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Abstract. Evolutionary computing methods are being used in a wide field
domain with increasing confidence and encouraging outcomes. We want to
illustrate how these new techniques have influenced the statistical theory and
practice concerned with multivariate data analysis, time series model building
and optimization methods for statistical estimates computation and inference
in complex systems. The distinctive features all these subject topics have in
common are the large number of alternatives for model choice, parametriza-
tion over high dimensional discrete spaces and lack of convenient properties
that may be assumed to hold at least approximately about the data gener-
ating process. Evolutionary computing proved to be able to offer a valuable
framework to deal with complicated problems in statistical data analysis and
time series analysis and we shall draw a wide though by no means exhaustive
list of topics of interest in statistics that have been successfully handled by
evolutionary computing procedures. Specific issues will be concerned with
variable selection in linear regression models, non linear regression, time se-
ries model identification and estimation, detection of outlying observations in
time series as regards both location and type identification, cluster analysis
and grouping problems, including clusters of directional data and clusters of
time series. Simulated examples and applications to real data will be used for
illustration purpose through the chapter.

1 Introduction

Evolutionary computing is a general approach for simulating evolution on
computers. In a statistical framework, evolutionary computing provides a
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class of methods useful for identification, estimation, validation and predic-
tion of models that describe relationships of interest among variables linked
to real world data sets. Many evolutionary computing methods are referenced
in [41] but the usual nowadays classification includes evolutionary program-
ming, evolution strategies, genetic algorithms, estimation of distribution algo-
rithms, differential evolution. The difference between these methods is often
subtle, the unifying framework consists in assuming that several potential
solutions exist that may solve a problem but the optimal one has to be dis-
covered through an evolution process. Such a process develops along the same
guidelines that drive the natural adaptation to the environment typical of the
biological populations. So the optimal solution may not even be present in
the set of solutions that are considered at the beginning. It is built grad-
ually by selection, recombination and mutation of the solutions that enter
the population in several iterative steps usually called generations. In this
chapter we will focus on genetic algorithms (GAs) and to a minor extent
to the estimation of distribution algorithms (EDAs). For an introduction to
GAs see, for instance, [65] and [73], and refer to [61] for EDAs. GAs-based
methods have been proposed often to solve problems in the field of statistics.
Obviously we may find countless applications in the wide framework of the
artificial intelligence (AI) and methods developed for AI problems have found
their application in statistics as well. The meta-heuristic methods are general
purpose heuristics that include as special case the GAs and the other evolu-
tionary computing methods but extend to cover methods such as threshold
accepting (TA), simulated annealing (SA), tabu search (TS) and many oth-
ers ([85, 86]). Often hybridization has been proposed among meta-heuristic
methods to exploit useful features of interest for the problem at hand (see
[47] for an example of hybrid algorithm which combines TS and GAs, and
[88] who considered SA and GAs).

As far as GAs-based heuristics are concerned, [29], [28] and [68] discussed
several applications in statistics, for instance the variable selection and pa-
rameter estimation in linear regression model. The standard errors of the
estimates are approximately evaluated by processing with the GA several
bootstrap samples from the data. Applications of genetic algorithms were
proposed as well for component and discriminant analysis ([76]), graphical
model identification ([75]), model selection ([2]), subset regression ([55]), crisp
and fuzzy cluster analysis ([69], [63], [54]), outlier identification for indepen-
dent data ([36]), non linear optimization to determine the wavelet filter for
M-band wavelet decomposition scheme ([34]), exponential power distribution
parameter estimation ([83]) and mixture models investigation ([10]). Promis-
ing applications of GAs have been proposed in statistical sampling ([56]) and
design of experiments ([27], [42], [51]). In machine vision and pattern recog-
nition framework cluster algorithms were proposed based on SA by [6] and
on GAs by [3], [4] and [5].

A comprehensive account on meta-heuristic methods for time series analysis
may be found in [9]. Special topics for applications are autoregressive moving
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average (ARMA) model identification ([72]), subset ARMA (SARMA) model
identification ([43], [64]) and subset vector autoregressive (VAR) model ([17]),
cluster of time series ([7, 8]), outlier detection in time series ([14]), threshold
autoregressive (TAR) model identification ([87]), modeling structural breaks
([37, 38]), identification of transfer function models ([33]).

The paper is organized as follows. In the next section 2 the GAs and EDAs
will be outlined in some details. The remaining sections will illustrate exam-
ples of different implementations of GAs depending on the problem. Section
3 is devoted to present two examples of variable selection in multivariate lin-
ear regression and in time series SARMA models. Parameter estimation with
GAs and EDAs will be considered in section 4 using as an illustration a lo-
gistic regression model on the coronary heart disease data taken from [52]. In
section 5 comparison is made between meta-heuristic methods and algorithms
based on gradient optimization and indirect inference methods for the expo-
nential autoregressive (EXPAR) time series model. Then the identification
and estimation of time series threshold models is considered concerned with
threshold autoregressive (TAR) models and double threshold autoregressive
heteroscedastic (DTARCH) and double threshold generalized ARCH (DT-
GARCH) models. The outlier detection problem is accounted for in section
6. In section 7 an example of GAs-based cluster analysis is discussed con-
cerned with time series data and directional data in comparison with TA,
SA and TS methods. Section 8 outlines directions for further research and
conclusions are drawn.

2 GAs and EDAs Implementations

In the next sections we shall illustrate methods essentially based on GAs. A
special attention will be reserved to EDAs which is in the same domain of the
GAs and similar in many aspects. For GAs in particular there is a general
schema that may be implemented in several ways. The more common will be
outlined in this section.

2.1 The GAs Procedure

The basic GAs procedure is usually illustrated by assuming that the potential
solutions are encoded as binary strings. A real number x ∈ (a, b) may be
encoded as a binary string of length � as follows

x = a + c(b − a)/(2� − 1), (1)

where c is the non negative integer that may be decoded from the binary
string. Given a positive integer s, a set of s binary strings (i1, i2, . . . , i�) of
pre-specified length � are generated at random. The s strings form the ”initial
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population.” This latter is a subset of the set of all admissible solutions. Let
the initial population be the current population, and perform N iterations in
each of which the s strings are allowed to change according to the ”genetic
operators” selection, crossover and mutation.

1. Selection. The objective function to be optimized is called in this context
the ”fitness function” and it is taken to be maximized. If the problem
requires that the objective function f has to be minimized, then we may
define the fitness function as f∗ = exp(−f), for instance. Then, for s
times, a string in the current population is chosen (with replacement)
with probability proportional to its fitness function. We obtain this way s
strings that are taken to replace the current population.

2. Crossover. For the sake of simplicity, let us assume that s is an even
integer. Then, the strings in the current population are paired at random
to form s/2 pairs. Each pair is examined in turn, and crossover takes
place if U < pc, where pc is a pre-specified crossover probability and U is a
uniform random number in the interval (0, 1). The crossover acts as follows.
(i) An integer j is chosen uniformly randomly in the interval (1, � − 1).
The number j is called the ”cutting point.” (ii) The bits from j + 1 to �
are exchanged between the strings that are paired.

3. Mutation. All chromosomes in the population are allowed to change their
values with probability pm. The choice of pm was proven to influence the
performance of the GA considerably. A high pm may serve to maintain
the diversity between the individuals into the population, but this is likely
to produce premature convergence as well. The probability pm is usually
assumed rather small in the interval (0.001, 0.1). A popular rule consists
in choosing pm equal to 1/�, where � is the chromosome length.

The ”elitist strategy” (see [73] for motivation) applies, that is the best string
that may be found in each of the N iterations is always maintained in the
current population unless an even better string appears due to the genetic
operators. If this latter is not the case, then such string replaces the string
with the worst fitness function. This replacement is done so that the popula-
tion retains the same number of strings s in each iteration. At the end of each
iteration the strings obtained by using the genetic operators replace all the
existing strings, and the new population is assumed as the current one. The
best string in the population after N iterations is taken as the final solution.

2.2 The EDAs Procedure

These algorithms are best explained, and were originally derived, in the case
that the chromosomes are real vectors x = (x1, x2, . . . , x�)′, though they have
been extended to more general settings. In the real vector case, the problem
may be formulated as that of maximizing a fitness function f(x) where x is
a real vector x ∈ R�.
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The proposal originates from the attempt of explicitly taking into account
the correlation between genes of different loci (components of the vector x),
that may be seen in good solutions, assuming that such correlation structure
could be different from that of the less fitted individuals. The key idea is to
deliver an explicit probability model and associate to each population (or a
subset of it) a multivariate probability distribution.

An initial version of the estimation of distribution algorithm was originally
proposed by [66], and then many further contributions developed, generalized
and improved the implementation. A thorough account may be found in [57]
and in a second more recent book ([61]).

The estimation of distribution algorithm is a regular stochastic population
based evolutionary method, and therefore evolves populations through gen-
erations. The typical evolution process from one generation to the next may
be described as follows:

1. Generate an initial population P (0) = {x(0)
i , i = 1, . . . , N} ; c = 0 .

2. If P (c) denotes the current population, select a subset of P (c): {x(c)
j , j ∈

S(c)} with |S(c)| = n < N individuals, according to a selection operator.
3. Consider the subset {x(c)

j , j ∈ S(c)} as a random sample from a multivari-
ate random variable with absolutely continuous distribution and probabil-
ity density p(c)(x), and estimate p(c)(x) from the sample.

