

Ajith Abraham,Aboul-Ella Hassanien,
Patrick Siarry, and Andries Engelbrecht (Eds.)

Foundations of Computational Intelligence Volume 3

Studies in Computational Intelligence,Volume 203

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 180.Wojciech Mitkowski and Janusz Kacprzyk (Eds.)
Modelling Dynamics in Processes and Systems, 2009
ISBN 978-3-540-92202-5

Vol. 181. Georgios Miaoulis and Dimitri Plemenos (Eds.)
Intelligent Scene Modelling Information Systems, 2009
ISBN 978-3-540-92901-7

Vol. 182.Andrzej Bargiela and Witold Pedrycz (Eds.)
Human-Centric Information Processing Through Granular
Modelling,2009
ISBN 978-3-540-92915-4

Vol. 183. Marco A.C. Pacheco and Marley M.B.R.Vellasco
(Eds.)
Intelligent Systems in Oil Field Development under
Uncertainty, 2009
ISBN 978-3-540-92999-4

Vol. 184. Ljupco Kocarev, Zbigniew Galias and Shiguo Lian
(Eds.)
Intelligent Computing Based on Chaos, 2009
ISBN 978-3-540-95971-7

Vol. 185.Anthony Brabazon and Michael O’Neill (Eds.)
Natural Computing in Computational Finance, 2009
ISBN 978-3-540-95973-1

Vol. 186. Chi-Keong Goh and Kay Chen Tan
Evolutionary Multi-objective Optimization in Uncertain
Environments, 2009
ISBN 978-3-540-95975-5

Vol. 187. Mitsuo Gen, David Green, Osamu Katai, Bob McKay,
Akira Namatame, Ruhul A. Sarker and Byoung-Tak Zhang
(Eds.)
Intelligent and Evolutionary Systems, 2009
ISBN 978-3-540-95977-9

Vol. 188.Agustín Gutiérrez and Santiago Marco (Eds.)
Biologically Inspired Signal Processing for Chemical Sensing,
2009
ISBN 978-3-642-00175-8

Vol. 189. Sally McClean, Peter Millard, Elia El-Darzi and
Chris Nugent (Eds.)
Intelligent Patient Management, 2009
ISBN 978-3-642-00178-9

Vol. 190. K.R.Venugopal, K.G. Srinivasa and L.M. Patnaik
Soft Computing for Data Mining Applications, 2009
ISBN 978-3-642-00192-5

Vol. 191. Zong Woo Geem (Ed.)
Music-Inspired Harmony Search Algorithm, 2009
ISBN 978-3-642-00184-0

Vol. 192.Agus Budiyono, Bambang Riyanto and Endra
Joelianto (Eds.)
Intelligent Unmanned Systems: Theory and Applications, 2009
ISBN 978-3-642-00263-2

Vol. 193. Raymond Chiong (Ed.)
Nature-Inspired Algorithms for Optimisation,2009
ISBN 978-3-642-00266-3

Vol. 194. Ian Dempsey, Michael O’Neill and Anthony
Brabazon (Eds.)
Foundations in Grammatical Evolution for Dynamic
Environments, 2009
ISBN 978-3-642-00313-4

Vol. 195.Vivek Bannore and Leszek Swierkowski
Iterative-Interpolation Super-Resolution Image
Reconstruction:
A Computationally Efficient Technique,2009
ISBN 978-3-642-00384-4

Vol. 196.Valentina Emilia Balas, János Fodor and
Annamária R.Várkonyi-Kóczy (Eds.)
Soft Computing Based Modeling
in Intelligent Systems, 2009
ISBN 978-3-642-00447-6

Vol. 197. Mauro Birattari
Tuning Metaheuristics, 2009
ISBN 978-3-642-00482-7

Vol. 198. Efrén Mezura-Montes (Ed.)
Constraint-Handling in Evolutionary Optimization, 2009
ISBN 978-3-642-00618-0

Vol. 199. Kazumi Nakamatsu, Gloria Phillips-Wren,
Lakhmi C. Jain, and Robert J. Howlett (Eds.)
New Advances in Intelligent Decision Technologies, 2009
ISBN 978-3-642-00908-2

Vol. 200. Dimitri Plemenos and Georgios Miaoulis
Visual Complexity and Intelligent Computer Graphics
Techniques Enhancements, 2009
ISBN 978-3-642-01258-7

Vol. 201.Aboul-Ella Hassanien,Ajith Abraham,
Athanasios V.Vasilakos, and Witold Pedrycz (Eds.)
Foundations of Computational Intelligence Volume 1, 2009
ISBN 978-3-642-01081-1

Vol. 202.Aboul-Ella Hassanien,Ajith Abraham, and
Francisco Herrera (Eds.)
Foundations of Computational Intelligence Volume 2, 2009
ISBN 978-3-642-01532-8

Vol. 203.Ajith Abraham,Aboul-Ella Hassanien,
Patrick Siarry, and Andries Engelbrecht (Eds.)
Foundations of Computational Intelligence Volume 3, 2009
ISBN 978-3-642-01084-2

Ajith Abraham,Aboul-Ella Hassanien,
Patrick Siarry, and Andries Engelbrecht (Eds.)

Foundations of Computational
Intelligence Volume 3

Global Optimization

123

Dr.Ajith Abraham
Machine Intelligence Research Labs
(MIR Labs)
Scientific Network for Innovation
and Research Excellence
P.O. Box 2259 Auburn,
Washington 98071-2259
USA
E-mail: ajith.abraham@ieee.org
http://www.mirlabs.org
http://www.softcomputing.net

Dr.Aboul-Ella Hassanien
College of Business Administration
Quantitative and Information System
Department
Kuwait University
P.O. Box 5486
Safat, 13055
Kuwait
E-mail: abo@cba.edu.kw

Dr. Patrick Siarry
Université Paris XII
Fac. Sciences, LERISS
61 avenue du Général de Gaulle
Building P2 - Room 350
94010 Créteil
France
E-mail: siarry@univ-paris12.fr

Dr.Andries Engelbrecht
University of Pretoria
Department of Computer Science
Pretoria 0002
South Africa
E-mail: engel@driesie.cs.up.ac.za

ISBN 978-3-642-01084-2 e-ISBN 978-3-642-01085-9

DOI 10.1007/978-3-642-01085-9

Studies in Computational Intelligence ISSN 1860949X

Library of Congress Control Number: applied for

c© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Foundations of Computational Intelligence

Volume 3: Global Optimization: Theoretical Foundations and Applications

Global optimization is a branch of applied mathematics and numerical analysis
that deals with the task of finding the absolutely best set of admissible conditions
to satisfy certain criteria / objective function(s), formulated in mathematical terms.
Global optimization includes nonlinear, stochastic and combinatorial program-
ming, multiobjective programming, control, games, geometry, approximation,
algorithms for parallel architectures and so on. Due to its wide usage and applica-
tions, it has gained the attention of researchers and practitioners from a plethora of
scientific domains. Typical practical examples of global optimization applications
include: Traveling salesman problem and electrical circuit design (minimize the
path length); safety engineering (building and mechanical structures); mathemati-
cal problems (Kepler conjecture); Protein structure prediction (minimize the en-
ergy function) etc.

Global Optimization algorithms may be categorized into several types: Deter-
ministic (example: branch and bound methods), Stochastic optimization (example:
simulated annealing). Heuristics and meta-heuristics (example: evolutionary algo-
rithms) etc. Recently there has been a growing interest in combining global and
local search strategies to solve more complicated optimization problems.

This edited volume comprises 17 chapters, including several overview Chap-
ters, which provides an up-to-date and state-of-the art research covering the theory
and algorithms of global optimization. Besides research articles and expository
papers on theory and algorithms of global optimization, papers on numerical ex-
periments and on real world applications were also encouraged. The book is di-
vided into 2 main parts.

Part-I: Global Optimization Algorithms: Theoretical Foundations and
Perspectives

In Chapter 1, Snasel et al. [1] introduce the fundamentals of genetic algorithm and
illustrate a Higher Level Chromosome Genetic Algorithm (HLCGA) for solving
combinatorial optimization problems. The developed HLCGA is applied for Turbo
code interleaver optimization process aiming to leverage the efficiency of turbo
code based digital communications.

VI Preface

Bacterial foraging optimization algorithm (BFOA) has been widely accepted as
a global optimization algorithm for distributed optimization and control. Das et al.
[2] in Chapter 2 provide all the related work on BFOA, which ranges from the
foundational aspects, mathematical model, hybridization and adaptation to novel
applications.

In the Third Chapter, Geem [3] presents the theoretical foundations of the Har-
mony Search (HS) algorithm, which mimics music improvisation where musicians
try to find better harmonies based on randomness or their experiences, which can
be expressed as a novel stochastic derivative rather than a calculus-based gradient
derivative. The chapter also presents three applications that demonstrate the global
optimization feature of the HS algorithm.

Festa and Resende [4] in the Fourth Chapter give an excellent overview of dif-
ferent ways to hybridize Greedy Randomized Adaptive Search Procedures
(GRASP) to create new and more effective metaheuristics. Several types of hy-
bridizations are considered, involving different constructive procedures, enhanced
local search algorithms, and memory structures.

In the Fifth Chapter, Pant et al. [5] present the foundations of Particle Swarm
Optimization (PSO) and some of the recent modified variants. The main focus is
on the design and implementation of the modified PSO based on diversity, muta-
tion, crossover and efficient initialization using different distributions and Low-
discrepancy sequences.

Habet [6] in the Sixth Chapter presents a nice overview of Tabu Search (TS)
metaheuristic algorithm to solve various combinatorial optimization problems.
The TS algorithm is illustrated to solve a real-life optimization problem under
constraints.

In the Seventh Chapter, Liberti et al. [7] introduce Mathematical Programming
(MP) for describing optimization problems. MP is based on parameters, decision
variables and objective function(s) subject to various types of constraints. A re-
formulation of a mathematical program P is a mathematical program Q obtained
from P via symbolic transformations applied to the sets of variables, objectives
and constraints. This chapter presents a survey of existing reformulations inter-
preted along these lines with some example applications.

Shcherbina [8] in the Eighth chapter provides a review of structural decomposi-
tion methods in discrete optimization and gives a unified framework in the form of
Local Elimination Algorithms (LEA). Different local elimination schemes and
related notions are considered. The connection of LEA schemes and a way of
transforming the directed acyclic graph of computational LEA procedure to the
tree decomposition are also presented.

In the Ninth Chapter, Avdagic et al. [9] present the general problem of decision
making in unknown, complex or changing environment by an extension of static
multiobjective optimization problem. Implementation of multiobjective genetic
algorithm is used for solving such problems and the population of potential solu-
tions to the problem for different test cases, such as homogeneous, - non-
homogeneous, and the problem with changing number of objectives and decision
making is also illustrated.

Preface VII

Abraham and Liu [10] in the Tenth Chapter illustrate the problem of premature
convergence for the conventional PSO algorithm for multi-modal problems in-
volving high dimensions. Analysis of the behavior of the PSO algorithm reveals
that such premature convergence is mainly due to the decrease of velocity of
particles in the search space that leads to a total implosion and ultimately fitness
stagnation of the swarm. This paper introduces Turbulence in the Particle Swarm
Optimization (TPSO) algorithm to overcome the problem of stagnation. The pa-
rameters of the TPSO are adapted by a fuzzy logic controller.

Part-II: Global Optimization Algorithms: Applications

In the Eleventh Chapter, Stoean et al. [11] propose an evolutionary algorithm ap-
proach for solving the central optimization problem of determining the equation of
the hyper plane deriving from support vector learning. This approach helps to
open the 'black-box' of support vector training and breaks the limits of the canoni-
cal solving component.

In the Twelfth Chapter, Baragona and Battaglia [12] Illustrate how evolutionary
computation techniques have influenced the statistical theory and practice con-
cerned with multivariate data analysis, time series model building and optimiza-
tion. Chapter deals with variable selection in linear regression models, non linear
regression, time series model identification and estimation, detection of outlying
observations in time series with respect to location and type identification, cluster
analysis and grouping problems, including clusters of directional data and clusters
of time series.

Baron et al. [13] in the Thirteenth Chapter introduce a heuristic based on ant
colony optimization and evolutionary algorithm and further hybridized with a
Tabu search and a greedy algorithm to accelerate the convergence and to reduce
the cost engendered by the evaluation process. Experimental results reveal that it
is possible to offer the decision maker a reduced number of more accurate solu-
tions in order to choose one according to technical, economic and financial
criteria.

Elizabeth and Goldbarg [14] in the Fourteenth Chapter present the outlines for
the development of Transgenetic Algorithms and reported the mplementation of
these algorithms to a single and to a bi-objective combinatorial problem. The
mono objective problem is the uncapacitated version of Traveling Purchaser Prob-
lem, where the proposed algorithm managed to find nine new best solutions for
benchmark instances. The proposed approach is described and a didactic example
with the well-known Traveling Salesman Problem illustrates its basic components.
Applications of the proposed technique are reported for two NP-hard combinato-
rial problems: the Traveling Purchaser Problem and the Bi-objective Minimum
Spanning Tree Problem.

Abdelsalam [15] in the Fifteenth Chapter presents a model that aims to support
the optimal formulation and assignment of multi-functional teams in integrated
product development (IPD) organizations - or any project-based organization. The
model accounts for limited availability of personnel, required skills, team homo-
geneity, and, further, maximizes organization's payoff by formulating and

VIII Preface

assigning teams to projects with higher expected payoffs. A Pareto multi-objective
particle swarm optimization approach was used to solve the model. The model
was applied a hypothetical example that demonstrates the efficiency of the pro-
posed solution algorithm and it allows personnel to work in several concurrent
projects and considers both person-job and person-team fit.

In the Sixteenth Chapter, Omara and Arafa [16] illustrate two variants of ge-
netic algorithms with some heuristic principles for task scheduling in distributed
systems. In the first variant, two fitness functions have been applied one after an-
other. The first fitness function is concerned with minimizing the total execution
time (schedule length) and the second one is concerned with the load balance sat-
isfaction. The second variant of genetic algorithm is based on task duplication
technique.

Estimation of distribution algorithms (EDAs), are evolutionary algorithms that
try to estimate the probability distribution of the good individuals in the popula-
tion. Mohammed and Kamel [17] in the last Chapter present a new PSO algo-
rithm that borrows ideas from EDAs. This algorithm is implemented and
compared to previous PSO and EDAs hybridization approaches using a suite of
well-known benchmark optimization functions.

We are very much grateful to the authors of this volume and to the reviewers
for their great effort by reviewing and providing useful feedback to the authors.
The editors would like to express thanks to Dr. Thomas Ditzinger (Springer Engi-
neering Inhouse Editor, Studies in Computational Intelligence Series), Professor
Janusz Kacprzyk (Editor-in-Chief, Springer Studies in Computational Intelligence
Series) and Ms. Heather King (Editorial Assistant, Springer Verlag, Heidelberg)
for the editorial assistance and excellent collaboration to produce this important
scientific work. We hope that the reader will share our joy and will find the vol-
ume useful

December 2008 Ajith Abraham, Norway
 Aboul Ella Hassanien, Egypt

Patrick Siarry, France
Andries Engelbrecht, South Africa

References

[1] Snasel, V., Platos, J., Kromer, P., Ouddane, N.: Genetic Algorithms for the Use in
Combinatorial Problems

[2] Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial Foraging Optimization Al-
gorithm: Theoretical Foundations, Analysis, and Applications

[3] Geem, Z.W.: Global Optimization Using Harmony Search: Theoretical Foundations
and Applications

[4] Festa, P., Resende, M.G.C.: Hybrid GRASP heuristics
[5] Pant, M., Thangaraj, R., Abraham, A.: Particle Swarm Optimization: Performance

Tuning and Empirical Analysis

Preface IX

[6] Habet, D.: Tabu Search to Solve Real-Life Combinatorial Optimization Problems: a
Case of Study

[7] Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in Mathematical Programming: A
Computational Approach

[8] Shcherbina, O.: Graph-based Local Elimination Algorithms in Discrete Optimization?
[9] Avdagic, Z., Konjicija, S., Omanovic, S.: Evolutionary Approach to Solving Non-

stationary Dynamic Multi-objective Problems
[10] Abraham, A., Liu, H.: Turbulent Particle Swarm Optimization with Fuzzy Parameter

Tuning
[11] Stoean, R., Preuss, M., Stoean, C., El-Darzi, E., Dumitrescu, D.: An Evolutionary

Approximation for the Coefficients of Decision Functions within a Support Vector
Machine Learning Strategy

[12] Baragona, R., Battaglia, F.: Evolutionary Computing in Statistical Data Analysis
[13] Baron, C., Chelouah, R., Gutierrez, C.: Meta-heuristics for system design engineering
[14] Goldbarg, E.F.G., Goldbarg, M.C.: Transgenetic Algorithm: A New Endosymbiotic

Approach for Evolutionary Algorithms
[15] Abdelsalam, H.: Multi-Objective Team Forming Optimization for Integrated Product

Development Projects
[16] Omara, F.A., Arafa, M.M.: Task Scheduling Problem Using Genetic Algorithms for

Distributed Systems
[17] El-Abd, M., Kamel, M.S.: PSO Bounds: A New Hybridization Technique of PSO and

EDAs

Contents

Part I: Global Optimization Algorithms: Theoretical Foundations
and Perspectives

Genetic Algorithms for the Use in Combinatorial
Problems . 3
Václav Snášel, Jan Platoš, Pavel Krömer, Nabil Ouddane

Bacterial Foraging Optimization Algorithm: Theoretical
Foundations, Analysis, and Applications . 23
Swagatam Das, Arijit Biswas, Sambarta Dasgupta, Ajith Abraham

Global Optimization Using Harmony Search: Theoretical
Foundations and Applications . 57
Zong Woo Geem

Hybrid GRASP Heuristics . 75
Paola Festa, Mauricio G.C. Resende

Particle Swarm Optimization: Performance Tuning and
Empirical Analysis . 101
Millie Pant, Radha Thangaraj, Ajith Abraham

Tabu Search to Solve Real-Life Combinatorial Optimization
Problems: A Case of Study . 129
Djamal Habet

Reformulations in Mathematical Programming: A
Computational Approach . 153
Leo Liberti, Sonia Cafieri, Fabien Tarissan

XII Contents

Graph-Based Local Elimination Algorithms in Discrete
Optimization . 235
Oleg Shcherbina

Evolutionary Approach to Solving Non-stationary Dynamic
Multi-Objective Problems . 267
Zikrija Avdagić, Samim Konjicija, Samir Omanović

Turbulent Particle Swarm Optimization Using Fuzzy
Parameter Tuning . 291
Ajith Abraham, Hongbo Liu

Part II: Global Optimization Algorithms: Applications

An Evolutionary Approximation for the Coefficients of
Decision Functions within a Support Vector Machine
Learning Strategy . 315
Ruxandra Stoean, Mike Preuss, Catalin Stoean, Elia El-Darzi,
D. Dumitrescu

Evolutionary Computing in Statistical Data Analysis 347
Roberto Baragona, Francesco Battaglia

Meta-heuristics for System Design Engineering 387
Rachid Chelouah, Claude Baron, Marc Zholghadri, Citlalih Gutierrez

Transgenetic Algorithm: A New Endosymbiotic Approach
for Evolutionary Algorithms . 425
Elizabeth F. Gouvêa Goldbarg, Marco C. Goldbarg

Multi-objective Team Forming Optimization for Integrated
Product Development Projects . 461
Hisham M.E. Abdelsalam

Genetic Algorithms for Task Scheduling Problem 479
Fatma A. Omara, Mona M. Arafa

PSO Bounds: A New Hybridization Technique of PSO and
EDAs . 509
Mohammed El-Abd, Mohamed S. Kamel

Author Index . 527

Part I
Global Optimization Algorithms:

Theoretical Foundations and
Perspectives

Genetic Algorithms for the Use in
Combinatorial Problems

Václav Snášel, Jan Platoš, Pavel Krömer, and Nabil Ouddane

Abstract. Turbo code interleaver optimization is a NP-hard combinatorial
optimization problem attractive for its complexity and variety of real world
applications. In this paper, we investigate the usage and performance of recent
variant of genetic algorithms, higher level chromosome genetic algorithms, on
the turbo code optimization task. The problem as well as higher level chro-
mosome genetic algorithms, that can be use for combinatorial optimization
problems in general, is introduced and experimentally evaluated.

1 Introduction

Evolutionary algorithms (EAs) are a family of iterative, stochastic search
and soft optimization methods based on mimicking successful optimization
strategies observed in nature [6, 10, 12, 5]. The essence of EAs lies in the emu-
lation of Darwinian evolution utilizing the concepts of Mendelian inheritance
for use in computer science and applications [5]. Along with fuzzy sets, neural
networks and fractals, evolutionary algorithms are among the fundamental
members of the class of soft computing methods.

Genetic algorithms (GA), introduced by John Holland and extended by
David Goldberg, are a widely applied and highly successful EA variant based
on computer emulation of genetic evolution. Many variants of standard gen-
erational GA have been proposed. The differences are mostly in particular
selection, crossover, mutation and replacement strategy [10].

Václav Snášel, Jan Platoš, and Pavel Krömer
Department of Computer Science, Faculty of Electrical Engineering and
Computer Science, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 33
Ostrava - Poruba, Czech Republic
e-mail: {vaclav.snasel,jan.platos,pavel.kromer.fei}@vsb.cz
Nabil Ouddane
Department of Telecommunications, Faculty of Electrical Engineering and
Computer Science, VŠB – Technical University of Ostrava, Czech Republic
e-mail: nabil.ouddane.st1@vsb.cz

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 3–22.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

4 V. Snášel et al.

Genetic algorithms have been successfully used to solve non-trivial multi-
modal optimization problems. They inherit the robustness of emulated nat-
ural optimization processes and excel in browsing huge, potentially noisy
problem domains. Their clear principles, ease of interpretation, intuitive and
reusable practical use and significant results made genetic algorithms the
method of choice for industrial applications while carefully elaborated theo-
retical foundations attracted the attention of the academy.

This paper presents an innovative variant of genetic algorithms designed
and developed in order to solve combinatorial problems. The method, called
Higher Level Chromosome Genetic Algorithms (HLCGA), will be thoroughly
described and experimentally evaluated on an appealing combinatorial op-
timization problem. Turbo code interleaver optimization is an optimization
process aiming to leverage the efficiency of turbo code based digital commu-
nications.

2 Evolutionary Optimization

Evolutionary algorithms are generic and reusable population-based meta-
heuristic optimization methods [2, 10, 12]. EAs operate with a popula-
tion (also known as pool) of artificial individuals (also referred to as items
or chromosomes) encoding possible problem solutions. Encoded individuals
are evaluated using a carefully selected domain specific objective function
which assigns a fitness value to each individual. The fitness value repre-
sents the quality (ranking) of each individual as a solution to a given prob-
lem. Competing individuals explore the problem domain towards an optimal
solution [10].

2.1 Evolutionary Search Process

For the purpose of EAs is necessary proper encoding, representing solutions
of given problem as encoded chromosomes suitable for evolutionary search
process. Finding proper encoding is a non-trivial, problem dependent task
affecting the performance and results of evolutionary search in given problem
domain. The solutions might be encoded into binary strings, real vectors
or more complex, often tree-like, hierarchical structures (subject of genetic
programming [11]). The encoding selection is based on the needs of particular
application area.

The iterative phase of evolutionary search process starts with an initial
population of individuals that can be generated randomly or seeded with po-
tentially good solutions. Artificial evolution consists of iterative application
of so called genetic operators, introducing to the algorithm evolutionary prin-
ciples such as inheritance, survival of the fittest and random perturbations.
Iteratively, the current population of problem solutions is modified with the

Genetic Algorithms for the Use in Combinatorial Problems 5

aim to form new and hopefully better population to be used in then next
generation. The evolution of problem solutions ends after satisfying specified
termination criteria and especially the criterion of finding optimal or near-
optimal solution. However, the decision whether a problem solution is best
(i.e. global optimum was reached) is in many problem areas hard or impossi-
ble. After the termination of the search process, evolution winner is decoded
and presented as the most optimal solution found.

2.2 Genetic Operators

Genetic operators and termination criteria are the most influential param-
eters of every evolutionary algorithm. All bellow presented operators have
several implementations performing differently in various application areas.

• Selection operator is used for selecting chromosomes from population.
Through this operator, selection pressure is applied on the population
of solutions with the aim to pick promising solutions to form following
generation. Selected chromosomes are usually called parents.

• Crossover operator modifies the selected chromosomes from one popula-
tion to the next by exchanging one or more of their subparts. Crossover is
used for emulating sexual reproduction of diploid organisms with the aim
to inherit and increase the good properties of parents for offspring chro-
mosomes. The crossover operator is applied with probability PC called
croosover probability or crossover value.

• Mutation operator introduces random perturbation in chromosome struc-
ture; it is used for changing chromosomes randomly and introducing new
genetic material into the population. Mutation operator is applied with
probability PM (mutuation probability, mutation value).

There are several strategies and implementations of every introduced genetic
operator. The roulette wheel selection is an example of fitness proportionate
selection. The probabitily pi of selecting i-th chromosome as parent in popu-
lation of N chromosomes is defined by 1, where fi stands for the fitness value
of the i-th chromosome.

pi =
fi∑N

k=1 fk

(1)

In the truncation selection, the population is sorted according to the fit-
ness value of the chromosomes. The NT most fitted chromosomes are then
taken as candidates for parenthood with the same probability. Some selection
strategies, such as truncation selection, might introduce loss of variability,
stagnation or premature convergence to the population. In order to increase
the convergence speed of the algorithm, the concept of elitism is often in-
troduced. In elitary genetic algorithms, the fittest chromosomes are allways
considered for reproduction. Elitism can potentially lead to a loss of diversity
in the population so its application must be carefully considered.

6 V. Snášel et al.

There are several widely used implementations of the crossover opera-
tor. In one-point crossover, a random position is selected within the par-
ent chromosomes and their subparts are swapped. The multi-point crossover
operator divides the chromosomes in multiple parts and every second seg-
ment is exchanged between the two parents. The segment crossover is a
multi-point crossover variant in which the number of crossover points varies
among the generations. When applying the uniform crossover, every gene
(i.e. every value in the chromosome) is considered for exchange between the
parents.

Common mutation operators are i.e. one-point mutation in which one gene
in the chromosome is randomly changed. The random selection is a radical
version of the mutation operator in which is whole chromosome replaced by
a randomly generated alternative.

Naturally, the operators are subject to domain specific modifications
and tuning. Besides genetic operators, termination criteria are important
factor affecting the search process. Widely used termination criteria
are i.e.:

• Reaching optimal solution (which is often hard or impossible to recognize)
• Processing certain number of generations
• Processing certain number of generations without significant improvement

in the population

EAs are successful general adaptable soft computing concept with good
results in many areas. The class of evolutionary techniques consists of more
particular algorithms having numerous variants, forged and tuned for specific
problem domains. The family of evolutionary algorithms consists of genetic
algorithms, genetic programming, evolutionary strategies and evolutionary
programming.

2.3 Genetic Algorithms

Genetic algorithms (GA) introduced by John Holland and extended by David
Goldberg are wide applied and highly successful EA variant. Basic workflow
of original (standard) generational GA (GGA) is:

1. Define objective function
2. Encode initial population of possible solutions as fixed

length binary strings and evaluate chromosomes in initial
population using objective function

3. Create new population (evolutionary search for better
solutions)
a. Select suitable chromosomes for reproduction (parents)
b. Apply crossover operator on parents with respect to

crossover probability to produce new chromosomes
(known as offspring)

Genetic Algorithms for the Use in Combinatorial Problems 7

c. Apply mutation operator on offspring chromosomes with
respect to mutation probability. Add newly constituted
chromosomes to new population

d. Until the size of new population is smaller than
size of current population go back to (a).

e. Replace current population by new population
4. Evaluate current population using objective function
5. Check termination criteria; if not satisfied go back

to (3).

Fig. 1 Iterative phase of Genetic Algorithm

Many variants of standard generational GA have been proposed. The
differences are mostly in particular selection, crossover, mutation and replace-
ment strategy [10]. Different high-level approach is represented by steady-
state genetic algorithms (SSGA). In GGA, in one iteration is replaced whole
population [6] or fundamental part of population [16] while SSGA replace
only few individuals at time and never whole population. This method is
more accurate model of what happens in the nature and allows exploiting
promising individuals as soon as they are created. However, no evidence that
SSGA are fundamentally better than GGA was found [16].

3 Crossover Challenging Problems

There is an indispensable class of problem domains introducing various chal-
lenges to GA based solutions. Tasks such as solving combinatorial problems

8 V. Snášel et al.

harass specially the crossover operator. It is not easy to find suitable encoding
that will enable the use of fully featured (i.e. crossover enabled) genetic al-
gorithms. The loss of crossover might be considered as significant weakening
of the algorithm.

3.1 The Role of Crossover in GA

Crossover operator is the main operator of genetic algorithms distinguishing
it from other stochastic search methods [12]. Its role in the GA process has
been intensively investigated and its omitting or traversing is expected to
affect the efficiency of GA solution significantly.

Crossover operator is primarily a creative force in the evolutionary search
process. It is supposed to propagate building blocks (low order, low defining-
length schemata with above average fitness) from one generation to another
and create new (higher order) building blocks by combining low order build-
ing blocks. It is intended to introduce to the population large changes with
small disruption of building blocks [17]. In contrast, mutation is expected to
insert new material to the population by random perturbation of chromo-
some structure. By this, however, can be new building blocks created or old
disrupted [17].

An experimental study on crossover and mutation in relation to frequency
and lifecycle of building blocks in chromosome population showed that the
ability of mutation and one point crossover to create new building blocks is
almost the same. However, crossover is irreplaceable to spread newly found
building blocks among the population (which can lead to loss of diversity in
the population) [17].

3.2 Traditional Approaches to Crossover Challenging
Tasks

Crossover challenging problems, such as combinatorial problems, were genet-
ically solved using several strategies. In general, they are:

• Averse scoring of invalid individuals
• Mutation only genetic algorithm
• Random key encoding
• Post-processing to fix corrupted chromosomes

Averse scoring of invalid individuals assigns to offspring chromosomes that
were corrupted by crossover extremely bad fitness value and continues fol-
lowing classic GA pattern. The issue of this approach is usually immense
increase of the solution space dimension (i.e. all invalid individuals are added
to the solution space). The Genetic Algorithm then usually deals most of the
time with irrelevant solutions instead of browsing the space of valid problem
solutions.

Genetic Algorithms for the Use in Combinatorial Problems 9

Fig. 2 Random key encoding examples

Mutation only genetic algorithm avoids the use of crossover operator to-
tally. This, as already mentioned, can be seen as significant weakening of the
algorithm.

Random key encoding is a strategy available for problems involving permu-
tation evolution [15]. In random key encoding, the permutation is represented
as a string of real numbers (random keys), whose position after ordering cor-
responds to the permutation index. Random key encoded chromosome and
crossover of randomly encoded permutations is illustrated in Fig. 2.

Randomly encoded permutations can be rarely, when there are two iden-
tical random keys in the population, corrupted by crossover as well.

The post-processing of corrupted chromosomes hacks the evolutionary ten-
dencies in chromosome population and eliminates the impact and creative
power of crossover operator. The building blocks that crossover considers to
be significant, though they make the chromosome invalid, are disrupted by
the post-processing procedure.

In order to design more straightforward and less intrusive GA variant, the
task of combinatorial optimization will be analyzed and novell GA version
introduced in section 3. First, let us briefly introduce the real world optimiza-
tion task that initiated the design and developement of higher level genetic
algorithms.

4 Turbo Codes

The turbo codes are among the most promissing innovative techniques in dig-
ital communications. As a very first channel encoding method, they allowed
to approach the Shannon limit, a theoretical maximum information transfer
rate of a channel for certain noise level [3].

10 V. Snášel et al.

The turbo codes were introduced by C. Berrou and A. Glavieux in 1993
[4] and they have become a hot topic soon after their introduction. Prior to
the turbo codes, 3dB or more separated the spectral efficiency of real world
channel encoding systems from the theoretical maximum described by Shan-
non theorem [3]. Turbo coding brought to the world of channel encoding one
important principle: the feedback concept, exploited heavily in electronics, to
be utilized in decoding of concatenated codes. And it was indeed the iterative
decoding that helped the turbo codes to achieve its impressive near-optimum
performance [3].

The turbo codes are an implementation of parallel concatenation of two
circular recursive systematic convolutional (CRSC) codes based on a pseudo-
random permutation (the interleaver). This is specially important since ran-
dom codes were used by Shannon to calculate the theoretical potential of
channel coding [3]. In general, more than two CRSC encoders can be par-
alelly concatenated but the quasi optimum performance can be achived with
just two encoders as in the classical turbo code [3]. The general scheme of a
classic turbo encoder is shown in 3.

The classic turbo decoding is based on the cooperation of two soft-in/soft-
out (SISO) decoders, (also reffered to as probabilistic decoders). Each decoder
processes its own data, and passes the extrinsic information to the other de-
coder. As the probabilistic decoders work together on the estimation of a com-
mon set of symbols, both machines have to give the same decision, with the
same probability, about each symbol, as a single (global) decoder would [3, 4].

The improvements obtained by turbo coding are supported by the fact
that each of the encoders typically produces a high-weight code word for
most inputs, but it produces a low-weight (i.e. unsuitable) code word for
only few inputs. The interleaver makes it more unlikely that both encoders
will output a bad code word for the same input, increasing the chance that
the decoder will be able to extract the correct information.

Turbo codes offer the best compromise between structure (concatenation)
and randomness created by the interleaver. Its characteristic iterative decod-
ing process is among the principal performance factors of the turbo codes.
The significant characteristics of turbo codes are small bit error rate (BER)
achieved even at low signal to noise ratio Eb

N0
and the error floor at moderate

and high values of Eb

N0
.

Previous studies proved that a random interleaver (random permutation of
the input fame) can be in certain cases (i.e. for BER > 10−5) more efficient
than other channel encoding schemes [9]. In this paper, a genetically evolved
turbo code interleaver will be compared to random interleaver by the means
of BER to evaluate its efficiency. The increase of the interleaver size gives
better performance and better interleaving gain while worsening latency. The
relation 2 illustrates the influence on the latency:

td =
Kf

Rb
Ni (2)

Genetic Algorithms for the Use in Combinatorial Problems 11

Fig. 3 A general scheme of turbo encoder

In 2, Rb is the code bit rate, Kf stands for the frame size and Ni is the num-
ber of the decoding stages. The performance of the turbo codes depends on
two principal parameters, first is the code spectrum, and the second is decor-
relation between the external information at the same number of iterations.
The optimization process can be used for the amelioration of performance
and the diminution of the matrix stature with safe performance. The latter
is very interesting for multimedia real-time transmission systems over satel-
lite because the interleaving matrix makes a considerable diminution of the
codec complexity and delay. Interleaver matrix sizes vary from tens to ten-
thousands of bits. When optimizing, it is highly inefficient, if not impossible,
to test all the possible input vectors (2N) with all the possible interleaver
matrices (N !), requiring 2N.N ! tests in total. Therefore, advanced interleaver
optimization methods are required.

The encoder processes a N -bit long information frame u. The input frame
is interleaved by the N -bit interleaver to form permuted frame u1. Original in-
put frame is encoded by the encoder RSC1 and interleaved frame is encoded
by RSC2. Hereafter, the two encoded frames c1 and c2 are merged together
and with the original input sequence u following some puncturing and mul-
tiplexing scheme. The rate of the code is defined as r = k

n = InputSymbols
OutputSymbols

4.1 Interleaver Evaluation

As noted earlier, the performance of a turbo code can be evaluated by the
means of bit error rate, i. e. the ratio of the number of incorrectly decoded
bits to the number of all bits transmitted information during some period.
Unfortunatelly, it is rather hard to compute the BER for a turbo code and
the simulations can be for large interleavers inaccurate.

The error floor of a C(n, k) code can be analytically estimated:

BER ≈ wfree

2k
erfc(

√
dfree

k

n

Eb

N0
) (3)

12 V. Snášel et al.

To estimate BER, the following code properties must be known [8]:

• dfree - the free distance, i.e. the minimum number of different bits in any
pair of codewords

• Nfree - the free distance multiplicity, i.e. the number of input frames gen-
erating codewords with dfree

• wfree - the information bit multiplicity, i.e. the sum of the Hamming
weights of the input frames generating the codewords with dfree

There are several algorithms for free distance evaluation. Garello et. al. [8]
presented an algorithm designed to effectively compute free distances of large
interleavers with unconstrained input weight based on constrained subcodes.

This work presents interleaver optimization and computational experi-
ments driven by both, computer simulations used to estimate BER over an
Additive White Gaussian Noise (AWGN) channel and algebraical estimation
of maximum dfree evaluated using analytical approach by Garello et. al. [8].

5 Genetic Algorithms for Linear Ordering Problem

In this section, we introduce a general idea of genetic algorithms designed
to solve linear ordering problem, as well as other combinatorial optimization
problems.

Consider a permutation of N symbols Π(N) = (i1, i2, . . . , iN), where ik ∈
[1, N] and im �= in for all m �= n ∈ [1, N]. A sample permutation of 3 symbols
(N = 3) is shown in (4).

Π3 = (3, 1, 2) (4)

The genetic encoding of a permutation might straightforwardly copy the
notion of ΠN from 4 and the chromosome then consists of an integer vector
(i1, i2, . . . , iN) where i1 �= i2 �= · · · �= iN and in ∈ [1, N]. Imagine a binary
data frame I5 = (0, 1, 0, 1, 1, 1) to be encoded by a turbo code system. The
effect of a sample permutation Π5 = (5, 3, 4, 1, 2) is shown in 5:

O5 = Π5(I5) = (1, 0, 1, 0, 1) (5)

Unfortunatelly, the straightforwardly encoded permutations are unsuit-
able for crossover operator. The permutations encoded using integer vector
(i1, i2, . . . , iN) subject to im �= in for all m �= n ∈ [1, N] produce when ap-
plying common common crossover operators (such as one-point crossover or
two-point crossover) invalid offspring.

Mutation operator is in genetic permutation evolution implemented as mu-
tual replacement of two randomly chosen indices from permutation chromo-
some. The fitness function is problem specific. For the turbo code interleaver
optimization task is the fitness function straightforward permutation of input
bit word as illustrated in 5.

Genetic Algorithms for the Use in Combinatorial Problems 13

Since the permutation evolution is a fundamentally crossover challenging
task, a novell variant of GA called higher level chomosome genetic algorithms
was developed.

5.1 Higher Level Chromosome Genetic Algorithms

To enable the application of crossover for interleaver optimization, expecting
performance increase, we have investigated the effect of uniform crossover on
convergence ability of the classical interleaver optimizing GA (a mutation-
only implementation). In the second phase, we have designed modified GA
allowing the use of virtually any crossover operator for permutation evolution
without breaking the chromosomes. New crossover friendly GA is based on
separation of chromosomes into groups of the same size called higher level
chromosomes (HLCs) that act on the GA level as regular (traditional) chro-
mosomes and the contained primitive chromosomes act as genes (i.e. the
crossover and mutation is applied on HLCs and some problem specific func-
tions are used to transfer the effect of the operator on the primitive chromo-
somes assigned to the particular HLC). The idea of higher level chromosome
genetic algorithms (HLCGA) is illustrated in Figure 4.

In order to speed up the algorithm convergence, a semi-elitary selection
schema was used. In semi-elitary selection, one parrent is chosen by elitary
manners (i.e. the currently fittest chromosome is allways taken as first parent
and the second parent was selected using roulette wheel selection). We have
tested all above introduced techniques on benchmarking problem consisting
of search for an identity matrix. The results, summarized for 512 bit bench-
mark in Figure 5, have shown that GA with semi-elitary selection and HLCs
performs best.

Fig. 4 Traditional pop-
ulation compared to pop-
ulation with HLCs

14 V. Snášel et al.

Fig. 5 Performance comparison of GA in benchmarking problem

HLCGA was implemneted for turbo code interleaver evolution. The follow-
ing section describes in detail the experiments, particular algorithm setup and
obtained results.

6 HLCGA Experiments

Genetic algorithms have been previously used for interleaver matrix opti-
mization. Durand et al. [7] used customized GA to optimize the interleaver
of the size 105, comparing their results to previous interleaver design tech-
niques. Their genetic algorithm was fully based on mutation and the crossover
operator was due to complications omitted.

Rekh et al. [14] presented another GA for the interleaver optimization,
introducing two-point crossover to interleaver evolution process. Nevertheless,
the crossover impact was limited by necessary correction of errors created
during crossover application. The fitness criterion was BER and the size of
optimized interleaver 50.

Two fitness functions were investigated for turbo code optimization task.

6.1 Fitness Function Based on Average BER

A simulation framework built upon the IT++ library1 was used to experimen-
tally evaluate proposed interleaver optimization method. IT++ is a robust
and efficient C++ library of mathematic and coding algorithms and classes.
It provides high performance of native code and excellent abstraction of well-
defined object oriented framework. We have implemented an experimental
framework allowing to simulate the transmission of binary data over an ad-
ditive white Gaussian noise (AWGN) channel and Rayleigh fading channel.

1 IT++ is available at http://itpp.sourceforge.net/

Genetic Algorithms for the Use in Combinatorial Problems 15

The AWGN channel is a good model for satellite and deep space communi-
cation links but not an appropriate model for terrestrial links. Rayleigh fading
channel was used as a reasonable model for tropospheric and ionospheric sig-
nal propagation as well as the effect of heavily builtup urban environments
on radio signals [13].

The evolved interleavers were evaluated by simulated transmission over
AWGN channel for Eb

N0
∈ [0, 4] and flat Rayleigh fading channel for Eb

N0
∈ [0, 6]

.
We have experimented with 64, 128, 512 and 1024 bit interleavers aiming

to optimize in the future as large interleaver as possible.
The settings for all optimization experiments were:

• HLCGA with semi-elitary selection
• 1000 generations
• Probability of crossover 0.8
• Probability of mutation 0.2
• Population of 5 high level chromosomes per 6 genes
• Fitness criterion was minimal BER after simulated submission of 100 ran-

dom frames of weight up to 6
• Simulations performed over additive white Gaussian noise (AWGN) chan-

nel and Rayleigh fading channel.

Experimental optimization results are summarized in Figures 6, 7, 8 and 9
respectively. In all of them is used the following notation: the curve denoted as
O1 corresponds to the best interleaver found by GA with classic population,
O2 describes performance of best interleaver found using HLCGA and Rand
denotes a reference random block interleaver. AWGN marked curves illus-
trate experiments over additive white Gaussian noise channel and Rayleigh
curves represent the experimental results measured over Rayleigh channel.
In all figures can be seen that optimized interleavers perform better than
reference random interleaver.

Figure 6 illustrates the binary error rate for an interleaver with the length
of 64 bits; we can observe that an improvement for AWGN channel begin to
appear from Eb

N0
= 2dB and becomes more significant for larger Eb

N0
values,

especially for the interleaver obtained by second optimization method. Both
optimized interleavers overperformed the random interleaver.

For BER = 10−3 we have an Eb

N0
of approximately 3.25dB for the random

interelaver and 2.75dB for the second optimized interleaver achieving gain of
0.5dB. The trend is valid for Rayleigh channel experiments as well and the
supremacy of interleaver O2 is even more evident.

For 128 bits interleaver, shown in Figure 7, can be observed that for
AWGN, the amelioration begins to be significant between the second opti-
mization and the random interleaver from Eb

N0
= 2.25dB, it means for a larger

signal noise rate values. For BER = 10−3 we have Eb

N0
equal 2.25dB for the

second optimization and 2.5dB for the random interelaver having 0.25dB of
gain. For the Rayleigh channel transmissions, the better performance of O1

16 V. Snášel et al.

Fig. 6 64bit interleavers over AWGN channel and Rayleigh fading channel

Fig. 7 128bit interleavers over AWGN channel and Rayleigh fading channel

and O2 comparing to random interleaver becomes to be clear for greater Eb

N0
values (> 5dB) and O2 is again best performing among the three.

The gain becomes more considerable for interleaver length of 512bits as
shown on Figure 8, for example in AWGN, we have for BER = 10−4 the
Eb

N0
= 2.75dB for the second optimization method while having 3.5dB for the

random interelaver. This indicates 0.75dB gain for 512bits length interleaver,

Genetic Algorithms for the Use in Combinatorial Problems 17

Fig. 8 512bit interleavers over AWGN channel and Rayleigh fading channel

Fig. 9 1024bit interleavers over AWGN channel and Rayleigh fading channel

which is for this interleaver length a remarkable result. In Rayleigh fading
channel, the initial BER values are for all three compared interleavers almost
the same while for higher Eb

N0
, interleaver O2 achieves permanent gain over

similarly performing O1 and random interleaver.
Similarly, optimized 1024 bit inteleavers, highlighting specially interleaver

O2, shown at Figure 9 outperform reference random interleaver for both,
AWGN channel and Rayleigh fading channel.

18 V. Snášel et al.

6.2 Fitness Function Based on Maximum Free
Distance

The BER error floor specified in Equation 3 and the definitions of dfree,
wfree and Nfree suggest another way of designing the fitness function for TC
interleaver optimization. It is desired to maximize dfree and minimize Nfree

and wfree. The fitness function f was defined as follows:

f = A · dfree − B · Nfree − C · wfree (6)

where the coefficients A, B and C were fixed to 100, 10 and 1 respectively.
We have performed a series of experiments to investigate the ability of

HLCGA with free distance as fitness function to resolve above average in-
terleavers. Garello et. al. [8] provided an overview of the distribution of free
distance for several turbo code configurations and frame lengths. We have
confronted the results (i.e. maximum and average free distance) obtained by
HLCGA with known maximum dfree, average dfree and dfree variance for
rate 1

3 turbo codes with 8 state constituent encoders. Table 1 shows these
values and the results of performed experiments.

Values shown in Table 1 are illustrated in Figure 10 while Figure 11 pro-
vides zoomed view on the small interleaver (N ∈ [2, 10]) area from Figure
10. Both figures show best and average interlever dfree according to [8] and
best and average interleaver dfree found by presented genetic algorithm.

When evolving small interleavers (i.e. crawling relatively small fitness land-
scapes), the evolved interleavers feature very good free distance. For inter-
leaver lengths 2 to 6, the algorithm reached in all experimental runs the
best known dfree. For interleaver lengths 8 to 10 found the algorithm best
known dfree in some of experimental runs. Only for interleaver length 7 was
not reached the best dfree. However, best and average free distances found by
HLCGA (which was equal to 10) were superior to average dfree for interleaver
length 7 (which was equal to 7).

Frankly, the interleaver lengths 2 to 10 are only of limited use. Therefore,
the results of the HLCGA evolution of higher length interleavers are of much
bigger interest.

HLCGA performed well when evolving the interleaver sizes 20, 40, 80,
160, 320, 640 and 1280. For frame size 20, the average dfree of an evolved
interleaver was 12 while the average dfree was 10.2. For frame size 160 was
the average evolved dfree 16.1 beating the average dfree 12.4 by 3.7.

The first drop in the value of best and average evolved free distance was
observed for the last tested interleaver size 2560. The best evolved dfree was
19 while the best evolved dfree for the interleaver size 1280 was 21. Similarly,
the average evolved dfree for N = 2560 was 18.1 while the average evolved
dfree for N = 1280 was 18.6. This should not be seen as a disappointing
result, since the setup of the algorithm (i.e. maximum number of generations,

Genetic Algorithms for the Use in Combinatorial Problems 19

Table 1 Comparing average error of random initial factors and CAS suggested
initial factors

N Avg. dfree Max. dfree dfree variance Avg. evolved Max. evolved
dfree dfree

2 8 8 0 8 8
3 8 8 0 8 8
4 8.125 9 0.109 9 9
5 8.667 10 0.522 10 10
6 8.636 10 0.504 10 0
7 8.835 11 0.604 10 10
8 9.018 11 0.676 10.4 11
9 9.170 11 0.701 10.3 11
10 9.300 11 0.707 11 11
20 10.248 13 0.780 12 12
40 10.939 14 0.666 13.1 14
80 11.602 15 1.130 14.8 15
160 12.412 17 1.720 16.1 17
320 13.144 19 1.824 17.8 18
640 13.715 22 1.842 18.1 19
1280 14.306 22 1.889 18.6 21
2560 14.260 22 1.888 18.1 19

Fig. 10 Average and maximum dfree for interleaver sizes 2 to 40

population size) was fixed while the searched domain was growing rapidly.
Anyway, the algorithm provided even for interleaver size 2560 average evolved
dfree 18.1 clearly dominating the average dfree of 14.3.

20 V. Snášel et al.

Fig. 11 Average and maximum dfree for interleaver sizes 40 to 2560

Fig. 12 The dfree gain observed when comparing average dfree with average dfree

of an evolved interleaver

7 Conclusions

In this paper we discussed the problem of efficient genetic algorithms for
the use in combinatorial problems. A novell genetic method called higher
level genetic algorithm was designed to overcome some challenges (espe-
cially crossover obligations) raised by the nature of combinatorial problems.

Genetic Algorithms for the Use in Combinatorial Problems 21

HLCGA was implemented and used for the turbo code interleaver optimiza-
tion task.

Two variants of HLCGA for turbo code interleaver optimization task were
implemented. In the first case, a simulated data transmissions were used to
estimate bit error rate that was used as fitness function. The interleavers
evolved by HLCGA have shown better performance (i.e. lower BER) than
interleavers evolved by mutation-only genetic algorithms and random inter-
leavers. The drawback of this approach is the unstability of simulation as
basis for BER evaluation. In any simulation, the BER for a turbo code sys-
tem could be wrongly evaluated just because ’bad luck’.

The second set of experiments featured an analytical estimate of turbo
code free distance as the basis of fitness function. The free distance is known
as a very reliable and accurate measure estimating the error floor of a turbo
code system. The algorithm was tested in a computer framework and the
outputs (i.e. the average evolved dfree and the maximum evolved dfree) for
some interleaver sizes were compared to known properties of the free distance
distribution for compatible turbo code system.

Experimental results have shown that the average free distance of an
evolved interleaver is higher than the average free distance for interleavers of
the same size. The free distance gain, summarized in Figure 12, is especially
for larger interleaver sizes significant. Optimized interleavers are, according
to computer experiments, better than random interleavers or interleavers
deleloped by previous methods. A hardware implementtion of the optimized
turbo code systems is currently in progress to provide a final verification of
the success of HLCGA in the field of digital communications.

The HLCGA is a general high level variant of genetic algorithms. Its suc-
cesfull deployment in the area of turbo code optimization suggests that it
might be considered as a general metaheuristic solver also for other combi-
natorial optimization problems such as the linear ordering problem [1] or the
travelling salesman problem. The problems, infamous for its NP-hardness,
have a number of real world applications and any contriution in this field is
acknowledged.

References

1. Schiavinotto, T., Stützle, T.: The Linear Ordering Problem: Instances, Search
Space Analysis and Algorithms. Journal of Mathematical Modelling and Algo-
rithms 4(3), 367–402 (2004)

2. Bäck, T., Hammel, U., Schwefel, H.-P.: Evolutionary computation: comments
on the history and current state. IEEE Transactions on Evolutionary Compu-
tation 1(1), 3–17 (1997)

3. Berrou, C.: The ten-year-old turbo codes are entering into service. IEEE Com-
munications Magazine 41(8), 110–116 (2003)

22 V. Snášel et al.

4. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-
correcting coding and decoding: turbo codes. In: Proc. Int. Conf. on Commun.,
pp. 1064–1070 (1993)

5. Bodenhofer, U.: Genetic Algorithms: Theory and Applications. Lecture notes.
Fuzzy Logic Laboratorium Linz-Hagenberg (Winter, 2003/2004)

6. Dianati, M., Song, I., Treiber, M.: An introduction to genetic algorithms and
evolution strategies. Technical report, University of Waterloo, Ontario, N2L
3G1, Canada (July 2002)

7. Durand, N., Alliot, J., Bartolom, B.: Turbo codes optimization using genetic
algorithms. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Za-
lzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation,
Mayflower Hotel, Washington D.C., USA, vol. 2, pp. 816–822. IEEE Press, Los
Alamitos (1999)

8. Garello, R., Chiaraluce, F., Pierleoni, P., Scaloni, M., Benedetto, S.: On error
floor and free distance of turbo codes. In: IEEE International Conference on
Communications (ICC 2001), vol. 1, pp. 45–49 (2001)

9. Hokfelt, J., Maseng, T.: Methodical interleaver design for turbo codes. In: In-
ternational Symposium on Turbo Codes

10. Jones, G.: Genetic and evolutionary algorithms. In: von Rague, P. (ed.) Ency-
clopedia of Computational Chemistry. John Wiley and Sons, Chichester (1998)

11. Koza, J.: Genetic programming: A paradigm for genetically breeding popula-
tions of computer programs to solve problems. Technical Report STAN-CS-90-
1314, Dept. of Computer Science, Stanford University (1990)

12. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1996)

13. Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, New York
(2001)

14. Rekh, S., Rani, S., Hordijk, W., Gift, P., Shanmugam: Design of an interleaver
for turbo codes using genetic algorithms. The International Journal of Artificial
Intelligence and Machine Learning 6, 1–5 (2006)

15. Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the generalized
traveling salesman problem. European Journal of Operational Research 174(1),
38–53 (2006)

16. Townsend, H.A.R.: Genetic Algorithms - A Tutorial (2003)
17. Wu, A.S., Lindsay, R.K., Riolo, R.: Empirical observations on the roles of

crossover and mutation. In: Bäck, T. (ed.) Proc. of the Seventh Int. Conf.
on Genetic Algorithms, pp. 362–369. Morgan Kaufmann, San Francisco (1997)

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 23–55.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Bacterial Foraging Optimization Algorithm:
Theoretical Foundations, Analysis, and
Applications

Swagatam Das, Arijit Biswas, Sambarta Dasgupta, and Ajith Abraham1

Abstract. Bacterial foraging optimization algorithm (BFOA) has been widely
accepted as a global optimization algorithm of current interest for distributed op-
timization and control. BFOA is inspired by the social foraging behavior of Es-
cherichia coli. BFOA has already drawn the attention of researchers because of its
efficiency in solving real-world optimization problems arising in several applica-
tion domains. The underlying biology behind the foraging strategy of E.coli is
emulated in an extraordinary manner and used as a simple optimization algorithm.
This chapter starts with a lucid outline of the classical BFOA. It then analyses the
dynamics of the simulated chemotaxis step in BFOA with the help of a simple
mathematical model. Taking a cue from the analysis, it presents a new adaptive
variant of BFOA, where the chemotactic step size is adjusted on the run according
to the current fitness of a virtual bacterium. Nest, an analysis of the dynamics of
reproduction operator in BFOA is also discussed. The chapter discusses the hy-
bridization of BFOA with other optimization techniques and also provides an ac-
count of most of the significant applications of BFOA until date.

