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Abstract. In our approach we want to ensure the good performance of Ant-
Miner by applying the well-known (from the ACO algorithm) two pheromone
updating rules: local and global, and the main pseudo-random proportional
rule, which provides appropriate mechanisms for search space: exploitation
and exploration. Now we can utilize an improved expression of this classifi-
cation rule discovery system as an Ant-Colony-Miner. Further modifications
are connected with the simplicity of the heuristic function used in the stan-
dard Ant-Miner. We propose to employing a new heuristic function based on
quantitative, not qualitative parameters used during the classification pro-
cess. The main transition rule will be changed dynamically as a result of the
simple frequency analysis of the number of cases from the point of view char-
acteristic partitions. This simplified heuristic function will be compensated
by the pheromone update in different degrees, which helps ants to collaborate
and is a good stimulant on ants’ behavior during the rule construction. The
comparative study will be conducted using 5 data sets from the UCI Machine
Learning repository.

1 Introduction

Data mining is the process of extracting useful knowledge from real-world
data. Among several data mining tasks — such as clustering and classifi-
cation — this paper focuses on classification. The aim of the classification
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algorithm is to discover a set of classification rules. One algorithm for solv-
ing this task is Ant-Miner, proposed by Parpinelli et al. [66], which employs
ant colony optimization techniques [1, 33] to discover classification rules. Ant
Colony Optimization is a branch of a newly developed form of artificial in-
telligence called swarm intelligence. Swarm intelligence is a form of emergent
collective intelligence of groups of simple individuals: ants, termits or bees,
in which we can observe a form of indirect communication via pheromone.
Pheromone values encourage following ants to build good solutions of the an-
alyzed problem and the learning process occurring in this situation is called
positive feedback or autocatalysis.

The application of ant colony algorithms to rule induction and classifica-
tion is a research area that still is not explored and tested very well. The
appeal of this approach, similarly to the evolutionary techniques, is that it
provides an effective mechanism for conducting a more global search. These
approaches are based on a collection of attribute-value terms. Consequently,
it can be expected that these approaches will also cope with attribute interac-
tions a little bit better than greedy induction algorithms [35]. What is more,
these applications require minimum understanding of the problem domain;
the main components are: a heuristic function and an evaluation function,
both of which may be employed in the ACO approach in the same form as
in the existing literature on deterministic rule induction algorithms.

Ant-Miner is an ant-based system, which it is more flexible and robust
than traditional approaches. This method incorporates a simple ant system,
in which a heuristic value based on an entropy measure is calculated. Ant-
Miner has produced good results when compared with more conventional
data mining algorithms, such as C4.5 [69], ID3 and CN2 [14, 15]. Moreover,
it is still a relatively recent algorithm, which motivates us to try to amend
it. This work proposes some modifications to Ant-Miner to improve it. In the
original Ant-Miner, the goal of the algorithm was to produce an ordered list
of rules, which was then applied to test data in order in which they were
discovered.

The original Ant-Miner was compared to CN2 [14, 15], a classification rule
discovery algorithm that uses the strategy for generating rule sets similar to
that of the heuristic function used in the main rule of ants’ strategy in Ant-
Miner. The comparison was made using 6 data sets from the UCI Machine
Learning repository that is available at www.ics.uci.edu/ mlearn/MLRepo-
sitory.html. The results were analyzed according to the predictive accuracy
of the rule sets and the simplicity of the discovered rule set, which is measured
by the number of terms per rule. While Ant-Miner had better predictive
accuracy than CN2 on 4 of the data sets and worse on only one of the data
sets, the most interesting result is that Ant-Miner returned much simpler rules
than CN2. Similar conclusions could also be drawn from the comparison of
Ant-Miner to C4.5, a well-known decision tree algorithm [69].

This chapter is organized as follows. Section 1 comprises an introduction to
the subject of this work. Section 2 presents the fundamentals of the knowledge
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based systems. In section 3, the Swarm Intelligence and Ant Colony Opti-
mization is introduced. In section 4, Ant Colony Optimization in Rule In-
duction is presented. Section 5 describes the modifications and extensions of
original Ant-Miner. In section 6 our further improvements are shown. Then
the computational results from five tests are reported. Finally, we conclude
with general remarks on this work and outline further research directions.

2 Knowledge-Based Systems

One of the most successful areas of Artificial Intelligence applications are
expert systems or, more generally, knowledge-based systems. A popular ap-
proach to building knowledge-based systems is using the production system
model. There are three main components in the production system model:

• the production rule (long term memory),
• working memory (short term memory),
• the recognize-act cycle.

Knowledge-based systems [13] are usually not able to acquire new knowl-
edge or improve their behavior. It is an important fact, because intelligent
agents should be capable of learning. Machine learning is a field of Artificial
Intelligence. To deal with such kind of problems, machine learning techniques
can be incorporated into knowledge-based systems. Learning, in our con-
siderations, refers to positive changes toward improved performance. When
symbol-based machine learning is used, a learner must search the concept
space to find the desired concept. These specific improvements must be in-
troduced in programs to direct and order of search, as well as to use of
available training data and heuristics to search efficiently. Because of that we
will analyze the pheromone trail as a learning possibility.

The main idea of machine learning can be demonstrated through inductive
reasoning, which refers to the process of deriving conclusions from given facts.
A well-known tree induction algorithm adapted from machine learning is ID3
[67], which employs a process of constructing a decision tree in a top-down
fashion. A decision tree is a hierarchical representation that can be used to
determine the classification of an object by testing its properties for certain
values. ID3 has been proven a very useful method, yet there are many restric-
tions that make this algorithm not applicable in many real world situations.
C4.5 was developed to deal with these problems, and can be considered a
good solution when using bad or missing data, continuous variables, as well
as data of large size.

Many useful forms of this algorithm have been developed, ranging from
simple data structures to more complicated ones . We can distinguish four
representations of decision trees:

• a binary decision tree,
• linear decision trees,
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• classification and regression trees (CART) — a binary decision trees, which
split a single variable at each node. CART performs a recursively search
on all variables to find an optimal splitting rule for each node.

• a Chi-squared automatic interaction detector (CHAID) — where multiple
branches can be produced.

Several methods have been proposed for the rule induction process, such
as: ID3 [67], C4.5 [69], CN2 [14, 15], CART [6], and AQ15 [60]. There are two
categories of these approaches: sequential covering algorithms and simulta-
neous covering algorithms. The latter group is represented by: ID3 and C4.5.

Algorithm 1. Algorithm ID3
ID3 tree (examples, properties)1
if all entries in examples are in the same category of the decision variable then2

return the leaf node labeled with that category;3
end4
else5

Calculate information gain;6
Select the property P with highest information gain;7
Assign the root of a current tree = P;8
Assign properties = properties - P;9
for each value V of P do10

Create a branch of the tree labeled with V;11
Assign examples V = the subset of examples with values V for property P;12
Applied ID3 tree (examples V, properties) to branch V;13

end14

end15

C4.5 is an improved version of ID3. C4.5 follows a, divide and conquer”
strategy to build a decision tree through recursive partitioning of a training
set. The process of building the decision tree by C4.5 begins with choosing
an attribute (a corresponding variablesof this attribute) to split the data set
into subsets. Selecting the best splitting attribute is based on the heuristic
criteria. This methodology includes: Information Gain [69], Information Gain
Ratio [69], Chi-square test [68], and Gini-index [6]. The Information Gain of
an attribute A relative to a set of examples S is defined as follows:

Gain(S, A) = Entropy(S) −
∑

v∈values(A)

Sv

S
Entropy(Sv),

where:

• values(A) is a set of all possible values for A,
• Sv is a subset of S for which attribute A has value v.

