
PSO Bounds: A New Hybridization
Technique of PSO and EDAs

Mohammed El-Abd and Mohamed S. Kamel

Abstract. Particle Swarm Optimization (PSO) is a nature inspired
population-based approach successfully used as an optimization tool in many
application. Estimation of distribution algorithms (EDAs), are evolutionary
algorithms that try to estimate the probability distribution of the good indi-
viduals in the population. In this work, we present a new PSO algorithm that
borrows ideas from EDAs. This algorithm is implemented and compared to
previous PSO and EDAs hybridization approaches using a suite of well-known
benchmark optimization functions.

1 Introduction

Particle Swarm Optimization (PSO) [1, 2] is an optimization method widely
used to solve continuous nonlinear functions. Although, the original intent
was to simulate the movement of a flock of birds or a school of fish looking
for food, It was soon realized that the associated equations of motion could
be used as a very powerful optimization tool.

Estimation of distribution algorithms (EDAs) [3] are evolutionary algo-
rithms that solve the problem in hand by trying to build a probabilistic model
that estimates the distribution of good regions in the search space. These al-
gorithms work by continuously updating the generated model and using it
to produce new solutions. One of the early works in this are is Population-
Based Incremental Learning (PBIL) proposed in [4]. PBIL is an optimization
method similar to Genetic algorithms but with maintaining a probabilistic
model rather than a population of solutions. This model was updated in every
generation and was used to produce the next population.

Mohammed El-Abd and Mohamed S. Kamel
ECE Dept., University of Waterloo, 200 University Av. W., Waterloo, Ontario,
Canada, N2L3G1

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 509–526.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

510 M. El-Abd and M.S. Kamel

In the past few years, two hybrid models that mix the PSO algorithm with
EDAs have been proposed in the literature [5, 6]. Both approaches use the
same probabilistic model to describe the search space but differ in the way
the information is gathered and used to build the model. They also differ in
the way the model is used to generate new solutions.

In this work, we propose a new model that is based on PBIL. This model
continuously use the distribution of the particles during the search to update
the bounds of the PSO search space. This in turn affects the particles move-
ment as it affects both the bounds of allowable movement and the maximum
allowable velocity. The proposed algorithm is compared to other hybrid tech-
niques and is shown to outperform them on the more difficult multimodal
functions.

The chapter is organized as follows: a brief background on PSO is given
in Section 1.2. This is followed by an introduction to EDAs in Section 1.3.
A literature review of previous PSO and EDAs hybridization techniques are
covered in Section 1.4. The new algorithm is proposed in Section 1.5. Results
and discussions are presented in Section 1.6. The chapter is concluded in
Section 1.7.

2 Particle Swarm Optimization

PSO [1, 2] is regarded as a population-based method, where the population is
referred to as a swarm. The swarm consists of a number of individuals called
particles. Each particle i in the swarm holds the following information:

• The current position xi,
• The current velocity vi,
• The best position, the one associated with the best fitness value the particle

has achieved so far pbesti,
• The global best position, the one associated with the best fitness value

found among all of the particles gbest.

In every iteration, each particle adjusts its own trajectory in the space in
order to move towards its best position and the global best according to the
following equations:

vt+1
ij = wvt

ij + c1r
t
1j(pbesttij − xt

ij)

+c2r
t
2j(gbesttj − xt

ij), (1)

xt+1
ij = xt

ij + vt+1
ij , (2)

for j ∈ 1..d where d is the number of dimensions, i ∈ 1..n where n is the
number of particles, t is the iteration number, w is the inertia weight, r1 and
r2 are two random numbers uniformly distributed in the range [0,1], and c1

and c2 are the acceleration factors.

PSO Bounds: A New Hybridization Technique of PSO and EDAs 511

Afterwards, each particle updates its personal best using the equation
(assuming a minimization problem):

pbestt+1
i =

{
pbestti if f(pbestti) ≤ f(xt+1

i)
xt+1

i if f(pbestti) > f(xt+1
i)

(3)

Finally, the global best of the swarm is updated using the equation (assuming
a minimization problem):

gbestt+1 = arg min
pbestt+1

i

f(pbestt+1
i), (4)

where f(.) is a function that evaluates the fitness value for a given position.
This model is referred to as the gbest (global best) model.

Another model is the lbest (local best) model [7], in each particle does
not hold the global best position. Instead, each particle only holds the best
position achieved by its own neighborhood. Different neighborhood structures
were previously examined for such a model [8] including the ring topology
and the Von Neumann model.

3 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) are evolutionary algorithms
that try to estimate the probability distribution of the good individuals in
the population. EDAs try to estimate this probability distribution by using
selected individuals, from the current population, to construct a probabilistic
model. This model is consequently used to generate the offspring. The new
population is generated by selecting individuals from both the offspring and
the current population in a proportionate manner. Finally, the new popula-
tion replaces the current one. Hence, EDAs maintain a continuously updated
probabilistic model from one generation to the next. Although, it has been
originally introduced to tackle combinatorial optimization problems, recent
numerical applications have been proposed as well [9, 10, 11, 12]. The general
steps for an EDA is shown in Algorithm 1.

