂. The latter has to be a continuous function which can be computed with
any approximation method (e.g. neural networks, polynomial series, PWL
approximation).

For each function κ0
i , i = 1, . . . ,m, consider the related residue function

Δκ̂,i = κ0
i − κ̂i, which results to be Lipschitz continuous over X with constant

γΔκ̂,i
, computable numerically using a procedure similar to (6). Then, the

information available on κ0
i is summarized by the set FFSΔ,i = {κi : X →

U, κi − κ̂i ∈ AγΔκ̂,i
, κi(x̃) = ũi, ∀x̃ ∈ Xν}, where AγΔκ̂,i

= {Δi : X → R,
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|Δi(x1) − Δi(x2)| ≤ γΔκ̂,i
‖x1 − x2‖2, ∀x1, x2 ∈ X}. Note that such prior

information may prove to be less conservative than (5), because it also takes
into account the “information” provided by the preliminary approximation
κ̂. Then, define the following function:

κLOC
i = κ̂i +

1
2
[Δκ̂,i (x) + Δκ̂,i (x)] (10)

with Δκ̂,i, Δκ̂,i being the optimal upper and lower bounds of Δκ̂,i:

Δκ̂,i(x) .= min[ui − κ̂i(x), min
x̃∈Xν

(
Δκ̂,i(x̃) + γΔκ̂,i

‖x− x̃‖2
)
]

Δκ̂,i(x) .= max[ui − κ̂i(x), max
x̃∈Xν

(
Δκ̂,i(x̃)− γΔκ̂,i

‖x− x̃‖2
)
]

(11)

Similarly to the OPT approach, function κLOC
i is such that the related guar-

anteed approximation error E(κLOC
i ) .= sup

κ̃i∈FSSΔ,i

‖κ̃i − κLOC
i ‖p is minimal

for any Lp–norm, with p ∈ [1,∞], and it is equal to the radius of information
rp,Δ,i of FFSΔ,i. The local SM approximation κLOC ≈ κ0 is then computed
as κLOC =

[
κLOC

1 , . . . , κLOC
m

]T . It can be proved that (see [6]):

κLOC : X → U (12a)

‖ΔκLOC(x)‖2 = ‖κ0(x)− κLOC(x)‖2 ≤ ‖r∞,Δ‖2 = ζLOC, ∀x ∈ X (12b)

lim
ν→∞ ζLOC(ν) = 0 (12c)

with r∞,Δ = [r∞,Δ,1, . . . , r∞,Δ,m]. Thus, function κLOC satisfies the key prop-
erties (2)–(4). Note that the OPT approach can be seen as a particular case
of the LOC technique, i.e. using κ̂ = 0. Moreover, it can be noted that if
ζLOC < ζOPT, then the guaranteed accuracy obtained with κLOC is higher
than the one given by κOPT. As a consequence, a lower number ν of off-line
computed values are sufficient for κLOC to achieve given guaranteed stability
and performance properties according to [4]. Lower ν numbers may lead to
lower function evaluation times, depending also on the computational burden
of the preliminary approximation κ̂.

4 Numerical Example

Consider the nonlinear Duffing oscillator (see e.g. [14]):{
ẋ1(t) = x2(t)
ẋ2(t) = u(t)− 0.6 x2(t)− x1(t)3 − x1(t)

with input constraint set U = {u ∈ R : |u| ≤ 5}. A discrete time model, ob-
tained by forward difference approximation with sampling time Ts = 0.05 s,
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Table 1 Example: mean evaluation times and maximum trajectory distances

κOPT κNP κLOC

t d t d t d

ν = 3.5 105 6 10−2 s 1 10−3 1 10−5 s 3 10−3 6 10−2 s 2 10−4

ν = 1.4 104 2 10−3 s 4 10−3 1 10−5 s 1.5 10−2 2 10−3 s 6 10−4

ν = 3.5 103 6 10−4 s 8 10−3 1 10−5 s 3 10−2 6 10−4 s 6 10−3

has been used in the nominal NMPC design. In particular, the NMPC con-
troller κ0 has been designed using prediction horizon Np = 100, control hori-
zon Nc = 5 and per-stage cost L(x, u) = xT x (see [15]). The considered
state constraint set is X = {x ∈ R2 : ‖x‖∞ ≤ 3}. The state prediction has
been performed setting ut+j|t = ut+Nc−1|t, j = Nc, ..., Np − 1. The opti-
mization problem employed to compute κ0(x) has been solved using a se-
quential constrained Gauss-Newton quadratic programming algorithm (see
e.g. [16]), where the underlying quadratic programs have been solved using
the Matlab� function quadprog. The maximum and mean computational
times of the on-line optimization were 6 10−1 s and 4.3 10−2 s respectively,
using Matlab� 7 with an AMD Athlon(tm) 64 3200+ with 1 GB RAM. The
set Xν has been chosen with uniform gridding over X and different values of
ν. On the basis of such off–line computed data, the approximating functions
κOPT, κNP and κLOC have been computed. A single layer neural network with
7 nodes and sigmoidal activating function has been used as preliminary ap-
proximation to compute κLOC. Extensive Monte Carlo simulations have been
performed with each control law, derived with each ν value. The maximum
computational times with ν = 3.5 103 were 1.0 10−3s with OPT, 1.1 10−3s
with LOC and 1.1 10−5s with NP approximation. The mean computational
time t, over all time steps of all simulations, and the maximum Euclidean
distance d, between the closed loop state trajectories obtained with κ0 and
with any of the approximated laws, are reported in Table 1. Indeed, the pre-
sented example has the aim of comparing the computational efficiency of the
various methods in relative terms only. To this end, it can be noted that the
mean computational times of the approximated controllers may be up to 4000
times lower than on–line optimization. The NP approximation κNP achieves
the lowest value of t, which is also independent on ν: this can be obtained
with a suitable data arrangement. Functions κOPT and κLOC have better
precision than κNP with the same ν value, but also higher computational
times, which grow linearly with ν. The approximation κLOC is able to im-
prove the precision with respect to κOPT, with the same mean computational
time. As regards the memory usage required by the SM approximations,
about 90 KBytes, 340 KBytes and 8.4 MBytes were needed with ν = 3.5 103,
ν = 1.4 104 and ν = 3.5 105 respectively, without any effort to improve the
storage efficiency and using 8 Bytes for all the values contained in the off–line
computed data.
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5 Conclusions

The SM approaches OPT, NP and LOC to compute an approximation of
a NMPC law have been surveyed. Such techniques guarantee closed loop
stability, performance and state constraint satisfaction properties. The only
required assumption is the continuity of the stabilizing nominal NMPC law.
As it has been also showed through a nonlinear oscillator example, a com-
promise between accuracy, off–line computation, memory usage and on–line
evaluation time can be obtained, by suitably choosing and designing one of
the reviewed techniques. In particular, given the same off-line computed data,
the NP approach has the fastest evaluation time, but worse performance than
the other two techniques. The OPT approach has higher on–line computa-
tional complexity but also better accuracy, which may be further improved
with the LOC technique, provided that a continuous preliminary approximat-
ing function is computed. Computational times of OPT and LOC approaches
are similar and they grow linearly with ν, while the evaluation time of NP
technique can be made practically constant with ν, using a suitable arrange-
ment of the data. Thus, a desired accuracy level can be obtained either with
OPT/LOC techniques, with lower memory usage and higher computational
time, or with the NP approximation, with higher memory usage but much
faster on-line computation.
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Fast Nonlinear Model Predictive Control
with an Application in Automotive
Engineering

Jan Albersmeyer, Dörte Beigel, Christian Kirches, Leonard Wirsching,
Hans Georg Bock, and Johannes P. Schlöder

Abstract. Although nonlinear model predictive control has become a well-
established control approach, its application to time-critical systems requiring
fast feedback is still a major computational challenge. In this article we in-
vestigate a new multi-level iteration scheme based on theory and algorithmic
ideas from [2], and extending the idea of real-time iterations as presented in
[4]. This novel approach takes into account the natural hierarchy of different
time scales inherent in the dynamic model. Applications from aerodynamics
and chemical engineering have been successfully treated. In this contribution
we apply the investigated multi-level iteration scheme to fast optimal control
of a vehicle and discuss the computational performance of the scheme.

Keywords: nonlinear model predictive control, direct multiple shooting, re-
altime optimal control, multi-level iteration scheme, computational results.

1 Introduction

Given a system state x0, a nonlinear model predictive control (NMPC)
scheme obtains a feedback control u∗(t;x0) by solving an open-loop opti-
mal control problem (OCP) on a prediction horizon [t0, tf]. Based on this
optimal solution, the associated nonlinear control law u∗(t;x0) is fed back to
the system. At the next sampling point, the procedure is repeated for the
new system state. The feedback control is obtained as a minimizer of an ob-
jective function that is evaluated based on the trajectories x(t) of the dynamic
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process under consideration, modelled by an ODE system, and subject to
inequality path constraints h,

min
x(·),u(·)

∫ tf

t0

L (x(t), u(t)) dt + E (x(tf)) (1a)

s.t. x(t0) = x0, (1b)
ẋ(t) = f (t, x(t), u(t)) , (1c)

0 ≤ h (x(t), u(t)) . (1d)

The present contribution is concerned with efficient ways to solve the OCP
under real time conditions for processes with dynamics on multiple time
scales. Exemplarily, a disturbance rejection scenario for a nonlinear vehicle
system is considered.

Vehicle Model

A nonlinear single-track car model featuring a Pacejka type tire model is used
for the vehicle dynamics [7]. It is described by an ODE system in seven states
x = (cx, cy, v, δ, β, ψ, wz) and three controls u = (wδ, FB, φ)

ċx(t) = v(t) cos
(
ψ(t) − β(t)

)
,

ċy(t) = v(t) sin
(
ψ(t) − β(t)

)
,

v̇(t) =
1
m

(
(Flr(FB, φ) − FAx) cos β(t) + Flf(FB) cos

(
δ(t) + β(t)

)
− (Fsr − FAy) sin β(t) − Fsf sin

(
δ(t) + β(t)

))
,

δ̇(t) = wδ,

β̇(t) = wz(t) − 1
m v(t)

(
(Flr(FB, φ) − FAx) sin β(t) + Flf(FB) sin

(
δ(t) + β(t)

)
+ (Fsr − FAy) cos β(t) + Fsf cos

(
δ(t) + β(t)

))
,

ψ̇(t) = wz(t),

ẇz(t) =
1

Izz

(
Fsf lf cos δ(t) − Fsr lsr − FAy eSP + Flf(FB) lf sin δ(t)

)
.

where the coordinates, angles, and forces are visualized in Figure 1. Details
on the moment of inertia Izz and the mass m can be found in [7] as well. The
model is nonlinear in the states as well as in the control φ.

Disturbance Rejection Scenario

A vehicle of 1.300 kg mass is driving on a straight lane at a speed of 30 m/s.
After 2 seconds, an impulse of magnitude 2 · 104 N is acting on the rear axle
perpendicular to the driving direction for 0.1 seconds. Applying the optimal
offline control for driving on the straight lane, the impact is strong enough
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Fig. 1 Coordinates, forces, and angles of the single-track vehicle model. The figure
is aligned with the vehicle’s local coordinate system, while the dashed pair of vectors
(x, y) depicts the global coordinate system used for computations

to make the car spin multiple times and force it off the lane. The model thus
is not open-loop stable for this scenario.

Aim of the controller is to keep the vehicle on the lane while retaining a
speed of 30 m/s. The full system state information is available at a resolution
of 0.05 seconds.

The NMPC formulation of the scenario contains a least-square objective
to minimize the deviation from the straight lane as well as the prescribed
velocity. Further, the controls wδ, FB, φ are regularized over the prediction
horizon.

Two-sided simple bounds on all states and controls are formulated, while
no nonlinear constraints are present.

2 Direct Multiple Shooting for NMPC

This section briefly sketches the direct multiple shooting method, described
in [3, 8]. The purpose of the method is to transform the infinite-dimensional
OCP (1) into a finite-dimensional nonlinear program (NLP) and then solve it
with a structure-exploiting sequential quadratic programming (SQP)
approach.

2.1 Parameterization of the Infinite OCP

For a suitable partition of the horizon [t0, tf] into N subintervals [ti, ti+1],
0 ≤ i < N , we discretize the control function u as a piecewise constant
vector function

ûi(t, qi) = qi, t ∈ [ti, ti+1], 0 ≤ i < N.

Furthermore, we introduce additional variables si that serve as initial values
for computing the state trajectories independently on the subintervals
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ẋi(t) = f(t, xi(t), ûi(t, qi)), xi(ti) = si, t ∈ [ti, ti+1], 0 ≤ i < N.

To ensure continuity of the optimal trajectory on the whole interval [t0, tf]
we add matching conditions to the optimization problem

si+1 = xi(ti+1; ti, si, qi), 0 ≤ i < N

where xi(t; ti, si, qi) denotes the solution of the IVP on [ti, ti+1], depending
on si and qi. This method allows using state-of-the-art adaptive integrators,
cf. [1]. The path constraints (1d) are enforced in the shooting nodes ti.

2.2 Structure-Exploiting Nonlinear Programming

From the multiple shooting discretization we obtain the structured NLP

min
s,q

N−1∑
i=0

Li (si, qi) + E (sN ) (3a)

s.t. 0 = s0 − x0, (3b)
0 = si+1 − xi(ti+1; ti, si, qi), 0 ≤ i < N (3c)
0 ≤ h(si, qi), 0 ≤ i ≤ N. (3d)

Note that this NLP depends parametrically on x0. It can be written in
the generic form minw φ(w) s.t. c(w) + Lx0 = 0, d(w) ≥ 0, where L =
(−Inx , 0, 0, . . . ) and w = (s0, q0, . . . , sN−1, qN−1, sN) the vector of all un-
knowns.

Sequential Quadratic Programming

The NLP is solved by a Newton-type framework. Various structural features
are exploited by tailored linear algebra as detailed in [3, 8]. Starting with an
initial guess (w0, λ0, μ0), a full step SQP iteration is performed as follows

wk+1 = wk + Δwk, λk+1 = λk
QP, μk+1 = μk

QP (4)

where (Δwk, λk
QP, μ

k
QP) is the solution of the QP subproblem

min
Δw

1
2ΔwᵀBkΔw + bkᵀΔw (5a)

s.t. 0 = CkΔw + c(wk) + Lx0, (5b)

0 ≤ DkΔw + d(wk), (5c)

Here, Bk denotes an approximation of the Hessian of the Lagrangian of (3),
and bk, Ck and Dk are the objective gradient and the Jacobians of the con-
straints c and d.
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3 The Multi-level Iteration Scheme

In NMPC, the optimal control problem (3) has to be treated for varying
system states x0 obtained online.

3.1 Initial Value Embedding and Real-Time Iterations

In [4] and related works it has been proposed to initialize the current problem
with the full solution of the previous optimization run, i.e., control and state
variables. The arising violation of the initial value constraint (3b) is cured
after the first full Newton-type step due to its linearity in x0. Furthermore,
for each x0 only one SQP iteration is done providing already a first-order
approximation of the solution. The classical real-time iteration (RTI) scheme
separates each iteration into the following three phases.

Preparation

Using the iterate of the previous step (wk, λk, μk) for function and derivative
evaluation it is possible to assemble QP (5) almost completely without a
measurement of the current system state x0(tk). Due to its special structure,
the variables (Δs1, . . . , ΔsN ) can be eliminated from QP (5). This is usually
referred to as the condensing step.

Feedback

As soon as x0(tk) is available, Δs0 can be eliminated as well and a small QP
only in the variables (Δq0, . . . , ΔqN−1) is solved. The feedback u(tk) := qk

0 +
Δqk

0 is then given to the real system. Thus, the actual feedback delay reduces
to the solution time of the condensed QP. The affine-linear dependence of
the QP on x0(tk) could be further exploited as described in [6].

Transition

Finally, the eliminated variables are recovered and step (4) is performed to
obtain the new set of NLP variables (wk+1, λk+1, μk+1).

3.2 Multi-level Extensions

In [2], the RTI scheme is extended to new multi-level iteration schemes. The
main idea is to deal with different time scales inherent in the system, e.g.
validity of linearizations, on different levels in the algorithm. High-frequency
feedback is provided by a fast basic mode, called mode A. Depending on
the characteristics of the process, a selected subset of data used in mode
A is updated by several higher-level modes. Mode B would provide feasi-
bility improvements [2], while mode C provides adjoint sensitivity informa-
tion for systems with many differential states [9]. Mode D computes a new
full linearization of the system. In the presented example neither nonlinear
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constraints nor a large number of system states are present. We therefore
consider a scheme assembled from modes A and D, in which mode D is used
each nD iterations.

Mode A: Linear MPC on a Reference Trajectory

The basic idea is to regard QP (5) as a linear MPC controller that is set up
with a Hessian approximation B, objective gradient b, constraint values c,
d, and Jacobians C, D, and working on a reference solution (w, λ, μ). This
LMPC controller supplies the process with control feedback u(tk) := q0+Δqk

0 .

Mode D: Full RTI Preparation Phase

This variant updates the data of mode A each nD steps by a single preparation
phase, i.e. calculation of a new Hessian approximation, objective gradient as
well as constraint residuals and Jacobians. Furthermore, the updated QP (5)
is recondensed.

Using the terminology of modes, the classical real-time iteration scheme is
denoted by A1D1. In [5] nominal stability of the RTI scheme has been proven.
However, stability of schemes AnDD1 for nD ≥ 2 is still an open issue.

Applying mode D often, i.e. nD close to 1, is costly and may become real-
time infeasible, but tracks fast changes in the system linearization. On the
other hand, applying D scarcely, i.e. nD high, is cheap but comes close to
LMPC which shows inferior performance for nonlinear models.

4 Computational Results

The delay due to computation time spent in the feedback phase is properly
taken into account in the vehicle system simulation. All computation times
are given for an Intel Pentium 4 machine with 2.8 GHz and 3 GB RAM,
running SuSE Linux 10.1.

4.1 Classical Real-Time Iterations

From Figure 2 we can see that a sampling rate of 0.1 s is insufficient. The
vehicle spins uncontrollably, the final deviation from the straight lane exceeds
5 meters, and the velocity of 30 m/s is not maintained. Figure 3 shows the
controller performance for a sampling rate of 0.05 s. Obviously, the shorter
sampling intervals allow the RTI scheme to reject the disturbance.

4.2 Multi-level Iteration Schemes

All controller schemes A2D1 to A6D1 are able to reject the disturbance,
while those which apply mode D more often are able to catch nonlinear
effects better and generate “cleaner” control profiles, although at higher
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(a) Control profile.
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(b) Differential state profile.

Fig. 2 Unsatisfactory performance of the A1D1 controller scheme for a sampling
time of 0.1 seconds. The controller is unable to reject the impact. From the right
column it can be seen that the vehicle leaves the straight lane (top), the velocity v
drops below 25 m/s (center), while the vehicle spins
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(b) Differential state profile.

Fig. 3 Performance of the A1D1 controller scheme for a sampling time of 0.05
seconds. Within less than 5 seconds, the controller recovers from the impact suffered
at t = 2 s. The left column depicts the optimal controls (from top to bottom:
steering angle velocity wδ, braking force FB, pedal position φ). The right column
shows a selection of resulting differential states (deviation from the straight lane
cy, velocity v, slip angle β)
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(b) Differential state profile.

Fig. 4 Performance of the A4D1 controller scheme for a sampling time of 0.05
seconds. Even doing a mode D step only every 0.2 seconds is still sufficient. Note the
impact of the nonlinear updates of mode D on the control trajectories generated by
the mode A controller. Every 4 control interval (0.2 seconds time), a new piecewise
constant approximation to a control arc starts

Table 1 Computation times for the results presented in Figures 3, and 4

Controller Mode A Mode D Total
Calls Avg. [s/call] Calls Avg. [s/call] [s]

A1D1 200 – 200 0.019 3.76
A2D1 200 0.005 101 0.015 2.43
A4D1 200 0.005 51 0.015 1.77
A6D1 200 0.006 34 0.016 1.86

computational cost. The results depicted in Figure 4 show the vehicle behav-
ior under control profiles generated by an A4D1 multi-level iteration scheme.

4.3 Computation Times

In Table 1 computation times for the multi-level NMPC implementation
within the optimal control software package MUSCOD-II [8] are shown. All
controllers are faster than the classical real-time iterations, while the most
performant controller is A4D1.
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Notably, when the nonlinear updates performed by mode D are applied
scarcely to save on computation time (A6D1 scheme), the mode A work-
load starts to increase again due to more active set changes occurring during
the dense QP solution. It is important to recognize that the mode A com-
putation times are independent of the differential state dimension, whereas
that dimension dominates the mode D computation times. This decoupling
of computation time dependencies easily allows the multi-level algorithm to
scale to larger models without impacting the LMPC feedback rate.

