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Abstract. Experience has shown that a crafted combination of concepts
of different metaheuristics can result in robust combinatorial optimization
schemes and produce higher solution quality than the individual metaheuris-
tics themselves, especially when solving difficult real-world combinatorial
optimization problems. This chapter gives an overview of different ways to
hybridize GRASP (Greedy Randomized Adaptive Search Procedures) to cre-
ate new and more effective metaheuristics. Several types of hybridizations are
considered, involving different constructive procedures, enhanced local search
algorithms, and memory structures.

1 Introduction

Combinatorial optimization problems involve a finite number of alternatives:
given a finite solution set X and a real-valued objective function f : X → R,
one seeks a solution x∗ ∈ X with f(x∗) ≤ f(x), ∀ x ∈ X . Several combi-
natorial optimization problems can be solved in polynomial time, but many
of them are computationally intractable in the sense that no polynomial
time algorithm exists for solving it unless P = NP [27]. Due to the computa-
tional complexity of hard combinatorial problems, there has been an extensive
research effort devoted to the development of approximation and heuris-
tic algorithms, especially because many combinatorial optimization prob-
lems, including routing, scheduling, inventory and production planning, and
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facility location, arise in real-world situations such as in transportation (air,
rail, trucking, shipping), energy (electrical power, petroleum, natural gas),
and telecommunications (design, location).

To deal with hard combinatorial problems, heuristic methods are usually
employed to find good, but not necessarily guaranteed optimal solutions.
The effectiveness of these methods depends upon their ability to adapt to
a particular realization, avoid entrapment at local optima, and exploit the
basic structure of the problem. Building on these notions, various heuristic
search techniques have been developed that have demonstrably improved
our ability to obtain good solutions to difficult combinatorial optimization
problems. One of the most promising of such techniques are usually called
metaheuristics and include, but are not restricted to, simulated annealing
[43], tabu search [28, 29, 32], evolutionary algorithms like genetic algorithms
[36], ant colony optimization [19], scatter search [35, 45, 47], path-relinking
[30, 31, 33, 34], iterated local search [8, 49], variable neighborhood search [37],
and GRASP (Greedy Randomized Adaptive Search Procedures) [21, 22].

Metaheuristics are a class of methods commonly applied to suboptimally
solve computationally intractable combinatorial optimization problems. The
term metaheuristic derives from the composition of two Greek words: meta
and heuriskein. The suffix ‘meta’ means ‘beyond’, ‘in an upper level’, while
‘heuriskein’ means ‘to find’. In fact, metaheuristics are a family of algorithms
that try to combine basic heuristic methods in higher level frameworks aimed
at efficiently exploring the set of feasible solution of a given combinatorial
problem. In [72] the following definition has been given:

“A metaheuristic is an iterative master process that guides and modi-
fies the operations of subordinate heuristics to efficiently produce high-
quality solutions. It may manipulate a complete (or incomplete) single
solution or a collection of solutions at each iteration. The subordinate
heuristics may be high (or low) level procedures, or a simple local search,
or just a construction method.”

Osman and Laporte [52] in their metaheuristics bibliography define a meta-
heuristics as follows:

“A metaheuristic is formally defined as an iterative generation process
which guides a subordinate heuristic by combining intelligently differ-
ent concepts for exploring and exploiting the search space, learning
strategies are used to structure information in order to find efficiently
near-optimal solutions. ”

In the last few years, many heuristics that do not follow the concepts
of a single metaheuristic have been proposed. These heuristics combine
one or more algorithmic ideas from different metaheuristics and sometimes
even from outside the traditional field of metaheuristics. Experience has
shown that a crafted combination of concepts of different metaheuristics
can result in robust combinatorial optimization schemes and produce higher
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solution quality than the individual metaheuristics themselves. These ap-
proaches combining different metaheuristics are commonly referred to as hy-
brid metaheuristics.

This chapter gives an overview of different ways to hybridize GRASP to
create new and more effective metaheuristics. Several types of hybridizations
are considered, involving different constructive procedures, enhanced local
search algorithms, and memory structures.

In Section 2 the basic GRASP components are briefly reviewed. Hybrid
construction schemes and hybridization with path-relinking are considered in
Sections 3 and 4, respectively.

Hybridization schemes of GRASP with other metaheuristics are explained
in Section 5. Concluding remarks are given in the last section.

2 A Basic GRASP

A basic GRASP metaheuristic [21, 22] is a multi-start or iterative method.
Given a finite solution set X and a real-valued objective function f : X → R
to be minimized, each GRASP iteration is usually made up of a construction
phase, where a feasible solution is constructed, and a local search phase which
starts at the constructed solution and applies iterative improvement until a
locally optimal solution is found. Repeated applications of the construction
procedure yields diverse starting solutions for the local search and the best
overall solution is kept as the result.

The construction phase builds a solution x. If x is not feasible, a repair
procedure is invoked to obtain feasibility. Once a feasible solution x is ob-
tained, its neighborhood is investigated by the local search until a local min-
imum is found. The best overall solution is kept as the result. An extensive

procedure GRASP(f(·), g(·), MaxIterations, Seed)
1 xbest:=∅; f(xbest):=+∞;
2 for k = 1, 2, . . . ,MaxIterations→
3 x:=ConstructGreedyRandomizedSolution(Seed, g(·));
4 if (x not feasible) then
5 x:=repair(x);
6 endif
7 x:=LocalSearch(x, f(·));
8 if (f(x) < f(xbest)) then
9 xbest:=x;
10 endif
11 endfor;
12 return(xbest);
end GRASP

Fig. 1 Pseudo-code of a basic GRASP for a minimization problem
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procedure ConstructGreedyRandomizedSolution(Seed, g(·))
1 x:=∅;
2 Sort the candidate elements i according to their incremental

costs g(i);
3 while (x is not a complete solution)→
4 RCL:=MakeRCL();
5 v:=SelectIndex(RCL, Seed);
6 x := x ∪ {v};
7 Resort remaining candidate elements j according to their

incremental costs g(j);
8 endwhile;
9 return(x);
end ConstructGreedyRandomizedSolution;

Fig. 2 Basic GRASP construction phase pseudo-code

survey of the literature is given in [26]. The pseudo-code in Figure 1 illus-
trates the main blocks of a GRASP procedure for minimization, in which
MaxIterations iterations are performed and Seed is used as the initial seed
for the pseudorandom number generator.