1 Introduction

Bacteria Foraging Optimization Algorithm (BFOA), proposed by Passino [1], is a
new comer to the family of nature-inspired optimization algorithms. For over the
last five decades, optimization algorithms like Genetic Algorithms (GAs) [2],
Evolutionary Programming (EP) [3], Evolutionary Strategies (ES) [4], which draw
their inspiration from evolution and natural genetics, have been dominating the
realm of optimization algorithms. Recently natural swarm inspired algorithms like
Particle Swarm Optimization (PSO) [5], Ant Colony Optimization (ACO) [6] have

Swagatam Das, Arijit Biswas, and Sambarta Dasgupta
 Department of Electronics and Telecommunication Engineering,
Jadavpur University, Kolkata, India

Ajith Abraham

Norwegian University of Science and Technology, Norway
e-mail: ajith.abraham@ieee.org

24 S. Das et al.

found their way into this domain and proved their effectiveness. Following the
same trend of swarm-based algorithms, Passino proposed the BFOA in [1]. Appli-
cation of group foraging strategy of a swarm of E.coli bacteria in multi-optimal
function optimization is the key idea of the new algorithm. Bacteria search
for nutrients in a manner to maximize energy obtained per unit time. Individual
bacterium also communicates with others by sending signals. A bacterium takes
foraging decisions after considering two previous factors. The process, in which a
bacterium moves by taking small steps while searching for nutrients, is called
chemotaxis and key idea of BFOA is mimicking chemotactic movement of virtual
bacteria in the problem search space.

Since its inception, BFOA has drawn the attention of researchers from diverse
fields of knowledge especially due to its biological motivation and graceful struc-
ture. Researchers are trying to hybridize BFOA with different other algorithms in
order to explore its local and global search properties separately. It has already
been applied to many real world problems and proved its effectiveness over many
variants of GA and PSO. Mathematical modeling, adaptation, and modification of
the algorithm might be a major part of the research on BFOA in future.

This chapter is organized as follows: Section 2 provides the biological
motivation behind the BFOA algorithm and outlines the algorithm itself in a com-
prehensive manner. Section 3 provides a simple mathematical analysis of the
computational chemotaxis of BFOA in the framework of the classical gradient
descent search algorithm. A mathematical model of reproduction operator is fur-
nished in section 4. Section 5 discusses the hybridization of BFOA with other soft
computing algorithms. Section 6 provides an overview of the applications of
BFOA in different fields of science and engineering. The chapter is finally sum-
marized in Section 7.

2 The Bacteria Foraging Optimization Algorithm

During foraging of the real bacteria, locomotion is achieved by a set of tensile
flagella. Flagella help an E.coli bacterium to tumble or swim, which are two basic
operations performed by a bacterium at the time of foraging [7, 8]. When they
rotate the flagella in the clockwise direction, each flagellum pulls on the cell. That
results in the moving of flagella independently and finally the bacterium tumbles
with lesser number of tumbling whereas in a harmful place it tumbles frequently
to find a nutrient gradient. Moving the flagella in the counterclockwise direction
helps the bacterium to swim at a very fast rate. In the above-mentioned algorithm
the bacteria undergoes chemotaxis, where they like to move towards a nutrient
gradient and avoid noxious environment. Generally the bacteria move for a longer
distance in a friendly environment. Figure 1 depicts how clockwise and counter
clockwise movement of a bacterium take place in a nutrient solution.

When they get food in sufficient, they are increased in length and in presence of
suitable temperature they break in the middle to from an exact replica of itself.
This phenomenon inspired Passino to introduce an event of reproduction

Bacterial Foraging Optimization Algorithm 25

Fig. 1 Swim and tumble of a bacterium

in BFOA. Due to the occurrence of sudden environmental changes or attack, the
chemotactic progress may be destroyed and a group of bacteria may move to some
other places or some other may be introduced in the swarm of concern. This con-
stitutes the event of elimination-dispersal in the real bacterial population, where all
the bacteria in a region are killed or a group is dispersed into a new part of the
environment.

Now suppose that we want to find the minimum of)(J θ where pℜ∈θ (i.e.

θ is a p-dimensional vector of real numbers), and we do not have measurements

or an analytical description of the gradient)(J θ∇ . BFOA mimics the four prin-

cipal mechanisms observed in a real bacterial system: chemotaxis, swarming,
reproduction, and elimination-dispersal to solve this non-gradient optimization
problem. A virtual bacterium is actually one trial solution (may be called a search-
agent) that moves on the functional surface (see Figure 2) to locate the global
optimum.

Let us define a chemotactic step to be a tumble followed by a tumble or a tum-
ble followed by a run. Let j be the index for the chemotactic step. Let k be the in-
dex for the reproduction step. Let l be the index of the elimination-dispersal event.
Also let

 p: Dimension of the search space,
 S: Total number of bacteria in the population,

 Nc : The number of chemotactic steps,
 Ns: The swimming length.
 Nre : The number of reproduction steps,
 Ned : The number of elimination-dispersal events,
 Ped : Elimination-dispersal probability,
 C (i): The size of the step taken in the random direction specified by the
tumble.

Counter
clockwise
rotation

TUMBLE

 Clockwise rotation

SWIM

26 S. Das et al.

Fig. 2 A bacterial swarm on a multi-modal objective function surface

Let },...,2,1|),,({),,(SilkjlkjP i == θ represent the position of each mem-
ber in the population of the S bacteria at the j-th chemotactic step, k-th reproduc-
tion step, and l-th elimination-dispersal event. Here, let),,,(lkjiJ denote the cost
at the location of the i-th bacterium pi lkj ℜ∈),,(θ (sometimes we drop the indi-
ces and refer to the i-th bacterium position as iθ). Note that we will interchangea-
bly refer to J as being a “cost” (using terminology from optimization theory) and
as being a nutrient surface (in reference to the biological connections). For actual
bacterial populations, S can be very large (e.g., S =109), but p = 3. In our com-
puter simulations, we will use much smaller population sizes and will keep the
population size fixed. BFOA, however, allows p > 3 so that we can apply the
method to higher dimensional optimization problems. Below we briefly describe
the four prime steps in BFOA.

i) Chemotaxis: This process simulates the movement of an E.coli cell through
swimming and tumbling via flagella. Biologically an E.coli bacterium can
move in two different ways. It can swim for a period of time in the same
direction or it may tumble, and alternate between these two modes of opera-

tion for the entire lifetime. Suppose),,(lkjiθ represents i-th bacterium at

j-th chemotactic, k-th reproductive and l-th elimination-dispersal step.)(iC

is the size of the step taken in the random direction specified by the tumble
(run length unit). Then in computational chemotaxis the movement of the
bacterium may be represented by

)()(

)(
)(),,(),,1(

ii

i
iClkjlkj

T

ii

ΔΔ

Δ+=+ θθ , (1)

where Δ indicates a vector in the random direction whose elements lie in [-1, 1].

2θ
1θ

Bacterial Foraging Optimization Algorithm 27

ii) Swarming: An interesting group behavior has been observed for several
motile species of bacteria including E.coli and S. typhimurium, where intri-
cate and stable spatio-temporal patterns (swarms) are formed in semisolid
nutrient medium. A group of E.coli cells arrange themselves in a traveling
ring by moving up the nutrient gradient when placed amidst a semisolid
matrix with a single nutrient chemo-effecter. The cells when stimulated by
a high level of succinate, release an attractant aspertate, which helps them
to aggregate into groups and thus move as concentric patterns of swarms
with high bacterial density. The cell-to-cell signaling in E. coli swarm may
be represented by the following function.

∑∑∑∑

∑

====

=

−−+−−−=

=

p

m

i
mm

S

i

p

m

i
mm

S

i

S

i

i
cccc

whwd

lkjJlkjPJ

1

2

1
repellantrepellant

1

2

1
attractantattractant

1

)])(exp([)])(exp([

)),,(,()),,(,(

θθθθ

θθθ

 (2)

 where)),,(,(lkjPJ cc θ is the objective function value to be added

to the actual objective function (to be minimized) to present a time varying
objective function, S is the total number of bacteria, p is the number
of variables to be optimized, which are present in each bacterium
and T

p][,...,2,1 θθθθ = is a point in the p-dimensional search domain.

repellantrepellantattractantaatractant ,,, whwd are different coefficients that should

be chosen properly [1, 9].
iii) Reproduction: The least healthy bacteria eventually die while each of the

healthier bacteria (those yielding lower value of the objective function)
asexually split into two bacteria, which are then placed in the same loca-
tion. This keeps the swarm size constant.

 iv) Elimination and Dispersal: Gradual or sudden changes in the local envi-
ronment where a bacterium population lives may occur due to various rea-
sons e.g. a significant local rise of temperature may kill a group of bacteria
that are currently in a region with a high concentration of nutrient gradients.
Events can take place in such a fashion that all the bacteria in a region are
killed or a group is dispersed into a new location. To simulate this phe-
nomenon in BFOA some bacteria are liquidated at random with a very
small probability while the new replacements are randomly initialized over
the search space.

The pseudo-code as well as the flow-chart (Figure 3) of the complete algorithm is
presented below:

28 S. Das et al.

The BFOA Algorithm

Parameters:

[Step 1] Initialize parameters p, S, Nc, Ns, Nre, Ned, Ped, C(i)(i=1,2…S), iθ .

Algorithm:

[Step 2] Elimination-dispersal loop: l=l+1

[Step 3] Reproduction loop: k=k+1

[Step 4] Chemotaxis loop: j=j+1
 [a] For i =1,2…S take a chemotactic step for bacterium i as follows.
 [b] Compute fitness function, J (i, j, k, l).

Let,)),,(),,,((),,,(),,,(lkjPlkjJlkjiJlkjiJ i
cc θ+= (i.e. add

on the cell-to cell attractant–repellant profile to simulate the swarming
behavior)

 where, Jcc is defined in (2).

[c] Let Jlast=J (i, j, k, l) to save this value since we may find a better cost via
a run.

[d] Tumble: generate a random vector pi ℜ∈Δ)(with each element

,,...,2,1),(pmim =Δ a random number on [-1, 1].

[e] Move: Let

)()(

)(
)(),,(),,1(

ii

i
iClkjlkj

T

ii

ΔΔ

Δ+=+ θθ

 This results in a step of size)(iC in the direction of the tumble for bacte-

rium i.

[f] Compute J),,1,(lkji + and let

)),,1(),,,1((),,,(),,1,(lkjPlkjJlkjiJlkjiJ i
cc +++=+ θ .

[g] Swim
 i) Let m=0 (counter for swim length).

ii) While m< sN (if have not climbed down too long).

 • Let m=m+1.
 • If J <+),,1,(lkji Jlast (if doing better), let Jlast = J),,1,(lkji + and let

)()(

)(
)(),,(),,1(

ii

i
iClkjlkj

T

ii

ΔΔ

Δ+=+ θθ

Bacterial Foraging Optimization Algorithm 29

 And use this),,1(kjji +θ to compute the new J),,1,(lkji + as we

did in [f]

 • Else, let m= sN . This is the end of the while statement.

[h] Go to next bacterium (i+1) if Si ≠ (i.e., go to [b] to process the next
bacterium).

[Step 5] If cNj < , go to step 4. In this case continue chemotaxis since the life of

the bacteria is not over.

[Step 6] Reproduction:
 [a] For the given k and l, and for each Si ,...,2,1= , let

∑
+

=

=
1

1

),,,(
cN

j

i
health lkjiJJ (3)

be the health of the bacterium i (a measure of how many nutrients it
got over its lifetime and how successful it was at avoiding noxious
substances). Sort bacteria and chemotactic parameters)(iC in order

of ascending cost healthJ (higher cost means lower health).

 [b] The rS bacteria with the highest healthJ values die and the remaining

rS bacteria with the best values split (this process is performed by

the copies that are made are placed at the same location as their par-
ent).

[Step 7] If reNk < , go to step 3. In this case, we have not reached the number of

specified reproduction steps, so we start the next generation of the
chemotactic loop.

[Step 8] Elimination-dispersal: For Si ...,2,1= with probability edP , eliminate

and disperse each bacterium (this keeps the number of bacteria in the
population constant). To do this, if a bacterium is eliminated, simply dis-
perse another one to a random location on the optimization domain.
If edNl < , then go to step 2; otherwise end.

In Figure 4 we illustrate the behavior of a bacterial swarm on the constant cost

contours of the two dimensional sphere model: 2
2

2
121 xx)x,x(f += . Constant

cost contours are curves in 21 xx − plane along which

constant=+= 2
2

2
121),(xxxxf .

30 S. Das et al.

Fig. 3 Flowchart of the Bacterial Foraging Algorithm

3 Analysis of the Chemotactic Dynamics in BFOA

Let us consider a single bacterium cell that undergoes chemotactic steps according
to (1) over a single-dimensional objective function space. Since each dimension in
simulated chemotaxis is updated independently of others and the only link be-
tween the dimensions of the problem space are introduced via the objective func-
tions, an analysis can be carried out on the single dimensional case, without loss of
generality. The bacterium lives in continuous time and at the t-th instant its posi-
tion is given by)(tθ . Next we list a few simplifying assumptions that have been

considered for the sake of gaining mathematical insight.

i) The objective function)(θJ is continuous and differentiable at all points in the

search space.
The function is uni-modal in the region of interest and its one and only optimum

(minimum) is located at 0θθ = . Also 0)(≠θJ for 0θθ ≠ .

ii) The chemotactic step size C is smaller than 1 (Passino himself took 0.1=C
in [8]).

Bacterial Foraging Optimization Algorithm 31

Bacteria trajectories, Generation=1

θ1

θ 2

0 10 20 30
0

10

20

30
Bacteria trajectories, Generation=2

θ1

θ 2

0 10 20 30
0

10

20

30

Bacteria trajectories, Generation=3

θ1

θ 2

0 10 20 30
0

10

20

30
Bacteria trajectories, Generation=4

θ1

θ 2

0 10 20 30
0

10

20

30

Fig. 4 Convergence behavior of virtual bacteria on the two-dimensional constant cost con-
tours of the sphere model

iii) The analysis applies to the regions of the fitness landscape where gradients of
the function are small i.e. near to the optima.

3.1 Derivation of Expression for Velocity

Now, according to BFOA, the bacterium changes its position only if the modified
objective function value is less than the previous one i.e.)(θJ >)(θθ Δ+J
i.e.)(θJ -)(θθ Δ+J is positive. This ensures that bacterium always moves in
the direction of decreasing objective function value. A particular iteration starts by
generating a random number, which assumes only two values with equal prob-
abilities. It is termed as the direction of tumble and is denoted by Δ . It can assume
only two values 1 or –1 with equal probabilities. For one-dimensional optimiza-
tion problem Δ is of unit magnitude. The bacterium moves by an amount of ΔC
if objective function value is reduced for new location. Otherwise, its position will
not change at all. Assuming uniform rate of position change, if the bacterium
moves ΔC in unit time, its position is changed by))((tC ΔΔ in tΔ sec. It

32 S. Das et al.

decides to move in the direction in which concentration of nutrient increases or in
other words objective function decreases i.e. 0)()(>Δ+− θθθ JJ . Otherwise

it remains immobile. We have assumed that tΔ is an infinitesimally small positive
quantity, thus sign of the quantity)()(θθθ Δ+− JJ remains unchanged if tΔ di-

vides it. So, bacterium will change its position if and only if
t

JJ

Δ
Δ+−)()(θθθ

is positive. This crucial decision making (i.e. whether to take a step or not) activity
of the bacterium can be modeled by a unit step function (also known as Heaviside
step function [10, 11]) defined as,

 1)(=xu , if x > 0;

 ,0= otherwise. (3)

Thus,))(.).(
)()(

(tC
t

JJ
u ΔΔ

Δ
Δ+−=Δ θθθθ , where value of θΔ is 0 or

))((tC ΔΔ according to value of the unit step function. Dividing both sides of

above relation by tΔ we get,

 Δ
Δ

−Δ+−=
Δ
Δ

⇒ .]
)}()({

[C
t

JJ
u

t

θθθθ
 (4)

 Velocity is given by,].}.
)()(

{[
00

Δ
Δ

−Δ+−=
Δ
Δ=

→Δ→Δ
C

t

JJ
uLim

t
LimV

tt
b

θθθθ

].}.
)()(

{[
0

Δ
Δ
Δ

Δ
−Δ+−=⇒

→Δ
C

t

JJ
uLimV

t
b

θ
θ

θθθ

as 0→Δ t makes 0→Δθ , we may write,

].}.
)()(

{[
00

Δ⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ

⎟
⎠
⎞

⎜
⎝
⎛

Δ
−Δ+−=

→Δ→Δ
C

tt
Lim

JJ
LimuVb

θ
θ

θθθ
θ

Again,)(xJ is assumed to be continuous and differentiable.

θ
θθθ

θ Δ
−Δ+

→Δ

)()(
0

JJ
Lim is the value of the gradient at that point and may be

denoted by
θ
θ

d

dJ)(
 or G . Therefore we have:

Δ−= CGVuV bb)((5)

where, ==
θ
θ

d

dJ
G

)(
 gradient of the objective function at θ.

Bacterial Foraging Optimization Algorithm 33

In (5) argument of the unit step function is bGV− . Value of the unit step func-

tion is 1 if G and bV are of different sign and in this case the velocity is ΔC .

Otherwise, it is 0 making bacterium motionless. So (5) suggests that bacterium
will move the direction of negative gradient. Since the unit step function)(xu has

a jump discontinuity at 0=x , to simplify the analysis further, we replace
)(xu with the continuous logistic function)(xφ , where

kxe

x −+
=

1

1
)(φ

We note that, =)(xu =
∞→

)(xLt
k

φ
∞→k

Lt
kxe−+1

1
 (6)

Figure 5 illustrates how the logistic function may be used to approximate the
unit step function used for decision-making in chemotaxis. For analysis purpose k
cannot be infinity. We restrict ourselves to moderately large values of k (say k =
10) for which)(xφ fairly approximates)(xu . Thus, for moderately high values

of k)(xφ fairly approximates).(xu Hence from (5),

bkGVb
e

C
V

+
Δ=

1
 (7)

Fig. 5 The unit step and the logistic functions

According to assumptions (ii) and (iii), if C and G are very small and k ~10,

then also we may have | |bkGV <<1.In that case we neglect higher order terms

in the expansion of bkgve and have b
kgv kGVe b +≈ 1 . Substituting it in (7) we

obtain,

34 S. Das et al.

2
1

1

2

.

b
b kGV

C
V

+

Δ=⇒

)
2

1(
2

. b
b

kGVC
V −Δ=⇒ [Q |

2
bkGV

|<<1, neglecting higher

 terms,)
2

1()
2

1(1 bb kGVkGV
−≈+ −]

After some manipulation we have,

4
1

1
2 Δ+

⋅Δ=⇒
kCG

C
V b

 (8)

)
4

1(
2

Δ−Δ=⇒
kGCC

Vb
 [Q |

4

ΔkGC
|=| |

4

kGC
<<1, as 1=Δ and

 neglecting the higher order terms.]

82

22Δ−Δ=⇒
kGCC

Vb

28

2 Δ+−=⇒
C

G
kC

V b
 [12 =ΔQ] (9)

Equation (9) is applicable to a single bacterium system and it does not take into
account the cell-to-cell signaling effect. A more complex analysis for the two-
bacterium system involving the swarming effect has been included at the appen-
dix. It indicates that, a complex perturbation term is added to the dynamics of each
bacterium due to the effect of the neighboring bacteria cells. However, the term
becomes negligibly small for small enough values of C (~0.1) and the dynamics
under these circumstances get practically reduced to that described in equation (9).
In what follows, we shall continue the analysis for single bacterium system for
better understanding of the chemotactic dynamics.

3.2 Experimental Verification of Expression for Velocity

Characteristic equation of chemotaxis (9) represents the dynamics of bacterium
taking chemotactic steps. In order to verify how reliably the equation represents
the motion of the virtual bacterium compare results obtained from (10) with that
of according to BFOA. First the equation is expressed in iterative form, which is,

2

)(
)1(

8
)1()()(

2 nC
nG

kC
nnnV b

Δ+−−=−−= θθ

2

)(
)1(

8
)1()(

2 nC
nG

kC
nn

Δ+−−−=⇒ θθ (10)

Bacterial Foraging Optimization Algorithm 35

where n is the iteration index. The tumble vector is also a function of iteration
count (i.e. chemotactic step number) i.e. it is generated repeatedly for successive

iterations. We have taken 2)(θθ =J as objective function for this experimenta-

tion. Bacterium was initialized at –2 i.e. 2)0(−=θ and C is taken as 0.2. Gradi-

ent of)(xf is x2 . Therefore)1(−nG may be replaced by)1(2 −nθ .Finally

for this specific case we get,

2

)(
)1()

4
1()(

2 nC
n

kC
n

Δ+−−= θθ (11)

We compute values of)(nθ for successive iterations according to above iterative

relation. Also values of positions are noted following guidelines of BFOA. With
current position is changed by ΔC if objective function value decreases for new
position. Results have been presented in Figure 6. Figure 6 (a) shows position in
successive iteration according to BFOA and as obtained from (11). Here also we
have assumed position of bacterium changes linearly between two consecutive
iterations. Mismatch between actual and predicted values is also shown. In Figure
6 (b) actual and predicted values of velocity is shown. Velocity is assumed to be
constant between two successive iterations. According to BFOA magnitude of
velocity is either C (0.2 in this case) or 0. Difference between actual and pre-
dicted velocity is shown as error. Time lapsed between two consequent iterations
is spent for computation and is termed as unit time. This may be perceived as the
time required by a bacterium to measure nutrient content of a new point on fitness
landscape. Actually it is the time taken by the processor to perform numerical
computations.

3.3 Chemotaxis and the Classical Gradient Decent Search

From expression (9) of Section 3.1, we get

28

2 Δ+−= C
G

kC
Vb

 // βαθ +−=⇒ G
dt

d (12)

where /α is
8

2kC− and /β is
2

ΔC . The classical gradient descent search algo-

rithm is given by the following dynamics in single dimension [12]:

βαθ +−= G
dt

d
. (13)

where, α is the learning rate and β is the momentum. Similarity between equa-

tions (12) and (13) suggests that chemotaxis may be considered a modified gradi-

ent descent search, where /α , a function of chemotactic step-size can be identified
as the learning rate parameter.

36 S. Das et al.

(a) Graphs showing actual, predicted positions of bacterium and error in estimation over
successive iterations.

(b) Similar plots for velocity of the bacterium.

Fig. 6 Comparison between actual and predicted motional state of the bacterium

Bacterial Foraging Optimization Algorithm 37

Already we have discussed that magnitude of gradient should be small within
the region of our analysis. For chemotaxis of BFOA, when G becomes very mall,

the gradient descent term G/α of equation (12) becomes ineffective. But the ran-

dom search term
2

ΔC
 plays an important role in this context. From equation (12),

considering 0→G , we have

0
2

. ≠Δ= C

dt

dθ
 (14)

So there is a convergence towards actual minima. The random search or momen-
tum term

2
ΔC in the RHS of equation (13) provides an additional feature to the

classical gradient descent search. When gradient becomes very small, the random
term dominates over gradient decent term and the bacterium changes its position.
But random search term may lead to change in position in the direction of increas-
ing objective function value. If it happens then again magnitude of gradient in-
creases and dominates the random search term.

3.4 Oscillation Problem: Need for Adaptive Chemotaxis

If magnitude of the gradient decreases consistently, near the optima or very close

to the optima G/α of expression (12) becomes comparable to β . Then gradually

β becomes dominant. When
2

|
2

|||||,0||
CC

dt

d
G =Δ=≈→ βθ Q 1|| =Δ . Let us

assume the bacterium has reached close to the optimum. But since we obtain

,
2

||
C

dt

d =θ the bacterium does not stop taking chemotactic steps and oscillates

about the optima. This crisis can be remedied if step size C is made adaptive ac-
cording to the following relation,

)(
1

1

|)(|

|)(|

θ
λλθ

θ

J
J

J
C

+
=

+
= , (15)

where λ is a positive constant. Choice of a suitable value for λ has been discussed
in the next subsection. Here we have assumed that the global optimum of the cost
function is 0. Thus from (25) we see, if 0)(→θJ , then 0→C . So there would

be no oscillation if the bacterium reaches optima because random search term van-
ishes as C 0→ . The functional form given in equation (15) causes C to vanish
nears the optima. Besides, it plays another important role described below. From

(15), we have, when)(θJ is large 0
|)(|
→

θ
λ

J
 and consequently 1→C .

38 S. Das et al.

The adaptation scheme presented in equation (15) has an important physical
significance. If magnitude of cost function is large for an individual bacterium, it
is in the vicinity of noxious substance. It will then try to move to a place with
better nutrient concentration by taking large steps. On the other hand the bacte-
rium, when in nutrient rich zone i.e. with small magnitude of the objective func-
tion value, tries to retain its position. Naturally, its step size becomes small.

The BFOA is made adaptive according to the above rule and its performance
improved with respect to speed of convergence, quality of solution and rate of
success rate.

3.5 A Special Case

If the optimum value of the objective function is not exactly zero, step-size
adapted according to (15) may not vanish near optima. Step-size would shrink if
the bacterium comes closer to the optima, but it may not approach zero always. To
get faster convergence for such functions it becomes necessary to modify the ad-
aptation scheme. Use of gradient information in the adaptation scheme i.e. making
step-size a function of the function-gradient (say)),((GJCC θ=) may not be

practical enough, because in real-life optimization problems, we often deal with
discontinuous and non-differentiable functions. In order to make BFOA a general
black-box optimizer, our adaptive scheme should be a generalized one performing
satisfactorily in these situations too. Therefore to accelerate the convergence un-
der these circumstances, we propose an alternative adaptation strategy in the fol-
lowing way:

λθ
θ

+−
−

=
best

best

JJ

JJ
C

)(

)(
 (16)

bestJ is the objective function value for the globally best bacterium (one with

lowest value of objective function). bestJJ −)(θ is the deviation in fitness

value of an individual bacterium from global best. Expression (16) can be rear-
ranged to give,

bestJJ

C

−
+

=

)(
1

1

θ
λ . (17)

If a bacterium is far apart from the global best, bestJJ −)(θ would be large mak-

ing 0
)(

1 →
−

≈
bestJJ

C
θ

λ
Q . On the other hand if another bacterium is very

close to it, step size of that bacterium will almost vanish, because bestJJ −)(θ
becomes small and denominator of (17) grows very large. The scenario is

Bacterial Foraging Optimization Algorithm 39

Fig. 7 An objective function with optimum value much greater than zero and a group of
seven bacteria are scattered over the fitness landscape. Their step height is also shown

depicted in Figure 7. BFOA with adaptive scheme of equation (15) is referred as
ABFOA1 and the BFOA with adaptation scheme described in (17) is referred as
ABFOA2.

Figure 7 shows how the step-size becomes large as objective function value be-
comes large for an individual bacterium. The bacterium with better function value
tries to take smaller step and to retain its present position. For best bacterium of

the swarm bestJJ −)(θ is 0 . Thus, from (17) its step-size is λ
1 , which is quite

small. The adaptation scheme bears a physical significance too. A bacterium lo-
cated at relatively less nutrient region of fitness landscape will take large step
sizes to attain better fitness. Whereas, another bacterium located at a location, best
in regard to nutrient content, is unlikely to move much.

In real world optimization problems optimum value of objective function is
very often found to be zero. In those cases adaptation scheme of (15) works satis-
factorily. But for functions, which do not have a moderate optimum value, (16)
should be used for better convergence. Note that neither of two proposed schemes
contains derivative of objective function so they can be used for discontinuous and
non-differentiable functions as well. In [13], Dasgupta et al. have established the
efficacy of the adaptive BFO variants by comparing their performances with clas-
sical BFOA, its other state-of-the-art variants, a recently proposed variant of PSO
and a standard real-coded GA on numerical benchmarks as well as one engineer-
ing optimization problem.

40 S. Das et al.

4 Analysis of the Reproduction Step in BFOA

This section presents a simple mathematical analysis of the reproduction operator
of BFOA for a two-bacterium system [14]. Let us consider a small population of
two bacteria that sequentially undergoes the four basic steps of BFOA over a one-
dimensional objective function. The bacteria live in continuous time and at the t-th
instant its position is given by)(tθ . Below we list a few assumptions that were

considered for the sake of gaining mathematical insight into the dynamics of re-
production.

Assumptions:

i) The objective function J(θ) is continuous and differentiable at all points
in the search space.

ii) The analysis applies to the regions of the fitness landscape where gradi-
ents of the function are small i.e., near to the optima. The region of

fitness landscapes between 1θ and 2θ is monotonous at the time of

reproduction.
iii) During reproduction, two bacteria remain close to each other and one

of them must not superpose on another (i.e. 0|| 12 →−θθ may happen

due to reproduction but 12 θθ ≠ . Suppose P and Q represent the respec-

tive positions of the two bacteria as shown in fig.6). At the start of

reproduction 1θ and 2θ remain apart from each other but as the process

progresses they come close to each other gradually.

iv) The bacterial system lives in continuous time.

4.1 Analytical Treatment

In our two bacterial system,)(1 tθ and)(2 tθ represent the position of the two

bacteria at time t and)(),(21 θθ JJ denote the cost function values at those posi-

tions respectively. During reproduction, the virtual bacterium with a relatively
larger value of the cost function (for a minimization problem) is liquidated while
the other is split into two. These two offspring bacteria start moving from the
same location. Hence in effect, through reproduction the least healthy bacteria
shift towards the healthier bacteria. Health of a bacterium is measured in terms of
the accumulated cost function value, possessed by the bacterium until that time

instant. The accumulated cost may be mathematically modeled as dttJ
t

))((
0

1∫ θ .

For a minimization problem, higher accumulated cost represents that a bacterium

Bacterial Foraging Optimization Algorithm 41

Gradient θ

Gradient θ 1

θ 2

J(θ) 2

θ θ

1G

2G

Fig. 8 A two-bacterium system on arbitrary fitness landscape

did not get as many nutrients during its lifetime of foraging and hence is not as
“healthy” and thus unlikely to reproduce .The two-bacterial system working on a
single-dimensional fitness landscape has been depicted in Figure 8.

To simulate the bacterial reproduction we have to take a decision on which bac-
terium will split in next generation and which one will die. This decision may be
modeled with the help of the well-known unit step function)(xu defined in equa-

tion (3). In what follows, we shall denote)(1 tθ and)(2 tθ as 1θ and 2θ respec-

tively. Now if we consider that 1θΔ is the infinitesimal displacement

(01 →Δθ) of the first bacterium in infinitesimal time tΔ)0(→Δt towards

the second bacterium in favorable condition i.e. when the second is healthier than

the first one, then the instantaneous velocity of the first one is given by,
tΔ

Δ 1θ
.

Now when we are trying to model reproduction we assume the instantaneous ve-
locity of the worse bacterium to be proportional with the distance between the two
bacteria, i.e. as they come closer their velocity decreases but this occurs unless we
incorporate the decision making part. So, if the first bacterium is the worse one
then,

)(12
1 θθθ −∞

Δ
Δ

t

⇒)(12
1 θθθ −=

Δ
Δ

k
t

 [Where, k is the proportionality constant]

42 S. Das et al.

⇒)().(1 1212
1 θθθθθ −=−=

Δ
Δ

t
 (18)

 [If we assume that 1=k 1sec−]

Since we are interested in modeling a dynamics of the reproduction operation, the
decision making i.e. whether one of the bacteria will move towards the other, can
not be discrete i.e. it is not possible to check straightaway whether the other bacte-

rium is at a better position or not. So a bacterium (suppose 1θ) will be checking

whether a position situated at an infinitesimal distance from 1θ is healthier or not

and then it will move (see Figure 9). The health of first bacterium is given by the

integral of)(1θJ from zero to time t and the same for the differentially placed

position is given by the integral of)(11 θθ Δ+J from zero to time t . Then we may

model the decision making part with the unit step function in the following way:

)].()()([12

0

11

0

1
1 θθθθθθ

−Δ+−=
Δ

Δ
∫∫
tt

dtJdtJu
t

 (19)

Similarly, when we consider the second bacterium, we get,

)].()()([21

0

22

0

2
2 θθθθθθ

−Δ+−=
Δ

Δ
∫∫
tt

dtJdtJu
t

 (20)

In equation (19), dtJ
t

)(
0

1∫ θ represents the health of the first bacterium at the time

instant t and dtJ
t

)(1

0

1 θθ Δ+∫ represents the health corresponding to)(11 θθ Δ+

at the time instant t. We are going to carry out calculations with the equation for
bacterium 1 only, as the results for other bacterium can be obtained in a similar
fashion.

Fig. 9 Change of position of the
bacteria during reproduction

11 θθ Δ+

2θ
11 θθ Δ+

1θ

Time instant 1

Time instant 2

2θ

1θ

θ

θ

Since we are considering only the monotonous part of any function, so if 2θ is

at a better position, then any position, in-between 1θ and 2θ , has a lesser objective

function value compared to 1θ . So we may conclude)(11 θθ Δ+J is less

Bacterial Foraging Optimization Algorithm 43

than)(1θJ . In that case we can imagine that dt.)(J
t

∫ θΔ+θ
0

11
is less than

∫ θ
t

dt).(J
0

1
as t is not too high, the functional part under consideration is mo-

notonous and change of 11 θθ d+ with respect to t is same as that of 1θ . We re-

write the equation (19) corresponding to bacterium 1 as,

)](
)()(

[12

0

1111 θθθθθθ
−

Δ
−Δ+

−=
Δ

Δ
⇒ ∫ dt

t

JJ
u

t

t

[Q 0>Δt . We know for a positive constant tΔ ,)()(xu
t

x
u =

Δ
as x and

t

x

Δ
 are of same sign and unit step function depends only upon sign of the

argument.]

)].(
)()(

[12

0

111

0
0

1

0
0

11

θθθθθθ

θθ

−
Δ

−Δ+
−=

Δ
Δ

⇒ ∫
→Δ

→Δ
→Δ

→Δ
dt

t

JJ
uLt

t
Lt

t

tt

)].(
)()(

[12

0

1

1

111

0
0

1

0
0

11

θθθ
θ

θθθθ

θθ

−
Δ

Δ
Δ

−Δ+
−=

Δ
Δ

⇒ ∫
→Δ

→Δ
→Δ

→Δ
dt

t

JJ
uLt

t
Lt

t

tt
 (21)

Again,)(xJ is assumed to be continuous and differentiable.

1

111

0

)()(

θ
θθθ

θ Δ
−Δ+

→Δ

JJ
Lim is the value of the gradient at that point and may be

denoted by
1

1)(

θ
θ

d

dJ or 1G . So we write,

)].()([12
1

0 1

1 θθθ
θ

θ
−−=⇒ ∫ dt

dt

d

d

dJ
u

dt

d t

[Where
dt

d 1θ
is the instantaneous

 velocity of the first bacterium]

)].([121

0

11 θθ −−=⇒ ∫ dtvGuv
t

 (22)

[Where
dt

d
v 1

1

θ= and 1G is the gradient of J at 1θθ = .]

Now in equation (19) we have not yet considered the fact that the event of repro-
duction is taking place at t=1 only. So we must introduce a function of

44 S. Das et al.

Fig. 10 Function r (t) and g(t)

time))1((*2)(2−−= tutr (unit step) ())1((2−− tu is multiplied with 2 for

getting 1)(=tr , not 0.5, when t=1) in product with the right hand side of equa-

tion (19). This provides a sharp impulse of strength 1 unit at time t = 1. Now it is
well known that)(xu may be approximated with the continuous logistic func-

tion)(xφ , where
kxe

x −+
=

1

1
)(φ .

We note that,

=)(xu =
∞→

)(xLt
k

φ
∞→k

Lt
kxe−+1

1
 (23)

Following this we may write:

 2)1(

2

1

2
))1((*2)(

−+
≈−−=

tke
tutr

For moderately large value of k, since 1→t , we can have 1)1(2 <<−tk and

thus 2)1()1(1
2

−+≈− tke tk . Using this approximation of the exponential term

we may replace the unit step function)(tr with another continuous function g(t)

where

2)1(2

2
)(

−+
=

tk
tg , (we can take k = 10)

)(tr , Approximated as

2)1(2

2
)(

−+
=

tk
tg

Impulse function at t=1,

which is actually

=)(tr))1((*2 2−− tu

Time (t)

Bacterial Foraging Optimization Algorithm 45

which is not an impulsive function just at t = 1 rather a continuous function as
shown in Figure 10. Higher value of k will produce more effective result. Due to

the presence of this function we see that),.(1
1 dt

d
eiv

θ
will be maximum at t =1

and decreases drastically when we move away from t =1 in both sides.
So equation (22) is modified and becomes,

2121

0

11)1(2

2
).]([

−+
−−= ∫ tk

dtvGuv
t

θθ (24)

For ease of calculation we denote the term within the unit step function as

dtvGM
t

1

0

1∫−= to obtain,

2121)1(2

2
).)((

−+
−=

tk
Muv θθ (25)

Since
Me

Mu αα −∞→ +
=

1

1
Lt)(

We take a smaller value of α for getting into the mathematical analysis (say

10=α). Since, we have the region, under consideration with very low gradient

and the velocity of the particle is low, (so product 11vG is also small enough), and

the time interval of the integration is not too large (as the time domain under con-
sideration is not large), so we can write, by expanding the exponential part and
neglecting the higher order terms:

)1(1

1
)(

M
Mu

α−+
=

)2/1(2

1

Mα−
=

Putting this expression in equation (25) we get,

))1)(2(1(2

2
)(

)21(2

1
2121 −+

−
−

=
tkM

v θθ
α

)
2

1(
2

1
))1)(2(1((2

12

1 M
tk

v α
θθ

+=−+
−

⇒ (26)

 [Q 0|| 12 →−θθ but 0|| 12 ≠−θθ

 alsoQ
2

Mα <<1, neglecting higher order terms,)
2

1()
2

1(1 MM αα +≈− −]

46 S. Das et al.

Now the equation given by (26) is true for all values possible values of t, so we
can differentiate both sides of it with respect to t and get,

dt

Md
tk

v
tkdt

d

dt

d
v

dt

dv
)(

4

1
)1())1)(2(1((

)(

)()(

12

12

2
12

12
1

1
12 α

θθθθ

θθθθ
=−

−
+−+

−

−−−
⇒

(27)

Now, 11
0

11)(
)(

Gv
dt

dtGvd

dt

CMd

t

α
α

−=
−

=
∫

 [By putting the expression for M

and applying the Leibniz theorem
for differentiating integrals]

So from (27), we get,

11
12

12
2

12

12
1

1
12

4

1
)1())1)(2(1((

)(

)()(
Gvtk

v
tkdt

d

dt

d
v

dt

dv

α
θθθθ

θθθθ
−=−

−
+−+

−

−−−

Putting 1
1 v

dt

d =θ
 and 2

2 v
dt

d =θ
 after some further manipulations (where

we need to cancel out)(12 θθ − , which we can do as 0|| 12 →−θθ towards

the end of reproduction but never 0|| 12 ≠−θθ according to assumption (iii)),

we get,

]
))1)(2/(1(4

)(

)1)(2/(1

)1(
[

12

2
2

121
21

12

2
11

θθ
θθα

θθ −
−

−+
−

+
−+

−−
−

−=
v

tk

G

tk

tk
v

v

dt

dv

 1
2
1

1 QvPv
dt

dv −−=⇒ (28)

Where,
12

1

θθ −
=P and)

))1)(2/(1(4

)(

)1)(2/(1

)1(
(

12

2
2

121
2 θθ

θθα
−

−
−+

−
+

−+
−=

v

tk

G

tk

tk
Q

The above equation is for the first bacterium and similarly we can derive the equa-
tion for the second bacterium, which looks like,

 2
'2

2
'2 vQvP

dt

dv −−= , (29)

where,
21

' 1

θθ −
=P and)

))1)(2/(1(4

)(

)1)(2/(1

)1(
(

21

1
2

212
2

'

θθ
θθα

−
−

−+
−

+
−+

−=
v

tk

G

tk

tk
Q

Bacterial Foraging Optimization Algorithm 47

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Tim e (t) in seconds

ve
lo

ci
ty

0< t< 0.4

0.4< t< 0.8

0.8< t< 1.2
1.2< t< 1.6

1.6< t< 2

4.2 Physical Significance

A possible way to visualize the effect of the dynamics presented in equations (28)
and (29) is to see how the velocities of the bacteria vary over short time intervals
over which the coefficients P and Q can be assumed to remain fairly constant. The
velocity of a bacterium (which is at the better place) has been plotted over five
short time intervals in Figure 11(P and Q are chosen arbitrarily in those intervals).
Note that at the time of reproduction (t = 1) the graph is highly steep indicating
sharp decrease in velocity.

Fig. 11 Piece-wise change in velocity over small time intervals

Now if we study the second term in the expression of Q from equation (28) i.e.

the term
))1)(2/(1(4

)(
2

121

−+
−
tk

G θθα
, as 01 →G ,)(12 θθ − is also small and α is

not taken to be very large. At the denominator also we have got some divisors
greater than 1. So the term becomes insignificantly small and all we can neglect it
fromQ . In equation (29) also we can similarly neglect the

term
))1)(2/(1(4

)(
2

212

−+
−
tk

G θθα
 from 'Q . Again we assume, the velocity of both the

particles to be negative for the time being. So we can replace, || 11 vv −= and

48 S. Das et al.

|| 22 vv −= in Q and 'Q in equations (28) and (29). After doing all this simpli-

fications for getting a better mathematical insight, equations (28) and (29) be-
come,

1
2
1

1 QvPv
dt

dv −−= , (30)

where,
12

1

θθ −
=P and)

||

)1)(2/(1

)1(
(

12

2
2 θθ −

+
−+

−=
v

tk

tk
Q

2
'2

2
'2 vQvP

dt

dv −−= , (31)

where,
21

' 1

θθ −
=P and)

||

)1)(2/(1

)1(
(

21

1
2

'

θθ −
+

−+
−=

v

tk

tk
Q .

Now, for 12 θθ > P and Q are both positive. That means the first bacterium

slows down very quickly. Whereas the second particle has 'P and 'Q (assuming

the other term independent of)(21 θθ − in 'Q is lesser than this) both negative.

That means this bacterium accelerates. This acceleration is hopefully towards the
first bacterium.

Fig. 12 Initial and final positions of the two bacteria (after one chemotactic lifetime)

2
iP

2
fP 1

iP

1
fP

=k
iP Initial position of k -th bacterium.

=k
fP Final position of k-th bacterium

 after one chemotactic lifetime. k=1,2.

Bacterial Foraging Optimization Algorithm 49

Since the rate of change of velocity of bacterium 1 and 2 are dependent on

)(12 θθ − and)(21 θθ − respectively, it is evident that the distance between the

two bacteria guides their dynamics. If we assume, 12 θθ > and they don’t traverse

too long, the first bacterium is healthier (less accumulated cost) than the second
one, when the function is decreasing monotonically in a minimization problem
and also the time rate change of first bacterium is less than that of the second (as

depicted in Figure 12 clearly, where we take 2)(θθ =J).

So at the time of reproduction, in a two bacteria system, the healthier bacterium
when senses that it is in a better position compared to its fellow bacterium, it
hopes that the optima might be very near so it slows down and its search becomes
more fine-tuned. This can be compared with the real bacterium involved in forag-
ing. Whenever it senses that food might be nearby then it obviously slows down
and searches that place thoroughly at cost of some time [15 - 17].

The second bacterium moves away from that place with a high acceleration
quite naturally getting the information from the first bacterium that the fitter place
is away from its present position. In biological system for grouped foraging when
one member of the group share information from its neighbors it tries to move
towards the best position found out by the neighboring members [15].

Thus we see that reproduction was actually included in BFOA in order to facili-
tate grouped global search, which is explained from our small analysis.

4.3 Avoiding Premature Convergence

Again if we observe the bacterium at the better position more carefully we will be
seeing, that this has a tendency to decelerate at a very high rate and it becomes at
rest very quickly. Now when it is near the optima, we can conclude that as

,∞→t 0→betterv (velocity of the better one). Thus as it reaches the optima it

stabilize without any further oscillation. Thus reproduction helps the better bacte-
rium to stabilize at the optima.

But the darker side of this fact lies in premature convergence i.e. the best bacte-
rium can converge towards a local optima and the search process gets disturbed.
So we understand that at the start of search process reproduction can cause prema-
ture convergence but the same can lead to a stable system if applied near the
global optima. So we suggest an adaptive scheme related to reproduction operator.
The reproduction rate should be made adaptive and it should be increased gradu-
ally towards the end of this search process. This has been proved experimentally.

5 Hybridization of BFOA with Other Approaches

We have a handful of optimization algorithms for applying in practical problems
but as we know from NFL (No Free Lunch theorem) [18] that no algorithm can
perform satisfactorily well over every possible optimization problems. Some algo-
rithms are inspired by natural evolution whereas some are by natural flocking of

50 S. Das et al.

birds or swarming of bees. Some algorithm can have an extremely good local
search behavior while some other can have a good global search property. This
may be the reason why hybridization of different algorithms can give better per-
formance as compared to the parent algorithms.

In 2007, Kim et al. proposed a hybrid approach involving genetic algorithm
(GA) and BFOA for function optimization [19]. The proposed algorithm outper-
formed both GA and BFOA over a few numerical benchmarks and a practical PID
tuner design problem.

Biswas et al. coupled BFOA and PSO to develop a new algorithm called BSO
(Bacterial Swarm Optimization) [20]. This algorithm provided some very good
results when tested over a set of benchmark problems and a difficult engineering
problem of spread spectrum radar poly-phase code design. BSO performs local
search through the chemotactic movement operation of BFOA whereas a PSO
operator accomplishes the global search over the entire search space. In this way it
balances between exploration and exploitation, enjoying best of both the worlds.
In BSO, after undergoing a chemo-tactic step, a PSO operator also mutates each
bacterium. In this phase, the bacterium is stochastically attracted towards the
globally best position found so far in the entire population at current time and also
towards its previous heading direction. The PSO operator uses only the globally
best position found by the entire population to update the velocities of the bacteria
and eliminates term involving the personal best position as the local search in dif-
ferent regions of the search space is already taken care of by the chemo-tactic op-
erator of BFOA.

The chemotaxis step of BFOA have been hybridized with another powerful op-
timization algorithm of current interest called the Differential Evolution (DE) [21]
and gave rise to an algorithm known as CDE (Chemotactic Differential Evolution)
[22]. Biswas et al. proved efficiency of this algorithm too on a set of optimization
problems, both numerical benchmark and practical. In this algorithm a bacterium
undergoes a differential mutation step just after one chemotaxis step and the rest is
kept similar to that of the original BFOA algorithm. Thus each of the bacteria ex-
plores the fitness landscape more carefully.

6 Applications of BFOA

Ulagammai et al. applied BFOA to train a Wavelet-based Neural Network (WNN)
and used the same for identifying the inherent non-linear characteristics of power
system loads [23]. In [24], BFOA was used for the dynamical resource allocation
in a multiple input/output experimentation platform, which mimics a temperature
grid plant and is composed of multiple sensors and actuators organized in zones.
Acharya et al. proposed a BFOA based Independent Component Analysis (ICA)
[25] that aims at finding a linear representation of non-gaussian data so that the
components are statistically independent or as independent as possible. The pro-
posed scheme yielded better mean square error performance as compared to a
CGAICA (Constrained Genetic Algorithm based ICA). Chatterjee et al. reported

Bacterial Foraging Optimization Algorithm 51

Table 1 A Summary of State-of-the-art research works on BFOA

Area of research Sub-topic Researchers References
Hybridization BFOA-GA, BFOA-PSO,

BFOA-DE Hybridization
Dong Hwa Kim, Jae Hoon

Cho, Ajith Abraham,
Swagatam Das, Arijit Biswas,

Sambarta Dasgupta,

[19], [20], [22]

Mathematical
Analysis

Chemotaxis, Reproduction,
modeling in varying and
dynamics environment

Swagatam Das, Sambarta
Dasgupta, Arijit Biswas, Ajith

Abraham, W. J. Tang, Q. H.
Wu, J. R. Saunders

[13], [14], [30], [31]

Modification of
BFOA

Adaptive chemotactic step
size, modified step size using

Hybrid least square-Fuzzy
Logic, advanced BFOA using

fuzzy logic and clonal
selection, BFOA in dynamic
environments, BFOA with

varying population,
cooperative approach to

BFOA

Kevin M. Passino, Sambarta
Dasgupta, Arijit Biswas,

Swagatam Das, Ajith
Abraham, Dong Hwa Kim, Jae

Hoon Cho, S. Mishra, W. J
Tang, Q H Wu, J R Saunders,

Carlos Fernandes, Vitorino
Ramos, Agostinho C. Rosa,

Hanning Chen, Yunlong Zhu,
Kunyuan Hu.

[1], [9], [19], [29],
[27], [28], [32], [37]

Application in the
field of electrical
engineering and

Control

Optimization of real power
loss and voltage stability and

distribution static
compensator, Harmonic
estimation, Active power

filter for load compensation,
dynamic resource allocation
in multi-zone temperature

experimentation, PID
controller design,

S. Mishra, M. Tripathi, C.N.
Bhende, L.L Lai, Mario A.

Munoz, Jesus A. Lopez,
Eduardo Caicedo, Dong Hwa

Kim

[27], [28], [32], [33],
[34]

Filtering Problem Application of BFOA to
extended Kalman filter based
simultaneous localization and

mapping problems

Amitava Chatterjee, Fumitoshi
Matsuno

[26]

Learning and
Neural network

problems

Wavelet neural network
training, Optimal learning of

Neuro fuzzy structure,
Parameter optimization of
extreme learning machine

M. Ulagammai, P. Venkatesh,
P.S. Kannan, Narayan Prasad
Padhy, D.H Kim, Jae-Hoon

Cho, Dae-Jong Lee

[23], [35],

Pattern
Recognition

Circle detection with
Adaptive BFOA, Independent

component analysis

Sambarta Dasgupta, Arijit
Biswas, Swagatam Das, Ajith

Abraham, D P Acharya, G
Panda, S Mishra, Y V S Laxmi

[36], [25]

Scheduling
Problem

BFOA for job shop
scheduling

Chunguo Wu, Na Zhang,
Jingqing Jiang, Jinhui Yang

and Yanchun Liang

[38]

an interesting application of BFOA in [26] to improve the quality of solutions for
the extended Kalman Filters (EKFs), such that the EKFs can offer to solve simul-
taneous localization and mapping (SLAM) problems for mobile robots and
autonomous vehicles.

Tripathy and Mishra proposed an improved BFO algorithm for simultaneous
optimization of the real power losses and Voltage Stability Limit (VSL) of a mesh
power network [27]. In their modified algorithm, firstly, instead of the average
value, the minimum value of all the chemotactic cost functions is retained for de-
ciding the bacterium’s health. This speeds up the convergence, because in the av-
erage scheme described by Passino [1], it may not retain the fittest bacterium for

52 S. Das et al.

the subsequent generation. Secondly for swarming, the distances of all the bacteria
in a new chemotactic stage are evaluated from the globally optimal bacterium to
these points and not the distances of each bacterium from the rest of the others, as
suggested by Passino [1]. Simulation results indicated the superiority of the pro-
posed approach over classical BFOA for the multi-objective optimization problem
involving the UPFC (Unified Power Flow Controller) location, its series injected
voltage, and the transformer tap positions as the variables. Mishra and Bhende
used the modified BFOA to optimize the coefficients of Proportional plus Integral
(PI) controllers for active power filters [28]. The proposed algorithm was found to
outperform a conventional GA with respect to the convergence speed.

Mishra, in [29], proposed a Takagi-Sugeno type fuzzy inference scheme for
selecting the optimal chemotactic step-size in BFOA. The resulting algorithm,
referred to as Fuzzy Bacterial Foraging (FBF), was shown to outperform both
classical BFOA and a Genetic Algorithm (GA) when applied to the harmonic es-
timation problem. However, the performance of the FBF crucially depends on the
choice of the membership function and the fuzzy rule parameters [29] and there is
no systematic method (other than trial and error) to determine these parameters for
a given problem. Hence FBF, as presented in [29], may not be suitable for opti-
mizing any benchmark function in general. In Table 1 we summarize the current
researches on different aspects and applications of BFOA.

7 Conclusions

Search and optimization problems are ubiquitous through the various realms of
science and engineering. This chapter has provided a comprehensive overview of
one promising real-parameter optimization algorithm called the Bacterial Foraging
Optimization Algorithm (BFOA). BFOA is currently gaining popularity due to its
efficacy over other swarm and evolutionary computing algorithms in solving en-
gineering optimization problems. It mimics the individual as well as grouped for-
aging behavior of E.coli bacteria that live in our intestine.

The chapter first outlines the classical BFOA in sufficient details. It then devel-
ops a simple mathematical model of the simulated chemotaxis operation of BFOA.
With the help of this model it analyses the chemotactic dynamics of a single bacte-
rium moving over a one-dimensional fitness landscape. The analysis indicates that
the chemotactic dynamics has some striking similarity with the classical gradient
descent search although the former never uses an analytic expression of the
derivative of the objective function. A problem of oscillations near the optimum is
identified from the presented analysis and two adaptation rules for the chemotactic
step-height have been proposed to promote the quick convergence of the
algorithm near the global optimum of the search space. The chapter also provides
an analysis of the reproduction step of BFOA for a two-bacterium system. The
analysis reveals how the dynamics of reproduction helps in avoiding premature
convergence.