EDAs are categorized based on the degree of dependencies, allowed by the
probabilistic model used, between the problem variables:

• No dependency: the problem variables are assumed to be independent,
• Bivariate dependency: the dependencies are only assumed between two

variables at a time,
• Multivariate dependency: the dependencies could be modeled between any

number of variables.

For a complete survey of the different optimization techniques adopted
using building probabilistic models, the interested reader could refer to [13].

512 M. El-Abd and M.S. Kamel

Algorithm 1. Estimation of Distribution Algorithm (EDA)
1: P ⇐ Initialize the population
2: Evaluate the initial population
3: while iter number ≤ Max iterations do
4: Ps ⇐ Select the top s individuals
5: M ⇐ Estimate a new Model from Ps

6: Pn ⇐ Sample n individuals from M
7: Evaluate Pn

8: P ⇐ Select n individuals from PUPn

9: iter number = iter number + 1
10: end while
11: return Best Individual

4 PSO Based on Probabilistic Models

This section surveys the two previous attempts to introduce the concepts of
EDAs into PSO in order to improve its performance.

4.1 EDPSO

An estimation of distribution particle swarmoptimizer (EDPSO)was proposed
by Iqbal and Montes de Oca [5]. The method borrowed some ideas from a de-
velopment in ACO for solving continuous optimization problems [14, 15]. The
approach relies on estimating the joint probability distribution for one dimen-
sion at a time using mixtures of weighted Gaussian functions. The Gaussian
functions are defined through an archive of k solutions (pbests of the particles).
For each dimension d, the dimension is either updated using PSO equations or
by sampling a Gaussian distribution selected from the archive. The values of
this dimension d across all the solutions in the archive compose the vector μd,
which is the vector of means for the univariate Gaussian distributions:

μd =< pbest1d, pbest2d, ..., pbestkd > (5)

To select one of these distributions, the weights vector w, which holds
the weights associated with each distribution, is calculated. This is done by
sorting the solutions according to their fitness, with the best solution having
a rank of 1. A weight is calculated for each solution as follows:

w =< w1, w2, ..., wk > (6)

wl =
1

qk
√

2π
e
− (l−1)2

2q2k2 (7)

which is a Gaussian function with mean l and standard deviation qk, where
q is a constant that determines how much we prefer good solutions and l is
the solution rank.

PSO Bounds: A New Hybridization Technique of PSO and EDAs 513

The Gaussian function to be used is selected probabilistically. The prob-
ability of selecting a certain Gaussian function is proportional to its weight.
This probability is calculated as follows:

p =< p1, p2, ..., pk >

pl =
wl∑k

r=1 wr

(8)

After selecting a certain Gaussian function Gd denoted by its mean pbestgd,
where 1 ≤ g ≤ k, the standard deviation for this functions is calculated as:

σgd = ξ

k∑
i=1

|pbestid − pbestgd|
k − 1

(9)

which the average distance between the selected mean and the other entries
of the archive. ξ is a parameter to balance the exploration-exploitation be-
haviors. if ξ is small, this will lead to having a smaller value for σgd and the
search will tend to search in a closer range around the chosen mean.

Finally the selected Gaussian function is evaluated (not sampled) to gener-
ate a value r in order to probabilistically move the particle. This is done by
generating a uniformly distributed random number U(0,1). If it is less than r,
the particle moves using the normal PSO equations. Otherwise, the Gaussian
function is sampled to move the particle. The steps are shown in Algorithm 2.

4.2 EDA-PSO

A hybrid EDA-PSO approach was proposed in [6]. The algorithm works by
sampling an independent univariate Gaussian distribution based on the best
half of the swarm. The mean and standard deviation of the model is calculated
in every iteration as:

μ =
1
M

M∑
i=1

xi (10)

σj =

√√√√ 1
M

M∑
i=1

(xij − μj)2, (11)

where M = N/2 for a swarm with N particles and i is the particle number.
The choice of whether to update the particle using the normal PSO equa-

tions or to sample the particle using the estimated distribution is made with
a probability p, referred to as the participation ratio. If p = 0, the algorithm
will behave as a pure EDA algorithm. On the other hand, if p = 1, it will
be a pure PSO algorithm. In the hybrid approach, where 0 < p < 1, each

514 M. El-Abd and M.S. Kamel

Algorithm 2. The EDPSO algorithm.
Require: Max Function Evaluations
1: Initialize the swarm
2: Max Iterations = Max F unction Evaluations

Num Particles

3: iter number = 1
4: while iter number ≤ Max Iterations do
5: Update the swarm
6: Rank the particle’s using pbests information
7: Calculate weights vector w
8: Calculate probabilities vector p
9: for every particle i do

10: for each dimension d do
11: Update vid and xid

12: Select a Gaussian function according to pi

13: Calculate σgd

14: Prob move = σgd

√
2πGd(xid)

15: if U(0, 1) < Prob move then
16: continue
17: else
18: xid = Gauss(sgd,σgd)
19: end if
20: end for
21: end for
22: iter number = iter number + 1
23: end while
24: return gbest

particle is either totally updated by the PSO equations or totally sampled
from the estimated distribution (not on a dimension-by-dimension basis as
in EDPSO). Finally, the particle gets updated only if its fitness improves.