5 Conclusions

In this contribution, we presented a new multi-level NMPC controller scheme
based on theoretical concepts from [2]. As discussed, the controller easily
scales with the ODE model dimension while maintaining constant fast LMPC
feedback rates independent of the model size. It reflects dynamics on differ-
ent time scales inherent in the model by providing several independent op-
tions to update the core LMPC feedback law using feasibility, optimality, and
nonlinearity improvements. Finally, the design allows to distribute available
processing power among multiple modes to be executed in parallel, according
to scenario requirements.

Using the described NMPC controller we studied a disturbance rejection
scenario from automotive engineering. Compared to classical real-time itera-
tions [4] we were able to reduce the feedback delay by a factor of three. We
have shown that for the scenario at hand, the nonlinearity update frequency
of mode D can be reduced to every sixth control feedback with only very
limited loss of performance of the resulting controller. In a practical applica-
tion, this rate could be chosen according to the embedded control system’s
capabilities.
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Unconstrained NMPC Based on a Class of
Wiener Models: A Closed Form Solution

Shraddha Deshpande, V. Vishnu, and Sachin C. Patwardhan

Abstract. In this work, we obtain a closed form solution to a nonlinear model
predictive control problem when the controller is developed using a class of
black-box Wiener type model. The linear dynamic component of the Wiener
model parameterized using orthonormal basis filters. The nonlinear state to
output map is constructed using quadratic polynomials. The resulting non-
linear state space model is then used to formulate an unconstrained NMPC
problem. A closed form solution to this problem is constructed analytically
using the theory of solutions of quadratic operator polynomials. The efficacy
of the proposed quadratic control law is demonstrated by conducting servo
control studies at a singular operating point on a benchmark experimental
setup.

Keywords: Wiener Model, Fast NMPC, Multidimensional Quadratic
Polynomials, Input Multiplicities, Control at Optimum.

1 Introduction

Nonlinear model predictive control is increasingly being used for control-
ling systems, such as fuel cells, which exhibit strongly nonlinear and signif-
icantly fast dynamics. To control such systems efficiently, it is necessary to
develop fast solution approaches that can facilitate real-time implementa-
tion of NMPC. In this work, we obtain a closed form solution to a nonlinear
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model predictive control problem when the controller is developed using a
class of black-box Wiener type model. Dynamics of a multivariable nonlinear
system with fading memory is captured by employing MISO Wiener type
discrete state space models with nonlinear output error structure [2]. The
linear dynamic part of the Wiener model is parameterized using generalized
ortho-normal basis filters. The nonlinear state to output map is constructed
using quadratic polynomials. It is shown that the multi-step unconstrained
NMPC formulation can be rearranged as a single multi-dimensional quadratic
equation. Using the theory of solutions of quadratic operator polynomials in
Banach spaces [1], we construct an analytical solution to this multi-step pre-
dictive control problem. The solution procedure involves computations of
matrix square roots and this can give rise to multiple and /or complex so-
lutions. The control law is constructed by making a qualified choice of the
matrix square root and choosing to implement real part of the complex solu-
tions. The efficacy of the proposed closed form control law is demonstrated
by conducting experimental studies on the benchmark Heater-Mixer set up
[5].We demonstrate that the proposed quadratic control law is able to move
the system to an optimum (singular) operating point, where the steady state
gain is reduced to zero and the gain changes its sign across the optimum,
from a sub-optimal point and maintain the operation at the optimum.

2 OBF-Wiener Model

The nonlinear dynamic systems under consideration are with fading memory
and can be represented as a set of nonlinear ODEs of the form

dz
dt

= F [z,u] ; y(t) = G [z] + v(k) (1)

where u ∈ Rm represent the vector of manipulated inputs, y ∈ Rr rep-
resent the vector of measured outputs and v ∈Rr represent the vector of
unknown additive disturbances. In practice, the operators F[.] and G [.]
are seldom known exactly and are too complex to be used for developing
a closed form control law. The information available from the plant for
model development is the sampled sequence of input and output vectors
ΣNy = {(y(k),u(k)) : k = 1, 2, .....Ny} . Given input and output data set
ΣNy collected from a plant, we propose to identify a MIMO Wiener model
of the form

x(k + 1) = Φx(k) + Γ u(k) (2)
y(k) = Ω [x(k)] + ε(k) = Cx(k) + {D } [x(k),x(k)] + ε(k) (3)

where x(k) ∈Rn represents model state vector . The matrices (Φ,Γ) are pa-
rameterized using Generalized Orthonormal Basis Filters [2], which represent
an orthonormal basis for the set of strictly proper stable transfer functions.



Unconstrained NMPC Based on a Class of Wiener Models 483

A nested optimization strategy for identification of GOBF poles and matrices
[C, D] is discussed in Srinivasrao et al.[2]. Note that {D } is a (r ×N ×N)
bilinear matrix representation of a three dimensional array (see Appendix
and [3, 4] for more details).

3 Multistep Quadratic Control Law

In the development that follows, it is assumed that the system under consid-
eration is square, i.e. m = r. The model equation (2) can be used to formulate
an state estimator as follows

x̂(k) = Φ x̂(k − 1) + Γ u(k − 1) (4)
ε(k) = y(k)−Ω [x̂(k)] (5)

At sampling instant k, given p future input moves

U(k) =
[
u(k|k)T ... u(k + p− 1|k)T

]T
(p + j)-step ahead predictions are generated as follows

x̂(k + p + j|k) = Φp+jx̂(k) + S(j) U(k) (6)
ỹ(k + p + j|k) = Ω [x̂(k + p + j|k)] + d(k) (7)

S(j) =
[
Φp+j−1 Φp+j−2 .... Φ I

]
Γ

where d(k) accounts for the plant-model mismatch / unmeasured distur-
bances. The signal d(k) is estimated by filtering the prediction error, ε(k),
through a unity gain filter as follows

d(k) = Φdd(k − 1) + [I−Φd] ε(k) (8)
Φd = diag

[
α1 α2 ... αr

]
(9)

where 0 ≤ αi < 1 are treated as tuning parameters. The above prediction
equation can be rearranged as follows

ŷ(k + p + j|k) = y(k + p + j|k) + [Λ(j)(k)]U(k)

+
{
Ψ(j)

}
(U(k),U(k)) (10)

y(k + p + j|k) = d(k) + CΦp+jx̂(k)
+
{{D} ◦Φp+j •Φp+j

}
(x̂(k), x̂(k)) (11)

Λ(j)(k) = CS(j) + 2
{
{D} ◦Φp+j • S(j)

}
x̂(k) (12){

Ψ(j)
}

=
{
{D} ◦ S(j) • S(j)

}
(13)
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The symbols (◦) and (•) appearing in above equation represent circle product
and right dot product of a bilinear matrix with a matrix, respectively (ref.
Appendix for definitions). The prediction equation developed above assumes
that p future input moves are available for manipulation. However, in a typ-
ical NMPC formulation, the degrees of freedom (q) for future trajectory ma-
nipulation are typically chosen fewer than the prediction horizon (q << p)
and are spread across the horizon through input blocking. The computa-
tion of matrices S(j) has to be modified accordingly to accommodate these
constraints.

Now, consider an unconstrained NMPC formulation formulated over pre-
diction horizon [p, p + q − 1]

min
U(k)

p+q−1∑
j=p

[ef (k + j|k)]T ef (k + j|k) (14)

where ef (k+ j|k) = r− ŷ(k+ j|k) and r ∈ Rr represent the desired setpoint.
The global minimum of the above optimization problem, if it exists, can be
obtained by setting

ef (k + j|k) = 0 for j = p, ..., p + q − 1 (15)

where 0 represents the zero vector. To develop a closed form solution to above
control problem, the above set of q vector equations are arranged in a single
vector equation as follows

Ŷ(k) = Y(k) + [Λ(k)]U(k) + {Ψ} (U(k),U(k)) (16)

Ŷ(k) =
[
ŷ(k + p|k)T ... ŷ(k + p + q − 1|k)T

]T

[Λ(k)] =
[ (

Λ(1)(k)
)T

...
(
Λ(q)(k)

)T ]T

; {Ψ} =

⎡⎣
{
Ψ(1)

}
{.....}{
Ψ(q)

}
⎤⎦

With these definitions, the controller design equation reduces to a multidi-
mensional quadratic equation of the form

Q (U(k)) = {Ψ} (U(k),U(k)) + [Λ(k)]U(k) +
[
Y(k)−R

]
= 0 (17)

where R =
[
rT .... rT

]T
.The above equation is multi dimensional quadratic

operator polynomial in Rm×q. An analytical approach for solving such
quadratic operator polynomial equations in Banach spaces equations has
been developed by Rall [1]. Patwardhan and Madhavan [4] have adopted
this approach to develop one step ahead control law under nonlinear IMC
[3] framework. Following the controller synthesis approach suggested by
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Patwardhan and Madhavan [4], a multistep quadratic control law can
be derived as follows:

Let U0 denote some arbitrary input vector such that the gradient matrix

∇U [Q (U0)] = 2 [{Ψ} (U0)] + Λ(k) (18)

is nonsingular. Then, the analytical solution of the above multi-dimensional
quadratic equation can be written as

U(k)−U0 = −
(

1
2

[
I + (Δ (k))

1
2

])−1

(∇U [Q (U0)])
−1 [Q (U0)] (19)

Δ (k) =
[
I − 4

{
Ψ̃ (k)

}
(∇U [Q (U0)])

−1 [Q (U0)]
]

{
Ψ̃(k)

}
= (∇U [Q (U0)])

−1 • {Ψ}

Here, symbol (•) denotes left dot product between matrix (∇U [Q (U0)])
−1and

the bilinear matrix {Ψ} (see Appendix). Patwardhan and Madhavan [4] have
proved following results, which help in understanding properties of the above
solution.

Theorem 1. [4]: If square roots of matrix Δ (k) exist, then it is always pos-
sible to select Δ (k)1/2 such that (I+Δ (k)1/2) is nonsingular.

Lemma 1. [4]: For the system of linear algebraic equation given by (I +
A1/2)v = b where A is diagonalizable matrix, consider the set

Ξ =
{
v : v = (I + A1/2)−1b, ‖b‖2 ≤ 1

}
The smallest bound for the diameter of set Ξ is obtained by choosing A1/2

such that its eigenvalues have non-negative real parts.

In general, a matrix has multiple square roots and consequently different
values of U(k) will be obtained for every choice of the square root of matrix
Δ (k) . Based on Lemma 2, Patwardhan and Madhavan [4] have suggested
that the matrix square root (Δ (k))

1
2 should be selected such that all its

eigen values have non-negative real part. It may be noted that the matrix
square root can have complex elements and consequently the resulting U(k)
can be complex. To alleviate this difficulty, Patwardhan and Madhavan [4]
have suggested that the real part of the complex solution vector can be used
for manipulation. Incorporating these suggestions, a modified solution to the
control problem can be stated as follows

U (k) = U0 −REAL

{[
1
2

{
I + (Δ (k))

1
2

}]−1

E0 (k)

}
(20)
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This controller is implemented in a moving horizon framework and only first
element of U(k), i.e. u(k|k), is implemented on the system. In practice, the
unconstrained control law developed above requires additional measures to
avoid integral windup, such as incorporating input bounds uL ≤ u(k) ≤
uH .The stability of the resulting closed loop can be analyzed using nonlinear
internal model control framework [3]. Patwardhan and Madhavan [4] have
shown that the situation where the solution becomes complex arises when the
specified setpoint is unattainable due to system nonlinearity. However, if the
specified setpoint is attainable at the steady state and the prediction horizon
is selected sufficiently large, then the complex solutions are not expected to
arise during control law implementation.

4 Experimental Studies

In this section we present results on a experimental case study involving
a benchmark heater-mixer setup [5, 2]. The heater mixer setup consists of
two stirred tanks in series as shown in Figure 1. The cold water inlet flow
to both the tanks can be manipulated using pneumatic control valves. The
temperatures in the first tank (T1), in the second tank (T2) and the liquid
level in the second tank (h2) are measured (controlled) variables while the
heat inputs to first and second tank (m1 and m2) and cold water flow to

Fig. 1 Heater Mixer Setup: Schematic Diagram
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Fig. 2 Heater Mixer Setup: Model Validation - Stedy State Behavior

the second tank (m3) are used as manipulated inputs. The cold water flow
to the first tank and the cold water temperature are treated as unmeasured
disturbances and recycle flow is kept constant.

To make the problem difficult and strongly nonlinear, bell shaped nonlin-
earities of the form

m1 = 16.3 ∗ exp(−(u1/6)2 ; m2 = 18 ∗ exp(−(u2/6)2)

are deliberately introduced between the controller outputs (u) and manipu-
lated inputs (m). These nonlinearities gives rise to input multiplicity behav-
ior as shown in Figure 2. The resulting system has an unconstrained optimum
operating point at u =0. This is a singular point where the steady state gains
with respect to controller outputs (u) are reduced to zero and change their
respective signs across the optimum.

The steady state optimum point is chosen as the desired operating point.
OBF-Wiener type models with NOE structure were identified from input-
output data as proposed by Srinivasrao et al [2]. Figure 2 presents comparison
of steady state behavior of the OBF-Wiener model with that of a mechanistic
model [2] for Heter-Mixer setup. The identified OBF-Wiener model was able
to capture the dynamic as well as the steady state behavior of the system
with a reasonable accuracy.

The tuning parameters of quadratic control law are chosen as follows

p = 60, Φd = diag
[
0.9 0.9 0.92

]
−6 ≤ u1 ≤ 6 ;−6 ≤ u2 ≤ 6 ; 8 mA ≤ u3 ≤ 20 mA
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Fig. 3 Quadratic Controller (q =1, C++ DLL) : Behavior of controlled outputs

The controller is required to shift the operation from the optimum point
(T1 = 71, T2 = 60 and h2 = 0.38) to a sub-optimal operating point (T1 =
66, T2 = 55 and h2 = 0.38) and then shift the operating point back to
the optimum operating point. The closed loop response of the Heater-Mixer
system is evaluated for control horizon q = 1 and q = 10. The closed loop
responses obtained for q = 1 are presented in Figure 3. As evident from
this figure, the quadratic controller smoothly conducts the desired setpoint
transition. Moreover, the process is tightly controlled at the singular optimum
operating point in spite of fluctuations in unmeasured disturbances.
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Figure 4 compares response of quadratic control law with (q = 1) and (q =
10). As can be expected, the controlled output attains the optimum point
faster when degrees of freedom are increased to 10. However, if we compare
average computation time for quadratic control law implementation, then
the controller with q = 10 required 311.6 ms while the controller with q = 1
required only 9.5 ms. It may be noted that the controller was implemented
through a MATLAB window created in LABVIEW. We also implemented the
quadratic control law (q = 1) by converting MATLAB code to a C++ code
and using resulting controller DLL file through LABVIEW. This resulted
in a drastic reduction in the mean computation time required for control
law computations (0.184 ms). Thus, it is possible to employ the proposed
quadratic control law for systems with fast dynamics if q << p.

5 Conclusion

In this work, we obtain a closed form solution to a nonlinear model predic-
tive control problem when the controller is developed using a class of black-
box Wiener type model. The efficacy of the proposed closed form control
law is demonstrated by conducting experimental studies on the benchmark
Heater-Mixer set up. We demonstrate that the proposed quadratic control
law is able to operate the system at a singular operating point and establish
the feasibility of employing the proposed control law for systems with fast
dynamics.

Appendix: Bilinear Matrices

A (r×n×m) bilinear matrix {B} is ordered collection of numbers bαβγ , α =
1, 2, ...r, β = 1, 2, ...n, γ = 1, 2, ...m. Various operation between a matrix and
a bilinear matrix are defined in Table (1).

Table 1 Bilinear Matrix operations

Operation Representation Definition

Left Dot Product
{D} = A • {B}
{k × n × m}

= (k × r) • {r × n × m}
dαβγ =

r∑
η=1

aαηbηβγ

Right Dot Product
{D} = {B} • A
{r × n × k}

= (r × n × m) • (m × k)
dαβγ =

m∑
η=1

bαβηaηγ

Circle Product
{D} = {B} ◦ A
{r × m × k}

= (r × n × m) ◦ (n × k)
dαβγ =

n∑
η=1

bαηγaηβ
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An Off-Line MPC Strategy for Nonlinear
Systems Based on SOS Programming

Giuseppe Franzè, Alessandro Casavola, Domenico Famularo,
and Emanuele Garone

Abstract. A novel moving horizon control strategy for input-saturated nonlinear
polynomial systems is proposed. The control strategy makes use of the so called
sum-of-squares (SOS) decomposition, i.e. a convexification procedure able to give
sufficient conditions on the positiveness of polynomials. The complexity of SOS-
based numerical methods is polynomial in the problem size and, as a consequence,
computationally attractive. SOS programming is used here to derive an “off-line”
model predictive control (MPC) scheme and analyze in depth its relevant proper-
ties. The main contribution here is to show that such an approach may lead to less
conservative MPC strategies than most existing methods based on global lineariza-
tion approaches. An illustrative example is provided to show the effectiveness of the
proposed SOS-based algorithm.

Keywords: Sum of Squares, Nonlinear Systems, Predictive Control, Convex
Relaxations, Constrained Systems.

1 Introduction

Model Predictive Control (MPC) is an optimization based control strategy able to
efficiently deal with plant constraints. At each time interval, the MPC algorithm
computes an open-loop sequence of inputs by minimizing, compatibly with pre-
scribed constraints, a cost index based on future plant predictions. The first input of
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the optimal sequence is applied to the plant and the entire optimization procedure is
repeated at future time instants.

Though almost all processes are inherently nonlinear, the vast majority of MPC
applications and results are based on linear or uncertain linear dynamic models (see
[1, 2] and references therein). One of the main reasons for this choice is probably
related to the huge on-line computational burdens typically resulting from direct
nonlinear programming techniques which are, in some cases, non-convex program-
ming algorithms [3, 4].

Nevertheless, there are cases when nonlinear effects are significant enough to jus-
tify the use of direct nonlinear MPC (NMPC) technologies, contrasted to linearized
MPC approaches (see [5]). These include at least two broad categories of applica-
tions: regulation problems, where the plant is highly nonlinear and subject to large
frequent disturbances, and servo problems, where the set point changes frequently
and spans a sufficiently wide range of nonlinear process dynamics.

The purpose of this paper is to consider a particular class of nonlinear plants
and constraints described by means of polynomials. The formulation of the MPC
problem in such a case gives rise to polynomial optimization problems solvable
by using efficient numerical methods exploiting Gröbner bases, cylindrical al-
gebraic decomposition etc., which have been recently proposed in the literature
(see [6, 7, 8, 9]).

In particular, SOS decomposition and semidefinite programming [10, 11, 12,
13, 14] techniques will be used here, whose computational complexity is polyno-
mial in the problem size. Strictly speaking, the SOS-based approach is a power-
ful convexification method which generalizes the well-known S-procedure [7] by
searching for polynomial multipliers. As one of its major merits, the SOS-based
approach provides less conservative results than most available methods. Prelim-
inary results along this research line have been achieved in [12] where an on-
line constrained MPC strategy for open-loop stable polynomial systems has been
developed.

Here we propose an off-line formulation of a Receding Horizon Control (RHC)
problem for polynomial systems based on the computation of a nested sequence of
positive invariant sets (see [15] where a similar algorithm is detailed for uncertain
linear plants). With this off-line approach, the SOS computation time is not a limit-
ing factor and increased control performance can be achieved also for fast processes
and large scale nonlinear systems.

2 Problem Formulation

Consider the following nonlinear system with polynomial vector field

x(t + 1) = f (x(t))+ g(x(t))u(t) (1)

where f ∈Rn[x], g∈Rn×m[x], with x∈Rn, denoting the state and u∈Rm the control
input which is subject to the following component-wise saturation constraints
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u(t) ∈U, ∀t ≥ 0 : U � {u ∈ R
m | |ui| ≤ ūi, i = 1, . . . ,m,} . (2)

here U is a compact subset of Rm containing the origin as an interior point. It is
assumed in this paper that f and g are continuous and 0x ∈ Rn is an equilibrium
point for (1) with u = 0, i.e. f (0) = 0 [3].

