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Abstract. The scheduling and mapping of the precedence-constrained task
graph to the processors is considered one of the most crucial NP-complete
problems in the parallel and distributed computing systems. Several genetic
algorithms have been developed to solve this problem. The primary distinc-
tion among most of them is being the used chromosomal representation for
a schedule. However, these existing algorithms are monolithic as they at-
tempt to scan the entire solution space without consideration how to reduce
the complexity of the optimization. In this chapter, two genetic algorithms
have been developed and implemented. Our developed algorithms are genetic
algorithms with some heuristic principles have been added to improve the
performance. According to the first developed genetic algorithm, two fitness
functions have been applied one after another. The first fitness function is
concerned with minimizing the total execution time (schedule length) and the
second one is concerned with the load balance satisfaction. The second devel-
oped genetic algorithm is based on task duplication technique to overcome the
communication overhead. Our proposed algorithms have been implemented
and evaluated using benchmarks. According to the evolution results, it found
that our algorithms always outperform the traditional algorithms.

1 Introduction

The problem of scheduling task graphs of a parallel program onto parallel
and distributed computing systems is a well-defined NP-complete problem

Fatma A. Omara
Computer Science Department, Faculty of Computer and Information
Cairo University
e-mail: f.omara@ffci-cu.edu.eg

Mona M. Arafa
Mathematics Dept., Faculty of Science Banha University
e-mail: m-h-banha@yahoo.com

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 479–507.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

f.omara@ffci-cu.edu.eg
m-h-banha@yahoo.com


480 F.A. Omara and M.M. Arafa

that has received a large amount of attention, and it is considered one of the
most challenging problems in parallel computing [1]. This problem involves
mapping a Directed Acyclic Graph (DAG), of collection of computational
tasks and their data precedence, onto a parallel processing system. The goal of
a task scheduler is to assign tasks to available processors such that precedence
requirements between tasks are satisfied and in the same time the overall
execution length (i.e., make span) is minimized [2]. Generally, the scheduling
problem exists in two types: static and dynamic.

According to the static scheduling, the characteristics of a parallel pro-
gram such as task processing times, communication, data dependencies, and
synchronization requirement are known before execution [3] . According to
the dynamic scheduling, a few assumptions about the parallel program can
be made before execution, then, scheduling decisions have to be made on-the-
fly [4]. The work in this chapter concerns static scheduling problem. One the
other hand, a general taxonomy for static scheduling algorithms has been
reviewed and discussed by Kwong and Ahmad [3]. Many task scheduling
techniques have been developed with moderate complexity as a constraint,
which is a reasonable assumption for general purpose development platforms
[5, 6, 7, 8]. Generally, the task scheduling algorithms may be divided in two
main classes; greedy and non-greedy (iterative) algorithms [9]. The greedy
algorithms attempt to minimize the start time of the tasks of a parallel pro-
gram only. This is done by allocating the tasks into the available processors
without back tracking. On the other hand, the main principle of the iterative
algorithms is that they depart from an initial solution and try to improve it.

The greedy task scheduling algorithms might be classified into two cate-
gories: algorithms with duplication and algorithms without duplication. One
of the common algorithms in the first category is the duplication scheduling
heuristic (DSH) algorithm [1], the main principles of the DSH algorithm are:
the nodes are arranged in a descending order according to their static b-level
and the start-time of the node on the processor without duplication of any
ancestor is determined. After that the ancestors of the node is tried to dupli-
cate into the duplication time slot until the slot is used up or the start-time
of the node does not improve. One the other hand, one of the best algorithms
in the second category is the Modified Critical Path (MCP) algorithm [10].
The MCP algorithm first computes the ALAPs of all the nodes, then create
ready list containing ALAP times of the nodes in an ascending order. The
ALAP of a node is computed by first computing the length of the Critical
Path (CP) and then subtracting the b-level of a node from it. Ties are broken
by considering min ALAP time of the children of a node. If the min ALAP
time of the children is equal, ties are broken randomly.