The authors also proposed different approaches in order to adaptively set
the parameter p. These approaches depend on the success rate of both the
PSO and EDA parts in improving the particles’ fitness:

• The Generation based, where the success rates are calculated based on the
information gathered during the last generation,

pt+1 =
sum PSOt

num PSOt

sum PSOt

num PSOt + sum EDAt

num EDAt

(12)

• The All historical information, where the success rates are calculated based
on the information gathered during the entire search,

pt+1 =
∑t

i=1
sum PSOi

num PSOi∑t
i=1

sum PSOi

num PSOi +
∑t

i=1
sum EDAi

num EDAi

(13)

PSO Bounds: A New Hybridization Technique of PSO and EDAs 515

Algorithm 3. The EDA-PSO algorithm
Require: Max Function Evaluations
1: Initialize the swarm
2: Max Iterations = Max F unction Evaluations

Num Particles

3: iter number = 1
4: while iter number ≤ Max Iterations do
5: Calculate μ and σ using top N

2
particles

6: for every particle i do
7: if U(0, 1) < p then
8: candidate particle = PSO equations
9: else

10: candidate particle = Gauss(μ,σ)
11: end if
12: if candidate particle has a better fitness then
13: particle i = candidate particle
14: end if
15: end for
16: iter number = iter number + 1
17: end while
18: return gbest

• The Sliding window, where the success rates are calculated considering
only the information in the last m generations.

pt+1 =

∑t
i=t−m+1

sum PSOi

num PSOi∑t
i=t−m+1

sum PSOi

num PSOi +
∑t

i=t−m+1
sum EDAi

num EDAi

(14)

In all the previous equations sum PSOt and num PSOt refers to the sum
of improvements and number of improvements done by the PSO component
at iteration t. While sum EDAt and num EDAt refers to the sum of im-
provements and number of improvements done by the EDA component at
iteration t. Finally, m is the window size.

The complete algorithm for EDA-PSO is shown in Algorithm 3.

5 PSO with Varying Bounds

A PBIL approach for continuous search spaces was proposed in [10]. The
algorithm explored the search space by dividing the domain of each gene into
two equal intervals referred to as the low and high intervals. A probability
hd, which is initially set to 0.5, is the probability of gene number d being in
the high interval as shown:

xd ∈ [a, b], hd = Probability(xd >
a + b

2
) (15)

516 M. El-Abd and M.S. Kamel

After each generation, this distribution is updated according to the gene
values of the best individual using the following formula:

p =

{
0 if xmax

d < a+b
2

1 otherwise
(16)

ht+1
d = (1 − α) ∗ ht

d + α ∗ p (17)

where α is the relaxation factor and t is the iteration number. If hd gets below
hdmin or above hdmax, the population gets re-sampled in the corresponding
interval, [a, a+b

2] or [a+b
2 , b], respectively.

In this work, we propose a new PSO algorithm, referred to as PSO Bounds,
which borrows concepts from PBIL. At the beginning, the particles are initial-
ized in the predefined domain. After every iteration, the probability hd of each
dimension d gets adjusted according to the probability of this dimension value
being in the high interval of the defined domain. This probability is calculated
using information from all the particles and not only gbest to prevent premature
convergence. Hence, the original equations of PBIL are changed as follows:

pt
id =

{
0 if pbesttid < a+b

2
1 otherwise

(18)

pt
d =

∑n
i pt

id

n
(19)

ht+1
d = (1 − α) ∗ ht

d + α ∗ pt
d (20)

where i ∈ 1..n where n is the number of particles, t is the iteration number,
and d is the dimension. Please note that these equations are applied for each
dimension d separately.

In PBIL, the probabilities were updated using the value of the best indi-
vidual, which is analogous to the current position of the particles in PSO.
However, in our implementation, we use the values of pbests instead as it
reflects the best experience of the swarm and would guide the search towards
better solutions.