The aim is to find, given a certain initial state x(0), a state feedback regulation
strategy u(t) = g(x(t)) which, under the prescribed constraints (2), asymptotically
stabilizes (1) and minimizes the infinite horizon quadratic cost

J(u,x(0)) �
∞

∑
t=0

(
‖x(t)‖2

Ψx
+‖u(t)‖2

Ψu

)
(3)

where (3) Ψx = ΨT
x , Ψu = ΨT

u are positive definite weighting matrices.
In what follows, a Receding Horizon Control (RHC) scheme for the proposed

regulation problem will be introduced and outlined. Therefore, by resorting to well-
established ideas (see [1] for a comprehensive and detailed discussion), we look for
a guaranteed cost, input constrained state feedback regulation strategy.

We recall that sufficient conditions guaranteeing the feasibility and closed-loop
stability of the RHC paradigm for nonlinear discrete-time systems have been pre-
sented in [16]. There, under mild assumptions, it has been proved that the RHC
optimization problem has a solution if a non-increasing Lyapunov function V (x(·)),
can be found (Fundamental Theorem, pag. 293, [16]) and the regional stability of
the feedback control system is achieved. Therefore, under a state-dependent con-
trol law u(t) = K(x(t)), with x(t) the initial state, an upper bound to the quadratic
performance index (3) of the form

J(K(x(t)),x(t)) ≤V (x(t)) (4)

can be found if V (x) is a nonincreasing Lyapunov function. Moreover, E :=
{x ∈ Rn| V (x)≤ γ, γ≥ 0}, is a positive invariant region for the regulated input
constrained system. In the presence of input constraints u ∈ U, all of the above
results continue to be true provided that the pair (V (x),K(x)) is chosen so that
∀x ∈ E ⇒ K(x)⊂U.

3 Main Result

In order to develop a constrained RHC strategy for the nonlinear system (1), the
following state-dependent feedback law will be adopted hereafter

u(t) = K(x(t)), ∀t. (5)

where K(x) denotes a multivariate polynomial in the unkwnown x. Moreover it is
supposed that the upper-bound V (x(t)) to the cost (3), introduced in (4), will be
a SOS. Using this assumption and exploiting standard Hamilton-Jacobi-Bellman
(HJB) inequality arguments [16], it is possible to derive conditions under which
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there exists a closed-loop stabilizing control law (5) which achieves a guaranteed
cost (4) and is compatible with the input constraints (2):

Proposition 1. Let x(t) be the current state of the polynomial nonlinear system (1)
subject to (2). Then, there exists a state feedback control law of the form (5) ensuring
asymptotical stability and constraints fulfilment from t onward if a SOS V ∈ Σ[x], a
polynomial K ∈ R[x] and a scalar γ≥ 0 are found such that

• V (x) > 0 ∀x ∈ R n �{0} and V (0) = 0;
• the following Hamilton-Jacobi-Bellman inequality holds true

{x∈R n|V (x)≤ γ}⊆{x∈R n|V (x(t+1))−V (x(t))+xTΨxx+K(x)TΨuK(x)<0}

• the saturation constraints are fulfilled

{x ∈ R n|V (x)≤ γ} ⊆ {x ∈ R n|Ki(x)≤ ūi}

{x ∈ R n|V (x)≤ γ} ⊆ {x ∈ R n|Ki(x)≥−ūi}
• the initial state belongs to the positive invariant set E with margin ε

{x ∈ R n|(x− x(0))T (x− x(0))≤ ε} ⊆ {x ∈ R n|V (x)≤ γ}, ε> 0

Proof. See [16]. �

By resorting to a “Positivstellensatz” (P-satz) [7] argument, the conditions stated in
Proposition 1 can be recast as the ones of finding a SOS V ∈ Σ[x], a polynomial
K ∈ R[x] and a scalar γ≥ 0 such that the following set, achieved as the intersection
of each single region in the following list, is empty⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{x ∈ R n|V (x)≤ 0, l1 �= 0}{

x ∈ R n|V (x)≤ γ, l2 �= 0,V (x(t + 1))−V(x(t))+ xTΨxx + K(x)TΨuK(x)≥ 0
}

{x ∈ R n|Ki(x) > ūi,V (x)≤ γ}
{x ∈ R n|Ki(x) <−ūi,V (x)≤ γ}
{x ∈ R n|(x− x(0))T (x− x(0))≥ ε,V (x) > γ}

(6)
where l1, l2 ∈ R[x] are appropriate positive definite polynomials such that l1(0x) =
0,l2(0x) = 0. Finally, the following result can be stated

Proposition 2. Let x(0) ∈ R
n be given. Then, a pair (V (x),K(x)) compatible with

the conditions of Proposition 1 and minimizing the upper-bound (4) can be found
by solving the following minimization problem hereafter named SOS-V-K(x),

min
V,s1,s2,s3,i,s4,i,s5∈Σ[x], K∈R [x], γ≥0

γ

subject to
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V − l1 ∈ Σ[x] (7)

−((γ−V )s1+(V ( f (x,K(x)))−V (x)+ xTΨxx + K(x)TΨuK(x))s2 + l2) ∈ Σ[x] (8)

(ūi−Ki)− (γ−V)s3,i ∈ Σ[x], i = 1, . . . ,m (9)

(ūi + Ki)− (γ−V)s4,i ∈ Σ[x], i = 1, . . . ,m(10)

−ε+(x− x(0))T(x− x(0))s5 +(γ−V) ∈ Σ[x](11)

under the following conditions on the degrees of the involved polynomials necessary
for problem solvability⎧⎨⎩

max(∂(V s1) ,∂(V s2))≥
≥max

(
∂(V ( f (x),K(x))s2) ,∂

(
xTΨxxs2

)
,∂
(
K(x)TΨuK(x)s2

))
,

∂(V ) = ∂(l1) , ∂(V s3,i)≥ ∂(Ki) , i = 1, . . . ,m, ∂(s5)+ 2≥ ∂(V )
(12)

Proof. A detailed proof can be found in [17]. �

Remark 1. Note that the decision polynomials s1, s2, s3,i, s4,i, s5 ∈ Σ[x], i =
1, . . . ,m do not enter linearly in the constraints. It can be proved that the proposed
optimization problem SOS-V-K(x) is a BMI and can be solved using a bisection
procedure. Then, each bisection step involves three sequential linear SOS prob-
lems (see [17] for details), solvable by means of standard semidefinite programming
packages [18]. Nonetheless, it is obvious that the obtained optimal solution is local
and its behavior depends on the point from which the optimization starts. �

Remark 2. The numerical solution of the optimization SOS−V−K(x) procedure
could be affected by different assumptions of the involved set of parameters, i.e.
the degrees of optimization variables V and K and the degrees of all multipliers si

deriving by the S-procedure application. A convenient choice of them (e.g. lineariza-
tions), satisfying the degree conditions (12), could improve the numerical efficiency
of the overall scheme. In fact, in principle the more the degrees of {p,V,K,si} in-
creases the more possibly better numerical solutions result. �

4 A Low-Demanding Receding Horizon Control Algorithm

This section is devoted to show how the proposed procedure SOS-V-K(x) is capa-
ble to achieve satisfactory level of control performance within a Receding Horizon
Control (RHC) framework. The idea is to resort to a computationally low demanding
RHC scheme where most of the computations are carried out off-line. It is gener-
ally recognized that the evaluation of the on-line parts of traditional robust MPC
schemes is computationally prohibitive in many practical situations. The problem
is especially severe for nonlinear schemes and most of current research on MPC
is in fact devoted to reduce such a high computational burden while still ensuring
the same level of control performance of the traditional schemes (see [19], [15]
and references therein). Here, the procedure SOS-V-K(x) will be exploited within
the Robust RHC scheme proposed in [15] for the uncertain linear time invariant
systems.
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All the arguments developed in the previous sections allows one to write down
a computable RHC scheme, hereafter denoted as WK-SOS, which consists of the
following algorithm:

Algorithm-WK-SOS
Off-line

0.0 Derive V0, a Control Lyapunov Function (CLF) for the linearized system [9]
around the desired set point and a control law K0(x) that asymptotically stabi-
lizes (1).

0.1 Pick an initial feasible state x1 ∈ E0 � {x ∈ Rn | V0(x)≤ 1}, generate a control
law K1(·) and an invariant region E1, by solving the SOS program SOS-V-K(xr).
Choose an integer N and put r = 2. Store K1(·), E1(·) in a lookup table;

0.2 Generate a control law Kr(·) and an invariant region Er, by solving the SOS
program SOS-V-K(xr) with the additional constraint Er ⊂ Er−1 translated as
an extra SOS condition

−((α−V)s16 +(Vk−1−1)) ∈ Σ[x] with s16 ∈ Σ[x], ∂(V s16)≥ ∂(Vk−1) (13)

0.3 Store Kr(·), Er(·);
0.4 If r < N, choose a new state xr+1 s.t. xr+1 ∈ Er, Let r = r+1 and go to step 0.2

On-line

1.1 Given an initial feasible state x(0) s.t. x(0) ∈ E1, put t = 0;
1.2 Given x(t), perform a bisection search over the sets Er in the look-up table to

find r̂ := argminr s.t. x(t) ∈ Er

1.3 Feed the plant by the input Kr̂(x(t))
1.4 t ← t + 1 and go to step 1.2

Remark 3. Note that Step [0.2] of the proposed scheme involves a suboptimal
search of a solution for SOS-V-K(xr) meaning that a stopping criterion [17] is used,
and in the worst case, for each value of the index r = 2, . . . ,N, the algorithm achieves
the previously computed couple Kr−1(·), Er−1(·). �

Next lemma ensures that the proposed MPC scheme admits a feasible solution at
each time t and the SOS-based input strategy Kr̂(x(t)) is a stabilizing control law
for (1) under (2).

Lemma 1. Given the system (1), let the off-line steps of proposed scheme have solu-
tion at time t = 0. Then, the on-line part of the WK-SOS algorithm has solution at
each future time instant, satisfies the input constraints and yields an asymptotically
stable closed-loop system.

Proof. It follows by the existence of the sequences Kr,Er which ensure that any
initial state x(0) ∈ E1 can be steered to the origin without constraints violation.
In particular, because of the additional constraint Er ⊆ Er−1, the regulated state
trajectory emanating from the initial state satisfies

x(t + 1) =
{

f (x(t))+ g(x(t))Kr(x(t)) if x(t) ∈ Er, x(t) /∈ Er+1, r �= N
f (x(t))+ g(x(t))KN(x(t)) if x(t) ∈ EN

(14)
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Then, under both conditions x(t) ∈Er and x(t) /∈ Er+1, r = 1, . . . ,N−1, the control
law Kr(·) is guaranteed to ultimately drive the state from Er into the ellipsoid Er+1

because the Lyapunov difference V ( f (x, K̂r(x))−V (x) is strictly negative. Finally,
the positive invariance of EN and the contraction provided by KN , guarantee that the
state remains within EN and converges to 0x. �

5 Illustrative Example

The aim of this section is to give a measure of the improvements achievable by
exploiting the SOS programming framework within a RHC framework. To this end,
the Algorithm-WK, (see [15]) will be contrasted with the proposed Algorithm-
WK-SOS. The simulations are instrumental to show especially the reduction of
conservativeness in terms of achievable basins of attraction, when compared with
its linear counterpart (viz. Algorithm-WK). All the computations have been carried
out on a PC Pentium 4.

A controlled Van Der Pol nonlinear equation is taken into consideration [13]

ẋ1(t) = x2(t), ẋ2(t) =−x1(t)− (1− x2
1(t))x2(t)+ u(t) (15)

It has an unstable limit cycle around 0x, which is a local asymptotically stable equi-
librium point. The problem of computing inner approximations of the attraction
basin with SOS machinery has been extensively studied (see [14] and references
therein). The system (15) has been discretized by using forward Euler differences
with a sampling time Tc = 0.1 sec. It has been further assumed: weighting matrices
Ψx = diag([0.01 0.01]), and Ψu = 1 and input saturation constraint |u(t)| ≤ 0.2, ∀t.

The design knobs are here summarized: Candidate Lyapunov function degree:
∂(V (x)) = 6; Candidate stabilizing controller degree: ∂(K(x)) = 4. The following
degrees have been chosen ∂(s6) = 2, ∂(s8) = 4, ∂(s9) = 0, ∂(s11) = 2, ∂(s12) =
2, ∂(s14) = 2, ∂(s16) = 2, for the free polynomials in the SOS formulation in order
to satisfy the solvability conditions (12). Finally, the quantity ε in (32) has been
chosen equal to 10−8. Fig. (a) reports the basins of attraction for the two control
schemes. As expected, WK-SOS (continuous line) enjoys an enlarged region of
feasible initial states w.r.t. WK (dashed). Moreover, when one computes the basins
of attraction under the more stringent saturation constraint |u(t)| ≤ 0.15 it results
that no solutions exist for the WK algorithm whereas a restricted region (dotted
in Fig. (a)) is found for WK-SOS The results reported in next Figs (b)-(d) have
been achieved with the input constraint |u(t)| ≤ 0.2. Four pairs (Ki,Ei) have been
determined with the SOS-V-K(x) algorithm initialized with a sequence of four states

xset =
[

0.4 0.3 0.15 0.1
0 0 0 0

]
. The initial state has been set to x(0) =

[
0.25 0.68

]T
.

Finally, Figs. (b)-(d) depict respectively: the regulated phase portraits (four in-
variant regions Ei are graphically represented), the state regulated response and the
control input for the two schemes.
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6 Conclusions

In this paper, we have developed an off-line RHC algorithm for constrained polyno-
mial nonlinear systems by means of SOS programming. The advantage of this algo-
rithm is that it provides a set of stabilizing polynomial control laws, corresponding
to a nested set of positive invariant regions. Up to our knowledge this is a first at-
tempt in literature to formulate a RHC problem using SOS machinery. Numerical
experiments have shown the benefits of the proposed RHC strategy w.r.t. linear em-
bedding MPC schemes and makes SOS based MPC schemes potentially attractive.
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NMPC for Propofol Drug Dosing during
Anesthesia Induction

S. Syafiie, J. Niño, C. Ionescu, and R. De Keyser

Abstract. This paper presents the application of nonlinear predictive con-
trol to drug dosing during anesthesia in prospective patients for undergo-
ing surgery. A single-input (propofol) single output (Bispectral index (BIS))
patient model has been employed. The pharmacokinetic-pharmacodynamic
model, which is in fact a Wiener-type model, has been used for prediction. A
set of 12 patient models were studied while controlling BIS at 50 by apply-
ing our in-house nonlinear extended-prediction self-adaptive control strategy
(NEPSAC). The results of this simulation study show that NEPSAC outper-
forms EPSAC, using a nominal patient model for prediction.

Keywords: Predictive Control, Nonlinear, Anesthesia.

1 Introduction

Anesthesia regarding from the aspect of drug dosing has a number of particu-
lar interests for control engineer to give contributions for designing automatic
controllers. The prospective contributions are mainly: a) reduce the workload
of the anesthetist; b) optimize the performance (minimize drug consumption
and ensure the patient being in acceptable clinical state); c) avoid dangerous
undershoot (during the induction phase); d) reduce variability for all recovery
parameters.

General anesthesia of patients undergoing surgery is defined by a sequence
of clinical procedures to induce a specific physiological state, and comprises
three main components: Muscle relaxation, Analgesia and Hypnosis. Muscle
relaxation (paralysis) can occur by interrupting function at several sites in the
central nervous system. Muscle relaxation is measured by an index between
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0 (full paralysis) and 100 (normal state), using available sensors (such as
electromyographic response [1]). Analgesia (pain relief) is achieved through
the administration of opioid drugs such as remifentanil. Hitherto, there is
no direct sensor able to deliver an unique index of the analgesia level. Heart
rate variability has been suggested to indicate the analgesia level [2], while
research for delivering other indices is going on.

Several sensor systems including evoked auditory potential, spectral en-
tropy of the electroencephalography (EEG) and bispectral index of the EEG
(BIS) can be used to measure the hypnosis [3]. The BIS index is widely used
in clinical practice and most adequate for controller design. The BIS index is
ranging from 0 to 100 [4, 5], with zero denoting flat EEG line (i.e. isoelectric
EEG) and 100 denoting a fully awake state and consciousness.

Most of the reported studies of anesthesia level regulation using anestetic
propofol are based on using effect site concentration, while only few report
using BIS as a controlled variable. For example, Lazy Learning [6] has been
used for a simulated patient model to regulate propofol by controlling BIS.
However, due to large inter-patient variability in the model parameters, a
direct application of an agent based controller to clinical practice is difficult
and requires apriori data for training.

During the last decades, target controlled infusion (TCI) introduced in
1968 by Kruger and Thiemer [7] has been succefully applied in clinical prac-
tice since the launch of comercial devices such as DisprifusorTM in the year
1996 and RugloopTM in the year 1998. The basic theory of the TCI dosing
is based on the pharmacokinetic (PK) model of the propofol hypnotic drug.
Since TCI is essentially an open loop control strategy, the researchers argue
that to correct the errors from desired BIS values, it is to mandatory to ap-
ply closed loop control strategy [5]. Most of the applications of advanced
model-based controllers are based on pharmacokinetic-pharmacodynamic
(PKPD) models and examples of using linear MPC in simulation studies are
available [8, 9].

However, PKPD models contain linear dynamic and nonlinear static mod-
els, which are known as Wiener models. In this paper, PKPD-like Wiener
model is used for simulation of 12 patient models during the induction phase
using nonlinear MPC (NMPC). The paper is organized as follows: patient
model is given in section 2. The nonlinear extended prediction self-adaptive
control (NEPSAC) algorithm is briefly discussed in section 3 and the simu-
lation results are discussed in section 4., while final remarks are given in the
conclusion section.

2 Patient Model

The effect in a patient from the infused anesthetic can be represented by
PKPD models. Such models may be used to predict the future output
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Fig. 1 Propofol distribution of a 3 compartment patient model

and calculate an optimal control action by using a MPC strategy, such as
NEPSAC.

In this study, a 3-compartment PKPD patient model (figure 1) is
employed [10]:⎡⎣ ẋ1

ẋ2

ẋ3

⎤⎦ =

⎡⎣−k10 − k12 − k13 k21 k31

k12 −k21 0
k13 0 −k31

⎤⎦⎡⎣x1

x2

x3

⎤⎦+

⎡⎣ 1
0
0

⎤⎦u (1)

where x1 denotes the amount of drug in the central compartment (blood) and
x2 and x3 represent the amount of the drug in compartments 2 and 3 respec-
tively; while u denotes the infused propofol in the central compartment. The
constant kij represents the transfer rate of the drug from ith compartment to
jth compartment, while k10 is the rate of the drug metabolism. The constants
kij and k10 of the PK model (1) depend on the weight, height, age, gender
and lean body mass of the patient, as well as on the 3-compartment volumes
(blood V1, muscle V2, and fat V3).

The pharmacodynamics (PD) are characterized by a first-order relation to
the central compartment concentration Cp (represented by x1) in blood. The
apparent concentration in the effect compartment can be calculated, since
ke0 will precisely characterize the temporal effects of equilibration between
the plasma concentration and the corresponding drug effect. Consequently,
the equation is often used as in:

Ċe = ke0(Cp − Ce) (2)

where Ce is called the effect-site compartment concentration. This concentra-
tion is strongly related to the level of unconsciousness of a patient, conse-
quently used to define the depth of anesthesia (hypnosis). The BIS variable
can be related to the drug effect concentration Ce by the empirical static
nonlinear relationship, called also the Sigmoid Hill Model (SHM):

E = E0 − Emax
Cγ

e

Cγ
e + Cγ

50

(3)
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where E is BIS measure, E0 denotes the baseline value (awake state - with-
out propofol), which typically set to 100; Emax denotes the maximum effect
achieved by the drug infusion; C50 is the drug concentration at half maximal
effect and represents the patient’s sensitivity to the drug; and γ determines
the steepness of the static nonlinearity in (3). The dynamics of effect site
concentration and plasma concentration are calculated by using the linear
relation (1) and (2). The effect site concentration is then introduced with
(3), which denote a static nonlinear model. Therefore, the overall PKPD
model is a Wiener model, which typically consists of a dynamic linear model
and a static nonlinear equation.