Starting from an empty solution, in the construction phase, a complete
solution is iteratively constructed, one element at a time (see Figure 2). The
basic GRASP construction phase is similar to the semi-greedy heuristic pro-
posed independently by [39]. At each construction iteration, the choice of
the next element to be added is determined by ordering all candidate ele-
ments (i.e. those that can be added to the solution) in a candidate list C
with respect to a greedy function g : C → R. This function measures the
(myopic) benefit of selecting each element. The heuristic is adaptive because
the benefits associated with every element are updated at each iteration of
the construction phase to reflect the changes brought on by the selection
of the previous element. The probabilistic component of a GRASP is char-
acterized by randomly choosing one of the best candidates in the list, but
not necessarily the top candidate. The list of best candidates is called the
restricted candidate list (RCL). In other words, the RCL is made up of ele-
ments i ∈ C with the best (i.e., the smallest) incremental costs g(i). There
are two main mechanisms to build this list: a cardinality-based (CB) and a
value-based (VB) mechanism. In the CB case, the RCL is made up of the k
elements with the best incremental costs, where k is a parameter. In the VB
case, the RCL is associated with a parameter α ∈ [0, 1] and a threshold value
μ = gmin + α(gmax − gmin), where gmin and gmax are the smallest and the
largest incremental costs, respectively, i.e.

gmin = min
i∈C

g(i), gmax = max
i∈C

g(i). (1)
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procedure LocalSearch(x, f(·))
1 Let N(x) be the neighborhood of x;
2 H :={y ∈ N(x) | f(y) < f(x)};
3 while (|H | > 0)→
4 x:=Select(H);
5 H :={y ∈ N(x) | f(y) < f(x)};
6 endwhile
7 return(x);
end LocalSearch

Fig. 3 Pseudo-code of a generic local search procedure

Then, all candidate elements i whose incremental cost g(i) is no greater than
the threshold value are inserted into the RCL, i.e. g(i) ∈ [gmin, μ]. Note
that, the case α = 0 corresponds to a pure greedy algorithm, while α = 1 is
equivalent to a random construction.

Solutions generated by a GRASP construction are not guaranteed to be
locally optimal with respect to simple neighborhood definitions. Hence, it is
almost always beneficial to apply a local search to attempt to improve each
constructed solution. A local search algorithm iteratively replaces the current
solution by a better solution in the neighborhood of the current solution.
It terminates when no better solution is found in the neighborhood. The
neighborhood structure N for a problem relates a solution s of the problem
to a subset of solutions N(s). A solution s is said to be locally optimal if in
N(s) there is no better solution in terms of objective function value. The
key to success for a local search algorithm consists of the suitable choice of
a neighborhood structure, efficient neighborhood search techniques, and the
starting solution. Figure 3 illustrates the pseudo-code of a generic local search
procedure for a minimization problem.

It is difficult to formally analyze the quality of solution values found by
using the GRASP methodology. However, there is an intuitive justification
that views GRASP as a repetitive sampling technique. Each GRASP iteration
produces a sample solution from an unknown distribution of all obtainable
results. The mean and variance of the distribution are functions of the re-
strictive nature of the candidate list, as experimentally shown by Resende
and Ribeiro in [56].

An especially appealing characteristic of GRASP is the ease with which
it can be implemented either sequentially or in parallel, where only a single
global variable is required to store the best solution found over all processors.
Moreover, few parameters need to be set and tuned, and therefore develop-
ment can focus on implementing efficient data structures to assure quick
GRASP iterations.
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3 Hybrid Construction Mechanisms

In this Section, we briefly describe enhancements and alternative techniques
for the construction phase of GRASP.

Reactive GRASP

Reactive GRASP is the first enhancement that incorporate a learning mech-
anism in the memoryless construction phase of the basic GRASP.

The value of the RCL parameter α is selected at each iteration from a
discrete set of possible values with a probability that depends on the solution
values found along the previous iterations. One way to accomplish this is
to use the rule proposed in [53]. Let A = {α1, α2, . . . , αm} be the set of
possible values for α. At the first GRASP iteration, all m values have the
same probability to be selected, i.e.

pi =
1
m

, i = 1, 2, . . . , m. (2)

At any subsequent iteration, let ẑ be the incumbent solution and let Ai

be the average value of all solutions found using α = αi, i = 1, . . . , m. The
selection probabilities are periodically reevaluated as follows:

pi =
qi∑m

j=1 qj
, (3)

where qi = ẑ
Ai

, i = 1, . . . , m.
Reactive GRASP has been successfully applied in solving several combi-

natorial optimization problems arising in real-world applications [11, 18].

Cost perturbations

Another step toward an improved and alternative solution construction mech-
anism is to allow cost perturbations. The idea to introduce some “noise” in
the original costs in a fashion resembles the noising method of Charon and
Hudry [15, 16] and can be usefully applied in all cases when the construction
algorithm is not very sensitive to randomization or for the problem to be
solved there is available no greedy algorithm for randomization.