According to MCP algorithm, the highest priority node in the list is picked
and assign to a processor that allows the earliest start time using insertion
approach. Recently, Genetic Algorithms (GAs) have been widely reckoned
as a useful vehicle for obtaining high quality solutions or even optimal so-
lutions for a broad range of combinatorial optimization problems including
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task scheduling problem [2, 3]. Another merit of a genetic search is that its
inherent parallelism can be exploited so as to further reduce its running time.
The basic principles of GAs were firstly laid down by Holland [11], and after
that they are well described in many texts. The Gas operate on a population
of solutions rather than a single solution. The genetic search begins by ini-
tializing a population of individuals. Individual solutions are selected from
the population then mate to form new solutions. The mating process im-
plemented by combining or crossing over genetic material from two parents
to form the genetic material for one or two new solutions, confers the data
from one generation of solutions to the next. Random mutation is applied
periodically to promote diversity. The individuals in the population are re-
placed by the new solutions. A fitness function, which measures the quality
of each candidate solution according to the given optimization objective, is
used to help determine which individuals are retained in the population as
successive generations evolve [12]. There are two important but competing
themes exist in a GA search; the need for selective pressure so that the GA
is able to focus the search on promising areas of the search space, and the
need for population diversity so that important information (particular bit
values) is not lost [13, 14].

Recently, several GAs have been developed for solving the task scheduling
problem, the primary distinction among them being the chromosomal repre-
sentation of a schedule [15, 16, 17, 18, 19, 20, 2]. Two hybrid genetic algorithms
called Critical Path Genetic Algorithm (CPGA) and Task Duplication Genetic
Algorithm (TDGA) have been proposed in this chapter. Our developed algo-
rithms show the effect of the amalgamation of the greedy algorithms with the
genetic one. The first algorithm CPGA is based on how to use the ideal time of
the processors efficiently, and reschedule the critical path nodes to reduce their
start time. Finally, two fitness functions have been applied, one after another.
The first fitness function is concerned with how to minimize the total execution
time (schedule length), and the second one is concerned with the load balance
satisfaction. The second algorithm TDGA is based on task duplication princi-
ple to minimize the communication overheads.

The reminder of this chapter is organized as follows: Section 2 gives a de-
scription for the model for task scheduling problem. An implementation of
the standard GA is presented in Section 3. Our developed CPGA is intro-
duced in section 4. Section 5 produces the details of our TDGA algorithm. A
comparative study of our developed algorithms, MCP algorithm, DSH algo-
rithm, and SGA algorithm are presented in Section 6. Conclusion is presented
in Section 7.

2 Task Scheduling Problem Model

The model of the underline parallel system to be considered in this research
work could be described as follows [3]: The system consists of a limited number
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of fully connected homogeneous processors. Let a task graph G be a Directed,
Acyclic Graph (DAG) composed of N nodes n1, n2,..., nN , each node termed a
task of the graph which in turn is a set of instruction that must be executed se-
quentially without preemption in the same processor. A node has one or more
inputs. When all inputs are available, the node is triggered to execute. A node
with no parent is called an entry node and a node with no child is called an exit
node. The weight is called the computation cost of a node ni and is denoted by
(ni) weight. The graph also has E directed edges representing a partial order
among the tasks. The partial order introduced a precedence-constrained DAG
and implies that if ni → nj, then nj is a child, which cannot start until its
parent ni finishes. The weight on an edge is called communication cost of the
edge and is denoted by c(ni, nj). This cost is incurred if ni and nj are sched-
uled on different processors and is considered to be zero if ni and nj are sched-
uled on the same processor. If a node ni is scheduled to processor P , the start
time and finish time of the node are denoted by ST (ni, p) and FT (ni, p) re-
spectively. After all nodes have been scheduled, the schedule length is defined
as max FT (ni, p) across all processors. The objective of the task scheduling
problem is that how to find an assignment and the start times of the tasks to
processors such that the schedule length is minimized and, in the same time,
the precedence constrains are preserved. A Critical Path (CP) of a task graph
is defined as the path with the maximum sum of node and edge weights from
an entry node to an exit node. A node in CP is denoted by CP Nodes (CPNs).
An example of a DAG is represented in Figure1 with CP is drawn in bolt.