Entropy(S) is the entropy of S, which characterizes the purity of a set of
examples. If a class attribute has k different values, the Entropy(S) is defined
as:

Entropy(S) = −
k∑

c=1

nc

N
log2

nc

N

where:
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• nc is the number of examples for the cth class,
• N =

∑k
c=1 nc is the total number of examples in the data set.

The higher the entropy is, more incidentally the k values are distributed
all over the data set. Unfortunately, the Information Gain favors attributes
with many values over those with a small number of values. So, an alternative
criterion — Information Gain Ratio is employed in the C4.5 approach.

The Information Gain Ratio is calculated as follows:

GainRatio(S, A) =
Gain(S, A)

SplittingInfo(S, A)

where SplittingInformation is used to penalize attributes with too many
values; we can calculate it as follows:

SplittingInfo(S, A) =
k∑

i=1

Si

S
log2

Si

S
,

where Si is a subset of training set S, which is represented by attribute A.
Our approach is not associated with CN2, which uses accuracy as a heuris-

tic criterion to determine the best rule, but analyzing only the rule accuracy
and thereforecan result in less general rules. Consequently, the Laplace error
estimate [14] is used to establish generic rules, which cover a large number
of examples:

LaplaceAccuracy =
nc + 1

ntot + k

where:

• k is the number of classes in the domain,
• nc is the number of examples in the predicted class c covered by the rule,
• ntot is the total number of examples covered by the rule.

3 Swarm Intelligence and Ant Colony Optimization

Ant colonies exhibit very interesting collective behaviors: even if a single ant
has only simple capabilities, the behavior of the whole ant colony is highly
structured. This is the result of co-ordinated interactions and co-operation
between ants (agents) and represents Swarm Intelligence. this term is applied
to any work involving the design of algorithms or distributed problem-solving
devices inspired by the collective behavior of social insects [4].

3.1 Swarm Intelligence

Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for
solving optimization problems that originally took its inspiration from the
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biological examples by swarming, self-organizing foraging phenomena in so-
cial insects. There are many examples of swarm optimization techniques, such
as: Particle Swarm Optimization, Artificial Bee Colony Optimization and Ant
Colony Optimization (ACO). The last approach deals with artificial systems,
inspired by the natural behaviors of real ants, especially foraging behaviors
based on the pheromone substances laid on the ground.

The fundamental concept underlying the behavior of social insects is self-
organization. SI systems are complex systems — collections of simple agents
that operate in parallel and interact locally with each other and their envi-
ronment to produce emergent behavior.

The basic characteristic of metaheuristics from nature could be summa-
rized as follows [1]:

• they model a phenomenon in nature,
• they are stochastic,
• in the case of multiple agents, they often have parallel structure,
• they use feedback information for modifying their own parameters — they

are adaptive.

Developing algorithms that utilize some analogies with nature and social
insects to derive non-deterministic metaheuristics capable of obtaining good
results in hard combinatorial optimization problems could be a promising
field of research.

The optimization algorithm we propose in this paper was inspired by the
previous works on Ant Systems and, in general, by the term – stigmergy.
This phenomenon was first introduced by P.P. Grasse [45, 46]. Stigmergy is
easily overlooked, as it does not explain the detailed mechanism by which
individuals co-ordinate their activities. However, it does provide a general
mechanism that relates individual and colony-level behavior: individual be-
havior modifies the environment, which in turn modifies the behavior of other
individuals. The synergetic effect is understood as a result of natural social
behavior among individuals connected by the main goal.

Many features of the collective activities of social insects are self-organized.
The theories of self-organization (SO) [20], originally developed in the context
of physics and chemistry to describe the emergence of macroscopic patterns
out of processes and interactions defined at the macroscopic level. They can
be extended to social insects to show that complex collective behavior may
emerged from interactions among individuals that exhibit simple behavior:
in these cases, there is no need to refer to individual complexity to explain
complex collective behavior. Recent researches show that SO is indeed a
major component of a wide range of collective phenomena in social insects [4].

Self-organization in social insects often requires interaction among insects:
such interactions can be either direct and indirect. Direct interactions are the
,,obvious” interactions: antennation, trophallaxis (food or liquid exchange),
mandibular contact, visual contact, chemical contact (the odour of nearby
nestmates) etc. Indirect interactions are more subtle: two individuals interact
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indirectly when one of them modifies the environment and the other responds
to the new environment, at a later time. Such an interaction is an example of
stigmergy (from Greek stigma: sting, and ergon: work) employed to explain
task co-ordination and regulation in the context of nest reconstruction in
termites of the genus Macrotermes.

The ant systems – the first version of the ant colony optimization systems
mimic the nature and take advantage of various observations made by people,
who studied ant colonies. Especially the ACO algorithms were inspired by the
experiment run by Goss et al. [44] using a colony of real ants. Deneubourg et
al. [4] using a special experimental setup showed that the selection of a path
to a food-source in the Argentine ant is based on self-organization. Individual
ants deposit a chemical substance called pheromone as they move from a food
source to their nest and foragers follow such pheromone trails. The process
in which an ant is influenced toward a food source by another ant or by a
chemical trail is called recruitment, and recruitment based solely on chemical
trails is called mass recruitment.

3.2 Ant Colony Optimization as a New
Metaheuristics

In this paper we defined an ant algorithm to be a multi–agent system inspired
by the observation of real ant colony behavior exploiting the stigmergic com-
munication paradigm. The optimization algorithm we propose in this paper
was inspired by the previous works on Ant Systems and, in general, by the
term — stigmergy. This phenomenon was first introduced by P.P. Grasse
[45, 46].

The last two decades have been highlighted by the development and the
improvement of approximative resolution methods, usually called heuristics
and metaheuristics. In the context of combinatorial optimization, the term
heuristic is used as a contrast to methods that guarantee to find a global
optimum, such as branch and bound or dynamic programming. A heuristic is
defined by [70] as a technique which seeks good (i.e. near-optimal) solutions
at a reasonable computational cost without being able to guarantee either
feasibility or optimality, or even in many cases to state how close to opti-
mality a particular feasible solution is. Often heuristics are problem-specific,
so that a method which works for one problem cannot be used to solve a
different one. In contrast, metaheuristics are powerful techniques applicable
generally to a large number of problems. A metaheuristic refers to an itera-
tive master strategy that guides and modifies the operations of subordinate
heuristics by combining intelligently different concepts for exploring and ex-
ploiting the search space [43, 64]. A metaheuristic may manipulate a complete
(or incomplete) single solution or a collection of solutions at each iteration.
The family of metaheuristics includes, but is not limited to, Constraint Logic
Programming, Genetic Algorithms, Evolutionary Methods, Neural Networks,
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Simulated Annealing, Tabu Search, Non–monotonic Search Strategies, Scat-
ter Search, and their hybrids. The success of these methods is due to the
capacity of such techniques to solve in practice some hard combinatorial
problems.

Also some traditional and well-established heuristic optimization tech-
niques, such as Random Search, Local Search [3], or the class of Greedy
Heuristics (GH) [3] may be considered as metaheuristics.

Considering that Greedy Heuristics are available for most practical opti-
mization problems and often produce good results, it seems, that in these
cases, it is less expensive with regard to the development costs to further
improve their solution quality by extending them to repetitive procedures
rather than to replace them by iterative heuristics which follow completely
different optimization strategies. So it seems desirable to have a constructive
and repetitive metaheuristics including GH as a special (boundary) case.

An essential step in this direction was the development of Ant System
(AS) by Dorigo et al. [25, 31, 28], a new type of heuristic inspired by analo-
gies to the foraging behavior of real ant colonies, which has proven to work
successfully in a series of experimental studies. Diverse modifications of AS
have been applied to many different types of discrete optimization problems
and have produced very satisfactory results [27]. Recently, the approach has
been extended by Dorigo and Di Caro [26] to a full discrete optimization
metaheuristics, called the Ant Colony Optimization (ACO) metaheuristics.