Experimental results in the literature have shown that embedding a strat-
egy of costs perturbation into a GRASP framework improves the best over-
all results. The hybrid GRASP with path-relinking proposed for the Steiner
problem in graphs by Ribeiro et al. in [62] uses this cost perturbation strategy
and is among the most effective heuristics currently available. Path-relinking
will be in detail described in Section 4.

Bias functions

Another construction mechanism has been proposed by Bresina [12]. Once the
RCL is built, instead of choosing with equal probability one candidate among
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the RCL elements, Bresina introduced a family of probability distributions to
bias the selection toward some particular candidates. A bias function is based
on a rank r(x) assigned to each candidate x according to its greedy function
value and is evaluated only for the elements in RCL. Several different bias
functions have been introduced:

i. random bias: bias(r(x)) = 1;
ii. linear bias: bias(r(x)) = 1

r(x) ;
iii. log bias: bias(r(x)) = log−1[r(x) + 1];
iv. exponential bias: bias(r(x)) = e−r;
v. polynomial bias of order n: bias(r(x)) = r−n.

Let bias(r(x)) be one of the bias function defined above. Once these values
have been evaluated for all elements of the RCL, the probability px of selecting
element x is

px =
bias(r(x))

∑
y∈RCL bias(r(y))

. (4)

A successful application of Bresina’s bias function can be found in [10],
where experimental results show that the evaluation of bias functions may
be restricted only to the elements of the RCL.

Other hybrid construction proposals

Resende and Werneck [57] proposed the following further construction
methods:

i. Sample greedy construction.
Instead of randomizing the greedy algorithm, a greedy algorithm is applied
to each solution in a random sample of candidates. At each step, a fixed-
size subset of the candidates is sampled and the incremental contribution
to the cost of the partial solution is computed for each sampled element. An
element with the best incremental contribution is selected and added to the
partial solution. This process is repeated until, as before, the construction
terminates when no further candidate exists. Resende and Werneck in [57]
proposed for the p-median problem a sample greedy construction scheme,
whose general framework for a minimization problem is shown in Figure 4.

ii. Random plus greedy construction. A partial random solution is built and
a greedy algorithm is then applied to complete the construction. The size
k of the randomly built portion determines how greedy or random the
construction will be. The pseudo-code is reported in Figure 5.

iii.Proportional greedy construction.
In each iteration of proportional greedy, the incremental cost g(c) for every
candidate element c ∈ C is computed and then a candidate is picked at
random, but in a biased way. In fact, the probability of a given candidate
v ∈ C being selected is inversely proportional to g(v)−min{g(c) | c ∈ C}.
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procedure ConstructSampleGreedySolution(Seed, g(·), k)
Let C be the set of candidate elements.
1 x:=∅;
2 while (x is not a complete solution)→
3 RCL:=select-randomly(Seed,k,C); /*k candidates at random*/
4 Evaluate incremental costs of candidates in RCL;
5 v :=argmin{g(i) | i ∈ RCL};
6 x := x ∪ {v};
7 C := C \ {v};
8 endwhile;
9 return(x);
end ConstructSampleGreedySolution;

Fig. 4 Sample greedy GRASP construction phase pseudo-code

procedure ConstructRand+GreedySolution(Seed, g(·), k)
Let C be the set of candidate elements.
1 x:=select-randomly(Seed,k,C); /*k candidates at random*/
2 C := C \ x;
3 while (x is not a complete solution)→
4 Evaluate incremental costs of candidates in C;
5 v :=argmin{g(i) | i ∈ C};
6 x := x ∪ {v};
7 C := C \ {v};
8 endwhile;
9 return(x);
end ConstructRand+GreedySolution;

Fig. 5 Random plus greedy GRASP construction phase pseudo-code

4 GRASP and Path-Relinking

Path-relinking is a heuristic proposed in 1996 by Glover [30] as an inten-
sification strategy exploring trajectories connecting elite solutions obtained
by tabu search or scatter search [31, 33, 34]. It can be traced back to the
pioneering work of Kernighan and Lin [42].

The result of the combination of the basic GRASP with path-relinking is
a hybrid technique, leading to significant improvements in solution quality.
The first proposal of a hybrid GRASP with path-relinking is in 1999 due to
Laguna and Mart́ı [46]. It was followed by several extensions, improvements,
and successful applications [5, 13, 24, 25].

Starting from one or more elite solutions, paths in the solution space lead-
ing towards other guiding elite solutions are generated and explored in the
search for better solutions. This is accomplished by selecting moves that
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introduce attributes contained in the guiding solutions. At each iteration,
all moves that incorporate attributes of the guiding solution are analyzed
and the move that best improves (or least deteriorates) the initial solution is
chosen.

Path-relinking is applied to a pair of solutions x,y, where one can be
the solution obtained from the current GRASP iteration, and the other is
a solution from an elite set of solutions. x is called the initial solution and
y the guiding solution. The set E of elite solutions has usually a fixed size
that does not exceed MaxElite. Given the pair x,y, their common elements
are kept constant, and the space of solutions spanned by these elements is
searched with the objective of finding a better solution. The size of the so-
lution space grows exponentially with the the distance between the initial
and guiding solutions and therefore only a small part of the space is explored
by path-relinking. The procedure starts by computing the symmetric differ-
ence Δ(x,y) between the two solutions, i.e. the set of moves needed to reach
y (target solution) from x (initial solution). A path of solutions is gener-
ated linking x and y. The best solution x∗ in this path is returned by the
algorithm.