Fig. 1 Example of DAG, where t1, t7, and t9 are CP Nodes
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Table 1 Selected Benchmark Programs

Benchmarks programs No tasks Source Note

Pg1 100 [22] Random Graphs
Pg2 90 [22] Robot Control program
Pg3 98 [22] Sparse Matrix Solver

3 The Developed Genetic Algorithms

Before presenting the details of our developed algorithms, some principles
which are used in the design are discussed.

Definition 1. (Data Arrival Time) Any task cannot be start unit all parents
have been finished. Let Pj be the processor on which the k− th parent task tk
of task ti is scheduled. Data Arrival Time (DAT) of ti on a processor Pi is
defined as:

DAT = max(FT (tk, Pj) + c(ti, tk)), k = 1, 2, ..., No − parent (1)

Where, No − parent is the number of parents of ti,

If (i = j) then c(ti, tk) = 0

The parent task that maximizes the above expression is called the favorite pre-
decessors of ti and it is denoted by favpred(ti, Pj). The benchmark programs
which have been used to evaluate our algorithms are listed in Table (1).

3.1 Standard Genetic Algorithm - SGA

The SGA has been implemented first. This algorithm is started with an initial
population of feasible solution. Then, by applying some operators, the best
solution could be finding through some generations. The selection of the best
solution is determined according to the value of fitness function. According to
this SGA, the chromosome is divided into two sections; mapping and schedul-
ing. The mapping section contains the processors indices where tasks to be
run on it. The schedule section determines the sequence for processing of the

Fig. 2 Representation of a Chromosome
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tasks. Figure 2 shows an example of such representation of the chromosome.
Where, tasks t4, t7, t8 will be scheduled on processor P1, tasks t3, t5 will be
scheduled on processor P2, and the tasks t1, t2, t6 and t9 will be scheduled
on processor P3. The length of the chromosome is linear proportional to the
number of tasks.

Genetic Formulation of SGA

Initial Population

The initial population is constructed randomly. The first part of the chromo-
some (i.e. mapping) is chosen randomly from 1 to No-Processors, where the
No-Processors is the number of processors in the system. The second part
(i.e. schedule) is generated randomly such that the topological order of the
graph is preserved. The Pseudo Code of The Task Schedule using SGA is as
follow:

Fitness Function

The main objective of the scheduling problem is to minimize the schedule
length of a schedule.

Fitness− Function = (
a

Slength
) (2)

Where a is a constant and Slength is the schedule length which is determined
by the following equation:

Slength = max(FT [t, ]), i = 1, ..., KnoTask (3)

Function Schedule length

1. ∀RT [Pj] = 0 //RT is the ready time of the processors.

2. Let LT be a list of tasks according to the topological order of DAG.

3. For i=1 to NoTasks Do

// NoTasks is number of tasks

(a) Remove the first task ti form list LT .

(b) For j = 1 to NoProcessors Do
// NoProcessors is number of Processors.



Genetic Algorithms for Task Scheduling Problem 485

If ti is scheduled to processor Pj

ST [ti] = max(RT [Pj ], DAT (ti, Pj))

FT [ti] = ST [ti] + weight[ti]

RT [Pj] = FT [ti]

Endif, Endfor, Endfor.

Slength = max(FT ).

Example: By considering the chromosome represented in Figure 2 as a so-
lution of a DAG represented in Figure 1, the Fitness Time function defined
by equation 3 has been used to calculate the schedule length (see Figure 3).