3 The NEPSAC Approach to MPC

The Extended Prediction Self Adaptive Controller (EPSAC) [11] is our
in-house developed MPC algorithm. The extended algorithm for nonlin-
ear case (NEPSAC) has been previously explained and employed in in-
dustrial applications (e.g. [12]). The optimal control signals are calculated
based on: i) the prediction model output y(t + k) at time t, indicated by
y(t + k|t), k = 1, . . . , N2 over the prediction horizon N2; ii) measurements
until time t: {y(t), y(t− 1), . . . , u(t− 1), u(t− 2), . . .} and iii) future inputs:
{u(t|t), u(t+1|t), . . .} (postulated at time t). The core of the EPSAC strategy
is that the future response is the result of two effects:

y(t + k|t) = ybase(t + k|t) + yoptimize(t + k|t), (4)

where ybase(t+ k|t) is effects of past control signal, a base for future output
scenario and future (predicted) disturbance. yoptimize(t + k|t) is the effect
of the optimizing future control actions. The component yoptimize(t + k|t)
is the cumulative effect of a series of impulse inputs and a step input that is:

yoptimize(t + k|t) = hkδu(t|t) + hk−1δu(t + 1|t) + . . .

+gk−Nu+1δu(t + Nu − 1|t), (5)

where g1, g2, . . . , gk are the coefficients of the unit step response of the system;
h1, h2, . . . , hk are the coefficients of the unit impulse response of the system;
and δu is the optimizing future control actions. From (4) and (5), the EPSAC-
MPC equation in matrix form can be written as following by taking G that
contains h and g:

Y = Ȳ + GU. (6)

where Ȳ is the vector of ybase(t + k|t). The optimal control signal is calcu-
lated by minimizing a quadratic cost function. However, the concept of the
EPSAC strategy (4) is only valid for linear systems. For nonlinear systems,
by appropriate selection of the base control ubase(t + k|t), the second term
in the right hand side of (4) can be gradually made small enough compared
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to ybase(t+ k|t). Therefore, yoptimize(t+ k|t) is small if δu(t+ k|t) is small.
To have δu(t + k|t) small, it is necessary that ubase(t + k|t) is close to the
optimal u∗(t+ k|t) and let R be a reference vector. In NEPSAC, an iterative
procedure is employed, involving no linearisation, which consists of 2 major
steps:

• Step 1:

– measure the output of the process, i.e. y(t) = y(t|t)
– select the vector of control Ubase = [ubase(t|t), ubase(t + 1|t), . . . ,

ubase(t + N2 − 1|t)] defined the previous control action.
– calculate the vector Ȳ using Ubase, via the process model and using

the measured outputs as initial conditions,
– calculate the matrix G by entering a step or impulse in the prediction

model with the measured outputs as initial conditions

• Step 2:

– calculate the optimal U∗ = [GTG]−1[GT(R− Ȳ)]
– if |U∗| ≤ ε, apply u(t) = ubase(t|t)+ δu(t|t) to the plant and go to step

1 in the next sample.
– else, set Ubase = Ubase+U∗, calculate the new Ybase based on Ubase

and return to the beginning of step 2.

For further detail on the NEPSAC strategy, see [11].

4 Simulation Results during Induction Phase

For the NEPSAC study in this paper we employed the patient PKPD model
parameters from past clinical studies [8]. For this simulation study, a sample
period of 5 seconds [8] was used, with a control horizon of Nu=1, and a
prediction horizon N2 which corresponds to 50 seconds (10 samples) starting
after the estimated system delay of 10 seconds (given N1 = 2 samples).

4.1 Ideal Case: No Modelling Errors

The ideal case is defined as the scenario in which the patient model is perfectly
known and both EPSAC and NEPSAC approaches will be compared. The
(N)EPSAC controller is applied for regulating BIS during the induction phase
as in Figure 2, with the controller effort as shown in Figure 3 (3.3 mg/s is
a upper bound limited syringe pump). As expected, the NEPSAC controller
outperforms the EPSAC controller in terms of undershoot.

The inter-patient variability as denoted by 3 is depicted in Figure 4-a, while
the corresponding first derivative is given in Figure 4-b. Although there are
no modelling errors, in NEPSAC the nonlinear equation that relates BIS to
the effect-site concentration Ce (Equation 3) is used for prediction, while
its first derivative is used to calculate the matrix G at each iteration. This
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Fig. 2 BIS-response comparison in the ideal case of no modelling errors

means that the calculation of the control action takes into account the patient
sensitivity.

As observed, the static nonlinear models have the lowest values of
|dBIS/dCE| (see Figure 4 b) for the zones with low hypnotic effect and
the biggest ones for the region near to the reference (50), which result in fast
responses of NEPSAC strategy.

4.2 Real Case: Modelling Errors

The patient model from (1) can be adapted with the patient biometric data,
while (3) can never be a priori known. Consequently, an average population
model for (3) can be used for prediction, as calculated from the 12 patient
models (denoted by the bolded line in Figure 4-a). This situation is closer
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Fig. 3 Propofol input profile in the ideal case of no modelling errors
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Fig. 4 BIS-Ce characteristic of the study population

to the clinical practice, when the relation BIS/Ce is totally unknown before
staring the induction phase for anesthesia. The simulation results for NEP-
SAC strategies are depicted in Figure 5. The nominal model produces errors
in prediction and consequently in the computation of the control signal.

Initially, both controllers (linear and nonlinear EPSAC) have similar per-
formance due to the fact that the upper bound is reached for the manipu-
lated variable. In this case, both algorithms drive the system to the same
sub-optimal control action. As a consequence, both input-output profiles are
calculated based on the same history, thus leading to the same performance
result. The reason why NEPSAC is not able to iterate to the optimal solu-
tion is that constraints are not taken into account in the solution of the cost
function U∗.
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Fig. 5 BIS response in a more realistic scenario
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Fig. 6 NEPSAC results for increased prediction horizon N2=16

If one takes a look at the initial phase in Figure 5, one may realize that
the controller’s reaction during these first moments is crucial. Since the
controller’s reaction is based on the BIS/Ce relation (3) and its derivative
(gain)(see Figure 4), it is mandatory to implement a feasible prediction se-
quence. Due to the fact that the input to the patient is constrained, the
optimal solution is clipped, leading to sub-optimal results. Increasing the
prediction horizon allows the controller to take into account the changes in
gain occurring after these crucial first moments. Figure 6 shows the results
for the case where the prediction horizon is increased to N2=16.

As observed, an overall improvement is obtained if N2 is increased, by
avoiding the saturation of the input during the first part of the induction
phase for most patients. Compared to the ideal case in Figure 2-b, the effect
of the increased prediction horizon is visible; an increased settling time (from
150 seconds to 200 seconds) and the patient BIS responses are not homo-
geneous due to the high inter-patient variability and modelling errors. The
patients with the highest sensitivity (Figure 4-b), i.e. highest gain, present
higher values of undershoot. On the other hand, the patient with highest drug
resistance (e.g. red bolded line in the same figure) have the slowest response.

5 Conclusion

The objective of this paper was to present a simulation study of NEPSAC-
MPC applied to anesthesia during the induction phase for patients undergo-
ing surgery. The patient models of the study containing a linear dynamic part
(pharmacokinetics) and a static nonlinearity (pharmacodynamics) were con-
sidered as Wiener-type models. Both linear and nonlinear versions of EPSAC
were applied. Simulation results show that NEPSAC controller outperformes
EPSAC if no modelling error is present, and has similar results with average
model for prediction.
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In order to implement the NEPSAC algorithm in clinical trials, the intra-
and inter-patient variability problem is ongoing research. Performance im-
provement can be achieved if the prediction model is adapted to the specific
patient under study.
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Spacecraft Rate Damping with Predictive
Control Using Magnetic Actuators Only

Christoph Böhm, Moritz Merk, Walter Fichter, and Frank Allgöwer

Abstract. A nonlinear model predictive control (NMPC) approach for rate
damping control of a low Earth orbit satellite in the initial acquisition phase is
proposed. The only available actuators are magnetic coils which impose con-
trol torques on the satellite in interaction with the Earth’s magnetic field. In
the initial acquisition phase large rotations and high angular rates, and there-
fore strong nonlinearities must be dealt with. The proposed NMPC method,
which is shown to guarantee closed-loop stability, efficiently reduces the ki-
netic energy of the satellite while satisfying the constraints on the magnetic
actuators. Furthermore, due to the prediction of future trajectories, the neg-
ative effect of the well-known controllability restriction in magnetic space-
craft control is minimized. It is shown via a simulation example that the
obtained closed-loop performance is improved when compared to a classical
P-controller.

Keywords: Magnetic spacecraft control; Rate damping; Nonlinear model
predictive control.

1 Introduction

Magnetic coils are one opportunity to control the attitude and angular rate
dynamics of low Earth orbit satellites. Their high reliability and durabil-
ity and further advantageous features led to a high interest in magnetic
spacecraft control in the literature in the past.
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Controlling the attitude of a satellite, which is necessary e.g. in pointing
scenarios, is one important task in spacecraft control that can be solved with
approaches using magnetic coils. Most often those control methods are based
on a linear description of the satellite dynamics. In [8] an overview of existing
methods for the attitude control problem is given. Additional to the well-
known PD-controller, see [8] and references therein, there exist approaches
exploiting the periodic behavior of the Earth’s magnetic field [7, 12] and
several predictive control based methods [5, 8, 15]. Further approaches are
discussed in [6], [12] and [13].

Another important scenario in spacecraft control is the rate damping prob-
lem in the initial acquisition phase of the satellite. Here, in contrast to many
attitude control problems, large rotations and angular velocities, and there-
fore strong nonlinearities, occur. The most famous approach in rate damp-
ing control is the P-controller, see e.g. [6, 8]. Further methods are discussed
in [10, 14]. To the author’s best knowledge no results exist using NMPC to
tackle the rate damping problem.

In the frame of this paper we propose a nonlinear model predictive con-
troller for the rate damping problem of a circular low Earth orbit satellite.
Since the considered system is highly nonlinear and subject to hard input
constraints, NMPC is a suitable control method for this kind of problem. It
is shown that, due to the inherent optimization of a cost functional, NMPC
provides a noticeable performance improvement when compared to the clas-
sical P-controller [8]. Furthermore, the prediction of future trajectories allows
to minimize the negative effect of the well-known controllability restriction in
magnetic spacecraft control [8, 12]. Note that in this paper we do not focus on
computational issues, although we are aware of the restrictions on available
computation time in spacecraft control. We are rather interested, as a first
step, in improving the rate damping performance with NMPC approaches in
simulations. Further research is necessary to investigate the applicability for
real space missions.

The paper is organized as follows. In Section 2 a brief review on NMPC
is given. Section 3 introduces the dynamics of the considered spacecraft. In
Section 4 the main result is proposed, namely a stabilizing nonlinear model
predictive control approach for rate damping using magnetic actuators. Sim-
ulation results of the proposed controller with a comparison to the classical
P-controller are presented in Section 5. A brief summary concludes the paper
in Section 6.

2 Nonlinear Model Predictive Control

We consider nonlinear systems of the form

ẋ = f(x, u), x(0) = x0, (1)

with x ∈ R
n and u ∈ R

m. The system might be subject to state and input
constraints of the form u(t) ∈ U ∀ t ≥ 0 and x(t) ∈ X ∀ t ≥ 0. Here X ⊆ Rn
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is the state constraint set and U ⊂ Rm is the set of feasible inputs. In NMPC
the open-loop optimal control problem

min
ū(·)

Jc

(
x̄(·), ū(·)), (2a)

subject to
˙̄x(τ) = f

(
x̄(τ), ū(τ)

)
, x̄(tk) = x(tk), (2b)

x̄(τ) ∈ X , ū(τ) ∈ U , ∀τ ∈ [tk, tk + Tp

]
, (2c)

x̄(tk + Tp) ∈ E , (2d)

is solved repeatedly at each sampling instant tk with the cost functional

Jc

(
x̄(·), ū(·)) =

∫ tk+Tp

tk
F (x̄, ū) dτ + E

(
x̄(tk + Tp)

)
, (3)

where F (x̄, ū) > 0 and E
(
x̄(tk +Tp)

)
> 0 and with the prediction horizon Tp.

The solution to the optimization problem leads to

ū
(
t;x(tk)

)
= arg min

ū(·)
J
(
x̄(·), ū(·)). (4)

The control input applied to system (1) is updated at each sampling instant tk
by the repeated solution of the open-loop optimal control problem (2), i.e.
the applied control input is given by

u(t) = ū(t;x(tk)), t ∈ [tk, tk + δ
)
, (5)

where δ is the sampling time between each optimization (assumed to be fixed).
Since the solution to the optimization problem at each time instant tk depends
on the current system state x(tk), state feedback is provided. If certain well-
known conditions on the terminal penalty term E and the terminal region E
are satisfied, the presented NMPC approach guarantees stability of the closed-
loop system, see e.g. [1, 2, 3].

3 Spacecraft Dynamics

The control task considered in this paper is to stabilize the rate dynamics of a
rigid spacecraft in the initial acquisition phase where large angular velocities
and rotations occur. Therefore, motion and attitude of the spacecraft have to
be described by nonlinear differential equations, for which it is necessary to
consider two coordinate frames. The body frame has its origin in the satellite’s
center of gravity and its axes are given by the spacecraft geometry [12]. The
inertial coordinate frame has its origin in the center of the Earth and its
axes are not moving with time. According to [8, 11, 12] the dynamics of the
angular rates of a rigid spacecraft can be described by Euler’s equations

Jω̇ = −ω × Jω + τ. (6)

Here ω = [ωx ωy ωz]T ∈ R3 represents the angular rate of the spacecraft
expressed in body frame. J ∈ R3×3 is the inertia matrix assumed to be
diagonal and τ ∈ R

3 is the vector of magnetic control torques.
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There exist several ways to describe the spacecraft attitude kinematics [8,
11, 12]. In the frame of this paper we use the parameterization given by the
four quaternions (also called Euler parameters), which leads to

q̇ =
1
2
W (ω)q, (7)

where q ∈ R4 is the unit norm vector of quaternions and where

W (ω) =

⎡⎢⎢⎣
0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

⎤⎥⎥⎦ . (8)

To impose external control torques on a low Earth orbit satellite one has in
principle three possibilities: momentum wheels, thrusters and electromagnetic
coils. Magnetic coils use solar energy and thus, energy consumption is of
minor importance when using them as control inputs. Furthermore, coils have
a high reliability and durability. Motivated by these advantageous properties,
in this paper we consider spacecrafts which only possess magnetic actuators.
In interaction with the Earth’s magnetic field, the three magnetic coils, which
are aligned with the spacecraft principal axes, generate torques according to

τ = m× b = B(b)m. (9)

Here m = [m1 m2 m3]T ∈ R3 represents the control input variables, namely
the vector of magnetic dipoles for the three coils, which are constrained by

|mi| ≤ mmax, i = 1, 2, 3. (10)

The vector b = [bx by bz]T ∈ R3 describes the Earth’s magnetic field in body
frame and delivers the cross product matrix

B(b) =

⎡⎣ 0 bz −by

−bz 0 bx

by −bx 0

⎤⎦ . (11)

The Earth’s magnetic field in body frame is obtained via the coordinate
transformation b = Ω(q)bI , in which bI is the Earth’s magnetic field in inertial
coordinates and with the direction cosine matrix Ω(q) defined as

Ω(q) =

⎡⎣ 2(q2
1 + q2

4)− 1 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) 2(q2

2 + q2
4)− 1 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) 2(q2
3 + q2

4)− 1

⎤⎦ . (12)

To calculate the time-varying vector bI we use the approximation of the
Earth’s magnetic field presented in [11]. Due to space limitations we do not
discuss this approximation in this paper.

Clearly, in (11) the matrix B is always of rank two. Therefore, it is
not possible to apply independent control torques to all three satellite
axes. The reason for this is that the mechanical torque, generated by the
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interaction of the Earth’s magnetic field with the magnetic field induced
by the coils, is always perpendicular to the Earth’s magnetic field. Loosely
speaking, at each sampling instant the satellite can only be steered in two
directions by the controller. This is a serious and well-known limitation in
magnetic spacecraft control, although the directions in which torques can
be imposed change when the spacecraft moves in orbit [8, 12]. In contrast
to classical feedback controllers u = k(x), where the control action at each
sampling instant only depends on the current system state at this sampling
instant, in NMPC the controller predicts the future behavior of the system
states. Therefore, it can be expected that the negative effect of the controlla-
bility restriction can be reduced by applying NMPC to control the satellite.
In the following section we propose an NMPC scheme for rate damping in
the initial acquisition phase of the satellite. In this phase large rotations and
angular velocities, and therefore strong nonlinearities, must be dealt with.
Considering the nonlinear dynamics (6),(7) with multiple inputs which are
subject to the constraints (10), NMPC is a suitable control method to tackle
the rate damping control problem.

4 Rate Damping with NMPC

The control task is to withdraw the kinetic energy of the spacecraft using
magnetic coils as actuators. It is desirable to achieve the control task as fast
as possible, since the satellite in the initial acquisition phase runs on batteries.
Therefore, consider the cost functional with the kinetic energy Ekin = 1

2ω
TJω

Jc

(
ω̄(·), m̄(·))=∫ tk+Tp

tk

gT (ω̄, b̄)Iαg(ω̄, b̄)+m̄TRm̄ dτ+Ekin(tk+Tp), (13)

which is minimized over the prediction horizon Tp. Here J ∈ R3 is the inertia
matrix and R ∈ R3 is a positive definite diagonal matrix penalizing the
inputs. The matrix Iα = αI defined as the identity matrix I ∈ R

3 multiplied
with a positive constant α > 0 penalizes ω in the cost functional via the
term g(ω̄, b̄) = [g1 g2 g3] with gi = 2mmax

π arctan
(
Ki(b̄ × ω̄)i

)
, i = 1, 2, 3.

The choice of this particular term is motivated by the fact that a terminal
controller, similar to the ”b-dot” control law [8], can be found to guarantee
stability. Some conditions on the constants Ki and α and on the weighting
matrix R will be given in Theorem 1. The open-loop optimal control problem
based on the cost functional (13) that is solved repeatedly at the sampling
instants tk is formulated as

min
m̄(·)

Jc

(
ω̄(·), m̄(·)), (14a)

subject to
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˙̄ω = J−1(−ω̄ × Jω̄) + J−1B(b̄)m̄, ω̄(tk) = ω(tk), (14b)
˙̄q = W (ω̄), q̄(tk) = q(tk), (14c)
b̄ = Ω(q̄)b̄I , (14d)
|m̄i| ≤ mmax. (14e)

Choosing the matrix R and the constant α such that the term Ekin dominates
in the cost functional results in those trajectories leading to minimal kinetic
energy at the end of the prediction horizon, which is desirable. However, it is
necessary that R and α appear in the cost functional to guarantee closed-loop
stability. Furthermore, the following assumption is required to proof stability.

Assumption 1. If (b× ω) = 0 holds, then d
dt (b× ω) �= 0.

Remark 1. Assumption 1 assures that if the vector of the magnetic field in
body coordinates is parallel to the rate vector, then the motion of the satellite
is such that this situation only holds for an infinitesimal short time. This
assumption is not of practical relevance, however it is required in the proof of
Theorem 1.

The NMPC controller defined in the following theorem based on the open-
loop optimal control problem (14), guarantees closed-loop rate dynamics
stability.

Theorem 1. The nonlinear model predictive controller

m(t) = m̄
(
t;ω(tk), q(tk)

)
, t ∈ [tk, tk+1) (15)

where
m̄
(
t;ω(tk), q(tk)

)
= arg min

m̄(·)
Jc

(
ω̄(·), m̄(·)) (16)

is the optimal solution to the open-loop optimal control problem (14) which is
solved repeatedly at the sampling instants tk based on the corresponding sys-
tem states ω(tk) and q(tk), asymptotically stabilizes the rate dynamics (6) of
the considered spacecraft, if the condition 0 < Ki <

π
2(Rii+α)mmax

is satisfied
and if the optimization problem (14) is initially feasible.

Proof. The proof is based on the proof provided in [2]. Since we do not con-
sider a terminal constraint on the state ω in the NMPC setup, the condition
for closed-loop stability is that there exists an input m which satisfies the
constraints (10) such that∫ t+ε

t

1
2
∂(ωTJω)

∂ω
ω̇ + gT (ω, b)Iαg(ω, b) + mTRm dτ < 0 (17)

holds for all t ≥ 0, all ε > 0 and all ω ∈ R3. If the term under the integral
1
2

∂(ωT Jω)
∂ω ω̇ + gT (ω, b)Iαg(ω, b) + mTRm can be shown to be negative in the

whole integration interval except at countable many time instants where it
is zero, then clearly (17) is satisfied. With the dynamics (6) the obtained
condition is
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ωT (m× b) + gT (ω, b)Iαg(ω, b) + mTRm < 0, (18)

which is identical to
(b× ω)Tm + gT (ω, b)Iαg(ω, b) + mTRm < 0. (19)

This inequality is clearly satisfied if for each component of the vectors (b×ω)
and m and for the diagonal entries of the matrices Iα and R

(b × ω)T
i mi + gT

i (ω, b)αgi(ω, b) + mT
i Riimi < 0, i = 1, 2, 3 (20)

holds. The control input

mi = −2mmax

π
arctan

(
Ki(b× ω)i

)
(21)

with Ki > 0, i = 1, 2, 3, satisfies the constraint |mi| ≤ mmax for all ω ∈ R3

and all b ∈ R3. Plugging (21) into inequality (20) one obtains

2(Rii + α)mmax

π
arctan

(
Ki(b× ω)T

i

)
arctan

(
Ki(b× ω)i

) − (22)

(b× ω)T
i arctan

(
Ki(b× ω)i

)
< 0.