Let us denote the set of solutions spanned by the common elements of the
n-vectors x and y as

S(x,y) := {w feasible | wi = xi = yi, i /∈ Δ(x,y)} \ {x,y}. (5)

Clearly, |S(x,y)| = 2n−d(x,y) − 2, where d(x,y) = |Δ(x,y)|. The underly-
ing assumption of path-relinking is that there exist good-quality solutions in
S(x,y), since this space consists of all solutions which contain the common
elements of two good solutions x and y. Since the size of this space is expo-
nentially large, a greedy search is usually performed where a path of solutions

x = x0,x1, . . . ,xd(x,y),xd(x,y)+1 = y, (6)

is built, such that d(xi,xi+1) = 1, i = 0, . . . , d(x,y), and the best solution
from this path is chosen. Note that, since both x and y are, by construction,
local optima in some neighborhood N(·)1, in order for S(x,y) to contain
solutions which are not contained in the neighborhoods of x or y, x and y
must be sufficiently distant.

Figure 6 illustrates the pseudo-code of the path-relinking procedure ap-
plied to the pair of solutions x (starting solution) and y (target solution). In
line 1, an initial solution x is selected at random among the elite set elements
and it usually differs sufficiently from the guiding solution y. The loop in
lines 6 through 14 computes a path of solutions x1,x2, . . . ,xd(x,y)−2, and the
solution x∗ with the best objective function value is returned in line 15. This
is achieved by advancing one solution at a time in a greedy manner. At each
iteration, the procedure examines all moves m ∈ Δ(x,y) from the current

1 The same metric d(x,y) is usually used.
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procedure Path-relinking(f(·), x, E)
1 Choose, at random, a pool solution y ∈ E to relink with x;
2 Compute symmetric difference Δ(x,y);
3 f∗ := min{f(x), f(y)};
4 x∗ := argmin{f(x), f(y)};
5 x := x;
6 while (Δ(x,y) �= ∅) →
7 m∗ := arg min{f(x ⊕ m) | m ∈ Δ(x,y)};
8 Δ(x ⊕ m∗,y) := Δ(x,y) \ {m∗};
9 x := x ⊕ m∗;
10 if (f(x) < f∗) then
11 f∗ := f(x);
12 x∗ := x;
13 endif ;
14 endwhile;
15 x∗ := LocalSearch(x∗, f(·));
16 return (x∗);
end Path-relinking;

Fig. 6 Pseudo-code of a generic path-relinking for a minimization problem

solution x and selects the one which results in the least cost solution (line 7),
i.e. the one which minimizes f(x⊕m), where x⊕m is the solution resulting
from applying move m to solution x. The best move m∗ is made, producing
solution x ⊕ m∗ (line 9). The set of available moves is updated (line 8). If
necessary, the best solution x∗ is updated (lines 10–13 ). Δ(x,y) = ∅. Since
x∗ is not guaranteed to be locally optimal, a local search is usually applied
and the locally optimal solution is returned.

We now describe a possible way to hybridize the basic GRASP described in
Section 2 with path-relinking. The integration of the path-relinking procedure
with the basic GRASP is shown in Figure 7. The pool E of elite solutions is
initially empty, and until it reaches its maximum size no path relinking takes
place. After a solution x is found by GRASP, it is passed to the path-relinking
procedure to generate another solution. The procedure AddToElite(E , xp)
attempts to add to the elite set of solutions the currently found solution.
Since we wish to maintain a pool of good but diverse solutions, each solution
obtained by path-relinking is considered as a candidate to be inserted into
the pool if it is sufficiently different from every other solution currently in the
pool. If the pool already has MaxElite solutions and the candidate is better
than the worst of them, then a simple strategy is to have the former replace
the latter. Another strategy, which tends to increase the diversity of the pool,
is to replace the pool element most similar to the candidate among all pool
elements with cost worse than the candidate’s.

More formally, in several papers, a solution xp is added to the elite set E
if either one of the following conditions holds:
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procedure GRASP+PR(f(·), g(·), MaxIterations, Seed, MaxElite)
1 xbest:=∅; f(xbest):=+∞; E := ∅
2 for k = 1, 2, . . . ,MaxIterations→
3 x:=ConstructGreedyRandomizedSolution(Seed, g(·));
4 if (x not feasible) then
5 x:=repair(x);
6 endif
7 x:=LocalSearch(x, f(·));
8 if (k ≤MaxElite) then
9 E := E ∪ {x};
10 if (f(x) < f(xbest)) then
11 xbest:=x;
12 endif
13 else
14 xp:=Path-relinking(f(·),x, E);
15 AddToElite(E ,xp);
16 if (f(xp) < f(xbest)) then
17 xbest:=xp;
18 endif
19 endif
20 endfor;
21 return(xbest);
end GRASP+PR

Fig. 7 Pseudo-code of a basic GRASP with path-relinking heuristic for a mini-
mization problem

1. f(xp) < min{f(w) : w ∈ E},
2. min{f(w) : w ∈ E} ≤ f(xp) < max{f(w) : w ∈ E} and d(xp,w) >

βn, ∀w ∈ E , where β is a parameter between 0 and 1 and n is the
number of decision variables.

If xp satisfies either of the above, it then replaces an elite solution z no
better than xp and most similar to xp, i.e. z = argmin{d(xp,w) : w ∈
E such that f(w) ≥ f(xp)}.

Figure 7 shows the simplest way to combine GRASP with path-relinking,
which is applied as an intensification strategy to each local optimum obtained
after the GRASP local search phase.

In general, two basic strategies can be used:

i. path-relinking is applied as a post-optimization step to all pairs of elite
solutions;

ii. path-relinking is applied as an intensification strategy to each local opti-
mum obtained after the local search phase.
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Applying path-relinking as an intensification strategy to each local op-
timum (strategy ii.) seems to be more effective than simply using it as a
post-optimization step [58].