Genetic Operators

In order to apply crossover and mutation operators, the selection phase should
be applied firstly. This selection phase used to allocates reproductive trials to

Fig. 3 The Schedule Length
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Table 2 A comparison between roulette wheel and tournament selection

Benchmarks programs Roulette Wheel Selection Tournament Selection

Pg1 301.6 283.7
Pg2 1331.6 969
Pg3 585.8 521.8

chromosomes according to their fitness. There are different approaches could
be applied in the selection phase. According to the work in this chapter,
fitness-proportional roulette wheel selection [23] and tournament selection
[24] are compared such that the best method is used (i.e., produce the short-
est schedule length). In the roulette wheel selection, the probability of selec-
tion is proportional to an chromosome’s fitness. The analogy with a roulette
wheel arises because one can imagine the whole population forming a roulette
wheel with the size of any chromosome’s slot proportional to its fitness. The
wheel is then spun and the figurative ball thrown in. the probability of the
ball coming to the rest in any particular slot is proportional to the arc of
the slot and thus to the fitness of the corresponding chromosome. In binary
tournament selection, two chromosomes are picked at random from the pop-
ulation. Whichever has the higher fitness is chosen. This process is repeat
number of population size.

Table (2) contains the comparing results between these two selection meth-
ods using 4 processors for each benchmark program listed in Table1. Accord-
ing to the results listed in Table 2, the tournament selection method produce
schedule length is smaller than the roulette wheel selection. Therefore, the
tournament selection method is used in the work of this chapter.

Crossover Operator. Each chromosome in the population is subjected to
crossover with probability μ. Two chromosomes are selected from the popu-
lation, and a random number RN ∈ [0, 1] is generated for each chromosome.
If RN < μ, these chromosomes are applied using one of the two kinds of
the crossover operators; single point crossover and order crossover opera-
tors. Otherwise, these chromosomes are not changed. The pseudo code of the
crossover function is as follows.

Function Crossover

1. Select two chromosomes chrom1 and chrom2

2. Let P a random real number between 0 and 1

3. If P < 0.5 /* operators probabilty

Crossover-Map(chrom1, chrom2)
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Else

Crossover-Order(chrom1, chrom2).

According to the crossover function, one of the crossover operators is used.

Crossover Map. When the single crossover is selected, it is applied to the
first part of the chromosome. By given two chromosomes a random inte-
ger number called the crossover point is generated from 1 to No-Tasks. The
portions of the chromosomes lying to the right of the crossover point are
exchanged to produce two offsprings (see Figure 4).

Fig. 4 One point crossover operator

Order Crossover. When the order crossover operator is applied to the sec-
ond part of the chromosome, a random point is chosen. First pass the left
segment from the chrom1 to the offspring, and then construct the right frag-
ment of the offspring according to the order of the right segment of chrom2
crossover operator is given in (see Figure 5 as an example).

Mutation Operator. Each position in the first part of the chromosome
is subjected to mutation with probability . Mutation involves changing the

Fig. 5 Order crossover operator
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Fig. 6 Mutation Operator

assignment of a task from one processor to another. Figure 6 illustrate the
mutation operation on chrom1. After the mutation operator is applied, the
assignment of t4 is changed from processor P3 to processor P1.

4 The Critical Path Genetic Algorithm (CPGA)

Our developed CPGA algorithm is considered a hybrid of GA principles and
heuristic algorithms principles (e.g., given priority of the nodes according to
ALAPlevel). On the other hand, the same principles and operators which are
used in SGA algorithm have been used in the CPGA algorithm. The encod-
ing of the chromosome is the same as in SGA, but in the initial population
the second part (schedule) of the chromosome can be constructed using one
of the following ways:

1. The schedule part is constructed randomly as in SGA.
2. The schedule part is constructed using ALAP.

These two ways have been applied using benchmark programs listed in
Table 1 with four processors. According to the comparative results listed
in Table (3), it is found that the priority of the nodes by ALAP method
outperforms the random one in the most cases.