In the case of (b× ω)i > 0 this is equivalent to
π

2(Rii + α)mmax
(b× ω)T

i > arctan
(
Ki(b× ω)i

)
. (23)

Using the monotonicity of the arctan one can show that (23) holds if

0 < Ki <
π

2(Rii + α)mmax
. (24)

For the case (b×ω)i < 0 we obtain the same condition on Ki. Summarizing,
if Ki in the control law (21) satisfies (24), i = 1, 2, 3, then inequality (18)
holds for all ω satisfying (b × ω) �= 0. However, as follows from (22), the
expression 1

2
∂ωT Jω

∂ω ω̇+gT (ω, b)Iαg(ω, b)+mTRm is zero for (b×ω) = 0 when
the controller (21) is applied, i.e. condition (18) is violated for all (b×ω) = 0.
Following from Assumption 1, this violation only occurs at countable many
time instants and therefore the integral condition (17) is satisfied for all t,
ω and ε > 0. According to [2], this guarantees closed-loop stability of the
NMPC scheme defined in Theorem 1 for all α > 0.

Remark 2. Since the proposed NMPC controller guarantees stability with-
out a terminal constraint, the prediction horizon can be chosen arbitrarily
small. Although large prediction horizons are recommendable to obtain good
controller performance, small horizons are interesting from a computational
point of view.

5 Simulation Results

In this section we provide preliminary simulation results of the NMPC ap-
proach introduced in Section 4. We point out that further investigations are
necessary to finally rate the presented controller. However, without provid-
ing an extensive simulation study, several conclusions can be drawn. The
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simulation has been carried out with the NMPC environment OptCon [9],
which uses a large-scale nonlinear programming solver (HQP, [4]). We used
a prediction horizon Tp = 8 min, the sampling rate was δ = 4.8 s, the inertia
matrix was chosen to J = diag(211, 2730, 2650) and the input constraint was
mmax = 400 Am2. The weightings R and α were chosen such that they only
had vanishing influence on the overall cost functional, i.e. mainly the kinetic
energy at the end of the prediction horizon was minimized. Choosing a cost
functional penalizing the kinetic energy in the integral term over the whole
prediction horizon would certainly lead to a larger kinetic energy at the end
of the horizon. Furthermore, non-trivial modifications in the stability proof
would be required. As shown in Figure 1, the NMPC controller withdraws the
kinetic energy significantly faster than the standard P-controller. Figures 3
and 4 show the corresponding angular rates of the NMPC controlled satellite
and the magnetic dipole m1, respectively. In Figure 2 one of the advantageous
properties of the NMPC approach is illustrated. After 117.8 s the NMPC con-
troller first increases the kinetic energy before withdrawing it after reaching
a peak much faster than the P-controller (with the same initial condition at
117.8 s) does. As can be seen from the weak energy decrease obtained by the
P-controller, withdrawing the energy is hardly possible at the beginning of
the considered time interval. This is caused by the controllability restriction
of the satellite. Based on the prediction of future trajectories the NMPC con-
troller first increases the energy in order to obtain an attitude of the satellite
which allows a faster withdrawing of the energy afterwards. A similar behav-
ior can be observed at further time instants. However, due to the relative
small peaks this effect is not visible in Figure 1. Some obviously numerical
problems occur after 150 s. Here, the kinetic energy increases slightly, and
especially the angular rate ωx increases significantly. This is caused by too
aggressive control actions in the corresponding time interval. Probably this
follows from penalizing the control actions not strong enough. Thus, further
investigations are necessary to analyze and overcome this problem. To ob-
tain a satisfying solution to the optimization problem via numerical solvers, a
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discretization of the input m is provided. The discretization step length (here
δ = 4.8s) has to be short to obtain the shattering behavior in Figure 4 (which
also occurs with standard controllers). Thus, large prediction horizons lead
to large optimization problems. One has to find a suitable tradeoff between a
satisfying controller performance and relatively low computational demand.

Summarizing, the simulation results provided are promising and it can be
expected that the performance of existent controllers for the rate damping
problem can be improved by the novel NMPC approach, although further
research is necessary to finally rate the proposed controller.

6 Conclusions

We presented an NMPC approach for the spacecraft rate damping problem
in the initial acquisition phase using only magnetic actuators. The controller
satisfies the given input constraints and has been shown to guarantee closed-
loop stability. First simulation results show that the controller reduces the
negative effect of the controllability restriction in magnetic spacecraft control
and improves the performance of a standard P-controller.
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Nonlinear Model Predictive Control of a
Water Distribution Canal Pool

J.M. Igreja and J.M. Lemos

Abstract. Water distribution canals provide interesting examples of dis-
tributed parameter plants for which nonlinear model predictive control may
be applied. Canals are formed by a sequence of pools separated by gates.
Output variables are the pool level at certain points, manipulated variables
are the position of the gates and disturbances are the outlet water flows for
agricultural use. The operation of this system is subject to a number of con-
straints. These are the minimum and maximum positions of the gates, gate
slew-rate and the minimum and maximum water level. The objective con-
sidered in this paper is to drive the canal level to track a reference in the
presence of the disturbances. The pool level is a function of both time and
space that satisfies the Saint-Venant equations. These are a set of hyperbolic
partial differential equations that embody mass and momentum conserva-
tion. In order to develop a NMPC algorithm, the Saint-Venant equations
are approximated by a set of ordinary differential equations corresponding to
the variables at the so called collocation points. Together with the boundary
conditions, this forms a nonlinear reduced predictive model. In this way, a
nonlinear prediction of future canal levels is obtained. The paper details the
control general formulation along with a computationally efficient algorithm
as well as the results obtained from its application.

Keywords: Saint-Venant equations, open-channel hydraulic systems, level
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1 Introduction

This work proposes an approach to the multivariable control of nonlinear
hyperbolic systems based on nonlinear receding horizon control (RHC) also
known as Nonlinear Model Predictive Control (NMPC) [1]. It has important
advantages for advanced process control. This is due to the fact that it allows
an easy incorporation of constraints, that is a decisive advantage for industrial
applications when compared to other methods. However, from a theoretical
standpoint, the major issue consists in ensuring stability for a finite horizon.

Predictive control of hyperbolic PDE systems, namely transport-reaction
processes, were studied in [2] and [3] for SISO cases. In the former the con-
troller is based in a predictive model developed using the method of char-
acteristics and does not consider constraints. In the latter finite differences
for space discretization and a space distributed actuator were used with suc-
cess. In [4] and [5] adaptive predictive control was obtained via Orthogo-
nal Collocation (OC) reduced modelling, also for SISO hyperbolic tubular
transport-reaction processes, that demonstrated to achieved the control ob-
jectives. Stability conditions are also derived and included.

In this paper a NMPC formulation for multivariable hyperbolic systems is
considered along with a computationally efficient control algorithm using the
same techniques. In particular the algorithm is applied to a water distribu-
tion canal pool prototype. The pool level is a function of both time and space
that satisfies the Saint-Venant equations. These are a set of hyperbolic par-
tial differential equations that embody mass and momentum conservation.
In order to develop the control algorithm, the Saint-Venant equations are
approximated by a set of difference equations corresponding to the variables
at the collocation points. Together with the boundary conditions, this forms
a nonlinear set of differential equations. In this way, a nonlinear prediction
of future canal levels is obtained. The paper details the algorithm as well as
the results obtained from its application.

A wide bibliography on water distribution open-canals is available. In [6] a
selection of the controller structure is combined with robust design methods
in order to achieve a compromise between water resources management and
disturbance rejection. Predictive control is considered in [7] and in [8] with
adaptation.

The rest of the paper is organized as follows. Sections 2 and 3 respectively
introduces the canal pool dynamical model and the model reduction approach.
Section 4 is dedicated to a general formulation of multivariable NMPC for dis-
tributed hyperbolic dynamical systems along with the control algorithm. The
study case is developed in section 5. Section 6 draws conclusions.

2 Water Distribution Canal Pool Prototype

Saint-Venant equations for a single pool model without infiltration are given
by:
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∂h

∂t
+

v

L

∂h

∂x
+
(
da

dh

)−1
a(h)
L

∂v

∂x
= 0

∂v

∂t
+

v

L

∂h

∂x
+

g

L

∂v

∂x
+ g(I(h, v)− J ) = 0 (1)

where h(x, t) and v(x, t) are respectively level and water velocity distributions
along space (x ∈ [0.1]) and time, wet surface a(h) and friction I(h, v) are
nonlinear functions, g is the gravity acceleration, J is the constant canal
slope and L is the pool length. Boundary conditions are given by flow at
upstream and downstream gates:

v(0, t) = cdAd(u)
√

(2g(Hu(t)− h(0, t)))/a(h(0, t)) (2)

v(L, t) = cdAd(u)
√

(2g(h(L, t)−Hd(t)))/a(h(L, t)) (3)

In this paper a single trapezoidal reach with two pools, two moving gates
(upstream ends) and a fixed gate at the downstream end is considered. The
water elevation immediately before and after the reach are assumed known,
Hu(t) and Hd(t) respectively.

3 Orthogonal Collocation

In order to design the controller, the distributed model (1) is first approx-
imated by a lumped parameter model via the OC method [9]. The most
common approximations are based in finite differences or in OCM. The lat-
ter method has the advantage of drastically reducing the number of ODEs
needed to yield a solution for a given level approximation. As a drawback, it
implies the choice of several parameters, such as the number of collocation
points or the characteristic parameter (α, β) of Jacobi polynomials. Note that
this choice can be critical and time consuming for finding good results before
an adequate selection to the problem at hand is made [10]. For this sake, it is
assumed that the level and water velocity along the pool are approximated
by the weighted sum:

h(x, t) ∼=
N+1∑
i=0

ϕi(x) hi(t) v(x, t) ∼=
N+1∑
i=0

ϕi(x) vi(t) (4)

where the functions ϕi(z ) are Lagrange interpolation polynomials, orthogo-
nal at the so called interior collocation points z i for i=1,..., N and at the
boundary collocation points z 0 and zN+1:

ϕi(xj) =
{

1 i = j
0 i �= j

(5)
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Inserting (4) into (1) results in the ordinary differential equation verified
by the time weights hi(t) and vi(t):

N+1∑
i=0

ϕi(x)
dhi(t)

dt
+

v

L

N+1∑
i=0

dϕi(x)
dx

hi(t) +
(

da

dh

)−1
a(h)
L

N+1∑
i=0

dϕi(x)
dx

vi(t) = 0

N+1∑
i=0

ϕi(x)
dvi(t)

dt
+

v

L

N+1∑
i=0

dϕi(x)
dx

vi(t)+
g

L

N+1∑
i=0

dϕi(x)
dx

vi(t)+g(I(h, v)−J ) = 0

(6)

Compute now (6) at each of the collocation points z = zj , it follows that:

dhj(t)
dt

= −vj

L

N+1∑
i=0

dϕi(xj)
dx

hi(t)−
(
da

dh

)−1

|z=zj a(hj)
N+1∑
i=0

dϕi(xj)
dx

vi(t)

dvj(t)
dt

= −vj

L

N+1∑
i=0

dϕi(xj)
dx

vi(t)− g

L

N+1∑
i=0

dϕi(xj)
dx

vi(t)− g(I(hj , vj)− J )

(7)
The PDE (1) is therefore approximated by n = N + 1 ordinary ODEs,

reading in matrix form:

ḣ = − 1
L

(VeAhh + F (h) Ahve)

v̇ = − 1
L

(gAvh + V Avve)− gI(h, v) (8)

where h =
[
h0 h1 · · · hN+1

]T and v =
[
v1 · · · vN

]T are the states at collo-
cation points, ve =

[
v0 vT vN+1

]T , Ah and Av matrices are given by:

Ah =

⎡⎢⎢⎢⎣
ϕ

′
1(z0) ϕ

′
2(z0) · · · ϕ

′
N+1(z0)

ϕ
′
1(z1) ϕ

′
2(z1) · · · ϕ

′
N+1(z1)

...
...

. . .
...

ϕ
′
1(zN+1) ϕ

′
2(zN+1) · · · ϕ′

N+1(zN+1)

⎤⎥⎥⎥⎦ (9)

Av =

⎡⎢⎢⎢⎣
ϕ

′
1(z1) ϕ

′
2(z1) · · · ϕ′

N+1(z1)
ϕ

′
1(z2) ϕ

′
2(z2) · · · ϕ′

N+1(z2)
...

...
. . .

...
ϕ

′
1(zN ) ϕ

′
2(zN ) · · · ϕ′

N+1(zN )

⎤⎥⎥⎥⎦ (10)

(ϕ
′
j(zi) ≡ dϕj(z)

dz |z=zi), V = diag(v1, ..., vN ), Vh = diag(v0, ..., vN+1), I(h, v)
is column vector (Ij = (I(hj , vj)− J )) and v0(t) and vN+1(t) are boundary
conditions obtained by (4).
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Water open-channel dynamics reduced modelling based on the same ap-
proach for the Saint-Venant equations can also be found in [11]. OCM is the
best systematic available method for model reduction after the Galerkin’s
method not suitable for hyperbolic equations [2].

4 NMPC for Hyperbolic Systems

Consider the following general formulation of multivariable receding horizon
control for distributed hyperbolic dynamical systems. The aim is to control
the output y(t), a state nonlinear function weighted in the space domain,
by manipulating the input u(t), solving an open loop optimization problem
and applying a receding horizon strategy according to the NMPC approach.
Therefore, define the cost functional:

min
u

J =
∫ t+T

t

(
l(ỹ(τ)) + uT (τ)Γ ũ(τ)

)
dτ (11)

where l(ỹ) ≥ 0 is a penalty function and Γ > 0, subject to the model and
input, output, state operational constraints:

C(η̇(t), ẏ(t), u̇(t), η(t), y(t), u(t), t) ≤ 0 (12)

and stability constraints:

S(η(t), u(t), t) ≤ 0 (13)

with:

y(t) =
∫ 1

0

a(z)h(x(z, t)) dz (14)

ỹ = yr − y ũ = ur − u (15)

ηk(t) =
∫ 1

0

b(z)xk(z, t) dz (16)

and: ∫ 1

0

a(z) dz =
∫ 1

0

b(z) dz = 1 (17)

where yr and ur define the reference trajectory to track.
One computationally efficient procedure for solving the enunciated non-

linear, infinite dimension, programming problem is to use a finite parametriza-
tion for the control signal u(t) ∈ [t, t + T [, where Nu segments of constant
value u1, . . . , uNu and duration T

Nu
are considered. Thus, the nonlinear, finite

dimension, programming problem amounts to solve:

min
u1,...,uNu

J =
∫ t+T

t

(
l(ỹ(τ)) + uT (τ)Γ ũ(τ)

)
dτ (18)



526 J.M. Igreja and J.M. Lemos

subject to the model and to:

C(η̇(t̄), ẏ(t̄), u̇(t̄), η(t̄), y(t̄), u(t̄), t̄) ≤ 0 (19)
S(η(t̄), u(t̄), t̄) ≤ 0 (20)
u(t̄) = seq{u1, . . . , uNu} (21)

where, u(t̄) is a sequence of steps of amplitude ui (i = 1, . . . , Nu) and duration
T

Nu
. The variable t̄ represents time during the minimization process t̄ ∈ [0, T [.

Once the minimization result u(t̄) obtained, the first sample u1 is applied at
t+ δ and the whole procedure is repeated. The interval δ corresponds to the
time needed to obtain a solution, being assumed that δ is much smaller than
the sampling interval.

5 Results

Consider now the application of the above techniques to the specific case of
the prototype canal (1) and the controller is based in the reduced model (8)
with N = 3, α = 0.5 and β = 0.5. Assuming that the state is accessible at
the collocation points, the NMPC optimizer is define by:

min
u1...u3

J =
∫ t+T

t

(
ỹT ỹ + 2 uT ũ

)
dτ (22)

subject to (8) and:

0 ≤ u(t̄) ≤ 0.5
u(t̄) = seq{u1, . . . , u3} (23)

As mentioned before the manipulated input are the gates openings and
the outputs are the water elevation at half pool length: y = [y1(t, L/2)
y2(t, L/2)]T , using a 5s sampling period, Nu=3 and T = 15s for the horizon.

Table 1 Pool physical parameters

Parameter Value Units
Gravitational constant g 9.8 ms−1

Manning coefficient n 1.0 m−1s−3

Discharge coefficient cd 0.6 −
Discharge area Ad(u) 0.49 u m2

Bottom width b 0.15 m
Trapezoid slope d 0.15 −
Canal slope J 2 × 10−3 −
Upstream elevation Hu 2.0 m
Downstream elevation Hd 1.0 m
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Fig. 1 Water elevation tracking the setpoint at L/2, first pool: y1(t) [m] (left).
Water elevation regulation around setpoint at L/2, second pool: y2(t) [m] (right)

0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time [s]
0 50 100 150

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

Time [s]

Fig. 2 Gate opening upstream, first pool: u1(t) [m] (left). Gate opening upstream,
second pool: u2(t) [m] (right)
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Fig. 3 Water elevation setpoint tracking at L/2, first pool: y1(t) [m] (left). Water
elevation setpoint tracking at L/2 second pool: y2(t) [m] (right)
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Fig. 4 Gate opening upstream, first pool: u1(t) [m](left). Gate opening upstream,
second pool: u2(t) [m] (right)

Table (1) shows the pool parameters and equations (24) and (25) the wet
surface for trapezoidal section and friction equation, respectively:

a(h) = bh + dh2 (24)

I(h, v) =
v|v|n2

R(h)(4/3)
R(h) =

a(h)
b + 2

√
1 + d2

(25)

Figures 1 and 2 shows results for y1 setpoint tracking and y2 regulation
around setpoint. Figures 3 and 4 shows results for y1 and y2 both for setpoint
tracking. Note that the constraints are active after t = 100s for a short period.

6 Conclusions

A multivariable NMPC for a set of hyperbolic partial differential equations
that embody mass and momentum conservation has been developed. A gen-
eral formulation along with a computational efficient algorithm is presented.
Model reduction is obtained via the Orthogonal Collocation Method. Two
numerical examples based in a water distribution canal pool prototype illus-
trates the application with success.
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Swelling Constrained Control of an
Industrial Batch Reactor Using a
Dedicated NMPC Environment:
OptCon

Levente L. Simon, Zoltan K. Nagy, and Konrad Hungerbuehler

Abstract. This work presents the application of nonlinear model predictive
control (NMPC) to a simulated industrial batch reactor subject to safety con-
straint due to reactor level swelling. The reactions are equilibrium limited,
one of the products is in vapor phase, and the catalyst decomposes in the
reactor. The catalyst is fed in discrete time steps during the batch, and the
end-point objective is the maximum conversion in a fixed time. The reaction
kinetics is determined by the temperature profile and catalyst shots, while
the chemical equilibrium is shifted by operating at low pressure and removing
one of the products. However, the formed vapor causes liquid swelling, due
to the gas or vapor stream resulted from the reaction. As a result reaction
mass may enter in the pipes and condenser, creating productivity losses and
safety hazard. The end-point objective function (maximum conversion) of this
problem can be converted into a level set point tracking problem. The control
method is based on the moving horizon NMPC methodology and a detailed
first-principles model of reaction kinetics and fluid hydrodynamics is used
in the controller. The NMPC approach is based on the sequential quadratic
programming (SQP) algorithm implemented in a user-friendly software en-
vironment, OptCon. The application of the fast real-time iteration scheme
in the NMPC allows the use of small sampling period minimizing this way
the violation of the maximum level constraints, due to disturbances within
sampling period.
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1 Introduction

Since the advent of dynamic matrix control (DMC), model predictive control
(MPC) has been the most popular advanced control strategy in the chemical
industries [1]. Linear MPC has been heralded as a major advance in industrial
control [2]. However, due to their nonstationary and highly nonlinear nature,
linear model based control usually cannot provide satisfactory performance
in the case of complex batch processes [3]. Nonlinear model predictive control
(NMPC) reformulates the MPC problem based on nonlinear process models,
providing the advantage to cope inherently with process nonlinearities [4]
characteristic to batch systems. Robust formulations are also available which
incorporate the effect of parameter uncertainties [5]. The presented paper il-
lustrates the benefits of an efficient on-line optimizing non-linear model based
control to a simulated industrial batch reactor subject to the level constraint
from safety and productivity considerations which arise from the industrially
relevant problem of potential swelling. Reactor content swelling occurs when
the vessel content level rises due to a gas or vapor stream that passes through
the liquid. The vapor or gas stream can have different sources: gas is injected
in liquid phase reactors where a reaction has to be carried out; vapor flow
occurs in a reactor when the reaction produces a gas phase product which
travels to the reaction mass surface; another reactor level rise is due to direct
steam heating when some of the steam does not condense and disengages to
the top of the vessel. As a result of the swelling phenomena reaction mass en-
ters the pipes and the condensers connected to the reactor. As a consequence
of such undesired events reactor shut-down is mandatory and production time
is lost for cleaning operations. The pipe and condenser cleaning is carried out
by charging solvent which is evaporated and condensed for a certain time (re-
fluxing conditions). Reactor or evaporator content swelling phenomena can
lead to significant productivity losses if it is not considered during process
operation and is regarded as a reactor productivity and safety problem; the
off-line optimal temperature control of batch reactors with regard to swelling
was subject of investigation [6]. This work aims to implement a model based
level control strategy which is required to accommodate the reaction rate
disturbances which arise due to catalyst dosing uncertainties (catalyst mass
and feed time).