Several further alternatives have been recently considered and combined,
all involving the trade-offs between computation time and solution quality.
They include:

a. do not apply path-relinking at every GRASP iteration, but only periodi-
cally;

b. explore only one path, starting from either x (forward path-relinking) or
y (backward path-relinking);

c. explore two different paths, using first x, then y as the initial solution
(forward and backward path-relinking);

d. do not follow the full path, but instead only part of it (truncated path-
relinking).

Ribeiro et al. [61] observed that exploring two different paths for each pair
(x,y) takes approximately twice the time needed to explore only one of them,
with very marginal improvements in solution quality. They have also observed
that if only one path is to be investigated, better solutions are found when
path-relinking starts from the best among x and y. Since the neighborhood of
the initial solution is much more carefully explored than that of the guiding
one, starting from the best of them gives the algorithm a better chance to
investigate in more detail the neighborhood of the most promising solution.
For the same reason, the best solutions are usually found closer to the initial
solution than to the guiding solution, allowing pruning the relinking path
before the latter is reached.

Resende and Ribeiro [55] performed extensive computational experiments,
running implementations of GRASP with several different variants of path-
relinking. They analyzed the results and illustrated the trade-offs between
the different strategies.

5 GRASP and Other Metaheuristics

In this section, we describe and comment on some enhancements of the basic
GRASP obtained by hybridization with other approaches and optimization
strategies. We also report on experience showing that a crafted combination
of concepts of different metaheuristics/techniques can result in robust combi-
natorial optimization schemes and produce higher solution quality than the
individual metaheuristics themselves, especially when solving difficult real-
world combinatorial optimization problems.

Most of the GRASP hybrid approaches involve other metaheuristics in
the basic local search scheme described in Section 2. They include methods
that explore beyond the current solution’s neighborhood by allowing cost-
increasing moves, by exploring multiple neighborhoods, and by exploring very
large neighborhoods.
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5.1 GRASP and Tabu Search

Tabu search (TS) is a metaheuristic strategy introduced by Glover [28, 29,
30, 32, 33] that makes use of memory structures to enable escape from lo-
cal minima by allowing cost-increasing moves. During the search, short-term
memory TS uses a special data structure called tabu list to store information
about solutions generated in the last iterations2. The process starts from a
given solution and, as any local search heuristic, it moves in iterations from
the current solution s to some solution t ∈ N(s). To avoid returning to a
just-visited local minimum, reverse moves movt that lead back to that local
minimum are forbidden, or made tabu, for a number of iterations that can
be a priori fixed (fixed sized tabu list) or adaptively varying (variable sized
tabu list).

procedure TS(x, f(·), k)
1 Let N(x) be the neighborhood of x;
2 s := x; T := ∅; xb := x;
3 while (stopping criterion not satisfied)→
4 N̂(s) := N(s) \ T ;
5 t :=argmin{f(w) | w ∈ N̂(s)};
6 if (|T | ≥ k) then
7 Remove from T the oldest entry;
8 endif
9 T := T ∪ {t};
10 if (f(t) < f(xb)) then
11 xb := t;
12 endif
13 s := t;
14 endwhile
15 return(xb);
end TS

Fig. 8 Short memory TS pseudo-code for a minimization problem

Figure 8 shows pseudo-code for a short-term TS using a fixed k sized tabu
list T , that, for ease of handling, stores the complete solutions t instead of
the corresponding moves movt.

It is clear that TS can be used as a substitute for the standard local
search in a GRASP. This type of search allows the exploration beyond the
neighborhood of the greedy randomized solution. By using the number of
cost-increasing moves as a stopping criterion one can balance the amount
2 Usually, the tabu list stores all moves that reverse the effect of recent local search

steps.
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procedure simulated-annealing (x, f(·), T , Seed)
1 s := x; xb := x;
2 while (T > 0 and stopping criterion not satisfied)→
3 t :=select-randomly(Seed, N(s));
4 if (f(t) − f(s) < 0) then
5 s := t;
6 if (f(t) < f(xb)) then xb := t;
7 endif
8 else s := t with probability e−(f(t)−f(s))/(K·T ));
9 endif
10 Decrement T according to a defined criterion;
11 endwhile
12 return (xb);
end simulated-annealing

Fig. 9 SA pseudo-code for a minimization problem

of time that GRASP allocates to constructing a greedy randomized solution
and exploring around that solution with tabu search.

Examples of GRASP with tabu search include [18] for the single source
capacitated plant location problem, [1] for multi-floor facility layout, [71] for
the capacitated minimum spanning tree problem, [48] for the m-VRP with
time windows, and [20] for the maximum diversity problem.

5.2 GRASP and Simulated Annealing

Simulated annealing (SA) [43] is based on principles of mechanical statistics
and on the idea of simulating the annealing process of a mechanical system.

It offers a further possibility to enhance the basic GRASP local search
phase and pseudo-code in Figure 9 shows how SA can be used as a substitute
for the standard local search in a GRASP.

As any stochastic local search procedure, SA is also given a starting so-
lution x which is used to initialize the current solution s. At each iteration,
it randomly selects a trial solution t ∈ N(s). In perfect correspondence of
mechanical systems state change rules, if t is an improving solution, then t
is made the current solution. Otherwise, t is made the current solution with
probability given by

e−
f(t)−f(s)

K·T , (7)

where f(x) is interpreted as the energy of the system in state x, K is the
Boltzmann constant, and T a control parameter called the temperature.