4. Generate a random sample of N individuals from p(c)(x): this is the pop-
ulation at generation c + 1, P (c+1).

5. If a stopping rule is met, stop; otherwise c + 1 → c and return to 2.

The originally proposed selection operator was the truncation selection,
in other words only the n individuals with the largest fitness out of the N
members of the population are selected. Later, it was proposed that other
common selection mechanism such as the roulette wheel (proportional selec-
tion) or the tournament selection (choice of the best fitted inside a group of
k individuals chosen at random) may be adopted.

3 Variable Selection in Linear Regression and ARMA
Models

A typical issue in linear model identification is variable selection. A linear
relationship is postulated between a dependent variable y and a set of inde-
pendent variables {x1, x2, . . . , xp}. Let n observations be available so that we
may write the usual linear regression model

yi = β0 + β1x1i + β2x2i + . . . + βpxpi + ui, i = 1, . . . , n,

where β = (β0, β1, . . . , βp)′ is the parameter vector and u = (u1, . . . , un)′ is
a sequence of independent and identically distributed random variables with
zero mean and unknown variance σ2

u. Let y = (y1, . . . , yn)′ and
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X = [1, x1, x2, . . . , xp] where 1 denotes a column vector of ones. The lin-
ear regression model may be written in matrix form

y = Xβ + u.

If p is large it is desirable to reduce the number of independent variables to the
set that includes only the variables really important to explain the variability
of y. Common available methods are the iterative forward, backward and
stepwise methods. However, we would be more confident about the final result
if we could compare several subset alternative simultaneously. The GAs are
an easy-to-use tool for performing this comparison exactly.

3.1 Subset Regression

We want to select the variables that really matter in a linear regression. The
encoding for using GAs is straightforward as it suffices to define a mapping
from a binary string of length p and the parameter sequence β1, . . . , βp. The
constant term β0 is always included in the regression.

Let us illustrate a GAs-based procedure for subset regression on an exam-
ple of n = 100 artificial data and a set of p = 15 variables. Both independent
and dependent variables are sampled from a standard unit normal distribu-
tion. The y are generated by a model with parameters

β = (.01, 0.7,−0.8, 0.5, .01, .01, .01,−0.7, 0.6, 0.8, .01, .01, .01, .01, .01, .01)′

and σ2
u = 2.25. It is apparent that only the variables 1 − 3 and 7 − 9 impact

y significantly.
A GA has been employed to search for the best subset model. The fitness

function has been the F statistic. The chromosome is a binary string of length
15, for instance

000110000011100

is decoded to a regression model that includes only the variables 4, 5, 11, 12, 13
as independent variables to explain y. The population size has been chosen
s = 30, the maximum number of generations N = 100, the generational gap
(how many new chromosomes are created) has been set equal to 90% of the
past population, pc = 0.7 and pm = 1/15. Roulette wheel rule for selec-
tion, single cutting point crossover, binary mutation and the elitist strategy
are employed. The fitness function evolution is displayed in figure 1. This is
the typical fitness function behavior in the presence of elitist strategy. While
fitness function improves quickly in the first iterations, then no better so-
lutions are found and the elitist strategy prevents the fitness function from
decreasing. The GA finds the best solution corresponding to F = 29.8941
and variables 1 − 3 and 7 − 9.
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Fig. 1 Fitness function in the subset regression problem versus the number of
iterations

A GAs approach to subset regression based on information criteria has
been suggested by [55] while GAs have been suggested in [78] to evaluate
the bias in parameter estimates produced by omitting variables from the
regression model.

3.2 Autoregressive Moving Average Models

Models of the ARMA and ARIMA class are most popular in time series
analysis essentially for two reasons: first, they are a natural generalization of
regression models, and may be easily interpreted using similar concepts as in
regression analysis; and, second, they may be seen as universal approximation
for a wide class of well behaved stationary stochastic processes.

An ARMA model may be written

xt−φ1xt−1−φ2xt−2−. . .−φpxt−p = c+ut−θ1ut−1−θ2ut−2−. . .−θqut−q (2)

where c = μ(1 − φ1 − . . . − φp). Equation (2) is called an ARMA(p, q) model
and p and q are known as the autoregressive and the moving average orders of
the model. If the observed time series {xt} is not stationary, while, for some
positive integer d, the differenced series {yt} of order d is stationary, then we
have an ARIMA model by replacing xt with yt and setting c = 0 in (2).

Parsimony is universally accepted as precept among time series analysts, so
that the ARMA model building problem may be seen as choosing the model
with the smallest number of parameters given an approximation level. An ad-
ditional way of reducing the number of parameters is considering incomplete
models, where some of the parameters φ1, . . . , φp, θ1, . . . , θq are constrained
to zero. Such models are usually referred to as subset ARMA models ([30]).



354 R. Baragona and F. Battaglia

The canonical model building procedure runs iteratively through the fol-
lowing three steps:

1. Identification. Selection of the orders p and q, and, if a subset model is
considered, choice of which parameters are allowed to be non-zero.

2. Parameter estimation. Conditional on identification, the estimation of pa-
rameters may be performed through classical statistical inference.

3. Diagnostic checking. Once the model is completely specified and estimated,
it is customary to check whether it fits the data sufficiently well. This is
generally accomplished by computing the residuals. A model is generally
accepted provided that the residual are approximately uncorrelated and
have zero mean and constant variance.

The most difficult step of the model building procedure is identification.
Two different codings have been proposed, in either case a maximum search
order has to be selected, both for the autoregressive part (P say) and for the
moving average part (Q). The simplest coding amounts to reserving one gene
to each possible lag, filling it with 1 if the parameter is free, and with 0 if
the parameter is constrained to zero. For example, if we take P = Q = 6, the
following subset model:

xt = φ1xt−1 + φ4xt−4 + φ5xt−5 + ut − θ2ut−2 − θ4ut−4 − θ6ut−6

is coded by means of the following chromosome

100110
︸ ︷︷ ︸

010101
︸ ︷︷ ︸

AR lags MA lags

This coding system was adopted by most authors, and has the advantage
of simplicity and fixed-length chromosomes, but it is not particularly efficient.

An alternative coding based on variable-length chromosomes, was pro-
posed by [64]. The chromosomes consist of two different gene subsets: the
first one is devoted to encode the autoregressive and moving average orders,
by specifying the number of relevant predictors, i. e., the number of non-zero
parameters, respectively for the autoregressive part, p∗, and for the moving
average part, q∗. This part consists of eight binary digits and encodes two in-
teger numbers between 0 and 15 (therefore this coding allows for models that
have up to 15 non-zero autoregressive parameters and 15 non-zero moving
average parameters). The other genes subset is devoted to specifying the lags
which the non zero parameters correspond to: it comprises 5(p∗ + q∗) binary
digits, and encodes, consecutively, p∗ + q∗ integer numbers between 1 and
32. Therefore according to this implementation P = Q = 32 and all models
containing a maximum of 15 non zero parameters, both for the AR and the
MA structures, may be coded. For example. the chromosome corresponding
to the previous model is:

0011 0011 00001 00100 00101 00010 00100 00110 .
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The first part of the chromosome contains 8 digits, while the second part
has a variable length from zero (white noise) to 150 binary digits. Encoding
with the same order limitations would require, in the fixed-length scheme
introduced before, 64-digit chromosomes. It appears that the advantage of
using the variable length scheme might be sensible if we are searching for
relatively sparse models, because the average length depends directly on the
number of non zero parameters (for example, a coding admitting no more
that 4 non zero parameters in each AR or MA structure, with a maximum
lag of 64, would require a fixed chromosome 128 long, and a variable length
chromosome with 6 to 54 binary digits).

In any case, the structure of the genetic algorithm depends on the choice of
a maximum possible order: it may be based on a-priori considerations, or even
on the number of available observations. A more data-dependent choice of the
maximum admissible lag could also be based on an order selection criterion
computed only on complete models (with all parameters free) as proposed
in [22]: in this case a relatively ”generous” criterion like the asymptotic in-
formation criterion (AIC) (see, for instance, [84], p. 153) seems advisable to
avoid reducing the solution space excessively.

Since all proposed codings are binary, each proposal corresponds to usually
slight modifications of the canonical genetic algorithm. The selection proce-
dure is obtained by means of the roulette wheel methods, except for [17]
who adopt rank selection. The mutation operator is employed in its standard
form, while for the cross-over operator some authors propose a random one
cut point ([43]), others a random two point cross-over ([67]) or a uniform
cross-over ([17]). All authors use unit generational gap and slightly different
elitist strategies: saving the best chromosome, or the two best chromosomes,
or even the 10% best chromosomes in the population. When dealing with
the alternative coding based on subsets of genes that encode the AR and MA
order, [64] suggest that the cross-over operator should be modified in order to
apply on entire fields (representing the integer numbers denoting order or lag)
rather to the single binary digits. Mutation and cross-over probabilities are
generally in accordance with the literature on canonical genetic algorithms,
proposed values are between 0.001 and 0.1 for mutation, and from 0.6 to 0.9
for cross-over. Not many suggestions are offered concerning the population
size, and the chromosomes composing the initial generation (they are gener-
ally selected at random in the solution space). It may be reasonably assumed
that a good starting point, with satisfying mixing properties, would require
initial individuals which may exploit the fitting ability of each single possible
parameter. Therefore, advantageous chromosomes in the initial population
are those encoding models with just one non zero parameter (i. e., in the first
coding scheme, chromosomes with only one gene equal to one). The minimum
population size that allows to fully develop this idea is obviously equal to the
total number of possible parameters, or P + Q.