When ht+1
d gets specific enough, the domain of dimension d is adjusted ac-

cordingly and ht+1
d gets re-initialized to 0.5. In this model, different dimensions

probability

domain

x1

x2

(a) EDPSO

probability

domain

x1 x2

 μ1 μ2

(b) EDA-PSO

variable

domain

x2

x1
h2

h1

 a1 a2 b1 b2

(c) PSO Bounds

Fig. 1 Probabilistic models

PSO Bounds: A New Hybridization Technique of PSO and EDAs 517

Algorithm 4. The PSO Bounds algorithm
Require: Max Function Evaluations, hdmin, hdmax, α
1: Initialize the swarm
2: Max Iterations = Max F unction Evaluations

Num Particles

3: iter number = 1
4: while iter number ≤ Max Iterations do
5: Update the swarm
6: for each dimension d do
7: pd = 0
8: for every particle i do
9: Calculate pid

10: pd = pd + pid

11: end for
12: hd = (1 − α)hd + αpd

13: if hd < hdmin then
14: xdmax = b = a+b

2

15: Update vdmin and vdmax

16: hd = 0.5
17: else if hd > hdmax then
18: xdmin = a = a+b

2

19: Update vdmin and vdmax

20: hd = 0.5
21: end if
22: end for
23: iter number = iter number + 1
24: end while
25: return gbest

might end up having different domains and different velocity bounds which
does not happen in normal PSO.

Figure 1 illustrates the approaches taken by the different PSO and EDAs
hybridization techniques in order to model the distribution of good solutions
across the search space in every dimension.

The steps taken by PSO Bounds is shown in Algorithm 4, where xdmin and
xdmax refer to the minimum and maximum search bounds for dimension d
while vdmin and vdmax refer to the minimum and maximum velocity bounds.

6 Results and Discussions

6.1 Experimental Settings

Table 1 shows the parameter settings used for applying the algorithms under
study. For all experiments, all the particles have been randomly initialized in
the specified domain using uniform distribution. The values for q and ξ are

518 M. El-Abd and M.S. Kamel

Table 1 Parameter settings

Model Parameter Value

Normal PSO
w 0.9 to 0.1

c1 and c2 2

EDPSO
q 0.1
ξ 0.85

EDA-PSO p
Adaptive - all

historical information

PSO Bounds
α 0.1

hdmin 0.2
hdmax 0.8

the same as was proposed in [5] and the value for p is set adaptively using
the allhistoricalinformation approach, as it was found to be the best one
based on our experiments. The values for (α, hdmin, hdmax) are changed from
(0.01, 0.1, 0.9) in [10] to (0.1, 0.2, 0.8) to allow a faster process of varying
the bounds. The experiments are conducted for a problem dimensionality of
10, 30, and 50 with 40 particles in the swarm performing 100000, 100000,
and 200000 function evaluations, respectively. The results reported are the
averages taken over 30 runs.

The experiments are run using the benchmark test functions shown in
Table 2.

The experiments are also conducted using the benchmark functions f6-f14
proposed in CEC2005, available at [16] and shown in Table 3. In order to
constrain the particles movement within the specified domain for the CEC05
functions, any violating particle gets its position randomly re-initialized inside
the specified domain. The error values f(x) − f(x∗) are reported, where x∗
is the global optimum.

In [6], the values for μ and σ are calculated using the best half of the
swarm. The authors in [17] proposed calculating σ using the whole population
instead, which is found to produce better results due to the induced diversity
avoiding premature convergence. The same approach is used in this work
when applying the EDA-PSO algorithm.

Table 2 Benchmark functions

Function Equation Domain

Spherical f(x) =
∑n

i=1 x2
i 100

Rosenbrock f(x) =
∑n/2

i=1

(
100(x2i − x2

2i−1)
2 + (1 − x2i−1)

2
)

2.048
Griewank f(x) = 1

4000

∑n
i=1 x2

i − ∏n
i=1 cos

(
xi√

i

)
+ 1 600

Ackley f(x) = 20 + e − 20 exp
(− 0.2

√
1
n

∑n
i=1 x2

i

)
− exp

(
1
n

∑n
i=1 cos 2πxi

)
30

Rastrigin f(x)
∑n

i=1

(
x2

i − 10 cos 2πxi + 10
)

5.12

PSO Bounds: A New Hybridization Technique of PSO and EDAs 519

Table 3 CEC05 Benchmark Functions

Benchmark
Description

Lower Upper
Function Domain Domain

f6 shifted Rosenbrock -100 100
f7 shifted rotated Griewank 0 600
f9 shifted Rastrigin -5 5
f10 shifted rotated Rastrigin -5 5
f11 shifted rotated Weierstrass -0.5 0.5
f12 Schwefel -100 100
f13 expanded extended Griewank plus Rosenbrock -3 1
f14 shifted rotated expanded Scaffer -100 100

Table 4 Results of all the algorithms for the classical functions

Function Dim.
EDPSO EDA-PSO PSO Bounds

Mean Std. Mean Std. Mean Std.