AS, which was the first ACO algorithm [16, 29, 31], was designated as
a set of three ant algorithms differing in the way the pheromone trail was
updated by ants. Their names were: ant-density, ant-quantity, and ant-cycle.
A number of algorithms, including the metaheuristics, were inspired by ant-
cycle, the best performing of the ant algorithms.

The Ant Colony System (ACS) algorithm has been introduced by Dorigo
and Gambardella [28, 30] to improve the performance of Ant System [30, 39],
which allowed to find good solutions within a reasonable time for small size
problems only. The ACS is based on 3 modifications of Ant System:

• a different node transition rule,
• a different pheromone trail updating rule,
• the use of local and global pheromone updating rules (to favor exploration).

The node transition rule is modified to allow explicitly for exploration. An
ant k in city i chooses the city j to move to following the rule:

j =
{

arg maxu∈Jk
i
{[τiu(t)] · [ηiu]β} if q ≤ q0

J if q > q0

where q is a random variable uniformly distributed over [0, 1], q0 is a tunable
parameter (0 ≤ q0 ≤ 1), and J ∈ Jk

i is a city that is chosen randomly
according to a probability:
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pk
iJ(t) =

⎧
⎪⎨

⎪⎩
τiJ (t) · [ηiJ ]β∑

l∈Jk
i

[τil(t)] · [ηil]β

which is similar to the transition probability used by Ant System. We see
therefore that the ACS transition rule is identical to Ant System’s one, when
q > q0, and is different when q ≤ q0. More precisely, q ≤ q0 corresponds to
the exploitation of the knowledge available about the problem, that is, the
heuristic knowledge about distances between cities and the learned knowledge
memorized in the form of pheromone trails, whereas q > q0 favors more
exploration.

In Ant System all ants are allowed to deposit pheromone after complet-
ing their tours. By contrast, in the ACS only the ant that generated the
best tour since the beginning of the trail is allowed to globally update the
concentrations of pheromone on the branches. The updating rule is:

Δij(t + n) = (1 − α) · τij(t) + α · Δτij(t, t + n)

where (i, j) is the edge belonging to T +, the best tour since the beginning of
the trail, α is a parameter governing pheromone decay, and:

Δτij(t, t + n) =
1

L+

where L+ is the length of the T +.
The local update is performed as follows: when, while performing a tour,

ant k is in city i and selects city j ∈ Jk
i to move to, the pheromone concen-

tration on edge (i, j) is updated by the following formula:

τij(t + 1) = (1 − ρ) · τij(t) + ρ · τ0

The value of τ0 is the same as the initial value of pheromone trails and
it was experimentally found that setting τ0 = (n · Lnn)−1, where n is the
number of cities and Lnn is the length of a tour produced by the nearest
neighbor heuristic, produces good results [28, 39].

3.3 Hybrid Approaches in ACO

A single algorithm cannot be the best approach to solve quickly every atom-
ization problem. One way to deal with this issue is to hybridize an algorithm
with more standard procedures, such as greedy methods or local search pro-
cedures. Individual solutions obtained so far can be improved using another
searching procedures, and then placed back in competition with other solu-
tions not improved yet. There are so many ways to hybridize that there is
a common tendency to overload hybrid systems with too many components.
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Some modern hybrid systems contain fuzzy-neural-evolutionary components,
together with some other problem-specific heuristics. Ant Colony Optimiza-
tion algorithms are extremely flexible and can be extended by incorporating
diverse concepts and alternative approaches. For example Stüzle and Hoos
[75] have implemented version of AS-QAP based on their MAX-MIN Ant Sys-
tem (MMAS). They discussed the possibility of incorporating a local search
(2-opt algorithm and short Tabu Search runs) into the Ant Algorithm in the
case of the QAP. Ant Colony Optimization technique can also be enhanced by
including new points in a standard version of this algorithm. Gambardella et
al. [4] proposed a new Ant Colony Optimization algorithm, called the hybrid
Ant System (HAS-QAP), which differs significantly from the ACO algorithm.
There are two novelties:

• ants modify solutions, as opposed to building them,
• pheromone trails are used to guide the modifications of solutions, and not

as an aid to direct their construction.

In the initialization phase, each ant k, k = 1, . . . , m, is given a permutation
Pik which consists of a randomly generated permutation to its local opti-
mum by the local search procedure. This procedure examines all possible
ways in a random order and accepts any swap that improves the current so-
lution. Gambardella and Dorigo [39] have developed the Hybrid Ant System
(called HAS-SOP), which is a modified version of ACS plus a local optimiza-
tion procedure specifically designed to solve the sequential ordering problem
(SOP). Results obtained with HAS-SOP were very useful (effective). HAS-
SOP, which was tested on an extensive number of problems, outperforms
existing heuristics in terms of solution quality and computational time. Also,
HAS-SOP has improved many of the best known results on problems main-
tained in TSPLIB.

The ACO metaheuristics has been successfully applied to many discrete
optimization problems, as listed in tab. 1 [4]. ACO algorithms results turned
out to be competitive with the best available heuristic approaches. In partic-
ular, the results obtained by the application of ACO algorithms to the TSP
are very encouraging. They are often better than those obtained using other
general purpose heuristics like Evolutionary Computation or Simulated An-
nealing. Also, when adding to ACO algorithms Local Search procedures based
on 3-opt, the quality of the results is close to that obtainable by other state-
of-the-art methods. ACO algorithms are currently one of the best performing
heuristics available for the particularly important class of quadratic assign-
ment problems which model real world problems. AntNet, an ACO algorithm
for routing in packet switched networks, outperformed a number of state-of-
the-art routing algorithms for a set of benchmark problems. AntNet-FA, an
extension of AntNet for connection oriented network routing problems, also
shows competitive performance. HAS-SOP, an ACO algorithm coupled to a
local search routine, has improved many of the best known results on a wide
set of benchmark instances of the sequential ordering problem (SOP), i.e. the
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Table 1 Current applications of ACO algorithms

Problem name Algorithm Main references

Traveling salesman AS Dorigo [31]
Dorigo [25]
Dorigo [32]

Ant-Q Gambardella [37]
ACS and
ACS-3-opt Dorigo [30]

Dorigo [29]
Gambardella [38]

AS Stützle [75]
Stützle [74]

ASrank Bullheimer [8]

Quadratic assignment AS-QAP Maniezzo [58]
HAS-QAP Gambardella [41]

Gambardella [42]
MM AS-QAP Stützle [76]
ANTS-QAP Maniezzo [54]
AS-QAP Maniezzo [56]

Scheduling problems AS-JSP Colorni [17]
AS-FSP Stützle [73]
ACS-SMTTP Bauer [2]
ACS-SMTWTP Denbesten [19]

Vehicle routing AS-VRP Bullheimer [10]
Bullheimer [7]
Bullheimer [9]

HAS-VRP Gambardella [40]

Connection-oriented ABC Schoonderwoerd [72]
network routing Schoonderwoerd [71]

ASGA White [81]
AntNet-FS Di Caro [23]
ABC-smart ants Bonabeau [5]

Connection-less AntNet and
network routing AntNet-FA Di Caro [21]

Di Caro [22]
Di Caro [24]

Regular ants Subramanian [77]
CAF Heusse [47]
ABC-backward Vanderput [78]

Sequential ordering HAS-SOP Gambardella [39]

Graph coloring ANTCOL Costa [18]

Shortest common AS-SCS Michel [61]
supersequence Michel [62]
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Table 1 (continued)

Problem name Algorithm Main references

Frequency assignment ANTS-FAP Maniezzo [55]
Maniezzo [57]

Generalized MMAS-GAP Ramalhinho [53]
assignment

Multiple knapsack AS-MKP Leguizamon [50]

Optical networks ACO-VWP Navarro [79]
routing

Redundancy ACO-RAP Liang [51]
allocation

problem of finding the shortest Hamiltonian circle on a graph which satisfies
a set of precedence constraints on the order in which cities are visited. ACO
algorithms have also been applied to a number of other discrete optimiza-
tion problems like the shortest common supersequence problem, the multiple
knapsack, single machine total tardiness, and others, with very promising
results.