In recent times, a symbiosis of swarm intelligence with other computational
intelligence algorithms has opened up new avenues for the next generation

Bacterial Foraging Optimization Algorithm 53

computing systems. The chapter presents an account of the research efforts aiming
at hybridizing BFOA with other popular optimization techniques like PSO, DE,
and GA for improved global search and optimization. It also discusses the signifi-
cant applications of BFOA in diverse domains of science and engineering. The
content of the chapter reveals that engineering search and optimization problems
including those from the fields of pattern recognition, bioinformatics, and machine
intelligence will find new dimensions in the light of swarm intelligence techniques
like BFOA.

References

[1] Passino, K.M.: Biomimicry of Bacterial Foraging for Distributed Optimization and
Control. IEEE Control Systems Magazine, 52–67 (2002)

[2] Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Harbor (1975)

[3] Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evo-
lution. John Wiley, Chichester (1966)

[4] Rechenberg, I.: Evolutionsstrategie 1994. Frommann-Holzboog, Stuttgart (1994)
[5] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE In-

ternational Conference on Neural Networks, pp. 1942–1948 (1995)
[6] Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Ap-

proach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Com-
putation 1(1), 53–66 (1997)

[7] Berg, H., Brown, D.: Chemotaxis in escherichia coli analysed by three-dimensional
tracking. Nature 239, 500–504 (1972)

[8] Berg, H.: Random Walks in Biology. Princeton Univ. Press, Princeton (1993)
[9] Liu, Y., Passino, K.M.: Biomimicry of Social Foraging Bacteria for Distributed Op-

timization: Models, Principles, and Emergent Behaviors. Journal of Optimization
Theory And Applications 115(3), 603–628 (2002)

[10] Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables. Dover, New York (1972)

[11] Bracewell, R.: Heaviside’s Unit Step Function, H(x), The Fourier Transform and Its
Applications, 3rd edn., pp. 57–61. McGraw-Hill, New York (1999)

[12] Snyman, J.A.: Practical Mathematical Optimization: An Introduction to Basic Opti-
mization Theory and Classical and New Gradient-Based Algorithms. Springer Pub-
lishing, Heidelberg (2005)

[13] Dasgupta, S., Das, S., Abraham, A., Biswas, A.: Adaptive Computational Chemotaxis
in Bacterial Foraging Optimization: An Analysis. IEEE Transactions on Evolutionary
Computation (in press, 2009)

[14] Abraham, A., Biswas, A., Dasgupta, S., Das, S.: Anaysis of Reproduction Operator in
Bacterial Foraging Optimization. In: IEEE Congress on Evolutionary Computation
CEC 2008, IEEE World Congress on Computational Intelligence, WCCI 2008, pp.
1476–1483. IEEE Press, USA (2008)

[15] Murray, J.D.: Mathematical Biology. Springer, New York (1989)
[16] Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Arti-

ficial Systems. Oxford Univ. Press, New York (1999)

54 S. Das et al.

[17] Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and
herds. Advanced Biophysics 22, 1–94 (1986)

[18] Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE
Transactions on Evolutionary Computation 1(1), 67–82 (1997)

[19] Kim, D.H., Abraham, A., Cho, J.H.: A hybrid genetic algorithm and bacterial forag-
ing approach for global optimization. Information Sciences 177(18), 3918–3937
(2007)

[20] Biswas, A., Dasgupta, S., Das, S., Abraham, A.: Synergy of PSO and Bacterial For-
aging Optimization: A Comparative Study on Numerical Benchmarks. In: Corchado,
E., et al. (eds.) Second International Symposium on Hybrid Artificial Intelligent Sys-
tems (HAIS 2007), Innovations in Hybrid Intelligent Systems, ASC. Advances in
Soft computing Series, vol. 44, pp. 255–263. Springer, Germany (2007)

[21] Storn, R., Price, K.: Differential evolution – A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4),
341–359 (1997)

[22] Biswas, A., Dasgupta, S., Das, S., Abraham, A.: A Synergy of Differential Evolution
and Bacterial Foraging Algorithm for Global Optimization. Neural Network
World 17(6), 607–626 (2007)

[23] Ulagammai, L., Vankatesh, P., Kannan, P.S., Padhy, N.P.: Application of Bacteria
Foraging Technique Trained and Artificial and Wavelet Neural Networks in Load
Forecasting. Neurocomputing, 2659–2667 (2007)

[24] Munoz, M.A., Lopez, J.A., Caicedo, E.: Bacteria Foraging Optimization for Dynami-
cal resource Allocation in a Multizone temperature Experimentation Platform. In:
Anal. and Des. of Intel. Sys. using SC Tech., ASC, vol. 41, pp. 427–435 (2007)

[25] Acharya, D.P., Panda, G., Mishra, S., Lakhshmi, Y.V.S.: Bacteria Foaging Based In-
dependent Component Analysis. In: International Conference on Computational Intel-
ligence and Multimedia Applications. IEEE Press, Los Alamitos (2007)

[26] Chatterjee, A., Matsuno, F.: Bacteria Foraging Techniques for Solving EKF-Based
SLAM Problems. In: Proc. International Control Conference (Control 2006), Glas-
gow, UK, August 30- September 01 (2006)

[27] Tripathy, M., Mishra, S.: Bacteria Foraging-Based to Optimize Both Real Power Loss
and Voltage Stability Limit. IEEE Transactions on Power Systems 22(1), 240–248
(2007)

[28] Mishra, S., Bhende, C.N.: Bacterial Foraging Technique-Based Optimized Active
Power Filter for Load Compensation. IEEE Transactions on Power Delivery 22(1),
457–465 (2007)

[29] Mishra, S.: A hybrid least square-fuzzy bacterial foraging strategy for harmonic esti-
mation. IEEE Trans. on Evolutionary Computation 9(1), 61–73 (2005)

[30] Tang, W.J., Wu, Q.H., Saunders, J.R.: A Novel Model for Bacteria Foraging in Vary-
ing Environments. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar,
D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 556–
565. Springer, Heidelberg (2006)

[31] Biswas, A., Das, S., Dasgupta, S., Abraham, A.: Stability Analysis of the Reproduc-
tion Operator in Bacterial foraging Optimization. In: IEEE/ACM International Con-
ference on Soft Computing as Transdisciplinary Science and Technology (CSTST
2008), Paris, France, pp. 568–575. ACM Press, New York (2008)

Bacterial Foraging Optimization Algorithm 55

[32] Fernandes, C., Ramos, V., Agostinho, C.: Varying the Population Size of Artificial
Foraging Swarms on Time Varying Landscapes. In: Duch, W., Kacprzyk, J., Oja, E.,
Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 311–316. Springer, Heidel-
berg (2005)

[33] Tripathy, M., Mishra, S., Lai, L.L., Zhang, Q.P.: Transmission Loss Reduction Based
on FACTS and Bacteria Foraging Algorithm. In: PPSN, pp. 222–231 (2006)

[34] Mishra, S., Bhende, C.N.: Bacterial Foraging Technique-Based Optimized Active
Power Filter for Load Compensation. IEEE Transactions on Power Delivery 22(1),
457–465 (2007)

[35] Kim, D.H., Cho, C.H.: Bacterial Foraging Based Neural Network Fuzzy Learning. In:
IICAI 2005, pp. 2030–2036 (2005)

[36] Dasgupta, S., Biswas, A., Das, S., Abraham, A.: Automatic Circle Detection on Im-
ages with an Adaptive Bacterial Foraging Algorithm. In: 2008 Genetic and Evolu-
tionary Computation Conference, GECCO 2008, pp. 1695–1696. ACM Press, New
York (2008)

[37] Chen, H., Zhu, Y., Hu, K., He, X., Niu, B.: Cooperative Approaches to Bacterial For-
aging Optimization. In: ICIC (2), pp. 541–548 (2008)

[38] Wu, C., Zhang, N., Jiang, J., Yang, J., Liang, Y.: Improved Bacterial Foraging
Algorithms and Their Applications to Job Shop Scheduling Problems. In:
Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007.
LNCS, vol. 4431, pp. 562–569. Springer, Heidelberg (2007)

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 57–73.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Global Optimization Using Harmony Search:
Theoretical Foundations and Applications

Zong Woo Geem*

Abstract. This chapter presents the theoretical foundations of the music-
phenomenon-mimicking optimization technique, harmony search (HS) algorithm.
The HS algorithm mimics music improvisation where musicians try to find better
harmonies based on randomness or their experiences, which can be expressed as a
novel stochastic derivative rather than a calculus-based gradient derivative. The
chapter also presents three applications that demonstrate the global optimization
feature of the HS algorithm. For the water network design, HS reached global
optimum faster than other algorithms such as genetic algorithm, simulated annealing,
shuffled frog leaping algorithm, cross entropy algorithm, and scatter search; for the
multiple dam scheduling, HS reached five different global optima with identical
benefit while the genetic algorithm found a near-optimum under the same number of
function evaluations; and HS reached global optimum for the tree-like network layout
while genetic algorithm and evolutionary algorithm found near-optimum.

1 Introduction

The harmony search (HS) algorithm [1] mimics how musicians in the improvisation
process enrich their experiences by practice in searching for better harmonies. This
kind of computational intelligence process can be adopted in the optimization proc-
ess. A musical instrument in improvisation corresponds to a decision variable in op-
timization; its pitch range corresponds to a value range; and a harmony corresponds
to a solution vector. In the HS algorithm, a musician plays a pitch basically based
upon one of three factors: randomness, experience, and variation of experience. This
mechanism can be expressed as a novel stochastic derivative, instead of a calculus-
based gradient derivative [2] used in mathematical optimization techniques.

The HS algorithm has so far been applied to various real-life, scientific, and
engineering optimization problems. Examples include Sudoku puzzle solving [3],
tour routing [4], music composition [5], multicast routing [6], web documents
clustering [7], structural design [8-11], ground water modeling [12], soil stability
analysis [13], vehicle routing [14], fluid network design [15], branched network
layout [16], multiple dam operation [17], offshore structure mooring [18], satellite

Zong Woo Geem
Environmental Planning and Management, Johns Hopkins University

58 Z.W. Geem

heat pipe design [19], leakage detection [20], transport energy modeling [21], en-
ergy system dispatch [22], heat exchanger design [23], photo-electronic detection
[24], ecological conservation [25], model parameter calibration [26-27].

After many successes applying the HS algorithm in various problems, this
chapter especially focuses on the global optimization feature of the HS algorithm
by reviewing several combinatorial optimization problems. Literature shows that
the HS algorithm reached global optimum after searching very few combinations

(%1036.8 5−× for water network design; %1009.5 29−× for multiple dam

scheduling; and %1019.1 21−× for branched network layout) and performed bet-
ter than other phenomenon-mimicking algorithms. Thus, this research will show
how the HS algorithm works for the global optimization problems in a detailed
manner, hoping other researchers will also use this algorithm in their own global
optimization problems.

2 Harmony Search Algorithm

The music-inspired HS algorithm evolves a group of harmonies (= solution vec-
tors) using the following steps:

2.1 Problem Formulation

The problem to be solved by HS can be formulated as an optimization problem as
follows [28]:

 Optimize)(xz (1)

 Subject to 0)(≥xg (2)

 0)(=xh (3)

 Sx ∈ (4)

where)(xz = an objective function; x = a solution vector with n decision vari-

ables (nxxx ,,, 21 K);)(xg = a vector of inequality constraints;)(xh = a vector

of equality constraints; and S = the solution space. Because the decision variable

ix is discrete in combinatorial optimization problems, S =

{ })(,),(),...,2(),1(iiiii Kxkxxx K .

2.2 Initialization of Harmony Memory

The HS algorithm starts with a group of harmonies. The value of the decision
variable in each harmony can be randomly selected as follows:

Global Optimization Using HS: Theoretical Foundations and Applications 59

ii xx S∈← (5)

Then, the random harmonies and corresponding objective function values are
stored in harmony memory (HM) expressed as a matrix:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)(

)(

)(
2

1

21

22
2

2
1

11
2

1
1

HMSHMS
n

HMSHMS

n

n

z

z

z

xxx

xxx

xxx

x

x

x

M

L

LLLM

L

L

HM (6)

In Eq. 6, each row represents each harmony, and the number of total harmonies
is HMS (harmony memory size).

In order to start with more converged HM, random harmonies may be gener-
ated more than HMS. Then only better harmonies, in terms of the objective func-
tion as in Eq. 1, are included in the HM.

2.3 Improvisation of New Harmony

After the HM is prepared, a new harmony,),...,,(21
New
n

NewNew xxx=Newx , is

improvised based on the HM or random basis.

2.3.1 Experience Consideration

A value of the decision variable New
ix can be chosen from any candidate

values stored in the HM with a probability of HMCR (harmony memory
considering rate).

HMCRxxxxx HMS
iii

New
i w.p.}...,,,{ 21∈← (7)

2.3.2 Random Selection

Instead of the above-mentioned experience consideration, a value of the decision

variable New
ix can be chosen from any candidate values in total solution space iS

rather than from the HM.

HMCR)-(1xx i
New
i w.p.S∈← (8)

2.3.3 Pitch Adjustment

Only if a value of the decision variable New
ix is obtained from the experience con-

sideration operation (not from the random selection operation) in Eq. 7, the value
can be further varied into its neighboring values with a probability of PAR (pitch
adjusting rate).

60 Z.W. Geem

⎩
⎨
⎧ +

←
PAR)-(1kx

PARmkx
x

i

iNew
i w.p.)(

w.p.)(
 (9)

where)(kxi (ii kx S∈)() is identical to the value of the decision variable New
ix

obtained in the experience consideration operation; and neighboring index m is an

element of the candidate set { }KK ,2,1,1,2, −− . Normally, { }1,1−∈m .

2.4 Stochastic Derivative

The above three operations (experience consideration, random selection, and pitch
adjustment) can be re-written as a stochastic derivative [2] as follows:

()
PARHMCR

HMS

mkxn

PARHMCR
HMS

kxn

HMCR
Kx

f

i

i

ikxxi
ii

⋅⋅+

−⋅⋅+

−⋅=
∂
∂

=

)(

)1(
))((

)1(
1

)(

m

 (10)

The first term in the right hand side of Eq. 10 stands for the probability that

)(kxi (ii kx S∈)() is selected for the value of New
ix in the random selection

operation; the second term stands for the probability that)(kxi is selected in the

experience consideration operation; and the third term stands for the probability

that)(kxi is selected in the pitch adjustment operation.

Thus, the stochastic derivative for discrete variables in HS denotes the summa-
tion of the probabilities that a certain candidate value is selected for the value of

New
ix using one of three operations (experience consideration, random selection,

and pitch adjustment). As iteration continues, the probability to choose the value
of global optimum vector increases [2]. Here, the cumulative density function of
total candidate values for each decision variable should be equal to one:

1
1)(

=
∂
∂∑

= =

i

ii

K

k kxxix

f
 (11)

2.5 Optional Operations

Once a new harmony vector Newx is improvised based upon the above three ba-
sic operations, it can be further processed with other operations such as ensemble
consideration and penalty consideration.

Global Optimization Using HS: Theoretical Foundations and Applications 61

2.5.1 Ensemble Consideration

A value of the decision variable New
ix can be chosen from the correlation among

decision variables [29]. The value of New
ix is determined based on the value of

New
jx where the pairs),(l

j
l
i xx in the HM have the highest correlation in terms of

statistical determination coefficient.

[]{ }2),(maxwhere)(ji xxCorrxfx
ji

New
j

New
i ≠

← (12)

2.5.2 Penalty Consideration

This operation checks if the new harmony Newx violates any constraint in the op-

timization formulation. If Newx violates any constraint, a certain amount of pen-
alty is added to the objective function value.

(){ }31
2)()(ppzz

p +Δ⋅+← NewNew xx (13)

where Δ = quantitative amount of constraint violation; 1p , 2p , and 3p = pen-

alty coefficients. 1p makes the penalty amount proportional to the violated

amount; 2p makes the penalty amount exponential to the violated amount; and
3p contributes constant amount to the penalty amount in order to prevent any

slight violation.

2.6 Update of Harmony Memory

If the newly generated harmony vector Newx is better than the worst harmony

vector Worstx in the HM in terms of the objective function value (including the
penalty), the new harmony is included in the HM and the worst vector is excluded
from the HM.

() ()HMHM ∉∧∈ WorstNew xx (14)

There may exist a maximum allowed number of identical vectors in order to
prevent premature HM.

() 1},,2,1{, −≤∈= MaxVecHMSjn KjNew xx (15)

62 Z.W. Geem

where ()⋅n = function which counts identical vectors in HM; and MaxVec =

maximum allowed number of identical vectors stored in HM.

2.7 Termination of Computation

If the number of harmony improvisations reaches MaxImp (maximum improvisa-
tions) or other criteria, the computation stops. Otherwise, the process described in
sections 2.3 - 2.7 is repeated.

2.8 Pseudo Code of the Algorithm

The above-mentioned procedure of the HS algorithm can be expressed as a
pseudo code as follows:

Procedure HS

 Initialize Harmony Memory (HM)

 While (Not Termination Condition)

 For I = 1 to N Do (N = # of Decision Variables)
 If (UN(1) < HMCR) (UN = Uniform Random Number)
 X[I] = x, x ∈ HM
 If (UN(2) < PAR)
 X[I] = X[I] ± ∆ (∆ = Discrete Increment)
 End If
 Else
 X[I] = x, x ∈ Ω (Ω = Value Set)
 End If

 X[I] ∈ X_New

 End Do

 Consider Ensemble of X_New

 Add Penalty to z(X_New)

 If X_New is better than X_Worst
 (X_New ∈ HM) ∧ (X_Worst ∉ HM)
 End If

 End While

End Procedure

Global Optimization Using HS: Theoretical Foundations and Applications 63

3 Examples of Global Optimization

In order to show the HS ability to find global optimum in real-world combinatorial
optimization problems, three examples are demonstrated: water distribution net-
work design [15], multiple dam scheduling [17], and fluid-transport pipeline lay-
out [16].

3.1 Design of Water Distribution Networks

The HS algorithm was applied to the design of water distribution networks [15].
The water network design means finding minimal cost diameters for all pipes in
the system while satisfying water quantity and pressure requirements. Alperovits
and Shamir [30] proposed a mathematical technique for this optimization problem.
However, because this approach resulted in unrealistic solutions (for example,
continuous diameters), researchers have introduced various phenomenon-
mimicking algorithms [32-36].

Figure 1 shows an example network which consists of one tank (fixed head =
210 m), six demand nodes, and eight distribution pipes with two loops [30].

The objective function of the problem is a design cost function including pen-
alty function as follows:

Minimize))(()(
11
∑∑

==

Φ+=
J

j
j

n

i
i HDfz D (16)

where)(⋅f = cost function of diameter iD for pipe i ; and)(⋅Φ = penalty func-

tion for deficit nodal pressure head jH at demand node j . The nodal pressure

head at each node is calculated based on pipe diameters.
Constraints for this problem include mass conservation, energy conservation,

and minimum head requirement. The constraint of mass conservation at each node
can be expressed as follows:

∑ ∑ =− j
out
j

in
j dQQ (17)

where in
jQ = pipe flow into node j ; out

jQ = pipe flow out of node j ; and jd =

nodal demand at node j .

The constraint of energy conservation at each loop can be expressed as follows:

kih
i

f ∈=∑ ,0 (18)

where fh is pressure head loss due to flow friction along pipe i , and pipe i is an

element of loop set k .

64 Z.W. Geem

Fig. 1 Schematic of Two-Loop Net-
work

The constraint of minimum head requirement at each node can be expressed as
follows:

min
jj HH ≥ (19)

where min
jH = minimum required head for node j .

While mass conservation and energy conservation constraints can be satisfied
by using hydraulic software [31], the minimum head requirement constraint can be
satisfied by introducing a penalty function added to the objective function as in
Eq. 16.

Details of the penalty function are as follows:

jj
p

j HHppH −=ΔΔ+Δ=Φ min
31)},,0sgn{max()},0{max()(2 (20)

The decision variable for this problem is a diameter iD (unit = inch) for each

pipe, which has 14 commercial types as follows:

}24,22,20,18,16,14,12,10,8,6,4,3,2,1{=∈ iiD S (21)

Thus, the number of total enumerations of candidate network designs becomes
98 1048.114 ×= . However, the HS algorithm reached the global optimum [32],

z(18, 10, 16, 4, 16, 10, 10, 1) = $ 419,000, after testing only 1,234 designs, taking
0.5 second on Intel Celeron 1.8GHz CPU. When compared with other phenome-
non-mimicking algorithms in terms of the number of iterations, HS (1,234
iterations) required less iterations than genetic algorithm (7,467 iterations) [33],
simulated annealing (more than 25,000 iterations) [34], shuffled frog leaping

Global Optimization Using HS: Theoretical Foundations and Applications 65

algorithm (11,155 iterations) [35], cross entropy algorithm (35,000 iterations)
[36], and scatter search (3,215 iterations) [32].

Figure 2 shows the changes of stochastic derivative values for pipe 1 [2]. Ini-
tially, the diameter of 3 inches had the highest chance (0.1601) to be selected.
However, the highest chance occurred with 10-inch diameter at 26 iterations
(0.2501), 16-inch diameter at 47 and 141 iterations (0.2096 and 0.5651), and fi-
nally 18-inch diameter, which is the element of global solution vector, at 585 and
1,234 iterations (0.6326 and 0.6641).

6641.0
181

1

=
∂
∂

=D
D

f
 (22)

Here, the stochastic derivative set for each candidate diameter is {1/0.0071,
2/0.0071, 3/0.0071, 4/0.0071, 6/0.0071, 8/0.0071, 10/0.0071, 12/0.0071,
14/0.0071, 16/0.0881, 18/0.6641, 20/0.1601, 22/0.0161, 24/0.0071}. The cumula-
tive density function of total candidate diameters for pipe 1 becomes one:

1
14

1)(1
1

=
∂
∂∑

= =k kDD
D

f
 (23)

The above computation was performed with HMS = 20, HMCR = 0.9, and
PAR = 0.2. However, in order to obtain better algorithm parameters, further sensi-
tivity analysis was performed with HMS = {10, 30, 50}, HMCR = {0.9, 0.95,
0.97}, and PAR = {0.05, 0.1, 0.3}. Out of 270 runs (10 random runs for each pa-
rameter combination), minimum and median numbers of function evaluations
reaching global optimum were 374 and 1,958, respectively. Also, the analysis
found one typical combination (HMS = 50, HMCR = 0.9, PAR = 0.3). With 100
random runs of the combination, global optimum was reached 13 times.

Fig. 2 Stochastic Derivative with Different Iterations

66 Z.W. Geem

3.2 Scheduling of Multiple Dams

The operation of multiple dams, as shown in Figure 3, is a combinatorial optimi-
zation problem of complex decision making process. Traditionally researchers
have used mathematical techniques for finding multiple dam schedules. However,
because most of the mathematical models are suitable for simplified dam systems,
genetic algorithm has gathered attention among researchers. Wardlaw and Sharif
[37] proposed a multiple dam scheduling model with various schemes (real-value
coding, tournament selection, uniform crossover, and modified uniform mutation).

Fig. 3 Four-dam system

The objective function of the problem is both hydropower generation and irri-
gation benefits as follows:

Maximize ∑∑∑∑ ⋅+⋅=
i

i
t

i
i t

ii tRtbtRtpz)()()()((24)

where)(tRi = discrete water release at time t from dam i ;)(tpi = unit benefit

from hydropower generation;)(tbi = unit benefit from irrigation.

Global Optimization Using HS: Theoretical Foundations and Applications 67

The continuity constraint is as follows:

)()()()1(tttt iiii RMISS ⋅++=+ (25)

where)(tiS = vector of dam storages at time t ;)(tiI = vector of inflows to

dam i ; M = dam connection matrix.

Here, the dam storage)(tSi should be placed between lower and upper limits

as follows:

)()()(tStStS MAX
ii

MIN
i ≤≤ (26)

Also, the decision variable)(tRi should have a discrete value as follows:

{ }iK
iiii RRRtR ,,,)(21 K∈ (27)

The HS algorithm tackled the multiple-dam operation and obtained five differ-
ent global optima that have an identical objective function value (401.3) [17]. Fig-
ure 4 shows one of those global optima.

The HS algorithm tackled the multiple-dam operation and obtained five differ-
ent global optima that have an identical objective function value (401.3) [17]. Fig-
ure 4 shows one of those global optima.

Fig. 4 Optimal Water Releases at Each Dam

While the HS algorithm (HMS = 30, HMCR = 0.95, PAR = 0.05, and MaxImp
= 35,000) reached global optima five times, an improved genetic algorithm (bi-
nary, gray & real-value representations, tournament selection, three crossover
strategies, and uniform & modified uniform mutation) in literature [37] obtained
just near-optimum (400.5).

68 Z.W. Geem

For this combinatorial optimization problem which has 48 decision variables,

the number of total enumerations is 341087.6 × . However, the HS algorithm
reached five different global optima after testing only 35,000 operations. When a
linear programming solver tackled this problem which does not have non-linear
functions, it could reach one of global optima. However, it could not provide four
alternative global optima that HS found.

3.3 Layout of Fluid-Transport Branched Pipelines

Networks deliver fluid, electricity, or vehicles. While some networks require redun-
dancy, others do not. For example, while urban water supply systems require redun-
dancy (loops) for reliability-purpose, irrigation and sewer systems whose geometric
layouts are branched rather than looped rarely require the redundancy [38].

For the problem of a tree-like branched network layout, the minimal spanning
tree (MST) algorithm is a popular approach. The MST algorithm finds a branched
network which contains all nodes in the network and has no loop with minimum
total length.

Figure 5 shows an example of MST. The first network from the left is a base
graph which has four nodes and five arcs. The values assigned to the arcs are the
lengths between two nodes. For example, the length between node 1 and node 2 is

2 , and the length between node 1 and node 3 is 1. The other three networks are

candidate tree-like layouts. The second one has a total length of 2 +2; the third

one 3; and the fourth one 2 +2. Thus, the third one becomes MST because it has
minimal total length.

Fig. 5 Base Graph and Three Candidate Branched Layouts

However, this MST technique cannot be applicable to the branched layout for
fluid networks because each arc has not only length but also capacity which
should satisfy volumetric requirement at each node.

Figure 6 shows an example. The first network from the left is a base graph
which has one supply node (node 1) and three demand nodes (node 2 ~ 4). The
values assigned to the nodes are fluid demands: the demand for node 2 is 10; the
demand for node 3 is 10; and the demand for node 4 is 100. The other three net-
works are candidate branched layouts.

For the second network, the arc capacity between node 1 and node 2 is 120 be-
cause the supply node should provide the total amount of fluid demands. After
node 2 consumes 10 units of fluid, the arc capacity between node 2 and node 3

Global Optimization Using HS: Theoretical Foundations and Applications 69

Fig. 6 Base Graph and Three Fluid-Transport Branched Layouts

becomes 110. Likewise, after the node 3 consumes 10 units, the arc capacity be-
tween node 2 and node 3 becomes 100. If the cost of each arc can be calculated by
arc length × arc capacity, total cost for the second layout is approximately 380 (=

2 ×120 + 1 ×110 + 1 ×100), and those of the other two layouts become 230 and
200, respectively. Thus, the fourth layout appears to be the best one, rather than
the third one in the MST algorithm.

When the HS algorithm improvises a candidate layout by growing from the
source node to all the other nodes, the HS selects the next arc based on good
memory rather than the shortest arc in MST algorithm. If a candidate arc is al-
ready stored in HM, it has a much higher chance to be selected as the next arc. If
node 1 in Figure 7 has three candidate arcs, but only the arc between node 1 and
node 4 was already stored in HM, that arc has a much higher chance of HMCR.
The other two candidate arcs have chance of 1-HMCR.

Fig. 7 Tree Growing Concept in Harmony Search

The HS model for finding the best branched layout starts with problem and al-
gorithm initializations. First, the connectivity between node i and node j (node i ≠
node j) is established using the following function.

⎩
⎨
⎧

=
jtoconnectedisiif

jtoconnectednotisiif
jiConn

1

0
),((28)

Once multiple random layouts are generated and stored in HM, one candidate
tree layout is generated based on the HM. The candidate tree layout starts growing
from the source node. First, the algorithm identifies how many demand nodes are
connected to the source node, then it gives certain probability to each arc. If a cer-
tain arc is already stored in HM, the arc has a higher chance to be selected for the
new layout, as shown in Figure 7. After determining the probabilities of all arcs
connected to the source node, one downstream node can be chosen based upon its
probability. Then, both the source node and the chosen node become root nodes,
and a next downstream node, which does not form a loop, is chosen based on its
probability. This procedure continues until all nodes are connected in tree-like
manner.

70 Z.W. Geem

The above-mentioned tree growing technique, rather than random generating

technique [39], is a very efficient searching scheme because it is guaranteed to
produce one of the complete branched candidate networks that occupy only a
small amount of the total of all candidate networks.

Once a candidate layout is generated, the arc capacity between upstream node i
and sequel downstream node j is calculated based on the following equation.

 UNiQjiCapa
DNj

j ∈= ∑
∈

,),((29)

where DN is the set of downstream nodes; UN is the set of upstream (= root)

nodes; and jQ is the fluid demand at node j.

After each arc capacity is calculated, each arc cost is then calculated by multi-
plying both arc capacity and arc length as follows:

),(),(),(jiLengthjiCapajiCost ×= α (30)

where α is a coefficient; and)(⋅Length is a distance function between nodes i

and j.
The HS model was applied to the layout design of a branched fluid-transport

network which has 64 nodes, as shown in Figure 8 [16].

Fig. 8 Base Graph of 64-Node Network

The HS algorithm found the global optimum (layout cost = 5062.8) shown in
Figure 9 while the evolutionary algorithm found 5095.2 (0.64% difference from
the global optimum) [40] and genetic algorithm found 5218.0 (3.07% difference
from the global optimum) [41]. HS reached the global optimum after testing only
1,500 layouts, while the number of total enumerations is 1.26 × 1026.

Global Optimization Using HS: Theoretical Foundations and Applications 71

Fig. 9 Optimal Branched Layout for 64-Node Network

4 Conclusions

This chapter presented theoretical foundations of the harmony search algorithm for
combinatorial optimization. It also reviewed three applications (water distribution
network design, multiple dam scheduling, and fluid-transport branched network
layout) where the HS algorithm has successfully found a global optimum solution.

HS, which was inspired from music improvisation, searches better solution vec-
tors based upon factors of randomness, experience, and variation of experience.
This stochastic process is represented using a novel stochastic derivative.

In the application of water network design, HS reached global optimum after
testing 1,234 designs out of total 91048.1 × designs. Also, the stochastic deriva-
tive was visualized to show how the chance to select the value of global optimum
increases with each iteration.

In the application of multiple dam operation, HS reached global optima after
testing 35,000 operations out of total 341087.6 × operations. While GA found a
near-optimal solution, HS found five different global optima.

In the application of fluid network layout, HS reached global optimum after
testing 1,500 layouts out of total 261026.1 × layouts while evolutionary algo-
rithm and genetic algorithm reached near-optima.

From these successful applications, it is expected that more researchers will use
the HS algorithm for global optimization problems in their fields.

References

1. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm:
Harmony search. Simulation 76, 60–68 (2001)

2. Geem, Z.W.: Novel Derivative of Harmony Search Algorithm for Discrete Design
Variables. Applied Mathematics and Computation 199, 223–230 (2008)

72 Z.W. Geem

3. Geem, Z.W.: Harmony search algorithm for solving Sudoku. In: Apolloni, B., Howlett,
R.J., Jain, L. (eds.) KES 2007, Part I. LNCS (LNAI), vol. 4692, pp. 371–378. Springer,
Heidelberg (2007)

4. Geem, Z.W., Tseng, C.L., Park, Y.: Harmony search for generalized orienteering prob-
lem: Best touring in China. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005.
LNCS, vol. 3612, pp. 741–750. Springer, Heidelberg (2005)

5. Geem, Z.W., Choi, J.Y.: Music composition using harmony search algorithm. In: Gi-
acobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 593–600. Springer, Hei-
delberg (2007)

6. Forsati, R., Haghighat, A.T., Mahdavi, M.: Harmony Search based Algorithms for
Bandwidth-Delay-Constrained Least-Cost Multicast Routing. Computer Communica-
tions 31, 2505–2519 (2008)

7. Mahdavi, M., Chehreghani, M.H., Abolhassani, H., Forsatia, R.: Novel Meta-Heuristic
Algorithms for Clustering Web Documents. Applied Mathematics and Computa-
tion 201, 441–451 (2008)

8. Lee, K.S., Geem, Z.W.: A new structural optimization method based on the harmony
search algorithm. Computers & Structures 82, 781–798 (2004)

9. Lee, K.S., Geem, Z.W., Lee, S.-H., Bae, K.-W.: The Harmony Search Heuristic Algo-
rithm for Discrete Structural Optimization. Engineering Optimization 37, 663–684
(2005)

10. Saka, M.P.: Optimum Geometry Design of Geodesic Domes Using Harmony Search
Algorithm. Advances in Structural Engineering 10, 595–606 (2007)

11. Erdal, F., Saka, M.P.: Effect of Beam Spacing in the Harmony Search Based Optimum
Design of Grillages. Asian Journal of Civil Engineering (Building and Housing) 9,
215–228 (2008)

12. Ayvaz, M.T.: Simultaneous Determination of Aquifer Parameters and Zone Structures
with Fuzzy C-Means Clustering and Meta-Heuristic Harmony Search Algorithm. Ad-
vances in Water Resources 30, 2326–2338 (2007)

13. Cheng, Y.M., Li, L., Lansivaara, T., Chi, S.C., Sun, Y.J.: An Improved Harmony
Search Minimization Algorithm Using Different Slip Surface Generation Methods for
Slope Stability Analysis. Engineering Optimization 40, 95–115 (2008)

14. Geem, Z.W., Lee, K.S., Park, Y.: Application of Harmony Search to Vehicle Routing.
American Journal of Applied Sciences 2, 1552–1557 (2005)

15. Geem, Z.W.: Optimal cost design of water distribution networks using harmony
search. Engineering Optimization 38, 259–280 (2006)

16. Geem, Z.W., Park, Y.: Harmony search for Layout of Rectilinear Branched Networks.
WSEAS Transactions on Systems 6, 1349–1354 (2006)

17. Geem, Z.W.: Optimal scheduling of multiple dam system using harmony search algo-
rithm. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007.
LNCS, vol. 4507, pp. 316–323. Springer, Heidelberg (2007)

18. Ryu, S., Duggal, A.S., Heyl, C.N., Geem, Z.W.: Offshore mooring cost optimization
via harmony search. In: Proceedings of 26th International Conference on Offshore
Mechanics and Arctic Engineering, ASME, San Diego, CA, USA (2007) CD-ROM

19. Geem, Z.W., Hwangbo, H.: Application of harmony search to multi-objective optimi-
zation for satellite heat pipe design. In: Proceedings of US-Korea Conference on Sci-
ence, Technology, & Entrepreneurship (UKC 2006), Teaneck, NJ, USA (2006) CD-
ROM

20. Kim, S.H., Yoo, W.S., Oh, K.J., Hwang, I.S., Oh, J.E.: Transient analysis and leakage
detection algorithm using GA and HS algorithm for a pipeline system. Journal of Me-
chanical Science and Technology 20, 426–434 (2006)

21. Ceylan, H., Ceylana, H., Haldenbilena, S., Baskan, O.: Transport Energy Modeling
with Meta-Heuristic Harmony Search Algorithm, an Application to Turkey. Energy
Policy 36, 2527–2535 (2008)

Global Optimization Using HS: Theoretical Foundations and Applications 73

22. Vasebi, A., Fesanghary, M., Bathaeea, S.M.T.: Combined Heat and Power Economic
Dispatch by Harmony Search Algorithm. International Journal of Electrical Power &
Energy Systems 29, 713–719 (2007)

23. Fesanghary, M., Damangir, E., Soleimani, I.: Design optimization of shell and tube
heat exchangers using global sensitivity analysis and harmony search algorithm. Ap-
plied Thermal Engineering (2008), doi:10.1016/j.applthermaleng.2008.05.018

24. Dong, H., Bo, Y., Gao, M., Zhu, T.: Improved harmony search for detection with pho-
ton density wave. In: Proceedings of International Symposium on Photo-Electronic
Detection and Imaging (ISPDI 2007), Beijing, China (2007) CD-ROM

25. Geem, Z.W., Williams, J.C.: Harmony Search and Ecological Optimization. Interna-
tional Journal of Energy and Environment 1, 150–154 (2007)

26. Kim, J.H., Geem, Z.W., Kim, E.S.: Parameter estimation of the nonlinear Muskingum
model using harmony search. Journal of the American Water Resources Associa-
tion 37, 1131–1138 (2001)

27. Zarei, O., Fesanghary, M., Farshi, B., Saffar, R.J., Razfar, M.R.: Optimization of
Multi-Pass Face-Milling via Harmony Search Algorithm. Journal of Materials Process-
ing Technology (2008), doi:10.1016/j.jmatprotec.2008.05.029

28. Mays, L.W., Tung, Y.K.: Hydrosystems engineering and management. McGraw-Hill,
New York (1992)

29. Geem, Z.W.: Improved harmony search from ensemble of music players. In: Gabrys,
B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4251, pp. 86–93.
Springer, Heidelberg (2006)

30. Alperovits, E., Shamir, U.: Design of optimal water distribution systems. Water Re-
sources Research 13, 885–900 (1977)

31. Rossman, L.A.: EPANET2 Users Manual. US Environmental Protection Agency. Cin-
cinnati, OH, USA (2000)

32. Lin, M.D., Liu, Y.H., Liu, G.F., Chu, C.W.: Scatter Search Heuristic for Least-Cost
Design of Water Distribution Networks. Engineering Optimization 39, 857–876 (2007)

33. Wu, Z.Y., Boulos, P.F., Orr, C.H., Ro, J.J.: Using genetic algorithms to rehabilitate
distribution systems. Journal of the American Water Works Association 93, 74–85
(2001)

34. Cunha, M.C., Sousa, J.: Water distribution network design optimization: simulated an-
nealing approach. ASCE Journal of Water Resources Planning and Management 125,
215–221 (1999)

35. Eusuff, M., Lansey, K.E.: Optimization of water distribution network design using the
shuffled frog leaping algorithm. Journal of Water Resources Planning and Manage-
ment, ASCE 129, 210–225 (2003)

36. Perelman, L., Ostfeld, A.: An adaptive heuristic cross-entropy algorithm for optimal
design of water distribution systems. Engineering Optimization 39, 413–428 (2007)

37. Wardlaw, R., Sharif, M.: Evaluation of genetic algorithms for optimal reservoir system
operation. Journal of Water Resources Planning and Management, ASCE 125, 25–33
(1999)

38. Geem, Z.W.: Geometry Layout for Real-World Tree Networks Using Harmony
Search. In: Proceedings of the 3rd Indian International Conference on Artificial Intelli-
gence (IICAI 2007), Pune, India, pp. 268–277 (2007)

39. Hassanli, A.M., Dandy, G.C.: Optimal Layout and Hydraulic Design of Branched Net-
works Using Genetic Algorithms. Applied Engineering in Agriculture, ASAE 21, 55–
62 (2005)

40. Walters, G., Smith, D.: Evolutionary design algorithm for optimal layout of tree net-
works. Engineering Optimization 24, 261–281 (1995)

41. Walters, G., Lohbeck, T.: Optimal layout of tree networks using genetic algorithms.
Engineering Optimization 22, 27–48 (1993)

Hybrid GRASP Heuristics

Paola Festa and Mauricio G.C. Resende

Abstract. Experience has shown that a crafted combination of concepts
of different metaheuristics can result in robust combinatorial optimization
schemes and produce higher solution quality than the individual metaheuris-
tics themselves, especially when solving difficult real-world combinatorial
optimization problems. This chapter gives an overview of different ways to
hybridize GRASP (Greedy Randomized Adaptive Search Procedures) to cre-
ate new and more effective metaheuristics. Several types of hybridizations are
considered, involving different constructive procedures, enhanced local search
algorithms, and memory structures.

1 Introduction

Combinatorial optimization problems involve a finite number of alternatives:
given a finite solution set X and a real-valued objective function f : X → R,
one seeks a solution x∗ ∈ X with f(x∗) ≤ f(x), ∀ x ∈ X . Several combi-
natorial optimization problems can be solved in polynomial time, but many
of them are computationally intractable in the sense that no polynomial
time algorithm exists for solving it unless P = NP [27]. Due to the computa-
tional complexity of hard combinatorial problems, there has been an extensive
research effort devoted to the development of approximation and heuris-
tic algorithms, especially because many combinatorial optimization prob-
lems, including routing, scheduling, inventory and production planning, and

Paola Festa
Dept. of Mathematics and Applications, University of Napoli FEDERICO II,
Naples, Italy
e-mail: paola.festa@unina.it

Mauricio G.C. Resende
Algorithms and Optimization Research Dept., AT&T Labs Research, Florham Parl,
NJ USA
e-mail: mgcr@research.att.com

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 75–100.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

paola.festa@unina.it
mgcr@research.att.com

76 P. Festa and M.G.C. Resende

facility location, arise in real-world situations such as in transportation (air,
rail, trucking, shipping), energy (electrical power, petroleum, natural gas),
and telecommunications (design, location).

To deal with hard combinatorial problems, heuristic methods are usually
employed to find good, but not necessarily guaranteed optimal solutions.
The effectiveness of these methods depends upon their ability to adapt to
a particular realization, avoid entrapment at local optima, and exploit the
basic structure of the problem. Building on these notions, various heuristic
search techniques have been developed that have demonstrably improved
our ability to obtain good solutions to difficult combinatorial optimization
problems. One of the most promising of such techniques are usually called
metaheuristics and include, but are not restricted to, simulated annealing
[43], tabu search [28, 29, 32], evolutionary algorithms like genetic algorithms
[36], ant colony optimization [19], scatter search [35, 45, 47], path-relinking
[30, 31, 33, 34], iterated local search [8, 49], variable neighborhood search [37],
and GRASP (Greedy Randomized Adaptive Search Procedures) [21, 22].

Metaheuristics are a class of methods commonly applied to suboptimally
solve computationally intractable combinatorial optimization problems. The
term metaheuristic derives from the composition of two Greek words: meta
and heuriskein. The suffix ‘meta’ means ‘beyond’, ‘in an upper level’, while
‘heuriskein’ means ‘to find’. In fact, metaheuristics are a family of algorithms
that try to combine basic heuristic methods in higher level frameworks aimed
at efficiently exploring the set of feasible solution of a given combinatorial
problem. In [72] the following definition has been given:

“A metaheuristic is an iterative master process that guides and modi-
fies the operations of subordinate heuristics to efficiently produce high-
quality solutions. It may manipulate a complete (or incomplete) single
solution or a collection of solutions at each iteration. The subordinate
heuristics may be high (or low) level procedures, or a simple local search,
or just a construction method.”

Osman and Laporte [52] in their metaheuristics bibliography define a meta-
heuristics as follows:

“A metaheuristic is formally defined as an iterative generation process
which guides a subordinate heuristic by combining intelligently differ-
ent concepts for exploring and exploiting the search space, learning
strategies are used to structure information in order to find efficiently
near-optimal solutions. ”

In the last few years, many heuristics that do not follow the concepts
of a single metaheuristic have been proposed. These heuristics combine
one or more algorithmic ideas from different metaheuristics and sometimes
even from outside the traditional field of metaheuristics. Experience has
shown that a crafted combination of concepts of different metaheuristics
can result in robust combinatorial optimization schemes and produce higher

Hybrid GRASP Heuristics 77

solution quality than the individual metaheuristics themselves. These ap-
proaches combining different metaheuristics are commonly referred to as hy-
brid metaheuristics.

This chapter gives an overview of different ways to hybridize GRASP to
create new and more effective metaheuristics. Several types of hybridizations
are considered, involving different constructive procedures, enhanced local
search algorithms, and memory structures.

In Section 2 the basic GRASP components are briefly reviewed. Hybrid
construction schemes and hybridization with path-relinking are considered in
Sections 3 and 4, respectively.

Hybridization schemes of GRASP with other metaheuristics are explained
in Section 5. Concluding remarks are given in the last section.

2 A Basic GRASP

A basic GRASP metaheuristic [21, 22] is a multi-start or iterative method.
Given a finite solution set X and a real-valued objective function f : X → R
to be minimized, each GRASP iteration is usually made up of a construction
phase, where a feasible solution is constructed, and a local search phase which
starts at the constructed solution and applies iterative improvement until a
locally optimal solution is found. Repeated applications of the construction
procedure yields diverse starting solutions for the local search and the best
overall solution is kept as the result.

The construction phase builds a solution x. If x is not feasible, a repair
procedure is invoked to obtain feasibility. Once a feasible solution x is ob-
tained, its neighborhood is investigated by the local search until a local min-
imum is found. The best overall solution is kept as the result. An extensive

procedure GRASP(f(·), g(·), MaxIterations, Seed)
1 xbest:=∅; f(xbest):=+∞;
2 for k = 1, 2, . . . ,MaxIterations→
3 x:=ConstructGreedyRandomizedSolution(Seed, g(·));
4 if (x not feasible) then
5 x:=repair(x);
6 endif
7 x:=LocalSearch(x, f(·));
8 if (f(x) < f(xbest)) then
9 xbest:=x;
10 endif
11 endfor;
12 return(xbest);
end GRASP

Fig. 1 Pseudo-code of a basic GRASP for a minimization problem

78 P. Festa and M.G.C. Resende

procedure ConstructGreedyRandomizedSolution(Seed, g(·))
1 x:=∅;
2 Sort the candidate elements i according to their incremental

costs g(i);
3 while (x is not a complete solution)→
4 RCL:=MakeRCL();
5 v:=SelectIndex(RCL, Seed);
6 x := x ∪ {v};
7 Resort remaining candidate elements j according to their

incremental costs g(j);
8 endwhile;
9 return(x);
end ConstructGreedyRandomizedSolution;

Fig. 2 Basic GRASP construction phase pseudo-code

survey of the literature is given in [26]. The pseudo-code in Figure 1 illus-
trates the main blocks of a GRASP procedure for minimization, in which
MaxIterations iterations are performed and Seed is used as the initial seed
for the pseudorandom number generator.

Starting from an empty solution, in the construction phase, a complete
solution is iteratively constructed, one element at a time (see Figure 2). The
basic GRASP construction phase is similar to the semi-greedy heuristic pro-
posed independently by [39]. At each construction iteration, the choice of
the next element to be added is determined by ordering all candidate ele-
ments (i.e. those that can be added to the solution) in a candidate list C
with respect to a greedy function g : C → R. This function measures the
(myopic) benefit of selecting each element. The heuristic is adaptive because
the benefits associated with every element are updated at each iteration of
the construction phase to reflect the changes brought on by the selection
of the previous element. The probabilistic component of a GRASP is char-
acterized by randomly choosing one of the best candidates in the list, but
not necessarily the top candidate. The list of best candidates is called the
restricted candidate list (RCL). In other words, the RCL is made up of ele-
ments i ∈ C with the best (i.e., the smallest) incremental costs g(i). There
are two main mechanisms to build this list: a cardinality-based (CB) and a
value-based (VB) mechanism. In the CB case, the RCL is made up of the k
elements with the best incremental costs, where k is a parameter. In the VB
case, the RCL is associated with a parameter α ∈ [0, 1] and a threshold value
μ = gmin + α(gmax − gmin), where gmin and gmax are the smallest and the
largest incremental costs, respectively, i.e.

gmin = min
i∈C

g(i), gmax = max
i∈C

g(i). (1)

Hybrid GRASP Heuristics 79

procedure LocalSearch(x, f(·))
1 Let N(x) be the neighborhood of x;
2 H :={y ∈ N(x) | f(y) < f(x)};
3 while (|H | > 0)→
4 x:=Select(H);
5 H :={y ∈ N(x) | f(y) < f(x)};
6 endwhile
7 return(x);
end LocalSearch

Fig. 3 Pseudo-code of a generic local search procedure

Then, all candidate elements i whose incremental cost g(i) is no greater than
the threshold value are inserted into the RCL, i.e. g(i) ∈ [gmin, μ]. Note
that, the case α = 0 corresponds to a pure greedy algorithm, while α = 1 is
equivalent to a random construction.

Solutions generated by a GRASP construction are not guaranteed to be
locally optimal with respect to simple neighborhood definitions. Hence, it is
almost always beneficial to apply a local search to attempt to improve each
constructed solution. A local search algorithm iteratively replaces the current
solution by a better solution in the neighborhood of the current solution.
It terminates when no better solution is found in the neighborhood. The
neighborhood structure N for a problem relates a solution s of the problem
to a subset of solutions N(s). A solution s is said to be locally optimal if in
N(s) there is no better solution in terms of objective function value. The
key to success for a local search algorithm consists of the suitable choice of
a neighborhood structure, efficient neighborhood search techniques, and the
starting solution. Figure 3 illustrates the pseudo-code of a generic local search
procedure for a minimization problem.

It is difficult to formally analyze the quality of solution values found by
using the GRASP methodology. However, there is an intuitive justification
that views GRASP as a repetitive sampling technique. Each GRASP iteration
produces a sample solution from an unknown distribution of all obtainable
results. The mean and variance of the distribution are functions of the re-
strictive nature of the candidate list, as experimentally shown by Resende
and Ribeiro in [56].

An especially appealing characteristic of GRASP is the ease with which
it can be implemented either sequentially or in parallel, where only a single
global variable is required to store the best solution found over all processors.
Moreover, few parameters need to be set and tuned, and therefore develop-
ment can focus on implementing efficient data structures to assure quick
GRASP iterations.

80 P. Festa and M.G.C. Resende

3 Hybrid Construction Mechanisms

In this Section, we briefly describe enhancements and alternative techniques
for the construction phase of GRASP.

Reactive GRASP

Reactive GRASP is the first enhancement that incorporate a learning mech-
anism in the memoryless construction phase of the basic GRASP.

The value of the RCL parameter α is selected at each iteration from a
discrete set of possible values with a probability that depends on the solution
values found along the previous iterations. One way to accomplish this is
to use the rule proposed in [53]. Let A = {α1, α2, . . . , αm} be the set of
possible values for α. At the first GRASP iteration, all m values have the
same probability to be selected, i.e.

pi =
1
m

, i = 1, 2, . . . , m. (2)

At any subsequent iteration, let ẑ be the incumbent solution and let Ai

be the average value of all solutions found using α = αi, i = 1, . . . , m. The
selection probabilities are periodically reevaluated as follows:

pi =
qi∑m

j=1 qj
, (3)

where qi = ẑ
Ai

, i = 1, . . . , m.
Reactive GRASP has been successfully applied in solving several combi-

natorial optimization problems arising in real-world applications [11, 18].

Cost perturbations

Another step toward an improved and alternative solution construction mech-
anism is to allow cost perturbations. The idea to introduce some “noise” in
the original costs in a fashion resembles the noising method of Charon and
Hudry [15, 16] and can be usefully applied in all cases when the construction
algorithm is not very sensitive to randomization or for the problem to be
solved there is available no greedy algorithm for randomization.

Experimental results in the literature have shown that embedding a strat-
egy of costs perturbation into a GRASP framework improves the best over-
all results. The hybrid GRASP with path-relinking proposed for the Steiner
problem in graphs by Ribeiro et al. in [62] uses this cost perturbation strategy
and is among the most effective heuristics currently available. Path-relinking
will be in detail described in Section 4.

Bias functions

Another construction mechanism has been proposed by Bresina [12]. Once the
RCL is built, instead of choosing with equal probability one candidate among

Hybrid GRASP Heuristics 81

the RCL elements, Bresina introduced a family of probability distributions to
bias the selection toward some particular candidates. A bias function is based
on a rank r(x) assigned to each candidate x according to its greedy function
value and is evaluated only for the elements in RCL. Several different bias
functions have been introduced:

i. random bias: bias(r(x)) = 1;
ii. linear bias: bias(r(x)) = 1

r(x) ;
iii. log bias: bias(r(x)) = log−1[r(x) + 1];
iv. exponential bias: bias(r(x)) = e−r;
v. polynomial bias of order n: bias(r(x)) = r−n.

Let bias(r(x)) be one of the bias function defined above. Once these values
have been evaluated for all elements of the RCL, the probability px of selecting
element x is

px =
bias(r(x))∑

y∈RCL bias(r(y))
. (4)

A successful application of Bresina’s bias function can be found in [10],
where experimental results show that the evaluation of bias functions may
be restricted only to the elements of the RCL.

Other hybrid construction proposals

Resende and Werneck [57] proposed the following further construction
methods:

i. Sample greedy construction.
Instead of randomizing the greedy algorithm, a greedy algorithm is applied
to each solution in a random sample of candidates. At each step, a fixed-
size subset of the candidates is sampled and the incremental contribution
to the cost of the partial solution is computed for each sampled element. An
element with the best incremental contribution is selected and added to the
partial solution. This process is repeated until, as before, the construction
terminates when no further candidate exists. Resende and Werneck in [57]
proposed for the p-median problem a sample greedy construction scheme,
whose general framework for a minimization problem is shown in Figure 4.

ii. Random plus greedy construction. A partial random solution is built and
a greedy algorithm is then applied to complete the construction. The size
k of the randomly built portion determines how greedy or random the
construction will be. The pseudo-code is reported in Figure 5.

iii.Proportional greedy construction.
In each iteration of proportional greedy, the incremental cost g(c) for every
candidate element c ∈ C is computed and then a candidate is picked at
random, but in a biased way. In fact, the probability of a given candidate
v ∈ C being selected is inversely proportional to g(v)−min{g(c) | c ∈ C}.