Spherical

10

9.881e-324 0 8.400e-266 0 5.087e-03 2.786e-02
Rosenbrock 5.519e-06 1.044e-05 7.827e-02 8.422e-02 7.744e-01 5.857e-01
Griewank 2.084e-02 1.447e-02 7.882e-03 7.325e-03 1.229e-01 5.988e-02
Ackley 5.887e-16 2.006e-31 1.268e+00 2.258e-15 8.606e-02 4.708e-01

Rastrigin 3.051e+00 1.609e+00 4.013e+00 1.998e+00 7.131e+00 2.172e+00

Spherical

30

3.698e-67 2.026e-66 4.234e-141 1.425e-140 5.416e+02 3.674e+02
Rosenbrock 9.562e-01 2.042e-01 1.123e+00 4.552e-01 1.707e+01 4.633e+00
Griewank 1.479e-03 3.462e-03 0 0 4.871e+00 2.021e+00
Ackley 4.378e-015 9.014e-016 1.586e+00 9.034e-16 5.467e+00 1.137e+00

Rastrigin 1.791e+01 4.222e+00 3.4067e+01 2.922e+01 6.799e+01 1.339e+01

Spherical

50

1.104e-59 3.644e-59 2.811e-103 1.539e-102 2.979e+03 1.131e+03
Rosenbrock 2.078e+00 3.954e-01 1.565e+00 2.745e+00 3.131e+01 7.791e+00
Griewank 3.286e-04 1.800e-03 2.132e-03 6.314e-03 2.697e+01 8.899e+00
Ackley 7.694e-15 1.319e-15 1.641e+00 2.258e-16 9.068e+00 9.036e-01

Rastrigin 4.016e+01 8.593e+00 4.630e+01 1.410e+01 1.457e+02 1.891e+01

The best results highlighted in bold in all the tables are selected based on a
two-sample t-test where the null hypothesis is rejected with a 95% confidence
level.

6.2 Experimental Results

Table 4 shows the results obtained by applying EDPSO, EDA-PSO and
PSO Bounds to the classical functions for different problem sizes.

As shown in Tables 4 for the classical functions, both EDPSO and EDA-
PSO outperform PSO Bounds. The reason for this is that the global optimum
is at the center of the search space and the Gaussian model adopted by
these algorithms along with the uniform distribution used in initializing the
particles make it very easy for these algorithms to reach better results.

520 M. El-Abd and M.S. Kamel

Table 5 Results of all the algorithms for the CEC05 benchmark functions

Function Dim.
EDPSO EDA-PSO PSO Bounds

Mean. Std. Mean Std. Mean Std.

f6

10

1.375e+00 4.557e+00 1.123e-02 1.626e-02 1.451e+02 2.218e+02
f7 2.687e-01 2.258e-01 1.927e-01 1.905e-01 - -
f9 3.217e+00 1.604e+00 4.046e+00 2.277e+00 3.454e+00 1.471e+00
f10 1.989e+01 6.327e+00 4.819e+00 3.642e+00 7.543e+00 4.528e+00
f11 3.868e+00 3.859e+00 6.588e+00 1.340e+00 3.529e+00 1.730e+00
f12 2.919e+04 7.054e+03 1.616e+04 6.334e+03 4.243e+03 5.001e+03
f13 1.194e+00 5.372e-01 8.465e-01 3.968e-01 6.904e-01 1.770e-01
f14 2.429e+00 5.255e-01 2.667e+00 5.991e-01 2.365e+00 5.792e-01

f6

30

7.522e+01 1.007e+02 1.716e+01 2.011e+01 6.602e+05 1.841e+06
f7 8.700e-03 5.920e-03 1.300e-02 7.589e-03 - -
f9 1.175e+00 2.044e+00 2.789e+01 6.498e+00 3.315e+01 7.072e+00
f10 1.850e+02 1.348e+01 1.187e+02 6.191e+01 5.556e+01 2.068e+01
f11 4.028e+01 1.676e+00 3.494e+01 2.674e+00 2.849e+01 3.897e+00
f12 1.129e+06 1.266e+05 9.219e+05 2.060e+05 2.941e+05 2.155e+05
f13 1.489e+01 1.497e+00 7.942e+00 4.688e+00 4.333e+00 7.852e-01
f14 1.334e+01 2.309e-01 1.325e+01 2.933e-01 1.245e+01 6.541e-01

f6

50

1.429e+02 2.023e+02 3.725e+01 4.515e+01 3.458e+07 4.913e+07
f7 3.000e-03 5.813e-03 9.867e-03 1.374e-02 - -
f9 1.282e+01 6.519e+00 4.232e+01 1.080e+01 7.047e+01 1.338e+01
f10 3.765e+02 1.520e+01 2.931e+02 8.820e+01 1.222e+02 2.553e+01
f11 7.393e+01 1.266e+00 6.744e+01 3.031e+00 5.778e+02 6.800e+00
f12 5.760e+06 3.738e+05 3.965e+06 1.259e+06 1.254e+05 1.167e+05
f13 3.057e+01 2.701e+00 1.696e+01 1.109e+01 9.327e+00 2.030e+00
f14 2.310e+01 2.551e-01 2.282e+01 3.451e-01 2.237e+01 4.455e-01

Table 6 Comparison between all the algorithms using the gbest model

Algorithm
Classical Functions CEC05 Functions Total Number

No. of Cases Best in No. of Cases Best in of Cases

PSO Bounds - - 15
f11, f12

15
f13, f14

EDA-PSO 7 - 5 f6 12

EDPSO 11
Rosenbrock

5 - 16
Ackley, Rastrigin

On the other hand, for the more difficult CEC05 benchmark functions
shown in Table 5, PSO Bounds has the best performance across the different
problem sizes.