Multiple Ant Colony System for Vehicle Routing Problem with Time Win-
dows (MACS-VRPTW) is a new ACO based approach to solve vehicle routing
problems with time windows. The general idea of adapting ACS for multiple
objectives in VRPTW is to define two colonies, each dedicated to the opti-
mization of a different objective function. In the MACS-VRPTW algorithm
the minimization of the number of tours (or vehicles) and the minimization of
the total travel time are optimized simultaneously by two ACS based colonies
— ACS-VEI and ACS-TIME. The goal of the first colony is to reduce the
number of vehicles used, whereas the second colony optimises the feasible
solutions found by ACS-VEI. Each colony uses its own pheromone trails but
collaborates with another one by sharing information about the best results
obtained so far. MACS-VRPTW is shown to be competitive with the best
existing methods both in terms of solution quality and computation time.
Moreover, MACS-VRPTW improves good solutions for a number of problem
instances known from the literature.

4 Ant Colony Optimization in Rule Induction

The adaptation of ant colony optimization to rule induction and classifica-
tion is a research area still not well explored and examined. Ant-Miner is a
sequential covering algorithm that merged concepts and principles of ACO
and rule induction. Starting from a training set, Ant-Miner generates a set
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of ordered rules through iteratively finding an appropriate rule that covers
a subset of the training data, adds the formulated rule to the induced rule
list and then removes the examples covered by this rule until the stopping
criteria are reached.

ACO has a number of features that are important for computational prob-
lem solving [34]:

• it is relatively simple and easy to understand and then to implement
• it offers emergent complexity to deal with other optimization techniques
• it is compatible with the current trend towards greater decentralization in

computing
• it is adaptive and robust and it is enables coping with noisy data.

There are numerous characteristics of ACO which are crucial in data min-
ing applications. ACO, in contrary to deterministic decision trees or rule
induction algorithms, during rule induction tries to alleviate the problem of
premature convergence to local optima because of a stochastic element which
prefers a global search in problem’s search space. Secondly, ACO metaheuris-
tic is a population–based one. It permits the system to search in many inde-
pendently determined points in the search space concurrently and to use the
positive feedback between ants as a search mechanism [65].

Ant-Miner was invented by Parpinelli et al. [66, 65]. It was the first Ant
algorithm for rule induction and it has been shown to be robust and compa-
rable with the CN2 [14] and C4.5 [69] algorithms for classification. Ant-Miner
generates solutions in the form of classification rules. The original Ant–Miner
has a limitation that it can only process discrete values of attributes.

We present a short review of the main aspects of the rule discovery process
by Ant-Miner together with the description of the Ant-Miner algorithm. Ant-
Miner is a sequential covering approach to discover a list of classification rules,
by discovering one rule at a time until all or almost all the examples in the
training set are covered by the discovered rules. When the algorithm begins
to work, the training set holds all the examples and the discovered rule list
is empty. Each ant builds one rule. At the end of the While loop, the best
rule is added to the discovered rule list. Examples having the class predicted
by the rule, are removed from the training set before the next iteration of
the While loop. The process of rule discovering is repeated as long as the
number of uncovered examples in the training set is less than a user-specified
threshold.

Three main phases may be distinguish in every iteration of the Repeat
— Until loop: rule construction, rule pruning and pheromone updating. In
the first step, Antt starts with an empty rule without term in the antecedent,
and adds one term at time until one of the two criteria is satisfied:

• there is a term added to the current rule Rt, which makes the rule cover
a number of examples less than a user specified parameter — MinExam-
plesPerRule,
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• there are no more terms which can be added to the rule antecedent by the
current Antt. Please notice that no rule can contain any attribute twice
(with different values).

During the construction of the partial rule, Antt builds a path, and every
term added to the partial rule represents the direction of how the path is
being extended. The next term will be added to the partial rule according to
the probability of a term being selected. This value depends on the value of
the heuristic function and the amount of the pheromone associated with the
term. After this phase, pruning will be performed. The aim of this process
is to remove all irrelevant terms and improve the rule Rt. The importance
of this process is due to the probabilistic mechanism performed during the
construction of the rule. We want to eliminate the drawback of ignoring
interactions between attributes. Rule pruning iteratively remove one term at
a time from the rule as long as this improves the quality of the rule. This
process will be performed till there is only one term in the rule, or no term
improves the quality of the rule.

The next phase — pheromone updating is performed according to the
quality of the rule (predictive accuracy) — each term in the antecedent of
the just-pruned rule is affecting this value. The process of reducing the value
of pheromone will be performed for other terms, which are not present in the
rule antecedent.

The main loop is repeated until one of the following termination criteria
is achieved:

• the number of constructed rules is equal or greater than the number of
ants,

• the rule constructed by Antt is equal to No rules converg−1 rules (defined
by the user).

All cells in the pheromone table are initialized equally to the following
value:

τij(t = 0) =
1∑a

i=1 bi

where:

• a — the total number of attributes,
• bi — the number of values in the domain of attribute i.

The probability is calculated for all of the attribute–value pairs, and the
one with the highest probability is added to the rule. The transition rule in
Ant-Miner is given by the following equation:

pij =
τij(t) · ηij∑a

i

∑bi

j τij(t) · ηij

, ∀i ∈ I

where:
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Algorithm 2. Algorithm Ant-Miner
TrainingSet = {all training examples};1
DiscoveredRuleList = [ ]; /* rule list is initialized with an empty list */2
while TrainingSet > MaxUncoveredExamples do3

t = 1;/* ant index */4
j = 1;/* convergence test index */5
Initialize all trails with the same amount of pheromone;6
repeat7

Antt starts with an empty rule and incrementally constructs a classification rule8
Rt by adding one term at a time to the current rule;
Prune rule R − t;9
Update the pheromone amount of all trails by increasing pheromone in the trail10
followed by Antt (proportional to the quality of Rt) and decreasing pheromone
amount in the other trails (simulating pheromone evaporation);
/* update convergence test */11
if Rt is equal to Rt − 1 then12

j = j + 1;13
end14
else15

j = 1;16
end17
t = t + 1;18

until (t ≥ No of ants) OR (j ≥ No rules converg) ;19
Choose the best rule Rbest among all rules Rt constructed by all the ants;20
Add rule Rbest to DiscoveredRuleList;21
TrainingSet = TrainingSet - (set of examples correctly covered by Rbest);22

end23

• ηij is a problem-dependent heuristic value for each term,
• τij is the amount of pheromone currently available at time t on the con-

nection between attribute i and value j,
• I is the set of attributes that are not yet used by the ant,
• Parameter β is equal to 1.

In Ant-Miner, the heuristic value is supposed to be an information theoretic
measure for the quality of the term to be added to the rule. For prefering the
quality is measured in terms of entropy term to the others, and the measure
is given as follows:

ηij =
log2(k) − InfoTij∑a

i

∑bj

j (log2(k) − InfoTij)

where the function Info is similar to another function employed in C4.5
approach:

InfoTij = −
k∑

w=1

[
fregT w

ij

Tij

]
log2

[
fregT w

ij

|Tij |
]

where: k is the number of classes, |Tij | is the total number of cases in partition
Tij (the partition containing the cases, where attribute Ai has the value Vij),
freqT w

ij is the number of cases in partition Tij with class w, bi is a number
of values in the domain of attribute Ai (a is the total number of attributes).
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The higher the value of InfoTij , is the less likely is that the ant will choose
termij to add to its partial rule.