Much more relevant differences are found in the literature on ARMA model
building by means of genetic algorithms, as far as the fitness function is
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concerned. Essentially, the fitness function is linked to some version of iden-
tification criterion or penalized likelihood. A favorite choice is adopting one
of the most popular identification criteria in time series, such as the AIC or
the BIC (also called Schwartz) criteria:

AIC(M) = N log{σ̂2
(M)} + 2p(M)

BIC(M) = N log{σ̂2
(M)} + p(M) log N

where N is the series length, σ̂2
(M) is the residual variance estimate for model

M , and p(M) is the number of free parameters of model M . Alternatively,
[23] suggest their identification criterion called ICOMP . Rather than simply
considering the number of non zero parameters, ICOMP measures the model
complexity through a generalization of the entropic covariance complexity in-
dex of [82]. The criterion ICOMP is computed by estimating the Fisher’s
information matrix for the parameters and by adding to the likelihood- pro-
portional term, N log σ̂2, the quantity C(F̂−1):

ICOMP (M) = N log σ̂2
(M) + C(F̂−1)

where
C(X) = dim(X) log{trace(X)/ dim(X)} − log |X | .

Finally, [64] use an AIC-like criterion where the residual variance is replaced
by a prediction error variance:

s2(�) ∝
∑

t

[xt+� − x̂t(�)]2

where x̂t(�) is the predictor based on the model. Obviously, for the forecast
horizon � = 1 there is no difference with AIC, [64] try their criterion also for
� = 2 and 3.

A common problem to all these implementations is that the proposed cri-
teria are to be minimized, thus they cannot be employed directly as fitness
function (which has, on the contrary, to be maximized). Solution of two kinds
have been proposed: [23] avoid the problem of defining a fitness proportionate
selection by adopting an ordered fitness selection rule: chromosomes are or-
dered according to the decreasing values of the ICOMP criterion, and each
chromosome is selected with a probability proportional to its rank. An alter-
native is defining the fitness function by a monotonically decreasing transfor-
mation of the identification criterion. Most natural candidates are a simple
linear transformation:

fitness(M) = W − criterion(M)

which is possible if an estimate of the worst possible value of the criterion,
W , is available ([43] suggests to compute W on the current population), or
a negative exponential transformation:
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fitness(M) = exp{−criterion(M)/d}

where d is a scaling constant. A Boltzman selection procedure is proposed
by [43] using the last expression for the fitness, but with a progressively
decreasing ”temperature” dk = (0.95)k, where k is the generation number.
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Fig. 2 Yearly number of lynx pelts sold by Hudson’s Bay Company in Canada
from 1857 to 1911 (top panel) and residuals from the best subset ARMA model
(bottom panel)
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Table 1 Comparison between ARMA and subset ARMA models

Model c0 φ1 φ2 φ3 θ1 θ2 θ3 σ2
ε

ARMA 7.08 0.87 0.13 −0.73 0.15 0.35 −0.57 0.0958
(1.30) (0.29) (0.46) (0.29) (0.32) (0.29) (0.17)

SARMA 6.77 0.96 −0.64 0.23 0.27 −0.55 0.0962
(0.70) (0.06) (0.06) (0.15) (0.15) (0.16)

The simulation studies presented in literature suggest satisfying results
of each implementation, with slight substantial differences, indicating that
for univariate time series with most encountered series lengths, the genetic
algorithm yields good models after just a few generations, and converges
nearly always, though after many more generations, to the true simulated
model.

3.3 An Example of Subset ARMA Fitted to a Real
Data Set

Let us consider the yearly number of lynx pelts sold by Hudson’s Bay Com-
pany in Canada from 1857 to 1911. The data set is composed of 55 obser-
vations and is reported in [84], p. 449, as Series W7. Following [84] (p. 150)
we use the natural logarithm of the observations for ARMA model identi-
fication. In figure 2 the logarithms of the data are displayed (solid line) in
the top panel with the predicted values (dotted line) computed from the best
subset ARMA model. In the bottom panel of figure 2 the residuals (dotted
line) are displayed with the 95% normal bounds (straight lines). The GAs are
used for identifying the best subset model. The encoding used to obtain the
best subset model is the first one. The fitness function was set equal to the
appropriate transform of the AIC criterion. In figure 3 the fitness function
evolution is displayed.

In table 1 a comparison is made between the ARMA model and the subset
ARMA model fitted to Series W7. The ARMA(3,3) model has a smaller
residual variance but its AIC (−103) is slightly greater than the subset model
(−105). The difference between the two model is concerned with a single
parameter and it seems that little is gained as for diagnostic checking values.
Nonetheless there is a considerable advantage as regards the standard errors
of the estimates which display a sharp decrease if the subset model is used.

4 The Logistic Regression Model

We give an example of application of the logistic regression model as it has
been fitted to the data by GAs by [29] and [68] and by EDAs by [74]. So it
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seems of interest to use a logistic regression model to show an application of
GAs and EDAs for nonlinear model parameter estimation.

Let y denote a binary dependent variable and {x1, x2, . . . , xp} a set of
independent variables. The logistic regression ([52]) assumes a non linear
relationship between y, called in this context the response variable, and the
covariates x1, x2, . . . , xp. Let Y denote a binary random variable and assume
that y = (y1, . . . , yn)′ is a sample from Y . Let π be the probability P (Y =
1|x1, . . . , xp) and define the logit transform

logit(π) = log
π

1 − π

As an example, we fitted a logistic regression model to a real data set,
namely the coronary heart disease data from [52]. We used several algorithms
to estimate the two parameters β0 and β1 of the logistic regression model

logit(πi) = β0 + β1xi, i = 1, 2, . . . , 100.

The observed response variable is yi = 1 if insurgence of coronary heart dis-
ease in the ith patient has been recorded and yi = 0 otherwise. The covariate
xi is the ith patient’s age (years). The iterative re-weighted least squares
(IRLS), the GAs and EDAs algorithms implemented for maximizing the log-
arithm of the likelihood

L =
n

∑

i=1

yi(β0 + β1xi) −
n

∑

i=1

log{1 + exp(β0 + β1xi)}

are outlined as follows. Upper and lower bounds for the two parameters have
been chosen (−10, 10) for β0 and (−2, 2) for β1. The input matrix is defined
X = [1, x] where 1 denotes a column vector of ones and the parameter vector
is β = [β0, β1].

• IRLS. This iterative algorithm implements the Newton method applied to
the problem of maximizing the likelihood of a response variable y given
X . Let a preliminary guess of the model parameter β̂(0) be available. Then
the following steps describe the move from β̂(k) to β̂(k+1) at iteration k.

1. Set, for i = 1, . . . , n,

π
(k)
i = exp

(

β̂
(k)
0 + β̂

(k)
1 xi

)

/
{

1 + exp
(

β̂
(k)
0 + β̂

(k)
1 xi

)}

.

2. Define the weights matrix W (k) = diag(w(k)
1 , . . . , w

(k)
n ) where w

(k)
i =

π
(k)
i (1 − π

(k)
i ).

3. Compute z(k) = Xβ̂(k) +
(

W (k)
)−1

(y − π(k)).
4. Solve with respect to β̂(k+1) the weighted linear regression problem
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(

X ′W (k)X
)

β̂(k+1) = X ′W (k)z(k)

5. Replace β̂(k) with β̂(k+1) and repeat from step 1 until some termination
condition is met.

• GA-1 (binary encoding). The potential solutions to the maximization
problem have been encoded as two binary strings of length 20 each. Equa-
tion (1) has been used to obtain the value of each of the two parameters
given the integer c encoded as a binary string. The Gray code has been
used. The population size has been taken equal to 30, the number of it-
erations has been 300 and 30 bootstrap samples have been generated to
compute the estimates as the average estimates and the standard errors.
The stochastic universal sampling method has been used for selection,
then the single point crossover with pc = 0.7 and the binary mutation
with pm = 1/20.

• GA-2 (real encoding). The potential solutions to the maximization prob-
lem have been encoded as floating-point numbers. The population size has
been taken equal to 30, the number of iterations has been 300 and 30
bootstrap samples have been generated to compute the estimates as the
average estimates and the standard errors. The stochastic universal sam-
pling method (see, for instance, [65], p. 166) has been used for selection,
then the line recombination crossover with pc = 0.7 and the floating-point
mutation with pm = 1/20.

• GA-3 ([29]). Equation (1) has been used to obtain the value of each of the
two parameters given the integers c0, c1 encoded as binary strings. The
chromosome is the binary string c = [c1, c2]. The population size has been
taken rather large, 1000 chromosomes, and the number of generations has
been chosen equal to 30. Tournament selection with ps = 0.7, single point
crossover with pc = 0.65, and binary mutation with pm = 0.1 have been
used. An additional operation, the inversion ([65]), has been applied with
probability pi = 0.75 to each chromosome in each generation. Inversion
consists in choosing two points �1 and �2 at random in the chromosome
and taking the bits from �1 to �2 in reverse order. The standard errors of the
parameter estimates are computed by applying the GA on 250 bootstrap
samples of the data.