Table 6 summarizes the comparison between all the algorithms based on
the results shown in Tables 4 and 5. The upper bound for the number of
cases is 15 (5 functions in 3 problem sizes) in the classical functions and 21
(7 functions in 3 problem sizes) in the CEC05 functions.

Please note that PSO Bounds is not applied for f7 as this function is not
bounded by a specified domain (the bounds shown in Table 3 are only used
as an initialization range).

PSO Bounds: A New Hybridization Technique of PSO and EDAs 521

0 20000 40000 60000 80000 100000
−5

0

5

10

15

20

25

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(a) f6 10

0 20000 40000 60000 80000 100000
0

5

10

15

20

25

30

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(b) f6 30

0 40000 80000 120000 160000 200000
0

5

10

15

20

25

30

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(c) f6 50

0 20000 40000 60000 80000 100000
1

1.5

2

2.5

3

3.5

4

4.5

5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(d) f9 10

0 20000 40000 60000 80000 100000
0

1

2

3

4

5

6

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(e) f9 30

0 40000 80000 120000 160000 200000
2

3

4

5

6

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(f) f9 50

Fig. 2 Convergence behavior of all the algorithms for the CEC05 functions

The convergence behavior shown in Figure 2 and Figure 3 illustrates that
PSO Bounds usually has a slow speed of convergence compared with the
other algorithms. It only has the fastest speed of convergence in both f6 and
f9 where it does not produce good results.

Convergence figures also show that both EDPSO and EDA-PSO have a
very similar behavior on most of the functions. This could be due to the fact
that both algorithms use the same Gaussian model for sampling the search
space.

6.3 Changing the Population Topology

In [18], the authors stated that “modern research performed using only
swarms with a global topology is incomplete at best”. For this reason, the ex-
periments are rerun again for all the algorithms using the lbest model. Table
7 and Table 8 show the obtained results.

The results show that PSO Bounds still has a deteriorated performance
in the classical functions while outperforming other algorithms on the more
difficult multimodal functions. This means that all the algorithms exhibit the
same performance compared to each other as in the case of using the gbest
model.

Table 9 summarizes the comparison between all the algorithms based on
the results shown in Tables 7 and 8. The results emphasize that the perfor-
mance of these algorithms (compared to each other) is the same regardless
of the underlying population topology.

522 M. El-Abd and M.S. Kamel

0 20000 40000 60000 80000 100000
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(a) f10 10

0 20000 40000 60000 80000 100000
3.5

4

4.5

5

5.5

6

6.5

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(b) f10 30

0 40000 80000 120000 160000 200000
4.5

5

5.5

6

6.5

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(c) f10 50

0 20000 40000 60000 80000 100000
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(d) f11 10

0 20000 40000 60000 80000 100000
3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(e) f11 30

0 1000 2000 3000 4000 5000
4

4.1

4.2

4.3

4.4

4.5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(f) f11 50

0 20000 40000 60000 80000 100000
8

9

10

11

12

13

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(g) f12 10

0 20000 40000 60000 80000 100000
12.5

13

13.5

14

14.5

15

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(h) f12 30

0 40000 80000 120000 160000 200000
11

12

13

14

15

16

17

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(i) f12 50

0 20000 40000 60000 80000 100000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(j) f13 10

0 20000 40000 60000 80000 100000
1

2

3

4

5

6

7

8

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(k) f13 30

0 1000 2000 3000 4000 5000
2

3

4

5

6

7

8

9

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(l) f13 50

0 20000 40000 60000 80000 100000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(m) f14 10

0 20000 40000 60000 80000 100000
2.5

2.55

2.6

2.65

2.7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(n) f14 30

0 40000 80000 120000 160000 200000
3.1

3.12

3.14

3.16

3.18

3.2

3.22

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(o) f14 50

Fig. 3 Convergence behavior of all the algorithms for the CEC05 functions, contd

PSO Bounds: A New Hybridization Technique of PSO and EDAs 523

Table 7 Results of all the algorithms using the lbest model for the classical
functions

Function Dim.
EDPSO L EDA-PSO L PSO Bounds L

Mean Std. Mean Std. Mean Std.