82 P. Festa and M.G.C. Resende

procedure ConstructSampleGreedySolution(Seed, g(·), k)
Let C be the set of candidate elements.
1 x:=∅;
2 while (x is not a complete solution)→
3 RCL:=select-randomly(Seed,k,C); /*k candidates at random*/
4 Evaluate incremental costs of candidates in RCL;
5 v :=argmin{g(i) | i ∈ RCL};
6 x := x ∪ {v};
7 C := C \ {v};
8 endwhile;
9 return(x);
end ConstructSampleGreedySolution;

Fig. 4 Sample greedy GRASP construction phase pseudo-code

procedure ConstructRand+GreedySolution(Seed, g(·), k)
Let C be the set of candidate elements.
1 x:=select-randomly(Seed,k,C); /*k candidates at random*/
2 C := C \ x;
3 while (x is not a complete solution)→
4 Evaluate incremental costs of candidates in C;
5 v :=argmin{g(i) | i ∈ C};
6 x := x ∪ {v};
7 C := C \ {v};
8 endwhile;
9 return(x);
end ConstructRand+GreedySolution;

Fig. 5 Random plus greedy GRASP construction phase pseudo-code

4 GRASP and Path-Relinking

Path-relinking is a heuristic proposed in 1996 by Glover [30] as an inten-
sification strategy exploring trajectories connecting elite solutions obtained
by tabu search or scatter search [31, 33, 34]. It can be traced back to the
pioneering work of Kernighan and Lin [42].

The result of the combination of the basic GRASP with path-relinking is
a hybrid technique, leading to significant improvements in solution quality.
The first proposal of a hybrid GRASP with path-relinking is in 1999 due to
Laguna and Mart́ı [46]. It was followed by several extensions, improvements,
and successful applications [5, 13, 24, 25].

Starting from one or more elite solutions, paths in the solution space lead-
ing towards other guiding elite solutions are generated and explored in the
search for better solutions. This is accomplished by selecting moves that

Hybrid GRASP Heuristics 83

introduce attributes contained in the guiding solutions. At each iteration,
all moves that incorporate attributes of the guiding solution are analyzed
and the move that best improves (or least deteriorates) the initial solution is
chosen.

Path-relinking is applied to a pair of solutions x,y, where one can be
the solution obtained from the current GRASP iteration, and the other is
a solution from an elite set of solutions. x is called the initial solution and
y the guiding solution. The set E of elite solutions has usually a fixed size
that does not exceed MaxElite. Given the pair x,y, their common elements
are kept constant, and the space of solutions spanned by these elements is
searched with the objective of finding a better solution. The size of the so-
lution space grows exponentially with the the distance between the initial
and guiding solutions and therefore only a small part of the space is explored
by path-relinking. The procedure starts by computing the symmetric differ-
ence Δ(x,y) between the two solutions, i.e. the set of moves needed to reach
y (target solution) from x (initial solution). A path of solutions is gener-
ated linking x and y. The best solution x∗ in this path is returned by the
algorithm.

Let us denote the set of solutions spanned by the common elements of the
n-vectors x and y as

S(x,y) := {w feasible | wi = xi = yi, i /∈ Δ(x,y)} \ {x,y}. (5)

Clearly, |S(x,y)| = 2n−d(x,y) − 2, where d(x,y) = |Δ(x,y)|. The underly-
ing assumption of path-relinking is that there exist good-quality solutions in
S(x,y), since this space consists of all solutions which contain the common
elements of two good solutions x and y. Since the size of this space is expo-
nentially large, a greedy search is usually performed where a path of solutions

x = x0,x1, . . . ,xd(x,y),xd(x,y)+1 = y, (6)

is built, such that d(xi,xi+1) = 1, i = 0, . . . , d(x,y), and the best solution
from this path is chosen. Note that, since both x and y are, by construction,
local optima in some neighborhood N(·)1, in order for S(x,y) to contain
solutions which are not contained in the neighborhoods of x or y, x and y
must be sufficiently distant.

Figure 6 illustrates the pseudo-code of the path-relinking procedure ap-
plied to the pair of solutions x (starting solution) and y (target solution). In
line 1, an initial solution x is selected at random among the elite set elements
and it usually differs sufficiently from the guiding solution y. The loop in
lines 6 through 14 computes a path of solutions x1,x2, . . . ,xd(x,y)−2, and the
solution x∗ with the best objective function value is returned in line 15. This
is achieved by advancing one solution at a time in a greedy manner. At each
iteration, the procedure examines all moves m ∈ Δ(x,y) from the current

1 The same metric d(x,y) is usually used.

84 P. Festa and M.G.C. Resende

procedure Path-relinking(f(·), x, E)
1 Choose, at random, a pool solution y ∈ E to relink with x;
2 Compute symmetric difference Δ(x,y);
3 f∗ := min{f(x), f(y)};
4 x∗ := argmin{f(x), f(y)};
5 x := x;
6 while (Δ(x,y) �= ∅) →
7 m∗ := arg min{f(x ⊕ m) | m ∈ Δ(x,y)};
8 Δ(x ⊕ m∗,y) := Δ(x,y) \ {m∗};
9 x := x ⊕ m∗;
10 if (f(x) < f∗) then
11 f∗ := f(x);
12 x∗ := x;
13 endif ;
14 endwhile;
15 x∗ := LocalSearch(x∗, f(·));
16 return (x∗);
end Path-relinking;

Fig. 6 Pseudo-code of a generic path-relinking for a minimization problem

solution x and selects the one which results in the least cost solution (line 7),
i.e. the one which minimizes f(x ⊕ m), where x ⊕ m is the solution resulting
from applying move m to solution x. The best move m∗ is made, producing
solution x ⊕ m∗ (line 9). The set of available moves is updated (line 8). If
necessary, the best solution x∗ is updated (lines 10–13). Δ(x,y) = ∅. Since
x∗ is not guaranteed to be locally optimal, a local search is usually applied
and the locally optimal solution is returned.

We now describe a possible way to hybridize the basic GRASP described in
Section 2 with path-relinking. The integration of the path-relinking procedure
with the basic GRASP is shown in Figure 7. The pool E of elite solutions is
initially empty, and until it reaches its maximum size no path relinking takes
place. After a solution x is found by GRASP, it is passed to the path-relinking
procedure to generate another solution. The procedure AddToElite(E , xp)
attempts to add to the elite set of solutions the currently found solution.
Since we wish to maintain a pool of good but diverse solutions, each solution
obtained by path-relinking is considered as a candidate to be inserted into
the pool if it is sufficiently different from every other solution currently in the
pool. If the pool already has MaxElite solutions and the candidate is better
than the worst of them, then a simple strategy is to have the former replace
the latter. Another strategy, which tends to increase the diversity of the pool,
is to replace the pool element most similar to the candidate among all pool
elements with cost worse than the candidate’s.

More formally, in several papers, a solution xp is added to the elite set E
if either one of the following conditions holds:

Hybrid GRASP Heuristics 85

procedure GRASP+PR(f(·), g(·), MaxIterations, Seed, MaxElite)
1 xbest:=∅; f(xbest):=+∞; E := ∅
2 for k = 1, 2, . . . ,MaxIterations→
3 x:=ConstructGreedyRandomizedSolution(Seed, g(·));
4 if (x not feasible) then
5 x:=repair(x);
6 endif
7 x:=LocalSearch(x, f(·));
8 if (k ≤MaxElite) then
9 E := E ∪ {x};
10 if (f(x) < f(xbest)) then
11 xbest:=x;
12 endif
13 else
14 xp:=Path-relinking(f(·),x, E);
15 AddToElite(E ,xp);
16 if (f(xp) < f(xbest)) then
17 xbest:=xp;
18 endif
19 endif
20 endfor;
21 return(xbest);
end GRASP+PR

Fig. 7 Pseudo-code of a basic GRASP with path-relinking heuristic for a mini-
mization problem

1. f(xp) < min{f(w) : w ∈ E},
2. min{f(w) : w ∈ E} ≤ f(xp) < max{f(w) : w ∈ E} and d(xp,w) >

βn, ∀w ∈ E , where β is a parameter between 0 and 1 and n is the
number of decision variables.

If xp satisfies either of the above, it then replaces an elite solution z no
better than xp and most similar to xp, i.e. z = argmin{d(xp,w) : w ∈
E such that f(w) ≥ f(xp)}.

Figure 7 shows the simplest way to combine GRASP with path-relinking,
which is applied as an intensification strategy to each local optimum obtained
after the GRASP local search phase.

In general, two basic strategies can be used:

i. path-relinking is applied as a post-optimization step to all pairs of elite
solutions;

ii. path-relinking is applied as an intensification strategy to each local opti-
mum obtained after the local search phase.

86 P. Festa and M.G.C. Resende

Applying path-relinking as an intensification strategy to each local op-
timum (strategy ii.) seems to be more effective than simply using it as a
post-optimization step [58].

Several further alternatives have been recently considered and combined,
all involving the trade-offs between computation time and solution quality.
They include:

a. do not apply path-relinking at every GRASP iteration, but only periodi-
cally;

b. explore only one path, starting from either x (forward path-relinking) or
y (backward path-relinking);

c. explore two different paths, using first x, then y as the initial solution
(forward and backward path-relinking);

d. do not follow the full path, but instead only part of it (truncated path-
relinking).

Ribeiro et al. [61] observed that exploring two different paths for each pair
(x,y) takes approximately twice the time needed to explore only one of them,
with very marginal improvements in solution quality. They have also observed
that if only one path is to be investigated, better solutions are found when
path-relinking starts from the best among x and y. Since the neighborhood of
the initial solution is much more carefully explored than that of the guiding
one, starting from the best of them gives the algorithm a better chance to
investigate in more detail the neighborhood of the most promising solution.
For the same reason, the best solutions are usually found closer to the initial
solution than to the guiding solution, allowing pruning the relinking path
before the latter is reached.

Resende and Ribeiro [55] performed extensive computational experiments,
running implementations of GRASP with several different variants of path-
relinking. They analyzed the results and illustrated the trade-offs between
the different strategies.

5 GRASP and Other Metaheuristics

In this section, we describe and comment on some enhancements of the basic
GRASP obtained by hybridization with other approaches and optimization
strategies. We also report on experience showing that a crafted combination
of concepts of different metaheuristics/techniques can result in robust combi-
natorial optimization schemes and produce higher solution quality than the
individual metaheuristics themselves, especially when solving difficult real-
world combinatorial optimization problems.

Most of the GRASP hybrid approaches involve other metaheuristics in
the basic local search scheme described in Section 2. They include methods
that explore beyond the current solution’s neighborhood by allowing cost-
increasing moves, by exploring multiple neighborhoods, and by exploring very
large neighborhoods.

Hybrid GRASP Heuristics 87

5.1 GRASP and Tabu Search

Tabu search (TS) is a metaheuristic strategy introduced by Glover [28, 29,
30, 32, 33] that makes use of memory structures to enable escape from lo-
cal minima by allowing cost-increasing moves. During the search, short-term
memory TS uses a special data structure called tabu list to store information
about solutions generated in the last iterations2. The process starts from a
given solution and, as any local search heuristic, it moves in iterations from
the current solution s to some solution t ∈ N(s). To avoid returning to a
just-visited local minimum, reverse moves movt that lead back to that local
minimum are forbidden, or made tabu, for a number of iterations that can
be a priori fixed (fixed sized tabu list) or adaptively varying (variable sized
tabu list).

procedure TS(x, f(·), k)
1 Let N(x) be the neighborhood of x;
2 s := x; T := ∅; xb := x;
3 while (stopping criterion not satisfied)→
4 N̂(s) := N(s) \ T ;
5 t :=argmin{f(w) | w ∈ N̂(s)};
6 if (|T | ≥ k) then
7 Remove from T the oldest entry;
8 endif
9 T := T ∪ {t};
10 if (f(t) < f(xb)) then
11 xb := t;
12 endif
13 s := t;
14 endwhile
15 return(xb);
end TS

Fig. 8 Short memory TS pseudo-code for a minimization problem

Figure 8 shows pseudo-code for a short-term TS using a fixed k sized tabu
list T , that, for ease of handling, stores the complete solutions t instead of
the corresponding moves movt.

It is clear that TS can be used as a substitute for the standard local
search in a GRASP. This type of search allows the exploration beyond the
neighborhood of the greedy randomized solution. By using the number of
cost-increasing moves as a stopping criterion one can balance the amount
2 Usually, the tabu list stores all moves that reverse the effect of recent local search

steps.

88 P. Festa and M.G.C. Resende

procedure simulated-annealing (x, f(·), T , Seed)
1 s := x; xb := x;
2 while (T > 0 and stopping criterion not satisfied)→
3 t :=select-randomly(Seed, N(s));
4 if (f(t) − f(s) < 0) then
5 s := t;
6 if (f(t) < f(xb)) then xb := t;
7 endif
8 else s := t with probability e−(f(t)−f(s))/(K·T));
9 endif
10 Decrement T according to a defined criterion;
11 endwhile
12 return (xb);
end simulated-annealing

Fig. 9 SA pseudo-code for a minimization problem

of time that GRASP allocates to constructing a greedy randomized solution
and exploring around that solution with tabu search.

Examples of GRASP with tabu search include [18] for the single source
capacitated plant location problem, [1] for multi-floor facility layout, [71] for
the capacitated minimum spanning tree problem, [48] for the m-VRP with
time windows, and [20] for the maximum diversity problem.

5.2 GRASP and Simulated Annealing

Simulated annealing (SA) [43] is based on principles of mechanical statistics
and on the idea of simulating the annealing process of a mechanical system.

It offers a further possibility to enhance the basic GRASP local search
phase and pseudo-code in Figure 9 shows how SA can be used as a substitute
for the standard local search in a GRASP.

As any stochastic local search procedure, SA is also given a starting so-
lution x which is used to initialize the current solution s. At each iteration,
it randomly selects a trial solution t ∈ N(s). In perfect correspondence of
mechanical systems state change rules, if t is an improving solution, then t
is made the current solution. Otherwise, t is made the current solution with
probability given by

e−
f(t)−f(s)

K·T , (7)

where f(x) is interpreted as the energy of the system in state x, K is the
Boltzmann constant, and T a control parameter called the temperature.

There are many ways to implement SA, depending on the adopted stop-
ping criterion and on the rule (cooling schedule) applied to decrement the
temperature parameter T (line 10). Note that, the higher is the tempera-
ture T the higher is the probability of moving on a not improving solution t.

Hybrid GRASP Heuristics 89

Usually, starting from a high initial temperature T0, at iteration k the cooling
schedule changes the temperature by setting Tk+1 := Tk ·γ, where 0 < γ < 1.

Therefore, initial iterations can be thought of as a diversification phase,
where a large part of the solution space is explored. As the temperature cools,
fewer non-improving solutions are accepted and those cycles can be thought
of as intensification cycles.

To make use of SA as a substitute for the standard local search in GRASP,
one should limit the search to the intensification part, since the diversification
is already guaranteed by the randomness of the GRASP construction phase.
Limitation to only intensification part can be done by starting already with
a cool temperature T0.

Examples of hybrid GRASP with SA include [70] for a simplified fleet
assignment problem and [17] for the rural postman problem.

5.3 GRASP, Genetic Algorithms, and
Population-Based Heuristics

Evolutionary metaheuristics such as genetic algorithms (GA) [36], ant colony
optimization [19], scatter search [35, 45, 47], and evolutionary path-relinking
[57] require the generation of an initial population of solutions.

Rooted in the mechanisms of evolution and natural genetics and therefore
derived from the principles of natural selection and Darwin’s evolutionary
theory, the study of heuristic search algorithms with underpinnings in natural
and physical processes began as early as the 1970s, when Holland [40] first
proposed genetic algorithms. This type of evolutionary technique has been
theoretically and empirically proven to be a robust search method [36] having
a high probability of locating the global solution optimally in a multimodal
search landscape.

In nature, competition among individuals results in the fittest individuals
surviving and reproducing. This is a natural phenomenon called the survival
of the fittest: the genes of the fittest survive, while the genes of weaker individ-
uals die out. The reproduction process generates diversity in the gene pool.
Evolution is initiated when the genetic material (chromosomes) from two
parents recombines during reproduction. The exchange of genetic material
among chromosomes is called crossover and can generate good combination
of genes for better individuals. Another natural phenomenon called mutation
causes regenerating lost genetic material. Repeated selection, mutation, and
crossover cause the continuous evolution of the gene pool and the generation
of individuals that survive better in a competitive environment.

In complete analogy with nature, once encoded each possible point in
the search space of the problem into a suitable representation, a GA trans-
forms a population of individual solutions, each with an associated fit-
ness (or objective function value), into a new generation of the population.
By applying genetic operators, such as crossover and mutation [44], a GA

90 P. Festa and M.G.C. Resende

procedure GA(f(·))
1 Let N(x) be the neighborhood of a solution x;
2 k := 0;
3 Initialize population P (0); xb :=argmin{f(x) | x ∈ P (0)};
4 while (stopping criterion not satisfied)→
5 k := k + 1;
6 Select P (k) from P (k − 1);
7 t :=argmin{f(x) | x ∈ P (k)};
8 if (f(t) < f(xb)) then
9 xb := t;
10 endif
11 Alter P (k);
12 endwhile
13 return(xb);
end GA

Fig. 10 Pseudo-code of a generic GA for a minimization problem

successively produces better approximations to the solution. At each itera-
tion, a new generation of approximations is created by the process of selection
and reproduction. In Figure 10 a simple genetic algorithm is described by the
pseudo-code, where P (k) is the population at iteration k.

In solving a given optimization problem P , a GA consists of the following
basic steps.

1. Randomly create an initial population P (0) of individuals, i.e. solutions
for P .

2. Iteratively perform the following substeps on the current generation of the
population until the termination criterion has been satisfied.

a. Assign fitness value to each individual using the fitness function.
b. Select parents to mate.
c. Create children from selected parents by crossover and mutation.
d. Identify the best-so-far individual for this iteration of the GA.

Scatter Search (SS) operates on a reference set of solutions, that are com-
bined to create new ones. One way to obtain a new solution is to linearly
combine two reference set solutions. Unlike a GA, the reference set of solu-
tions is relatively small, usually consisting of less than 20 solutions. At the
beginning, a starting set of solutions is generated to guarantee a critical level
of diversity and some local search procedure is applied to attempt to improve
them. Then, a subset of the best solutions is selected as reference set, where
the quality of a solution is evaluated both in terms of objective function and
diversity with other reference set candidates. At each iteration, new solutions
are generated by combining reference set solutions. One criterion used to

Hybrid GRASP Heuristics 91

select reference solutions for combination takes into account the convex re-
gions spanned by the reference solutions.

Evolutionary path-relinking (EvPR) has been introduced by Resende and
Werneck [57] and applied as a post-processing phase for GRASP with PR.
In EvPR, the solutions in the pool are evolved as a series of populations
P (1), P (2), . . . of equal size. The initial population P (0) is the pool of elite
solutions produced by GRASP with PR. In iteration k, PR is applied between
a set of pairs of solutions in population P (k) and, with the same rules used
to test for membership in the pool of elite solutions, each resulting solution
is tested for membership in population P (k + 1). This evolutionary process
is repeated until no improvement is seen from one population to the next.

As just described, all above techniques are evolutionary metaheuristics
requiring the generation of an initial population of solutions. Usually, these
initial solutions are randomly generated, but another way to generate them
is to use a GRASP.

Ahuja et al. [4] used a GRASP to generate the initial population of a GA
for the quadratic assignment problem. Alvarez et al. [6] proposed a GRASP
embedded scatter search for the multicommodity capacitated network design
problem. Very recently, Contreras and Dı́az used GRASP to initialize the
reference set of scatter search for the single source capacitated facility lo-
cation problem. GRASP with EvPR has been recently used in [59] for the
uncapacitated facility location problem and in [54] for the max-min diversity
problem.

5.4 GRASP and Variable Neighborhood Search

Almost all randomization effort in implementations of the basic GRASP
involves the construction phase. On the other hand, strategies such as
Variable Neighborhood Search (VNS) and Variable Neighborhood Descent
(VND) [38, 51] rely almost entirely on the randomization of the local search
to escape from local optima. With respect to this issue, probabilistic strate-
gies such as GRASP and VNS may be considered as complementary and
potentially capable of leading to effective hybrid methods.

Thevariable neighborhood search (VNS)metaheuristic, proposedbyHansen
and Mladenović [38], is based on the exploration of a dynamic neighborhood
model. Contrary to other metaheuristics based on local search methods, VNS
allows changes of the neighborhood structure along the search.

VNS explores increasingly distant neighborhoods of the current best found
solution. Each step has three major phases: neighbor generation, local search,
and jump. Let Nk, k = 1, . . . , kmax be a set of pre-defined neighborhood
structures and let Nk(x) be the set of solutions in the kth-order neighborhood
of a solution x. In the first phase, a neighbor x′ ∈ Nk(x) of the current
solution is applied. Next, a solution x′′ is obtained by applying local search
to x′. Finally, the current solution jumps from x to x′′ in case the latter

92 P. Festa and M.G.C. Resende

procedure VNS(x, f(·), kmax, Seed)
1 xb := x; k := 1;
2 while (k ≤ kmax)→
3 x′ :=select-randomly(Seed, Nk(x));
4 x′′ :=LocalSearch(x′, f(·));
5 if (f(x′′) < f(x′)) then
6 x := x′′; k := 1;
7 if (f(x′′) < f(xb)) then xb := x′′;
8 endif
9 else k := k + 1;
10 endif
11 endwhile
12 return(xb);
end VNS

Fig. 11 Pseudo-code of a generic VNS for a minimization problem

improved the former. Otherwise, the order of the neighborhood is increased
by one and the above steps are repeated until some stopping condition is
satisfied.

Usually, until a stopping criterion is met, VNS generates at each iteration a
solution x at random. In hybrid GRASP with VNS, where VNS is applied as
local search, the starting solution is the output x of the GRASP construction
procedure and the pseudo-code of a generic VNS local search is illustrated in
Figure 11.

Examples of GRASP with VNS include [14] for the prize-collecting Steiner
tree problem in graphs, [25] for the MAX-CUT problem, and [9] for the strip
packing problem.

VND allows the systematic exploration of multiple neighborhoods and is
based on the facts that a local minimum with respect to one neighborhood
is not necessarily a local minimum with respect to another and that a global
minimum is a local minimum with respect to all neighborhoods. VND also
is based on the empirical observation that, for many problems, local minima
with respect to one or more neighborhoods are relatively close to each other.
Since a global minimum is a local minimum with respect to all neighbor-
hoods, it should be easier to find a global minimum if more neighborhoods
are explored.

Let Nk(x), for k = 1, . . . , kmax, be kmax neighborhood structures of solu-
tion x. The search begins with a given starting solution x which is made the
current solution s. Each major iteration (lines 2–11) searches for an improv-
ing solution t in up to kmax neighborhoods of s. If no improving solution is
found in any of the neighborhoods, the search ends. Otherwise, t is made the
current solution s and the search is applied starting from s.

Hybrid GRASP Heuristics 93

procedure VND(x, f(·), kmax)
1 xb := x; s := x; flag:=true;
2 while (flag)→
3 flag:=false;
4 for k = 1, . . . , kmax →
5 if (∃t ∈ Nk(s) | f(t) < f(s)) then
6 if (f(t) < f(xb)) then xb := t;
7 endif
8 s := t; flag:=true; break;
9 endif
10 endfor
11 endwhile
12 return(xb);
end VND

Fig. 12 Pseudo-code of a generic VND for a minimization problem

In hybrid GRASP with VND, where VND is applied as local search, the
starting solution is the output x of the GRASP construction procedure and
the pseudo-code of a generic VND local search is illustrated in Figure 12.
A first attempt in the direction of hybridizing GRASP with VNS has been
done by Martins et al. [50]. The construction phase of their hybrid heuristic
for the Steiner problem in graphs follows the greedy randomized strategy of
GRASP, while the local search phase makes use of two different neighborhood
structures as a VND strategy. Their heuristic was later improved by Ribeiro,
Uchoa, and Werneck [61], one of the key components of the new algorithm
being another strategy for the exploration of different neighborhoods. Ribeiro
and Souza [60] also combined GRASP with VND in a hybrid heuristic for
the degree-constrained minimum spanning tree problem. In the more recent
literature, Ribeiro and Vianna [64] and Andrade and Resende [7] proposed a
hybrid GRASP with VND for the phylogeny problem and for PBX telephone
migration scheduling problem, respectively.

5.5 GRASP and Iterated Local Search

Iterated Local Search (ILS) [49] is a multistart heuristic that at each iteration
k finds a locally optimal solution searched in the neighborhood of an initial
solution obtained by perturbation of the local optimum found by local search
at previous iteration k − 1.

The efficiency of ILS strongly depends on the perturbation (line 3) and ac-
ceptance criterion (line 5) rules. A “light” perturbation may cause local search
to lead back to the starting solution t, while a “strong” perturbation may cause
the search to resemble random multi-start. Usually, the acceptance criterion

94 P. Festa and M.G.C. Resende

procedure ils (x, f(·), history)
1 t :=LocalSearch(x, f(·)); xb := t;
2 while (stopping criterion not satisfied)→
3 s :=perturbation(t, history);
4 ŝ :=LocalSearch(s, f(·));
5 t :=AcceptanceCriterion(t, ŝ, history);
6 if (f(t) < f(xb)) then xb := t;
7 endif
8 endwhile
9 return (xb);
end ils

Fig. 13 ILS pseudo-code for a minimization problem

resembles SA, i.e. ŝ is accepted if it is an improving solution; otherwise, it is
accepted with some positive probability.

ILS can be applied to enhance the basic GRASP local search phase and
pseudo-code in Figure 13 shows how it can be used as a substitute for the
standard local search in a GRASP. The procedure LocalSearch can also be
the basic GRASP local search as defined in Figure 3.

Ribeiro and Urrutia [63] designed a hybrid GRASP with ILS for the mir-
rored traveling tournament problem, where the acceptance rule makes use of
a threshold parameter β, initialized to 0.001. Then, each time the best solu-
tion changes (line 6), it is reinitialized to the same value, while it is doubled
if the current solution does not chance after a fixed number of iterations.
Finally, a solution ŝ is accepted if f(ŝ) < (1 +β) · f(t) and the adopted stop-
ping criterion has been to allow at most 50 cost-deteriorating moves without
improvement in the current best solution.

5.6 GRASP and Very-Large Scale Neighborhood
Search

As for any local search procedure, to efficiently search in the neighborhood
of a solution, it is required that the neighborhood have a small size. Nev-
ertheless, the larger the neighborhood, the better the quality of the locally
optimal solution. Neighborhoods whose sizes grow exponentially as a func-
tion of problem dimension are called very large scale neighborhoods and they
necessarily require efficient search techniques to be explored.

Ahuja et al. [2] presented a survey of methods called very-large scale neigh-
borhood (VLSN) search. The following three classes of VLSN methods are
described:

1. variable-depth methods where exponentially large neighborhoods are
searched with heuristics;

Hybrid GRASP Heuristics 95

2. a VLSN method that uses network flow techniques to identify improving
neighborhood solutions;

3. a VLSN method that explores neighborhoods for NP-hard problems in-
duced by restrictions of the problems that are solved in polynomial time.

In particular, with respect to class 2, they define special neighborhood struc-
tures called multi-exchange neighborhoods. The search is based on the cyclic
transfer neighborhood structure that transforms a cost-reducing exchange
into a negative cost subset-disjoint cycle in an improving graph and then a
modified shortest path label-correcting algorithm is used to identify these
negative cycles.

Ahuja et al. in [3] present two generalizations of the best known neighbor-
hood structures for the capacitated minimum spanning tree problem. The
new neighborhood structures defined allow cyclic exchanges of nodes among
multiple subtrees simultaneously. To judge the efficacy of the neighborhoods,
local improvement and tabu search algorithms have been developed. Local
improvement uses a GRASP construction mechanism to generate repeated
starting solutions for local improvement.

5.7 Other Hybridizations

In the previous sections of this chapter, we have reviewed some important
hybridizations of GRASP, mostly involving the GRASP local search phase.
More recently, several further hybridizations have been proposed. They in-
clude the use of GRASP in Branch & Bound framework and the combination
of GRASP with data mining techniques.

GRASP and branch & bound

In 2004, Rocha et al. [66] proposed a hybridization of GRASP as an upper
bound for a branch and bound (B&B) procedure to solve a scheduling prob-
lem with non-related parallel machines and sequence-dependent setup times.
In 2007, Fernandes and Lourenço [23] proposed a hybrid GRASP and B&B
for the job-shop scheduling problem. The B&B method is used within GRASP
to solve subproblems of one machine scheduling subproblem obtained from
the incumbent solution.

GRASP and data mining

In 2006, Jourdan et al. [41] presented a short survey enumerating opportuni-
ties to combine metaheuristics and data mining (DM) techniques. By using
methods and theoretical results from statistics, machine learning, and pat-
tern recognition, DM automatically explores large volumes of data (instances
described according to several attributes) with the objective of discovering
patterns. In fact, DM is also known as Knowledge-Discovery in Databases.

96 P. Festa and M.G.C. Resende

In GRASP with data mining (DM-GRASP), after executing a significant
number of GRASP iterations, the data mining process extracts patterns from
an elite set of solutions which will guide the GRASP construction proce-
dure in the subsequent iterations. In fact, instead of building the randomized
greedy solution from scratch, the construction procedure starts from a solu-
tion pattern (a partial solution) that was previously mined. Computational
experiments have shown that the hybridization has benefited in both running
time and quality of the solutions found.

DM-GRASP has been introduced in 2005 by Santos et al [69] for the
maximum diversity problem. In 2006, Ribeiro et al. [65] also proposed a
hybrid GRASP with DM and tested it the set packing problem as a case study
and Santos et al. [68] solved a real world problem, called server replication
for reliable multicast.

Very recently, s survey of applications of DM-GRASP has been published
by Santos et al. [67].

6 Concluding Remarks

Simulated annealing, tabu search, ant colony, genetic algorithms, scatter
search, path-relinking, GRASP, iterated local search, and variable neighbor-
hood search are often listed as examples of “classical” metaheuristics. In the
last few years, several different algorithms have been designed and proposed
in the literature that do not purely apply the basic ideas of one single “clas-
sical” metaheuristic, but they combine various algorithmic ideas of different
metaheuristic frameworks. The design and implementation of hybrid meta-
heuristics are emerging as one of the most exciting field.

In this chapter, we have surveyed hybridizations of GRASP and other
metaheuristics. Among these, we highlight: path-relinking, tabu search, sim-
ulated annealing, genetic algorithms and population-based heuristics, vari-
able neighborhood search and variable neighborhood descent, iterated local
search, very large scale neighborhood local search, and very recent hybrids,
such as GRASP with data mining and GRASP with branch and bound.

References

1. Abdinnour-Helm, S., Hadley, S.W.: Tabu search based heuristics for multi-floor
facility layout. International J. of Production Research 38, 365–383 (2000)

2. Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.P.: A survey of very large-scale
neighborhood search techniques. Discrete Appl. Math. 123, 75–102 (2002)

3. Ahuja, R.K., Orlin, J.B., Sharma, D.: Multi-exchange neighborhood structures
for the capacitated minimum spanning tree problem. Mathematical Program-
ming 91, 71–97 (2001)

4. Ahuja, R.K., Orlin, J.B., Tiwari, A.: A greedy genetic algorithm for the
quadratic assignment problem. Computers and Operations Research 27, 917–
934 (2000)

Hybrid GRASP Heuristics 97

5. Aiex, R., Resende, M.G.C., Pardalos, P.M., Toraldo, G.: GRASP with path
relinking for three-index assignment. INFORMS J. on Computing 17(2), 224–
247 (2005)

6. Alvarez, A.M., Gonzalez-Velarde, J.L., De Alba, K.: GRASP embedded scat-
ter search for the multicommodity capacitated network design problem. J. of
Heuristics 11, 233–257 (2005)

7. Andrade, D.V., Resende, M.G.C.: A GRASP for PBX telephone migration
scheduling. In: Eighth INFORMS Telecommunication Conference (April 2006)

8. Baum, E.B.: Iterated descent: A better algorithm for local search in combinato-
rial optimization problems. Technical report, California Institute of Technology
(1986)

9. Beltrán, J.D., Calderón, J.E., Cabrera, R.J., Pérez, J.A.M., Moreno-Vega, J.M.:
GRASP/VNS hybrid for the strip packing problem. In: Proceedings of Hybrid
Metaheuristics (HM 2004), pp. 79–90 (2004)

10. Binato, S., Hery, W.J., Loewenstern, D., Resende, M.G.C.: A greedy random-
ized adaptive search procedure for job shop scheduling. In: Ribeiro, C.C.,
Hansen, P. (eds.) Essays and surveys on metaheuristics, pp. 58–79. Kluwer
Academic Publishers, Dordrecht (2002)

11. Binato, S., Oliveira, G.C.: A Reactive GRASP for transmission network ex-
pansion planning. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and surveys on
metaheuristics, pp. 81–100. Kluwer Academic Publishers, Dordrecht (2002)

12. Bresina, J.L.: Heuristic-biased stochastic sampling. In: Proceedings of the Thir-
teenth National Conference on Artificial Intelligence (AAAI 1996), pp. 271–278
(1996)

13. Canuto, S.A., Resende, M.G.C., Ribeiro, C.C.: Local search with perturbations
for the prize-collecting Steiner tree problem in graphs. Networks 38, 50–58
(2001)

14. Canuto, S.A., Resende, M.G.C., Ribeiro, C.C.: Local search with perturbations
for the prize-collecting Steiner tree problem in graphs. Networks 38, 50–58
(2001)

15. Charon, I., Hudry, O.: The noising method: A new method for combinatorial
optimization. Operations Research Letters 14, 133–137 (1993)

16. Charon, I., Hudry, O.: The noising methods: A survey. In: Ribeiro, C.C.,
Hansen, P. (eds.) Essays and surveys on metaheuristics, pp. 245–261. Kluwer
Academic Publishers, Dordrecht (2002)

17. de la Peña, M.G.B.: Heuristics and metaheuristics approaches used to solve
the rural postman problem: A comparative case study. In: Proceedings of the
Fourth International ICSC Symposium on Engineering of Intelligent Systems
(EIS 2004) (2004)

18. Delmaire, H., Dı́az, J.A., Fernández, E., Ortega, M.: Reactive GRASP and tabu
search based heuristics for the single source capacitated plant location problem.
INFOR 37, 194–225 (1999)

19. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge
(2004)

20. Duarte, A., Mart́ı, R.: Tabu search and GRASP for the maximum diversity
problem. European J. of Operational Research 178(1), 71–84 (2007)

21. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters 8, 67–71 (1989)

22. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures.
J. of Global Optimization 6, 109–133 (1995)

98 P. Festa and M.G.C. Resende

23. Fernandes, S., Lourenço, H.R.: A GRASP and Branch-and-Bound Metaheuris-
tic for the Job-Shop Scheduling. In: Cotta, C., van Hemert, J. (eds.) EvoCOP
2007. LNCS, vol. 4446, pp. 60–71. Springer, Heidelberg (2007)

24. Festa, P., Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C.: GRASP with path-
relinking for the weighted MAXSAT problem. ACM J. of Experimental Algo-
rithmics 11, 1–16 (2006)

25. Festa, P., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: Randomized heuris-
tics for the MAX-CUT problem. Optimization Methods and Software 7, 1033–
1058 (2002)

26. Festa, P., Resende, M.G.C.: GRASP: An annotated bibliography. In: Ribeiro,
C.C., Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 325–367.
Kluwer Academic Publishers, Dordrecht (2002)

27. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the the-
ory of NP-completeness. W.H. Freeman and Company, New York (1979)

28. Glover, F.: Tabu search – Part I. ORSA J. on Computing 1, 190–206 (1989)
29. Glover, F.: Tabu search – Part II. ORSA J. on Computing 2, 4–32 (1990)
30. Glover, F.: Tabu search and adaptive memory programing – Advances, appli-

cations and challenges. In: Barr, R.S., Helgason, R.V., Kennington, J.L. (eds.)
Interfaces in Computer Science and Operations Research, pp. 1–75. Kluwer,
Dordrecht (1996)

31. Glover, F.: Multi-start and strategic oscillation methods – Principles to exploit
adaptive memory. In: Laguna, M., Gonzáles-Velarde, J.L. (eds.) Computing
Tools for Modeling, Optimization and Simulation: Interfaces in Computer Sci-
ence and Operations Research, pp. 1–24. Kluwer, Dordrecht (2000)

32. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht
(1997)

33. Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Dordrecht
(1997)

34. Glover, F., Laguna, M., Mart́ı, R.: Fundamentals of scatter search and path
relinking. Control and Cybernetics 39, 653–684 (2000)

35. Glover, F., Laguna, M., Mart́ı, R.: Scatter Search. In: Ghosh, A., Tsutsui, S.
(eds.) Advances in Evolutionary Computation: Theory and Applications, pp.
519–537. Kluwer Academic Publishers, Dordrecht (2003)

36. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learn-
ing. Addison-Wesley, Reading (1989)

37. Hansen, P., Mladenović, N.: An introduction to variable neighborhood search.
In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-heuristics,
Advances and trends in local search paradigms for optimization, pp. 433–458.
Kluwer Academic Publishers, Dordrecht (1998)

38. Hansen, P., Mladenović, N.: Developments of variable neighborhood search.
In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp.
415–439. Kluwer Academic Publishers, Dordrecht (2002)

39. Hart, J.P., Shogan, A.W.: Semi-greedy heuristics: An empirical study. Opera-
tions Research Letters 6, 107–114 (1987)

40. Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. of Michigan
Press, Ann Arbor (1975)

41. Jourdan, L., Dhaenens, C., Talbi, E.-G.: Using datamining techniques to help
metaheuristics: A short survey. In: Almeida, F., Blesa Aguilera, M.J., Blum,
C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A., Sampels, M. (eds.) HM 2006.
LNCS, vol. 4030, pp. 57–69. Springer, Heidelberg (2006)

Hybrid GRASP Heuristics 99

42. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning prob-
lems. Bell System Technical Journal 49(2), 291–307 (1970)

43. Kirkpatrick, S.: Optimization by simulated annealing: Quantitative studies. J.
of Statistical Physics 34, 975–986 (1984)

44. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Genetic Programming
III, Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers,
San Francisco (1999)

45. Laguna, M.: Scatter Search. In: Pardalos, P.M., Resende, M.G.C. (eds.) Hand-
book of Applied Optimization, pp. 183–193. Oxford University Press, Oxford
(2002)

46. Laguna, M., Mart́ı, R.: GRASP and path relinking for 2-layer straight line
crossing minimization. INFORMS J. on Computing 11, 44–52 (1999)

47. Laguna, M., Mart́ı, R.: Scatter Search: Methodology and Implementations in
C. Kluwer, Dordrecht (2003)

48. Lim, A., Wang, F.: A smoothed dynamic tabu search embedded GRASP for
m-VRPTW. In: Proceedings of ICTAI 2004, pp. 704–708 (2004)

49. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover,
F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer
Academic Publishers, Dordrecht (2003)

50. Martins, S.L., Resende, M.G.C., Ribeiro, C.C., Pardalos, P.: A parallel GRASP
for the Steiner tree problem in graphs using a hybrid local search strategy.
Journal of Global Optimization 17, 267–283 (2000)

51. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers and Op-
erations Research 24, 1097–1100 (1997)

52. Osman, I.H., Laporte, G.: Metaheuristics: A bibliography. Annals of Operations
Research 63, 513 (1996)

53. Prais, M., Ribeiro, C.C.: Reactive GRASP: An application to a matrix decom-
position problem in TDMA traffic assignment. INFORMS J. on Computing 12,
164–176 (2000)

54. Resende, M.G.C., Mart́ı, R., Gallego, M., Duarte, A.: GRASP and path relink-
ing for the max-min diversity problem. Technical report, AT&T Labs Research,
Florham Park, NJ–USA (2008)

55. Resende, M.G.C., Ribeiro, C.C.: A GRASP with path-relinking for private
virtual circuit routing. Networks 41, 104–114 (2003)

56. Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search proce-
dures. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp.
219–249. Kluwer Academic Publishers, Dordrecht (2003)

57. Resende, M.G.C., Ribeiro, C.C.: A hybrid heuristic for the p-median problem.
J. of Heuristics 10, 59–88 (2004)

58. Resende, M.G.C., Ribeiro, C.C.: GRASP with path-relinking: Recent advances
and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics:
Progress as Real Problem Solvers, pp. 29–63. Springer, Heidelberg (2005)

59. Resende, M.G.C., Werneck, R.F.: A hybrid multistart heuristic for the unca-
pacitated facility location problem. European J. of Operational Research 174,
54–68 (2006)

60. Ribeiro, C.C., Souza, M.C.: Variable neighborhood search for the degree con-
strained minimum spanning tree problem. Discrete Applied Mathematics 118,
43–54 (2002)

61. Ribeiro, C.C., Uchoa, E., Werneck, R.F.: A hybrid GRASP with perturbations
for the Steiner problem in graphs. INFORMS Journal on Computing 14, 228–
246 (2002)

100 P. Festa and M.G.C. Resende

62. Ribeiro, C.C., Uchoa, E., Werneck, R.F.: A hybrid GRASP with perturbations
for the Steiner problem in graphs. INFORMS J. on Computing 14, 228–246
(2002)

63. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament
problem. European J. of Operational Research 179, 775–787 (2007)

64. Ribeiro, C.C., Vianna, D.S.: A GRASP/VND heuristic for the phylogeny prob-
lem using a new neighborhood structure. Intl. Trans. in Op. Res. 12, 325–338
(2005)

65. Ribeiro, M.H., Plastino, A., Martins, S.L.: Hybridization of GRASP meta-
heuristic with data mining techniques. J. of Mathematical Modelling and Al-
gorithms 5, 23–41 (2006)

66. Rocha, P.L., Ravetti, M.G., Mateus, G.R.: The metaheuristic GRASP as an
upper bound for a branch and bound algorithm in a scheduling problem with
non-related parallel machines and sequence-dependent setup times. In: Pro-
ceedings of the 4th EU/ME Workshop: Design and Evaluation of Advanced
Hybrid Meta-Heuristics, vol. 1, pp. 62–67 (2004)

67. Santos, L.F., Martins, S.L., Plastino, A.: Applications of the DM-GRASP
heuristic: A survey. In: International Transactions on Operational Research
(2008)

68. Santos, L.F., Milagres, R., Albuquerque, C.V., Martins, S., Plastino, A.: A
hybrid GRASP with data mining for efficient server replication for reliable
multicast. In: 49th Annual IEEE GLOBECOM Technical Conference (2006)

69. Santos, L.F., Ribeiro, M.H., Plastino, A., Martins, S.L.: A hybrid GRASP with
data mining for the maximum diversity problem. In: Blesa, M.J., Blum, C.,
Roli, A., Sampels, M. (eds.) HM 2005. LNCS, vol. 3636, pp. 116–127. Springer,
Heidelberg (2005)

70. Sosnowska, D.: Optimization of a simplified fleet assignment problem with
metaheuristics: Simulated annealing and GRASP. In: Pardalos, P.M. (ed.) Ap-
proximation and complexity in numerical optimization. Kluwer Academic Pub-
lishers, Dordrecht (2000)

71. Souza, M.C., Duhamel, C., Ribeiro, C.C.: A GRASP heuristic for the capaci-
tated minimum spanning tree problem using a memory-based local search strat-
egy. In: Resende, M.G.C., Sousa, J. (eds.) Metaheuristics: Computer Decision-
Making, pp. 627–658. Kluwer Academic Publishers, Dordrecht (2004)

72. Voss, S., Martello, S., Osman, I.H., Roucairo, C. (eds.): Meta-heuristics: And-
vances and trends in local search paradigms for optimization. Kluwer Academic
Publishers, Dordrecht (1999)

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 101–128.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Particle Swarm Optimization: Performance
Tuning and Empirical Analysis

Millie Pant, Radha Thangaraj, and Ajith Abraham*

Abstract. This chapter presents some of the recent modified variants of Particle
Swarm Optimization (PSO). The main focus is on the design and implementation
of the modified PSO based on diversity, Mutation, Crossover and efficient
Initialization using different distributions and Low-discrepancy sequences. These
algorithms are applied to various benchmark problems including unimodal,
multimodal, noisy functions and real life applications in engineering fields. The
effectiveness of the algorithms is discussed.

1 Introduction

The concept of PSO was first suggested by Kennedy and Eberhart [1]. Since its
development is 1995, PSO has emerged as one of the most promising optimizing
technique for solving global optimization problems. Its mechanism is inspired by
the social and cooperative behavior displayed by various species like birds, fish etc
including human beings. The PSO system consists of a population (swarm) of
potential solutions called particles. These particles move through the search domain
with a specified velocity in search of optimal solution. Each particle maintains a
memory which helps it in keeping the track of its previous best position. The
positions of the particles are distinguished as personal best and global best. PSO
has been applied to solve a variety of optimization problems and its performance is
compared with other popular stochastic search techniques like Genetic algorithms,
Differential Evolution, Simulated Annealing etc. [2], [3], [4]. Although PSO has
shown a very good performance in solving many test as well as real life
optimization problems, it suffers from the problem of premature convergence like
most of the stochastic search techniques, particularly in case of multimodal
optimization problems. The curse of premature convergence greatly affects the
performance of algorithm and many times lead to a sub optimal solution [5].
Aiming at this shortcoming of PSO algorithms, many variations have been

Millie Pant and Radha Thangaraj
Department of Paper Technology, IIT Roorkee, India
email: millifpt@iitr.ernet.in, t.radha@ieee.org

Ajith Abraham
Q2S, Norwegian University of Science and Technology, Norway
email: ajith.abraham@ieee.org

102 M. Pant et al.

developed to improve its performance. Some of the interesting modifications that
helped in improving the performance of PSO include introduction of inertia weight
and its adjustment for better control of exploration and exploitation capacities of
the swarm [6] [7], introduction of constriction factor to control the magnitudes of
velocities [8], impacts of various neighborhood topologies on the swarm [9],
extension of PSO via genetic programming [10], use of various mutation operators
into PSO [11] – [13]. In the present study ten recent versions of PSO are
considered. Out of the ten chosen versions, five versions are based on the efficient
initialization of swam, three versions are diversity guided and the remaining
versions makes use of cross-over operator to improve the performance of PSO.

The present article has seven sections including the introduction. In the next
section, a brief description of the basic PSO is given. Section 3 is divided into
three subsections; in 3.1, PSO versions with different initialization schemes are
described; in section 3.2 three diversity guided PSO are given and in Section 3.3
PSO with crossover operator is described. Section 4 is devoted to numerical
problems consisting of ten popular bench mark problems and two real life
problems. In Section 5 and Section 6, describe the experimental settings and
numerical results respectively. The chapter finally concludes with Section 7.

2 Particle Swarm Optimization

The working of the Basic Particle Swarm Optimization (BPSO) may be described
as: For a D-dimensional search space the position of the ith particle is represented
as Xi = (xi1, xi2, … xiD). Each particle maintains a memory of its previous best
position Pbesti = (pi1, pi2… piD). The best one among all the particles in the
population is represented as Pgbest = (pg1, pg2… pgD). The velocity of each particle
is represented as Vi = (vi1, vi2, … viD). In each iteration, the P vector of the particle
with best fitness in the local neighborhood, designated g, and the P vector of the
current particle are combined to adjust the velocity along each dimension and a
new position of the particle is determined using that velocity. The two basic
equations which govern the working of PSO are that of velocity vector and
position vector given by:

)()(2211 idgdidididid xprcxprcwvv −+−+= (1)

 ididid vxx += (2)

The first part of equation (1) represents the inertia of the previous velocity, the
second part is the cognition part and it tells us about the personal experience of the
particle, the third part represents the cooperation among particles and is therefore
named as the social component. Acceleration constants c1, c2 and inertia weight w
are the predefined by the user and r1, r2 are the uniformly generated random
numbers in the range of [0, 1].

3 Modified Version of Particle Swarm Optimization

Empirical studies have shown that the basic PSO has a tendency of premature
convergence [518], [559], [602], [606], [649] and the main reason for this

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 103

behavior is due to the loss of diversity in successive iterations. It has been
observed that the presence of a suitable operator may help in improving the
performance of PSO quite significantly. This chapter concentrates on two things;
first is on the efficient generation of population using different initialization
schemes and second is the use of diversity to guide the swarm using different
operations like repulsion, mutation and crossover.

3.1 Efficient Initialization Particle Swarm Optimization

PSO (and other search techniques, which depend on the generation of random
numbers) works very well for problems having a small search area (i.e. a search
area having low dimension), but as the dimension of search space is increased, the
performance deteriorates and many times converge prematurely giving a
suboptimal result [5]. This problem becomes more persistent in case of multimodal
functions having several local and global optima. One of the reasons for the poor
performance of a PSO may be attributed to the dispersion of initial population
points in the search space i.e. to say, if the swarm population does not cover the
search area efficiently, it may not be able to locate the potent solution points,
thereby missing the global optimum [14]. This difficulty may be minimized to a
great extent by selecting a well-organized distribution of random numbers.

This section analyzes the behavior of some simple variations of PSO where
only the initial distribution of random numbers is changed. Initially in the
algorithms the initial uniform distribution is replaced by other probability
distributions like exponential, lognormal and Gaussian distributions. It is
interesting to see that even a small change in the initial distribution produces a
visible change in the numerical results. After that more specialized algorithms are
designed which use low discrepancy sequences for the generation of random
numbers. A brief description of the algorithms is given in the subsequent sections.

The most common practice of generating random numbers is the one using an
inbuilt subroutine (available in most of the programming languages), which uses a
uniform probability distribution to generate random numbers. It has been shown
that uniformly distributed particles may not always be good for empirical studies
of different algorithms. The uniform distribution sometimes gives a wrong
impression of the relative performance of algorithms as shown by Gehlhaar and
Fogel [15].

3.1.1 Initializing the Swarm Using Different Probability Distributions [16]

Different Probability Distributions like Exponential and Gaussian have already
been used for the fine tuning of PSO parameters [17], [18]. But for initializing the
swarm most of the approaches use uniformly distributed random numbers. Pant et
al. [16] investigated the possibility of having a different probability distribution
(Gaussian, Exponential, Lognormal) for the generation of random number other
than the uniform distribution. Empirical results showed that distributions other
than uniform distribution are equally competent and in most of the cases are better
than uniform distribution. The algorithms GPSO, EPSO and LNPSO use

104 M. Pant et al.

Gaussian, exponential and lognormal distributions respectively. The algorithms
follow the steps of BPSO given in Section 2 except for the fact that they use
mentioned distributions in place of uniform distributions.

3.1.2 Initializing the Swarm Using Low-Discrepancy Sequences [19]

Theoretically, it has been proved that low discrepancy sequences are much better
than the pseudo random sequences because they are able to cover the search space
more evenly in comparison to pseudo random sequences (please see Figures 1(a)
and 1(b)). Some previous instances where low discrepancy sequences have been
used to improve the performance of optimization algorithms include [20] – [24].
In [22] – [24] authors have made use of Sobol and Faure sequences. Similarly,
Nguyen et al. [21] have shown a detailed comparison of Halton Faure and Sobol
sequences for initializing the swarm. In the previous studies, it has already been
shown that the performance of Sobol sequence dominates the performance of
Halton and Faure sequences. The performance of PSO using Van der Corput
sequence called VCPSO along with PSO with Sobol sequence called SOPSO
(which is said be superior than other low discrepancy sequences according to the
previous studies) for swarm initialization is scrutinized and tested them for solving
global optimization problems in large dimension search spaces by Pant et al. [19].

 (a) (b)

Fig. 1(a) Sample points generated using a pseudo random sequence. 1(b) Sample points
generated using a quasi random sequence

Brief description of the sequences used in VCPSO and SOPSO:

Van der Corput Sequence
A Van der Corput sequence is a low-discrepancy sequence over the unit interval
first published in 1935 by the Dutch mathematician J. G. Van der Corput. It is a
digital (0, 1)-sequence, which exists for all bases b ≥ 2. It is defined by the radical
inverse function φb : N0→[0, 1). If n ∈ N0 has the b-adic expansion

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 105

 ∑
=

−=
T

j

j
jban

0

1 (3)

with aj ∈ {0,…, b – 1}, and ⎣ ⎦nT blog= then φb is defined as

 ∑
=

=
T

j
j

j
b

b

a
n

0
)(ϕ (4)

In other words, the jth b-adic digit of n becomes the jth b-adic digit of φb(n)
behind the decimal point. The Van der Corput sequence in base b is then defined
as (φb(n))n ≥ 0.

The elements of the Van der Corput sequence (in any base) form a dense set in
the unit interval: for any real number in [0, 1] there exists a sub sequence of the
Van der Corput sequence that converges towards that number. They are also
uniformly distributed over the unit interval.

Sobol Sequence
The construction of the Sobol sequence [25] uses linear recurrence relations over
the finite field, F2, where F2 = {0, 1}. Let the binary expansion of the non-

negative integer n be given by 11
2

0
1 2.....22 −+++= w

wnnnn . Then the nth

element of the jth dimension of the Sobol Sequence,)(j
nX , can be generated by:

)()(
22

)(
11

)(...... j
ww

jjj
n vnvnvnX ⊕⊕⊕=

where)(j
iv is a binary fraction called the ith direction number in the jth dimension.

These direction numbers are generated by the following q-term recurrence
relation:

)2/(...)()()(
1

)(
22

)(
11

)(qj
qi

j
qi

j
qiq

j
i

j
i

j
i vvvavavav −−+−−− ⊕⊕⊕⊕⊕= i > q, and the bit, ia ,

comes from the coefficients of a degree-q primitive polynomial over F2.

VC-PSO and SO-PSO Algorithm
It has been shown that uniformly distributed particles may not always be good for
empirical studies of different algorithms. The uniform distribution sometimes
gives a wrong impression of the relative performance of algorithms as shown by
Gehlhaar and Fogel [15].

The quasi random sequences on the other hand generates a different set of
random numbers in each iteration, thus providing a better diversified population of
solutions and thereby increasing the probability of getting a better solution.