• GA-4 ([68]). The potential solutions to the maximization problem have
been encoded as two pairs of numbers, a real number r ∈ (0, 1) the first one
and an integer in a given interval (Na, Nb) the second one. The parameter
estimates are obtained as β̂0 = r0N0 and β̂1 = r1N1. The population size
has been taken equal to 100, the number of iterations has been 100 and 30
bootstrap samples have been generated to compute standard errors of the
parameter estimates. The binary tournament has been used as selection
process. Then special crossover (modified uniform crossover) and mutation
are suggested. For crossover, the chromosomes are paired at random and
the integer parts exchange. If the integer parts are equal, then the exchange



Evolutionary Computing in Statistical Data Analysis 361

takes place as regards the real part of the chromosome. Only the offspring
with better fit is placed in the new generation. Mutation applies, with
probability pm = 0.1, only to the real parts of each chromosome. This
part, r say, is multiplied by a random number between 0.8 and 1.2, namely
r is multiplied by 0.8 + 0.4U , where U is an uniform random number in
(0, 1). If mutation yields a number greater than 1 the first component is
set to 1.

• EDA ([74]). The potential solutions to the maximization problem are rep-
resented by s vectors of 2 real numbers, the parameters β0 and β1. The
initial population is generated at random. Then the s chromosomes are
evaluated according to the likelihood function and the better s∗ are re-
tained. Other than using the likelihood, also the AUC ([24]) criterion is
suggested as an alternative fitness function. This is recommended when
the logistic regression model is used as a classifier and the AUC is the
area under the receiver operating characteristic (ROC) curve, a graphical
device to describe the predictive behavior of a classifier. The s∗ best vec-
tors found are used to estimate a bivariate probability density function.
From this latter distribution s new chromosomes are generated and a new
iteration starts. We adopted a bivariate normal distribution so that only
the mean vector and the variance-covariance matrix are needed to esti-
mate the distribution in each iteration. We assumed s = 50 and s∗ = 30,
300 iterations and 30 bootstrap samples.

The results are reported in table 2 for the 6 algorithms. Estimates β̂0 and
β̂1 are displayed with standard errors enclosed in parentheses. As a measure
of adaptation the logarithm of the likelihood L computed on the average
estimates is reported.

According to the figures displayed in table 2 the best algorithm is GA-1 as
it shows the largest log-likelihood. The second best would be the algorithm
GA-4. In this case however the estimates are markedly biased and exhibit
the largest standard errors. This result may be explained by the encoding
method. Splitting each parameter in two parts has the immediate consequence
of increasing the variability of the estimates. Moreover, the fitness function
should be linked to the parameters as directly as possible while for algorithm

Table 2 Parameter estimates for logistic regression fitted to the CHD data by
using IRLS, 4 GAs and an EDA-based algorithms

IRLS GA-1 GA-2 GA-3 GA-4 EDA

β̂0 − 5.3195 − 5.1771 − 6.0010 − 5.4360 − 3.1658 − 5.4985
(1.1337) (1.3775) (1.6355) (1.2580) (1.9609) (1.5062)

β̂1 0.1109 0.1070 0.1248 0.1130 1.3995 0.1147
(0.0241) (0.0290) (0.0331) (0.0270) (0.6422) (0.0301)

L −53.6774 −53.1873 −53.8577 −53.6886 −53.4000 −53.6907
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GA-4 there is an intermediate step that separates the chromosomes decoding
from the fitness function evaluation. The other algorithms lead to slightly
smaller values of the log-likelihood and yield results similar to the algorithm
GA-1. The algorithms IRLS and GA-3 have the advantage to attain the
smallest standard errors of both estimates β̂0 and β̂1. As an overall result it
seems that binary encoding performs better than the real one for evolutionary
computing algorithms.

5 Multi-regimes Model Parameter Estimation

Stationary time series do not change their characteristic features through
time. This behavior is not always observed in real time series data. A model
that fits well the time series in a time interval may prove inadequate in
other time intervals. Often the mean of the time series changes with time
but this may be found true as well for the variance, the autocorrelation
function, the spectral density in some frequency intervals, for instance. On
the other hand linear models are specially useful to model time series data.
The ARMA specification takes advantage of a well established theoretical
background and well known effective procedures for identification, estimation,
diagnostic checking, validation and forecasting. The multi-regime models may
take non-stationarity into account and use at the same time the ARMA
models as different ARMA models apply to different subsets of data. The
smooth transition autoregressive models ([81]) are an example of useful multi-
regime models where switching from an AR model to another takes place
gradually. The threshold models (see [79]) have been developed along the
same guidelines except that a step transition replaces the smooth passage
between regimes. [37, 38] employed threshold autoregressive processes for
modeling structural breaks, and used a GA for identifying the model. As
in each regime the ARMA modeling may be used conveniently, the main
problem with multi-regime models is the transition parameter or threshold.
In this section we examine some algorithms, including meta-heuristics and
GAs, that aim at locating the thresholds as accurately as possible. We assume
the EXPAR model as a special example in the class of the smooth transition
autoregressive models. The threshold models will be examined in the next
sections.

5.1 The Exponential Autoregressive Model

The EXPAR(p) model may be written

yt = {φ1 +π1exp(−γy2
t−d)}yt−1 + . . .+ {φp +πpexp(−γy2

t−d)}yt−p + et, (3)

where d is the delay parameter. Unlike linear models, a change of the error
variance σ2

e by multiplying the {et} by a constant k, say, does not imply



Evolutionary Computing in Statistical Data Analysis 363

that the {yt} turn into {kyt}. The order of magnitude of {yt} in (3) depends
on γ too, in the sense that we may obtain the time series {kyt} by both
multiplying σ2

e by k2 and dividing γ by k2.
The ability of the EXPAR to account for limit cycles depends whether some

conditions on the parameters in equation (3) be fulfilled. If the time series
is believed to exhibit limit cycles behavior, then the estimation procedure
needs to be constrained in some way.

A brief description of the basic parameter estimation procedure proposed
by [50] for the estimation of (3) follows. It may be considered as a natural
benchmark for competitive alternatives because it is quite straightforward
and unlike to fail to yield a solution. It does not ensure, however, that the
limit cycles conditions be fulfilled.

The algorithm requires that an interval (a, b), a ≥ 0, be pre-specified for
the γ values in (3). This interval is split in N sub-interval, so that a grid of
candidate γ values is built. Let s = (b− a)/N and γ = a. Then, for N times,
the following steps are performed.

1. Set γ = γ + s
2. Estimate φj e πj by ordinary least squares regression of yt on yt−1,

yt−1exp(−γy2
t−d), yt−2, yt−2exp(−γy2

t−d), . . .
3. Compute the AIC criterion and repeat steps 1 and 2 for N − 1 times.

Final estimated parameters are taken that minimize the AIC.
For the existence of limit cycles, the following conditions (see, for instance,

[71]) are required to hold:
(1) all the roots of

zp − φ1z
p−1... − φp = 0

lie inside the unit circle,
(2) some of the roots of

zp − (φ1 + π1)zp−1... − (φp + πp) = 0

lie outside the unit circle,
(3)

1 −
p
∑

j=1

φj

p
∑

j=1

πj

> 1 or < 0.

Several algorithms are available for nonlinear models parameter estimation
in the presence of either likelihood function or residual sum of squares difficult
to maximize or minimize respectively in the presence of many local optima. We
select some algorithms to perform a simulation experiment in comparison with
the GAs, namely the grid search, indirect inference ([49]), TS, SA and TA.

We carried out a simulation experiment to compare the performance of
these methods and of GAs for parameter estimation of the EXPAR model
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Table 3 Average estimates for 100 replications from an EXPAR(2)

parameter φ1 φ2 π1 π2 γ

true value 1.95 −0.96 0.23 −0.24 1.0

500 obs φ̂1 φ̂2 π̂1 π̂2 γ̂ d2 σ̂2 MSE
Grid search 1.76 − .77 − .35 − .32 .71 3.99 1.64 1.64

(.17) (.17) (1.65) (.28) (.80) (.96) (1.63)
Indirect inf 1.92 −.94 −.40 −.66 1.53 7.14 1.45 1.40

(.05) (.05) (2.0) (1.38) (.59) (.81) (1.23)
Tabu search 1.91 −.92 .05 −.08 .79 3.73 .99 .97

(.16) (.15) (1.69) (.25) (.82) (.06) (.20)
Simul anneal 1.62 −.63 .64 −.63 1.05 4.63 1.41 1.52

(.77) (.77) (1.28) (.75) (.84) (.54) (1.44)
Thre accept 1.84 −.85 −.03 −.45 .88 1.44 1.25 1.25

(.11) (.11) (.86) (.19) (.70) (.36) (.39)
Genetic alg 1.89 −.91 .07 −.10 .46 3.47 .99 .97

(.20) (.18) (1.58) (.26) (.72) (.06) (.21)

1000 obs φ̂1 φ̂2 π̂1 π̂2 γ̂ d2 σ̂2 MSE
Grid search 1.85 −.86 −.02 −.24 .79 1.03 1.25 1.35