Please note that this heuristic function is a local method and it is sensitive
to attribute interaction. The pheromone values assigned to the term have a
more global nature. The pheromone updates depend on the evaluation of a
rule as a whole, i.e. we must take into account interaction among attributes
appearing in the rule.

The heuristic function employed here comes from the decision tree world
and it is similar to the method used in algorithm C4.5. There are many other
heuristic functions that can be adapted and used in Ant-Miner. We can derive
them from information theory, distance measures or dependence measures.

The rule pruning procedure iteratively removes the term whose removal
will cause the maximum increase in the quality of the rule. The quality of a
rule is measured using the following formula:

Q =
(

TruePos

T ruePos + FalseNeg

)
·
(

TrueNeg

FalsePos + TrueNeg

)

where:

• TruePros – the number of cases covered by the rule and having the same
class as the one predicted by the rule,

• FalsePros – the number of cases covered by the rule and having a different
class from the one predicted by the rule,

• FalseNeg – the number of cases that are not covered by the rule while
having a class predicted by the rule,

• TrueNeg – the number of cases that are not covered by the rule which have
a different class from the class predicted by the rule.

The quality measure of a rule is determined by:

Q = sensitivity · specificity.

We can say that accuracy among positive instances determines sensitivity,
and the accuracy among negative instances determines specificity. Now we
take into account only the rule accuracy, but it can be changed to analyze
the rule length and interestingness.

Once each ant completes the construction of the rule, pheromone updating
is carried out as follows:

τij(t + 1) = τij(t) + τij(t) · Q, ∀termij ∈ the rule

The amounts of pheromones of terms belonging to the constructed rule
R are increased in proportion to the quality of Q. To simulate pheromone
evaporation τij , the amount of pheromone associated with each termij which
does not occur in the constructed rule must be decreased. The reduction of
pheromone of an unused term is performed by dividing the value of each
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τij by the summation of all τij . The pheromone levels of all terms are then
normalized.

5 Modifications

The authors of Ant-Miner [66, 65] suggested two directions for future re-
search:

1. Extension of Ant-Miner to cope with continuous attributes;
2. The investigation of the effects of changes in the main transition rule:

a. the local heuristic function,
b. the pheromone updating strategies.

Recently, Galea [36] proposed a few modifications in Ant-Miner. Firstly,
the population size of ants was changed (from 1 to 50 ants). Secondly, new
stopping criteria were examined. Compared to the classical Ant-Miner, the
implementation of Ant-Miner proposed by Galea [36] produces slightly lower
predictive accuracy then Parpinelli et al.’s. Galea also examined the effect of
employing the pseudo random proportional rule. Galea suggests to study the
relationship between the characteristics of the dataset, such as:

• the distribution of the data set and correlation between attributes,
• the selection of algorithms: stochastic or deterministic algorithms.

The Ant-Miner modifications and extensions have been presented in many
articles, as listed in Tab.2.

This subsection gives a brief overview of Ant-Miner extensions. Some of
the propositions are relatively simple and, as a result, give the same type
of classification rules discovered by this algorithm. Another modifications
cope with the problem of attributes having ordered categorical values, some
of them improve the flexibility of the rule representation language. Finally,
more sophisticated modifications have been proposed to discover multi-label
classification rules and to investigate fuzzy classification rules. Certainly there
are still many problems and open questions for future research.

6 Experiments and Remarks

An Ant Colony Optimization technique is in essence, a system based on agents
which simulate the natural behavior of ants, incorporating a mechanism of co-
operation and adaptation, especially via pheromone updates. When solving
different problems with the ACO algorithm we have to analyze three ma-
jor functions. Choosing these functions appropriately helps to create better
results and prevents stucking in local optima of the search space.

The first function is a problem-dependent heuristic function (η) which mea-
sures the quality of terms that can be added to the current partial rule. The
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Table 2 Modifications of the Ant-Miner algorithm

1 Modifications or extractions:
The class is known during the rule construction. All ants construct rules
predicting the same class [12, 36, 59, 48]

Authors Year Open questions:

Chen, Chen & He,
Galea & Shen,
Martens et al.,
Smaldon & Freitas,

2006
2006
2006
2006

This approach leads to: a new heuristic function
and new pheromone update strategies.

2 Modifications or extensions:
A new heuristic function. The replacement of the entropy reduction
heuristic function by a simpler heuristic function [12, 52, 59, 63, 48, 80]

Authors Year Open questions:

Chen, Chen & He,
Liu, Abbas & Mc Kay,
Martens et al.,
Oakes,
Smaldon & Freitas,
Wang & Feng,

2006
[12]
2004
2006
2004
2006
2004

There is no quarantee that the use of pheromones
would completely compensate the use of a less ef-
fective function.
The heuristic function can be computed with re-
spect to the number of cases and attributes (only
once in the initialization of the algorithm).

3 Modifications or extensions:
Using a pseudo random proportional transition rule. Using parameter
q0 [12, 52, 80]

Authors Year Open questions:

Chen, Chen & He,
Liu, Abbas & Mc Kay,
Wang & Feng,

2006
2004
2004

This transition rule has an advantage that it al-
lows the user to have an explicit control over the
exploitation versus exploration trade-of.
It requires to choose a good value for the param-
eter q0 in empirical way.

4 Modifications or extensions:
A new rule Quality measure. Ant-Miner’s rule quality is based on the
product of sensitivity and specificity. The replacement of the rule quality
function by measures that are essentially based on the confidence and
coverage of a rule [12, 59]

Authors Year Open questions:

Chen, Chen & He,
Martens et al.,

2006
2006

It would be interesting to perform extensive ex-
periments comparing the effectiveness of these
kinds of rule quality measures.

5 Modifications or extensions:
New pheromone updating rules. The use of an explicit pheromone evap-
oration rate. A self adaptive parameter. Different procedures to update
pheromone as a function of the rule quality [52, 59, 48, 80]
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Table 2 (continued)

Authors Year Open questions:

Liu, Abbas & Mc Kay,
Martens et al.,
Smalton & Freitas,
Wang & Feng,

2004
2006
2006
2004

It is important to change the original Ant-
Miner’s formula to update pheromone in order
to cope better with law-quality rules. We treat
evaporation trails as a form of a learning factor.

6 Modifications or extensions:
Ant-Miner can cope with ordered values of categorical attributes (not
continuous) [63, 59]

Authors Year Open questions:

Oakes
Martens et al.,

2004
2006

It is important to point out that the connection
with the Rough Sets theory in the contrast to
Fuzzy Sets is a new augmentation.

7 Modifications or extensions:
Dropping the rule pruning procedure. The removal of pruning makes
the Ant-Miner+ significantly faster [59]

Authors Year Open questions:

Martens et al., 2006 It would be interesting to evaluate, whether for
the discovered by Ant-Miner+ rules the predic-
tive accuracy could be increased by the use of
a deterministic rule pruning procedure driven
by the rule quality.

8 Modifications or extensions:
Discovering Fuzzy Classification Rules. FRANTIC-SRL maintains
multiple populations of ants, each of them discovers rules predicting
a different class (fixed for all ants belongs to one colony) [36]

Authors Year Open questions:

Galea & Shen 2006 The evaluation of the rule sets could be reduced
by considering only the combinations of the
best rules (the delaying reinforcement (perhaps
to a late) — the update of the pheromones).