Table 3 A comparison between Random and Order ALAP Order methods

Benchmarks programs Random Order ALAP Order

Pg1 183.4 152.3
Pg2 848.5 826.4
Pg3 301.8 293.8

By using ALAP, the second part of the chromosomes is become static
along the population. So, the crossover operators are restricted to the one
point crossover operator. Three modifications have been applied in the SGA
to improve the scheduling performance. These modifications are: (1) Reuse
idle time, (2) Priority of the CPNs, and (3) Load balance.



Genetic Algorithms for Task Scheduling Problem 489

Function Test-Slots

1. Let LT be a list of ready tasks
2. Initially the deal-time list is empty, S-ideal-time=0, and E-ideal-time=0
3. While the list LT is not empty, get a task ti from the head of the list
(a) Min = ST = inf
(b) For each processor Pj

If ti is scheduled to Pj .

Let thisST = the start time of ti on Pj

If thisST > MinST Then MinST = thisST

If the idealtime list of Pj is not empty

For each timeslot of the idealtime list

If (Eidealtime−Sidealtime) <= weight[ti] & DAT (ti, Pj) > Sidealtime

Then schedule ti in the idealtime and update the Sidealtime and Eideal-
time

Let sttime be the start time of the task ti equal to Sidealtime.

End If

(c) If sttime > MinST Then

MinST =sttime.

Example. Suppose the schedule represented in Figure (3). The processor P1

has an ideal time slot; the start of this ideal time (S-ideal-time) is equal to 7
while its end time (E-ideal-slot) is equal to 12. On the other hand, the weight
(tS) =4 and DAT (tS , P1) = S−ideal−slot = 7.By applying the modification,
tS can be rescheduled to start at time 7. The final schedule length according
to this modification becomes 23 instead of 26 (see Figure 7).

Priority of CPNs Modification

According to the second modification, another optimization factor is applied
to recalculate the schedule length after giving high priorities for the (CPNs)
such that they can start as early as possible. This modification is implemented
using a function called Reschedule-CPNs Function. The pseudo code of this
function is as follows:
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Fig. 7 The schedule after applying the test slots function is reduced from 26 to 23

Function Reschedule-CPNs

1. Determine the CP and make a list of CPNs

2. While the list of CPNs is not empty DO

- Remove the task ti from the list

- Let V IP = favpred(ti, Pj)

If V IP is assigned to processor Pj

Then The task ti is assigned to processor pj

End If

Example. We apply the Reschedule-CPNs Function in the scheduling pre-
sented in Figure 7. According to the DAG in presented in Figure 1, it is
found that the CPNs are t1, t7, and t9. t1 is the entry node and it has no
predecessor and the favpred of the t7 is the task t1. The task t7 is scheduled
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Fig. 8 The schedule af-
ter applying the resched-
ule of the CPNs function
is reduced from 23 to 17

to processor P1. Also the favpred of t9 is t8, but in the same time it starts
early on the processor P3, so t9 is not moved. The final schedule length is
reduced to 17 instead of 23(see Figure 8).

Load Balance Modification

Because the main objective of the task scheduling is to minimize the schedule
length, it is found that several solutions can give the same schedule length,
but load balance between processors might be not satisfied in some of them.
The aim of load balance modification is that how to obtain the minimum
schedule length and, in the same time, the load balance is satisfied. This has
been satisfied by using two fitness functions one after another instead of one
fitness function. The first fitness function concerns with minimizing the total
execution time, and the second fitness function is used to satisfy load balance
between processors. This function is proposed in [25] and it is calculated by
the ratio of the maximum execution time (i.e. schedule length) to the average
execution time over all processors.

If the execution time of processor Pj is denoted by Etime[Pj ], then the
average execution time over all processors is:

avg =
NoProcessor∑

j=1

Etime[Pj ]
NoProcessors

(4)

So, the load balance is calculated as:

LoadBalance =
Slength

Avg
(5)
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Supposing two task scheduling solutions are given in Figure 9 (a,b). The
schedule length of both solutions is equal to 23.