Keeping this fact in mind we decided to use the Vander Corput sequence and
Sobol sequence for generating the swarm. The swarm population follows equation
(1) and (2) for updating the velocity and position of the swarm. However for the
generation of the initial swarm Van der Corput Sequence and Sobol Sequences
have been used for VC-PSO and SO-PSO respectively.

106 M. Pant et al.

3.2 Diversity Guided Particle Swarm Optimization

Diversity may be defined as the dispersion of potential candidate solutions in the
search space. Interested readers may please refer to [26] for different formulae
used for calculating diversity. One of the drawbacks of most of the population
based search techniques is that they work on the principle of contracting the
search domain towards the global optima. Due to this reason after a certain
number of iterations all the points get accumulated to a region which may not even
be a region of local optima, thereby giving suboptimal solutions [5]. Thus without
a suitable diversity enhancing mechanism it is very difficult for an optimization
algorithm to reach towards the true solution. The problem of premature
convergence becomes more persistent in case of highly multimodal functions like
Rastringin and Griewank having several local minima. This section presents three
algorithms Attraction Repulsion PSO (ATREPSO), Gaussian Mutation PSO
(GMPSO) and Quadratic Interpolation PSO (QIPSO) which use different diversity
enhancing mechanisms to improve the performance of the swarm. All the
algorithms described in the given sub sections use diversity threshold values dlow

and dhigh to guide the movement of the swarm. The threshold values are predefined
by the user. In ATREPSO, the swarm particles follow the mechanism of repulsion
so that instead of converging towards a particular location the particles are
diverged from that location. In case of GMPSO and QIPSO evolutionary operators
like mutation and crossover are induced in the swarm to perturb the population.
These algorithms are described in the following subsections.

3.2.1 Attraction Repulsion Particle Swarm Optimization Algorithm [27]

The Attraction Repulsion Particle Swarm Optimization Algorithm (ATREPSO) of
Pant et al. [27] is a simple extension of the Attractive and Repulsive PSO
(ARPSO) proposed by Vesterstorm [28], where a third phase called in between
phase or the phase of positive conflict is added In ATREPSO, the swarm particles
switches alternately between the three phases of attraction, repulsion and an ‘in
between’ phase which consists of a combination of attraction and repulsion. The
three phases are defined as:

Attraction phase (when the particles are attracted towards the global optimal)

)()(2211 idgdidididid xprcxprcwvv −+−+= (5)

Repulsion phase (particles are repelled from the optimal position)

)()(2211 idgdidididid xprcxprcwvv −−−−= (6)

In-between phase (neither total attraction nor total repulsion)

)()(2211 idgdidididid xprcxprcwvv −−−+= (7)

In the in-between phase, the individual particle is attracted by its own previous
best position pid and is repelled by the best known particle position pgd. In this way
there is neither total attraction nor total repulsion but a balance between the two.

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 107

The swarm particles are guided by the following rule

⎪⎩

⎪
⎨
⎧

<−−−−
<<−−−+

>−+−+
=

lowidgdididid

highlowidgdididid

highidgdididid

id

ddivxprcxprcwv
ddivdxprcxprcwv

ddivxprcxprcwv
v

),()(
),()(
),()(

2211

2211

2211
 (8)

3.2.2 Gaussian Mutation Particle Swarm Optimization Algorithm [29]

The concept of mutation is quite common to Evolutionary Programming and
Genetic Algorithms. The idea behind mutation is to increase of diversity of the
population. There are several instances in PSO also where mutation is introduced
in the swarm. Some mutation operators that have been applied to PSO include
Gaussian [244], Cauchy [655], [656], Nonlinear [589], Linear [589] etc. The
Gaussian Mutation Particle Swarm Optimization (GMPSO) algorithm given in
this section is different from the above mentioned algorithms as it uses the
threshold values to decide the activation of mutation operator. The concept is
similar to that of ATREPSO i.e. to use diversity to decide the movement of the
swarm. The algorithm uses the general equations (1) and (2) for updating the
velocity and position vectors. At the same time a track of diversity is also kept
which starts decreasing slowly and gradually after a few iterations because of the
fast information flow between the swam particles leading to clustering of particles.
It is at this stage that the Gaussian mutation operator given as Xt+1[i] = Xt[i] + η*
Rand(), where Rand is a random number generated by Gaussian distribution, is
activated with the hope to increase the diversity of the swarm population. Here η
is a scaling parameter.

3.2.3 Quadratic Interpolation Particle Swarm Optimization Algorithm [30]

As mentioned in the previous section, there are several instances available in
literature on the use of mutation operator however there are not much references on
the use of reproduction operator. One of the earlier references on the use of
reproduction operator can be found in Clerc [101]. The Quadratic Interpolation
Particle Swarm Optimization (QIPSO) algorithm described in this chapter uses
concept of reproduction. It uses diversity as a measure to guide the swarm. When
the diversity becomes less than dlow, then the quadratic crossover operator is
activated to generate a new potential candidate solution. The process is repeated
iteratively till the diversity reaches the specified threshold dhigh. The quadratic
crossover operator used in this paper is a nonlinear crossover operator which makes
use of three particles of the swarm to produce a particle which lies at the point of
minima of the quadratic curve passing through the three selected particles.

It uses a = Xmin, (best particle with minimum function value) and two other
randomly selected particles {b, c} (a, b and c are different particles) from the

swarm to determine the coordinates of the new particle)~,.......,~,~(~ 21 ni xxxx = , where

)(*)()(*)()(*)(

)(*)()(*)()(*)(

2

1~
222222

cfbabfacafcb

cfbabfacafcb
x

iiiiii

iiiiii
i

−+−+−
−+−+−

= (9)

108 M. Pant et al.

The nonlinear nature of the quadratic crossover operator used in this work helps in
finding a better solution in the search space.

3.3 Crossover Based Particle Swarm Optimization

In this section two more modifications applied to the QIPSO given in Section 3.2
are described.

3.3.1 QIPSO-1 [31] and QIPSO-2 [32] Algorithms

The basic idea of QIPSO-1 and QIPSO-2 are modified versions of QIPSO
algorithm given in section 3.2, which differ from each other in selection criterion
of the individual. In QIPSO-1, the new point generated by the quadratic
interpolation given by equation (9) is accepted in the swarm only if it is better than
the worst particle of the swarm, where as in QIPSO-2, the particle is accepted if it
is better than the global best particle.

4 Numerical Problems

One of the shortcomings of population based search techniques is that there are
not many concrete proofs available to establish their authority for solving a wide
range of problems. Therefore the researchers often depend on empirical studies to
scrutinize the behavior of an algorithm. The numerical problems may be divided
into two classes; benchmark problems and real life problems. For the present
article ten standard benchmark functions and two real life problems described in
the following subsections are taken.

4.1 Benchmark Problems

A collection of ten benchmark problems given in Table 1 is taken for the present
study to analyze the behavior of algorithms taken in this study. These problems may
not be called exhaustive but they provide a good launch pad for testing the
credibility of an optimization algorithm. The first eight problems are scalable i.e. the
problems can be tested for any number of variables. However for the present study
medium sized problems of dimension 20 are taken. The three dimensional graphs of
the test functions are depicted in Figures 2(a) to (i).

The special properties of the benchmark functions taken in this study may be
described as:

 The first function f1, commonly known as Rastringin function, is a highly
multimodal function where the degree of multimodality increases with
the increase in the dimension of the problem.

 The second function f2, also known as spherical function is a continuous,
strictly convex and unimodal function and usually do not pose much
difficulty for an optimization algorithm.

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 109

 Griewank function is the third function. It is highly multimodal function
having several local minima.

 The search space of the fourth function is dominated by a large gradual
slope. Despite the apparent simplicity of the problem it is considered
difficult for search algorithms because of its extremely large search space
combined with relatively small global optima.

 f5 is a noisy function where a uniformly distributed random noise is
added to the objective function. Due to the presence of noise the
objective function keeps changing from time to time and it becomes a
challenge for an optimization algorithm to locate the optimum.

 Functions f6 to f8 are again multimodal functions having several optima.
Such functions provide a suitable platform for testing the credibility of an
optimization algorithm.

 Function f9 and f10 are two dimensional functions. Function f10 is
although simple in appearance but it an interesting and challenging
function having 786 local minima and 18 global minima.

Table 1 Numerical Benchmark Problems [3]

Name of
function Function Definition Range Minimu

m Value
Rastrigin
Function)10)2cos(10()(

1

2
1 +∑ −=

=
i

n

i
i xxxf π [-

5.12,5.12]
0

Spherical
Function

∑=
=

n

i
ixxf

1

2
2)([-

5.12,5.12]
0

Griewank
Function

1)
1

cos(
4000

1
)(

1

0

1

0

2
3 +∑

+
+∑=

−

=

−

=

n

i

i
n

i
i

i

x
xxf [-600,600] 0

Rosenbrock
Function

21

0

22
14)1()(100)(−+∑ −=

−

=
+ i

n

i
ii xxxxf [-30,30] 0

Noisy
Function ∑ ++=

−

=

1

0

4
5]1,0[))1(()(

n

i
i randxixf [-

1.28,1.28]
0

Schewefel
Function)||sin()(

1
6 ∑−=

=

n

i
ii xxxf [-500,500] -8329.658

Ackley
Function)

1
2.0exp(2020)(

1

2
7 ∑−−+=

=

n

i
ix

n
exf

∑−
=

n

i
ix

n 1
))2cos(

1
exp(π

[-32,32] 0

Sine
Function

mi
n

i
i

x
ixxf 2

2

1
8)))(sin(sin()(

π
∑
=

−= , 10=m
[-π,π] ---

Himmelblau
Function 1

22
21

22
129)7()11()(xxxxxxf +−++−+= [-5,5] -3.78396

Shubert
Function

∑∑
==

++++=
5

1
2

5

1
110))1cos(())1cos(()(

jj
jxjjjxjjxf

[-10,10] -186.7309

110 M. Pant et al.

 (a) Function f1 (b) Function f2

 (c) Function f3 (d) Function f4

 (e) Function f6 (f) Function f7

Fig. 2 Three Dimensional graphs of benchmark problems

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 111

 (g) Function f8 (h) Function f9

 (i) Function f10

Fig. 2 (continued)

4.2 Real Life Problems

Two real life engineering design problems are considered to depict the
effectiveness of the algorithms discussed in the present article. These are nonlinear
problems and both the problems are common in the field of electrical engineering.
Mathematical model of the problems are given as:

4.2.1 Design of a Gear Train [33]

The first problem is to optimize the gear ratio for the compound gear train. This
problem shown in Figure 3 was introduced by Sandgren [34]. It is to be designed
such that the gear ratio is as close as possible to 1/6.931. For each gear the number
of teeth must be between 12 and 60. Since the number of teeth is to be an integer,
the variables must be integers. The mathematical model of gear train design is
given by,

Min
2

43

21

2

931.6

1

931.6

1

⎭
⎬
⎫

⎩
⎨
⎧

−=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=
xx

xx

TT

TT
f

fa

bd

112 M. Pant et al.

Subject to: 6012 ≤≤ ix 4,3,2,1=i

],,,[],,,[4321 fabd TTTTxxxx = , xi’s should be integers. Ta, Tb, Td, and Tf are the

number of teeth on gears A, B, D and F respectively.

Fig. 3 Compound Gear Train

4.2.2 Transistor Modeling [35]

The second problem is a transistor modeling problem. The mathematical model of
the transistor design is given by,

Minimize ∑
=

++=
4

1

222)()(
k

kkxf βαγ

Where
3

7315321 10({exp[)1(−×−−= xggxxxx kkkα 245
3

85 }1)]10 xggxg kkk +−×− −
3

73216421 10({exp[)1(−×−−−= xgggxxxx kkkkβ

kkk gxgxg 415
3

94 }1)]10 +−×+ − .

4231 xxxx −=γ

Subject to: 0≥ix

The numerical constants ikg are given by the matrix

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

4823.2113884.1348467.1115132.28

267.191461.111779.1013037.23

2153.209274.220677.102095.5

455.1703.0254.1369.0

982.0869.0752.0485.0

This objective function provides a least-sum-of-squares approach to the solution
of a set of nine simultaneous nonlinear equations, which arise in the context of
transistor modeling.

5 Experimental Settings

Like all Evolutionary Algorithms, PSO has a set of parameters which is to be
defined by the user. These parameters are population size, inertia weight,
acceleration constants etc. these parameters may be varied as per the complexity

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 113

of the problem. For example the population size in PSO related literature has been
suggested as 2n to 5n, where n is the number of decision variables or a fixed
population size. In the present study a fixed population size of thirty is taken for
all the problems, which gave reasonably good results. Similarly various examples
are available on the variations done in inertia weight and acceleration constants.
For the present study, which consist of small moderate size problems of dimension
2 and 20, the list parameters which gave sufficiently good results is summarized
below.

Common Parameters:
Population Size (NP): Number of variables 30
Inertia weight: Linearly decreasing (0.9 – 0.4)
Acceleration Constants: c1 = c2 = 2.0
Stopping Criterion: Maximum number of generations = 10000

Probability Distributions for initializing the swarm:
Gaussian distribution:

 2

2

2

1
)(

x

exf
−

=
π

 (10)

with mean 0 and standard deviation 1, i.e. N (0,1).
Exponential distribution:

 ,)/exp(
2

1
)(bax

b
xf −−= ,∞<≤∞− x (11)

with a, b > 0.It is evident that one can control the variance by changing the
parameters a and b.
Log-normal distribution:

π2

)(
2/)(ln 2

x

e
xf

x−

= (12)

with mean 0 and standard deviation 1.

Diversity Measurement

∑ ∑ −=
= =

s xn

i

n

j
jij

s

txtx
n

tSDiversity
1 1

2))()((
1

))((

Threshold values: dhigh = 0.25, dlow = 5.0*10-6

Repair method for points violating the boundary conditions

Hardware Settings
All algorithms are executed on a P-IV PC. Programming language used is DEV
C++

114 M. Pant et al.

Table 2 Comparison results of PSO, GPSO, EPSO, and LNPSO (Mean/diversity/standard
deviation)

Function PSO GPSO EPSO LNPSO

1f 22.339158
0.000115
15.932042

9.750543
0.364310
5.433786

12.173973
5.380822e-05
9.274301

23.507127
0.264117
15.304573

2f 1.167749e-45
2.426825e-23
5.222331e-46

1.114459e-45
3.168112e-23
4.763499e-46

1.167749e-45
3.909771e-23
5.222331e-46

1.114459e-45
2.778935e-23
4.763499e-46

3f 0.031646
0.000710
0.025322

0.004748
1.631303e-08
0.012666

0.011611
0.001509
0.019728

0.011009
0.000877
0.019186

4f 22.191725
2.551408
1.615544e+04

9.992837
2.527997
3.168912

8.995165
1.8737
3.959364

4.405738
2.904427
4.121244

5f 8.681602
0.340871
9.001534

0.636016
0.210458
0.296579

0.380297
0.237913
0.281234

0.537461
0.254176
0.285361

6f -6178.559896
0.072325
489.3329

-6354.119792
0.059937
483.654032

-6306.353646
0.026106
575.876696

-6341.4000
0.034486
568.655436

7f 3.483903e-18
3.651635e-18
8.359535e-19

3.136958e-18
5.736429e-13
8.596173e-19

3.368255e-18
3.903653e-18
8.596173e-19

3.368255e-18
3.846865e-18
8.596173e-19

8f -18.1594
1.17699
1.05105

-18.5162
0.603652
0.907089

-18.675
2.63785
1.06468

-18.3944
0.221685
1.02706

9f -3.331488
2.747822e-05
1.24329

-3.63828
1.71916e-009
0.346782

-3.63828
1.65462e-009
0.346782

-3.49261
1.4056e-009
0.445052

10f -186.730941
0.362224
1.424154e-05

-186.731
1.0056
3.3629e-014

-186.731
0.19356
3.11344e-014

-186.731
0.82143
2.00972e-014

6 Numerical Results

A comparative analysis of the algorithms described is given Tables 2 to 9. Each
algorithm was executed 100 times and the average fitness function value, diversity
and standard deviation are reported. Tables 2 to 5 give the numerical results for
benchmark problems whereas, the numerical results of real life problems are given
in Tables 6 to 9.

Table 2, gives the numerical results of PSO versions initialized with Gaussian,
exponential and lognormal probability distributions. From the numerical results
it can be seen that the PSO using Gaussian mutation, GPSO, gave the best

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 115

Table 3 Comparison results of PSO, VC-PSO and SO-PSO (Mean/diversity/standard
deviation)

Fun
ction

PSO VC-PSO SO-PSO Fun
ction

PSO VC-PSO SO-PSO

1f 22.3391
0.00011
15.9320

9.99929
1.00441
4.08386

8.95459
0.319194
2.65114

6f -6178.559
0.072325
4.893e+02

-6503.05
3.469e-06
477.252

-6252.51
2.478e-06
472.683

2f 1.16e-45
2.42e-23
5.22e-46

1.17e-108
7.15e-054
4.36e-108

1.51e-108
6.36e-055
4.46e-108

7f 3.483e-18
3.651e-18
8.359e-19

5.473e-19
5.039e-19
1.776e-18

4.585e-19
6.506e-17
1.538e-18

3f 0.03164
0.00071
0.02532

0.00147
1.233e-08
0.00469

0.001847
9.940e-09
0.004855

8f -18.1594
1.17699
1.05105

-18.2979
0.0306
0.8902

-18.70665
0.0316574
1.028749

4f 22.1917
2.55140
1.61e+04

6.30326
2.01591
3.99428

6.81079
2.61624
3.76973

9f -3.331488
2.747e-05
1.24329

-3.58972
1.439e-09
0.388473

-3.78396
3.946e-09
1.47699

5f 8.68160
0.34087
9.00153

0.410042
0.230096
0.294763

0.806175
0.191133
0.868211

10f -186.730
0.36222
1.424e-05

-186.731
1.10502
2.770e-14

-186.731
0.32435
3.595e-14

performance in comparison to other versions, followed by EPSO and LNPSO. For
the first function, f1, GPSO gave the best function value of approximately 10.00
which is much better than the values obtained by the other algorithms. For f2,
which is a simple spherical function all the algorithms gave more or less similar
results. However GPSO and LNPSO gave a slightly better performance. For f3,
once again the average fitness function value obtained by GMPSO is much better
than the average fitness function value obtained by EPSO and LNPSO. For f6 and
f7 once again GMPSO outperformed the other algorithms given in Table 2. For f9,
both GMPSO and EPSO gave same result, which is better than the other two
algorithms. Whereas for f10, GMPSO, EPSO and LNPSO gave same result which
is marginally better than the result obtained by basic PSO. In all, out of the 10 test
functions GPSO outperformed others in 7 test cases. EPSO gave better results in 4
cases and LNPSO performed better in 3 cases. In all the cases the results were
better than Basic PSO using uniform distribution.

Table 3, gives the comparison of PSO versions initialized with low discrepancy
sequences with the basic PSO. It can be observed that PSO initialized with Sobol
sequence (SOPSO) gave slightly better results than PSO initialized with Van der
corput sequence. But a notable thing is that although SOPSO outperformed
VCPSO in most of the test cases, the percentage of improvement is only marginal.
Whereas, if we compare these results with basic PSO then the quality of solutions
obtained by SOPSO and VCPSO is significantly better than the solutions obtained
by basic PSO. For example, in f1, which is a highly multimodal function the
optimum function value obtained by VCPSO and SOPSO is approximately 10.00
and 9.00 respectively where as the optimum function value obtained by basic PSO
is approximately 22.00. Likewise, there is a significant improvement in the

116 M. Pant et al.

Table 4 Comparison results of PSO, QIPSO, ATREPSO and GMPSO (Mean/diversity/
standard deviation)

Function PSO QIPSO ATREPSO GMPSO

1f 22.339158
0.000115
15.932042

11.946888
0.015744
9.161526

19.425979
7.353246
14.349046

20.079185
7.143211e-05
13.700202

2f 1.167749e-45
2.426825e-23
5.222331e-46

0.000000
0.000000
0.000000

4.000289 e-17
8.51205
0.000246

7.263579e-17
0.00026
6.188854e-17

3f 0.031646
0.000710
0.025322

0.01158
3.391647e-05
0.01285

0.025158
0.000563
0.02814

0.024462
0.000843
0.039304

4f 22.191725
2.551408
1.615544e+04

8.939011
1.983866
3.106359

19.49082
1.586547
3.964335e+04

14.159547
6.099418e-05
4.335439e+04

5f 8.681602
0.340871
9.001534

0.451109
0.0509
0.328623

8.046617
2.809409
8.862385

7.160675
0.29157
7.665802

6f -6178.559896
0.072325
489.3329

-6355.58664
0.00881
477.532584

-6183.6776
199.95052
469.611104

-6047.670898
0.062176
482.926738

7f 3.483903e-18
3.651635e-18
8.359535e-19

2.461811e-24
0.000127
0.014425

0.018493
42.596802
0.014747

1.474933e-18
0.061308
1.153709e-08

8f -18.1594
1.17699
1.05105

-18.4696
1.2345
0.092966

-18.9829
0.39057
0.272579

-18.3998
1.63242
0.403722

9f -3.331488
2.747822e-05
1.24329

-3.783961
0.637823
0.190394

-3.751458
3.214462
0.174460

-3.460233
9.066805e-06
0.45782

10f -186.730941
0.362224
1.424154e-05

-186.730942
2.169003
3.480934e-14

-186.730941
5.410105
1.424154e-05

-186.730942
0.239789
1.525879e-05

function value for functions f4 and f5. For f4, VCPSO and SOPSO gave function
values as 6.00 and 7.00 approximately and basic PSO gave an average fitness
function value of 22.00. In f5, VCPSO and SOPSO converged to 0.4 and 0.8
respectively while basic PSO converged to an optimum function value of 8.00.

In Table 4, the results of diversity guided PSO algorithms are given. From the
numerical results it is evident that the PSO assisted with quadratic crossover
operator, QIPSO is a clear winner. QIPSO gave significantly better performance
than ATREPSO, GMPSO and basic PSO in 9 out of 10 test cases taken for the
present study. Second place goes to ATREPSO and third to GMPSO.

Table 5, gives the comparison of modified versions of QIPSO with basic PSO.
If a comparison is done between QIPSO1 and QIPSO2, than from the numerical

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 117

Table 5 Comparison results of PSO, QIPSO-1 and QIPSO-2 (Mean best fitness)

BPSO QIPSO-1 QIPSO-2 Fun-
ction Mean Best Fitness Mean Best Fitness Mean Best Fitness
f1 22.339158 0.994954 5.97167e-01
f2 1.167749e-45 2.523604e-45 8.517991e-43

f3 0.031646 0.015979 2.940000e-02
f4 22.191725 77.916591 51.0779
f5 8.681602 0.454374 4.540630e-01
f6 -6178.559896 -9185.074692 -9.185054e+03

f7 3.483903e-18 5.89622e-10 6.300262e-09

f8 -18.1594 -27.546 -27.546

f9 -3.331488 -3.58972 -3.78396
f10 -186.730941 -186.731 -186.731

results it can be seen that QIPSO-2, in which the new particle is accepted in the
swarm only if it is better than the global best particle is better than QIPSO-1 in
terms of average fitness function value. However once again it can be observed
that the improvement of QISPO-2 over QIPSO-1 is only marginal whereas both
the algorithms performed much better than the basic PSO. Empirical results are
graphically illustrated in Figures 4-7.

 (a) Function f1 (b) Function f2

 (c) Function f3 (d) Function f4

Fig. 4 Performance for BPSO, GPSO, EPSO and LNPSO

118 M. Pant et al.

 (e) Function f5 (f) Function f6

 (g) Function f7 (h) Function f8

 (i) Function f9 (j) Function f10

Fig. 4 (continued)

 (a) Function f1 (b) Function f2

Fig. 5 Performance curves for BPSO, VC-PSO and SO-PSO

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 119

 (c) Function f3 (d) Function f4

 (e) Function f5 (f) Function f6

 (g) Function f7 (h) Function f8

 (i) Function f9 (j) Function f10

Fig. 5 (continued)

120 M. Pant et al.

 (a) Function f1 (b) Function f2

 (c) Function f3 (d) Function f4

 (e) Function f5 (f) Function f6

 (g) Function f7 (h) Function f8

Fig. 6 Performance curves for BPSO, QIPSO, ATREPSO and GMPSO

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 121

 (i) Function f9 (j) Function f10

Fig. 6 (continued)

 (a) Function f1 (b) Function f2

 (c) Function f3 (d) Function f4

 (e) Function f5 (f) Function f6

Fig. 7 Performance curves for BPSO, QIPSO-1and QIPSO-2

122 M. Pant et al.

 (g) Function f7 (h) Function f8

 (i) Function f9 (j) Function f10

Fig. 7 (continued)

Table 6 Comparison results of real life problems (BPSO, GPSO, EPSO and LNPSO)

Gear Train Design
Item BPSO GPSO EPSO LNPSO
x1 13 20 20 20
x2 31 13 13 13
x3 57 53 53 53
x4 49 34 34 34

f (x) 9.989333e-11 2.331679e-11 2.331679e-11 2.33168e-011
Gear Ratio 0.14429 0.14428 0.14428 0.14428
Error (%) 0.007398 0.000467 0.000467 0.000467

Transistor Modeling
Item BPSO GPSO EPSO LNPSO
x1 0.901019 0.901241 0.901279 0.90097
x2 0.88419 0.883919 0.888237 0.880522
x3 4.038604 3.756517 3.854668 3.94582
x4 4.148831 3.861717 3.986954 4.081
x5 5.243638 5.387461 5.338548 5.28292
x6 9.932639 10.551659 10.410919 9.95503
x7 0.100944 0.26037 0.091619 0.221577
x8 1.05991 1.077294 1.083181 1.05418
x9 0.80668 0.764622 0.752615 0.825799
f(x) 0.069569 0.058406 0.05974 0.06292

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 123

Table 7 Comparison results of real life problems (BPSO, VC-PSO and SO-PSO)

Gear Train Design
Item BPSO VC-PSO SO-PSO
x1 13 16 16
x2 31 19 19
x3 57 49 49
x4 49 43 43
f (x) 9.989333e-11 2.782895e-12 2.7829e-012
Gear Ratio 0.14429 0.14428 0.14428
Error (%) 0.007398 0.000467 0.000467

Transistor Modeling
Item BPSO VC-PSO SO-PSO
x1 0.901019 0.900433 0.901031
x2 0.88419 0.52244 0.885679
x3 4.038604 1.07644 4.05936
x4 4.148831 1.949464 4.17284
x5 5.243638 7.853698 5.23002
x6 9.932639 8.836444 9.88428
x7 0.100944 4.771224 0.025906
x8 1.05991 1.007446 1.06251
x9 0.80668 1.854541 0.802467
f(x) 0.069569 0.011314 0.067349

Table 8 Comparison results of real life problems (BPSO, QIPSO, ATREPSO and GMPSO)

Gear Train Design
Item BPSO QIPSO ATREPSO GMPSO
x1 13 15 19 19
x2 31 26 16 16
x3 57 51 43 43
x4 49 53 49 49
f (x) 9.98e-11 2.33e-11 2.78e-12 2.78e-12
Gear Ratio 0.14429 0.14428 0.14428 0.14428
Error (%) 0.007398 0.000467 0.000467 0.000467

Transistor Modeling
Item BPSO QIPSO ATREPSO GMPSO
x1 0.901019 0.90104 0.900984 0.90167
x2 0.88419 0.884447 0.886509 0.877089
x3 4.038604 4.004119 4.09284 3.532352
x4 4.148831 4.123703 4.201832 3.672409
x5 5.243638 5.257661 5.214615 5.512315
x6 9.932639 9.997876 9.981726 10.80285
x7 0.100944 0.096078 5.69e-06 0.56264
x8 1.05991 1.062317 1.061709 1.074696
x9 0.80668 0.796956 0.772014 0.796591
f(x) 0.069569 0.066326 0.066282 0.065762

124 M. Pant et al.

Table 9 Comparison results of real life problems (BPSO, QIPSO-1 and QIPSO-2)

Gear Train Design

Item BPSO QIPSO-1 QIPSO-2

x1 13 19 13

x2 31 16 20

x3 57 43 34

x4 49 49 53

f (x) 9.989333e-11 2.7829e-012 2.33168e-011

Gear Ratio 0.14429 0.14428 0.14428

Error (%) 0.007398 0.000467 0.000467
Transistor Modeling

Item BPSO QIPSO-1 QIPSO-2

x1 0.901019 0.901952 0.90107

x2 0.88419 0.895188 0.653572

x3 4.038604 3.66753 1.42074

x4 4.148831 3.67355 2.0913

x5 5.243638 5.44219 7.29961

x6 9.932639 11.2697 10.00

x7 0.100944 0.097903 4.09852

x8 1.05991 1.10537 1.00974

x9 0.80668 0.679967 1.59885

f(x) 0.069569 0.061881 0.0514062

Numerical results of real life problems are given in Tables 6 – 9. From these
Tables, it is very difficult to claim the superiority of a particular algorithm over
the others because the optimum function value obtained by all the algorithms is
more or less similar. Although in some cases modified algorithms gave slightly
better results than the basic PSO. This is probably due to the fact that both the real
life problems, though nonlinear in nature, are small in size and do not pose any
severe challenge for an optimization algorithm.

7 Conclusions

This article presents some recent simple and modified versions PSO. The
algorithms considered may be divided into two classes; (1) algorithms without
having any special operator but simply changing the initial configuration of the
swarm and (2) algorithms having some special operator .

In all nine modified versions of PSO are presented in this chapter. These are:

 Gaussian Particle Swarm Optimization (GPSO)
 Exponential Particle Swarm Optimization (EPSO)

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 125

 Lognormal Particle Swarm Optimization (LNPSO)
 Sobol Particle Swarm Optimization (SOPSO)
 Van der Corput Particle Swarm Optimization (VCPSO)
 Attraction and Repulsion Particle Swarm Optimization (ATREPSO)
 Gaussian Mutation Particle Swarm Optimization (GMPSO)
 Quadratic Interpolation Particle Swarm Optimization (QIPSO)

The first five algorithms namely GPSO, EPSO, LNPSO, SOPSO and VCPSO
described in the chapter use different initialization schemes for generating the
swarm population. These schemes include Gaussian, exponential and lognormal
probability distributions and quasi random sequences Sobol and Vander Corput to
initialize the swarm. As expected, PSO algorithms initialized with quasi random
sequences performed much better than the PSO initiated with the usual computer
generated random numbers having uniform distribution (Please also see Table 3).
However the interesting part of the study is that PSO initiated with Gaussian,
exponential and lognormal distribution improved its performance quite
significantly (Please also see Table 2).

The second part of the research consisted of modified PSO versions assisted
with special operators like repulsion, mutation and crossover. In this part three
algorithms called ATREPSO, GMPSO and QIPSO are given. The QIPSO is
further modified into two versions QIPSO1 and QIPSO2. The common feature of
these operator assisted PSO algorithms is that they all use diversity as guide to
implement the operators. All the nine algorithms are applied on ten standard
benchmark problems and two real life problems. The results obtained by these
algorithms on the ten benchmark problems and two real life problems were either
superior or at par with the basic PSO having uniform probability distribution to
initialize the swarm. We did not compare the algorithms without any special
operator with the ones having special operator because it will not be a fair
comparison. However, among other algorithms PSO assisted with crossover
operator QIPSO and its versions gave the best results. The present study may
further be extended to solve the constrained optimization problems. Another
interesting thing will be to combine PSO algorithms having different initialization
scheme with PSO assisted with some special operator.

References

1. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE International
Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway,
NJ, pg. IV, pp. 1942–1948 (1995)

2. Angeline, P.J.: Evolutionary Optimization versus Particle Swarm Optimization:
Philosophy and Performance Difference. In: The 7th Annual Conference on
Evolutionary Programming, San Diego, USA (1998)

3. Vesterstrom, J., Thomsen, R.: A Comparative study of Differential Evolution, Particle
Swarm optimization, and Evolutionary Algorithms on Numerical Benchmark
Problems. In: Proc. IEEE Congr. Evolutionary Computation, Portland, OR, June 20-
23, pp. 1980–1987 (2004)

126 M. Pant et al.

4. Vesterstrøm, J.S., Riget, J., Krink, T.: Division of Labor in Particle Swarm
Optimisation. In: Proceedings of the Fourth Congress on Evolutionary Computation
(CEC 2002), vol. 2, pp. 1570–1575 (2002)

5. Liu, H., Abraham, A., Zhang, W.: A Fuzzy Adaptive Turbulent Particle Swarm
Optimization. International Journal of Innovative Computing and Applications 1(1),
39–47 (2007)

6. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proc. IEEE Congr.
Evolutionary Computation, pp. 69–73 (1998)

7. Eberhart, R.C., Shi, Y.: Particle Swarm Optimization: Developments, Applications and
Resources. In: Proc. IEEE Congr. Evolutionary Computation, vol. 1, pp. 27–30 (2001)

8. Clerc, M.: The Swarm and the Queen: Towards a Deterministic and adaptive Particle
Swarm Optimization. In: Proc. of the IEEE Congress on Evolutionary Computation,
vol. 3, pp. 1951–1957 (1999)

9. Kennedy, J.: Small Worlds and Mega-Minds: Effects of Neighborhood Topology on
Particle Swarm Performance. In: Proc. of the IEEE Congress on Evolutionary
Computation, vol. 3, pp. 1931–1938 (1999)

10. Poli, R., Langdon, W.B., Holland, O.: Extending Particle Swarm Optimization via
Genetic Programming. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J.,
Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 291–300. Springer,
Heidelberg (2005)

11. Ting, T.-O., Rao, M.V.C., Loo, C.K., Ngu, S.-S.: A New Class of Operators to
Accelerate Particle Swarm Optimization. In: Proceedings of the IEEE Congress on
Evolutionary Computation, vol. (4), pp. 2406–2410 (2003)

12. Paquet, U., Engelbrecht, A.P.: A New Particle Swarm Optimizer for Linearly
Constrained Optimization. In: Proceedings of the IEEE Congress on Evolutionary
Computation, vol. (1), pp. 227–233 (2003)

13. Parsopoulos, K.E., Plagianakos, V.P., Magoulus, G.D., Vrahatis, M.N.: Objective
Function “Strectching” to Alleviate Convergence to Local Minima. Nonlinear
Analysis, Theory, Methods and Applications 47(5), 3419–3424 (2001)

14. Grosan, C., Abraham, A., Nicoara, M.: Search Optimization Using Hybrid Particle
Sub-Swarms and Evolutionary Algorithms. International Journal of Simulation
Systems, Science & Technology, UK 6(10&11), 60–79 (2005)

15. Gehlhaar, Fogel: Tuning Evolutionary programming for conformationally flexible
molecular docking. In: Proceedings of the fifth Annual Conference on Evolutionary
Programming, pp. 419–429 (1996)

16. Pant, M., Radha, T., Singh, V.P.: Particle Swarm Optimization: Experimenting the
Distributions of Random Numbers. In: 3rd Indian Int. Conf. on Artificial Intelligence
(IICAI 2007), India, pp. 412–420 (2007)

17. Krohling, R.A., Coelho, L.S.: PSO-E: Particle Swarm with Exponential Distribution.
In: IEEE Congress on Evolutionary Computation, Canada, pp. 1428–1433 (2006)

18. Krohling, R.A., Swarm, G.: A Novel Particle Swarm Optimization Algorithm. In:
Proc. of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore,
pp. 372–376 (2004)

19. Pant, M., Thangaraj, R., Abraham, A.: Improved Particle Swarm Optimization with
Low-discrepancy Sequences. In: IEEE Cong. on Evolutionary Computation (CEC
2008), Hong Kong (accepted, 2008)

20. Kimura, S., Matsumura, K.: Genetic Algorithms using low discrepancy sequences. In:
Proc of GEECO 2005, pp. 1341–1346 (2005)

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 127

21. Nguyen, X.H., Nguyen, Q.U., Mckay, R.I., Tuan, P.M.: Initializing PSO with
Randomized Low-Discrepancy Sequences: The Comparative Results. In: Proc. of
IEEE Congress on Evolutionary Algorithms, pp. 1985–1992 (2007)

22. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization in noisy and
continuously changing environments. In: Proceedings of International Conference on
Artificial Intelligence and soft computing, pp. 289–294 (2002)

23. Brits, R., Engelbrecht, A.P., van den Bergh, F.: A niching Particle Swarm Optimizater.
In: Proceedings of the fourth Asia Pacific Conference on Simulated Evolution and
learning, pp. 692–696 (2002)

24. Brits, R., Engelbrecht, A.P., van den Bergh, F.: Solving systems of unconstrained
Equations using Particle Swarm Optimization. In: Proceedings of the IEEE Conference
on Systems, Man and Cybernetics, vol. 3, pp. 102–107 (2002)

25. Chi, H.M., Beerli, P., Evans, D.W., Mascagni, M.: On the Scrambled Sobol Sequence.
In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005.
LNCS, vol. 3516, pp. 775–782. Springer, Heidelberg (2005)

26. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. John Wiley &
Sons Ltd., Chichester (2005)

27. Pant, M., Radha, T., Singh, V.P.: A Simple Diversity Guided Particle Swarm
Optimization. In: IEEE Cong. on Evolutionary Computation (CEC 2007), Singapore,
pp. 3294–3299 (2007)

28. Riget, J., Vesterstrom, J.S.: A diversity-guided particle swarm optimizer – the arPSO.
Technical report, EVAlife, Dept. of Computer Science, University of Aarhus,
Denmark (2002)

29. Pant, M., Radha, T., Singh, V.P.: A New Diversity Based Particle Swarm Optimization
using Gaussian Mutation. Int. J. of Mathematical Modeling, Simulation and
Applications (accepted)

30. Pant, M., Thangaraj, R.: A New Particle Swarm Optimization with Quadratic
Crossover. In: Int. Conf. on Advanced Computing and Communications (ADCOM
2007), India, pp. 81–86. IEEE Computer Society Press, Los Alamitos (2007)

31. Pant, M., Thangaraj, R., Abraham, A.: A New Particle Swarm Optimization Algorithm
Incorporating Reproduction Operator for Solving Global Optimization Problems. In:
7th International Conference on Hybrid Intelligent Systems, Kaiserslautern, Germany,
pp. 144–149. IEEE Computer Society press, USA (2007)

32. Millie Pant, T., Pant, M., Radha, T., Singh, V.P.: A New Particle Swarm Optimization
with Quadratic Interpolation. In: Int. Conf. on Computational Intelligence and
Multimedia Applications (ICCIMA 2007), India, vol. 1, pp. 55–60. IEEE Computer
Society Press, Los Alamitos (2007)

33. Kannan, B.K., Kramer, S.N.: An Augmented Lagrange Multiplier Based Method for
Mixed Integer Discrete Continuous Optimization and its Applications to Mechanical
Design. J. of Mechanical Design, 116/405 (1994)

34. Sandgren, E.: Nonlinear Integer and Discrete Programming in Mechanical Design. In:
Proc. of the ASME Design Technology Conference, Kissimme, Fl, pp. 95–105 (1988)

35. Price, W.L.: A Controlled Random Search Procedure for Global Optimization. In:
Dixon, L.C.W., Szego, G.P. (eds.) Towards Global Optimization 2, vol. X, pp. 71–84.
North Holland Publishing Company, Amsterdam (1978)

36. Secrest, B.R., lamont, G.B.: Visualizing Particle Swarm Optimization – Gaussian
Particle Swarm Optimization. In: Proc. of IEEE Swarm Intelligence Symposium, pp.
198–204 (2003)

128 M. Pant et al.

37. Stacey, A., Jancic, M., Grundy, I.: Particle Swarm Optimization with Mutation. In:
Proc. of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 1425–1430
(2003)

38. van der Bergh, F.: An Analysis of Particle Swarm Optimizers. PhD thesis, Department
of Computer Science, University of Pretoria, Pretoria, South Africa (2002)

39. van der Bergh, F., Engelbrecht, A.P.: A New Locally Convergent Particle Swarm
Optimizer. In: Proc. of the IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 96–
101 (2002)

40. Xie, X., Zhang, W., Yang, Z.: A Dissipative Particle Swarm Optimization. In: Proc. of
the IEEE Congress on Evolutionary Computation, vol. 2, pp. 1456–1461 (2002)

41. Higashi, H., Iba, H.: Particle Swarm Optimization with Gaussian Mutation. In: Proc. of
IEEE Swarm Intelligence Symposium, pp. 72–79 (2003)

42. Yao, X., Liu, Y.: Fast Evolutionary Programming. In: Fogel, L.J., Angeline, P.J.,
Back, T.B. (eds.) Proc. of the 5th Annual Conf. Evolutionary Programming, pp. 451–
460 (1996)

43. Yao, X., Liu, Y., Lin, G.: Evolutionary Programming made faster. IEEE Trans. On
Evolutionary Computation 3(2), 82–102 (1999)

44. Ting, T.-O., Rao, M.V.C., Loo, C.K., Ngu, S.-S.: A new Class of Operators to
accelerate Particle Swarm optimization. In: Proceedings of IEEE Congress on
Evolutionary Computation, vol. 4(656), pp. 2406–2410 (2003)

45. Clerc, M.: Think Locally, Act Locally: The way of Life of Cheap-PSO, an Adaptive
PSO. Technical report (2001), http://clerc.maurice.free.fr/PSO/

46. Rigit, J., Vesterstorm, J.S.: Controlling Diversity in Particle Swarm Optimization.
Master’s thesis, University of Aahrus, Denmark (487) (2002)

47. Rigit, J., Vesterstorm, J.S.: Particle Swarms: Extensions for improved local, multi
modal, and dynamic search in Numerical optimization. Masters thesis, department of
Computer Science, University of Aahrus (620) (2002)

48. Brits, R.: Niching Strategies for Particle swarm optimization. Masters thesis,
Department of Computer Science, university of Pretoria (67) (2002)

49. Brits, R.E., Van den Bergh, F.: Solving unconstrained equations using Particle Swarm
Optimization. In: Proceedings of the IEEE congress on systems, man and cybernetics,
vol. 3(70), pp. 102–107 (2002)

Tabu Search to Solve Real-Life
Combinatorial Optimization Problems:
A Case of Study

Djamal Habet

Summay. Tabu Search (TS) is a very powerful metaheuristic that has
shown its efficiency when solving various combinatorial optimization prob-
lems, ranging from academic to real-life ones. The idea behind TS is to
include during the search a guidance based on adaptive memory and learn-
ing. We present in this paper a short overview on Tabu Search and detail
its application to solve successfully a real-life optimization problem under
constraints.

1 Introduction

The Tabu Search (TS) Algorithm is a metaheuristic approach designed for
solving combinatorial optimization problems. TS is a conceptually simple
and elegant method and has become an established optimization method-
ology that is rapidly spreading in various fields. Planning and scheduling,
transportation, routing and network design, continuous and stochastic opti-
mization, manufacturing and financial analysis are some examples of these
applications [22, 25, 20, 23, 10, 11, 12, 15, 18].

TS is originally introduced by F. Glover (see for instance [16]). It is an
intelligent algorithm based on adaptive memory and learning. Like other
local search methods, Tabu visits the search space by jumping from one
configuration to another one within its neighborhood. The search method is
partially based on the hill-climbing method that explores the neighborhood,
that it defines, by trying to reach at each iteration a better configuration (in
respects to some quality criteria). TS succeed in escaping local minima by
using a tabu list that records the forbidden moves. Moves are classified as

Djamal Habet
LSIS – UMR CNRS 6168
Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20
e-mail: Djamal.Habet@lsis.org

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 129–151.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

130 D. Habet

forbidden if certain conditions imposed on the moves are satisfied. The aim
of maintaining a tabu list is to force the search process to avoid cycling and
thus impose some diversification.

The application of the Tabu metaheuristic to solve a combinatorial op-
timization problem can be difficult. In fact, such task needs the definition
of many components of a Tabu-like algorithm such as the search space, the
neighborhood, the move heuristic, the tabu list management, ... For instance,
defining the tabu tenure can require several (and expensive) empirical exper-
iments in order the be fixed in accordance with the problem specifications.
Such a drawback is generally shared by the other local search methods. This
remark is strengthed by the rich literature around Tabu Search. This liter-
ature consists of several cases of study showing that every problem requires
special treatment and fine tuning so that the resolution by the tabu method
(sharing the same principles) is effective.

The first purpose of this paper is to give a general and a short description
of the Tabu Search (any interested reader by more details can easily find
more information in several tutorials about TS [5, 21]). The second and the
major purpose of this work is to explain, meticulously and step by step, the
application of Tabu Search to treat a real-world problem named the prob-
lem of managing an Agile Earth Observing Satellite (AEOS). This problem
was the subject of an international competition (ROADEF’2003) and con-
cerns the maximization of a gain function under some hard constraints. The
gain has the particularity to be described by a non-linear function which
increases the hardness of the problem. All the components of our tabu res-
olution will be described, including the required algorithms to construct the
neighborhood and evaluate it, the aspiration criteria, the diversification, the
intensification, ...

The paper is structured as follows. It starts with a quick overview of the
tabu search in Section 2. We describe the AEOS problem in Section 3. The
components of the proposed tabu search algorithm to solve this problem are
described in Section 4. The obtained results are discussed in Section 5 and
Section 6 concludes the paper.

2 Tabu Search Principles

Over the last years, incomplete methods have received a high intention and
have proved their ability to solve successfully NP-hard combinatorial opti-
mization problems (and often issued from real-world). One of the most pop-
ular incomplete methods is the local search (LS). LS is an iterative search
procedure that starts from an initial solution and progressively improves it by
applying a series of local modifications (called moves). At each iteration, the
search moves to an improving solution (often according to the optimization
criterion) that differs slightly from the current one. The search terminates
when it encounters a local optimum with respect to the transformations that

TS to Solve Real-Life Combinatorial Optimization Problems 131

it considers. One of the major drawbacks of the local search is that this lo-
cal optimum can be a solution with a bad quality and the search process
is trapped in the currently explored zone (as in a hill-climbing algorithm).
To overcome this weakness, several techniques (commonly named by Meta-
heuristics) are designed including simulated annealing, ant systems, genetic
algorithms, tabu search and random walk. Among this none-exhaustive list,
Tabu Search (TS) is one of the methods which is popular and efficient to
overcome local optima.

In particular, Tabu Search (TS) is a metaheuristic designed to tackle hard
combinatorial optimization problems. By contrast with random approaches,
TS is based on the belief that an intelligent search should include more sys-
tematic forms of guidance based on adaptive memory and learning. TS can
be described as a form of neighborhood search with a set of critical and
complementary components.

For a given optimization instance (S, f) characterized by a search space S
and an objective function f , a neighborhood N is introduced. It associates
to each configuration s in S (a configuration is an affectation of the prob-
lem variables by some values), a non-empty subset N (s) of S. A typical TS
algorithm begins with an initial configuration s0 ∈ S, then repeatedly visits
a series of the best local configurations following the neighborhood function.
At each iteration, one of the best neighbors s′ ∈ S is selected to become the
current configuration, even if s′ does not improve the current configuration
in terms of the cost function.

To avoid the problem of cycles occurring and to allow the search to go
beyond local optima, a tabu list is introduced. This adds a short term memory
component to the method. A tabu list maintains a selective history H (short
term memory), composed of previously encountered configurations or, more
generally, pertinent attributes of such configurations. A simple TS strategy
consists in preventing configurations of H from being considered on the next
k iterations, called the tabu tenure. This can vary according to different
attributes, and it is generally problem dependent. At each iteration, TS looks
for the best neighbor from this dynamically modified neighborhood N (H, s),
instead of N (s) itself. Such a strategy prevents the search from being trapped
in short term cycling and makes the process more rigorous.

Standard tabu lists are usually implemented as circular lists of fixed length.
It has been shown, however, that fixed-length tabus cannot always prevent
cycling, and some authors have proposed varying the tabu list length dur-
ing the search (see for instance [13, 14]). Another solution is to randomly
generate the tabu tenure of each move within some specified interval: using
this approach requires a somewhat different scheme for recording tabu move
which are then usually stored by using tags in an array [9].

When attributes of configurations, instead of configurations themselves,
are recorded in a tabu list, some unvisited, but nonetheless interesting con-
figurations may be prevented from being considered.

132 D. Habet

It is thus necessary to use algorithmic devices that will allow one to revoke
(cancel) the tabu status of such intersting configurations. These are called as-
piration criteria. The simplest and most commonly used aspiration criterion
(found in almost all TS implementations) consists in allowing a move, even if
it is tabu, if it results in a configuration with an objective value better than
that of the current best-known configuration (since the new configuration has
obviously not been previously visited) [9]. Much more complicated aspiration
criteria have been proposed and successfully implemented but they are rarely
used [5, 21].

Two other important ingredients of TS are intensification and diversifica-
tion. On the one hand, the intensification consists in focusing the search to
exploit regions of the search space, or characteristics of solutions, that the
search history suggests that they are promising. On the other hand, the di-
versification undertakes to explore regions that differ in significant respects
from regions previously visited.

On the one hand, the idea behind the concept of search intensification is
that, as an intelligent human being would probably do, one should explore
more thoroughly the portions of the search space that seem promising in order
to make sure that the best solutions in these areas are indeed found. From time
to time, one would thus stop the normal searching process to perform an inten-
sification phase. In general, intensification is based on some intermediate-term
memory, such as a recency memory, in which one records the number of con-
secutive iterations that various solution componentshave been present in the
current solution without interruption. A typical approach to intensification is
to restart the search from the best currently known solution and to fix in it the
components that seem more attractive. Another technique that is often used
consists in changing the neighborhood structure to one allowing more powerful
or more diverse moves. Intensification is used in many TS implementations, but
it is not always necessary. This is because there are many situations where the
search performed by the normal searching process is thorough enough. There is
thus no need to spend time exploring more carefully the portions of the search
space that have already been visited [9].

On the other hand, one of the main problems of all methods based on Lo-
cal Search approaches, and this includes TS in spite of the beneficial impact
of tabus, is that they tend to be too local: they tend to spend most, if not
all, of their time in a restricted portion of the search space. The negative
consequence of this fact is that, although good solutions may be obtained,
one may fail to explore the most interesting parts of the search space and
thus end up with solutions that are still pretty far from the optimal ones. Di-
versification is an algorithmic mechanism that tries to alleviate this problem
by forcing the search into previously unexplored areas of the search space.
It is usually based on some form of long-term memory of the search, such
as a frequency memory, in which one records the total number of iterations
(since the beginning of the search) that various solution components have
been present in the current solution or have been involved in the selected

TS to Solve Real-Life Combinatorial Optimization Problems 133

moves. In cases where it is possible to identify useful regions of the search
space, the frequency memory can be refined to track the number of iterations
spent in these different regions.

There are two major diversification techniques. The first, called restart
diversification, involves forcing a few rarely used components in the current
solution (or the best known solution) and restarting the search from this
point. The second diversification method, continuous one, integrates diversi-
fication considerations directly into the regular searching process [9].

Therefore, aTS is described by specifying its main elements: the space search
and the neighborhood definition, the cost function to evaluate the configura-
tions and the neighborhood, the tabu list management, the aspiration criteria
andfinally the intensification anddiversificationphases. In the next sections,we
describe and precise the definition and the application of these elements to solve
a real-life optimization problem which is the problem of selecting and schedul-
ing photographs of an agile earth observing satellite. We starts bu describing
this problem then the dedicated tabu algorithm to solve it.

3 AEOS Problem

Earth Observing Satellites (EOS) are platforms that orbit the planet and
are equipped with optical instruments. A new generation of EOS are Agile
Earth Observing Satellites (AEOS). This means that, while the single on-
board camera remains fixed on the satellite, the whole satellite is mobile
along three axes (roll, pitch and yaw). This mobility potentially increases
the efficiency of the whole system. In the course of their mission, satellites
take photographs of specific areas of the Earth in function of requests from a
number of users including governments, research institutes, and companies.
Each request generates a revenue or a gain, and typically the number of
requests exceeds what can be feasibly accomplished during a mission.

An observation request concerns some specified areas modeled by polygons.
Each one is cut into a set of contiguous strips (rectangular shape) covering
the request. A strip can be acquired using two opposite azimuths according to
the satellite rotation sense (direct and indirect). Moreover, some requests are
mono while others are stereo. A mono request consists of a single shot of each
strip in the polygon. A stereo request consists of two shots of each strip at
different angles but in the same direction. Finally, for each pair of shots, the
satellite requires a minimum transition time to maneuver the camera from
the end of the first strip to the start of the second one [24].

The input of an AEOS management problem is a set of candidate strips,
from the current set of requests, that could be acquired. The problem to be
dealt with is twofold: to select a set of strip acquisitions that maximize the
total gain, and to order them in time. Formally, the problem can be described
as follows [1]:

134 D. Habet

Formal Description

A problem with n strips involves 2n possible acquisitions since for each strip
i two shooting directions are possibles. These shots are numbered:

• 2i − 1: an odd number for a shot acquired in the direct azimuth, and
• 2i: an even number for a shot acquired in the indirect azimuth.

For each strip i ∈ [1, n] let:

• tw(i) be the index of its stereo twin strip, 0 if i is mono.
• d(i) be its shooting duration.
• su(i) be its corresponding surface.

For each shot (image) j ∈ [1, 2n] let:

• es(j) and ls(j) be its earliest and latest start dates respectively.
• ee(j) and le(j) be its earliest and latest end dates respectively.

For each shot pair (i, j), i �= j ∈ [1, 2n], t(i → j) denotes the minimum
transition time between the end of i to the beginning of j. We assume that
t(i → j) ≥ es(j) − le(i) (otherwise it is obviously underestimated). Four
variables are associated to each shot i ∈ [1, 2n]:

• xi ∈ {0, 1} equals 1 if and only if shot i is selected.
• y0→i ∈ {0, 1} equals 1 if and only if shot i is the first of the selection.
• yi→2n+1 ∈ {0, 1} equals 1 if and only if shot i is the last of the selection.
• ti is the shooting start date of i. The value of this variable is irrelevant

when xi = 0. The ti values allow to order and to schedule the shots in
time

Let m be the number of polygons. The kth polygon is characterized by:

• s(k) its total area surface.
• gk its gain when fully acquired.
• p(k) ⊂ [1, 2n] the set of shots that it contains.We recall that each polygon

is divided into a set of strips. Moreover, two shots are possibles per strip
according to the sense of its acquisition.