There are many ways to implement SA, depending on the adopted stop-
ping criterion and on the rule (cooling schedule) applied to decrement the
temperature parameter T (line 10). Note that, the higher is the tempera-
ture T the higher is the probability of moving on a not improving solution t.
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Usually, starting from a high initial temperature T0, at iteration k the cooling
schedule changes the temperature by setting Tk+1 := Tk ·γ, where 0 < γ < 1.

Therefore, initial iterations can be thought of as a diversification phase,
where a large part of the solution space is explored. As the temperature cools,
fewer non-improving solutions are accepted and those cycles can be thought
of as intensification cycles.

To make use of SA as a substitute for the standard local search in GRASP,
one should limit the search to the intensification part, since the diversification
is already guaranteed by the randomness of the GRASP construction phase.
Limitation to only intensification part can be done by starting already with
a cool temperature T0.

Examples of hybrid GRASP with SA include [70] for a simplified fleet
assignment problem and [17] for the rural postman problem.

5.3 GRASP, Genetic Algorithms, and
Population-Based Heuristics

Evolutionary metaheuristics such as genetic algorithms (GA) [36], ant colony
optimization [19], scatter search [35, 45, 47], and evolutionary path-relinking
[57] require the generation of an initial population of solutions.

Rooted in the mechanisms of evolution and natural genetics and therefore
derived from the principles of natural selection and Darwin’s evolutionary
theory, the study of heuristic search algorithms with underpinnings in natural
and physical processes began as early as the 1970s, when Holland [40] first
proposed genetic algorithms. This type of evolutionary technique has been
theoretically and empirically proven to be a robust search method [36] having
a high probability of locating the global solution optimally in a multimodal
search landscape.

In nature, competition among individuals results in the fittest individuals
surviving and reproducing. This is a natural phenomenon called the survival
of the fittest: the genes of the fittest survive, while the genes of weaker individ-
uals die out. The reproduction process generates diversity in the gene pool.
Evolution is initiated when the genetic material (chromosomes) from two
parents recombines during reproduction. The exchange of genetic material
among chromosomes is called crossover and can generate good combination
of genes for better individuals. Another natural phenomenon called mutation
causes regenerating lost genetic material. Repeated selection, mutation, and
crossover cause the continuous evolution of the gene pool and the generation
of individuals that survive better in a competitive environment.

In complete analogy with nature, once encoded each possible point in
the search space of the problem into a suitable representation, a GA trans-
forms a population of individual solutions, each with an associated fit-
ness (or objective function value), into a new generation of the population.
By applying genetic operators, such as crossover and mutation [44], a GA
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procedure GA(f(·))
1 Let N(x) be the neighborhood of a solution x;
2 k := 0;
3 Initialize population P (0); xb :=argmin{f(x) | x ∈ P (0)};
4 while (stopping criterion not satisfied)→
5 k := k + 1;
6 Select P (k) from P (k − 1);
7 t :=argmin{f(x) | x ∈ P (k)};
8 if (f(t) < f(xb)) then
9 xb := t;
10 endif
11 Alter P (k);
12 endwhile
13 return(xb);
end GA

Fig. 10 Pseudo-code of a generic GA for a minimization problem

successively produces better approximations to the solution. At each itera-
tion, a new generation of approximations is created by the process of selection
and reproduction. In Figure 10 a simple genetic algorithm is described by the
pseudo-code, where P (k) is the population at iteration k.

In solving a given optimization problem P , a GA consists of the following
basic steps.

1. Randomly create an initial population P (0) of individuals, i.e. solutions
for P .

2. Iteratively perform the following substeps on the current generation of the
population until the termination criterion has been satisfied.

a. Assign fitness value to each individual using the fitness function.
b. Select parents to mate.
c. Create children from selected parents by crossover and mutation.
d. Identify the best-so-far individual for this iteration of the GA.

Scatter Search (SS) operates on a reference set of solutions, that are com-
bined to create new ones. One way to obtain a new solution is to linearly
combine two reference set solutions. Unlike a GA, the reference set of solu-
tions is relatively small, usually consisting of less than 20 solutions. At the
beginning, a starting set of solutions is generated to guarantee a critical level
of diversity and some local search procedure is applied to attempt to improve
them. Then, a subset of the best solutions is selected as reference set, where
the quality of a solution is evaluated both in terms of objective function and
diversity with other reference set candidates. At each iteration, new solutions
are generated by combining reference set solutions. One criterion used to



Hybrid GRASP Heuristics 91

select reference solutions for combination takes into account the convex re-
gions spanned by the reference solutions.

Evolutionary path-relinking (EvPR) has been introduced by Resende and
Werneck [57] and applied as a post-processing phase for GRASP with PR.
In EvPR, the solutions in the pool are evolved as a series of populations
P (1), P (2), . . . of equal size. The initial population P (0) is the pool of elite
solutions produced by GRASP with PR. In iteration k, PR is applied between
a set of pairs of solutions in population P (k) and, with the same rules used
to test for membership in the pool of elite solutions, each resulting solution
is tested for membership in population P (k + 1). This evolutionary process
is repeated until no improvement is seen from one population to the next.

As just described, all above techniques are evolutionary metaheuristics
requiring the generation of an initial population of solutions. Usually, these
initial solutions are randomly generated, but another way to generate them
is to use a GRASP.

Ahuja et al. [4] used a GRASP to generate the initial population of a GA
for the quadratic assignment problem. Alvarez et al. [6] proposed a GRASP
embedded scatter search for the multicommodity capacitated network design
problem. Very recently, Contreras and Dı́az used GRASP to initialize the
reference set of scatter search for the single source capacitated facility lo-
cation problem. GRASP with EvPR has been recently used in [59] for the
uncapacitated facility location problem and in [54] for the max-min diversity
problem.