Solution a: Avg = 12+17+23
3 ,

Loadbalance = 23
17.33 ≈ 1.326

Solution b: Avg = 9+11+23
3 ≈ 14.33,

Loadbalance = 23
14.33 ≈ 1.604.

Fig. 9 according to balance fitness function solution (a) is better than solution (b)

According to the balance fitness function as shown in Figure (9), the so-
lution (a) is better than the solution (b).

Adaptive μc and μm Parameters

Srinivas and patnaik [26] have proposed an adaptive method to tune crossover
rate μc and mutation rate μm on the fly based on the idea of sustaining in
diversity in a population without affecting its convergence properties. There-
fore; the rate μc as:

μc =
kc(fmax − fc)
(fmax − favg)

(6)

And the rate μm is defined as:

μm =
km(fmax − fm)
(fmax − favg)

(7)

Where, fmax is the maximum fitness value, favg is the average fitness value
fc is the fitness value of the fitter chromosome for the crossover fm is the
fitness value of the chromosome to be mutated kc and km are positive real
constant less than 1.
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Table 4 A comparison between static and dynamic μc, μm parameters

Benchmarks programs Dynamic parameters Static parameters

Pg1 148 152.3
Pg2 785.6 826.4
Pg3 288.2 293.8

The CPGA algorithm has been implemented into two versions: the first
version is done using static parameters (μc = 0.8 and μm = 0.02) and the
second version is done using adaptive parameters. Table 4 represents the
comparison results between these two versions. According to the results, it
found that using adaptive parameters (μc and μm ) can help preventing a
GA from getting stuck at local minima. So the adaptive method is batter
than using static values of μc and μm.

5 The Task Duplication Genetic Algorithm (TDGA)

Even with an efficient scheduling algorithm, some processors might be ideal
during the execution of the program because the tasks assigned to them might
be waiting to receive some data from the tasks assigned to other processors.
If the idle time slots of the waiting processor could be used effectively by
identifying some critical tasks and redundantly allocating them in these slots,
the execution time of the parallel program could be further reduced [27].

According to our proposed algorithm, a good schedule based on task du-
plication has been proposed. This proposed algorithm called Task Duplica-
tion Genetic Algorithm (TDGA) employs a genetic algorithm for solving the
scheduling problem.

Definition 2. At a particular scheduling step; for any task ti on a processor
Pi, if STF (favpred(ti, pj)) + weight(favpred(ti, pj)) ≤ EST (ti, pj) Then
EST (ti, pj) can be reduced by scheduling favpred(ti, pj) to pj. Therefore,
this definition could be applied recursively upward the DAG to reduce the
schedule length.

Example. To clearfy the effect of the task duplication technique, consider a
schedule presented in Figure 10(a) for DAG in Figure (1), the schedule length
is equal to 21. If t1 is duplicated to processor p1 and p2 the schedule length
is reduced to 18 (see Figure 10(b)).

Genetic Formulation of The TDGA

According to our TDGA algorithm, each chromosome in the population con-
sists of a vector of order pairs (t, p) indicates that task t is assigned to
processor p. The number of order pairs in a chromosome may vary in length.
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Fig. 10 (a) before duplication (schedule length=21) (b) After duplication (sched-
ule length=18)

Fig. 11 An Example of
the Chromosome

An example of a chromosome is shown in Figure 11. The first order pair
shows that task t2 is assigned to processor P1, and the second one indicates
that task t3 is assigned to processor P2, etc.

According to the duplication principles, the same task may be assigned
more than once to different processors without duplicating it in the same
processor. If a task processor pair appears more than once on the chromo-
some, only one of the pairs is considered. According to Figure 11, the task t2
is assigned to processor P1 and P2.

Definition 3. (Invalid chromosomes) Invalid chromosomes are the chromo-
somes that not contain all DAG tasks. These invalid chromosomes might be
generated.