2 Motivation and Process Model

The system considered in this study is based on a proprietary industrial
batch process, for which the model has been tuned based on plant data. The
catalyst used in the chemical reaction decomposes in the reaction mixture;
therefore it is fed several times during the process operation. The first feeding
takes place at the beginning of the operation, later on the catalyst shots are
added as the reaction rate decreases. This type of process operation is often
used in the industrial practice. The process is characterized by significant
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Fig. 1 Change of the reaction rate in time for the industrial batch process; the
reaction rate and time values have been removed due to confidentiality

uncertainties in the addition time and mass of the catalyst. Figure 1 shows
the experimental reaction rate measurements (normalized data) from the real
industrial plant, in the case of repeated application of the same recipe with
two consecutive catalyst dosings. The significant bath-to-batch variation of
the reaction rate can be observed, which can be countered by the design of a
suitable control strategy.

The reactor level is controlled using the pressure as the manipulated vari-
able in order to compensate for the change in the reaction rate. The process
operation can be optimized off-line by calculating an optimal pressure profile
in function of the catalyst dosage time, dosed mass and purity. However the
off-line calculated optimal pressure profile does not ensure safe operation in
the case of disturbances in the catalyst feeding policy, Figure 2.

Hence, a control strategy is needed to recalculate the pressure profile dur-
ing the operation considering the unknown disturbances. The used strategy
is based on the nonlinear model predictive framework. During the process
operation the reactor system consists of two phases: liquid and gas. Four
equilibrium reactions in series take place in the liquid phase and a catalyst
is used in solubilized form. The reaction scheme is as follows:

A + 4B Cat.↔ P + 4D (1)

Raw materials are components A and B, and P is the desired product. The
basic assumption of the kinetic model is that the reactions take place in liquid
phase. In order to model the forward reactions the Arrhenius formulation is
implemented, using a reference reaction constant determined at a reference
temperature. The reaction volume is not constant due to two factors: on one
hand there is the removal of component D and on the other hand the density
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Fig. 2 Open-loop pressure profile (A) and the corresponding reactor level (B).
Dashed line shows the uncertainty effect of the catalyst feeding on the reactor level
(feeding takes place 3 min earlier and 20% more catalyst mass)

of the mixture changes. Although the reactions are equilibrium reactions, the
system is modeled using forward reactions only. This way we calculate the
safest pressure profile, since the reaction rates will never be faster than the
forward reactions.

Product D is in vapor phase at the temperature and pressure conditions
in the reactor, and the production of the co-product D creates a vapor flow
that travels to the reaction mass surface and produces a certain void fraction
in the liquid mass. The true level depends on the reaction rate, temperature,
pressure, physical properties and filling degree (resting liquid). The extent
of the void fraction is dependent on the liquid properties and vapor hold-up
in liquid phase which in turn are dependent on the vapor flow rate, thus on
the reaction rate of gas product D. In order to describe the effect of liquid
swelling the pool void fraction, is used. The swelled height H [m] in terms of
the average pool void fraction and the height of the resting liquid H0 [m] is
given by:

H =
H0

1− α
(2)

In order to calculate the void fraction the Wilson model is used [7]. Wilson
and co-workers determined the void fraction by bubbling steam through water
in a pressurized vessel in the 20-40 bar pressure range. This model has proven
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suitable for void fraction calculations around 1 bar pressure as well [8]. The
Wilson empirical correlation is presented in Equation 3:

α = K

[
ρv

ρl − ρv

]0.17 [√
σ

g(ρl − ρv)
/Dr

]0.1

⎡⎢⎢⎢⎣ jv(
g
√

σ
g(ρl−ρv)

)0.5

⎤⎥⎥⎥⎦
f

(3)

where K=0.68, f=0.62 for[
jv/

(
g

√
σ

g(ρl − ρv)

)0.5
]
< 2 (4)

K=0.88, f=0.40 for [
jv/

(
g

√
σ

g(ρl − ρv)

)0.5
]
≥ 2 (5)

where ρl and ρv [kg/m3] are the liquid and vapor densities, σ [N/m] is the sur-
face tension, g [m/s2] is the gravitational acceleration, Dr [m] is the reactor
vessel diameter and jv [m/s] is the superficial vapor velocity. The connection
between the chemical reactor model (ten mass and one heat balances - differ-
ential equations) and the hydrodynamic model (algebraic equations) is made
by the formation rate of co-product D and the ideal gas law. The formation
rate is converted into volumetric flow rate and by division with the reactor
area is converted into gas velocity, jv. Using the hydrodynamic model and
the calculated gas velocity the swelled reactor level H [m] is calculated.

3 The NMPC Strategy and the OptCon Environment

3.1 The Control Problem

The end-point goal of the operation is the maximum conversion. Since the
reactions are chemical equilibrium limited it is important that the pressure
in the reactor is the lowest possible. However, minimum reactor pressure
yields maximum gas volume and eventually maximum liquid level. Thus, the
maximum conversion goal can be achieved by tracking the maximum reactor
level. The control variable is the pressure and the batch time is fixed. The
constraints on the manipulated variable P are: 0.01 mbar < P < 1 bar.
The used process model contains information about the recipe based catalyst
feeding procedure (anticipation). The presented NMPC strategy relies on
state feedback. In practice, these states are measurable (concentrations) with
spectroscopy based techniques (IR, UV). The measured spectra are previously
calibrated to known concentration samples using partial-least squares (PLS)
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models. However, the low catalyst concentration (about 1:100 to the batch
size) may show a weak spectroscopic signal; the peak position and intensity
is chemistry dependent.

3.2 The NMPC Formulation

The optimal control problem to be solved on-line in every sampling time in
the NMPC algorithm can be formulated as:

min
u(t)∈U

{H(x(t), u(t); θ) = M(x(tF ); θ) +
∫ tF

tk

L(x(t), u(t); θ)dt} (6)

s.t. ẋ(t) = f(x(t), u(t); θ), x(tk) = x̂(tk), x(t0) = x̂0 (7)

h(x(t), u(t); θ) ≤ 0, t ∈ [tk, tF ] (8)

where H is the performance objective, t is the time, tk is the time at sampling
instance k, tF is the final time at the end of prediction, x is the nx vector of
states, u(t) ∈ U is the nu set of input vectors, y is the ny vector of measured
variables used to compute the estimated states x̂(tk), and θ ∈ Θ ⊂ Rnθ is
the nθ vector of possible uncertain parameters, where the set Θ can be ei-
ther defined by hard bounds or probabilistic, characterized by a multivariate
probability density function. The function f : Rnx × U × Θ → Rnx is the
twice continuously differentiable vector function of the dynamic equations of
the system, and h : Rnx × U × Θ → Rc is the vector of functions that de-
scribe all linear and nonlinear, time-varying or end-time algebraic constraints
for the system, where c denotes the number of these constraints. We assume
that H : Rnx × U ×Θ→R is twice continuously differentiable, thus fast op-
timization algorithms, based on first and second order derivatives may be
exploited in the solution of (6). The form of H is general enough to express
a wide range of objectives encountered in NMPC applications. In NMPC the
optimization problem (6)-(8) is solved iteratively on-line, in a moving (reced-
ing) horizon (tF < tf ) or shrinking horizon (tF = tf ) approach, where tf is
the batch time.

3.3 Solution Strategy and Software Tool: OptCon

The NMPC [9] approach exploits the advantages of an efficient optimiza-
tion algorithm based on the multiple shooting technique [10], [11] to achieve
real-time feasibility of the on-line optimization problem, even in the case of
the large control and prediction horizons. Considering the discrete nature of
the on-line control problem, the continuous time optimization problem in-
volved in the NMPC formulation is solved by formulating a discrete approx-
imation to it, that can be handled by conventional nonlinear programming
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(NLP) solvers [12]. The time horizon t ∈ [t0, tf ] is divided into N equally
spaced time intervals Δt (stages), with discrete time steps tk = t0 +kΔt, and
k = 0, 1, ..., N . Model equations are discretized, xk+1 = fk(xk, uk; θ), and
added to the optimization problem as constraints. For the solution of the
optimization problem a specially tailored NMPC tool - OptCon [9]- was de-
veloped that includes a number of desirable features. In particular, the NMPC
is based on first-principles or gray box models, and the problem setup can be
done in Matlab. The NMPC approach is based on a large-scale NLP solver
(HQP) [10], [13] which offers an efficient optimization environment, based
on multiple shooting algorithm, that divides the optimization horizon into
a number of subintervals (stages) with local control parameterizations. The
differential equations and cost on these intervals are integrated independently
during each optimization iteration, based on the current guess of the control.
The continuity/consistency of the final state trajectory at the end of the
optimization is enforced by adding consistency constraints to the nonlinear
programming problem.

3.4 Real-Time Implementation

In NMPC simulation studies usually immediate feedback is considered, i.e.
the optimal feedback control corresponding to the information available up
to the moment tk, is computed, u(tk) = [u0|tk

, u1|tk
, . . . , uN |tk

], and the first
value (u0|tk

) is introduced into the process considering no delay. However, the
solution of the NLP problem requires a certain, usually not negligible, amount
of computation time δk, while the system will evolve to a different state,
where the solution u(tk) will no longer be optimal. Computational delay δk

has to be taken into consideration in real-time applications. In the approach
used here, in moment tk, first the control input from the second stage of
the previous optimization problem u1|tk−1 is injected into the process, and
then the solution of the current optimization problem is started, with fixed
u0|tk

= u1|tk−1 . After completion, the optimization idles for the remaining
period of t ∈ (tk + δk, tk+1), and then at the beginning of the next stage,
at moment tk+1 = tk + Δt , u1|tk

is introduced into the process, and the
algorithm is repeated. This approach requires real-time feasibility for the
solution of each open-loop optimization problems (δk ≤ Δt).

4 Results and Discussion

The simulation results using the process model with anticipation are pre-
sented in Figure 3. In the case of the early catalyst feed the level is the
highest within the first sampling interval after the disturbance has been de-
tected. We can conclude that in this scenario the anticipation information is
not useful. In the second case, when the catalyst feed is delayed, the anticipa-
tion information is somewhat useful in the sense that the controller expects
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Fig. 3 Level control under early (A) and delayed (B) catalyst feeding. The circles
represent the catalyst dosing time according to the recipe

that some catalyst will be fed. We can notice that the level within the first
interval is lower than the second interval. Based on presented results we con-
clude that the level can be controlled the best if the disturbance is after
the recipe based feeding time, however not too far. In the case the distur-
bance is before, only a small sampling time based strategy can safely control
the level.

The sum of absolute deviation from the 2.4 m set point (SAD), calculated
for a sampling point, for the off-line optimized profile without the control
loop is 0.0783. In comparison to this, by using an NMPC strategy the index
value drops to 0.0109 (early feed) and to 0.0117 (late feed) by this justifying
the use of an NMPC strategy. The level tracking accuracy is directly related
to the minimum batch time and productivity.

The sampling time was set to 12 seconds and the optimization calculations
are completed in 1.5-2 seconds with 6-8 QP iterations.

5 Conclusions

This work presents the non-linear model based level control of a batch re-
actor. The control strategy is required to accommodate the reaction rate
disturbances which arise due to catalyst dosing uncertainties (catalyst mass
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and feeding time). It is concluded that the efficient NMPC strategy allows
the implementation of small sampling interval control actions. Thus, the dis-
turbances are quickly and efficiently rejected. Finally, we conclude that the
NMPC strategy ensures safe level control during the catalyst feeding period
and it drives the process along the optimal pressure profile.
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An Application of Receding-Horizon
Neural Control in Humanoid Robotics

Serena Ivaldi, Marco Baglietto, Giorgio Metta, and Riccardo Zoppoli

Abstract. Optimal trajectory planning of a humanoid arm is addressed.
The reference setup is the humanoid robot James [1]. The goal is to make
the end effector reach a desired target or track it when it moves in the arm’s
workspace unpredictably. Physical constraints and setup capabilities prevent
us to compute the optimal control online, so an off-line explicit control is
required. Following previous studies [2], a receding-horizon method is pro-
posed that consists in assigning the control function a fixed structure (e.g.,
a feedforward neural network) where a fixed number of parameters have to
be tuned. More specifically a set of neural networks (corresponding to the
control functions over a finite horizon) is optimized using the Extended Ritz
Method. The expected value of a suitable cost is minimized with respect to the
free parameters in the neural networks. Therefore, a nonlinear programming
problem is addressed that can be solved by means of a stochastic gradient
technique. The resulting approximate control functions are sub-optimal so-
lutions, but (thanks to the well-established approximation properties of the
neural networks) one can achieve any desired degree of accuracy [3]. Once
the off-line finite-horizon problem is solved, only the first control function is
retained in the on-line phase: at any sample time t, given the system’s state
and the target’s position and velocity, the control action is generated with a
very small computational effort.
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1 Introduction

In robotics, the task of positioning the end effectors is fundamental: when-
ever a robot has to move its arm in order to grasp an object, track a moving
target, avoid collision with the environment or just explore it, reaching is in-
volved. Given the target position, estimated for example by a vision system,
it is common practice to plan a suitable trajectory in the cartesian space
and then to find the corresponding joint and torque commands. In industrial
robotics, trajectories usually have a parametrized but fixed structure, e.g.
splines or polynomials, or motor commands can be found analytically after
the minimization of some Lyapunov function describing the reaching goal.
In humanoid robotics, the focus is not only on reaching the target, but on
how the target is reached, that is the criterion which a certain limb accom-
plishes while performing a movement or acting on the environment. One of
the main goals of humanoid robotics is indeed to exploit redundancy and
constraints of the humanoid shape to achieve behaviors that are approxi-
mately efficient as human movements. It is common belief that the human
body moves “optimally” with respect to different cost functions, depending
on action, limbs, task. In order to give a humanoid robot the chance to im-
plement different motion criteria, it is necessary to provide a technique which
allows finding optimal control commands for any given cost function. To this
end, a Finite Horizon (FH) optimal control problem can be considered, but
it is scarcely useful as generally the duration of the movements cannot be
predicted a priori. Moreover, moving through a fixed horizon strategy could
lead to a lack of responsiveness, whenever the target dynamics is too fast and
no previous information is available to predict the target behavior. A Reced-
ing Horizon (RH) approach is suggested. Within the classical RH approach,
at each time instant t, when the system state is xt, a FH optimal control
problem is solved and a sequence of N optimal control actions is computed,
uFH

0|t ,uFH
1|t , . . . ,uFH

N−1|t (corresponding to velocity, acceleration or torque com-
mands, depending on the controller design), which minimize a suitable cost
function affecting the motion performance; then only the first control vector
is applied: uRH

t = uFH
0|t . This procedure is repeated at each instant t, thus

yielding a feedback control law. Stabilizing properties of RH control have
been shown for both linear and nonlinear systems, in continuous and dis-
crete time, using the terminal equality constraints xt+N = 0 [4], relaxing it
[5] and just imposing the attractiveness of the origin by means of penalty
functions [2]. The classical RH technique assumes the control vectors to be
generated after the solution of a nonlinear programming problem at each
time instant: this assumption is generally unrealistic in the case of humanoid
robotics, as the robot’s and the target’s dynamics are fast and the complex-
ity of the problem increase with the number of DOF to control. In order to
solve the optimization problem on-line, with the guarantee of respecting the
temporal constraint, a suitable hardware and software are required, usually
a real-time processing unit supporting fast and highly precise computations,
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directly connected to the robot’ sensing and actuation devices, which is ut-
terly complicated for complex kinematic structures. Unfortunately, different
multi-level control architectures often do not support this control scheme.
This is the case of our humanoid robot, James [1]. James is a humanoid
torso, consisting of a head and a left arm , with the overall size of a 10 years
old boy. Of the 7 DOF of the arm (3-shoulder, 1-elbow, 3-wrist), only 4 have
been used in this paper (the wrist is considered as the end-effector), while
numerical results are shown for the 2 DOF case. Torque is transmitted to
the joints by rubber toothed belts, pulleys and stainless-steel tendons, actu-
ated by rotary DC motors. The robot’s motion can be controlled by sending
position and velocity commands from a remote PC to 12 Digital Signal Pro-
cessing (DSP) boards (Freescale DSP56F807, 80MHz, fixed point 16 bits), via
CAN bus. DSP boards have limited memory and computation capability and
cannot support more than simple operations, namely low level motor control
(mostly PID controllers, 1KHz rate), signal acquisition and pre-filtering from
the encoders. For this reason, implementing an on-line controller is impossi-
ble in the current setup: an explicit off-line RH controller is considered. The
goal of this work is to design a feedback RH regulator for reaching tasks,
with the requirement of being quick and reactive to changes, in particular to
track a target moving unpredictably in the robot’s workspace. We will also
describe a technique which concentrates the computation of a time-invariant
feedback optimal control law in an off-line phase , for every possible system
and target states belonging to an opportune set of admissible states. The pro-
posed algorithm consists of two steps. In the first step, a suitable sequence of
neural networks is trained off line, so that they can approximate the optimal
solutions of a stochastic FH control problem, which is generalized for every
possible state configuration. In the second (online phase), only the first con-
trol law is applied, at each time instant. The Extended RItz Method (ERIM)
[6] is chosen as a functional approximation technique. The use of feedforward
neural networks (thanks to their well known approximation capabilities [7])
guarantees that the optimal solutions can be approximated at any desired
degree of accuracy. We would like to remark that the computation demand
is concentrated in the off-line phase, while in the on-line phase only the com-
putation of a single control law is performed, thus yielding a fast response
to unpredictable changes in the target’s state, since we can do the compu-
tations quickly. The feasibility of this approach has already been tested on
the control of a thrusts-actuated nonholonomic robot [8]. James can be mod-
eled as an open kinematic chain. In the following we shall only focus on the
arm motion control, in particular from the shoulder up to the wrist, which
will be considered as the end effector of the kinematic chain, and neglect
the rotation of the hand. Let us denote by xr

c the cartesian coordinates of
the end effector with respect to a base frame fixed to the robot waist, and
by q the vector of the joint coordinates of the arm. Then the forward kine-
matics xr

c = farm(q), farm : Rnq → Rnc , can be easily found by measuring
the length of the robot links and represent it with the Denavit-Hartenberg
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Fig. 1 James’s arm control scheme. Velocity commands are sent through a CAN
bus, while direct motor control is performed by DSP cards. The retrieving of the
target’s cartesian coordinates is not modeled, as it would require to discuss the
robotic visual system. The arm kinematic model is reported. We indicated two arm
joints (q1, q2), corresponding to the case of a 2 DOF arm (nq = 2)

convention [9]. We shall denote by xr
t and xg

t the robot’s end effector state
vector and the target’s one at time instant t. We remark that once the opti-
mal control u◦

t is found, then the optimal velocity controls in the joint space
can be easily computed with standard formulations, i.e., q̇◦

t = J#(qt)ẋr◦
t ,

where J# denotes the Moore-Penrose pseudo-inverse of the jacobian matrix
J(q) = ∂farm(q)/∂q, being ẋr

c = J(q)q̇. In particular, as explained in the
previous section, they are computed by a standard Pentium based PC, then
sent through the CAN bus to the DSP cards, where the low level control loop
is performed. The control scheme is shown in Figure 1.