Two continuous variables are associated to each polygon k ∈ [1, m]:

• Sk ∈ [0, 1] is the percentage of the surface covered by the selected strips.
• Gk ∈ [0, 1] is the corresponding percentage of the polygon gain.

Finally, one binary variable is defined for each pair of acquisitions i �= j ∈
[1 , 2n]:

• yi→j ∈ {0, 1} equals 1 if and only if the shot j is immediately acquired
after the shot i.

TS to Solve Real-Life Combinatorial Optimization Problems 135

Constraints

The equations constraining these variables are listed below. The acquisition
of the same strip in both directions is forbidden by (1). Equation (2) states
the stereo constraints: simultaneous selection with identical direction. The
time window for the starting time of a shot is imposed by (3). Shooting dates
of consecutive images must respect minimum transition times (4).

(1) ∀j ∈ [1, n], x2j−1 + x2j ≤ 1.

(2) ∀j ∈ [1, n], if tw(j) �= 0 then (x2j−1 = x2tw(j)−1 and x2j = x2tw(j)).

(3) ∀i ∈ [1, 2n], if xi = 1 then ti ∈ [es(i), ls(i)].

(4) ∀i �= j ∈ [1, 2n], tj−ti ≥ (d(i)+t(i → j)).yi→j +(es(j)−ls(j)).(1−yi→j).
We denote by C4 the set of shot pairs (i, j) that satisfy the condition (4).

Furthermore, there is at most one first shot and one last shot and each
selected acquisition has exactly one predecessor and one successor. In the rest
of this paper, we assume that these two constraints are always satisfied.

Objective Function

The criterion to maximize is a global gain G defined by the sum of the
gains associated to the complete or partial acquisition of each polygon k and
formulated by:

G =
m∑

k=1

gk × Gk such as:

• ∀k ∈ [1, m], Sk =
1

s(k)

∑
i∈p(k)

su(i).xi.

• Gk = f(Sk).
• f : [0, 1] → [0, 1] is a non-linear function, piecewise linear and defined by

the points {(0, 0), (0.4, 0.1), (0.7, 0.4), (1, 1)}.

Some Related Works

Compared to other optimization problems, the Earth Observing Satellite
management problem has received a limited attention. For the AEOS prob-
lem and in the context of the ROADEF’2003 Challenge, various methods
were proposed. In [26], J.F. Cordeau and G. Laporte have proposed a tabu
search algorithm which borrows from the Unified Tabu Search Algorithm [4]
developed for the Vehicle Routing Problem with Time Windows (VRPTW).
An important feature of their algorithm is the possibility of exploring infeasi-
ble solutions during the search by allowing the violation of the time window
constraints. Thus, the value of a solution is defined by f(s) = G(s) − αw(s),
where w(s) is the total time window constraints. The parameter α is initially

136 D. Habet

set at 1 and self-adjusts during the course of the search to allow a mixture
of feasible and infeasible solutions. The moves switch between the insertion
and the removal of mono and stereo shots with respect to all the constraints
except the time window one which is relaxed. Moreover, the algorithm uses
two diversification mechanisms. The first one is a continuous diversification
scheme which introduces penalties on poor solutions. These penalties drive
the search process toward the less explored regions of the search space when-
ever a local optimum is reached. The second diversification mechanism per-
turbs the solution under certain circumstances. If the best known solution
has not improved after a certain number of iterations then the search stops
and restarts from the best reached solution. However, this best solution is
perturbed by removing a portion of randomly selected shots.

E.J. Kuipers [26] proposed a local search algorithm based on two stages. In
the first one, the most promising solutions are constructed then further op-
timized in the second stage. These two parts use Simulated Annealing (SA)
algorithms. The neighborhood is constructed in two steps. In the first one, 1,
2, 3 or 4 requests (or parts of requests) are removed from the current solu-
tion, and in the second step 1, 2, 3 or 4 requests (or parts of requests) are
added to the solution resulting from the first one. The number of the added
or removed requests (1, 2, 3 or 4) in both steps is randomly chosen. Moreover,
a library is constructed to file the best ways of ordering a set of 5 strips in
terms of transition durations. This library is updated at each new insertion
and used by the two SA algorithms. Other additional schemes are added to
attempt the speeding up of the optimization process of the first stage (for in-
stance, a limitation on the number of the strips treated according to their gain).
However, the second stage considers all the strips during the neighborhood
construction.

In addition, a number of variants of the AEOS problem have been studied
in the literature. The paper [17] presents the space mission problem which
consists of selecting and scheduling a set of jobs on a single machine among
a set of candidates jobs. Each candidate job has a fixed duration, a given
time window and a weight. The aim is to select a feasible sequence of jobs
that maximizes the sum of weights. The space mission problem is NP-hard
and it is very close to the AEOS management problem with the following
simplifications: null transition times, no unique strip acquisition and stereo-
scopic constraints, and a linear objective function. Several interesting greedy
algorithms and an optimal algorithm for solving the space mission problem
are proposed. The optimal algorithm is based on a Dynamic Programming
scheme. Upper bound formulations are presented, based on a preemptive
relaxation (a job can be fragmented) and a lagrangian relaxation. The pro-
posed algorithms are tested on 30 randomly generated instances with up to
200 candidate jobs.

The selection and scheduling problem for the SPOT5 satellite concerns a
non-agile satellite with only one moving axis (rolling). A consequence of this
lack of manoeuvrability is that the starting time of each candidate image is

TS to Solve Real-Life Combinatorial Optimization Problems 137

fixed. This feature would result in a very simple (polynomial) problem if there
were only one imaging instrument on the board of the satellite, but there are
3 instruments. Nevertheless, it is possible to pre-compute binary and ternary
constraints which model the compatibilities between candidate images. Each
candidate image is weighted and the problem is to find a feasible subset of the
candidate images maximizing the sum of weights. This optimization problem
is NP-hard and can be formulated in the general Valued Constraint Satis-
faction Problem model [27]. The paper [3] fully describes the problem and
proposes some instances benchmark. Some results with dedicated exact and
approximate methods are given in [2, 3] and the column generation technique
has been used to compute upper bounds on the benchmark instances [7]. Very
good results on these instances were obtained by M. Vasquez and J.K. Hao us-
ing a dedicated Tabu Search algorithm [28]. These authors have also obtained
very good upper bounds by means of an original partition method assessing
the quality of their previous results [29]. Note that for some instances the
optima values are still unknown.

The work presented in [8] concerns a selection and scheduling problem of
a semi-agile satellite. The differences with respect to the AEOS problem are
as follows: (a) the criterion to be maximized is the number of selected images
(images are not weighted), (b) the satellite is slightly mobile in two axes
(pitch and roll), but remains fixed during an image acquisition; so, there is
only one possible azimuth for an acquisition, (c) the satellite’s kinematics do
not allow for a given strip to be acquired twice during the same track, and (d)
there are no stereoscopic requests, hence no corresponding stereo constraints.

We now describe some related problems. In the first one which is named
the Maximum Shot Sequencing Problem (MSP), the aim is to select and
to schedule a set of images over several consecutive tracks (a given image
can be acquired from two or more tracks), so several possible disjoint time
windows are given for each image. In the second problem, named the Maxi-
mum Shot Orbit Sequencing Problem (MSOP), only one track is processed,
so a single time window is associated to each candidate image. MSOP and
MSP are also NP-hards and several algorithms are proposed and based on
graph theoretic concepts. In a first approach, the time is discretized. The
constraints (given by the satellite kinematics) are such that MSOP amounts
to a longest path problem. With time discretization, MSP amounts to find
a maximal independent set in an incompatibility graph, and can be solved
by an approximate algorithm based on a near-optimal partition into cliques.
Due to the nature of the objective, an interesting upper bound is available.
Exact and approximate algorithms are also presented for the continuous time
model to solve both MSP and MSOP. The exact algorithm is a branch-and-
bound algorithm with graph-based heuristics and bounds. The approximate
algorithm is a kind of greedy algorithm also based upon graph properties.
Experiments are conducted on a set of randomly generated instances, allow-
ing the proposed algorithms to be assessed against upper bounds and the
impact of the discretization to be measured.

138 D. Habet

The paper [19] describes a scheduling problem concerning a satellite
equipped with a radar instrument which is very agile on the pitch axis but
slow on the roll axis. Only one azimuth is available for acquiring images. This
problem is equivalent to the space mission problem [17] with transition times.
The authors describe a partial enumeration algorithm for this problem and
give preliminary results for randomly generated instances.

The work reported in [30] describes the so-called Window-Constrained
Packing problem (WCP). It differs from the problems presented above in
the fact that the evaluation function is a priority-weighted sum of observa-
tion durations under suitability functions. In other words, observations have
non-fixed durations (ranging between a maximum and a minimum) and pref-
erence is given to higher priority observations (with longer durations) and
to the observations which are well-placed inside their time window. There
are no transition times between observations. This problem is similar to the
space mission problem [17], with a particular gain function, depending on
the starting times of the observations. The authors present some approx-
imate algorithms for solving the WCP problem. A first one is a fast but
not very accurate greedy algorithm. A second one is similar to the first,
but it includes some look-ahead. It is a little better but has expensive com-
putation times. These algorithms have been tested on randomly generated
instances. Actually, the WCP problem is a simplified short-term version of
the real scheduling problem. The paper investigates the associated mid-term
and long-term scheduling problems and their connections, as well as different
objective functions.

4 A Tabu Search Algorithm for AEOS Problem

In this section, we describe all the necessary component of a tabu resolution
to solve the problem of managing the agile earth observing satellite.

4.1 Search Space Definition

Definition 1. The unconstrained search space S consists of all the vectors of
the pairs (xi, ti), i = 1...2n:

S = {((x1, t1), (x2, t2), ..., (x2n, t2n))/ ∀i ∈ [1, 2n] : xi ∈ {0, 1} and ti ∈ IR}

In this formulation, i is a shot number among the 2 × n possible ones issued
from the n strips (2 shots per strip). ti is the (unconstrained) beginning time
acquisition of the shot i.

Definition 2. The totally constrained search space X is a subset of vectors
in S that satisfy all the imperative constraints (1) to (4):

X = {s ∈ S/ all the elements of s satisfy the constraints (1) to (4)}

TS to Solve Real-Life Combinatorial Optimization Problems 139

Each vector s ∈ X is a consistent configuration (all the constraints are
satisfied), which is evaluated by its corresponding gain G(s) =

∑m
k=1 gk ×

f(1
s(k)

∑
i∈p(k) su(i).xi) (see Section 3). We denote by |s| the number of the

shots that are selected in s (|s| =
∑

i=1···2n xi). This constrained search space
is used by our TS algorithm.

4.2 Neighborhood Definition

Now, we introduce the neighborhood function N over the totally constrained
search space X . This function N : X → (2X − ∅) is defined as follows:

Let s = ((x1, t1), (x2, t2), ..., (x2n, t2n)) be a consistent configuration (all
the constraints of the problem are satisfied), s′ = ((x′

1, t′1), (x′
2, t′2), ...,

(x′
2n, t′2n)) is a neighbor of s, i.e. s′ ∈ N (s), if and only if the following

conditions are checked:

1. There is exactly one shot i (and eventually its twin if tw(i) �= 0) which is
not selected in s (xi = 0) and selected in s′ (x′

i = 0). In other words, we
try to insert exactly one shot in s, and its twin if it exists.

2. For any inserted new shot i in s′, the equation constraining one shot acqui-
sition by strip must be satisfied. Formally, if the shots i and j are issued
from the same strip then xi = xj = 0 and x′

i = 1; x′
j = 0. Moreover, the

stereo constraint imposing the acquisition of the stereo strips in the same
direction must be checked.

3. For any inserted new shot , we have ti ∈ [es(i), ls(i)]. Moreover, if tw(i) �=
0 then ttw(i) ∈ [es(tw(i)), ls(tw(i))].

4. For each shot i that satisfies the condition 1, ∀k ∈ [1, 2n] such that
(i, k) �∈ C4 and xk = 1 we have x′

k = 0 and if tw(k) �= 0 then x′
tw(k) = 0.

Moreover, if tw(i) �= 0 then ∀l ∈ [1, 2n] such that(tw(i), l) �∈ C4 and
xl = 1 then x′

l = 0. In addition, if tw(l) �= 0 then x′
tw(l) = 0.

5. For any shot i that satisfies the condition 1, −3 ≤ |s′| − |s| ≤ 1. Also, if
tw(i) �= 0 then −6 ≤ |s′| − |s| ≤ 2.

6. For any shot i that satisfies the condition 1 and such that its insertion in
s requires at most the removal of two shots j, k ∈ [1, 2n] with their twin
shots if they exist (−3 ≤ |s′| − |s| ≤ −1, xj = xk = 1, x′

j = x′
k = 0 and

j �= tw(k)) then even yj→k = 1 or yk→j = 1 in s (k and j are acquired one
behind the other in s).

Thus, the neighborhood of s is obtained by adding a free shot i (xi = 0)
by flipping xi from 0 to 1 (condition 1), then removing some shots k (by
flipping xk from 1 to 0) to repair the violated constraints (condition 4). The
condition 5 enforces a maximum of 2 shot removals if all the dropped shots
are mono and 4 if they are stereo (in order to maintain the consistency of the
stereo constraint, if a stereo shot is removed then its twin is removed too).

140 D. Habet

Moreover, this choice heuristic is also restricted to the removal of successive
shots as described in the condition 6.

Hence, each configuration reached from s and according to the condition
1 to 6 is also consistent. Consequently, the elaborated neighborhood N (s) is
consistent.

Neighborhood Evaluation

We evaluate N (s) according to the gain criterion. For this purpose, consider
a configuration s = ((x1, t1), (x2, t2), ..., (x2n, t2n)) where |s| images are se-
lected and an image j such that xj = 0 (i.e. j is not yet selected). The shot
j can be inserted in s through |s| + 1 positions: before the first shot, after
the last shot, or between two successive shots on the schedule s. Hence, the
insertion of the shot j in each of the |s| + 1 positions is tested by allowing
successive image removals (as explained above). If a position is tested posi-
tively then a neighborhood configuration s′ is reached by inserting j at this
position is s (and dropping some others images, if necessary). We evaluate s′

by computing its corresponding gain value G(s′) (see Section 3). Among all
the feasible insertions of j, the one that maximizes the gain value is selected.
Consequently, at each step of the TS algorithm, we solve the decision prob-
lem of finding the best insertion position for each free shot in s according to
the gain function.

At each iteration, TS algorithm examines the value of G(s′) for each can-
didate neighbor s′ ∈ N (s) and chooses the one with the highest gain. Those
operations are very time consuming and to overcome this weakness incremen-
tal computing techniques are used [6]. The main idea is to use a specific data
structure containing for each possible move the corresponding gain and the
resulting configuration if the insertion is really performed. Each time a move
is carried out, the elements of this data structure which are affected by the
move are updated accordingly.

The neighborhood is evaluated in accordance to Algorithm 1. The used
notations are as follows:

• Lcand is the list of the candidate moves among the neighbors of the current
configuration.

• best gain is the best gain associated to the configuration obtained by the
insertion of a free shot in the current configuration s and contained in
Lcand.

• Generate-sub-schedules(s) is the function which generates sub-schedules
from s by removing 0, 1 or 2 successive images (and their twins if neces-
sary).

• The set of the sub-schedules produced by the function Generate-sub-
schedules(s) is denoted by Ds. The first element of Ds is s (no removal).
We denote by |Ds| the number of sub-schedules in Ds and by sl the lth

sub-schedule in Ds.

TS to Solve Real-Life Combinatorial Optimization Problems 141

• pm denotes the position numbered by m and situated between two shots
which are scheduled respectively at the orders m and m + 1 according to
their shooting start date. In particular, p0 is the position before the first
acquired shot and p|sl| is the position after the last acquired shot in sl.

• g∗ is the gain associated to the best schedule already reached s∗ from the
beginning of the resolution, g∗ = G(s∗).

• Insert(sl, i, pm) is a function which returns True if the insertion of the shot
i at position pm in a sub-schedule sl is feasible regarding to the problem
constraints, False otherwise.

• Gain(sl, i, pm) is the associated gain to the configuration resulted from
the insertion of the shot i in sl at the position pm.

Algorithm 1. Evaluate–N (s)

begin

Lcand ← ∅;
best gain ← −∞;
Ds ← Generate-sub-schedules(s); % Ds = {s, s1, s2, ...} ;
for all i, such that xi = 0 do

for l = 1 to |Ds| do

for m = 0 to |sl| do

if Insert(sl, i, pm) = True then

(1) if (Gain(sl, i, pm)> g∗) or (sl is not tabu) then

if Gain(sl, i, pm) > best gain then

Lcand ← ∅;
best gain ← Gain(sl, i, pm) ;
Lcand ← {(sl, i, pm)} ;

else
if Gain(sl, i, pm) = best gain then

Lcand ← Lcand ∪ {(sl, i, pm)} ;

return (Lcand, best gain)
end;

In Algorithm 1, we start by generating the set Ds of the sub-schedules
obtained by removing some shots. Then we try to insert each free shot i in
those sub-schedules. If an insertion is successful then we calculate its corre-
sponding gain. Afterward, this insertion becomes candidate, the list of the
best candidates is saved in Lcand and their associated gain value is best gain.
If a candidate move improves the current best gain then Lcand will contain
only this move. The list Lcand will be used in the move heuristic as it will be
explained in the next sections.

4.3 Tabu List Management and Move Heuristic

We define a move by the insertion of a free shot i (flipping xi from 0 to
1) followed by the removal of the conflicting shots that do not satisfy the

142 D. Habet

problem constraints (for each conflicting shot j, we flip xj from 1 to 0). Now,
we explain both the management of the tabu list and the heuristic used to
select one of the move candidates.

Tabu List Management

The role of a tabu list is to prevent short-term cycling. In this order, when a
shot i is selected and scheduled (a move is carried out), this shot is classified
tabu (forbidden for any change) for a certain time called the tabu tenure. In
our TS algorithm, this tenure is dynamically formulated by:

tabu(i) = iter + α × freq(i), where:

• iter is the number of the current iteration of the tabu algorithm.
• freq(i) counts the number of times that the shot i has been selected by

the tabu algorithm (note that a shot can be inserted at a given iteration
and be dropped some iterations later, then reselected after and so on).

• α is a variable parameter used to weight tabu(i) according to freq(i).

Moreover, a sequence of shots is tabu if all its shots are tabu, and not tabu if
it contains at least one non-tabu shot. Likewise, we state that a sub-schedule
obtained from a current schedule by removing a tabu sequence is also tabu,
otherwise it is not tabu. Additionally, the direct azimuth corresponds to the
natural move direction of the satellite and changing azimuth between two
shootings is very costly in the terms of transition time.

Consequently, the acquisitions in the direct azimuth are preferred over the
indirect ones. This preference is expressed by setting α = 2 × β for the shots
acquired in a direct azimuth and α = β for the indirect ones (the value of β
is fixed empirically). Hence:

begin
if i is odd then

tabu(i) = iter + 2 × β × freq(i);

else
tabu(i) = iter + β × freq(i);

end;

Recall that in Section 3 we use odd and even numbers to differentiate the
shots regarding to their acquisition directions.

Move Heuristic

Once the neighborhood is evaluated, the selected shot (move) is the one that
maximizes the gain value and does not remove a sequence of tabu shots. How-
ever, if a move strictly improves the best gain then the aspiration criterion is
employed to cancel the tabu status of a sub-schedule. Therefore in Algorithm

TS to Solve Real-Life Combinatorial Optimization Problems 143

1, the condition labeled [1] corresponds to either the best gain g∗ is strictly
improved (aspiration criterion) or the sub-schedule sl is not tabu.

To summarize, we start by constructing Lcand, we select randomly one
candidate move (sl, i, pm) from Lcand, then we insert the shot i in sl at the
position pm to obtain the neighbor configuration s′ that replaces the current
one, which completes the move.

The Enhanced Aspiration Criteria

As described above, if some moves lead to the same gain value then one
of them is randomly chosen. However, this selection criterion is not the
most effective one. For this reason and to tone down the random effect,
we have introduced a second objective function which is the minimization
of the sum of the transition durations in a configuration s with the re-
spects of the constraints of the initial problem. We denote this sum by
TdT (s) =

∑2n
i=1

∑2n

j=1

j �=i

xi.xj .yi→j .d(i → j) .

The aim of this minimization is to obtain a shortest schedule in terms of
the sum of the transition durations between the strip shootings. Indeed, the
reduction of this sum can generate visibility time windows sufficiently broad
and usable by the satellite to acquire new shots and without removing those
that are already selected. The dedicated algorithm to achieve this secondary
optimization is not detailed here. It is simply based on two operations: the ex-
change of the order of the shots and the inversion of the acquisition direction
of the strips.

According to this new secondary objectif, we improve the aspiration cri-
terion as follows. The tabu status of a sub-schedule is canceled if one of the
two conditions below is verified:

1. if a move leads to a configuration s′ better than the best configuration s∗

found so far, i.e. G(s′) > G(s∗) = g∗,
2. if a move leads to a configuration s′ with the same gain value of s∗ but

with a lower TdT value than TdT (s∗), i.e. G(s′) = G(s∗) and TdT (s′) <
TdT (s∗).

4.4 Intensification and Diversification Phases

The tabu mechanism may lead to a state where no move is admissible (all
moves are tabu). This occurs when each possible move has been tried a large
number of times without improving the best configuration already reached
s∗. In this case, we launch an intensification phase: when the gain cannot be
improved (all the shots are tabu and the aspiration criterion is not satisfied)
the intensification phase attempts to overcome this situation by exploiting
the best schedule s∗ as follows:

144 D. Habet

First step: The minimization of the sum of the transition durations of s∗ is
treated. If it succeeds (i.e. the TdT (s∗) value is decreased) then the tabu status
of all the shots are set to 0, and the tabu exploration is restarted from the s∗.
This step is important. In fact, we have observed that during the experimental
process if this first step has been achieved successfully then we may insert a
free shot without any removal and consequently improve the best gain g∗.

Second step: When the first step fails, we decrease the β value by dividing
it by 2, β←β/2 . Hence, the tabu durations are reduced (recall that β is a
variable parameter of the tabu tenure of a shot, see Section 4.3). Accord-
ingly, if β>1 then the tabu status of all the shots are set to 0 and the tabu
exploration is restarted from the best solution s∗.

As described above, the intensification phase alternates between two ex-
clusive steps. In fact, the execution of the fist step (respectively, the second
step) inhibits the execution of the second one (respectively, the first one).
Its aim is to focus the exploration around the elements of the best solution
by either reordering its selected strips and inverting their acquisition direc-
tions (TdT (s∗) minimization) or by decreasing the tabu tenure of the shots.
However, if the intensification phase does not improve the best gain then a
diversification process is applied.

The role of diversification is to escape from the attractive zones of the
search space corresponding to the local minima. For this reason, when both
the tabu exploration and the intensification phase fail, we generate a new
starting point (first schedule) different from the last one used at the beginning
of the tabu exploration, we set the tabu status of all the shots to 0 and the β
parameter to a new value fixed empirically, then we restart the tabu search
from this new point.

4.5 Global Tabu Resolution

The TS algorithm follows a general scheme consisting of three iterative phases:
exploration, intensification and diversification. All these resolution steps are
given in Algorithm 2. It starts by initializing the different structures that it uses,
such as the wg, freq and tabu values. The greedy algorithm (denoted greedy())
returns a first feasible solution s0 constructed by successive image insertions
without any removal. Let us give more details about this greedy algorithm.

In fact, to produce quickly a first feasible solution, we use a simple algo-
rithm based on the operation of inserting a shot that does not require the
removal of the already selected shots. Also, each shot i ∈ [1, 2n] is weighted
according to the number of times that it was selected by the greedy algorithm.
We denote by wg(i) this weight which is initialized to 0.

When it is launched, the greedy algorithm starts by sorting the 2n shots in
the increasing order of their weights wg and stores them is a list Q. The first
element of Q is the least selected shot by greedy() and the last one is the most

TS to Solve Real-Life Combinatorial Optimization Problems 145

Algorithm 2. Tabu–AEOS()
begin

for i=1 to 2n do
wg(i) ← 0; % initialization of the wg weights

repeat

% initialization of the tabu and the frequency values of each shot
for i=1 to 2n do

xi ← 0;
freq(i) ← 0;
tabu(i) ← 0;

(1) s ← s0 ← greedy(); % the initial configuration
s∗ ← s; % initialization of the best configuration
g∗ ← G(s∗); % initialization of the best gain
β ← |s0|+; % initialization of the β factor
iter ← 0; % initialization of the iteration number
repeat

(Lcand, best gain) ← Evaluate-N (s);
if Lcand �= ∅ then

%% Tabu exploration
(sl, i, pm) ← randSelect(Lcand);
s ← propagate move(sl, i, pm); % Inserts i in sl at pm and prop-

agates all the constraints
freq(i) ← freq(i) + 1;
iter ← iter + 1;

(2) if (i modulo 2) = 1 then

α ← 2 × β;

else α ← β;
tabu(i) ← iter + α × freq(i);
if (best gain > g∗) or (best gain = g∗ and TdT (s) < TdT (s∗))

then
s∗ ← s; g∗ ← best gain;

else
% intensification: step 1

(3) (z, TdTz) ← Minimize–TdT (s∗);
if TdTz < TdT (s∗) then

s∗ ← z;

else
% intensification: step 2

β ← β/2;

for i=1 to 2n do freq(i) ← 0; tabu(i) ← 0;
s ← s∗;

until (β < 1 or |s∗| = n);
%% If (β < 1) then Diversification phase

until (stop criterion or |s∗| = n);
return (s∗, g∗);

end;

146 D. Habet

selected one. Hence, acquiring the shots according to their weights wg aims to
favor the acquisition of the less selected shots by the greedy algorithm. This
one selects one by one the shots in Q (starting by the first one) and attempts
to insert it without dropping the already selected shots. When it is selected
by greedy(), the weight wg(i) of the shot i is incremented. Regarding to the
weights wg and to their corresponding sorted shots list Q, two executions of
Algorithm greedy() will return two different configurations in terms of the
selected strips. This feature allows us to deal with the diversification step
that needs different starting points (see last paragraph of Section 4.4).

|s0|+ is the number of the selected shots in s0 and which are acquired in the
direct azimuth. The instruction labeled [2] tunes the value of the parameter
α according to the shooting direction of an image and as explained in Section
4.3: we recall that an odd (even) number indicates a shot that is acquirable
on the direct (indirect) azimuth. The Minimze–TdT (s∗) function (label [3])
corresponds to the tabu algorithm dedicated to the minimization of TdT (s∗)
value. Finally, the stop criterion is a limited execution time.

The diversification phase is launched when the intensification step fails.
Hence, we execute a new iteration of the most external loop repeat ... until
by generating a new starting point s0 by the means of the greedy algorithm
and executing the tabu search, ...

The different phases (exploration, intensification and diversification) use
the same tabu search engine. Each one is triggered and stopped automatically
by the tabu list management, i.e. whenever no more move is admissible.

5 Computational Results

The AEOS management problem was the subject of the 3rd international
challenge organized by the French Society of Operations Research and Deci-
sion Analysis (ROADEF’2003), and proposed by the CNES1 and ONERA2

French space agencies.
The provided instances are artificially generated, such as:

• the number of requests (m value) is ranging from 2 to 375, and
• the number of strips (n value)is varying from 2 to 534 with a maximum

of 113 stereo strips (nstereo value).

Table 1 gives the properties of each of the 20 used instances3.
Table 2 gives the best known gains as published during the ROADEF’

2003 challenge, in a booklet of abstracts [26] and also available on the WEB
site of the challenge3, but using different test parameters: Sun-Blade-1000
750Mhz/ 512MB workstation and 300 seconds running time.
1 Acronym of “Centre National d’Etudes Spatiales”.
2 Acronym of “Office National d’Etudes et de Recherches Aérospatiales”.
3 Available from the WEB site of the challenge:

www.prism.uvsq.fr/ vdc/ROADEF/CHALLENGES/2003

TS to Solve Real-Life Combinatorial Optimization Problems 147

Table 1 Test Instance Characteristics

Instance m n nStereo

2 9 36 2 2 0
2 9 66 4 7 0
2 13 111 68 106 12
2 15 170 218 295 39
2 26 96 336 483 63
2 27 22 375 534 67
2 9 170 12 25 4
3 25 22 150 342 113
3 8 155 12 28 10
4 17 186 77 147 48

2 21 140 284 420 58
2 21 155 311 472 55
2 21 170 294 450 71
2 21 22 306 455 54
2 21 37 315 477 62
2 21 7 289 410 49
2 21 81 297 436 59
2 21 96 291 437 49
3 21 155 135 295 105
3 21 81 135 283 88

Table 2 The best known gains

Instance Best known gain Instance Best known gain

2 9 36 10,423,440 2 21 140 1,029,892,360
2 9 66 115,710,959 2 21 155 1,150,632,847
2 13 111 563,597,071 2 21 170 891,060,370
2 15 170 719,417,220 2 21 22 1,160,366,840
2 26 96 1,005,301,900 2 21 37 954,965,580
2 27 22 967,910,750 2 21 7 842,378,700
2 9 170 191,358,231 2 21 81 986,679,410
3 25 22 425,983,220 2 21 96 1,133,044,250
3 8 155 121,680,360 3 21 155 4,6019,6570
4 17 186 185,406,200 3 21 81 373,553,350

The TS algorithms is implemented in C/C++ language and compiled using
Visual C++. The experiments were carried on a PIV 1.9 Ghz PC with 512 MB

of RAM. The execution time, corresponding to the stop criterion of Algorithm
2, is fixed to 1800 seconds in order to evaluate the behavior of the algorithm
over a relatively long computation time. Table 3 gives the obtained results.
The TS algorithm was run 10 times per instance with different random seeds
and the following information are collected:

148 D. Habet

Table 3 The results obtained after 1800 seconds running time

Instance Best Worst Average
Gain Ns Time Gain Gain Time

2 9 36 10,423,440 2 <1 10,423,440 10,423,440 <1
2 9 66 115,710,959 7 <1 115,710,959 115,710,959 <1
2 13 111 563,597,071 54 90 563,597,071 563,597,071 90
2 15 170 719,417,220 40 221 719,417,220 719,417,220 561
2 26 96 1,005,301,900 35 1725 985,763,300 989,671,020 443
2 27 22 966,643,460 30 57 966,643,460 966,643,460 57
2 9 170 191,358,231 17 <1 191,358,231 191,358,231 <1
3 25 22 425,983,220 28 95 425,983,220 425,983,220 95
3 8 155 121,680,360 12 <1 121,680,360 121,680,360 <1
4 17 186 185,406,200 37 <1 185,406,200 185,406,200 <1

2 21 140 1,030,060,860 32 191 1,027,543,540 1,029,288,814 467
2 21 155 1,150,632,847 35 1074 1,129,245,020 1,132,568,329 762
2 21 170 914,978,310 40 573 906,992,592 912,183,616 1151
2 21 22 1,160,594,340 32 115 1,160,366,840 1,160,571,590 831
2 21 37 954,965,580 37 190 954,605,760 954,821,652 602
2 21 7 842,378,700 33 115 842,378,700 842,378,700 116
2 21 81 986,679,410 30 897 98,424,5930 985,894,172 778
2 21 96 113,4461,030 38 843 1,125,880,120 1,130,197,543 932
3 21 155 460,196,570 36 3 460,196,570 460,196,570 3
3 21 81 37,3553,350 28 16 373,553,350 373,553,350 16

• Over the 10 runs, the best gain value, the time needed to reach this
gain and the number of the selected strips in the corresponding solution
(columns 2, 3 and 4 of Table 3).

• Over the 10 runs, the worst gain (column 5), and the average gain and
time (columns 6 and 7).

For the ten first instances (from 2 9 36 to 4 17 186, which we call A instances),
all the best known gains are reached except for instance 2 27 22. These values
are obtained after a maximum of 221 sec, except for instance 2 26 96, which
required 1725 sec. For the ten instances 2 21 140 to 3 21 81 (B instances), all
the best values are reached after less than 200 sec computing time except for
the instances 2 21 155 and 2 21 81, which require 1074 and 897 sec respectively.
Furthermore, the gains which are obtained for the instances 2 21 140, 2 21 170,
2 21 22 and 2 21 96 are improved after a maximum of 843 sec.

Several comments can be made about these results. First, our TS algorithm
is efficient and robust. In fact, 15 best gains are reached and 4 are improved,
even if the best known gains were obtained on different experimentation
conditions and the optimal gains are unknown.

Concerning the robustness of the algorithm, the gap value between the best
gain found and the average gain, calculated using the formula 100×(Best

Average −
1), is equal to 0% for 12 instances (the best known value is always reached),

TS to Solve Real-Life Combinatorial Optimization Problems 149

and less then 1.60% for the rest of the benchmark, which is a poor value.
Secondly, these instances seems highly constrained since only a small number
of candidate strips are selected in the best solutions.

6 Conclusion

We have presented in this paper a recall on the main characteristics of a Tabu
Search algorithm. Applying such algorithm to solve a given problem is not
an easy task. It requires a very good knowledges on the treated problem and
it calls for caution during the specification of its various elements, mainly the
tabu list management, the diversification and the intensification.

Like any other local search method, TS may also require spending an
important time in tuning some of its parameters. Such empirical step is very
important in order to ensure its efficiency and robustness.

It seems also hard to generalize our resolution to other combinatorial op-
timization problems. In fact, each problem has its own characteristics that
make it singular in regards to a resolution by a tabu-like method. However,
it is clear that all the implementations of Tabu Search share the same com-
ponents, including the search space and the neighborhood definition, the
neighborhood evaluation, the move heuristic, tabu tenure, the diversification
and the intensification.

Neverless, Tabu Search remains a powerful approach that has been applied
with great success to many difficult combinatorial optimization problems.
We have illustrated such case by solving successfully a NP-hard optimization
problem, which is the managing of an agile earth observing satellite. This
problem is intractable effectively by a complete method. Only approximate
methods, based on neighborhood, were able to meet with some effectiveness.

References

1. Benoist, T., Rottembourg, B.: Upper Bounds of the Maximal Revenue of an
Earth Observation Satellite. 4OR: A Quarterly Journal of Operations Re-
search 2(3), 235–249 (2004)

2. Bensana, E., Verfaillie, G., Agnèse, J.G., Bataille, N., Blumstein, D.: Exact
and Approximate Methods for the Daily Management of an Earth Observation
Satellite. In: Proceeding of the 4th International Symposium od Space Mission
Operations and Ground Data Systems (spaceOps 1996) (1996)

3. Bensana, E., Lemâıtre, M., Verfaillie, G.: Earth Observation Satellite Manage-
ment. Constraints: An International Jounal 4(3), 293–299 (1999)

4. Cordeau, J.F., Laporte, G., Mercier, A.: A Unified Tabu Search Heuristic for
Vehicle Routing Problems with Time Windows. Journal of Operational Re-
search Society 59, 928–936 (2001)

5. de Werra, D., Hertz, A.: Tabu Search Techniques: A Tutorial and an Applica-
tion to Neural Networks. OR Spektrum 11, 131–141 (1989)

150 D. Habet

6. Fleurent, C., Ferland, J.A.: Genetic and Hybrid Algorithms for Graph Coloring.
Annals of Operations Research 63, 437–461 (1996)

7. Gabrel, V.: Improved Linear Programming Bounds via Column Generation for
Daily Scheduling of Earth Observation Satellite. Technical report, LIPN (1999)

8. Gabrel, V., Moulet, A., Murat, C., Paschos, V.T.: A New model and derived
algorithms for the satellite shot planning problem using graph theory concepts.
Annals of Operations Research 69, 115–134 (1997)

9. Gendreau, M.: An Introduction to Tabu Search. Handbook of Metaheuris-
tics 57, 37–54 (2003)

10. Gendreau, M., Guertin, F., Potvin, J., Taillard, E.: Parallel tabu search for
real-time vehicle routing and dispatching. Transportation Science 33(4), 381–
390 (1999)

11. Gendreau, M., Laporte, G., Potvin, J.Y.: Metaheuristics for the capacitated
vrp. pp. 129–154 (2001)

12. Gendreau, M., Soriano, P., Salvail, L.: Solving the maximum clique problem
using a tabu search approach. Annals of Operations Research 41(1-4), 385–403
(1993)

13. Glover, F.: Tabu Search – Part I. ORSA Journal on Computing 1, 190–206
(1989)

14. Glover, F.: Tabu Search – Part II. ORSA Journal on Computing 2, 4–32 (1990)
15. Glover, F., Kochenberger, G.A.: Critical Event Tabu Search for Multidimen-

sional Knapsack Problems. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heurisitics:
Theory and Applications, pp. 407–428. Kluwer Academic Publishers, Dordrecht
(1996)

16. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht
(1997)

17. Hall, N.G., Magazine, M.J.: Maximizing the Value of a Space Mission. European
Journal of Operational Research (78), 224–241 (1994)

18. Hanafi, S., Freville, A.: An Efficient Tabu Search Approach for the 0-1 Mul-
tidimensional Knapsack Problem. European Journal of Operational Research,
Special Tabu Search Issue 106(2–3), 663–697 (1998)

19. Harrison, S.A., Price, M.E.: Task Scheduling for Satellite Based Imagery. In:
Proceedings of the 18th Workshop of UK Planning and Scheduling Special
Interest Group, pp. 64–78 (1999)

20. Hertz, A.: Finding a feasible course schedule using tabu search. Discrete Appl.
Math. 35(3), 255–270 (1992)

21. Hertz, A., de Werra, D.: The Tabu Search Metaheuristic: How We Used It.
Annals of Mathematics and Artificial Intelligence 1, 111–121 (1991)

22. McKendall Jr., A.R.: Improved Tabu search heuristics for the dynamic space
allocation problem. Comput. Oper. Res. 35(10), 3347–3359 (2008)

23. Laguna, M., Barnes, J.W., Glover, F.: Tabu search methodology for a single
machine scheduling problem. Journal of Intelligent Manufacturing 2, 63–74
(1991)

24. Lemâıtre, M., Verfaillie, G., Jouhaud, F., Lachiver, J.M., Bataille, N.: Selecting
and Scheduling Observations of Agile Satellites. Aerospace Science and Tech-
nology 6(5), 367–381 (2002)

25. Liu, Y., Yi, Z., Wu, H., Ye, M., Chen, K.: A tabu search approach for the min-
imum sum-of-squares clustering problem. Inf. Sci. 178(12), 2680–2704 (2008)

26. ROADEF 2003 Challenge. Booklet of Abstracts. ROADEF society, France
(February 2003)

TS to Solve Real-Life Combinatorial Optimization Problems 151

27. Schiex, T., Fargier, F., Verfaillie, G.: Valued Constrained Satisfaction Problems:
Hard and Easy problems. In: Proceedings of IJCAI 1995, 14th International
Joint Conference on Artificial Intelligence, pp. 631–639 (1995)

28. Vasquez, M., Hao, J.K.: A Logic-Constrained Knapsack Formulation and a
Tabu Algorithm for the Daily Photograph Scheduling of an Earth Observation
Satellite. Journal of Computational Optimization and Applications 20(2), 137–
157 (2001)

29. Vasquez, M., Hao, J.K.: Upper Bounds for the SPOT5 Daily Photograph
Scheduling Problem. Journal of Combinatorial Optimization 7, 87–103 (2003)

30. Wolf, W.J., Sorensen, S.E.: Three Scheduling Algorithms Applied to the Earth
Observing Systems Domain. Management Science 46(1), 146–168 (2000)

Reformulations in Mathematical
Programming: A Computational
Approach

Leo Liberti, Sonia Cafieri, and Fabien Tarissan

Abstract. Mathematical programming is a language for describing opti-
mization problems; it is based on parameters, decision variables, objective
function(s) subject to various types of constraints. The present treatment is
concerned with the case when objective(s) and constraints are algebraic math-
ematical expressions of the parameters and decision variables, and therefore
excludes optimization of black-box functions. A reformulation of a mathemat-
ical program P is a mathematical program Q obtained from P via symbolic
transformations applied to the sets of variables, objectives and constraints.
We present a survey of existing reformulations interpreted along these lines,
some example applications, and describe the implementation of a software
framework for reformulation and optimization.

1 Introduction

Optimization and decision problems are usually defined by their input and a
mathematical description of the required output: a mathematical entity with
an associated value, or whether a given entity has a specified mathematical
property or not. Mathematical programming is a language designed to express
almost all practically interesting optimization and decision problems.

Mathematical programming formulations can be categorized according to
various properties, and rather efficient solution algorithms exist for many of
the categories. As in most languages, the same semantics can be conveyed
by many different syntactical expressions. In other words, there are many
equivalent formulations for each given problem (what the term “equivalent”
means in this context will be defined later). Furthermore, solution algorithms
for mathematical programming formulations often rely on solving a sequence

Leo Liberti, Sonia Cafieri, and Fabien Tarissan
LIX, École Polytechnique, Palaiseau, 91128 France
e-mail: {liberti,cafieri,tarissan}@lix.polytechnique.fr

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 153–234.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

154 L. Liberti et al.

of different problems (often termed auxiliary problems) related to the original
one: although these are usually not fully equivalent to the original problem,
they may be relaxations, projections, liftings, decompositions (among others).
Auxiliary problems are reformulations of the original problem.

Consider for example the Kissing Number Problem (KNP) in D dimensions
[60], i.e. the determination of the maximum number of unit D-dimensional
spheres that can be arranged around a central unit D-dimensional sphere. As
all optimization problems, this can be cast (by using a bisection argument)
as a sequence of decision problems on the cardinality of the current spheres
configuration. Namely, given the positive integers D (dimension of Euclidean
space) and N , is there a configuration of N unit spheres around the central
one? For any fixed D, the answer will be affirmative or negative depending
on the value of N . The highest N such that the answer is affirmative is the
kissing number for dimension D. The decision version of the KNP can be cast
as a nonconvex Nonlinear Programming (NLP) feasibility problem as follows.
For all i ≤ N , let xi = (xi1, . . . , xiD) ∈ RD be the center of the i-th sphere.
We look for a set of vectors {xi | i ≤ N} satisfying the following constraints:

∀ i ≤ N ||xi|| = 2
∀ i < j ≤ N ||xi − xj || ≥ 2

∀ i ≤ N − 2 ≤ xi ≤ 2.

It turns out that this problem is numerically quite difficult to solve, as it is
very unlikely that the local NLP solution algorithm will be able to compute
a feasible starting solution. Failing to find an initial feasible solution means
that the solver will immediately abort without having made any progress.
Most researchers with some practical experience in NLP solvers (such as
e.g. SNOPT [41]), however, will immediately reformulate this problem into
a more computationally amenable form by squaring the norms to get rid
of a potentially problematic square root, and treating the reverse convex
constraints ||xi − xj || ≥ 2 as soft constraints by multiplying the right hand
sides by a non-negative scaling variable α, which is then maximized:

maxα (1)
∀ i ≤ N ||xi||2 = 4 (2)

∀ i < j ≤ N ||xi − xj ||2 ≥ 4α. (3)
∀ i ≤ N − 2 ≤ xi ≤ 2 (4)

α ≥ 0. (5)

In this form, finding an initial feasible solution is trivial; for example, xi =
(2, 0, . . . , 0) for all i ≤ N will do. Subsequent solver iterations will likely be
able to provide a better solution. Should the computed value of α be ≥ 1,
the solution would be feasible in the hard constraints, too. Currently, we are
aware of no optimization language environment that is able to perform the

Reformulations in Mathematical Programming 155

described reformulation automatically. Whilst this is not a huge limitation
for NLP experts, people who simply wish to model a problem and get its
solution will fail to obtain one, and may even be led into thinking that the
formulation itself is infeasible.

Another insightful example of the types of limitations we refer to can be
drawn from the KNP. We might wish to impose ordering constraints on some
of the spheres to reduce the number of symmetric solutions. Ordering spheres
packed on a spherical surface is hard to do in Euclidean coordinates, but it
can be done rather easily in spherical coordinates, by simply stating that the
value of a spherical coordinate of the i-th sphere must be smaller than the
corresponding value in the j-th sphere. We can transform a Euclidean coor-
dinate vector x = (x1, . . . , xD) in D-spherical coordinates (ρ, ϑ1, . . . , ϑD−1)
such that ρ = ||x|| and ϑ ∈ [0, 2π]D−1 by means of the following equations:

ρ = ||x|| (6)

∀k ≤ D xk = ρ sinϑk−1

D−1∏
h=k

cosϑh (7)

(this yields another NLP formulation of the KNP). Applying the D-spherical
transformation is simply a matter of term rewriting and algebraic simplifica-
tion, and yet no currently existing optimization language environment offers
such capabilities. By pushing things further, we might wish to devise an al-
gorithm that dynamically inserts or removes constraints expressed in either
Euclidean or spherical coordinates depending on the status of the current
solution, and re-solves the (automatically) reformulated problem at each it-
eration. This may currently be done (up to a point) by optimization language
environments such as AMPL [39], provided all constraints are part of a pre-
specified family of parametric constraints. Creating new constraints by term
rewriting, however, is not a task currently addressed by current mathematical
programming implementations.

The limitations emphasized in the KNP example illustrate a practical need
for very sophisticated software including numerical as well as symbolic algo-
rithms, both applied to the unique goal of solving optimization problems
cast as mathematical programming formulations. The current state of affairs
is that there are many numerical optimization solvers and many Computer
Algebra Systems (CAS) — such as Maple or Mathematica — whose efficiency
is severely hampered by the full generality of their capabilities. In short, we
would ideally need (small) parts of the symbolic kernels driving the exist-
ing CASes to be combined with the existing optimization algorithms, plus a
number of super-algorithms capable of making automated, dynamic decisions
on the type of reformulations that are needed to improve the current search
process.

Although the above paradigm might seem far-fetched, it does in fact al-
ready exist in the form of the hugely successful CPLEX [52] solver targeted at

156 L. Liberti et al.

solving Mixed-Integer Linear Programming (MILP) problems. The initial for-
mulation provided by the user is automatically simplified and improved with
a sizable variety of pre-processing steps which attempt to reduce the number
of variables and constraints. Thereafter, at each node of the Branch-and-
Bound algorithm, the formulation may be tightened as needed by inserting
and removing additional valid constraints, in the hope that the current re-
laxed solution of the (automatically obtained) linear relaxation is improved.
Advanced users may of course decide to tune many parameters controlling
this process, but practitioners needing a practical answer can simply use de-
fault parameters and to let CPLEX decide what is best. Naturally, the task
carried out by CPLEX is greatly simplified by the assumption that both ob-
jective function and constraints are linear forms, which is obviously not the
case in a general nonlinear setting.

In this chapter we attempt to move some steps in the direction of endow-
ing general mathematical programming with the same degree of algorithmic
automation enjoyed by linear programming. We propose: (a) a theoretical
framework in which mathematical programming reformulations can be for-
malized in a unified way, and (b) a literature review of the most successful
existing reformulation and relaxation techniques in mathematical program-
ming. Since an all-comprehensive literature review in reformulation tech-
niques would extend this chapter to possibly several hundreds (thousands?)
pages, only a partial review has been provided. In this sense, this should
be seen as “work in progress” towards laying the foundations to a computer
software which is capable of reformulating mathematical programming formu-
lations automatically. Note also that for this reason, the usual mathematical
notations have been translated to a data structure framework that is de-
signed to facilitate computer implementation. Most importantly, “functions”
— which as mathematical entities are interpreted as maps between sets —
are represented by expression trees: what is meant by the expression x + y,
for example, is really a directed binary tree on the vertices {+, x, y} with
arcs {(+, x), (+, y)}. For clarity purposes, however, we also provide the usual
mathematical languages.

One last (but not least) remark is that reformulations can be seen as
a new way of expressing a known problem. Reformulations are syntactical
operations that may add or remove variables or constraints, whilst keeping
the fundamental structure of the problem optima invariant. When some new
variables are added and some of the old ones are removed, we can usually try
to re-interpret the reformulated problem and assign a meaning to the new
variables, thus gaining new insights to the problem. One example of this is
given in Sect. 3.5. One other area in mathematical programming that provides
a similarly clear relationship between mathematical syntax and semantics is
LP duality with the interpretation of reduced costs. This is important insofar
as it offers alternative interpretations to known problems, which gains new
and useful insights.

Reformulations in Mathematical Programming 157

The rest of this chapter is organized as follows. In Section 2 we propose
a general theoretical framework of definitions allowing a unified formaliza-
tion of mathematical programming reformulations. The definitions allow a
consistent treatment of the most common variable and constraint manipula-
tions in mathematical programming formulations. In Section 3 we present a
systematic study of a set of well known reformulations. Most reformulations
are listed as symbolic algorithms acting on the problem structure, although
the equivalent transformation in mathematical terms is given for clarity pur-
poses. In Section 4 we present a systematic study of a set of well known
relaxations. Again, relaxations are listed as symbolic algorithms acting on
the problem structure whenever possible, the equivalent mathematical trans-
formation being given for clarity. Section 5 describes the implementation of
ROSE, a Reformulation/Optimization Software Engine.

2 General Framework

In Sect. 2.1 we formally define what a mathematical programming formulation
is. In Sect. 2.2 we discuss the expression tree function representation. Sect. 2.3
lists the most common standard forms in mathematical programming.

2.1 A Data Structure for Mathematical Programming
Formulations

In this chapter we give a formal definition of a mathematical programming
formulation in such terms that can be easily implemented on a computer. We
then give several examples to illustrate the generality of our definition. We
refer to a mathematical programming problem in the most general form:

min f(x)
g(x) � b

x ∈ X,

⎫⎬
⎭ (8)

where f, g are function sequences of various sizes, b is an appropriately-sized
real vector, and X is a cartesian product of continuous and discrete intervals.

The precise definition of a mathematical programming formulation lists
the different formulation elements: parameters, variables having types and
bounds, expressions depending on the parameters and variables, objective
functions and constraints depending on the expressions. We let P be the set of
all mathematical programming formulations, and M be the set of all matrices.
This is used in Defn. 1 to define leaf nodes in mathematical expression trees,
so that the concept of a formulation can also accommodate multilevel and
semidefinite programming problems. Notationwise, in a digraph (V, A) for all
v ∈ V we indicate by δ+(v) the set of vertices u for which (v, u) ∈ A and by
δ−(v) the set of vertices u for which (u, v) ∈ A.

158 L. Liberti et al.

Definition 1. Given an alphabet L consisting of countably many alphanu-
meric names NL and operator symbols OL, a mathematical programming
formulation P is a 7-tuple (P ,V , E ,O, C,B, T), where:

• P ⊆ NL is the sequence of parameter symbols: each element p ∈ P is a
parameter name;

• V ⊆ NL is the sequence of variable symbols: each element v ∈ V is a
variable name;

• E is the set of expressions: each element e ∈ E is a Directed Acyclic Graph
(DAG) e = (Ve, Ae) such that:

(a) Ve ⊆ L is a finite set
(b) there is a unique vertex re ∈ Ve such that δ−(re) = ∅ (such a vertex is

called the root vertex)
(c) vertices v ∈ Ve such that δ+(v) = ∅ are called leaf vertices and their set

is denoted by λ(e); all leaf vertices v are such that v ∈ P ∪V ∪R∪P∪M

(d) for all v ∈ Ve such that δ+(v) �= ∅, v ∈ OL
(e) two weight functions χ, ξ : Ve → R are defined on Ve: χ(v) is the node

coefficient and ξ(v) is the node exponent of the node v; for any vertex
v ∈ Ve, we let τ(v) be the symbolic term of v: namely, v = χ(v)τ(v)ξ(v).

elements of E are sometimes called expression trees; nodes v ∈ OL repre-
sent an operation on the nodes in δ+(v), denoted by v(δ+(v)), with output
in R;

• O ⊆ {−1, 1} × E is the sequence of objective functions; each objective
function o ∈ O has the form (do, fo) where do ∈ {−1, 1} is the optimization
direction (−1 stands for minimization, +1 for maximization) and fo ∈ E;

• C ⊆ E × S × R (where S = {−1, 0, 1}) is the sequence of constraints c of
the form (ec, sc, bc) with ec ∈ E , sc ∈ S, bc ∈ R:

c ≡

⎧⎨
⎩

ec ≤ bc if sc = −1
ec = bc if sc = 0
ec ≥ bc if sc = 1;

• B ⊆ R|V| × R|V| is the sequence of variable bounds: for all v ∈ V let
B(v) = [Lv, Uv] with Lv, Uv ∈ R;

• T ⊆ {0, 1, 2}|V| is the sequence of variable types: for all v ∈ V, v is called
a continuous variable if T (v) = 0, an integer variable if T (v) = 1 and a
binary variable if T (v) = 2.

We remark that for a sequence of variables z ⊆ V we write T (z) and
respectively B(z) to mean the corresponding sequences of types and re-
spectively bound intervals of the variables in z. Given a formulation P =
(P ,V , E ,O, C,B, T), the cardinality of P is |P | = |V|. We sometimes refer to
a formulation by calling it an optimization problem or simply a problem.

Reformulations in Mathematical Programming 159

x_1

−2 *

x_1

−2 *

x_1

−2 * −2 * −2 * −2 * −2 *

3 ^

x_1

^ ^ 3 ^ ^ ^

x_2 x_3 x_4 x_5 x_6

2 2 2 2

x_2 x_3 x_4 x_2 x_3 x_4 x_5 x_4 x_6 x_5 x_6

+

××××××

×××××××

222222

x_1 x_2 x_3 x_4 x_5 x_6

+

Fig. 1 The graphs e1 (above) and e2 (below) from Example 2.1

Definition 2. Any formulation Q that can be obtained by P by a finite se-
quence of symbolic operations carried out on the data structure is called a
problem transformation.