5.4 GRASP and Variable Neighborhood Search

Almost all randomization effort in implementations of the basic GRASP
involves the construction phase. On the other hand, strategies such as
Variable Neighborhood Search (VNS) and Variable Neighborhood Descent
(VND) [38, 51] rely almost entirely on the randomization of the local search
to escape from local optima. With respect to this issue, probabilistic strate-
gies such as GRASP and VNS may be considered as complementary and
potentially capable of leading to effective hybrid methods.

Thevariable neighborhood search (VNS)metaheuristic, proposedbyHansen
and Mladenović [38], is based on the exploration of a dynamic neighborhood
model. Contrary to other metaheuristics based on local search methods, VNS
allows changes of the neighborhood structure along the search.

VNS explores increasingly distant neighborhoods of the current best found
solution. Each step has three major phases: neighbor generation, local search,
and jump. Let Nk, k = 1, . . . , kmax be a set of pre-defined neighborhood
structures and let Nk(x) be the set of solutions in the kth-order neighborhood
of a solution x. In the first phase, a neighbor x′ ∈ Nk(x) of the current
solution is applied. Next, a solution x′′ is obtained by applying local search
to x′. Finally, the current solution jumps from x to x′′ in case the latter
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procedure VNS(x, f(·), kmax, Seed)
1 xb := x; k := 1;
2 while (k ≤ kmax)→
3 x′ :=select-randomly(Seed, Nk(x));
4 x′′ :=LocalSearch(x′, f(·));
5 if (f(x′′) < f(x′)) then
6 x := x′′; k := 1;
7 if (f(x′′) < f(xb)) then xb := x′′;
8 endif
9 else k := k + 1;
10 endif
11 endwhile
12 return(xb);
end VNS

Fig. 11 Pseudo-code of a generic VNS for a minimization problem

improved the former. Otherwise, the order of the neighborhood is increased
by one and the above steps are repeated until some stopping condition is
satisfied.

Usually, until a stopping criterion is met, VNS generates at each iteration a
solution x at random. In hybrid GRASP with VNS, where VNS is applied as
local search, the starting solution is the output x of the GRASP construction
procedure and the pseudo-code of a generic VNS local search is illustrated in
Figure 11.

Examples of GRASP with VNS include [14] for the prize-collecting Steiner
tree problem in graphs, [25] for the MAX-CUT problem, and [9] for the strip
packing problem.

VND allows the systematic exploration of multiple neighborhoods and is
based on the facts that a local minimum with respect to one neighborhood
is not necessarily a local minimum with respect to another and that a global
minimum is a local minimum with respect to all neighborhoods. VND also
is based on the empirical observation that, for many problems, local minima
with respect to one or more neighborhoods are relatively close to each other.
Since a global minimum is a local minimum with respect to all neighbor-
hoods, it should be easier to find a global minimum if more neighborhoods
are explored.

Let Nk(x), for k = 1, . . . , kmax, be kmax neighborhood structures of solu-
tion x. The search begins with a given starting solution x which is made the
current solution s. Each major iteration (lines 2–11) searches for an improv-
ing solution t in up to kmax neighborhoods of s. If no improving solution is
found in any of the neighborhoods, the search ends. Otherwise, t is made the
current solution s and the search is applied starting from s.
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procedure VND(x, f(·), kmax)
1 xb := x; s := x; flag:=true;
2 while (flag)→
3 flag:=false;
4 for k = 1, . . . , kmax →
5 if (∃t ∈ Nk(s) | f(t) < f(s)) then
6 if (f(t) < f(xb)) then xb := t;
7 endif
8 s := t; flag:=true; break;
9 endif
10 endfor
11 endwhile
12 return(xb);
end VND

Fig. 12 Pseudo-code of a generic VND for a minimization problem

In hybrid GRASP with VND, where VND is applied as local search, the
starting solution is the output x of the GRASP construction procedure and
the pseudo-code of a generic VND local search is illustrated in Figure 12.
A first attempt in the direction of hybridizing GRASP with VNS has been
done by Martins et al. [50]. The construction phase of their hybrid heuristic
for the Steiner problem in graphs follows the greedy randomized strategy of
GRASP, while the local search phase makes use of two different neighborhood
structures as a VND strategy. Their heuristic was later improved by Ribeiro,
Uchoa, and Werneck [61], one of the key components of the new algorithm
being another strategy for the exploration of different neighborhoods. Ribeiro
and Souza [60] also combined GRASP with VND in a hybrid heuristic for
the degree-constrained minimum spanning tree problem. In the more recent
literature, Ribeiro and Vianna [64] and Andrade and Resende [7] proposed a
hybrid GRASP with VND for the phylogeny problem and for PBX telephone
migration scheduling problem, respectively.

5.5 GRASP and Iterated Local Search

Iterated Local Search (ILS) [49] is a multistart heuristic that at each iteration
k finds a locally optimal solution searched in the neighborhood of an initial
solution obtained by perturbation of the local optimum found by local search
at previous iteration k − 1.

The efficiency of ILS strongly depends on the perturbation (line 3) and ac-
ceptance criterion (line 5) rules. A “light” perturbation may cause local search
to lead back to the starting solution t, while a “strong” perturbation may cause
the search to resemble random multi-start. Usually, the acceptance criterion
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procedure ils (x, f(·), history)
1 t :=LocalSearch(x, f(·)); xb := t;
2 while (stopping criterion not satisfied)→
3 s :=perturbation(t, history);
4 ŝ :=LocalSearch(s, f(·));
5 t :=AcceptanceCriterion(t, ŝ, history);
6 if (f(t) < f(xb)) then xb := t;
7 endif
8 endwhile
9 return (xb);
end ils

Fig. 13 ILS pseudo-code for a minimization problem

resembles SA, i.e. ŝ is accepted if it is an improving solution; otherwise, it is
accepted with some positive probability.