(.10) (.10) (.43) (.15) (.83) (.41) (1.02)
Indirect inf 1.94 −.95 .37 −.42 1.40 7.58 1.36 1.19

(.04) (.04) (2.19) (1.45) (.66) (.50) (.41)
Tabu search 1.95 −.96 .20 −.07 .66 1.31 1.0 .99

(.02) (.01) (.76) (.12) (.76) (.05) (.13)
Simul anneal 1.85 −.86 .36 −.37 1.16 1.19 1.18 1.26

(.15) (.15) (.73) (.20) (.70) (.32) (.99)
Thre accept 1.85 −.86 .25 −.38 1.20 1.09 1.0 1.0

(.20) (.20) (.70) (.23) (.62) (.05) (.05)
Genetic alg 1.95 −.96 .19 −.07 .45 1.32 1.0 1.0

(.02) (.02) (.69) (.12) (.70) (.05) (.13)

with φ1 = 1.95, φ2 = −0.96, π1 = 0.23, π2 = −0.24, γ = 1 and d = 1. This
model has been proposed as an example by [50]. We simulated 100 series
of 1550 observations by using standard unit Gaussian deviates. For each
series, the first 1000 observations have been discarded, and the last 50 set
apart for out-of-sample one-step-ahead forecasts. So, for estimation we used
500 observations. Further, 100 series of 2100 observations were generated
as well. For each series the first 1000 observations were discarded, but 100
observations were set apart for out-of-sample forecasts. The observations left
for estimation purpose were 1000. The results are displayed in table 3. The
parameter estimates, averaged over 100 replications, are reported, and their
standard errors are enclosed in parentheses. The index d2 is computed as the
average squared Euclidean distance between the two sets of estimated and
true parameters. Then, the residual variance σ̂2 and the mean square error
forecast (MSE) have been computed. The structure of the model has been
assumed known, so that the number of parameters has been held fixed.
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As far as the residual variance and MSE are concerned, TS and GAs for
500 and TS, TA and GAs for 1000 observations give the best performances as
their values are close to one. Parameters φ1 and φ2 are estimated fairly well
by all methods and standard errors are small, with the only exception of SA
for 500 observations. On the other hand, estimates of π1, π2 and γ are often
severely biased, and standard errors are large. The smallest squared difference
d2 between true and estimated parameters averaged over 100 replications is
obtained by using TA for 500 and grid search and TA for 1000 observations.

5.2 The Generalized EXPAR Model

We may consider the more general EXPAR model (see, for instance, [32])

yt = {φ1 + π1exp(−γ1y
2
t−d)}yt−1 + . . . + {φp + πpexp(−γpy

2
t−d)}yt−p + et,

where γ1, . . . , γp are positive constants and d is the delay parameter. Advan-
tages that may come from this model may consist in greater flexibility, better
fit and improved forecasts. On the other hand a grid search for estimating
γ1, . . . , γp is less efficient and may become infeasible if the model order is
large. Then the GAs may constitute a convenient device for estimating the
parameters φj , πj and γj . By using a GAs-based algorithm [15] fitted sev-
eral ”generalized” EXPAR models to the well known Canadian lynx data
and sunspot numbers (see [79], chapter 7, for a detailed analysis) and ob-
tained satisfactory results for both time series. We shall report some results
concerned with the sunspot numbers.

Computations have been performed on the mean-deleted transformed data
2{(1 + yt)1/2 − 1} as suggested in [79], p. 420. We considered the AR(9)
model reported by [79], p. 423, and the self-excited threshold autoregressive
SETAR(2; 11, 3) model proposed by [45], p. 247. Then we estimated using
GAs the EXPAR(2), the EXPAR(6) and the EXPAR(9) models with one γ
and with 2, 6 and 9 γ’s respectively. For estimating the parameters of each
model we used the observations from 1700 to 1979, while the observations
from 1980 to 1995 were reserved for the multi-step forecasts. The data have
been downloaded from the URL: http://www.sidc.be/sunspot-data/ (SIDC-
team, Royal Observatory of Belgium, Ringlaan 3, 1180 Brussel, Belgium, The
International Sunspot Number, Monthly Report on the International Sunspot
Number, online catalogue, yearly data 1700-2007). The results are displayed
in table 4. Models are compared by means of the residual variance and the
forecasts MSE. Time origins are 1979, 1984, 1987 and lead times 1, 2, . . . , 8.

The best forecasts not always are obtained by using models that have the
smallest residual variance. The EXPAR(9) model with 9 γ’s, for instance,
yields the smallest residual variance, but the SETAR(2; 11, 3) model provides
the best multi-step forecasts for the years 1980-1987. The results change, how-
ever, if different time intervals are considered. Thus, the least mean square
forecasts error is observed for the EXPAR(9) with 9 γ’s in 1985-1992, for the
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Table 4 Sunspot numbers: comparison among AR, SETAR, EXPAR and general-
ized EXPAR

residual mse mse mse mse
model variance 1980-87 1985-92 1988-95 1980-92

AR(9) 4.05 3.60 16.5 9.01 16.19

SETAR(2; 11, 3) 3.73 1.82 33.51 17.34 22.27

EXPAR(2) one γ 4.90 7.08 65.28 31.39 32.97
EXPAR(2) 2 γ’s 4.83 3.77 85.33 29.32 38.46

EXPAR(6) one γ 4.47 7.64 54.74 19.46 21.11
EXPAR(6) 6 γ’s 4.34 11.85 42.01 20.62 21.89

EXPAR(9) one γ 3.66 4.99 20.43 8.21 13.02
EXPAR(9) 9 γ’s 3.57 2.62 16.34 10.65 10.27

EXPAR(9) with a single γ in 1988-1995. In the wider time span 1980-1992,
the EXPAR(9) with 9 γ’s is able to produce the best multi-step forecasts.
The cyclical behavior of this time series is changing over time, and our mod-
els may describe it better in certain years than others. It seems that the
EXPAR(9) model with 9 γ’s almost always yields the most accurate fore-
casting performance.

5.3 Threshold Autoregressive Models

A self-exciting TAR (SETAR) model may be written

yt = c
(i)
j +

p
∑

j=1

φ
(i)
j yt−j + εt if yt−d ∈ (ri−1, ri],

where {εt} is white noise, d is a given positive integer and the k disjoint
intervals (ri−1, ri], i = 1, . . . , k, partition the real axis .

The GAs-based TAR model identification procedure in [87] needs the pre-
liminary specification of the maximum number of ”regimes” K (K ≥ 2), the
largest autoregressive model order P , the number of candidate threshold pa-
rameters H (H ≥ K−1) and the number of delay parameters D. If all models
had to be enumerated exhaustively their number should be computed

(P + 1)K

(

H
K − 1

)

D.

Such number of candidate solution may obviously become very large. The
GA solution ([87]) is based on encoding each of the tentative models as a
string which is composed of several ”fragments.” The first one encodes the
delay parameter, the second one the candidate threshold parameters (H ”per-
centiles” were chosen from the ordered observations), then the orders of each
of the autoregressive models are encoded. For instance, if D = 4, H = 3, the
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number of regimes is taken equal to 2 and the maximum autoregressive order
is P = 3, then a string of 9 bits would suffice to represent each and every
potential solution. For example, the string

01|011|10|11

means that d = 1, the third percentile value is taken as the threshold param-
eter, the autoregressive order for the first regime is 2 and that for the second
regime is 3. The fitness function is chosen as a modified version of the AIC.
The effectiveness of the method is shown by means of both a simulation ex-
periment and some empirical studies for investigating the changing exchange
rate of Thailand.

The TAR model easily generalizes to a threshold ARMA model if at least
in some regimes an MA part is specified. Obviously in some regimes the
model may be a pure MA without an AR part. A GAs-based algorithm may
be developed along the same guidelines by defining a chromosome augmented
to take the MA part into account.

In the multivariate framework a hybrid algorithm which combines GAs
and SA has been proposed by [88] for estimating a threshold vector error
correction model. The GA is implemented by using the real encoding and
suitable genetic operators for crossover and mutation. In addition each chro-
mosome in the current population is updated only if the offspring is accepted
according to the Metropolis rule.

5.4 Double Threshold ARCH and GARCH Models

The autoregressive conditional heteroscedastic (ARCH) models and general-
ized ARCH (GARCH) have been introduced for modeling volatility cluster-
ing. The self-exciting threshold autoregressive ARCH (SETAR-ARCH) is a
generalization that accounts for asymmetries in levels. Asymmetries both
in levels and volatility may be modeled by the double threshold ARCH
(DTARCH) and double threshold GARCH (DTGARCH) models. References
for ARCH and GARCH models are [39] and [20], see [58], [59] and [26] for
threshold ARCH and GARCH models. The GAs have been considered by
[1] for identifying the optimal structure of a GARCH model. For the iden-
tification and estimation of DTARCH and DTGARCH models GAs-based
methods have been developed by [11] and [13].