2 Receding Horizon Regulator: A Neural Approach

The goal of the reaching control problem is to find, at any time instant t,
the optimal control u◦

t minimizing a suitable cost function, which is chosen
so as to characterize the trajectories of the end effector reaching or tracking
a target moving unpredictably in the robot workspace. We denote by xt, at
time instant t, the difference between the end effector and the target cartesian
coordinates and velocities (xt � col(xg

t − xr
t , ẋ

g
t − ẋr

t )). Let us represent the
previous equations in the more general and compact form

xt+1 = f (xt,ut) , t = 0, 1, . . .

where at the time instant t, xt is the state vector, taking values from a finite
set X ⊆ R

n, and ut is the control vector, constrained to take values from
a finite set U ⊆ Rm. At any time instant t, the desired state is x∗

t = 0,
meaning that the goal is to bring the difference between the end effector and
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the target to zero. By making this assumption, we implicitly apply a certainty
equivalence principle: at time instant t, the target vector xg

t is supposed to
remain constant for N time instants, that is: xg

t+i+1 = xg
t+i, i = 0, . . . , N −1.

We can now state a RH control problem.

Problem 1. At every time instant t ≥ 0, find the RH optimal controls u◦
t ∈

U , where u◦
t is the first vector of the control sequence u◦

0|t, . . . ,u
◦
N−1|t that

minimize the FH cost functional

J (xt) =

{
N−1∑
i=0

hi(xt+i,ui|t) + hN (xt+N )

}
.

The classical RH control assumes that at each time instant of control a
FH control problem is solved, and a sequence of N optimal controls is found.
As we previously discussed, this approach is not suitable in our case, for the
hardware limitations imposed by the DSP cards. Therefore we will change
the problem’s formulation so as to be able to compute the control laws in an
off-line phase.

Problem 2 (RH). For every time instant t ≥ 0, find the RH optimal control
law u◦

t = μ◦
t (xt) ∈ U , where μ◦

t is the first control function of the sequence
μ◦

0|t, . . . , μ
◦
N−1|t that minimize the FH cost functional 1

J̄t = E
xt∈X

{
N−1∑
i=0

hi(xt+i, μi|t(xt+i)) + hN (xt+N )

}
.

Thanks to the time invariance of the system dynamics and of the cost
function, t = 0 can be considered as a generic time instant. Then, a single
(functional) FH optimization problem is addressed.

Problem 3 (FH). Find a sequence of optimal control functions μ◦
0, . . . , μ

◦
N−1,

that minimize the cost functional

J̄ = E
x0∈X

{
N−1∑
i=0

hi(xi, μi(xi)) + hN(xN )

}
(1)

subject to the constraints μ◦
i ∈ U ⊆ Rm and xi+1 = f(xi, μi(xi)).

The RH control strategy will correspond to use μ◦
0 as a time invariant control

function, i.e., to apply uRH
t = μRH(xt) = μ◦

0(xt).
1 Hereinafter, the notation E

ξ
{g(ξ)} means the expectation of function g with

respect to the stochastic variable ξ. It is important to notice that in Problem 1
the expectation is not necessary, because it is a deterministic problem.
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2.1 From a Functional Optimization Problem to a
Nonlinear Programming One

In order to solve Problem FH we shall apply the ERIM [6], by which the
functional optimization problem is transformed into a nonlinear program-
ming one. More specifically, we constrain the admissible control functions
μ0, μ1, . . . , μN−1 to take on a fixed parametrized structure, in the form of
one-hidden-layer (OHL) neural networks:

μ̂i(xi, ωi) = col

[
ν∑

h=1

chjϕh(xi, κh) + bj

]
(2)

where μ̂i(·, ωi) : Rn × R(n+1)ν+(ν+1)m �→ Rm, chj , bj ∈ R, κh ∈ Rk, j =
1, . . . ,m, being ν the number of neurons constituting the network. By sub-
stituting (2) into (1), calling ωi the parameters of the i-th OHL network
μ̂i(xi, ωi), the general functional cost J̄ (μ0, μ1, . . . , μN−1) is turned into a
function Ĵν(ω) which is only dependent on a finite number of real parame-
ters, ω = col(ωi, i = 0, 1, . . . , N − 1). We can now restate Problem 3 as:

Problem 4 (FHν). Find the optimal vectors of parameters ω◦
0 , . . . , ω

◦
N−1

that minimize the cost function

Ĵν = E
x0∈X

{
N−1∑
i=0

hi(xi, μ̂i(xi, ωi)) + hN (xN )

}

subject to the constraints μ̂i(xi, ωi) ∈ U ⊆ Rm and xi+1 = f(xi, μ̂i(xi, ωi)).

Then, for every time instant t, the time-invariant RH control law corresponds
to uRH

t = μ̂RH(xt, ω
◦
0) = μ̂◦

0(xt, ω
◦
0).

2.2 Solution of the Nonlinear Programming Problem
by Stochastic Gradient

The optimal parameters in the OHL control functions can be found by a
usual gradient algorithm, i.e.

ωi(k + 1) = ωi(k)− α(k)∇ωi E
{x0}

{
Ĵν [ω(k),x0]

}
, k = 0, 1, . . . .

Within this context, it is impossible to calculate exactly all the gradient com-
ponents, because of the stochastic nature of x0; then, instead of the gradient
∇ω E

[
Ĵν(ω,x0)

]
a single “realization” ∇ωĴν(ω,x0(k)) is computed, where

the stochastic variable x0 is generated randomly according to its known prob-
ability density function. Then a simple gradient steepest descent algorithm
can be applied:
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ωi(k + 1) = ωi(k)− α(k)∇ωi Ĵν [ω(k),x0(k)] + η(ωi(k)− ωi(k − 1))

for k = 0, 1, . . ., where we added a regularization term, weighted by η ∈ [0, 1],
as it is usually done when training neural networks. The convergence of the
method, which is known as stochastic gradient, is assured by a particular
choice of the step size α(k), that must fulfill a set of conditions [10]. Of
course, one has to compute the partial derivatives of the cost Ĵν with respect
to the parameters to be optimized, ωi:

∂Ĵν

∂ωi
=

∂Ĵν

∂ui

∂μ̂i(xi, ωi)
∂ωi

.

The proposed algorithm for the computation of the optimal parameters
consists in two phases, a forward and a backward one, and in a back-
propagation technique. In the forward phase we “unroll” the system and
the neural controllers in time, making the feedback explicit. At iteration
step k, given the initial state x0, we compute all the state and controls
generated by the sequence of OHL networks that is ui = μ̂i(xi, ωi(k)),
given x0,xi = f(xi−1,ui−1) , i = 1, . . . , N . Then we can compute all
the partial costs hi(xi), hN (xN ). In the backward phase, we compute all
the gradient components and “back-propagate” them through the networks’
chain. The recursive propagation is described by the following equations, for
i = N − 1, N − 2, . . . , 0:

∂Ĵν

∂ui
=

∂hi(xi,ui)
∂ui

+
∂Ĵν

∂xi+1

∂f(xi,ui)
∂ui

∂Ĵν

∂xi
=

∂hi(xi,ui)
∂xi

+
∂Ĵν

∂xi+1

∂f(xi,ui)
∂xi

+
∂Ĵν

∂ui

∂μ̂i(xi, ωi)
∂xi

initialized by ∂Ĵν/∂xN = ∂hN (xN )/∂xN .
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Fig. 2 A minimum jerk movement of James’arm: cartesian and joints position
and velocity are shown, as well as samples of the planar trajectory. The neural
approximation and the analytical solution [11] coincide (m.s.e. ∼= 10−7)
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Fig. 3 James’ left end effector tracking a target moving in an unpredictable way,
according to cost function (3), where Vi = diag(1.0, 80.0, 5.0, 10.0), VN = 40I .
Moreover, N = 30, ν = 40

3 Results

Many neuro-computational studies investigate the arm motion on a plane,
considering the arm as a two-rotative joints limb. In this case, it has been
shown that the human arm movement can be approximated by the function
optimizing the following cost function (minimum jerk principle) [11]:

J =
∫ T

0

[(
d3xr

dt3

)2

+
(
d3yr

dt3

)2
]
dt .

This criterion has been chosen to verify the effectiveness of the proposed
method. We set nq = nc = 2 to consider James’ arm as a two-link rigid body,
moving on a planar surface, T = 60, ν = 40, and used approximatively 109

samples for the off-line training of the neural networks. Results are shown in
Figure 2. The method has been also tested with a different cost function:

J =
t+N−1∑

i=t

c(ui) + xT
i+1Vi+1xi+1 (3)

where the criterion for the task accomplishment is a tradeoff between the min-
imization of the energy consumption (for physical limits, it is important not
to exceed in the maximum rated current consumption) and the “best” end-
effector proximity to the target during and at the end of the manoeuvre (it
could not be able to reach it perfectly, as a consequence of the unpredictable
behavior of the target or the robot’s intrinsic physical limits). Weight matrices
Vi are chosen such as to obtain reasonable compromise between the attrac-
tiveness of the target and the energy consumption, whereas c(uj

t ), j = x, y is
a nonlinear but convex function (the same reported in [8]). An example of a
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RH trajectory during a tracking task are shown in Figure 3. We remark that
the constraints on the admissible values of xt and ut are always verified. To
be more precise, the classical OHL networks were slightly modified, specif-
ically by adding two bounded sigmoidal functions σ(z) = U tanh(z) to the
final output layer: with this choice, the constraints on the control values can
be removed from the problem formulation since the neural networks already
embed them.

4 Conclusion

This paper focused on the computation of a neural time invariant feedback
control law optimized off-line. The on-line computation of the control action is
efficient, as it consists only of few mathematical operations. We point out that
the requirement of computing control values in real-time as fast as possible
is strict. Given that this method has been designed to be applied to a full
body humanoid robot, we concentrated in making the computation of the
control law as efficient as possible. We have presented simulations to clarify
the problem. Early experiments on James, controlling 2 DOF, have confirmed
the effectiveness of the proposed approach. Simulations for the control of the
4 DOF arm are currently ongoing. In the future, the control scheme will take
into account singularities, redundancies of the kinematic chain, and delays
which have been neglected for the moment.
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Particle Swarm Optimization Based
NMPC: An Application to District
Heating Networks

Guillaume Sandou and Sorin Olaru

Abstract. Predictive control is concerned with the on-line solution of suc-
cessive optimization problems. As systems are more and more complex, one
of the limiting points in the application of optimal receding horizon strategy
is the tractability of these optimization problems. Stochastic optimization
methods appear as good candidates to overcome some of the difficulties.
Indeed, these methods are not dependent on the structure of costs and con-
straints (linear, convex...), can escape from local minima and do not require
the computation of local informations (gradient, hessian). In this paper, a
Particle Swarm Optimization (PSO) is proposed to solve the receding hori-
zon principle with an application to district heating networks. Tests of the
approach are given for a network benchmark, showing that more than sat-
isfactory results are achieved, compared with classical control laws for such
systems.

Keywords: Particle swarm optimization (PSO), NMPC, Energy savings.

1 Introduction

Receding horizon based methods are efficient tools to control industrial
systems based on the introduction of on-line optimisation problems in the
feedback loop. The systems to control being more and more complex, the
corresponding optimization problems continuously challenge the limitation
of classical deterministic methods such as Successive Quadratic Program-
ming. These optimization problems can often be solved by stochastic opti-
mization algorithms which are able to find good suboptimal solutions to hard
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optimization problems. Of course, a severe attention has to be paid to the
stability of the corresponding closed loop control law. In this way of thinking,
ant colony was used in previous studies to compute a receding horizon control
law for the case of constrained hybrid systems [1]. In this paper, the focus is
on the use of an other metaheuristic optimization method, Particle Swarm
Optimization (PSO) to compute a closed loop law for the control of district
heating networks.

In a competitive technological, economical and environmental context, En-
ergy Savings has emerged as a crucial point. Due to the development of cogen-
eration systems or heat storage tanks, the use of district heating networks
appears as an interesting way to achieve high global efficiencies of energy
networks. However, the modeling of these systems are concerned with partial
differential equations (for the computation of thermal energy propagation)
and non linear algebraic and implicit equations (for the computation of mass
flows and pressures in the whole system). Finally, costs and constraints of
the corresponding continuous optimization problems can only be computed
in a simulation environment. The problem could be solved by determinis-
tic algorithms. As no analytic expressions are available, the computation
of descent directions (gradient or subgradients) imply numerous evaluations
of costs and constraints functions. Further, numerous local minima do ex-
ist, and near optimal initial points have to be known to get satisfactory
results. Thus, this kind of system appears to be a good benchmark for the
study of stochastic optimization algorithms for the computation of closed loop
control laws.

The paper is organized as follows. PSO is firstly described in section 2.
District heating networks are presented and modeled in section 3 together
with the use of PSO for the receding horizon based control law. Finally,
conclusions and forthcoming works are drawn in section 4.

2 Particle Swarm Optimization Based NMPC

2.1 Classical PSO Algorithm

Particle swarm Optimization (PSO) was firstly introduced by Russel and
Eberhart [2]. This optimization method is inspired by the social behavior of
bird flocking or fish schooling. Consider the following optimization problem:

minx∈χf(x) (1)

P particles are moving in the search space. Each of them has its own
velocity, and is able to remember where it has found its best performance.
Each particle has some ”friends”. The following notations are used:

• xp
k (resp. vp

k): position (resp. velocity) of particle p at iteration k;
• bp

k = argmin(f(xp
k−1, b

p
k−1)) : best position found by particle p until itera-

tion k;
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• V (xp
k) ⊂ {1, . . . , P} : set of ”friend particles” of particle p at iteration k;

• gp
k = argmin(f(xj

k), j ∈ V (xp
k)) : best position found by the friend particles

of particle p until iteration k.

The particles move in the search space according to the transition rule:

vp
k+1 = w × vp

k + c1 ⊗ (bp
k − xp

k) + c2 ⊗ (gp
k − xp

k)
xp

k+1 = xp
k + vp

k+1

(2)

where w is the inertia factor, ⊗ denotes the element wise multiplication of
vectors and c1 (resp. c2) is a random vector whose length is the number of
optimization variables, and whose components are in the range [0, c̄1] (resp.
[0, c̄2]).

The construction of the transition rule 2 is represented in figure 1.

Fig. 1 Geometric repre-
sentation of the transition
rule
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The choice of parameters is very important to ensure the satisfying con-
vergence of the algorithm. Important results have been reported on the topic;
see for instance [3], [4]. Is beyond the scope of the present study to present the
exhaustive description of tuning strategies (the Automatic Control commu-
nity being less enthusiastic about metaheuristics details). Standard values,
which are given in [5] will be used: swarm size P = 10 +

√
n, where n is the

number of optimization variables, w = 1

2·ln(2)
, c̄1 = c̄2 = 0.5 + ln(2)

Several topologies exist for the design of the set of friend particles. For a
comprehensive study of this topic, see [6]. In particular, if these sets do not
depend on k, neighborhoods are said to be ”social”. This choice is the simplest
for the implementation of the algorithm and so a social neighborhood will be
used in this paper.

2.2 Application to NMPC

NMPC is based on the on-line solution of optimization problems. Due to the
increasing complexity of the systems to control, these optimization problems
become harder and harder to solve, especially in a real time framework. Thus,
the use of PSO as a solver for these problems appear as an interesting trend
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to overcome some of the difficulties, as it is able to find good near optimal
solutions with relatively low computation times.

Of course, the main drawback of this optimization method is the fact
that no guarantee can be given on the actual optimality of the solution.
Thus, stability and robustness has to be carefully studied before the effective
implementation of PSO for NMPC.

3 District Heating Networks Control

3.1 District Heating Networks Modeling

A district heating network is depicted in figure 2. It is a part of a more general
district heating network which has been reported in [7]. It is made of two main
subnetworks which are interconnected with the help of two valves. The main
components which have to be modeled are the producers, the energy supply
network made of pipes, pumps and nodes, and consumers.

Fig. 2 District heating
network benchmark
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A production site s is modeled by a characteristic, identified from technical
data. For hour n, production costs can be derived from produced thermal
power Qs

n:

cs
prod(Q

s
n, Q

s
n−1) = as

2(Q
s
n)2 + as

1Q
s
n + a0 + λ(Qs

n −Qs
n−1)

2 (3)

where λ is a weighting factor penalizing the control increments, and modeling
dynamics of production units. The thermal power given to primary network
is related to network temperatures by:

Qs
n = cp ·m · (Ts − Tr) (4)
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where m[kg.s−1] is the mass flow in the energy supply network, Ts(K) the
supply temperature, Tr(K) the return temperature in primary network and
cp[J.kg−1.K−1] the specific heat of water.

Energy supply network

The energy supply network is concerned with pipes, valves, nodes and pumps.
Notations for pipe modeling are given in figure 3.

Fig. 3 Notations for
pipes modeling
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Mechanical losses in pipes can be expressed by:

Hout = Hin − Zp ·m2
p (5)

with mp[kg.s−1] the mass flow in pipe, Hin (resp. Hout) [m] the pressure
at the beginning (resp. the end) of the pipe, and Zp(m.kg−2.s2) the friction
coefficient. For a valve, this coefficient becomes Zp/d, where d is the opening
degree of the valve (from 0 for a closed valve to 1 for an open one) which is
a control input of the system.

The thermal energy propagation in pipes can then be modeled by a partial
differential equation:

∂T

∂t
(x, t) +

mp(t)
πρR2

p

∂T

∂x
(x, t) +

2μp

cpρRp
(T (x, t)− T0) = 0 (6)

To counterbalance mechanical losses in pipes, pumps are installed in the
network leading to an increase of pressure:

ΔH = b2(m
ω0

ω
)2 + b1m

ω0

ω
+ b0 (7)

with m[kg.s−1] is the mass flow through the pump, ω[rad.s−1] its rotation
speed and ω0 its nominal rotation speed.

Finally, nodes in the network are easily modeled using mass flow balance
equations and energy balance equations.

Consumers

Secondary networks of consumers are connected to the primary network by
way of heat exchangers. Notations are those of figure 4.
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Fig. 4 Notations for
consumers modeling
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The following equation is the classical equation for a counter flow heat
exchanger with S[m2] the surface of the heat exchanger, and e[W.K−1.m−2]
its efficiency:

Qc = eS
(Th,in − Tc,out)− (Th,out − Tc,in)

ln(Th,in − Tc,out)− ln(Th,out − Tc,in)
(8)

Assuming no thermal energy loss between primary and secondary
networks, the thermal power given by the primary network can be also ex-
pressed by:

Qc = cpmh(Th,in − Th,out) (9)

Qc = cpmc(Tc,out − Tc,in) (10)

Assuming that mc and Tc,out are given, and that mass flow mh is de-
termined by the opening degree of the valve, then Tc,in, Qc and Th,out can
be computed from Th,in. Qc is an increasing function of mh: the maximal
thermal power which can be given to a consumer is obtained for mh = ms.
Consequently, the given power is finally expressed by:

Qc = min(Qdem, Qmax) (11)

where Qdem is the heat demand of the consumer, and Qmax is the maximum
power that can be given by the primary network. Qmax is computed by
solving the system made of 8, 9 and 10, in the particular case mh = ms.

3.2 Receding Horizon Based Control of District
Heating Networks

Open loop and optimization

Consider a district heating network, with S production sites, V valves and
C consumers. For simplicity, rotation speeds of pumps are supposed to be
constant. The open loop control law of the whole system can be computed
from the solution of the optimization problem:
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min
∑N

n=1

∑K
k=1 c

s
prod(Q

s
n, Q

s
n−1)

{Qs
n, d

v
n}, n ∈ {1, . . . , N}

s ∈ {1, . . . , S}, v ∈ {1, . . . , V }
(12)

where, Qs
n is the thermal power produced by site s during time interval n

and dv
n is the opening degree of valve v during time interval n.

Constraints are the satisfaction of technical constraints (pressures and
mass flows in the energy supply network) and the fulfilling of consumers
demands Qc

dem,n, c ∈ {1, . . . , C}. To compute these constraints, one has to
simulate the whole network. From the modeling details presented in the
previous section, this implies the numerical solution of non linear algebraic
systems of equations for the mass flow and pressure computation and the
simulation of systems of partial differential equations for the thermal energy
propagation part.

Finally, the solution of this problem is hard to be solved with a classical
deterministic method. A PSO method is then chosen as a solution algorithm.