ILS can be applied to enhance the basic GRASP local search phase and
pseudo-code in Figure 13 shows how it can be used as a substitute for the
standard local search in a GRASP. The procedure LocalSearch can also be
the basic GRASP local search as defined in Figure 3.

Ribeiro and Urrutia [63] designed a hybrid GRASP with ILS for the mir-
rored traveling tournament problem, where the acceptance rule makes use of
a threshold parameter β, initialized to 0.001. Then, each time the best solu-
tion changes (line 6), it is reinitialized to the same value, while it is doubled
if the current solution does not chance after a fixed number of iterations.
Finally, a solution ŝ is accepted if f(ŝ) < (1 +β) · f(t) and the adopted stop-
ping criterion has been to allow at most 50 cost-deteriorating moves without
improvement in the current best solution.

5.6 GRASP and Very-Large Scale Neighborhood
Search

As for any local search procedure, to efficiently search in the neighborhood
of a solution, it is required that the neighborhood have a small size. Nev-
ertheless, the larger the neighborhood, the better the quality of the locally
optimal solution. Neighborhoods whose sizes grow exponentially as a func-
tion of problem dimension are called very large scale neighborhoods and they
necessarily require efficient search techniques to be explored.

Ahuja et al. [2] presented a survey of methods called very-large scale neigh-
borhood (VLSN) search. The following three classes of VLSN methods are
described:

1. variable-depth methods where exponentially large neighborhoods are
searched with heuristics;



Hybrid GRASP Heuristics 95

2. a VLSN method that uses network flow techniques to identify improving
neighborhood solutions;

3. a VLSN method that explores neighborhoods for NP-hard problems in-
duced by restrictions of the problems that are solved in polynomial time.

In particular, with respect to class 2, they define special neighborhood struc-
tures called multi-exchange neighborhoods. The search is based on the cyclic
transfer neighborhood structure that transforms a cost-reducing exchange
into a negative cost subset-disjoint cycle in an improving graph and then a
modified shortest path label-correcting algorithm is used to identify these
negative cycles.

Ahuja et al. in [3] present two generalizations of the best known neighbor-
hood structures for the capacitated minimum spanning tree problem. The
new neighborhood structures defined allow cyclic exchanges of nodes among
multiple subtrees simultaneously. To judge the efficacy of the neighborhoods,
local improvement and tabu search algorithms have been developed. Local
improvement uses a GRASP construction mechanism to generate repeated
starting solutions for local improvement.

5.7 Other Hybridizations

In the previous sections of this chapter, we have reviewed some important
hybridizations of GRASP, mostly involving the GRASP local search phase.
More recently, several further hybridizations have been proposed. They in-
clude the use of GRASP in Branch & Bound framework and the combination
of GRASP with data mining techniques.

GRASP and branch & bound

In 2004, Rocha et al. [66] proposed a hybridization of GRASP as an upper
bound for a branch and bound (B&B) procedure to solve a scheduling prob-
lem with non-related parallel machines and sequence-dependent setup times.
In 2007, Fernandes and Lourenço [23] proposed a hybrid GRASP and B&B
for the job-shop scheduling problem. The B&B method is used within GRASP
to solve subproblems of one machine scheduling subproblem obtained from
the incumbent solution.

GRASP and data mining

In 2006, Jourdan et al. [41] presented a short survey enumerating opportuni-
ties to combine metaheuristics and data mining (DM) techniques. By using
methods and theoretical results from statistics, machine learning, and pat-
tern recognition, DM automatically explores large volumes of data (instances
described according to several attributes) with the objective of discovering
patterns. In fact, DM is also known as Knowledge-Discovery in Databases.
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In GRASP with data mining (DM-GRASP), after executing a significant
number of GRASP iterations, the data mining process extracts patterns from
an elite set of solutions which will guide the GRASP construction proce-
dure in the subsequent iterations. In fact, instead of building the randomized
greedy solution from scratch, the construction procedure starts from a solu-
tion pattern (a partial solution) that was previously mined. Computational
experiments have shown that the hybridization has benefited in both running
time and quality of the solutions found.

DM-GRASP has been introduced in 2005 by Santos et al [69] for the
maximum diversity problem. In 2006, Ribeiro et al. [65] also proposed a
hybrid GRASP with DM and tested it the set packing problem as a case study
and Santos et al. [68] solved a real world problem, called server replication
for reliable multicast.

Very recently, s survey of applications of DM-GRASP has been published
by Santos et al. [67].

6 Concluding Remarks

Simulated annealing, tabu search, ant colony, genetic algorithms, scatter
search, path-relinking, GRASP, iterated local search, and variable neighbor-
hood search are often listed as examples of “classical” metaheuristics. In the
last few years, several different algorithms have been designed and proposed
in the literature that do not purely apply the basic ideas of one single “clas-
sical” metaheuristic, but they combine various algorithmic ideas of different
metaheuristic frameworks. The design and implementation of hybrid meta-
heuristics are emerging as one of the most exciting field.

In this chapter, we have surveyed hybridizations of GRASP and other
metaheuristics. Among these, we highlight: path-relinking, tabu search, sim-
ulated annealing, genetic algorithms and population-based heuristics, vari-
able neighborhood search and variable neighborhood descent, iterated local
search, very large scale neighborhood local search, and very recent hybrids,
such as GRASP with data mining and GRASP with branch and bound.
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