A GARCH model takes the form

xt = m(It, θ) + εt

√

v(It, θ)

It = {xt−1, xt−2, . . . , , εt−1, εt−2, . . .} information at time t,

m(It, θ) : conditional mean,

v(It, θ) : conditional variance.
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If the conditional mean m(It, θ) follows a multi-regime SETAR(p) model
and the conditional variance v(It, θ) follows a multi-regime ARMA model
SETARMA(s, q) then we may specify the DTGARCH model

xt = φ
(u)
0 +

∑

j

φ
(u)
j xt−j + at if xt−d ∈ Ru

vt = α
(u)
0 +

∑

i

β
(u)
i vt−i +

∑

j

α
(u)
j a2

t−j if xt−d ∈ Ru

where R is a partition : (−∞,∞) = R1 ∪R2 ∪ . . .∪Rk, d is the delay, at are
independent Gaussian zero mean random variables and E(a2

t ) = v(It, θ). The
partition sets Rj are always intervals: R1 = (−∞, r1), R2 = (r1, r2) , R3 =
(r2, r3) , . . . , Rk = (rk−1,∞), where r1 < r2 < . . . < rk−1 are the thresh-
olds. In practice the DTGARCH model parameters may be distinguished in
structural parameters, i.e.

1. delay parameter d
2. regime number k
3. thresholds (r1, r2, . . . , rk−1)
4. autoregressive orders (p1, p2, . . . , pk)
5. GARCH orders (q1, q2, . . . , qk, s1, s2, . . . , sk)

and the equation coefficients

φ
(u)
j , α

(u)
j , β

(u)
j

subject to stationarity and variance non-negativity constraints.
If the structural parameters are given, the equation coefficients may be

estimated by maximum likelihood:

log L(x1, x2, . . . , xn|φ, α, β) = const − 1
2

k
∑

u=1

{log(vt) + a2
t /vt}i(u)

t ,

where i
(u)
t denotes the indicator function of xt−d ∈ Ru. But for the structural

parameters there is no analytic method available. The only possible procedure
which may yield an exact solution consists in:

1. enumerating all possible models
2. estimating the coefficients of each and every model
3. performing diagnostic checking and evaluating all models
4. selecting the best model.

A more viable alternative is determining sets of structural parameters by
means of heuristic methods and estimating and comparing the full models.

We shall describe here a hybrid GA for estimating a DTGARCH model
where the GA is used for searching for optimal structural parameters d, k,
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rj , pj , sj , qj while the coefficients of the model equations φ
(u)
j , α

(u)
j , β

(u)
j are

estimated by maximizing the log-likelihood.

Chromosome encoding

Let K denote the maximum number of regimes and M the minimum number
of observations required in each regime. The chromosome c consists in two
separate parts, since orders and thresholds are separately encoded.

• orders part

– The first part c1 encodes d, p1, . . . , pk, q1, . . . , qk, s1, . . . , sk,
– the binary coding is used to represent integers and
– mutation and crossover are assumed as in simple GA.

• thresholds part

– The second part c2 of the chromosome c encodes (g1, g2, . . . , gK−1)
where gi represents the number of observations in the ith regime and
gi ∈ (M, n).

– This encoding is motivated by the convenience in avoiding legalization
problems, namely any c2 is a valid chromosome fragment.

Chromosome decoding

Decoding c1 is straightforward. For c2 we have to specify a rule to compute the
number of regimes k and the threshold r1, . . . , rk−1 from (g1, g2, . . . , gK−1).
The requirement gi ∈ (M, n) is needed to ensure that estimation may be
performed in each regime easily. We compute the thresholds as follows:

r1 = x(g1), r2 = x(g1+g2), r3 = x(g1+g2+g3), . . .

where (x(1), x(2), . . . , x(n)) are the ordered data. The number of regimes k is
computed as

k = arg max
κ

{g1 + . . . + gκ < n − M} + 1 ≤ K.

In practice only the first k − 1 out of the K − 1 integers gi’s have to be
computed and we may stop decoding as soon as gk ≥ n − M . Then we
assume k regimes and thresholds r1, . . . , rk−1. Note that both the chromo-
some fragment c1 and c2 have fixed length, �1 = (3k + 1)ν the first one and
�2 = (K − 1)ν the second one, where ν is the number of bits we adopt to
encode the integers as binary strings. The complete chromosome c has fixed
length � = �1+�2. The genes that do not contribute to the decoding procedure
still belong to c and may turn useful for recombination in the later crossover
steps.
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Genetic operators

The crossover may be performed as usual in c assuming that the genes are
integer numbers. Mutation in c1 may be performed as binary mutation, while
mutation in c2 needs a special procedure. We adopted the following device:
if gene gi mutates then its new value is a uniform random number in the
interval (max{M, gi − M/2}, gi + M/2).

Fitness function

We have adopted the AIC criterion for fitness function evaluation. Given the
chromosome c which encodes the structural parameters, let us maximize the
likelihood with respect to φ, α, β, i.e.

L∗(c) = sup
φ,α,β

L(x|φ, α, β)

Then the AIC is computed

AIC(c) = −2 log L∗(c) + 2 (number of parameters).

In order to obtain a positive non decreasing fitness function f the following
transform

f(c) = exp{−AIC(c)/n}
may be used.

5.5 An Application to the Daily Hong Kong Stock
Exchange (Hang Seng) Index

As a first example we considered the daily Hang Seng index data from Jan-
uary 1987 to December 1991. If xt denotes the original data, the return series
has been computed as

yt = log(xt/xt−1).

The data behavior suggests to fit a different model to the data recorded
and transformed in each of the five years. For instance in 1987 there are
260 observations available. The time series for the year 1987 is displayed in
figure 4.

The GAs-based algorithm applied to the Hang Seng index data recorded
in year 1987 yields a DTGARCH model with delay parameter d = 2 and
k = 2 regimes with threshold parameter r1 = −0.0044. Model is

yt = −0.0044 +
4

∑

j=1

φjyt−j + at

vt = 0.0153
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Fig. 4 Differenced logarithmic transform of the daily Hang Seng index data (1987)

if yt−2 < −0.0044, and

yt = 0.01 +
7

∑

j=1

φjyt−j + at

vt = 0.002 + 0.0028vt−1 +
6

∑

j=1

αja
2
t−j

if yt−2 ≥ −0.0044. Note that the process is stationary AR homoscedastic
when returns are low while the process is heteroscedastic when returns are
high.

5.6 An Application to the Daily Exchange Rate
Yen/Dollar

As a second example we consider the daily exchange rates yen/dollar from
January 1, 1983 to January 28, 1985. Data have not been transformed. There
are 541 observations available. The time series data are plotted in figure 5.

We obtained from the GAs-based procedure the following DTGARCH
model.

• delay = 2
• two regimes : xt−2 ≤ 237 , xt−2 > 237
• first regime: p = 3, q = 3, s = 3

– xt = 6.85 +
∑3

j=1 φjxt−j + at
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Fig. 5 Daily exchange rate Yen/Dollar from January 1, 1983 to January 28, 1985

– vt = 0.864 +
∑3

i=1 βivt−i +
∑3

j=1 αja
2
t−j

• second regime : p = 1, q = 0, s = 0

– xt = 2.74 + 0.989xt−1 + at

– vt = 1.151

Note that when the exchange rate is low the process is AR(3) heteroscedastic
while the process is a random walk when the exchange rate is high.

6 Multiple Outliers in Data Sets

Data sets are often affected by unexpected observations or gross errors that
may negatively impact data analysis, model estimation and forecasting. Usu-
ally a preliminary investigation is performed to identify outlying observa-
tions. These latter are generally closely related to missing data treatment
and validation procedures. The approach of robust statistics aims essentially
at ensuring that reliable estimates may be obtained from the data even in
the presence of outliers. We consider here the alternative approach that con-
sists in discovering the outliers and performing some appropriate action. A
comprehensive review of statistical methods for the treatment of outliers in
data sets is [16]. In the next sections we shall address the identification of
outliers in time series as some additional difficulties are involved due to the
correlation structure. Though GAs-based methods for outlier detection have
been originally introduced for independent data a great deal of work has been
devoted to develop evolutionary computing methods for detecting outliers in
time series.
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6.1 The Outlier Problem in Time Series

Outliers in time series are observations that do not conform to the behav-
ior of the majority of the neighboring time series data. An account may
be found in [21], chapter 12. It is customary to distinguish four outlier
type, i.e. the additive outlier (AO), the innovation outlier (IO), the tran-
sient change (TC) and the level shift (LS). The AO impacts the time series
only at the time point where it occurs (a recording error, for instance), but
it does not influence any other observation. Special methods are concerned
with sequences of consecutive AO’s (see, for instance, [53]). The IO affects
the random shocks process underlying the time series, and its influence is
present in time series points even after its occurrence. TC is a temporary
deviation from the expected pattern, while LS is a permanent change in the
mean. Iterative procedures such as in [31] are common practice for outlier
treatment in time series. The ’skipping’ approach (using the Kalman filter to
eliminate from computations either AO or missing data) has been compared
to the AO approach (replace missing or outlying observations with interpo-
lation estimates) by [48] and the two approach are shown to be equivalent.
This method has been implemented in the software TRAMO-SEATS (URL:
http://www.bde.es/servicio/software/econome.htm)

In the multivariate framework, detecting the four types of outliers, AO,
IO, TC and LS, has been considered by [80]. Vector ARMA modeling forms
the basis of their procedure. A different approach consists in projecting the
multivariate time series data along low-dimensional or univariate directions
and using the computed low-dimensional time series to identify the potential
outliers dates. Projection pursuit has been suggested by [44] and independent
component analysis by [12].