Spherical

10

0 0 3.850e-267 0 3.194e-17 1.722e-16
Rosenbrock 4.019e-03 5.097e-03 1.029e-01 5.276e-02 2.390e-01 1.781e-01
Griewank 1.682e-02 1.194e-02 4.959e-03 7.767e-03 4.881e-02 1.517e-02
Ackley 5.887e-15 2.006e-31 1.268e+00 2.258e-16 5.037e-11 9.260e-11

Rastrigin 3.118e+00 1.5180e+00 3.263e+00 1.885e+00 3.798e+00 1.444e+00

Spherical

30

6.031e-94 3.205e-95 7.020e-141 9.280e-141 5.183e-01 1.811
Rosenbrock 1.076e+00 1.779e-01 1.742e+00 2.524e+00 1.085e+01 3.416e+00
Griewank 2.052e-03 4.970e-03 3.288e-02 1.801e-03 7.657e-02 8.055e-02
Ackley 4.141e-015 0 1.586 3.651e-16 6.166e-01 7.217e-01

Rastrigin 1.523e+01 3.999e+00 4.472e+01 3.057e+01 4.192e+01 7.900e+00

Spherical

50

3.055e-82 1.256e-81 3.700e-11 2.026-10 14.233 33.711
Rosenbrock 2.104e+00 2.490e-01 6.237e+00 1.035e+01 2.356e+01 4.209e+00
Griewank 1.232e-03 3.284e-03 2.919e-03 1.465e-02 6.929e-01 3.780e-01
Ackley 6.865e-15 1.528e-15 1.641e+00 2.258e-16 2.200e+00 6.118e-01

Rastrigin 3.270e+01 7.202e+00 7.481e+01 5.061e+01 9.140e+01 1.469e+01

Table 8 Results of all the algorithms using the lbest model for the CEC05 bench-
mark functions

Function Dim.
EDPSO L EDA-PSO L PSO Bounds L

Mean Std. Mean Std. Mean Std.

f6

10

6.554e+00 1.936e+01 2.092e-01 7.899e-01 1.497e+01 25.785
f9 2.919e+00 1.566e+00 3.310e+00 1.259e+00 8.025e-01 9.603e-01
f10 1.946e+01 6.939e+00 1.105e+01 5.716e+00 6.712e+00 3.003e+00
f11 7.292e+00 3.473e+00 6.196e+00 8.1308e-1 4.480e+00 1.027e+00
f12 2.729e+04 7.468e+03 1.877e+04 6.712e+3 6.535e+03 2.841e+03
f13 1.435e00 4.549e-01 1.224e+00 3.724e-01 6.422e-01 1.390e-01
f14 2.204e+00 5.145e-01 2.910e+00 2.684e-01 2.777e+00 3.261e-01

f6

30

8.592e+01 1.305e+02 7.063e+01 4.586e+01 8.883e+03 3.632e+04
f9 1.605e+01 5.372e+00 4.208e+01 2.742e+01 2.536e+01 4.694e+00
f10 1.778e+02 9.953e+00 1.608e+02 1.719e+01 1.384e+02 1.864e+01
f11 4.043e+01 1.148e+00 3.641e+01 2.107e+00 3.163e+01 2.479e+00
f12 1.140e+06 1.148e+05 9.571e+05 1.696e+05 4.978e+05 1.443e+05
f13 1.447e+01 1.328e+00 1.156e+01 2.639e+00 4.755e+00 9.558e-01
f14 1.347e+01 1.873e-01 1.327e+01 2.282e-01 1.302e+01 2.674e-01

f6

50

6.550e+01 5.446e+01 6.789e+01 4.228e+01 1.967e+06 1.012e+07
f9 3.250e+01 6.450e+01 5.334e+01 2.326e+01 5.547e+01 9.813e+00
f10 3.629e+02 1.624e+01 3.359e+02 1.660e+01 2.879e+02 4.048e+01
f11 7.381e+01 1.911e+00 6.926e+01 2.552e+00 6.184e+01 4.231e+00
f12 5.631e+06 4.676e+05 4.725e+06 5.695e+05 1.896e+06 3.675e+05
f13 2.738e+01 4.029e+00 2.446e+01 4.217e+00 1.062e+01 2.183e+00
f14 2.316e+01 1.693e-01 2.292e+01 2.184e-01 2.261e+01 2.103e-01

524 M. El-Abd and M.S. Kamel

Table 9 Comparison between all the algorithms using the lbest model

Algorithm
Classical Functions CEC05 Functions Total Number

No. of Cases Best in No. of Cases Best in of Cases

PSO Bounds 2 - 16
f10, f11

18
f12, f13

EDA-PSO 7 Spherical 5 f6 12

EDPSO 14
Spherical, Rosenbrock

6 - 20
Ackley, Rastrigin

7 Conclusion and Discussion

This chapter gives a brief introduction to Particle Swarm Optimization and
Estimation of Distribution Algorithms (EDAs). The chapter surveys the dif-
ferent methods previously adopted to combine PSO and EDAs.

The chapter introduces a new algorithm, PSO Bounds, which is a PSO
algorithm that borrows ideas from PBIL. The new algorithm uses the same
equations of motion as PSO while using the current distribution of the par-
ticles during the search to continuously update the allowable search domain.