Initial Population. According to our TDGA algorithm, two methods to
generate the initial population are applied. The first one, called Random
Duplication (RD) and the second one called Heuristic Duplication (HD).
According to RD, the initial population is generated randomly such that
each task can be assigned to more than one processor.

According to HD, the initial population is initialized with randomly gen-
erated chromosomes, while each chromosome consists of exactly one copy of
each task (i.e. no task duplication). Then, each task is randomly assigned to
a processor. After that a duplication technique is applied by a function called
Duplication-Process. The pseudo code of the Duplication-Process function is as
follows:
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Table 5 A comparison between the methods (HD and RD)

Benchmarks programs HD RD

Pg1 493.9 494.1
Pg2 1221 1269.5
Pg3 641.2 616.2

Fig. 12 Example of two point crossover operator

Fig. 13 Example of Mutation Operator

Function Duplicatin-Process

1.Compute SL for each task in the DAG
2.Make a list Slist of the tasks according to SL in descending order
3.Take the task ti from Slist
4. While Slist is not empty.

If is assigned to processor ρi

if favpred(ti, ρi) is not assigned to ρi

if (timeslot ≥ weight(favpred(ti, ρi))

assigned favpred(ti, ρi) to ρi

According to the implementation results using two methods, it is found
that the methods give nearly results. Therefore, the first method (HD) has
been considered in our TDGA algorithm.

Fitness Function. Our fitness function is defined as 1/Slength, where
Slength is defined as the maximum finishing time of all tasks of the DAG.
The proposed GA assigns zero to an invalid chromosome as its fitness value.
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Fig. 14 NSL for Pg1 and MCD 25, 50

Fig. 15 NSL for Pg1 and MCD 75, 100

Genetic Operators: Crossover Operator. Two point crossover operator
is used. Since each chromosome consists of a vector of task processor pair,
crossover exchange substrings of pairs between two chromosomes. Two points
are randomly chosen and the partitions between the points are exchanged
between two chromosomes to form two offsprings. The crossover probability
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Fig. 16 NSL for Pg2 and two values of ρ

gives the probability that a pair of chromosome will undergo crossover. An
example of two point crossover is shown in Figure 12.

Mutation Operator

The mutation probability indicates the probability that an order pair will be
changed. If a pair is selected to be mutated, the processor number of that
pair will be randomly changed. An example of mutation operator is shown
in Figure 13.

6 Comparative Study and Performance Evaluation

To evaluate our proposed algorithms, we have implemented them using an
Intel processor (2.6 GH) using c++ language and it is applied using differ-
ent task graphs of specific benchmark applications programs as well as, a
random one without communication delays which are listed in Table (1).
All benchmark programs are taken from a Standard Task Graph (STG)
archive [22]. The first two programs of This STG set consists of task graphs
generated randomly Pg1, the second program is the robot control (Pg2) as
an actual application programs and the last program is the sparse matrix
solver (Pg3). Also, we consider the task graphs with random communication
costs. These communication costs are distributed uniformly between 1 and a
specified maximum communication delay (MCD). Also, the population size
is considered 200 and the number of generations is considered 500 generation.
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Fig. 17 NSL for Pg3 and two values of ρ

Fig. 18 Speedup for Pg1 and MCD 25 and 50
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Fig. 19 NSpeedup for Pg1 and MCD 75and 100

6.1 The Developed CPGA Evaluation

The comparison has been done among our algorithm CPGA, SGA and one
of the best greedy algorithms is called MCP algorithm. Firstly, a comparison
among the CPGA, SGA and MCP algorithms with respect to the Normalized
Schedule Length (NSL) with different number of processors has been done.
The NSL is defined as [28]:

NSL =
Slength∑

x∈CP (Weight(ni))
(8)

Where SLength is the schedule length and weight (ni) is the weight of the
node ni. The sum of computation costs on the CP represents a lower bound
on the schedule length. Such lower bound may not always be possible achieve,
and the optimal schedule length may be larger than this bound. Secondly,
the performance of the CPGA, SGA and MCP are measured with respect to
speedup [29]. The speedup is can be estimated as:
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Fig. 20 Speedup for Pg2 and two values of ρ