Examples

In this section we provide some explicitly worked out examples that illustrate
Defn. 1.

A quadratic problem

Consider the problem of minimizing the quadratic form 3x2
1 + 2x2

2 + 2x2
3 +

3x2
4 + 2x2

5 + 2x2
6 − 2x1x2 − 2x1x3 − 2x1x4 − 2x2x3 − 2x4x5 − 2x4x6 − 2x5x6

subject to x1 + x2 + x3 + x4 + x5 + x6 = 0 and xi ∈ {−1, 1} for all i ≤ 6. For
this problem,

• P = ∅;
• V = (x1, x2, x3, x4, x5, x6);
• E = (e1, e2) where e1, e2 are the graphs shown in Fig. 1;
• O = (−1, e1);
• C = ((e2, 0, 0));
• B = ([−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1]);
• T = (2, 2, 2, 2, 2, 2).

160 L. Liberti et al.

Fig. 2 The BGBP in-
stance in Example 2.1

1

2

3

4

5

6

Balanced graph bisection

Example 2.1 is a (scaled) mathematical programming formulation of a bal-
anced graph bisection problem instance. This problem is defined as follows.

Balanced Graph Bisection Problem (BGBP). Given an undi-
rected graph G = (V, E) without loops or parallel edges such that |V |
is even, find a subset U ⊂ V such that |U | = |V |

2 and the set of edges
C = {{u, v} ∈ E | u ∈ U, v �∈ U} is as small as possible.

The problem instance considered in Example 2.1 is shown in Fig. 2. To all
vertices i ∈ V we associate variables xi =

{
1 i ∈ U

−1 i �∈ U
. The number of edges in

C is counted by 1
4

∑
{i,j}∈E

(xi − xj)2. The fact that |U | = |V |
2 is expressed by

requiring an equal number of variables at 1 and -1, i.e.
∑6

i=1 xi = 0.
We can also express the problem in Example 2.1 as a particular case of

the more general optimization problem:

minx x�Lx
s.t. x1 = 0

x ∈ {−1, 1}6,

⎫⎬
⎭

where

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

3 −1 −1 −1 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
−1 0 0 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

and 1 = (1, 1, 1, 1, 1, 1)�. We represent this class of problems by the following
mathematical programming formulation:

• P = (Lij | 1 ≤ i, j ≤ 6);
• V = (x1, x2, x3, x4, x5, x6);
• E = (e′1, e2) where e′1 is shown in Fig. 3 and e2 is shown in Fig. 1 (below);
• O = (−1, e′1);
• C = ((e2, 0, 0));

Reformulations in Mathematical Programming 161

x_1 x_1 x_1

^

x_1 2

^

2

^

2

^

2

^

2

^

2x_2 x_3 x_4 x_5 x_6

x_2 x_3 x_4 x_2 x_3 x_4 x_5 x_4 x_6 x_5 x_6

L11 L22 L33 L44 L55 L66

L12 L13 L14 L23 L45 L46 L56

+

××××××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Fig. 3 The graph e′1 from Example 2.1. L′
ij = Lij + Lji for all i, j

• B = ([−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1]);
• T = (2, 2, 2, 2, 2, 2).

The Kissing Number Problem

The kissing number problem formulation (1)-(5) is as follows:

• P = (N, D);
• V = (xik | 1 ≤ i ≤ N ∧ 1 ≤ k ≤ D) ∪ {α};
• E = (f, hj , gij | 1 ≤ i < j ≤ N), where f is the expression tree for α, hj is

the expression tree for ||xj ||2 for all j ≤ N , and gij is the expression tree
for ||xi − xj ||2 − 4α for all i < j ≤ N ;

• O = (1, f);
• C = ((hi, 0, 4) | i ≤ N) ∪ ((gij , 1, 0) | i < j ≤ N);
• B = [−2, 2]ND;
• T = {0}ND.

As mentioned in Section 1, the kissing number problem is defined as
follows.

Kissing Number Problem (KNP). Find the largest number N of
non-overlapping unit spheres in RD that are adjacent to a given unit
sphere.

The formulation of Example 2.1 refers to the decision version of the problem:
given integers N and D, is there an arrangement of N non-overlapping unit
spheres in RD adjacent to a given unit sphere?

162 L. Liberti et al.

Algorithm 1. The evaluation algorithm for expression trees
double Eval(node v) {
double ρ;
if (v ∈ OL) {

// v is an operator
array α[|δ+(v)|];
∀ u ∈ δ+(v) {

α(u) =Eval(u);
}
ρ = χ(v)v(α)ξ(v);

} else {
// v is a constant value
ρ = χ(v)vξ(v);

}
return ρ;

}

2.2 A Data Structure for Mathematical Expressions

Given an expression tree DAG e = (V, A) with root node r(e) and whose
leaf nodes are elements of R or of M (the set of all matrices), the evaluation
of e is the (numerical) output of the operation represented by the operator
in node r applied to all the subnodes of r (i.e. the nodes adjacent to r);
in symbols, we denote the output of this operation by r(δ+(r)), where the
symbol r denotes both a function and a node. Naturally, the arguments of
the operator must be consistent with the operator meaning. We remark that
for leaf nodes belonging to P (the set of all formulations), the evaluation is
not defined; the problem in the leaf node must first be solved and a relevant
optimal value (e.g. an optimal variable value, as is the case with multilevel
programming problems) must replace the leaf node.

For any e ∈ E, the evaluation tree of e is a DAG ē = (V̄ , A) where V̄ =
{v ∈ V | |δ+(v)| > 0 ∨ v ∈ R} ∪ {x(v) | |δ+(v)| = 0 ∧ v ∈ V} (in short, the
same as V with every variable leaf node replaced by the corresponding value
x(v)). Evaluation trees are evaluated by Alg. 1. We can now naturally extend
the definition of evaluation of e at a point x to expression trees whose leaf
nodes are either in V or R.

Definition 3. Given an expression e ∈ E with root node r and a point x, the
evaluation e(x) of e at x is the evaluation r(δ+(r)) of the evaluation tree ē.

We consider a sufficiently rich operator set OL including at least +,×, power,
exponential, logarithm, and trigonometric functions (for real arguments) and
inner product (for matrix arguments). Note that since any term t is weighted
by a multiplier coefficient χ(t) there is no need to employ a − operator, for
it suffices to multiply χ(t) by −1 = ξ(v) in the appropriate term(s) t; a divi-
sion u/v is expressed by multiplying u by v raised to the power −1. Depend-
ing on the problem form, it may sometimes be useful to enrich OL with other

Reformulations in Mathematical Programming 163

(more complex) terms. In general, we view an operator in OL as an atomic
operation on a set of variables with cardinality at least 1.

A standard form for expressions

Since in general there is more than one way to write a mathematical expres-
sion, it is useful to adopt a standard form; whilst this does not resolve all
ambiguities, it nonetheless facilitates the task of writing symbolic computa-
tion algorithms acting on the expression trees. For any expression node t in
an expression tree e = (V, A):

• if t is a sum:

1. |δ+(t)| ≥ 2
2. no subnode of t may be a sum (sum associativity);
3. no pair of subnodes u, v ∈ δ+(t) must be such that τ(u) = τ(v) (i.e. like

terms must be collected); as a consequence, each sum only has one
monomial term for each monomial type

4. a natural (partial) order is defined on δ+(t): for u, v ∈ δ+(t), if u, v are
monomials, u, v are ordered by degree and lexicographically

• if t is a product:

1. |δ+(t)| ≥ 2
2. no subnode of t may be a product (product associativity);
3. no pair of subnodes u, v ∈ δ+(t) must be such that τ(u) = τ(v) (i.e. like

terms must be collected and expressed as a power)

• if t is a power:

1. |δ+(t)| = 2
2. the exponent may not be a constant (constant exponents are expressed

by setting the exponent coefficient ξ(t) of a term t)
3. the natural order on δ+(t) lists the base first and the exponent later.

The usual mathematical nomenclature (linear forms, polynomials, and so
on) applies to expression trees.

2.3 Standard Forms in Mathematical Programming

Solution algorithms for mathematical programming problems read a formula-
tion as input and attempt to compute an optimal feasible solution as output.
Naturally, algorithms which exploit problem structure are usually more effi-
cient than those that do not. In order to be able to exploit the structure of
the problem, solution algorithms solve problems that are cast in a standard
form that emphasizes the useful structure. In this section we review the most
common standard forms.

164 L. Liberti et al.

Linear Programming

A mathematical programming problem P is a Linear Programming (LP)
problem if (a) |O| = 1 (i.e. the problem only has a single objective function);
(b) e is a linear form for all e ∈ E ; and (c) T (v) = 0 (i.e. v is a continuous
variable) for all v ∈ V .

An LP is in standard form if (a) sc = 0 for all constraints c ∈ C (i.e. all
constraints are equality constraints) and (b) B(v) = [0, +∞] for all v ∈ V .
LPs are expressed in standard form whenever a solution is computed by
means of the simplex method [27]. By contrast, if all constraints are inequality
constraints, the LP is known to be in canonical form.

Mixed Integer Linear Programming

A mathematical programming problem P is a Mixed Integer Linear Pro-
gramming (MILP) problem if (a) |O| = 1; and (b) e is a linear form for
all e ∈ E .

A MILP is in standard form if sc = 0 for all constraints c ∈ C and if
B(v) = [0, +∞] for all v ∈ V . The most common solution algorithms employed
for solving MILPs are Branch-and-Bound (BB) type algorithms [52]. These
algorithms rely on recursively partitioning the search domain in a tree-like
fashion, and evaluating lower and upper bounds at each search tree node
to attempt to implicitly exclude some subdomains from consideration. BB
algorithms usually employ the simplex method as a sub-algorithm acting on
an auxiliary problem, so they enforce the same standard form on MILPs
as for LPs. As for LPs, a MILP where all constraints are inequalities is in
canonical form.

Nonlinear Programming

A mathematical programming problem P is a Nonlinear Programming (NLP)
problem if (a) |O| = 1 and (b) T (v) = 0 for all v ∈ V .

Many fundamentally different solution algorithms are available for locally
solving NLPs, and most of them require different standard forms. One of the
most widely used is Sequential Quadratic Programming (SQP) [41], which
requires problem constraints c ∈ C to be expressed in the form lc ≤ c ≤ uc

with lc, uc ∈ R ∪ {−∞, +∞}. More precisely, an NLP is in SQP standard
form if for all c ∈ C (a) sc �= 0 and (b) there is c′ ∈ C such that ec = ec′ and
sc = −sc′ .

Mixed Integer Nonlinear Programming

A mathematical programming problem P is a Mixed Integer Nonlinear Pro-
gramming (MINLP) problem if |O| = 1. The situation as regards MINLP
standard forms is generally the same as for NLPs, save that a few more
works have appeared in the literature about standard forms for MINLPs

Reformulations in Mathematical Programming 165

[113, 114, 96, 71]. In particular, the Smith standard form [114] is purpose-
fully constructed so as to make symbolic manipulation algorithms easy to
carry out on the formulation. A MINLP is in Smith standard form if:

• O = {do, eo} where eo is a linear form;
• C can be partitioned into two sets of constraints C1, C2 such that c is a

linear form for all c ∈ C1 and c = (ec, 0, 0) for c ∈ C2 where ec is as follows:

1. r(ec) is the sum operator
2. δ+(r(ec)) = {⊗, v} where (a) ⊗ is a nonlinear operator where all subn-

odes are leaf nodes, (b) χ(v) = −1 and (c) τ(v) ∈ V .

Essentially, the Smith standard form consists of a linear part comprising
objective functions and a set of constraints; the rest of the constraints have a
special form ⊗(x1, . . . , xp) − v = 0 for some p ∈ N, with v, x1, . . . , xp ∈ V(P)
and ⊗ a nonlinear operator in OL. By grouping all nonlinearities in a set
of equality constraints of the form “variable = operator(variables)” (called
defining constraints) the Smith standard form makes it easy to construct
auxiliary problems. The Smith standard form can be constructed by recursing
on the expression trees of a given MINLP [112] and is an opt-reformulation.

Solution algorithms for solving MINLPs are usually extensions of BB type
algorithms [114, 71, 68, 124, 95].

Separable problems

A problem P is in separable form if (a) O(P) = {(do, eo)}, (b) C(P) = ∅ and
(c) eo is such that:

• r(eo) is the sum operator
• for all distinct u, v ∈ δ+(r(eo)), λ(u) ∩ λ(v) = ∅,

where by slight abuse of notation λ(u) is the set of leaf nodes of the sub-
graph of eo whose root is u. The separable form is a standard form by it-
self. It is useful because it allows a very easy problem decomposition: for all
u ∈ δ+(r(eo)) it suffices to solve the smaller problems Qu with V(Qu) =
λ(v) ∩ V(P), O(Qu) = {(do, u)} and B(Qu) = {B(P)(v) | v ∈ V(Qu)}. Then⋃
u∈δ+(r(eo))

x(V(Qu)) is a solution for P .

Factorable problems

A problem P is in factorable form [91, 130, 111, 124] if:

1. O = {(do, eo)}
2. r(eo) ∈ V (consequently, the vertex set of eo is simply {r(eo)})
3. for all c ∈ C:

• sc = 0
• r(ec) is the sum operator

166 L. Liberti et al.

• for all t ∈ δ+(r(ec)), either (a) t is a unary operator and δ+(t) ⊆ λ(ec)
(i.e. the only subnode of t is a leaf node) or (b) t is a product operator
such that for all v ∈ δ+(t), v is a unary operator with only one leaf
subnode.

The factorable form is a standard form by itself. Factorable forms are useful
because it is easy to construct many auxiliary problems (including convex
relaxations, [91, 4, 111]) from problems cast in this form. In particular, fac-
torable problems can be reformulated to emphasize separability [91, 124, 95].

D.C. problems

The acronym “d.c.” stands for “difference of convex”. Given a set Ω ⊆ Rn, a
function f : Ω → R is a d.c. function if it is a difference of convex functions,
i.e. there exist convex functions g, h : Ω → R such that, for all x ∈ Ω, we have
f(x) = g(x) − h(x). Let C, D be convex sets; then the set C\D is a d.c. set.
An optimization problem is d.c. if the objective function is d.c. and Ω is a
d.c. set. In most of the d.c. literature, however [129, 116, 50], a mathematical
programming problem is d.c. if:

• O = {(do, eo)};
• eo is a d.c. function;
• c is a linear form for all c ∈ C.

D.C. programming problems have two fundamental properties. The first
is that the space of all d.c. functions is dense in the space of all continuous
functions. This implies that any continuous optimization problem can be
approximated as closely as desired, in the uniform convergence topology,
by a d.c. optimization problem [129, 50]. The second property is that it is
possible to give explicit necessary and sufficient global optimality conditions
for certain types of d.c. problems [129, 116]. Some formulations of these global
optimality conditions [115] also exhibit a very useful algorithmic property: if
at a feasible point x the optimality conditions do not hold, then the optimality
conditions themselves can be used to construct an improved feasible point x′.

Linear Complementarity problems

Linear complementarity problems (LCP) are nonlinear feasibility problems
with only one nonlinear constraint. An LCP is defined as follows [30], p. 50:

• O = ∅;
• there is a constraint c′ = (e, 0, 0) ∈ C such that (a) t = r(e) is a sum

operator; (b) for all u ∈ δ+(t), u is a product of two terms v, f such that
v ∈ V and (f, 1, 0) ∈ C;

• for all c ∈ C � {c′}, ec is a linear form.

Reformulations in Mathematical Programming 167

Essentially, an LCP is a feasibility problem of the form:

Ax ≥ b
x ≥ 0

x�(Ax − b) = 0,

⎫⎬
⎭

where x ∈ Rn, A is an m × n matrix and b ∈ Rm.
Many types of mathematical programming problems (including MILPs

with binary variables [30, 53]) can be recast as LCPs or extensions of LCP
problems [53]. Furthermore, some types of LCPs can be reformulated to LPs
[86] and as separable bilinear programs [87]. Certain types of LCPs can be
solved by an interior point method [58, 30].

Bilevel Programming problems

The bilevel programming (BLP) problem consists of two nested mathemat-
ical programming problems named the leader and the follower problem.

A mathematical programming problem P is a bilevel programming prob-
lem if there exist two programming problems L, F (the leader and follower
problem) and a subset � �= ∅ of all leaf nodes of E(L) such that any leaf node
v ∈ � has the form (v,F) where v ∈ V(F).

The usual mathematical notation is as follows [32, 13]:

miny F (x(y), y)
minx f(x, y)

s.t. x ∈ X, y ∈ Y,

⎫⎬
⎭ (9)

where X, Y are arbitrary sets. This type of problem arises in economic ap-
plications. The leader knows the cost function of the follower, who may or
may not know that of the leader; but the follower knows the optimal strategy
selected by the leader (i.e. the optimal values of the decision variables of L)
and takes this into account to compute his/her own optimal strategy.

BLPs can be reformulated exactly to MILPs with binary variables and
vice-versa [13], where the reformulation is as in Defn. 6. Furthermore, two
typical Branch-and-Bound (BB) algorithms for the considered MILPs and
BLPs have the property that the the MILP BB can be “embedded” in the
BLP BB (this roughly means that the BB tree of the MILP is a subtree of
the BB tree of the BLP); however, the contrary does not hold. This seems
to hint at a practical solution difficulty ranking in problems with the same
degree of worst-case complexity (both MILPs and BLPs are NP-hard).

Semidefinite Programming problems

Consider known symmetric n × n matrices C, Ak for k ≤ m, a vector b ∈ R
m

and a symmetric n×n matrix X = (xij) where xij is a problem variable for all

168 L. Liberti et al.

i, j ≤ n. The following is a semidefinite programming problem (SDP) in primal
form:

minX C • X
∀k ≤ m Ak • X = bk

X � 0,

⎫⎬
⎭ (10)

where X � 0 is a constraint that indicates that X should be symmetric
positive semidefinite, and C • X = tr(C�X) =

∑
i,j cijxij . We also consider

the SDP in dual form:

maxy,S b�y∑
k≤m ykAk + S = C

S � 0,

⎫⎬
⎭ (11)

where S is a symmetric n × n matrix and y ∈ Rm. Both forms of the SDP
problem are convex NLPs, so the duality gap is zero. Both forms can be
solved by a particular type of polynomial-time interior point method (IPM),
which means that solving SDPs is practically efficient [8, 125]. SDPs are im-
portant because they provide tight relaxations to (nonconvex) quadratically
constrained quadratic programming problems (QCQP), i.e. problems with a
quadratic objective and quadratic constraints (see Sect. 4.3).

SDPs can be easily modelled with the data structure described in Defn. 1,
for their expression trees are linear forms where each leaf node contains a
symmetric matrix. There is no need to explicitly write the semidefinite con-
straints X � 0, S � 0 because the solution IPM algorithms will automatically
find optimal X, S matrices that are semidefinite.

3 Reformulations

In this section we define some types of reformulations and establish some links
between them (Sect. 3.1) and we give a systematic study of various types of
elementary reformulations (Sect. 3.2) and exact linearizations (Sect. 3.3).
Sect. 3.5 provides a few worked out examples. In this summary, we tried to
focus on two types of reformulations: those that are in the literature, but may
not be known to every optimization practitioner, and those that represent
the “tricks of the trade” of most optimization researchers but have never, or
rarely, been formalized explicitly; so the main contributions of this section
are systematic and didactic. Since the final aim of automatic reformulations
is let the computer arrive at an alternative formulation which is easier to
solve, we concentrated on those reformulations which simplified nonlinear
terms into linear terms, or which reduced integer variables to continuous
variables. By contrast, we did not cite important reformulations (such as the
LP duality) which are fundamental in solution algorithms and alternative
problem interpretation, but which do not significantly alter solution difficulty.

Reformulations in Mathematical Programming 169

3.1 Reformulation Definitions

Consider a mathematical programming formulation P = (P ,V , E ,O, C,B, T)
and a function x : V → R|V| (called point) which assigns values to the variables.

Definition 4. A point x is type feasible if:

x(v) ∈

⎧⎨
⎩

R if T (v) = 0
Z if T (v) = 1
{Lv, Uv} if T (v) = 2

for all v ∈ V; x is bound feasible if x(v) ∈ B(v) for all v ∈ V; x is constraint
feasible if for all c ∈ C we have: ec(x) ≤ bc if sc = −1, ec(x) = bc if sc = 0,
and ec(x) ≥ bc if sc = 1. A point x is feasible in P if it is type, bound and
constraint feasible.

A point x feasible in P is also called a feasible solution of P . A point which
is not feasible is called infeasible. Denote by F(P) the feasible points of P .

Definition 5. A feasible point x is a local optimum of P with respect to the
objective o ∈ O if there is a non-empty neighbourhood N of x such that for
all feasible points y �= x in N we have dofo(x) ≥ dofo(y). A local optimum
is strict if dofo(x) > dofo(y). A feasible point x is a global optimum of P
with respect to the objective o ∈ O if dofo(x) ≥ dofo(y) for all feasible points
y �= x. A global optimum is strict if dofo(x) > dofo(y).

Denote the set of local optima of P by L(P) and the set of global optima of
P by G(P). If O(P) = ∅, we define L(P) = G(P) = F(P).

Example 1. The point x = (−1,−1,−1, 1, 1, 1) is a strict global minimum of
the problem in Example 2.1 and |G| = 1 as U = {1, 2, 3} and V �U = {4, 5, 6}
is the only balanced partition of V leading to a cutset size of 1.

It appears from the existing literature that the term “reformulation” is al-
most never formally defined in the context of mathematical programming.
The general consensus seems to be that given a formulation of an optimiza-
tion problem, a reformulation is a different formulation having the same set of
optima. Various authors make use of this definition without actually making
it explicit, among which [107, 114, 101, 81, 34, 44, 20, 98, 53, 30]. Many of
the proposed reformulations, however, stretch this implicit definition some-
what. Liftings, for example (which consist in adding variables to the problem
formulation), usually yield reformulations where an optimum in the origi-
nal problem is mapped to a set of optima in the reformulated problem (see
Sect. 3.2). Furthermore, it is sometimes noted how a reformulation in this
sense is overkill because the reformulation only needs to hold at global op-
timality [1]. Furthermore, reformulations sometimes really refer to a change
of variables, as is the case in [93]. Throughout the rest of this section we
give various definitions for the concept of reformulation, and we explore the
relations between them. We consider two problems

170 L. Liberti et al.

P = (P(P),V(P), E(P),O(P), C(P),B(P), T (P))
Q = (P(Q),V(Q), E(Q),O(Q), C(Q),B(Q), T (Q)).

Reformulations have been formally defined in the context of optimization
problems (which are defined as decision problems with an added objective
function). As was noted in Sect. 1, we see mathematical programming as a
language used to describe and eventually solve optimization problems, so the
difference is slim. The following definition is found in [13].

Definition 6. Let PA and PB be two optimization problems. A reformulation
B(·) of PA as PB is a mapping from PA to PB such that, given any instance
A of PA and an optimal solution of B(A), an optimal solution of A can be
obtained within a polynomial amount of time.

This definition is directly inspired to complexity theory and NP-completeness
proofs. In the more practical and implementation oriented context of this
chapter, Defn. 6 has one weak point, namely that of polynomial time. In
practice, depending on the problem and on the instance, a polynomial time
reformulation may just be too slow; on the other hand, Defn. 6 may bar a non-
polynomial time reformulation which might be actually carried out within a
practically reasonable amount of time. Furthermore, a reformulation in the
sense of Defn. 6 does not necessarily preserve local optimality or the number
of global optima, which might in some cases be a desirable reformulation
feature. It should be mentioned that Defn. 6 was proposed in a paper that
was more theoretical in nature, using an algorithmic equivalence between
problems in order to attempt to rank equivalent NP-hard problems by their
Branch-and-Bound solution difficulty.

The following definition was proposed by H. Sherali [105].

Definition 7. A problem Q is a reformulation of P if:

• there is a bijection σ : F(P) → F(Q);
• |O(P)| = |O(Q)|;
• for all p = (ep, dp) ∈ O(P), there is a q = (eq, dq) ∈ O(Q) such that

eq = f(ep) where f is a monotonic univariate function.

Defn. 7 imposes a very strict condition, namely the bijection between feasi-
ble regions of the original and reformulated problems. Although this is too
strict for many useful transformations to be classified as reformulations, un-
der some regularity conditions on σ it presents some added benefits, such
as e.g. allowing easy correspondences between partitioned subspaces of the
feasible regions and mapping sensitivity analysis results from reformulated
to original problem.

In the rest of the section we discuss alternative definitions which only
make use of the concept of optimum (also see [73, 75]). These encompass a
larger range of transformations as they do not require a bijection between
the feasible regions, the way Defn. 7 does.

Reformulations in Mathematical Programming 171

Definition 8. Q is a local reformulation of P if there is a function ϕ :
F(Q) → F(P) such that (a) ϕ(y) ∈ L(P) for all y ∈ L(Q), (b) ϕ restricted
to L(Q) is surjective. This relation is denoted by P ≺ϕ Q.

Informally, a local reformulation transforms all (local) optima of the origi-
nal problem into optima of the reformulated problem, although more than
one reformulated optimum may correspond to the same original optimum.
A local reformulation does not lose any local optimality information and
makes it possible to map reformulated optima back to the original ones; on
the other hand, a local reformulation does not keep track of globality: some
global optima in the original problem may be mapped to local optima in the
reformulated problem, or vice-versa (see Example 2).

Example 2. Consider the problem P ≡ min
x∈[−2π,2π]

x + sin(x) and Q ≡

min
x∈[−2π,2π]

sin(x). It is easy to verify that there is a bijection between the

local optima of P and those of Q. However, although P has a unique global
optimum, every local optimum in Q is global.

Definition 9. Q is a global reformulation of P if there is a function ϕ :
F(Q) → F(P) such that (a) ϕ(y) ∈ G(P) for all y ∈ G(Q), (b) ϕ restricted
to G(Q) is surjective. This relation is denoted by P �ϕ Q.

Informally, a global reformulation transforms all global optima of the original
problem into global optima of the reformulated problem, although more than
one reformulated global optimum may correspond to the same original global
optimum. Global reformulations are desirable, in the sense that they make
it possible to retain the useful information about the global optima whilst
ignoring local optimality. At best, given a difficult problem P with many local
minima, we would like to find a global reformulation Q where L(Q) = G(Q).

Example 3. Consider a problem P with O(P) = {f}. Let Q be a problem
such that O(Q) = {f̆} and F(Q) = conv(F(P)), where conv(F(P)) is the
convex hull of the points of F(P) and f̆ is the convex envelope of f over the
convex hull of F(P) (in other words, f̆ is the greatest convex function under-
estimating f on F(P)). Since the set of global optima of P is contained in the
set of global optima of Q [49], the convex envelope is a global reformulation.

Unfortunately, finding convex envelopes in explicit form is not easy. A con-
siderable amount of work exists in this area: e.g. for bilinear terms [91, 7],
trilinear terms [92], fractional terms [122], monomials of odd degree [80, 66]
the envelope is known in explicit form (this list is not exhaustive). See [119]
for recent theoretical results and a rich bibliography.

Definition 10. Q is an opt-reformulation (or exact reformulation) of P (de-
noted by P < Q) if there is a function ϕ : F(Q) → F(P) such that P ≺ϕ Q
and P �ϕ Q.

172 L. Liberti et al.

This type of reformulation preserves both local and global optimality infor-
mation, which makes it very attractive. Even so, Defn. 10 fails to encompass
those problem transformations that eliminate some global optima whilst en-
suring that at least one global optimum is left. Such transformations are
specially useful in Integer Programming problems having several symmet-
ric optimal solutions: restricting the set of global optima in such cases may
be beneficial. One such example is the pruning of Branch-and-Bound regions
based on the symmetry group of the problem presented in [89]: the set of cuts
generated by the procedure fails in general to be a global reformulation in
the sense of Defn. 9 because the number of global optima in the reformulated
problem is smaller than that of the original problem.

Lemma 1. The relations ≺, �, < are reflexive and transitive, but in general
not symmetric.

Proof. For reflexivity, simply take ϕ as the identity. For transitivity, let P ≺
Q ≺ R with functions ϕ : F(Q) → F(P) and ψ : F(R) → F(Q). Then
ϑ = ϕ◦ψ has the desired properties. In order to show that ≺ is not symmetric,
consider a problem P with variables x and a unique minimum x∗ and a
problem Q which is exactly like P but has one added variable w ∈ [0, 1]. It is
easy to show that P ≺ Q (take ϕ as the projection of (x, w) on x). However,
since for all w ∈ [0, 1] (x∗, w) is an optimum of Q, there is no function of a
singleton to a continuously infinite set that is surjective, so Q �≺ P .

Given a pair of problems P, Q where ≺, �, < are symmetric on the pair,
we call Q a symmetric reformulation of P . We remark also that by Lemma
(1) we can compose elementary reformulations together to create chained
reformulations (see Sect. 3.5 for examples).

Definition 11. Any problem Q that is related to a given problem P by a
formula f(Q, P) = 0 where f is a computable function is called an auxiliary
problem with respect to P .

Deriving the formulation of an auxiliary problem may be a hard task, depend-
ing on f . The most useful auxiliary problems are those whose formulation
can be derived algorithmically in time polynomial in |P |.

We remark that casting a problem in a standard form is an opt-
reformulation. A good reformulation framework should be aware of the avail-
able solution algorithms and attempt to reformulate given problems into the
most appropriate standard form.

3.2 Elementary Reformulations

In this section we introduce some elementary reformulations in the proposed
framework.

Reformulations in Mathematical Programming 173

Objective function direction

Given an optimization problem P , the optimization direction do of any ob-
jective function o ∈ O(P) can be changed by simply setting do ← −do. This
is an opt-reformulation where ϕ is the identity, and it rests on the identity
min f(x) = −max−f(x). We denote the effect of this reformulation carried
out on each objective of a set O ⊆ O by ObjDir(P, O).

Constraint sense

Changing constraint sense simply means to write a constraint c expressed
as ec ≤ bc as −ec ≥ −bc, or ec ≥ bc as −ec ≤ −bc. This is sometimes
useful to convert the problem formulation to a given standard form. This is
an opt-reformulation where ϕ is the identity. It can be carried out on the
formulation by setting χ(r(ec)) ← −χ(r(ec)), sc ← −sc and bc = −bc. We
denote the effect of this reformulation carried out for all constraints in a given
set C ⊆ C by ConSense(P, C).

Liftings, restrictions and projections

We define here three important classes of auxiliary problems: liftings, re-
strictions and projections. Essentially, a lifting is the same as the original
problem but with more variables. A restriction is the same as the original
problem but with some of the variables replaced by either parameters or con-
stants. A projection is the same as the original problem projected onto fewer
variables. Whereas it is possible to give definitions of liftings and restrictions
in terms of symbolic manipulations to the data structure given in Defn. 1,
such a definition is in general not possible for projections. Projections and
restrictions are in general not opt-reformulations nor reformulations in the
sense of Defn. 7.

Lifting

A lifting Q of a problem P is a problem such that: P(Q) � P(P), V(Q) �

V(P), O(Q) = O(P), E(Q) � E(P), C(Q) = C(P), B(Q) � B(P), T (Q) �

T (P). This is an opt-reformulation where ϕ is a projection operator from
V(Q) onto V(P): for y ∈ F(Q), let ϕ(y) = (y(v) | v ∈ V(P)). We denote the
lifting with respect to a new set of variables V by Lift(P, V).

Essentially, a lifting is obtained by adding new variables to an optimization
problem.

Restriction

A restriction Q of a problem P is such that:

• P(Q) ⊇ P(P)
• V(Q) � V(P)

174 L. Liberti et al.

• |O(Q)| = |O(P)|
• |C(Q)| = |C(P)|
• for each e ∈ E(P) there is e′ ∈ E(Q) such that e′ is the same as e with any

leaf node v ∈ V(P) � V(Q) replaced by an element of P(Q) ∪ R.

We denote the restriction with respect to a sequence of variable V with a
corresponding sequence of values R by Restrict(P, V, R).

Essentially, a restriction is obtained by fixing some variables at correspond-
ing given values.

Projection

A projection Q of a problem P is such that:

• P(Q) ⊇ P(P)
• V(Q) � V(P)
• E ,O, C,B, T (Q) are so that for all y ∈ F(Q) there is x ∈ F(P) such that

x(v) = y(v) for all v ∈ V(Q).

In general, symbolic algorithms to derive projections depend largely on the
structure of the expression trees in E. If E consists entirely of linear forms,
this is not difficult (see e.g. [15], Thm. 1.1). We denote the projection onto a
set of variables V = V(Q) as Proj(P, V).

Essentially, F(Q) = {y | ∃x (x, y) ∈ F(P)}.

Equations to inequalities

Converting equality constraints to inequalities may be useful to conform to
a given standard form. Suppose P has an equality constraint c = (ec, 0, bc).
This can be reformulated to a problem Q as follows:

• add two constraints c1 = (ec,−1, bc) and c2 = (ec, 1, bc) to C;
• remove c from C.

This is an opt-reformulation denoted by Eq2Ineq(P, c).
Essentially, we replace the constraint ec = bc by the two constraints ec ≤

bc, ec ≥ bc.

Inequalities to equations

Converting inequalities to equality constraints is useful to convert problems to
a given standard form: a very well known case is the standard form of a Linear
Programming problem for use with the simplex method. Given a constraint c
expressed as ec ≤ bc, we can transform it into an equality constraint by means
of a lifting operation and a simple symbolic manipulation on the expression
tree ec, namely:

• add a variable vc to V(P) with interval bounds B(vc) = [0, +∞] (added to
B(P)) and type T (vc) = 0 (added to T (P));

Reformulations in Mathematical Programming 175

• add a new root node r0 corresponding to the operator + (sum) to ec =
(V, A), two arcs (r0, r(ec)), (r0, v) to A, and we then set r(ec) ← r0;

• set sc ← 0.

We denote this transformation carried out on the set of constraints C by
Slack(P, C). Naturally, for original equality constraints, this transformation
is defined as the identity.

Performing this transformation on any number of inequality constraints
results into an opt-reformulation.

Proposition 1. Given a set of constraints C ⊆ C(P), the problem Q =
Slack(P, C) is an opt-reformulation of P .

Proof. We first remark that V(P) ⊆ V(Q). Consider ϕ defined as follows: for
each y ∈ F(Q) let ϕ(y) = x = (y(v) | v ∈ V(P)). It is then easy to show that
ϕ satisfies Defn. 10.

Absolute value terms

Consider a problem P involving a term e = (V, A) ∈ E where r(e) is the
absolute value operator | · | (which is continuous but not differentiable every-
where); since this operator is unary, there is a single expression node f such
that (r(e), f) ∈ A. This term can be reformulated so that it is differentiable,
as follows:

• add two continuous variables t+, t− with bounds [0, +∞];
• replace e by t+ + t−;
• add constraints (f − t+ − t−, 0, 0) and (t+t−, 0, 0) to C.

This is an opt-reformulation denoted by AbsDiff(P, e).
Essentially, we replace all terms |f | in the problem by a sum t+ + t−, and

then add the constraints f = t+ + t− and t+t− = 0 to the problem.

Product of exponential terms

Consider a problem P involving a product g =
∏

i≤k hi of exponential terms,
where hi = efi for all i ≤ k. This term can be reformulated as follows:

• add a continuous variable w to V with T (w) = 0 and bounds B(w) =
[0, +∞];

• add a constraint c = (ec, 0, 0) where ec =
∑

i≤k fi − log(w) to C;
• replace g with w.

This is an opt-reformulation denoted by ProdExp(P, g). It is useful because
many nonlinear terms (product and exponentials) have been the reduced to
only one (the logarithm).

Essentially, we replace the product
∏

i efi by an added nonnegative contin-
uous variable w and then add the constraint log(w) =

∑
i fi to the problem.

176 L. Liberti et al.

Binary to continuous variables

Consider a problem P involving a binary variable x ∈ V with (T (x) = 2).
This can be reformulated as follows:

• add a constraint c = (ec, 0, 0) to C where ec = x2 − x;
• set T (x) = 0.

This is an opt-reformulation denoted by Bin2Cont(P, x). Since a binary
variable x ∈ V can only take values in {0, 1}, any univariate equation in
x that has exactly x = 0 and x = 1 as solutions can replace the binary
constraint x ∈ {0, 1}. The most commonly used is the quadratic constraint
x2 = x, sometimes also written as x(x − 1) ≥ 0 ∧ x ≤ 1 [118].

In principle, this would reduce all binary problems to nonconvex quadrati-
cally constrained problems, which can be solved by a global optimization (GO)
solver for nonconvex NLPs. In practice, GO solvers rely on an NLP subsolver
to do most of the computationally intensive work, and NLP solvers are gener-
ally not very good in handling nonconvex/nonlinear equality constraints such
as x2 = x. This reformulation, however, is often used in conjunction with the
relaxation of binary linear and quadratic problems (see Sect. 4.4).

Integer to binary variables

It is sometimes useful, for different reasons, to convert general integer vari-
ables to binary (0-1) variables. One example where this yields a crucial step
into a complex linearization is given in Sect. 3.5. There are two established
ways of doing this: one entails introducing binary assignment variables for
each integer values that the variable can take; the other involves the binary
representation of the integer variable value. Supposing the integer variable
value is n, the first way employs O(n) added binary variables, whereas the
second way only employs O(log2(n)). The first way is sometimes used to
linearize complex nonlinear expressions of integer variables by transforming
them into a set of constants to choose from (see example in Sect. 3.5). The
second is often used in an indirect way to try and break symmetries in 0-1
problems: by computing the integer values of the binary representation of two
0-1 vectors x1, x2 as integer problem variables v1, v2, we can impose ordering
constraints such as v1 ≤ v2 + 1 to exclude permutations of x1, x2 from the
feasible solutions.

Assignment variables

Consider a problem P involving an integer variable v ∈ V with type T (v) = 1
and bounds B(v) = [Lv, Uv] such that Uv −Lv > 1. Let V = {Lv, . . . , Uv} be
the variable domain. Then P can be reformulated as follows:

• for all j ∈ V add a binary variable wj to V with T (wj) = 2 and B(wj) =
[0, 1];

• add a constraint c = (ec, 0, 1) where ec =
∑

j∈V wj to C;

Reformulations in Mathematical Programming 177

• add an expression e =
∑

j∈V jwj to E ;
• replace all occurrences of v in the leaf nodes of expressions in E with e.

This is an opt-reformulation denoted by Int2Bin(P, v).
Essentially, we add assignment variables wj = 1 if v = j and 0 otherwise.

We then add an assignment constraint
∑

j∈V wj = 1 and replace v with∑
j∈V jwj throughout the problem.

Binary representation

Consider a problem P involving an integer variable v ∈ V with type T (v) = 1
and bounds B(v) = [Lv, Uv] such that Uv −Lv > 1. Let V = {Lv, . . . , Uv} be
the variable domain. Then P can be reformulated as follows:

• let b be the minimum exponent such that |V | ≤ 2b;
• add b binary variables w1, . . . , wb to V such that T (wj) = 2 and B(wj) =

[0, 1] for all j ≤ b;
• add an expression e = Lv +

∑
j≤b wj2j

• replace all occurrences of v in the leaf nodes of expressions in E with e.

This is an opt-reformulation denoted by BinaryRep(P, v).
Essentially, we write the binary representation of v as Lv +

∑
j≤b wj2j.

Feasibility to optimization problems

The difference between decision and optimization problems in computer sci-
ence reflects in mathematical programming on the number of objective func-
tions in the formulation. A formulation without objective functions models a
feasibility problem; a formulation with one or more objective models an op-
timization problem. As was pointed out by the example in the introduction
(see Sect. 1, p. 154), for computational reasons it is sometimes convenient
to reformulate a feasibility problem in an optimization problem by introduc-
ing constraint tolerances. Given a feasibility problem P with O = ∅, we can
reformulate it to an optimization problem Q as follows:

• add a large enough constant M to P(Q);
• add a continuous nonnegative variable ε to V(Q) with T (ε) = 0 and B(ε) =

[0, M];
• for each equality constraint c = (ec, 0, bc) ∈ C, apply Eq2Ineq(P, c);
• add the expression ε to E(Q);
• add the objective function o = (ε,−1) to O(Q);
• for each constraint c = (ec, sc, bc) ∈ C (we now have sc �= 0), let e′c =

ec + scε and c′ = (e′c, sc, bc); add c′ to C(Q).

As the original problem has no objective function, the usual definitions of
local and global optima do not hold. Instead, we define any point in F(P)
to be both a local and a global optimum (see paragraph under Defn. 5).
Provided the original problem is feasible, this is an opt-reformulation denoted
by Feas2Opt(P).

178 L. Liberti et al.

Proposition 2. Provided F(P) �= ∅, the reformulation Feas2Opt(P) is an
opt-reformulation.

Proof. Let F be the projection of F(Q) on the space spanned by the variables
of P (i.e. all variables of Q but ε, see Sect. 3.2), and let π be the projection
map. We then have F(P) ⊆ F (this is because the constraints of Q essentially
define a constraint relaxation of P , see Sect. 4.1 and Defn. 14). Let x′ ∈ F(P).
We define ψ : F → F(P) to be the identity on F(P) and trivially extend it to
F(Q) � F by setting ψ(z) = x′ for all z ∈ F(Q) � F . The function φ = ψ ◦ π
maps F(Q) to F(P), and preserves local minimality by construction, as per
Defn. 8. Since ε is bounded below by zero, and the restriction (see Sect. 3.2)
of Q to ε = 0 is exactly P , any x′ ∈ G(Q) is also in F(P). Moreover, by
definition G(P) = F(P) as O(P) = ∅, showing that the identity (projected
on F) preserves global minimality in the sense of Defn. 9.

3.3 Exact Linearizations

Definition 12. An exact linearization of a problem P is an opt-reformulation
Q of P where all expressions e ∈ E(P) are linear forms.

Different nonlinear terms are linearized in different ways, so we sometimes
speak of a linearization of a particular nonlinear term instead of a lineariza-
tion of a given problem.

Piecewise linear objective functions

Consider a problem P having an objective function o = (do, eo) ∈ O(P) and
a finite set of expressions ek for k ∈ K such that eo = do min

k∈K
doek (this is a

piecewise linear objective function of the form min maxk ek or maxmink ek

depending on do). This can be linearized by adding one variable and |K|
constraints to the problem as follows:

• add a continuous variable t to V bounded in [−∞, +∞];
• for all k ∈ K, add the constraint ck = (ek − t, do, 0) to C.

This is an opt-reformulation denoted by MinMax(P).
Essentially, we can reformulate an objective function min maxk∈K ek as

min t by adding a continuous variable t and the constraints ∀k ∈ K t ≥ ek to
the problem.

Product of binary variables

Consider a problem P where one of the expressions e ∈ E(P) is
∏

k∈K̄

vk, where

vk ∈ V(P), B(vk) = [0, 1] and T (vk) = 2 for all k ∈ K̄ (i.e. vk are binary 0-1
variables). This product can be linearized as follows:

• add a continuous variable w to V bounded in [0, 1];

Reformulations in Mathematical Programming 179

• add the constraint (
∑

k∈K̄ vk − w,−1, |K̄| − 1) to C;
• for all k ∈ K̄ add the constraint (w − vk,−1, 0) to C.

This is an opt-reformulation denoted by ProdBin(P, K̄).
Essentially, a product of binary variables

∏
k∈K̄ vk can be replaced by an

added continuous variable w ∈ [0, 1] and added constraints ∀k ∈ K̄ w ≤ vk

and w ≥
∑

k∈K̄ vk − |K̄| + 1.

Proposition 3. Given a problem P and a set K̄ ⊂ N, the problem Q =
ProdBin(P, K̄) is an opt-reformulation of P .

Proof. Suppose first that ∀k ∈ K̄, vk = 1. We have to prove that w = 1
in that case. It comes from the hypothesis that

∑
k∈K̄ vk − |K̄| + 1 = 1

which implies by the last constraint that w = 1. The other constraints are
all reduced to w ≤ 1 which are all verified.
Suppose now that at least one of the binary variable is equal to zero and call
i the index of this variable. Since ∀k ∈ K̄ w ≤ vk, we have in particular the
constraint for k = i. This leads to w = 0 which is the expected value. Besides,
it comes that

∑
k∈K̄ vk − |K̄| ≤ −1. We deduced from this inequality that

the last constraint is verified by the value of w.

As products of binary variables model the very common AND operation,
linearizations of binary products are used very often. Hammer and Rudeanu
[46] cite [37] as the first published appearance of the above linearization for
cases where |K̄| = 2. For problems P with products vivj for a given set of
pairs {i, j} ∈ K where vi, vj are all binary variables, the linearization consists
of |Q| applications of Prodbin(P, {i, j}) for each {i, j} ∈ K. Furthermore, we
replace each squared binary variable v2

i by simply vi (as v2
i = vi for binary

variables vi). We denote this linearization by ProdSet(P, K).

Product of binary and continuous variables

Consider a problem P involving products vivj for a given set K of ordered
variable index pairs (i, j) where vi is a binary 0-1 variable and vj is a con-
tinuous variable with B(vj) = [Lj, Uj]. The problem can be linearized as
follows:

• for all (i, j) ∈ K add a continuous variable wij bounded by [Lj , Uj] to V ;
• for all (i, j) ∈ K replace the product terms vivj by the variable wij ;
• for all (i, j) ∈ K add the constraints

(wij ,−1, Ujvi), (wij , 1, Ljvi), (wij ,−1, vj − (1 − vi)Lj), (wij , 1, vj − (1 −
vi)Uj) to C.

This is an opt-reformulation denoted by ProdBinCont(P, K).
Essentially, a product of a binary variable vi and a continuous variable

vj bounded by [Lj , Uj] can be replaced by an added variable wij and added
constraints:

180 L. Liberti et al.

⎧⎪⎪⎨
⎪⎪⎩

wij ≤ Ujvi

wij ≥ Ljvi

wij ≤ vj − (1 − vi)Lj

wij ≥ vj − (1 − vi)Uj

Proposition 4. Given a problem P and a set K of ordered variable index
pairs (i, j), the problem Q = ProdBinCont(P, K) is an opt-reformulation
of P .

Proof. We have to prove that the reformulation ensures wij = vivj for all
possible values for vi and vj . We do it by cases on the binary variable vi.
Suppose first that vi = 0. Then the two first constraints implies that wij = 0
which corresponds indeed to the product vivj . It remains to see that the two
other constraints don’t interfere with this equality. In that case, the third
constraint becomes wij ≤ vj − Lj . Since vj ≥ Lj by definition, we have
vj − Lj ≥ 0 implying that wij is less or equal to a positive term. With a
similar reasoning, it comes from the fourth constraint that wij is greater or
equal to a negative term. Thus, for the case vi = 0, the constraints lead to
wij = 0.

Suppose now that vi = 1. The two first inequalities lead to Li ≤ wij ≤ Uj

which corresponds indeed to the range of the variable. The two last con-
straints become wij ≥ vj and wij ≤ vj . This implies wij = vj which is the
correct result.

Complementarity constraints

Consider a problem P involving constraints of the form c = (ec, 0, 0) where
(a) r(ec) is the sum operator, (b) for each node e outgoing from ec, e is a
product operator, (c) each of these product nodes e has two outgoing nodes
f, g. We can linearize such a constraint as follows:

• for each product operator node e outgoing from r(ec) and with outgoing
nodes f, g:

1. add a (suitably large) constant parameter M > 0 to P ;
2. add a binary variable w to V with T (v) = 2 and B = [0, 1]
3. add the constraints (f − Mw,−1, 0) and (g + Mw,−1, M) to C

• delete the constraint c.

Provided we set M as an upper bound to the maximum values attainable by
f and g, this is an opt-reformulation which is also a linearization. We denote
it by CCLin(P).

Essentially, we linearize complementarity constraints
∑

k∈K fkgk = 0 by
eliminating the constraint, adding 0-1 variables wk for all k ∈ K and the
linearization constraints fk ≤ Mwk and gk ≤ M(1−wk). This reformulation,

Reformulations in Mathematical Programming 181

together with AbsDiff (see Sect. 3.2), provides an exact linearization (pro-
vided a suitably large but finite M exists) of absolute value terms.

Minimization of absolute values

Consider a problem P with a single objective function o = (do, eo) ∈ O where
eo = (−do)

∑
k∈K̄

ek where the operator represented by the root node r(ek) of

ek is the absolute value | · | for all k ∈ K ⊆ K̄. Since the absolute value
operator is unary, δ+(r(ek)) consists of the single element fk. Provided fk

are linear forms, this problem can be linearized as follows. For each k ∈ K:

• add continuous variables t+k , t−k with bounds [0, +∞];
• replace ek by t+k + t−k ;
• add constraints (fk − t+k − t−k , 0, 0) to C.

This is an opt-reformulation denoted by MinAbs(P, K).
Essentially, we can reformulate an objective function min

∑
k∈K̄ |fk| as

min
∑

k∈K̄(t+k + t−k) whilst adding constraints ∀k ∈ K̄ fk = t+k + t−k to the
problem. This reformulation is related to AbsDiff(P, e) (see Sect. 3.2), how-
ever the complementarity constraints t+k t−k = 0 are not needed because of
the objective function direction: at a global optimum, because of the mini-
mization of t+k + t−k , at least one of the variables will have value zero, thus
implying the complementarity.

Linear fractional terms

Consider a problem P where an expression in E has a sub-expression e with a
product operator and two subnodes e1, e2 where ξ(e1) = 1, ξ(e2) = −1, and
e1, e2 are affine forms such that e1 =

∑
i∈V aivi + b and e2 =

∑
i∈V civi + d,

where v ⊆ V and T (vi) = 0 for all i ∈ V (in other words e is a linear fractional
term a�v+b

c�v+d
on continuous variables v). Assume also that the variables v only

appear in some linear constraints of the problem Av = q (A is a matrix and
q is a vector in P). Then the problem can be linearized as follows:

• add continuous variables αi, β to V (for i ∈ V) with T (αi) = T (β) = 0;
• replace e by

∑
i∈V aiαi + bβ;

• replace the constraints in Av = q by Aα − qβ = 0;
• add the constraint

∑
i∈V ciαi + dβ = 1;

• remove the variables v from V .

This is an opt-reformulation denoted by LinFract(P, e).
Essentially, αi plays the role of vi

c�v+d , and β that of 1
c�v+d . It is then easy

to show that e can be re-written in terms of α, β as a�α + bβ, Av = q can
be re-written as Aα = qβ, and that c�α + dβ = 1. Although the original
variables v are removed from the problem, their values can be obtained by
α, β after the problem solution, by computing vi = αi

β for all i ∈ V .

182 L. Liberti et al.

3.4 Advanced Reformulations

In this section we review a few advanced reformulations in the literature.

Hansen’s Fixing Criterion

This method applies to unconstrained quadratic 0-1 problems of the form
min

x∈{0,1}n
x�Qx where Q is an n × n matrix [47], and relies on fixing some of

the variables to values guaranteed to provide a global optimum.
Let P be a problem with P = {n ∈ N, {qij ∈ R | 1 ≤ i, j ≤ n}}, V =

{xi | 1 ≤ i ≤ n}, E = {f =
∑

i,j≤n qijxixj}, O = {(f,−1)}, C = ∅, B =
[0, 1]n, T = 2. This can be restricted (see Sect. 3.2) as follows:

• initialize two sequences V = ∅, A = ∅;
• for all i ≤ n:

1. if qii +
∑

j<i min(0, qij) +
∑

j>i min(0, qij) > 0 then append xi to V
and 0 to A;

2. (else) if qii +
∑

j<i max(0, qij) +
∑

j>i max(0, qij) < 0 then append xi

to V and 1 to A;

• apply Restrict(P, V, A).

This opt-reformulation is denoted by FixQB(P).
Essentially, any time a binary variable consistently decreases the objective

function value when fixed, independently of the values of other variables, it
is fixed.

Compact linearization of binary quadratic problems

This reformulation concerns a problem P with the following properties:

• there is a subset of binary variables x ⊆ V with |x| = n, T (x) = 2,B(x) =
[0, 1]n;

• there is a set E = {(i, j) | 1 ≤ i ≤ j ≤ n} in P such that the terms xixj

appear as sub-expressions in the expressions E for all (i, j) ∈ E;
• there is an integer K ≤ n in P and a covering {Ik | k ≤ K} of {1, . . . , n}

such that (
∑

i∈Ik
xi, 0, 1) is in C for all k ≤ K;

• there is a covering {Jk | k ≤ K} of {1, . . . , n} such that Ik ⊆ Jk for all
k ≤ K such that, letting F = {(i, j) | ∃k ≤ K((i, j) ∈ Ik × Jk ∨ (i, j) ∈
Jk × Ik)}, we have E ⊆ F .

Under these conditions, the problem P can be exactly linearized as follows:

• for all (i, j) ∈ F add continuous variables wij with T (wij) = 0 and
B(wij) = [0, 1];

• for all (i, j) ∈ E replace sub-expression xixj with wij in the expressions E ;
• for all k ≤ K, j ∈ Jk add the constraint (

∑
i∈Ik

wij − xj , 0, 0) to C.
• for all (i, j) ∈ F add the constraint wij = wji to C.

Reformulations in Mathematical Programming 183

This opt-reformulation is denoted by RCLin(P, E). It was shown in [72] that
this linearization is exact and has other desirable tightness properties. See
[72] for examples.

Reduced RLT Constraints

This reformulation concerns a problem P with the following properties:

• there is a subset x ⊆ V with |x| = n and a set E = {(i, j) | 1 ≤ i ≤ j ≤ n}
in P such that the terms xixj appear as sub-expressions in the expressions
E for all (i, j) ∈ E;

• there is a number m ≤ n, an m × n matrix A = (aij) and an m-vector b
in P such that (

∑
j≤n aijxj , 0, bi) ∈ C for all i ≤ m.