Along with the proposed algorithm, all the approaches covered are imple-
mented and compared using a suite of well-known benchmark optimization
functions with different properties. It is shown that PSO Bounds outperforms
other PSO and EDAs hybridization techniques on the more difficult shifted
and/or rotated multimodal functions. It is also shown that the new proposed
algorithm has in general a slower speed of convergence when compared to
other algorithms.

Moreover, the relative performance of all the algorithms is shown to
be independent of the underlying population topology used by the PSO
component.

Many future directions could be followed to further improve on the perfor-
mance of such algorithms. The deteriorated performance of PSO Bounds in
some functions could be due to the fact that the width of the allowable do-
main for the different dimensions becomes smaller and smaller as the search
progresses. It would eventually get to the point of being very close to zero (or
zero, even). Once this happens, the particles will stop moving as the allow-
able movement domain for the particles is very small as well as the allowable
maximum velocity, hence, the search stagnates. One way to improve this is
to re-initialize those domains again, by re-setting them to the initial search
ranges, if the width drops under a pre-determined threshold.

A similar approach could be adopted for EDA-PSO by re-initializing the
current positions of the particles, while keeping their pbests values as they
are so as not to lose any useful information, if the value of σ drops under a
pre-determined threshold during the search.

A different research direction is to incorporate PSO with probabilistic mod-
els that allow inter-variable dependencies. All the hybridization techniques

PSO Bounds: A New Hybridization Technique of PSO and EDAs 525

proposed up-to-date, including the one in this chapter, use probabilistic mod-
els that assume that the problem variables are independent.

References

1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

2. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory.
In: Proc. of the 6th International Symposium on Micro Machine and Human
Science, pp. 39–43 (1995)

3. Larranaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New
Tool for Evolutionary Computation. Kluwer, Dordrecht (2002)

4. Baluja, S.: Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning. School
of Computer Science, Carnegie Mellon University, Tech. Rep. CMU-CS-94-163
(1994)

5. Iqbal, M., de Oca, M.A.M.: An estimation of distribution particle swarm opti-
mization algorithm. In: Dorigo, M., Gambardella, L.M., Birattari, M., Marti-
noli, A., Poli, R., Stützle, T. (eds.) Proc. of the Fifth International Workshop
on Ant Colony Optimization and Swarm Intelligence, pp. 72–83 (2006)

6. Zhou, Y., Jin, J.: Eda-pso - a new hybrid intelligent optimization algorithm.
In: Proc. of the Michigan University Graduate Student Symposium (2006)

7. Eberhart, R.C., Simpson, P., Dobbins, R.: Computational Intelligence.PC
Tools: Academic, ch. 6, pp. 212–226 (1996)

8. Kennedy, J., Mendes, R.: Population structure and particle swarm performance.
In: Proc. of IEEE Congress on Evolutionary Computation, vol. 2, pp. 1671–1676
(2002)

9. Rudolph, S., Koppen, M.: Stochastic hill climbing with learning by vectors of
normal distributions. In: First on-line Workshop on Soft Computing (WSC1),
pp. 60–70 (1996)

10. Servet, I., Trave-Massuyes, L., Stern, D.: Telephone network traffic overloading
diagnosis and evolutionary computation technique. In: Hao, J.-K., Lutton, E.,
Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp.
137–144. Springer, Heidelberg (1998)

11. Sebag, M., Ducoulombier, A.: Extending population-based incremental learning
to continuous search spaces. In: Proc. of Parallel Problem Solving from Nature,
pp. 418–427 (1999)

12. Gallagher, M., Frean, M., Downs, T.: Real-valued evolutionary optimization
using a flexible probability density estimator. In: Proc. of Genetic and Evolu-
tionary Computation Conference, vol. 1, pp. 840–846 (1999)

13. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by build-
ing and using probabilistic models. Computational Optimization and Applica-
tions 21(1), 5–20 (2002)

14. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Uni-
versitie Libre de Bruxelles, Tech. Rep. TR/IRIDIA/2005-037 (2005)

15. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Euro-
pean Journal of Operationl Research 185(3), 1155–1173 (2008)

526 M. El-Abd and M.S. Kamel

16. CEC05 benchmark functions,
http://staffx.webstore.ntu.edu.sg/MySite/

Public.aspx?accountname=epnsugan

17. delaOssa, L., Gamez, J., Puerta, J.: Initial approaches to the application of
island-based parallel edas in continuous domains. Journal of Parallel and Dis-
tributed Computing 66(8), 991–1001 (2006)

18. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization.
In: Proc. IEEE Swarm Intelligence Symposium, pp. 120–127 (2007)

	PSO_Bounds: A New Hybridization Technique of PSO and EDAs
	Introduction
	Particle Swarm Optimization
	Estimation of Distribution Algorithms
	PSO Based on Probabilistic Models
	{\it EDPSO}
	{\it EDA-PSO}

	PSO with Varying Bounds
	Results and Discussions
	{\it Experimental Settings}
	{\it Experimental Results}
	{\it Changing the Population Topology}

	Conclusion and Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