Using GAs has been proposed by [14] for univariate time series and by [22]
for detecting influential observations in dynamic multivariate linear models.

The outlier detection procedures are quite effective if outliers, either iso-
lated or occurring as a ”patch,” are not too close each others in the time
series. If it is not the case, then masking (an outlier may hide another one
which is close to it) and smearing (an outlier may impact some subsequent
observations so as these latter are recognized in turn as outliers, though they
are not) effects, that arise because the time series observations are corre-
lated, make particularly difficult both outlier detection and estimation. Evo-
lutionary computing methods allow several complete outlier patterns to be
considered and compared. We assume that there exists a maximum number
of outliers K, say, as outliers are to be considered ”rare events” and only a
limited number, 5% of observations, for instance, may occur. If we want to
distinguish m outlier types, the number of outlier patterns is

mn + m2

(

n
2

)

+ m3

(

n
3

)

+ . . . + mK

(

n
K

)

.
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Searching such a large ”solution space,” however, is the natural task for a evo-
lutionary computing or meta-heuristic method. We have to adopt appropriate
encoding and fitness function to obtain from an evolutionary computing al-
gorithm the optimal (or at least near optimal) solution.

6.2 Genetic Algorithms for Outlier Detection in Time
Series

Binary encoding is usually adopted in GAs-based algorithms for outlier de-
tection in time series. A binary string of length � = n has to be defined and
time points are associated to the bits in the binary sequence. A bit is equal to
1 for an outlying observation and 0 otherwise. A different encoding consists
in preparing a list of the time points labels where an outlying observation is
supposed to occur, and make it to precede the list of the remaining time point
labels, in any order. Such order-based encoding has been suggested by [36]
for independent observations, but extension to correlated time series data is
straightforward. If, in addition, we want to distinguish the outlier types, we
may use m binary strings, each string for each type, under the constraint that
in any time point there is no more than a single 1. As an alternative, we may
resort to the integer encoding which has been proposed for grouping problems
([40]), by associating an integer code to any outlier type, for example 1 for
AO and 2 for IO. Let, for instance, the time series y=(y1, y2, . . . , yn)′ have
n = 30 observations, and let outliers (any type) be located at t = 9, 20, 21, 22.
Then, the two encodings may look as follows

binary 000000001000000000011100000000
order − based 9 20 21 22 | . . . other time point labels . . .

Consider instead the case that we want to distinguish between the AO and
IO types. If there is a IO at t = 9 and there are AO’s at t = 20, 21, 22, then
we may use either the binary or integer encoding

binary
{

000000000000000000011100000000
000000001000000000000000000000

integer 000000002000000000011100000000

For evolutionary computing methods to work in a reasonable time, the
fitness function has to be chosen so that it may be properly and quickly
computed. We may attempt to minimize the sum of squares computed from
some ARMA model fitted to the data. An identification stage, in necessarily
automatic way, has to be performed, however, which requires in most cases
a considerable computational effort. Then, a valid course of action consists
in exploiting the relationship between the linear interpolator and the AO
(see [70], p. 237; see also [35]). Only the inverse covariance function ([84], p.
123) is needed which may be easily estimated from the data. Let us consider,
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for the sake of simplicity, only the AO type. Let k outliers be located at
t = t1, . . . , tk. Let us define the n × k ”design matrix” X , where Xj,h = 1
if j = th (that is, the h-th outlying observation is located at time t = j)
and 0 otherwise. Let z=(z1, . . . , zn)′ be the observed time series and y the
unobserved outlier free realization. Then, the relationship

z = Xω + y

holds, where ω = (ω1, . . . , ωk)′ is the outlier size array. The likelihood to be
maximized is approximately, under Gaussianity assumption,

L (X, ω|y) = (2π)−
n
2
√

det(Γi)exp
{

−1
2

(z − Xω)′ Γi (z − Xω)
}

. (4)

The matrix Γi of the inverse autocovariances may be estimated from the data
by using robust techniques (see [46]).

For an illustration of the procedure a simulation experiment is reported. A
set of 200 observations have been generated from the ARMA(0,2) model with
parameters θ1 = 0.7 and θ2 = −0.5 and Gaussian white noise with mean zero
and unit variance. By discarding the first 40 artificial observations, we obtain
160 outlier free observations, whose standard error is about 1.5. This time se-
ries has been modified by adding 4 to its values at t = 60, t = 62 and t = 64,
by subtracting 5 from its value at t = 100 and adding 5 to its value at t = 101.
Time series data are displayed in figure 6. This is a very difficult pattern to de-
tect, and common procedures fail to perform the identification task correctly.
In order to discover the outliers in the data, the GA has been employed with
crossover probability pc = 0.75 while several mutation probabilities pm have
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Fig. 6 Top panel, 160 observations simulated from a MA(2) model with additive
outliers (circles). Bottom panel, residuals and confidence limits (straight lines)
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Fig. 7 Density plot of
the distance, after 500
iterations, of the fitness
from the global maxi-
mum, as a function of the
constant c and probabil-
ity of mutation pm. The
probability of crossover is
pc = 0.75. The distance
(that is, the error) ranges
from 0 (white) through
13 (black). The gray lev-
els vary linearly between

been tried, from 0.001 to 0.05 with step 0.001. The inverse variance covari-
ance matrix has been assumed known, so that, if the ”right” solution is as-
sumed, then the global maximum of the fitness function equals the logarithm
of the maximized likelihood (4), that is log(L) = 66.7, minus 2ck, where c is
a proportionality constant. For 2.52 < c < 4.67 the maximum of the fitness
function coincides with the correct outlier identification while if c < 2.52, the
global maximum of the fitness function is attained by including, in addition,
the ”spurious” outlier at t = 23. If c > 4.67, then the global maximum of the
fitness function is attained by considering only the observations at t = 100
and t = 101 as outlying ones. This circumstance supports the choice c = 3, for

Fig. 8 Fitness as a func-
tion of the number of
iterations. pc = 0.75,
pm = 0.015 and c = 3.8.
Outliers were found at
t = 102 (iterations 0− 8);
t = 100, 101, 102 and
148 (iteration 9); t = 45,
100, 101 and 102 (iter-
ation 10); t = 100, 101
and 102 (iteration 11);
t = 100 and 101 (itera-
tions 12 − 97); t = 60,
62, 64, 100 and 101 (from
iteration 98 on: the elitist
strategy prevents losing
the best chromosome)
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instance. In figure 7 the difference between the global optimum of the fitness
function and its best value obtained in 500 generations is plotted as a func-
tion of both pm and c, this latter varying from 2 to 5 with step 0.1. We may
see that the choice of the mutation probability does not impact the quality of
the solution, while the choice of c is very important for the fitness function to
characterize the ”right” solution. Note that in figure 7 we do not consider the
”true” outlier set as the objective of the search, but only the maximization of
the fitness function is taken into account. In such perspective, we may observe
that the GA performance deteriorates only if c takes values in a rather narrow
band. The choice of c may be done by following the usual guidelines, that is
c has to be taken low to allow for ”high sensitivity,” and large for ”low sensi-
tivity.” As far as the relationship between the fitness function and the number
of iterations of the GA is concerned, we found the typical behavior displayed
in figure 8. Searching for outliers has been performed by assuming pc = 0.75,
pm = 0.015 and c = 3.8. The solution has been reached after 98 iterations out
of the 500 iterations allowed as a maximum. The persistence of the algorithm
in the local maximum corresponding to the outliers at t = 100 and t = 101 is
apparent. The usefulness of the mutation operator is clearly shown, because,
at this stage, the searching procedure moves towards the global maximum by
mutation. The size of the population seem to be the other parameter to take
under control if we want to obtain a near optimal solution in the shortest time.

7 Genetic Algorithms for Cluster Analysis

Methods for cluster analysis are the object of a large literature and are an
active research field specially in connection with data mining techniques. For
a comprehensive review see [18] and references therein. Let a set of n objects
be given and let p measurements concerned with real variables be available
for each and every object in the set. Objects and measurements define the
usual n× p data matrix. A line of the matrix is an observation of p variables
that characterize the corresponding object and a column is a variable. We
assume that a genuine cluster structure exists in the data set. Further, we
assume that a similarity (or dissimilarity) measure between each and every
pair of objects may be computed from the n×p measurements. An optimality
criterion is assumed to evaluate the internal cluster cohesion and the external
cluster dissimilarity (see, for instance, [19]). In multiobjective cluster analysis
two or more indexes are used to decide the cluster membership of an object.

A cluster analysis algorithm aims at grouping the objects so that the result-
ing cluster structure satisfies the optimality criterion. Every object belongs
to a cluster and if none is similar to any other it forms a cluster on its own.
This is a hard or crisp partition. We may consider fuzzy clustering by allowing
an object to belong to more than a cluster according to some ’membership
degree’.
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The evolutionary computing methods and in general the methods in the
class of meta-heuristics are appropriate for dealing with cluster analysis as
the number of groups that may be formed with n objects is large even if n
is rather small. If the number of groups may vary from 1 to a pre-specified
maximum G, then

N(G, n) =
G

∑

g=1

1
g!

g
∑

j=1

(−1)g−j

(

g
j

)

jn

is the number of possible clusters.