9 Modifications or extensions:
Discovering rules for multi-label classification. The simultaneous pre-
diction of the value of two or more class attributes rather than just 1
class attribute [11]

Authors Year Open questions:

Chan & Freitas 2006 MuLAM — each ant constructs a set of rules.
MuLAM uses a pheromone matrix for each
of the class attributes. Authors update the
pheromone matrix of the class attributes (de-
pending on the terms in its antecedent) pre-
dicted by the rule.
The model of communication via pheromone
on different levels is worth to analyze.
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heuristic function stays unchanged during the algorithm run in the classical
approach. We want to investigate whether the heuristic function depends on
the previous well-known approaches in the data-mining area (C4.5, CN2) and
can influence the behavior of the whole colony, or not. A rule for pheromone
updating, which specifies how to modify the pheromone trail (τij) and guar-
antee the communication between ants, is an important aspect of learning via
pheromone values. Consequently the changing scheme of this value may play
a significant role in establishing a suitable form of cooperation. Finally, the
probabilistic transition rule based on the value of the heuristic function and
on the contents of the pheromone trail matrix (that is used to iteratively con-
struct rules) can also be analyzed as a form of specific two-way switch between
deterministic and stochastic rule induction in Ant-Miner. These problems will
be analyzed carefully in the following experimental studies.

6.1 Data Sets Used in Our Experiments

The evaluation of the performance behavior the behavior of Ant-Miner was
performed using 5 public-domain data sets from the UCI (University of
California at Irvine) data set repository available from: http://www.ics.
uci.edu.~mlearn/MLRepository.html. Table 3 shows the main character-
istics of the data sets, which were the data sets similar to ones used to evalu-
ate the original Ant-Miner. Please note that Ant-Miner cannot cope directly
with continuous attributes (i.e. continuous attributes have to be discretized in
a preprocessing step, using the RSES program (http://logic.mimuw.edu.
pl/~rses/). For the data sets marked with an asterisk in table 3 we used the
discretized version of the data. In the original Ant-Miner and Galea imple-
mentation [35], the discretization was carried out using a method called C4.5-
Disc [49]. C4.5-Disc is an entropy-based method that applies the decision-tree
algorithm C4.5 to obtain discretization of the continuous attributes.

Both the original Ant-Miner and our proposal have some parameters. The
first one — the number of ants will be examined during the experiments. The
rest of parameters are presented in tab. 4. There are the following values of
the parameters:

• the minimum number of cases per rule,
• the maximum number of uncovered cases in the training set,
• the number of rules used to test convergence of the ants.

In order to obtain reliable performance estimates ten-fold cross-validations
were carried out to produce each of the statistics in the tables below.
As some of the tests required changes to the parameters for each of the
data sets, for example the number of ants or q0-value was changed during
appropriate tests. The results obtained are summarized after 300 ten-fold
cross-validations, summarized and discussed below. Possible follow-up inves-
tigations suggested by the results are also mentioned.
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The authors of the original version of Ant-Miner used 2 sets of evaluation
criteria for the comparison with other rule induction algorithms: C4.5 and
CN2. We usually used the first criterion: a predictive accuracy. The second
criterion determines the rule set size:

• the number of rules in a rule set,
• an individual rule size (the number of terms per rule).

Table 3 The properties of data sets

Dataset Number of
Instances

Number of
Attributes

Number of
Values of
Attributes

Number of
Decision
Classes

Breast cancer 296 9+1 51 2

Wisconsin breast cancer 699 9+1 90 2

Dermatology 366 34+1 *137 6

Hepatitis 155 19+1 *71 2

Tic-tac-toe 958 9+1 27 2

Table 4 Original parameters in data sets

Test Set 50%

Training Set 50%

Min. Cases per Rule 5

Max. Uncovered Cases 10

Rules for Convergence 10

Number of Iterations 100

6.2 TEST 1: Changing the Population Size

This test was carried out to see whether a variable number of ants as com-
pared to a single ant in Ant-Miner has an influence on the predictive accuracy.
The number of ants was changed from 1 to 50, with the step equal to 5. The
aim of this experiment was to observe the obvious effect of a changing of the
number of ants for an iteration and how does it affct the predictive accuracy.

Two tables: 5 and 6 show the results obtained for all of the data sets and
compare them with the result obtained with a population size equal to 1. Sim-
ilarly to Galea results [35], in two of the data sets — Wisconsin Breast Cancer
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Table 5 Comparing the predictive accuracy for the different number of ants’ pop-
ulation. The numbers next to the ,,±” symbol are the standard deviations of the
corresponding average predictive accuracies

Dataset Best Achieved result Predictive
Accuracy with a
Population Size
of one Ant (%)

Population
size (%)

Predictive
Accuracy (%)

Breast cancer 5 74.69 (± 1.76) 74.36 (± 1.69)

Wisconsin breast cancer 1 92.13 (± 1.06) 92.13 (± 1.06)

Dermatology 40 94.02 (± 1.77) 87.84 (± 3.20)

Hepatitis 50 79.17 (± 2.64) 78.79 (± 3.16)

Tic-tac-toe 1 73.80 (± 1.43) 73.80 (± 1.43)
10 73.80 (± 1.61)

Table 6 The simplicity of the rule sets generated by Ant-Miner, C4.5 and CN2.
The numbers next to the ,,±” symbol are the standard deviations of the corre-
sponding average predictive accuracies

Dataset Average No. of Rules
Ant Miner C4.5 CN2

Breast cancer 5.48 (± 0.36) 6.2 (± 3.21) 55.4 (± 2.07)

Wisconsin breast cancer 9.92 (± 0.62) 11.1 (± 1.45) 18.6 (± 1.45)

Dermatology 7.11 (± 0.43) 23.2 (± 1.99) 18.5 (± 0.47)

Hepatitis 4.42 (± 0.31) 4.4 (± 0.93) 7.2 (± 0.25)

Tic-tac-toe 7.90 (± 0.86) 83.0 (± 14.1) 39.7 (± 2.52)

and Tic-Tac-Toe the algorithm achieved the best average predictive accuracy
for one ant only. In the rest of the analyzed data sets the improvements can
be seen when the population size was increased to the greater values, close
to 50. This number of ants depends on the particular characteristics of the
data sets.

During these investigations, one thing to note is that choosing the best rule
from all of the created within one iteration comes a superficial and purposeless
task. It can be helpful only for later ants (using pheromone updates), which
could create different rules that might also could have an improved quality.

It is worth to make further experiments to check the pheromone updating
rules force the ants to explore different regions in the problem search space
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and create different rules. This may be accomplished by testing different
strategies of pheromone reinforcements or evaporations according to local
and global rules. The pheromone evaporation create a possibility, or situation,
when other ants in the same iteration select different terms and hence create
different, more valuable rules. More detailed investigation were carried out
in the next tests.

6.3 TEST 2 — Changing the Pheromone Values

There are various ways in which a pheromone updating can be performed
— the initialization of the pheromone and setting it at minimum/maximum
bounds of the levels reached. In the original Ant-Miner the rule induction is
performed with a population of one ant. In the ant colony algorithm, where
the population size is greater than one, choices need to be made as to how
to update the pheromone values. All the ants may have to be reinforced or
only the k best ants are used, in short, the elitist strategy should be used
for pheromone updating, ensuring that exploration is more channelized. As
it was mentioned before in the original Ant-Miner algorithm the pheromone
values of terms were updated after each ant create the solution while in our
implementation the pheromone valueis changed at the end of an iteration
based on the best ant from the current iteration (a global updating rule).
Meanwhile, the gathered pheromone values evaporate according to the lo-
cal pheromone updating rule. This makes the pheromone updating of terms
more prejudicing and therefore allows more control over the search of ants in
successive iterations.

Δτij(t) = (1 − α)τij(t − 1) + τij(t − 1) · Q, ∀i, j ∈ R,

where the parameters are the same as mentioned in the second section of this
article.

Our approach also imitate the same pheromone updating rule as in the
original Ant-Miner:

τij(t) = τij(t − 1) + τij(t − 1) · Q = (1 + Q)τij(t − 1)

Meanwhile, the effect of evaporation for unused terms is achieved by dividing
the value of each τij(t) by the summation of all τij (a specific normalization
process).