S(p) =
T 1
Tp

(9)

where, T (1) is the time required for executing a program on a uniprocessor
computer and T (P ) is the time required for executing the same program on
a parallel computer containing P processors. The NSL for CPGA and MCP
algorithms using 2, 4, 8, and 16 processors for Pg1 and different MCD (25,
50, 75, and 100) are given in Figures (14 and 15). Also the NSL for Pg2 and
Pg3 graphs with two different number of μ are given in Figures 16 and 17
respectively.

Figures (14, 15, 16, and 17) show that the performance of our proposed
CPGA algorithm is always outperformed SGA and MCP algorithms. Accord-
ing to the obtained result, it is found that the NSL of all algorithms is increased
when processor number is increased. Although, our CPGA is always the best,
and it achieves lower bound when the communication delay is small.
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Fig. 21 Speedup for Pg3 and two values of ρ

6.2 The Developed TDGA Evaluation

To measure the performance of the TDGA, a comparison among the TDGA
algorithm, SGA, and one of well known heuristic algorithm based on task
duplication called DSH algorithm has been done with respect to NSL and
speedup. To clarify the effect of task duplication in our TDGA algorithm,
the same benchmark random and application programs Pg1, Pg2, and Pg3
listed in Table (1) have been used with high communication delay.

The NSL for TDGA, SGA, and DSH algorithms using 2, 4, 8, and 16
processors for Pg1 with two value of Communication Delay (CD) 100 and
200 is given in Figure 22. Also the NSL for bench mark application programs
Pg2, and Pg3 is given in Figures 23, and 24.

According to the results in Figures (22, 23, and 24), it is found that our
TDGA algorithm outperforms SGA and DSH algorithms especially when the
number of communication, as well as, the number of processor increases.

The speedup of TDGA algorithm and DSH algorithm is given in Figures
(25, 26, and 27) for Pg1, Pg2, and Pg3 programs respectively.
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Fig. 22 NSL for Pg1 and CD =100 and 200

Fig. 23 NSL for Pg2 and ρ=1 and 2

The results reveal that the performance of the TDGA algorithm is always
outperformed the DSH algorithm. Also, the TDGA speedup is nearly linear
especially for random graphs
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Fig. 24 NSL for Pg3 and ρ=1 and 2

Fig. 25 Speedup for Pg1 and ρ=1 and 2
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Fig. 26 Speedup for Pg2 and ρ=1 and 2

Fig. 27 Speedup for Pg3 and ρ =1 and 2
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7 Conclusion

In this chapter, an implementation of a standard GA (SGA) to solve the task
scheduling problem has been presented. Some modifications have been added
to this SGA to improve the scheduling performance. These modifications are
based on amalgamating heuristic principles with the GA principles. The new
developed algorithm called Critical Path Genetic Algorithm (CPGA) is based
on rescheduling the critical path nodes (CPNs) in the chromosome and then
through different generations. Also, two modifications have been added. The
first one concerns with how to use the idle time of the processors efficiently,
and the second one concerns about to satisfy load balance among processors.
The last modification is applied only when there are two or more scheduling
solutions with the same schedule length are produced.

A comparative study among our CPGA, SGA algorithms and one of the
standard heuristic algorithm called MCP algorithm have been presented us-
ing standard task graphs with considering random communication costs. The
experimental studies show that the CPGA always outperform the SGA as
well as the MCP algorithm in most cases. Generally, the performance of
our CPGA is better than the SGA and MCP algorithms. According to task
duplication technique, the communication delays are reduced and then min-
imizing the overall execution time, in the same time, the performance of the
genetic algorithm is increased. The performance of the TDGA is compared
with a traditional heuristic scheduling technique: DSH and SGA. The TDGA
outperforms the DSH algorithm and SGA in most cases.
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