7.1 Genetic Clustering Algorithms

Many GAs-based procedures have been developed to solve cluster analy-
sis problems. Such procedures take several different features into account,
for instance large data sets, cluster constraints and special data structures.
GAs-based algorithms combined with the well known k-means and k-medoids
algorithms have been considered in [69]. Variable length chromosomes have
been suggested by [63] in the context of fuzzy cluster analysis. [54] deals with
cluster analysis of panel data. Multi-objective GAs-based cluster analysis has
been introduced in [4].

As a typical example of implementation of GAs in a cluster analysis prob-
lem we shall give a brief description of the algorithm Genetic Clustering for
Unknown K (GCUK) developed by [3]. GCUK essentially combines the k-
means algorithm with a GA procedure. There are two main improvements
with respect to the basic k-means algorithm, namely the number of groups is
unknown and does not have to be pre-specified, and the possibility that the
procedure yields a local optimum as a result is greatly reduced. The GCUK
algorithm requires that a suitable interval [gmin, gmax], where gmin > 1 and
gmax ≤ n has to be pre-specified. A fixed length chromosome is assumed
and � = pgmax, where p is the number of measurements. The characteristic
features of GCUK may be summarized as follows.

• Encoding. Any solution is coded as a string of gmax sets of centroid coor-
dinates. These latter are vectors of p floating-point numbers each of which
represents a cluster. Some of the centroids may correspond to empty clus-
ters. In this case the symbol # (’don’t care’) is used to make such circum-
stance clear. As g > 1 the number of symbols # cannot be greater than
gmax − 2. In general, the chromosome will contain, arranged in any order,
g centroids and gmax − g symbols #.

• Fitness function. Each chromosome is associated, as a measure of adap-
tation to the environment, an index of cluster validity. As evolutionary
algorithms usually maximize the fitness function the reciprocal of the in-
dex is assumed if the optimum corresponds to the smallest index value.
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• Initial population. Let s denote the population size. For i = 1, 2, . . . , s an
integer gi is generated uniformly randomly in [gmin, gmax] and gi objects
are chosen at random. Each one of these gi objects are assigned to a set of
p consecutive genes selected at random within the chromosome. The genes
that are left unassigned are marked with the symbol #.

The genetic operators implemented by GCUK are the roulette wheel rule
for selection, the single point crossover and mutation. However, it has to
be noticed that the crossover is implemented by assuming a centroid as
undivided, i.e. recombination is performed by exchanging centroids. More-
over, mutation is performed as usual in the presence of floating-point en-
coding. Each and every measurement may change with probability pm of
a small amount δ around its present value. δ is a number generated from
the uniform distribution in (0, 1) and the + or − sign occurs with equal
probability.

7.2 Cluster of Time Series

Grouping a set of time series in smaller subsets may provide us with inter-
esting information about the time series structure. For example, time series
that follow similar models, or are strongly correlated in some sense may be
assumed to belong to the same subset (cluster). Several different measures of
similarity (or dissimilarity) have been proposed. A comprehensive review of
cluster of time series may be found in [60]. Genetic algorithms were applied
by [7, 8] for clustering time series according to either time series cross corre-
lations or phase spectrum dissimilarities. In this latter case, the statistics for
directional data introduced by [62] has been used.

The problem that we want to examine here in some detail is concerned with
finding a partition of a set of time series according to their cross correlations
computed after pre-whitening. Each set of the estimated partition is a cluster
which groups together time series that may, for instance, be joint modeled,
or are sharing properties of interest, such as correlation with some composite
indicator. In this context, we shall define a cluster as a set (group) of time
series that satisfy the following condition ([89]). Given a set of k stationary
time series {x1, . . . , xk}, where xi=(xi,1, . . . , xi,n)′, i = 1, . . . , k, a subset C
which includes k′ series (k′ < k) is said to form a group if, for each of the
k′(k′ − 1)/2 cross-correlations ρi,j(τ), we have

|ρi,j(τ)| > c(α) (5)

for at least a lag τ between −m and m, and i, j ∈ C, i 	= j. A positive
integer m has to be pre-specified which denotes the maximum lag. The cross-
correlations ρi,j(τ) have to be computed from the pre-whitened time series
(see, for instance, [25], p. 232). If all time series have n as a common number
of observations, then choosing the significance level α = 0.05, say, gives the
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figure c(α) = 1.96/
√

n in (5). The previously stated definition does not ex-
clude that a time series may belong to more than a single group. Then there
are possibly several allowable partitions to consider, and their number may
be very large. In [7] a GA is developed to find the optimal partition that
fulfills equation (5) in each cluster.

The fitness function is based on the k-min cluster criterion ([77]) and may
be defined

f+(C1, C2, . . . , Cg; g) =
g

∑

ω=1

∑

i,j∈Cω ,i�=j

d+
i,j , (6)

where

d+
i,j =

max
τ ∈ (−m, m) (1 − |ρi,j(τ)|)

and g is assumed unknown. When using (6) each and every cluster needs to be
a group, according to (5), for, otherwise, any algorithm, unless prematurely
ended, will put together all time series into a single cluster.

It looks convenient to code any admissible time series partition in permuta-
tion form. Each time series is labeled with a positive integer number between
1 and k. Then, let (i1, i2, . . . , ik) be a permutation of (1, 2, . . . , k). Given
the significance level α, the permutation will be given its proper meaning as
follows.

1. The first time series, labeled i1, is taken as the first element of the first
cluster.

2. Let i2 be considered. If the maximum absolute value cross-correlation be-
tween the time series i1 and i2, computed after pre-whitening, is greater
than c(α), then i2 joins i1 into the first cluster. Otherwise, the time series
i2 is to become the first element of the second cluster.

3. The ij-th time series joins an existing cluster if (5) turns true for all pairs
belonging to it. If such a circumstance applies for more than one cluster,
then the cluster ω is chosen for which

∑

i∈Cω
d+

i,ij
is greatest.

4. The decoding procedure ends as soon as each time series belongs to a
cluster.

The choice criterion included into step 3 may look somewhat arbitrary, but
it proved necessary, for if, for instance, the time series were assigned so as to
maximize the overall criterion, then some undesirable penalization of small
clusters would be introduced.

In [7] three procedures were proposed for solution each of which was de-
signed by implementing TS, SA and GAs respectively and several simulation
experiments were carried out. Results showed that the three algorithms may
be considered effective in recovering correctly the cluster of time series. Fur-
ther computations on the same artificial data sets by using an implementation
of TA produce similar results (not shown here).
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8 Concluding Remarks

Evolutionary computing methods provide useful tools for handling many dif-
ficult problems that arise in statistical data analysis. However, as for the other
fields of application, their usefulness is best exploited if the particular prob-
lem involves the search in a finite, but very large, set of discrete parameters.
In order that a problem may really require that an evolutionary computing
method be implemented for its solution, essentially three circumstances have
to be verified.

1. The space of the solutions is quite large.
2. The problem may be coded directly in a natural meaningful way.
3. The objective function to be optimized has to be readily and quickly com-

puted.

In general, it is convenient to resort to evolutionary computing when the
objective function to optimize does not meet the usual mathematical re-
quirements, such as continuity, differentiability and convexity.

In statistical data analysis, we could see that there are problems that are
suited for use with evolutionary computing techniques, whilst others had bet-
ter solved by gradient-based techniques. For instance, it is not advisable to
employ an evolutionary computing method to estimate the parameters of an
ARMA model, but it is convenient to use evolutionary computing or other
meta-heuristics if subset ARMA models have to be identified. We reviewed
some important problems that are commonplace in statistical data analysis
and may need evolutionary computing techniques for reliable solution. These
are the estimation of some special non linear models, the identification of
threshold parameters in AR and ARCH models, the identification and esti-
mation of subset ARMA and VAR models, detection of location and type of
outlying observations, cluster of time series.

Other topics may be envisaged where evolutionary computing methods
may turn useful, though not always specific and detailed approach have been
fully developed. These are, for instance, the identification and estimation of
more general time series state dependent models, the filter design and wavelet
filtering, the detection of outliers in vector time series and in non linear time
series, the development of new methodological tools for statistical design of
experiments. For some of these problems guidelines were provided, however.
The algorithms that have been designed for threshold autoregressive model
identification and estimation may be extended to include multivariate models.
The filter design by genetic algorithm may be extended to wavelet filtering.
In the GA framework, development of symbolic regression systems has been
considered. In symbolic regression the algorithm is designed to find both the
functional specification from a given set of suited functions and the parameter
estimates. This same principle applies for selecting wavelets and parameters
to optimize the fitness function. Another interesting application for wavelet
filtering design is using evolutionary computing-based techniques to select
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the coefficients to be set to zero in the wavelet signal expansion. Moreover,
a promising field for applications may be the outlier detection in vector time
series linear models, and in non linear time series, either univariate or mul-
tivariate. Some procedures exist that may be investigated, generalized, and
checked by simulation studies. Needless to say, even the fields where evolu-
tionary computing proved to be particularly useful in dealing with statistical
data were not yet fully studied. Better understanding is needed on how the
evolutionary computing-based techniques work in some specific problems,
such as clustering time series, and better encoding and design are likely to
be able to greatly improve their performance.
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