In the case, when pheromone values were generally too low, and only few
good rules were being generated and reinforced by new pheromone values, we
propose another method of changing the values. This process causes that the
pheromone is increased, but the rest of the terms have decreasing pheromone
values. Because the results indicate that the pheromone values are not in the
correct boundaries, we propose to employed the another method of normaliza-
tion in changeable the scheme of pheromone values. This idea was presented
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by V. Maniezzo as Approximate Nondeterministic Tree Search (ANTS) [33],
where the pheromone rule is presented as follows:

Δτij(t) = τij(t − 1) ·
(

1 − Q − LB

avgQ − LB

)
, ∀i, j ∈ R,

where LB is the value of the lower bound on the optimal solution value
computed at the start of the algorithm and we have LB = 0.05 and avgQ is
the moving average of the last l = 10 evaluated solutions according to the Q
function; l is a parameter of the algorithm.

Another point that needs to be clarified is whether the normalization is
correctly performed. We examine this procedure by changing the upper bound
of the normalization (in these circumstances we establish the boundary equal
to 3). We also reinforced the addition value of the Q function by multiplying
this value by (1−α), which leads to (1+Q) ·0.9 updating the previous values
of pheromone:

τij(t) = τij(t − 1) · 0.9 + τij(t − 1) · 0.9 · Q,

where α is the evaporation factor in the global updating rule (equal to 0.1).
The best achieved predictive accuracies are presented in the tab. 7 in

bold. Unfortunately, the interesting ANTS approach is not as promising as
we expected. To sum up all the algorithm changes and developments we can

Table 7 The influence of the pheromone updates on the predictive accuracy (%).
The numbers below, next tor the ,,±” symbol are the standard deviations of the
corresponding average predictive accuracies

Dataset Standard
update

Normalize
0-3

Increase
c. 0.9

Minus
c. 0.01

ANTS

Breast cancer 74.69
(± 1.76)

72.99
(± 2.06)

73.93
(± 2.46)

74.14
(± 1.86)

71.97
(± 2.88)

Wisconsin
breast cancer

92.13
(± 1.06)

91.98
(± 1.10)

91.58
(± 1.39)

91.93
(± 1.59)

91.57
(± 1.35)

Dermatology 94.02
(± 1.77)

93.27
(± 1.64)

93.96
(± 1.41)

92.71
(± 2.18)

88.32
(± 2.42)

Hepatitis 79.17
(± 2.64)

79.58
(± 2.80)

79.22
(± 3.11)

79.82
(± 1.92)

76.98
(± 3.26)

Tic-tac-toe (1) 73.80
(± 1.43)

74.26
(± 1.87)

73.31
(± 1.02)

74.23
(± 2.24)

71.80
(± 1.97)

Tic-tac-toe 73.80
(± 1.61)

72.46
(± 1.96)

72.71
(± 1.11)

73.17
(± 1.41)

71.29
(± 1.69)
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observed that the pheromone values for some term in some of the data sets
were getting extraordinarily low. Several solutions were possible to include
in our approach:

• setting a minimum value for the pheromone values of terms, similarly to
the Min-Max approach proposed by Stützle and Hoos [76],

• ignore the terms with small, uninteresting values, i.e. do not consider them
for inclusion in the currently created rule.

6.4 TEST 3 — Changing the Main Transition Rule

In this experimental study we want to see whether altering the main tran-
sition rule (selection) from the random proportional selection to the pseudo
random proportional selection has an effect on the predictive accuracy. A
pseudo random proportional selection requires a setting of the q parameter
value that enables the exploitation or the exploration of the problem search
space.

Different values of q were tested, ranging from 0.1 to 1.0. A setting of
q = 0.0 means no exploitation of owned knowledge and is the same as using
a random proportional rule. A setting q = 1.0 turns the algorithm into a
deterministic approach and a term with a higher probability is always chosen.

The following tab. 8 shows the results for the different q0-values settings.

Table 8 Comparing predictive accuracy for different q0 values

Dataset Expl./Explor.
Rate (q0)

Predictive Ac-
curacy (%)

Exploration
Accuracy (%)

Breast cancer 0.9 74.71 (± 1.79) 74.69 (± 1.76)

Wisconsin breast cancer 0.6 92.69 (± 1.16) 92.13 (± 1.06)

Dermatology 0.0 (s.) 94.02 (± 1.77) 94.02 (± 1.77)

Hepatitis 1.0 (d.) 80.31 (± 2.79) 79.17 (± 2.64)

Tic-tac-toe (1 ant) 0.9 74.87 (± 1.82) 73.80 (± 1.43)

Tic-tac-toe 0.9 74.33 (± 1.94) 73.80 (± 1.61)

It is especially interesting to note that for the Dermatology data set the
stochastic algorithm achieved the best predictive accuracy. On contrary, in
the Hepatis data set we observe the best performance for the fully determin-
istic approach.

It can be an intriguing aspect of future research to adjust specific features
of data sets to the nature of this stochastic/deterministic approach. In order
to achieve better predictive accuracy than in the standard C4.5 and CN2
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we can combine this study with the population size examination. Another
question is the dynamic or adaptive scheme of changing the q0 value. This
possibility enable the employment of coarse-grained or fine-grained method-
ology during the searching process.

6.5 TEST 4 — Changing the Q Values (Modifications
of Pruning)

The rule pruning procedure may be slightly different from Ant-Miner’s im-
plementation. We have introduced three extensions to the classical approach.

Accuracy Convergence. It is a compromise between accuracy and conver-
gence:

Q =
TP

TP + FP
· TP + FP

TP + FP + TN + FN

Q =
TP

TP + FP + TN + FN

Laplace Accuracy. This evaluation function is based on the Laplace error
estimate (we explain it using the standard notation, first used in Q func-
tion):

Q =
TP + 1

TP + FP + k

where k — the number of decision cases.
Elite 0.2. This formula is derived from the elitist strategy commonly ap-

plied in many other combinatorial optimization problems. We have ana-
lyzed 20% of the population size (when this size is greater or equal to 10).

In the case of Ant-Miner and rule induction we search a fitness function
that assesses how well a rule constructed by an ant fulfills our expectations.

From the study summarized in the tab. 9, we see that the Laplace accuracy
is used successfully in almost every type of data sets (with an exception of
the Breast cancer). It should be emphasized that in this type of modification
the number of rules increases regularly in all the analyzed data sets (see tab.
10). We also observe a smaller value of accuracy in the first column for the
Dermatology data set. As in classification, the question arises as to whether
the loss of accuracy is due to the wrong method of pruning and consequently
the rule constructed or to the increased difficulty in classifying cases in this
data set. We achieved the best results for the Tic-Tac-Toe data set with a
pruning procedure utilizing the Laplace error estimate.