Closed loop control

The open loop computed by the solution of (12) can not be directly applied
to the real system. Indeed, consumers demands Qc

dem,n are not known in ad-
vance, but only predicted. To get a robust behavior of the system, one has
to control the system in a closed loop framework. The real control inputs
are the supply temperatures of producers. These values are bounded due to
physical limitations of steam boilers. Further, consumers take power from the
energy supply network if temperatures are sufficiently high (if not, the con-
sumer demand is not fulfilled, but the behavior of the energy supply network
remains correct). An important remark is that whatever the control strat-
egy is employed, due to these physical limitations, all temperatures in the
network remain in the acceptable range. In conclusion there is no instability
danger for the control law, and the receding horizon strategy can be applied,
even if a stochastic optimization problem is used without global optimality
guarantee.

3.3 Numerical Results

The receding horizon based control law has been applied for the control of the
district heating benchmark depicted in figure 2. Tests have been performed
for a total time horizon of 24 or 48 hours, with a sampling time of one hour.
The prediction horizon for the optimization problem is 12 hours. Thus, as the
benchmark represented in figure 2 has 2 producers and 2 valves, the optimiza-
tion problem is made of 12×(2+2) = 48 optimization variables. The solution
of the optimization problem is performed in 120 seconds on a Pentium IV,
2.5 GHz with Matlab 2007, for 50 iterations of the PSO algorithm.
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Robustness of the closed loop structure

To validate the control law, a worst case experiment has been performed. It is
assumed that all consumer demands are always underestimated by a factor of
10%. This represent a worst case experiment as long as in the real world, load
error predictions can partially compensate each other. Tests of the proposed
approach have shown that consumers demands are always fulfilled, by using
the receding horizon control structure.

Economical benefit of the receding horizon strategy

In the district heating network (figure 2), producer 1 is a cogeneration site.
Cogeneration refers to the simultaneous production of electric and thermal
powers, leading to high global efficiencies. Briefly speaking, the main goal
of the producer is to satisfy the thermal power demand. But he has the
opportunity to use the exhaust fumes to produce and to sold electric power.
Finally, for the thermal power point of view, the higher the price of sold
electricity, the lower the thermal power production costs. The simulation
has been performed for different electricity prices, and corresponding total
productions over the whole horizon (24 or 48 hours) are given in table 1.

The price 40E/MWh corresponds approximately to the price in France
from November 1st to March 31st, whereas the null price corresponds to the
price from April 1st to October 31st.

Table 1 Numerical Results: total production of producers for different
configurations

Production 1 over Production 2 over
Electricity price 24 hours 48 hours 24 hours 48 hours

40E/MWh 535MWh 947MWh 537MWh 1016MWh

0E/MWh 541MWh 963MWh 492MWh 950MWh

Results show that the higher the price, the higher the production of the
cogeneration site. The control law uses the interconnection valves to make
the extra amount of power to pass from subnetwork 1 to subnetwork 2. Al-
though obvious, the possibility is not used in classical district heating net-
works: controls laws only use local information, and the interconnections are
often viewed as safety means, and are rarely used. The receding horizon law
is able to take into account the whole technological string ”production - dis-
tribution - consumption” and the whole system through the solution of the
optimization problem 12. The solution of this problem is made tractable by
the use of a stochastic approximated optimization method.

Note that in the future, the price of sold electricity may depend on the
electricity market. In such a situation, production costs would be predicted,
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and the closed loop structure is also a good trend to get a robust behavior
against cost uncertainties.

4 Conclusions and Discussion

In this paper, Particle Swarm Optimization has been used as the core of
receding horizon control method. The interest of such methods is that it can
solve, or more precisely find a near optimal solution of, hard optimization
problems. The drawback of these methods is the lack of guarantee of the
actual optimality of the solution. As a results a special attention has to be
paid on the stability and the performances of the closed loop.

The use of such methods is of great interest for dictrict heating networks.
To decrease global costs, one has to capture the whole system in a close
loop framework. The use of stochastic algorithms is tractable for that pur-
pose. Furthermore, in the case of the control of district heating networks,
the system is always stable, whatever the control strategy. Thus the use of
a stochastic optimization algorithm for receding horizon control can only
enhance the performance that could be achieved by a classical control law.

Further studies have to be done so as to deeply understand the pros and
cons of the use of such methods and to establish some robustness properties
of the corresponding control laws.
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Explicit Receding Horizon Control of
Automobiles with Continuously Variable
Transmissions

Takeshi Hatanaka, Teruki Yamada, Masayuki Fujita, Shigeru Morimoto,
and Masayuki Okamoto

Abstract. This paper presents a novel systematic control scheme of con-
tinuously variable transmissions (CVTs) of automobiles based on explicit
receding horizon control (ERHC). We use the ERHC controller as a high-
level controller in the automotive control design hierarchy i.e. it determines
reference signals of the pulley ratio at each time instant, and inputs it to a
locally compensated system. We choose as a prediction model a constrained
piecewise affine system whose dynamics switches depending on the presence
or absence of fuel injection. Then, we formulate a constrained finite time opti-
mal control problem, and compute its explicit solution via Multi-Parametric
Toolbox. The effectiveness of our control scheme is finally verified by a sim-
ulator developed by Honda R&D.

Keywords: Continuously Variable Transmissions, Explicit Receding Hori-
zon Control, Multi-Parametric Toolbox.

1 Introduction

In recent years, stimulated by increasing applications of electronics technolo-
gies to automotive systems, demands for the automobiles have become di-
verse. For example, environmental conservation, comfortable ride and safety
have been required. Especially, reduction of fuel consumption is addressed as
one of the highest priority issue in order to prevent environmental damage.
To meet this requirement, continuously variable transmissions (CVTs) have
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Fig. 1 Belt type CVTs Fig. 2 Structure of CVTs

gained increasing interests. It enables one to improve fuel efficiency and driv-
ing performances simultaneously due to its continuously variable pulley ratio
characteristics, and has already been installed in most of the recent stock
cars [1, 2, 3] in Japan. Though the diffusion of CVTs is currently limited in
other countries due to technological problems, differences in driving environ-
ment and some social reasons, the rate of automobiles with CVTs tends to
increase also in the US because of their technological progress. A belt type
CVT handled in this paper is illustrated in Figures 1 and 2.

The automotive industry has employed a so-called map controller to de-
termine the pulley ratio of the CVTs. This controller is designed based on
heuristics and a large quantity of empirical data without taking account of the
dynamical characteristics of the automobiles explicitly [3]. However, since the
controller grows more and more complex, its retuning requires a high degree
of professional skills and knowledge on the controller and automotive sys-
tem. The automotive industry thus desires a new systematic control scheme,
and this paper addresses this requirement, where we employ receding horizon
control (RHC) as a systematic design scheme.

RHC is a control methodology in which an optimal control problem is
solved over a finite horizon, the first one of the computed control moves is
implemented and then the optimal control problem is newly solved at the next
step with the horizon shifted forward by one time instant [4]. This control
method can handle various types of control systems within a unified frame-
work, and has been employed in a variety of industries. This paper especially
focuses on the RHC for hybrid systems [4, 5]. Some relevant works applying
this control strategy to the automotive systems have already been reported
in [6, 7, 8]. In these works, either of the following implementation methods
is employed: (i) Model Predictive Control and (ii) Explicit Receding Horizon
Control (ERHC). The former solves a mixed integer programming problem
on-line at each sampling step, which is in general prohibitive on automotive
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control hardware [6]. The latter computes off-line an explicit piecewise affine
(PWA) form of the optimal control law and performs only a simple evaluation
of the PWA function for a given state at each time instant.

The objective of this paper is to present a novel systematic control scheme
of CVTs based on the ERHC. The present scheme has the following benefits
compared with the current map controller. (i) Controller retuning becomes
easier. (ii) Driving performances are improved. (iii) Dynamical characteristics
are taken into account. It should be noted that the present controller is
developed within much shorter period and smaller human resources than
the current map controller. In contrast to the previous works on the CVT
controller design [1, 2, 3], where local controllers stabilizing the CVTs are
presented, our control scheme belongs to a higher layer in the automotive
control system design hierarchy. Namely, the present controller determines
the reference of the pulley ratio and inputs it to the automotive system
compensated a priori. This scheme brings an advantage that several minor
effects on the total automotive system and the corresponding variables can
be neglected and each subsystem be simplified. This enables us to employ as
a prediction model in the ERHC the total automotive system including all
the subsystems.

2 Modeling

This section describes the automotive system model utilized for control de-
sign under the following assumptions: (i) It drives on a straight flat road and
does not stop. (ii) Drivers do not depress the accelerator and the brake simul-
taneously. (iii) A fuel cutoff works and fuel injection never occurs whenever
the brake is depressed (This situation is denoted by FC = ON) and, con-
versely, a fuel cutoff never works whenever the accelerator pedal is pressed
(FC = OFF). It is in general desirable due to computational and structural
complexity of the ERHC controller to find a simple model while captur-
ing the main behavior of the automotive system. However, it is difficult
to systematically determine how much simplification is allowed. We thus
choose the following model through a trial and error process via numerical
experiments.

Engine 
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Driver Transmission

Auto
Body

ωTR

ρplltgt
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CVT
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Fig. 3 Configuration of the automotive system
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In this paper, we consider the total automotive system illustrated in Fig-
ure 3, where AP is the accelerator opening percent, BRK is the brake pedal
force, ωENG[rpm] is the engine speed, ωTC [rpm] is the turbine speed of torque
converter, and ωTR[rpm] is the tire speed, ρplltgt is the pulley ration target
V [km/h] is the vehicle speed, and Vd is the reference vehicle speed of a driver.
It should be now noted that the system dynamics significantly changes de-
pending on the presence or absence of fuel injection. In this paper, we sep-
arately describe the subsystem models in both situations, integrate them
and gain a hybrid system model as the automotive system model. Only the
overview is described below. The engine and engine controller do not have
a strong dynamical characteristics and we first describe them as a static
map. Then, we employ linear approximation of the input-output relation in
order to suit these models to RHC design. The torque converter, transmis-
sion and auto body models are approximately described based on physical
modeling.

Integrating the above subsystems yields a total automotive model. Due to
complexity of the model, all the equations cannot be shown in this paper,
the state equation takes the form of

ẋp = fOFF (xp) + BOFF

[
AP

ρplltgt

]
, if FC = OFF, (1)

ẋp = fON(xp) + BON

[
BRK
ρplltgt

]
, if FC = ON, (2)

xp =
[
V̇ ω̇ENG ω̇TC ρ̇pll

]

,

where ρpll is the pulley ratio and fOFF and fON are nonlinear functions of
xp. The above automotive model (1), (2) is a hybrid system whose dynamics
switches depending on the state of FC. However, this model is intractable for
RHC design as it is due to its nonlinearity and obscuration of the switching
condition. In the following, we moreover approximately establish a discrete-
time constrained PWA system model.

We first linearize both of the systems (1) and (2). For this purpose, we
have to determine the operating equilibrium state and input. Here, we let the
equilibrium state and input be (20, 876.6197, 876.3416, 0.6) and (0.1768, 0.6)
respectively for both systems, which is empirically determined. We then dis-
cretize the resulting continuous-time linear time invariant system model with
zeroth-order hold and sampling period 1[s], which is longer than standard
transmission control schemes. It is possible to take such a long period since
we consider a high level controller determining not ρpll but ρplltgt.

We next derive a switching condition. We see from real data that the
fuel cutoff works when ωTC exceeds ωENG, which means that the engine is
rotated by the wheel. Namely, the switching condition is represented by a
linear inequality between the state variables ωTC and ωENG.
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We thus get the discrete-time PWA system model

x(k + 1) =

⎡⎢⎣ 0.9502 0.0080 0.0029 0.2244
4.6843 0.0428 0.0155 3.8368
4.6856 0.0428 0.0155 3.8318

0 0 0 0.0183

⎤⎥⎦ x(k) +

⎡⎢⎣ 1.0056 −0.8543
4.6980 146.1789
4.6224 146.2213

0 0.9817

⎤⎥⎦ u(k)

if δωENG(k) ≥ δωT C(k)

x(k + 1) =

⎡⎢⎣ 0.9298 0.0078 0.0028 0.0541
4.2661 0.036 0.0130 3.0594
4.2661 0.036 0.0130 3.0505

0 0 0 0.0183

⎤⎥⎦ x(k) +

⎡⎢⎣ 0 −1.3755
0 143.8176
0 143.8243
0 0.9817

⎤⎥⎦ u(k)

+

⎡⎢⎣ −0.1776
−0.8145
−0.8149

0

⎤⎥⎦ BRK, if δωENG(k) ≤ δωT C(k), (3)

y(k) =

[
0 1 0 0
0 0 0 1

]
x(k), (4)

where the state and input vectors are x(k) =
[
δV δωENG δωTC δρpll

]T and

u(k) =
[
δAP δρplltgt

]T . The notation δ represents the deviation of each
variable from its equilibrium point. We choose δρpll and δωENG as the control
output y.

We finally describe state and input constraints. The automotive system
has the following constraints due to mechanical limitations and specifications
for a comfortable ride, where Δu(k) = u(k)− u(k + 1).[−0.1768

−0.150

]
≤u(k) ≤

[
1.8232
1.85

]
,

[−5
−1

]
≤ Δu(k) ≤

[
5
1

]
, (5)⎡⎢⎢⎣

−20.5
−104.7198
−104.7198
−0.15

⎤⎥⎥⎦ ≤x(k) ≤

⎡⎢⎢⎣
50.5

628.3185
628.3185

1.85

⎤⎥⎥⎦ ,

[ −0.15
−1000

]
≤ y(k) ≤

[
1.85
6000

]
. (6)

Remark 1. It is possible to obtain a more accurate model by setting several
operating points and corresponding switching conditions. However, we do not
adopt this strategy since it does not improve control performances despite
of the increase of the computational and structural complexity in design
stage.
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3 Controller Design

In this section, we design an ERHC for the automotive system model de-
scribed in the previous section. As shown in the prediction model of Fig-
ure 4, the ERHC controller determines ρplltgt and AP so that the control
outputs track to external references. The resulting ρplltgt is inputted to the
transmission. However, AP is not utilized for control since it is originally an
uncontrollable human operated force. This implies that the ERHC controller
assumes in prediction that the driver takes near optimal actions. Though
including the driver into the plant model is an option, it is a highly difficult
problem. The practical total control system is depicted in Figure 5. Note that
we hereafter denote the real time by t (the time step in the prediction horizon
is denoted by k).

3.1 ERHC Design

Let us consider the constrained finite-time optimal control (CFTOC) problem

J = min
u(0), ··· , u(H−1)

H−1∑
k=0

‖RΔu(k)‖p + ‖Qy(y(k)− yd)‖p subject to (3)− (6),

where H = 3, p = 2 and Qy = diag(250, 1), R = diag(10, 1000).
Since the reference signal yd is time varying, the explicit solution of the

above CFTOC problem is defined over the augmented state space composed
of ξ(k) = (x(k), u(k − 1), yd(k)). Namely, the ERHC controller takes the
form of u(t) = Fiξ(t) + fi, if ξ(t) ∈ Pi ([9] and the references therein). It
should be now noted that all the state variables can be measured by sensors.
The polyhedral partition of the controller is illustrated in Figure 6, which
is a cross-section with the other state variables fixed at 0. This controller is
computed by an Intel(R) Core(TM)2 CPU 6400 (2.13GHz) machine running
MATLAB(R) 6.5.1 and MPT 2.6.2 [9].

The parameters H,Qy, R are tuned in numerical experiments until a de-
sired performance is achieved. As reported in [6], by increasing the prediction
horizon H , the control performance improves, but at the same time the com-
plexity of the resulting piecewise affine controller increases dramatically and
no controller is computed in the worst case. However, short prediction peri-
ods result in poor control performances. This is one reason why we choose
a long sampling period (1[s]), which allows a prediction over a long period
without increasing the complexity. Though this scheme decreases the degree
of freedom of control actions, a satisfactory performance is achieved at least
for numerical experiments. Though further tuning might be necessary in the
stage of actual vehicle tests, the basic strategy of using a long sampling period
would be employed. The norm p = 2 in the cost function is chosen because
of poor control performances of the ERHC controllers with p = 1 and p = ∞
in numerical experiments.
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3.2 Reference Signal Generator

This subsection designs the mechanism generating the reference yd = (ρd, ωd).
We let ρd be determined by the current reference of vehicle speed according

to the graph in Figure 7. Note that Vd is estimated by another mechanism
from the current vehicle speed and drivers’ operations but we omit detailed
explanations on this mechanism since it is beyond the scope of this paper.

We next design the generator of ωd. Now, the optimality of the engine
operation in terms of fuel consumption is in general characterized by the
relation between the engine speed and engine torque. The ideal operational
diagram can be drawn on the engine speed – engine torque graph [3]. Since
the engine torque is measurable at each real time t, the ideal engine speed
can be determined by this diagram. We thus employ it as the reference engine
speed ωd(t).

Fig. 6 Polyhedral partition of ERHC
controller

ρ

Fig. 7 Relation between Vd and ρd

4 Simulator Based Verification

In this section, we demonstrate the effectiveness of the present controller
through numerical experiments. In this verification, the vehicle motion is
simulated by a simulator developed by Honda R & D. We use as the driver
model a PID controller whose input is the error of the reference speed and
the current speed (Vd−V ) and output is accelerator force AP or brake force
BRK. The switch of AP and BRK occurs according to the sign of Vd − V .
Note that for simplicity we employ the following Vd without using the refer-
ence vehicle speed generator in Figure 5. The original reference vehicle speed
is produced based on the Japanese 10.15 driving mode [3], and the driver
model and the ERHC controller uses its filtered signal as the reference Vd.

In the following, we compare the present ERHC with the map controller
in terms of the tracking performance. Now let φ

(i)
ERHC and φ

(i)
map be the nu-

merical integration values of the absolute values of the tracking errors for
our controller and the map controller respectively, where i = 1 denotes
that of ωENG and i = 2 that of ρpll. Then, we see from the values of
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ERHC
Map
Vd

Fig. 8 Vehicle velocity

ERHC
Map

Fig. 9 Pulley-ratio

ERHC
Map

Fig. 10 Pulley-ratio target

ERHC
Map

Fig. 11 Vehicle acceleration

1 − φ
(i)
ERHC/φ

(i)
map, i ∈ {1, 2} that our controller improves the tracking per-

formance by 3.4781[%] in terms of ωENG and by 9.7174[%] in terms of ρpll.
It should be noted that both controllers satisfy the specified constraints (5),
(6). Though this section shows the effectiveness only for the mode produced
based on the 10.15 mode, almost the same tendency is confirmed for other
some driving modes.

The above figures also illustrate that our control scheme successfully works
despite of the uncontrollable drivers’ operations AP and BRK. It works
well even for some driving modes and driver models. However, we essentially
have to demonstrate its validity through actual vehicle tests, since all the
simulations assume some kind of driver models but real drivers do not always
behave like the models. Performing experimental tests is one of the future
works.

We see from the above results that our controller achieves satisfactory
responses. In addition, the controller is designed within much shorter period
and smaller human resources than the current map controller.
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5 Conclusions

In this paper, we have proposed a novel systematic control scheme of CVTs
of automotive systems based on ERHC. Unlike previous works on CVT con-
trol, we have investigated a high-level control design problem. By using the
high-level control scheme, we could obtain a simple total automotive system
model and employ a long sampling period, which is very helpful in reducing
the computational and structural complexity of ERHC controller. We have
shown our modeling and control procedures, and the effectiveness of our con-
trol scheme has been demonstrated through numerical experiments with a
simulator developed by Honda R & D.

A future direction of this study is to perform actual vehicle tests. For this
purpose, we have to address the following issues: giving physical interpreta-
tions of control actions of our controller, simplification of the controller via
post-processing, and writing a program which is implementable by electronic
control units of automobiles.

Acknowledgement. The authors would like to thank Mr. Tatsuya Miyano sin-
cerely for his invaluable help in improving the quality of this paper.
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De Doná, J.A. 325
DeHaan, Darryl 55
Deshpande, Anjali P. 285

Deshpande, Shraddha 481
De Keyser, R. 501
de la Peña, D. Muñoz 1, 89, 181
Diehl, Moritz 391

Fagiano, Lorenzo 461
Famularo, Domenico 491
Faulwasser, Timm 335
Ferramosca, A. 1, 315
Ferreau, Hans Joachim 391
Feuer, Arie 235
Fichter, Walter 511
Fikar, M. 381
Findeisen, Rolf 109, 167, 275, 335
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