6.6 TEST 5 — Changing the Heuristic Function

According to the proposition concerning the heuristic function [52], we also
analyze the simplicity of this part of the main transition rule in Ant-Miner.
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Table 9 Modifications of pruning

Dataset Accuracy
Conver-
gence (%)

Laplace
Accuracy
(%)

Elite
0.2 (%)

Standard
Q (%)

Breast cancer 70.73
(± 2.14)

65.15
(± 2.60)

— 74.69
(± 1.76)

Wisconsin breast cancer 79.27
(± 1.26)

93.95
(± 1.02)

— 92.13
(± 1.06)

Dermatology 47.49
(± 2.50)

91.97
(± 2.02)

— 94.02
(± 1.77)

Hepatitis 79.82
(± 2.93)

76.46
(± 2.17)

79.03
(± 3.70)

79.17
(± 2.64)

Tic-tac-toe (1) 69.71
(± 1.29)

97.77
(± 1.31)

— 73.80
(± 1.43)

Tic-tac-toe 70.10
(± 0.95)

99.80
(± 0.19)

73.42
(± 1.84)

73.80
(± 1.61)

Table 10 Simplicity of rule sets generated in the context of Q

Dataset Average No. of Rules
Accuracy
Conver-
gence

Laplace Ac-
curacy

Elite 0.2 Standard Q

Breast cancer 3.24
(± 0.24)

18.64
(± 1.00)

— 5.40
(± 0.46)

Wisconsin breast cancer 5.98
(± 0.38)

14.06
(± 1.06)

— 9.82
(± 0.50)

Dermatology 2.96
(± 0.08)

9.32
(± 0.88)

— 7.02
(± 0.38)

Hepatitis 2.54
(± 0.34)

6.66
(± 0.74)

4.44
(± 0.28)

4.42
(± 0.34)

Tic-tac-toe (1) 4.10
(± 0.10)

19.64
(± 2.64)

— 6.94
(± 0.78)

Tic-tac-toe 4.08
(± 0.08)

14.24
(± 0.56)

7.94
(± 0.98)

8.18
(± 0.70)
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The motivation is as follows: in ACO approaches we do not need sophisticated
information in the heuristic function, because of the pheromone value, which
compensate some mistakes in term selections. Our intention is to explore the
effect of using a simpler heuristic function instead of a complex one, originally
proposed by Parpinelli [66].

Only pheromone. We propose to investigate a simple ant algorithm with-
out the heuristic function. The pheromone information should govern the
behavior of agents.

Pij(t) =
τij(t)

a∑

i

xi

bi∑

j

τij(t)

.

Density ηij I. This proposition is derived from the density measure:

ηij =
max(dij)

dij∑

k

dijk

,

where max(dij) is the biggest number of objects belonging to the decision

class for a specific term Tij , and
dij∑

k

dijk, is the sum of all objects from all

decision classes concerning this term.
Density ηij II. This version of the density measure is another interpretation

of the proposition of using a simpler version of the heuristic function:

ηij =
max(dij)

a∑

l

xl

bm∑

m

dlm∑

k

dlmk

,

where max(dij) is similar to the majority class of Tij , and a denominator
a∑

l

xl

bm∑

m

dlm∑

k

dlmk describes all the objects belonging to every decision

class for all terms used in the examined rule. We consider it the same rule
as proposed in [52], i.e.:

ηij =
max(dij)

|Tij | .

This new notation should help to better understand the differences in our
two density modifications.

Table 11 shows the accuracy rates for rule sets produced in different ap-
proaches. It can be seen that in general these modifications are similar to the
original Ant-Miner in the context of effectiveness. There are two reasons of
disparity in the comparison between the presented results and the proposal
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Table 11 Modifications of the heuristic function — predictive accuracy

Dataset Only
pheromone
(%)

Density ηij

I (%)
Density ηij

II (%)
Standard
function
(%)

Breast cancer 71.23
(± 2.95)

72.20
(± 2.97)

72.85
(± 2.28)

74.69
(± 1.76)

Wisconsin breast cancer 91.39
(± 0.96)

91.56
(± 0.96)

92.05
(± 1.08)

92.13
(± 1.06)

Dermatology 92.72
(± 1.90)

93.63
(± 1.83)

93.98
(± 1.48)

94.02
(± 1.77)

Hepatitis 75.89
(± 2.81)

77.16
(± 2.75)

75.95
(± 3.07)

79.17
(± 2.64)

Tic-tac-toe (1) 71.21
(± 1.67)

72.23
(± 1.68)

71.93
(± 1.54)

73.80
(± 1.43)

Tic-tac-toe 72.36
(± 2.00)

72.22
(± 1.57)

71.81
(± 1.99)

73.80
(± 1.61)

in [52]. Firstly, more ants should be employed in this version of the density
oriented heuristic function. Secondly, this version requires more running time
for a reliable comparison.

We can conclude that looking for the appropriate scheme of changing the
analyzed functions and rules independently was the wrong way. A more sat-
isfactory procedure was found that consisted of two key elements:

• tunning the procedure of effective pruning with simultaneous changing the
pheromone matrix,

• simplifying the main transition rule by incorporating a new heuristic func-
tion based on density measures with a learning procedure via pheromone
values precisely performed.

7 Conclusions

Simple ants, following very simple rules, interact with each other and repre-
sent an example of swarm intelligence behavior. As we know: ,, the whole is
more than the sum of the parts”, so this kind of intelligence is an example
of an emergent phenomenon. The employment of the ant colony metaphor
for discovering rules, classification is a very underestimated research area.
In other research areas the ACO algorithms have been presented as an ef-
fective approach, which produce good solutions for different combinatorial
optimization problems.

The important advantage in the context of data mining and rule induction
is that Ant-Miner produces rule sets much smaller than the rule sets created
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by the classical approaches: C4.5 and CN2. In this chapter new modifica-
tions based on the ant colony metaphor were incorporated in the original
Ant-Miner rule producer. Compared to the previous implementations and
settings of Ant-Miner, these different experimental studies show how these
extensions improve, or sometimes deteriorate, the performance of Ant-Miner.
We presented the efficiency of our Ant-Miner was presented via this compar-
ative study.

Examining the previous modifications and extensions (first applied in the
combinatorial optimization field) to find appropriate and satisfying decision
rules in analyzed data sets was an interesting directions of research.

This approach is the result of a more detailed and deepened review of the
previous approaches. We observed that these modifications analyzed sepa-
rately tend not to be sufficiently motivated. There is still room for improve-
ment in two directions. Firstly, it is still not clear wheather this approach
consistently improves its efficiency in maintaining multiple colonies of ants.
Secondly, this algorithm is not fully examined in the version without pruning
procedure. We also plan to examine this method when used for rule induction
in the bigger data sets.
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22. DiCaro, G., Dorigo, M.: AntNet: Distributed stigmergetic control for communi-
cations networks. Journal of Artificial Intelligence Research (JAIR) 9, 317–365
(1998)

23. DiCaro, G., Dorigo, M.: Extending AntNet for best–effort Quality–of–Service
routing. In: ANTS 1998 – From Ant Colonies to Artificial Ants: First Interna-
tional Workshop on Ant Colony Optimization, October 15–16 (1998) (Unpub-
lished presentation)

24. DiCaro, G., Dorigo, M.: Two ant colony algorithms for best–effort routing
in datagram networks. In: Proceedings of the Tenth IASTED International
Conference on Parallel and Distributed Computing and Systems (PDCS 1998),
pp. 541–546. IASTED/ACTA Press (1998)

25. Dorigo, M.: Optimization, Learning and Natural Algorithms (in Italian). PhD
thesis, Dipartimento di Elettronica, Politecnico di Milano, IT (1992)

26. Dorigo, M., DiCaro, G.: The ant colony optimization meta–heuristic. In: Corne,
D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization. McGraw–Hill,
London (1999)

27. Dorigo, M., DiCaro, G., Gambardella, L.: Ant algorithms for distributed dis-
crete optimization. Artif. Life 5(2), 137–172 (1999)

28. Dorigo, M., Gambardella, L.: A Study of Some Properties of Ant–Q. In: Pro-
ceedings of Fourth International Conference on Parallel Problem Solving from
Nature, PPSNIV, pp. 656–665. Springer, Berlin (1996)

29. Dorigo, M., Gambardella, L.: Ant Colonies for the Traveling Salesman Problem.
Biosystems 43, 73–81 (1997)



260 U. Boryczka and J. Kozak

30. Dorigo, M., Gambardella, L.: Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem. IEEE Trans. Evol. Comp. 1,
53–66 (1997)

31. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy.
Technical Report 91–016, Politechnico di Milano, Italy (1991)

32. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a
Colony of Cooperating Agents. IEEE Trans. Syst. Man. Cybern. B26, 29–41
(1996)
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