Let F = {(i, j) | (i, j) ∈ E ∨ ∃k ≤ m(akj �= 0}. Under these conditions, P
can be reformulated as follows:

• for all (i, j) ∈ F add continuous variables wij with T (wij) = 0 and
B(wij) = [−∞, +∞];

• for all (i, j) ∈ E replace sub-expression xixj with wij in the expressions E ;
• for all i ≤ n, k ≤ m add the constraints (

∑
j≤n akjwij − bkxi, 0, 0) to C:

we call this linear system the Reduced RLT Constraint System (RCS) and
(
∑

j≤n akjwij , 0, 0) the companion system;
• let B = {(i, j) ∈ F | wij is basic in the companion};
• let N = {(i, j) ∈ F | wij is non-basic in the companion};
• add the constraints (wij − xixj , 0, 0) for all (i, j) ∈ N .

This opt-reformulation is denoted by RedCon(P), and its validity was shown
in [70]. It is important because it effectively reduces the number of quadratic
terms in the problem (only those corresponding to the set N are added). This
reformulation can be extended to work with sparse sets E [81], namely sets
E whose cardinality is small with respect to 1

2n(n + 1).
Essentially, the constraints wij = xixj for (i, j) ∈ B are replaced by the

RCS ∀i ≤ n (Awi = xi), where wi = (wi1, . . . , win).

3.5 Advanced Examples

We give in this section a few advanced examples that illustrate the power of
the elementary reformulations given above.

The Hyperplane Clustering Problem

As an example of what can be attained by combining these simple reformu-
lations presented in this chapter, we give a MINLP formulation to the

Hyperplane Clustering Problem (HCP) [29, 24]. Given a set of
points p = {pi | 1 ≤ i ≤ m} in Rd we want to find a set of n hyperplanes
w = {wj1x1 + . . . + wjd = w0

j | 1 ≤ j ≤ n} in R
d and an assignment of

184 L. Liberti et al.

points to hyperplanes such that the distances from the hyperplanes to
their assigned points are minimized.

We then derive a MILP reformulation. For clarity, we employ the usual math-
ematical notation instead of the notation given Defn. 1.

The problem P can be modelled as follows:

• Parameters. The set of parameters is given by p ∈ Rm×d, m, n, d ∈ N.
• Variables. We consider the hyperplane coefficient variables w ∈ Rn×d,

the hyperplane constants w0 ∈ Rn, and the 0-1 assignment variables x ∈
{0, 1}m×n.

• Objective function. We minimize the total distance, weighted by the as-
signment variable:

min
∑
i≤m

∑
j≤n

|wjpi − w0
j |xij .

• Constraints. We consider assignment constraints: each point must be as-
signed to exactly one hyperplane:

∀i ≤ m
∑
j≤n

xij = 1,

and the hyperplanes must be nontrivial:

∀j ≤ n
∑
k≤d

|wjk| = 1,

for otherwise the trivial solution with w = 0, w0 = 0 would be optimal.

This is a MINLP formulation because of the presence of the nonlinear terms
(absolute values and products in the objective function) and of the binary as-
signment variables. We shall now apply several of the elementary reformula-
tions presented in this chapter to obtain a MILP reformulation Q of P .

Let K = {(i, j) | i ≤ m, j ≤ n}.

1. Because x is nonnegative and because we are going to solve the reformu-
lated MILP to global optimality, we can apply an reformulation similar to
MinAbs(P, K) (see Sect. 3.3) to obtain an opt-reformulation P1 as follows:

min
∑
i,j

(t+ijxij + t−ijxij)

s.t. ∀i
∑

j

xij = 1

∀j |wj |1 = 1
∀i, j t+ij − t−ij = wjpi − w0

j ,

Reformulations in Mathematical Programming 185

where t+ij , t
−
ij ∈ [0, M] are continuous added variables bounded above by a

(large and arbitrary) constant M which we add to the parameter set P .
We remark that this upper bound is enforced without loss of generality
because w, w0 can be scaled arbitrarily.

2. Apply ProdBinCont(P1, K) (see Sect. 3.3) to the products t+ijxij and
t−ijxij to obtain a opt-reformulation P2 as follows:

min
∑
i,j

(y+
ij + y−

ij)

s.t. ∀i
∑

j

xij = 1

∀j |wj |1 = 1
∀i, j t+ij − t−ij = wjpi − w0

j

∀i, j y+
ij ≤ min(Mxij , t

+
ij)

∀i, j y+
ij ≥ Mxij + t+ij − M

∀i, j y−
ij ≤ min(Mxij , t

−
ij)

∀i, j y−
ij ≥ Mxij + t−ij − M,

where y+
ij , y

−
ij ∈ [0, M] are continuous added variables.

3. For each term ejk = |wjk| apply AbsDiff(P2, ejk) to obtain an opt-
reformulation P3 as follows:

min
∑
i,j

(y+
ij + y−

ij)

s.t. ∀i
∑

j

xij = 1

∀i, j t+ij − t−ij = wjpi − w0
j

∀i, j y+
ij ≤ min(Mxij , t

+
ij)

∀i, j y+
ij ≥ Mxij + t+ij − M

∀i, j y−
ij ≤ min(Mxij , t

−
ij)

∀i, j y−
ij ≥ Mxij + t−ij − M

∀j
∑
k≤d

(u+
jk + u−

jk) = 1

∀j, k u+
jk − u−

jk = wjk

∀j, k u+
jku−

jk = 0,

where u+
jk, u−

jk ∈ [0, M] are continuous variables for all j, k. Again, the
upper bound does not enforce loss of generality. P3 is an opt-reformulation

186 L. Liberti et al.

of P : whereas P was not everywhere differentiable because of the absolute
values, P3 only involves differentiable terms.

4. We remark that the last constraints of P3 are in fact complementarity
constraints. We apply CCLin(P3) to obtain the reformulated problem Q:

min
∑
i,j

(y+
ij + y−

ij)

s.t. ∀i
∑

j

xij = 1

∀i, j t+ij − t−ij = wjpi − w0
j

∀i, j y+
ij ≤ min(Mxij , t

+
ij)

∀i, j y+
ij ≥ Mxij + t+ij − M

∀i, j y−
ij ≤ min(Mxij , t

−
ij)

∀i, j y−
ij ≥ Mxij + t−ij − M

∀j
∑
k≤d

(u+
jk + u−

jk) = 1

∀j, k u+
jk − u−

jk = wjk

∀j, k u+
jk ≤ Mzjk

∀j, k u−
jk ≤ M(1 − zjk),

where zjk ∈ {0, 1} are binary variables for all j, k. Q is a MILP reformu-
lation of P (see Sect. 2.3).
This reformulation allows us to solve P by using a MILP solver — these

have desirable properties with respect to MINLP solvers, such as numeri-
cal stability and robustness, as well as scalability and an optimality guar-
antee. A small instance consisting of 8 points and 2 planes in R2, with
p = {(1, 7), (1, 1), (2, 2), (4, 3), (4, 5), (8, 3), (10, 1), (10, 5)} is solved to opti-
mality by the ILOG CPLEX solver [52] to produce the following output:
Normalized hyperplanes:

1: (0.452055) x_1 + (-1.20548) x_2 + (1.50685) = 0

2: (0.769231) x_1 + (1.15385) x_2 + (-8.84615) = 0

Assignment of points to hyperplanar clusters:

hyp_cluster 1 = { 2 3 4 8 }

hyp_cluster 2 = { 1 5 6 7 }.

Selection of software components

Large software systems consist of a complex architecture of interdependent,
modular software components. These may either be built or bought off-the-
shelf. The decision of whether to build or buy software components influences
the cost, delivery time and reliability of the whole system, and should there-
fore be taken in an optimal way [26].

Reformulations in Mathematical Programming 187

Consider a software architecture with n component slots. Let Ii be the set
of off-the-shelf components and Ji the set of purpose-built components that
can be plugged in the i-th component slot, and assume Ii ∩ Ji = ∅. Let T
be the maximum assembly time and R be the minimum reliability level. We
want to select a sequence of n off-the-shelf or purpose-built components com-
patible with the software architecture requirements that minimize the total
cost whilst satisfying delivery time and reliability constraints. This problem
can be modelled as follows.

• Parameters:

1. Let N ∈ N;
2. for all i ≤ n, si is the expected number of invocations;
3. for all i ≤ n, j ∈ Ii, cij is the cost, dij is the delivery time, and μij the

probability of failure on demand of the j-th off-the-shelf component for
slot i;

4. for all i ≤ n, j ∈ Ji, c̄ij is the cost, tij is the estimated development
time, τij the average time required to perform a test case, pij is the
probability that the instance is faulty, and bij the testability of the j-th
purpose-built component for slot i.

• Variables:

1. Let xij = 1 if component j ∈ Ij ∪ Ji is chosen for slot i ≤ n, and 0
otherwise;

2. Let Nij ∈ Z be the (non-negative) number of tests to be performed
on the purpose-built component j ∈ Ji for i ≤ n: we assume Nij ∈
{0, . . . , N}.

• Objective function. We minimize the total cost, i.e. the cost of the off-
the-shelf components cij and the cost of the purpose-built components
c̄ij(tij + τijNij):

min
∑
i≤n

⎛
⎝∑

j∈Ii

cijxij +
∑
jinJi

c̄ij(tij + τijNij)xij

⎞
⎠ .

• Constraints:

1. assignment constraints: each component slot in the architecture must
be filled by exactly one software component

∀i ≤ n
∑

j∈Ii∪Ji

xij = 1;

2. delivery time constraints: the delivery time for an off-the-shelf compo-
nent is simply dij , whereas for purpose-built components it is tij+τijNij

∀i ≤ n
∑
j∈Ii

dijxij +
∑
j∈Ji

(tij + τijNij)xij ≤ T ;

188 L. Liberti et al.

3. reliability constraints: the probability of failure on demand of off-the shelf
components is μij , whereas for purpose-built components it is given by

ϑij =
pijbij(1 − bij)(1−bij)Nij

(1 − pij) + pij(1 − bij)(1−bij)Nij
,

so the probability that no failure occurs during the execution of the i-th
component is

ϕi = e
si

(∑
j∈Ii

μijxij+
∑

j∈Ji

ϑijxij

)
,

whence the constraint is ∏
i≤n

ϕi ≥ R;

notice we have three classes of reliability constraints involving two sets
of added variables ϑ, ϕ.

This problem is a MINLP with no continuous variables. We shall now apply
several reformulations to this problem (call it P).

1. Consider the term g =
∏

i≤n ϕi and apply ProdExp(P, g) to P to obtain
P1 as follows:

min
∑
i≤n

⎛
⎝∑

j∈Ii

cijxij +
∑
j∈Ji

c̄ij(tij + τijNij)xij

⎞
⎠

∀i ≤ n
∑

j∈Ii∪Ji

xij = 1

∀i ≤ n
∑
j∈Ii

dijxij +
∑
j∈Ji

(tij + τijNij)xij ≤ T

pijbij(1 − bij)(1−bij)Nij

(1 − pij) + pij(1 − bij)(1−bij)Nij
= ϑij

w ≥ R∑
i≤n

si

⎛
⎝∑

j∈Ii

μijxij +
∑
j∈Ji

ϑijxij

⎞
⎠ = log(w),

and observe that w ≥ R implies log(w) ≥ log(R) because the log function
is monotonically increasing, so the last two constraints can be grouped
into a simpler one not involving logarithms of problem variables:

∑
i≤n

si

⎛
⎝∑

j∈Ii

μijxij +
∑
j∈Ji

ϑijxij

⎞
⎠ ≥ log(R).

2. We now make use of the fact that Nij is an integer variable for all i ≤ n, j ∈
Ji, and apply Int2Bin(P, Nij). For k ∈ {0, . . . , N} we add assignment

Reformulations in Mathematical Programming 189

variables νk
ij so that νk

ij = 1 if Nij = k and 0 otherwise. Now for all k ∈
{0, . . . , N} we compute the constants ϑk = pijbij(1−bij)

(1−bij)k

(1−pij)+pij(1−bij)(1−bij)k , which
we add to the problem parameters. We remove the constraints defining ϑij

in function of Nij : since the following constraints are valid:

∀i ≤ n, j ∈ Ji

∑
k≤N

νk
ij = 1 (12)

∀i ≤ n, j ∈ Ji

∑
k≤N

kνk
ij = Nij (13)

∀i ≤ n, j ∈ Ji

∑
k≤N

ϑkνk
ij = ϑij , (14)

the second constraints are used to replace Nij and the third to replace ϑij .
The first constraints are added to the formulation. We obtain:

min
∑
i≤n

⎛
⎝∑

j∈Ii

cijxij +
∑
j∈Ji

c̄ij(tij + τij

∑
k≤N

kνk
ij)xij

⎞
⎠

∀i ≤ n
∑

j∈Ii∪Ji

xij = 1

∀i ≤ n
∑
j∈Ii

dijxij +
∑
j∈Ji

(tij + τij

∑
k≤N

kνk
ij)xij ≤ T

∑
i≤n

si

⎛
⎝∑

j∈Ii

μijxij +
∑
j∈Ji

xij

∑
k≤N

ϑkνk
ij

⎞
⎠ ≥ log(R)

∀i ≤ n, j ∈ Ji

∑
k≤N

νk
ij = 1.

3. We distribute products over sums in the formulation to obtain the binary
product sets {xijν

k
ij | k ≤ N} for all i ≤ n, j ∈ Ji: by repeatedly applying

the ProdBin reformulation to all binary products of binary variables, we
get a MILP opt-reformulation Q of P where all the variables are binary.

We remark that the MILP opt-reformulation Q derived above has a consider-
ably higher cardinality than |P |. More compact reformulations are applicable
in step 3 because of the presence of the assignment constraints (see Sect. 3.4).

ReformulationQ essentially rests on linearization variableswk
ij which replace

the quadratic terms xijν
k
ij throughout the formulation. A semantic interpreta-

tion of step 3 is as follows. We notice that for i ≤ n, j ∈ Ji, if xij = 1, then
xij =

∑
k νk

ij (because only one value k will be selected), and if xij = 0, then
xij =

∑
k νk

ij (because no value k will be selected). This means that

∀i ≤ n, j ∈ Ji xij =
∑
k≤N

νk
ij (15)

190 L. Liberti et al.

is a valid problem constraint. We use it to replace xij everywhere in the
formulation where it appears with j ∈ Ii, obtaining a opt-reformulation with
xij for j ∈ Ii and quadratic terms νk

ijν
h
lp. Now, because of (12), these are

zero when (i, j) �= (l, p) or k �= h and are equal to νk
ij when (i, j) = (l, p) and

k = h, so they can be linearized exactly by replacing them by either 0 or νk
ij

according to their indices. What this really means is that the reformulation Q,
obtained through a series of automatic reformulation steps, is a semantically
different formulation defined in terms of the following decision variables:

∀i ≤ n, j ∈ Ii xij =

{
1 if j ∈ Ii is assigned to i

0 otherwise.

∀i ≤ n, j ∈ Ji, k ≤ N ν
k
ij =

{
1 if j ∈ Ji is assigned to i and there are k tests to be performed

0 otherwise.

This is an important hint to the importance of automatic reformulation
in problem analysis: it is a syntactical operation, the result of which, when
interpreted, can suggest a new meaning.

4 Relaxations

Loosely speaking, a relaxation of a problem P is an auxiliary problem of
P whose feasible region is larger; often, relaxations are obtained by simply
removing constraints from the formulation. Relaxations are useful because
they often yield problems which are simpler to solve yet they provide a bound
on the objective function value at the optimum.

Such bounds are mainly used in Branch-and-Bound type algorithms, which
are the most common exact or ε-approximate (for a given ε > 0) solution
algorithms for MILPs, nonconvex NLPs and MINLPs. Although the variants
for solving MILPs, NLPs and MINLPs are rather different, they all conform
to the same implicit enumeration search type. Lower and upper bounds are
computed for the problem over the current variable domains. If the bounds are
sufficiently close, a global optimum was found in the current domain: store it
if it improves the incumbent (i.e. the current best optimum). Otherwise, par-
tition the domain and recurse over each subdomain in the partition. Should
a bound be worse off than the current incumbent during the search, discard
the domain immediately without recursing on it. Under some regularity con-
ditions, the recursion terminates. The Branch-and-Bound algorithm has been
used on combinatorial optimization problems since the 1950s [6]. Its first ap-
plication to nonconvex NLPs is [33]. More recently, Branch-and-Bound has
evolved into Branch-and-Cut and Branch-and-Price for MILPs [94, 133, 52],
which have been used to solve some practically difficult problems such as
the Travelling Salesman Problem (TSP) [12]. Some recent MINLP-specific
Branch-and-Bound approaches are [102, 10, 4, 5, 114, 124, 71].

Reformulations in Mathematical Programming 191

A further use of bounds provided by mathematical programming formu-
lations is to evaluate the performance of heuristic algorithms without an
approximation guarantee [28]. Bounds are sometimes also used to guide
heuristics [99].

In this section we define relaxations and review the most useful ones. In
Sect. 4.1 we give some basic definitions. We then list elementary relaxations in
Sect. 4.2 and more advanced ones in Sect. 4.3. We discuss relaxation strength-
ening in Sect. 4.4.

4.1 Definitions

Consider an optimization problem P = (P ,V , E ,O, C,B, T) and let Q be such
that: P(Q) ⊇ P(P), V(Q) = V(P), E(Q) ⊇ E(P) and O(Q) = O(P).

We first define relaxations in full generality.

Definition 13. Q is a relaxation of P if (a) F(P) ⊆ F(Q); (b) for all (f, d) ∈
O(P), (f̄ , d̄) ∈ O(Q) and x ∈ F(P), d̄f̄(x) ≥ df(x).

Defn. 13 is not used very often in practice because it does not say anything
on how to construct Q. The following elementary relaxations are more useful.

Definition 14. Q is a:

• constraint relaxation of P if C(P) � C(Q);
• bound relaxation of P if B(P) � B(Q);
• a continuous relaxation of P if ∃v ∈ V(P) (T (v) > 0) and T (v) = 0 for

all v ∈ V(Q).

4.2 Elementary Relaxations

We shall consider two types of elementary relaxations: the continuous re-
laxation and the convex relaxation. The former is applicable to MILPs and
MINLPs, and the latter to (nonconvex) NLPs and MINLPs. They are both
based on the fact that whereas solving MILPs and MINLPs is considered dif-
ficult, there are efficient algorithms for solving LPs and convex NLPs. Since
the continuous relaxation was already defined in Defn. 14 and trivially con-
sists in considering integer/discrete variables as continuous ones, in the rest
of this section we focus on convex relaxations.

Formally (and somewhat obviously), Q is a convex relaxation of a given
problem P if Q is a relaxation of P and Q is convex. Associated to all sBB
in the literature there is a (nonconvex) NLP or MINLP in standard form,
which is then used as a starting point for the convex relaxation.

192 L. Liberti et al.

Outer approximation

Outer approximation (OA) is a technique for defining a polyhedral approx-
imation of a convex nonlinear feasible region, based on computing tangents
to the convex feasible set at suitable boundary points [31, 35, 57]. An outer
approximation relaxation relaxes a convex NLP to an LP, (or a MINLP to
a MILP) and is really a “relaxation scheme” rather than a relaxation: since
the tangents to all boundary points of a convex set define the convex set
itself, any choice of (finite) set of boundary points of the convex can be used
to define a different outer approximation. OA-based optimization algorithms
identify sets of boundary points that eventually guarantee that the outer ap-
proximation will be exact near the optimum. In [57], the following convex
MINLP is considered:

min L0(x) + cy
s.t. L(x) + By ≤ 0

xL ≤ x ≤ xU

y ∈ {0, 1}q,

⎫⎪⎪⎬
⎪⎪⎭ (16)

where L0 : R
n → R, L : R

n → R
m are convex once-differentiable functions,

c ∈ Rq, B is an m × q matrix. For a given y′ ∈ {0, 1}q, let P (y′) be (16)
with y fixed at y′. Let {yj} be a sequence of binary q-vectors. Let T =
{j | P (yj) is feasible with solution xj}. Then the following is a MILP outer
approximation for (16):

minx,y,η η
∀j ∈ T L0(xj) + ∇L0(xj)(x − xj) + cy ≤ η

∀j L(xj) + ∇L(xj)(x − xj) + By ≤ 0
xL ≤ x ≤ xU

y ∈ {0, 1}q,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where xj is the solution to F (yj) (defined in [35]) whenever P (yj) is infeasible.
This relaxation is denoted by OuterApprox(P, T).

αBB convex relaxation

The αBB algorithm [10, 4, 5, 36] targets single-objective NLPs where the ex-
pressions in the objective and constraints are twice-differentiable. The convex
relaxation of the problem P :

minx f(x)
s.t. g(x) ≤ 0

h(x) = 0
xL ≤ x ≤ xU

⎫⎪⎪⎬
⎪⎪⎭ (17)

is obtained as follows.

Reformulations in Mathematical Programming 193

1. Apply the Eq2Ineq reformulation (see Sect. 3.2) to each nonlinear equal-
ity constraint in C, obtaining an opt-reformulation P1 of P .

2. For every nonconvex inequality constraint c = (ec, sc, bc) ∈ C(P1):

a. if the root node r of the expression tree ec is a sum operator, for every
subnode s ∈ δ+(r) replace s with a specialized convex underestimator if
s is a bilinear, trilinear, linear fractional, fractional trilinear, univariate
concave term. Otherwise replace with α-underestimator;

b. otherwise, replace r with a specialized if s is a bilinear, trilinear, lin-
ear fractional, fractional trilinear, univariate concave term. Otherwise
replace with α-underestimator.

The specialized underestimators are as follows: McCormick’s envelopes for
bilinear terms [91, 7], the second-level RLT bound factor linearized prod-
ucts [108, 107, 104] for trilinear terms, and a secant underestimator for
univariate concave terms. Fractional terms are dealt with by extending the
bilinear/trilinear underestimators to bilinear/trilinear products of univariate
functions and then noting that x/y = φ1(x)φ2(y) where φ1 is the identity
and φ2(y) = 1/y [88]. Recently, the convex underestimator for trilinear terms
have been replaced with the convex envelopes [92].

The general-purpose α-underestimator:

α(xL − x)
�

(xU − x) (18)

is a quadratic convex function that for suitable values of α is “convex enough”
to overpower the generic nonconvex term. This occurs for

α ≥ max{0,−1
2

min
xL≤x≤xU

λ(x)},

where min λ(x) is the minimum eigenvalue of the Hessian of the generic non-
convex term in function of the problem variables.

The resulting αBB relaxation Q of P is a convex NLP. This relaxation is
denoted by αBBRelax(P).

Branch-and-Contract convex relaxation

The convex relaxation is used in the Branch-and-Contract algorithm [134],
targeting nonconvex NLPs with twice-differentiable objective function and
constraints. This relaxation is derived essentially in the same way as for the
αBB convex relaxation. The differences are:

• the problem is assumed to only have inequality constraints of the form
c = (ec,−1, 0);

• each function (in the objective and constraints) consists of a sum of non-
linear terms including: bilinear, linear fractional, univariate concave, and
generic convex.

194 L. Liberti et al.

The convex relaxation is then constructed by replacing each nonconvex non-
linear term in the objective and constraints by a corresponding envelope or
relaxation. The convex relaxation for linear fractional term had not appeared
in the literature before [134].

Symbolic reformulation based convex relaxation

This relaxation is used in the symbolic reformulation spatial Branch-and-
Bound algorithm proposed in [113, 114]. It can be applied to all NLPs and
MINLPs for which a convex underestimator and a concave overestimator are
available. It consists in reformulating P to the Smith standard form (see
Sect. 2.3) and then replacing every defining constraint with the convex and
concave under/over-estimators. In his Ph.D. thesis [112], Smith had tried
both NLP and LP convex relaxations, finding that LP relaxations were more
reliable and faster to compute, although of course with slacker bounds. The
second implementation of the sBB algorithm he proposed is described in
[69, 71] and implemented in the ooOPS software framework [82]. Both ver-
sions of this algorithm consider under/overestimators for the following terms:
bilinear, univariate concave, univariate convex (linear fractional being refor-
mulated to bilinear). The second version also included estimators for piece-
wise convex/concave terms. One notable feature of this relaxation is that it
can be adapted to deal with more terms. Some recent work in polyhedral
envelopes, for example [119], gives conditions under which the sum of the
envelopes is the envelope of the sum: this would yield a convex envelope for
a sum of terms. It would then suffice to provide for a defining constraint
in the Smith standard form linearizing the corresponding sum. The Smith
relaxation is optionally strengthened via LP-based optimality and feasibility
based range reduction techniques. After every range reduction step, the con-
vex relaxation is updated with the new variable ranges in an iterative fashion
until no further range tightening occurs [112, 69, 71].

This relaxation, denoted by SmithRelax(P) is at the basis of the sBB
solver [71] in the ooOPS software framework [82], which was used to obtain
solutions of many different problem classes: pooling and blending problems
[48, 81], distance geometry problems [60, 62], and a quantum chemistry prob-
lem [63, 78].

BARON’s convex relaxation

BARON (Branch And Reduce Optimization Navigator) is a commercial
Branch-and-Bound based global optimization solver (packaged within the
GAMS [23] modelling environment) which is often quoted as being the de
facto standard solver for MINLPs [124, 123]. Its convex relaxation is derived
essentially in the same way as for the symbolic reformulation based convex
relaxation. The differences are:

• better handling of fractional terms [120, 121]

Reformulations in Mathematical Programming 195

• advanced range reduction techniques (optimality, feasibility and duality
based, plus a learning reduction heuristic)

• optionally, an LP relaxation is derived via outer approximation.

4.3 Advanced Relaxations

In this section we shall describe some more advanced relaxations, namely
the Lagrangian relaxation, the semidefinite relaxation, the reformulation-
linearization technique and the signomial relaxation.

Lagrangian relaxation

Consider a MINLP

f∗ = minx f(x)
s.t. g(x) ≤ 0

x ∈ X ⊆ Rn,

⎫⎬
⎭ (19)

where f : Rn → R and g : Rn → Rm are continuous functions and X is an
arbitrary set. The Lagrangian relaxation consists in “moving” the weighted
constraints to the objective function, namely:

L(μ) = infx f(x) + μ�g(x)
x ∈ X ⊆ Rn,

}

for some nonnegative μ ∈ Rm
+ . For all x ∈ X with g(x) ≤ 0, we have μ�g(x) ≤

0, which implies L(μ) ≤ f∗ for all μ ≥ 0. In other words, L(μ) provides a
lower bound to (19) for all μ ≥ 0. Thus, we can improve the tightness of the
relaxation by solving the Lagrangian problem

max
μ≥0

L(μ), (20)

(namely, we attempt to find the largest possible lower bound). If (19) is
an LP problem, it is easy to show that the Lagrangian problem (20) is the
dual LP problem. In general, solving (20) is not a computationally easy task
[95]. However, one of the nice features of Lagrangian relaxations is that they
provide a lower bound for each value of μ ≥ 0, so (20) does not need to be
solved at optimality. Another useful feature is that any subset of problem
constraints can be relaxed, for X can be defined arbitrarily. This is useful
for problems that are almost block-separable, i.e. those problems that can be
decomposed in some independent subproblems bar a few constraints involving
all the problem variables (also called complicating constraints). In these cases,
one considers a Lagrangian relaxation of the complicating constraints and
then solves a block-separable Lagrangian problem. This approach is called
Lagrangian decomposition.

196 L. Liberti et al.

The Lagrangian relaxation has some interesting theoretical properties: (a)
for convex NLPs it is a global reformulation [22]; (b) for MILPs, it is at
least as tight as the continuous relaxation [133]; (c) for MINLPs, under some
conditions (i.e. some constraint qualification and no equality constraints) it is
at least as tight as any convex relaxation obtained by relaxing each nonconvex
term or each constraint one by one [51], such as all those given in Sect. 4.2.
Further material on the use of Lagrangian relaxation in NLPs and MINLPs
can be found in [95, 51].

Consider a problem P such that O(P) = {(eo, do)} and a subset of
constraints C ⊆ C(P). A Lagrangian relaxation of C in P (denoted by
LagRel(P, C)) is a problem Q defined as follows.

• V(Q) = V(P), B(Q) = B(P), T (Q) = T (P),
• P(Q) = P(P) ∪ {μc | c ∈ C},
• C(Q) = C(P) � C,
• O(Q) = {(e′o, d′o)}, where e′o = eo +

∑
c∈C μcc.

The Lagrangian problem cannot itself be defined in the data structure of
Defn. 1, for the max operator is only part of OL as long as it has a finite
number of arguments.

Semidefinite relaxation

As was pointed out in Sect. 2.3, SDPs provide very tight relaxations for
quadratically constrained quadratic MINLPs (QCQP). A QCQP in general
form is as follows [11]:

minx x�Q0x + a�
0 x

∀i ∈ I x�Qix + a�
i x ≤ bi

∀i ∈ E x�Qix + a�
i x = bi

xL ≤ x ≤ xU

∀j ∈ J xi ∈ Z,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(21)

where I ∪E = {1, . . . , m}, J ⊆ {1, . . . , n}, x ∈ Rn, Qi is an n × n symmetric
matrix for all i ≤ m. For general matrices Qi and J �= ∅, the QCQP is noncon-
vex. Optionally, the integer variables can be reformulated exactly to binary
(see Int2Bin, Sect. 3.2) and subsequently to continuous (see Bin2Cont,
Sect. 3.2) via the introduction of the constraints x2

i −xi = 0 for all i ∈ J : since
these constraints are quadratic, they can be accommodated in formulation
(21) by suitably modifying the Qi matrices. Many important applications can
be modelled as QCQPs, including graph bisection (see Sect. 2.1) and graph
partitioning [72], scheduling with communication delays [28], distance geome-
try problems such as the KNP (see Sect. 2.1) [60] and the Molecular Distance
Geometry Problem (MDGP) [62, 77], pooling and blending problems from
the oil industry [48, 81] and so on.

The SDP relaxation of the QCQP, denoted by SDPRelax(P) is con-
structed as follows:

Reformulations in Mathematical Programming 197

• replace all quadratic products xixj in (21) with an added linearization
variable Xij

• form the matrix X = (Xij) and the variable matrix

X̄ =
(

1 x�

x X

)

• for all 0 ≤ i ≤ m form the matrices

Q̄i =
(

−bi a�
i /2

ai/2 Qi

)

• the following is an SDP relaxation for QCQP:

minX Q̄0 • X̄
∀i ∈ I Q̄i • X̄ ≤ 0
∀i ∈ E Q̄i • X̄ = 0

xL ≤ x ≤ xU

X̄ � 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(22)

As for the SDP standard form of Sect. 2.3, the SDP relaxation can be easily
represented by the data structure described in Defn. 1.

Reformulation-Linearization Technique

The Reformulation-Linearization Technique (RLT) is a relaxation method for
mathematical programming problems with quadratic terms. The RLT lin-
earizes all quadratic terms in the problem and generates valid linear equa-
tion and inequality constraints by considering multiplications of bound factors
(terms like xi −xL

i and xU
i −xi) and constraint factors (the left hand side of a

constraint such as
∑n

j=1 ajxj − b ≥ 0 or
∑n

j=1 ajxj − b = 0). Since bound and
constraint factors are always non-negative, so are their products: this way one
can generate sets of valid problem constraints. In a sequence of papers pub-
lished from the 1980s onwards (see e.g. [2, 108, 110, 107, 103, 111, 109]), RLT-
based relaxationswere derived for many different classes of problems, including
IPs, NLPs, MINLPs in general formulation, and several real-life applications.
It was shown that the RLT can be used in a lift-and-project fashion to generate
the convex envelope of binary and general discrete problems [106, 3].

Basic RLT

The RLT consists of two symbolic manipulation steps: reformulation and lin-
earization. The reformulation step is a reformulation in the sense of Defn. 10.
Given a problem P , the reformulation step produces a reformulation Q′ where:

• P(Q′) = P(P);
• V(Q′) = V(P);

198 L. Liberti et al.

• E(Q′) ⊇ E(P);
• C(Q′) ⊇ C(P);
• O(Q′) = O(P);
• B(Q′) = B(P);
• T (Q′) = T (P);
• ∀x, y ∈ V(P), add the following constraints to C(Q′):

(x − Lx)(y − Ly) ≥ 0 (23)
(x − Lx)(Uy − y) ≥ 0 (24)
(Ux − x)(y − Ly) ≥ 0 (25)
(Ux − x)(Uy − y) ≥ 0; (26)

• ∀x ∈ V(P), c = (ec, sc, bc) ∈ C(P) such that ec is an affine form, sc = 1
and bc = 0 (we remark that all linear inequality constraints can be easily
reformulated to this form, see Sect. 3.2), add the following constraints to
C(Q′):

ec(x − Lx) ≥ 0 (27)
ec(Ux − x) ≥ 0; (28)

• ∀x ∈ V(P), c = (ec, sc, bc) ∈ C(P) such that ec is an affine form, sc = 0
and bc = 0 (we remark that all linear equality constraints can be trivially
reformulated to this form), add the following constraint to C(Q′):

ecx = 0. (29)

Having obtained Q′, we proceed to linearize all the quadratic products
engendered by (23)-(29). We derive the auxiliary problem Q from Q′ by re-
formulating Q′ to Smith’s standard form (see Sect. 2.3) and then performing
a constraint relaxation with respect to all defining constraints. Smith’s stan-
dard form is a reformulation of the lifting type, and the obtained constraint
relaxation Q is a MILP whose optimal objective function value f̄ is a bound to
the optimal objective function value f∗ of the original problem P . The bound
obtained in this way is shown to dominate, or be equivalent to, several other
bounds in the literature [3]. This relaxation is denoted by RLTRelax(P).

We remark in passing that (23)-(26), when linearized by replacing the
bilinear term xy with an added variable w, are also known in the literature
as McCormick relaxation, as they were first proposed as a convex relaxation of
the nonconvex constraint w = xy [91], shown to be the convex envelope [7],
and widely used in spatial Branch-and-Bound (sBB) algorithms for global
optimization [114, 4, 5, 124, 71]. RLT constraints of type (29) have been
the object of further research showing their reformulating power [67, 68, 70,
81, 72] (also see Sect 3.4, where we discuss compact linearization of binary
quadratic problems and reduced RLT constraints).

Reformulations in Mathematical Programming 199

RLT Hierarchy

The basic RLT method can be extended to provide a hierarchy of relaxations,
by noticing that we can form valid RLT constraints by multiplying sets of
bound and constraint factors of cardinality higher than 2, and then projecting
the obtained constraints back to the original variable space. In [106, 3] it is
shown that this fact can be used to construct the convex hull of an arbitrary
MILP P . For simplicity, we only report the procedure for MILP in standard
canonical form (see Sect. 2.3) where all discrete variables are binary, i.e.
T (v) = 2 for all v ∈ V(P). Let |V(P)| = n. For all integer d ≤ n, let Pd be
the relaxation of P obtained as follows:

• for all linear constraint c = (ec, 1, 0) ∈ C(P), subset V ⊆ V(P) and finite
binary sequence B with |V | = |B| = d such that Bx is the x-th term of
the sequence for x ∈ V , add the valid constraint:

ec

⎛
⎜⎝ ∏

x∈V
Bx=0

x

⎞
⎟⎠
⎛
⎜⎝ ∏

x∈V
Bx=1

(1 − x)

⎞
⎟⎠ ≥ 0; (30)

we remark that (30) is a multivariate polynomial inequality;
• for all monomials of the form

a
∏

x∈J⊆V(P)

x

with a ∈ R in a constraint (30), replace
∏

x∈J

x with an added variable wJ

(this is equivalent to relaxing a defining constraint wJ =
∏

x∈J

in the Smith’s

standard form restricted to (30)).

Now consider the projection Xd of Pd in the V(P) variable space (see
Sect. 3.2). It can be shown that

conv(F(P)) ⊆ F(Xn) ⊆ F(Xn−1) . . . ⊆ F(X1) ⊆ F(P).

We recall that for a set Y ⊆ Rn, conv(Y) is defined as the smallest convex
subset of Rn containing Y .

A natural practical application of the RLT hierarchy is to generate relax-
ations for polynomial programming problems [103], where the various multi-
variate monomials generated by the RLT hierarchy might already be present
in the problem formulation.

Signomial programming relaxations

A signomial programming problem is an optimization problem where every
objective function is a signomial function and every constraint is of the form

200 L. Liberti et al.

c = (g, s, 0) where g is a signomial function of the problem variables, and s �= 0
(so signomial equality constraints must be reformulated to pairs of inequality
constraints as per the Eq2Ineq reformulation of Sect. 3.2). A signomial is a
term of the form:

a

K∏
k=1

xrk

k , (31)

where a, rk ∈ R for all k ∈ K, and the rk exponents are assumed ordered so
that rk > 0 for all k ≤ m and rk < 0 for m ≤ k ≤ K. Because the exponents
of the variables are real constants, this is a generalization of a multivariate
monomial term. A signomial function is a sum of signomial terms. In [19],
a set of transformations of the form xk = fk(zk) are proposed, where xk

is a problem variable, zk is a variable in the reformulated problem and fk

is suitable function that can be either exponential or power. This yields an
opt-reformulation where all the inequality constraints are convex, and the
variables z and the associated (inverse) defining constraints xk = fk(zk) are
added to the reformulation for all k ∈ K (over each signomial term of each
signomial constraint).

We distinguish the following cases:

• If a > 0, the transformation functions fk are exponential univariate,
i.e. xk = ezk . This reformulates (31) as follows:

a e
∑

k≤m rkzk∏K
k=m+1 x

|rk|
k

∀k ≤ K xk = ezk .

}

• If a < 0, the transformation functions are power univariate, i.e. xk = z
1
R

k

for k ≤ m and xk = z
− 1

R

k for k > m, where R =
∑

k≤K |rk|. This is also
called a potential transformation. This reformulates (31) as follows:

a
∏

k≤K z
|rk|

R

k

∀k ≤ m xk = z
1
R

k

∀k > m xk = z
− 1

R

k

R =
∑

k≤K |rk|.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

This opt-reformulation isolates all nonconvexities in the inverse defining con-
straints. These are transformed as follows:

∀k ≤ K xk = ezk → ∀k ≤ K zk = log xk

∀k ≤ m zk = xR
k

∀k > m zk = x−R
k ,

and then relaxed using a piecewise linear approximation as per Fig. 4. This
requires the introduction of binary variables (one per turning point).

Reformulations in Mathematical Programming 201

Fig. 4 Piecewise linear underestimating approximations for concave (left) and con-
vex (right) univariate functions

The signomial relaxation is a convex MINLP; it can be further relaxed to
a MILP by outer approximation of the convex terms, or to a convex NLP by
continuous relaxation of the discrete variables. This relaxation is denoted by
SignomialRelax(P).

4.4 Valid Cuts

Once a relaxation has been derived, it should be strengthened (i.e. it should
be modified so that the deriving bound becomes tighter). This is usually
done by tightening the relaxation, i.e. by adding inequalities. These inequal-
ities have the property that they are redundant with respect to the original
(or reformulated) problem but they are not redundant with respect to the
relaxation. Thus, they tighten the relaxation but do not change the original
problem. In this section we discuss such inequalities for MILPs, NLPs and
MINLPs.

Definition 15. Given an optimization problem P and a relaxation Q, a valid
inequality is a constraint c = (ec, sc, bc) such that the problem Q′ obtained by
Q from adding c to C(Q) has F(P) ⊆ F(Q′).

Naturally, because Q can be seen as a constraint relaxation of Q′, we also
have F(Q′) ⊆ F(Q). Linear valid inequalities are very important as adding
a linear inequality to an optimization problem usually does not significantly
alter the solution time.

For any problem P and any c ∈ C(P), let Fc be the set of points in Rn

that satisfy c. Let Q be a relaxation of P .

Definition 16. A linear valid inequality c is a valid cut if there exists y ∈ Q
such that y �∈ Fc.

Valid cuts are linear valid inequalities that “cut away” a part of the feasible
region of the relaxation. They are used in two types of algorithms: cutting

202 L. Liberti et al.

plane algorithms and Branch-and-Bound algorithms. The typical iteration of
a cutting plane algorithm solves a problem relaxation Q (say with solution
x′), derives a valid cut that cuts away x′; the cut is then added to the relax-
ation and the iteration is repeated. Convergence is attained when x′ ∈ F(P).
Cutting plane algorithms were proposed for MILPs [43] but then deemed
to be too slow for practical purposes, and replaced by Branch-and-Bound.
Cutting plane algorithms were also proposed for convex [56] and bilinear [59]
NLPs, and pseudoconvex MINLPs [132, 131].

Valid cuts for MILPs

This is possibly the area of integer programming where the highest number of
papers is published annually. It would be outside the scope of this chapter to
relate on all valid cuts for MILPs, so we limit this section to a brief summary.
The most effective cutting techniques usually rely on problem structure. See
[94], Ch. II.2 for a good technical discussion on the most standard techniques,
and [89, 90, 54] for recent interesting group-theoretical approaches which are
applicable to large subclasses of IPs. Valid inequalities are generated by all re-
laxation hierarchies (like e.g. Chvátal-Gomory [133] or Sherali-Adams’ [107]).
The best known general-purpose valid cuts are the Gomory cuts [43], for they
are simple to define and can be written in a form suitable for straightfor-
ward insertion in a simplex tableau; many strengthenings of Gomory cuts
have been proposed (see e.g. [64]). Lift-and-project techniques are used to
generate new cuts from existing inequalities [15]. Families of valid cuts for
general Binary Integer Programming (BIP) problems have been derived, for
example, in [16, 84], based on geometrical properties of the definition hy-
percube {0, 1}n. In [16], inequalities defining the various faces of the unit
hypercube are derived. The cuts proposed in [84] are defined by finding a
suitable hyperplane separating a unit hypercube vertex x̄ from its adjacent
vertices. Intersection cuts [14] are defined as the hyperplane passing through
the intersection points between the smallest hypersphere containing the unit
hypercube and n half-lines of a cone rooted at the current relaxed solution of
Q. Spherical cuts are similar to intersection cuts, but the considered sphere
is centered at the current relaxed solution, with radius equal to the distance
to the nearest integral point [74]. In [21], Fenchel duality arguments are used
to find the maximum distance between the solution of Q and the convex hull
of the F(P); this gives rise to provably deep cuts called Fenchel cuts. See [25]
for a survey touching on the most important general-purpose MILP cuts, in-
cluding Gomory cuts, Lift-and-project techniques, Mixed Integer Rounding
(MIR) cuts, Intersection cuts and Reduce-and-split cuts.

Valid cuts for NLPs

Valid cuts for NLPs with a single objective function f subject to linear con-
straints are described in [50] (Ch. III) when an incumbent x∗ with f(x∗) = γ

Reformulations in Mathematical Programming 203

Fig. 5 A γ-valid cut

x′

x1

x2

f(x) = γ

is known, in order to cut away feasible points x′ with f(x′) > γ. Such cuts
are called γ-valid cuts. Given a nondegenerate vertex x′ of the feasible poly-
hedron for which f(x′) > γ, we consider the n polyhedron edges emanating
from x′. For each i ≤ n we consider a point xi on the i-th edge from x′

such that f(xi) ≥ γ. The hyperplane passing through the intersection of the
xi is a γ-valid cut (see Fig. 5). More precisely, let Q be the matrix whose
i-th column is xi − x′ and e the unit n-vector. Then by [50] Thm. III.1
eQ−1(x − x′) ≥ 1 defines a γ-valid cut. Under some conditions, we can find
xi such that f(x) = xi and define the strongest possible γ-valid cut, also
called concavity cut.

The idea for defining γ-valid cuts was first proposed in [128]; this was
applied to 0-1 linear programs by means of a simple reformulation in [100]. It
is likely that this work influenced the inception of intersection cuts [14] (see
Sect. 4.4), which was then used as the basis for current work on Reduce-and-
Split cuts [9].

Some valid cuts for pseudoconvex optimization problems are proposed in
[132]. An optimization problem is pseudoconvex if the objective function
is a linear form and the constraints are in the form c = (g,−1, 0) where
g(x) is a pseudoconvex function of the problem variable vector x. A function
g : S ⊆ Rn → R is pseudoconvex if for all x, y ∈ S, g(x) < g(y) implies
∇g(y)(x − y) < 0. So it follows that for each x, y ∈ S with g(y) > 0, there is
a constant α ≥ 1 such that

g(y) + α(∇g(y))(x − y) ≤ g(x) (32)

is a (linear) outer approximation to the feasible region of the problem. If g is
convex, α = 1 suffices.

In [95], Ch. 7 presents a non-exhaustive list of NLP cuts, applicable to
a MINLP standard form ([95] Eq. (7.1): minimization of a linear objective
subject to linear inequality constraints and nonlinear inequality constraints):
linearization cuts (outer approximation, see Sect. 4.2), knapsack cuts (used

204 L. Liberti et al.

for improving loose convex relaxations of given constraints), interval-gradient
cuts (a linearization carried out on an interval where the gradient of a given
constraint is defined), Lagrangian cuts (derived by solving Lagrangian sub-
problems), level cuts (defined for a given objective function upper bound),
deeper cuts (used to tighten loose Lagrangian relaxation; they involve the
solution of separation problems involving several variable blocks).

Another NLP cut based on the Lagrangian relaxation is proposed in [124]:
consider a MINLP in the canonical form ming(x)≤0 f(x) and let L(·, μ) =
f(x)+μ�g(x) be its Lagrangian relaxation. Let f be a lower bound obtained
by solving L and f̄ be an upper bound computed by evaluating f at a feasible
point x′. From f ≤ f(x) + μ�g(x) ≤ f̄ + μ�g(x) one derives the valid cut
gi(x) ≥ − 1

μi
(f̄ − f) for all i ≤ m (where g : Rn → Rm).

Valid cuts for MINLPs

Naturally, both MILP and NLP cuts may apply to MINLPs. Some more
specific MINLP cuts can be derived by reformulating integer variables to
binary (see Sect. 3.2) and successively to continuous (see Sect. 3.2). The added
quadratic constraints may then be relaxed in a Lagrangian (see Sect. 4.3) or
SDP fashion (see Sect. 4.3) [98]: any of the NLP cuts described in Sect. 4.4
applied to such a reformulation is essentially a specific MINLP valid cut.

5 Reformulation/Optimization Software Engine

Although specific reformulations are carried out by most LP/MILP prepro-
cessors [52, 45], and a few very simple reformulations are carried out by some
mathematical programming language environments [39, 23], there is no soft-
ware optimization framework that is able to carry out reformulations in a
systematic way. In this section we describe the Reformulation/Optimization
Software Engine (ROSE), a C++ software framework for optimization that
can reformulate and solve mathematical programs of various types. ROSE is
work in progress; currently, it is more focused on reformulation than optimiza-
tion, but it has nonetheless a few native solvers (e.g. a Variable Neighbour-
hood Search (VNS) based algorithm for nonconvex NLPs [76]) and wrappers
to various other external solvers (e.g. the LP solver GLPK [85] and the local
NLP solver SNOPT [41]). In our research, we currently use ROSE’s refor-
mulation capabilities with AMPL’s considerable set of numerical solvers in
order to obtain solutions of complex MINLPs.

ROSE consists of a set of interfaces with external clients (currently, it
has a direct user interface and an AMPL [39] interface), a problem class, a
virtual solver class with many implementations, and an expression tree ma-
nipulation library called Ev3 (see Sect. 5.3). Reformulations may occur within
the problem class, within the solvers, or within Ev3. Solvers may embed ei-
ther a numerical solution algorithm or a symbolic reformulation algorithm,
or both. The problem class builds the problem and simplifies it as much as

Reformulations in Mathematical Programming 205

possible; solvers are generally passed one or more problem together with a
set of configuration parameters, and provide either a numerical solution or
a reformulation. Reformulation solvers usually change the structure of their
input problems; there is a special dedicated reformulation solver that makes
an identical copy of the input problem. Most reformulation solvers acting on
the mathematical expressions call specific methods within Ev3.

5.1 Development History

ROSE has a long history. Its “founding father” is the GLOP software ([71]
Sect. 3.3), conceived and used by E. Smith to write his Ph.D. thesis [112] at
CPSE, Imperial College, under the supervision of Prof. Pantelides. GLOP was
never publically released, although test versions were used by CPSE students
and faculty over a number of years. GLOP, however, was not so much a soft-
ware framework rather than an implementation of the reformulation-based
sBB algorithm described in [114]. The same algorithm (in a completely new
implementation) as well as some other global optimization algorithms were
put together in the ooOPS (object-oriented OPtimization System) software
framework ([71] Sect. 3.4), coded by the first author of this chapter during his
Ph.D. thesis [69] at CPSE, Imperial College, and drawing a few software ar-
chitecture ideas from its MILP predecessor, ooMILP [127, 126]. The ooOPS
software framework [82] includes an sBB algorithm for MINLPs (which has
a few glitches but works in a lot of instances), a VNS algorithm for non-
convex NLPs, a wrapper to the GO solver SobolOpt [61], and a wrapper to
SNOPT. ooOPS was used to compile the results of several research papers,
but unfortunately Imperial College never granted the rights to distribute its
source publically. Besides, ooOPS used binary expression trees, which made
it much more difficult to reformulate sums and products with more than two
operands. The MINLP Object-oriented Reformulation/Optimization Naviga-
tor (MORON) was conceived to address these two limitations. MORON has
an extensive API for dealing with both reformulation and optimization and
includes: a prototypical Smith reformulator and convexifier ([71], Sect. 2.3
and 7.3); a preliminary version of the sBB algorithm; a wrapper to SNOPT.
A lot of work was put into the development of Ev3, a separate expression
tree library with reformulating capabilities [65]. Unfortunately, due to lack of
time, development of MORON was discontinued. ROSE is MORON’s direct
descendant: it has a leaner API, almost the same software architecture (the
main classes being Problem and Solver), and it uses Ev3 to handle expres-
sion trees. We expect to be able to publically distribute ROSE within the end
of 2008; for using and/or contributing to its development, please contact the
first author. We also remark that many of the ideas on which ooOPS’s and
MORON’s sBB solvers are built are also found in Couenne [18], a modern sBB
implementation coded by P. Belotti within a CMU/IBM project, targeted at
general MINLPs, and publically distributed within COIN-OR [83].

206 L. Liberti et al.

5.2 Software Architecture

The ROSE software relies on two main classes: Problem and Solver. The
standard expected usage sequence is the following. The client (either the
user or AMPL) constructs and configures a problem, selects and configures
a solver, then solves a problem using the selected solver, and finally collects
the output from the problem.

The Problem class has methods for reading in a problem, access/modify
the problem description, perform various reformulations to do with
adding/deleting variables and constraints, evaluate the problem expressions
and their first and second derivatives at a given point, and test for feasibil-
ity of a given point in the problem. The Solver class is a virtual class that
serves as interface for various solvers. Implementations of the solver class are
passed a pointer to a Problem object and a set of user-defined configura-
tion parameters. Solver implementations may either find numerical solutions
and/or change the problem structure. Numerical solvers normally re-insert
the numerical solution found within the Problem object. The output of a
reformulation solver is simply the change carried out on the problem struc-
ture. Every action carried out on a mathematical expression, be it a function
evaluation or a symbolic transformation, is delegated to the Ev3 library (see
Sect. 5.3).

The Problem class

ROSE represents optimization problems in their flat form representation;
i.e. variables, objective functions and constraints are arranged in simple linear
lists rather than in jagged arrays of various dimensions. The reason for this
choice is that languages such as AMPL and GAMS already do an excellent job
of translating structured form problem formulations to their flat counterparts.
Problems are defined in problem.h and problem.cxx.

This class rests on three structs defining variables, objectives and con-
straints.

• struct Variable, storing the following information concerning decision
variables.

– ID, an integer (int) storing an ID associated to the variable. This ID
does not change across reformulations, except in case of reformulations
which delete variables. In this case, when a variable is deleted the IDs
of the successive variables are shifted. The lists storing variable objects
do not make any guarantee on the ordering of IDs across the list.

– Name, a string (std::string) storing the variable name. This is only
used for printing purposes.

– LB, a floating point number (double) storing the variable lower bound.
– UB, a floating point number (double) storing the variable upper bound.

Reformulations in Mathematical Programming 207

– IsIntegral, a flag (bool) set to 1 if the variable is integer and 0 other-
wise. Binary variables occur when IsIntegral is set to 1, LB to 0, and
UB to 1.

– Persistent, a flag (bool) set to 1 if the variable cannot be deleted by
reformulation algorithms, and 0 otherwise.

– Optimum, a floating point number (double) storing a value for the vari-
able. Notwithstanding the name, this is not always the optimum value.

• struct Objective, storing the following information concerning objective
functions.

– ID, an integer (int) storing an ID associated to the objective. This
ID does not change across reformulations, except in case of reformula-
tions which delete objectives. In this case, when an objective is deleted
the IDs of the successive objectives are shifted. The lists storing objec-
tive objects do not make any guarantee on the ordering of IDs across
the list.

– Name, a string(std::string) storing the objective name. This is not
currently used.

– Function, the expression tree (Expression) of the objective function.
– FunctionFET, a fast evaluation expression tree (see Sect. 5.3 on p. 210)

pointer (FastEvalTree*) corresponding to Function.
– NonlinearPart, the expression tree (Expression) of the nonlinear part

of Function. This may contain copies of subtrees of Function. The
nonlinear part of an expression includes all subexpressions involving
variables that appear nonlinearly at least once in the expression. For
example, the nonlinear part of x + y + z + yz is y + z + yz.

– NonlinearPartFET, a fast evaluation expression tree pointer
(FastEvalTree*) corresponding to NonlinearPart.

– OptDir, a label (int) which is 0 if the objective is to be minimized and
1 if it is to be maximized.

– Diff, the first-order partial derivatives (std::vector<Expression>) of
Function.

– DiffFET, the fast evaluation tree pointers (std::vector<FastEval
Tree*>) corresponding to the first-order partial derivatives.

– Diff2, the second-order partial derivatives (std::vector<std::
vector<Expression> >) of Function.

– Diff2FET, the fast evaluation tree pointers (std::vector<std::
vector<FastEvalTree*> >) corresponding to second-order partial
derivatives.

• struct Constraint, storing the following information concerning con-
straints.

– ID, an integer (int) storing an ID associated to the constraint. This ID
does not change across reformulations, except in case of reformulations

208 L. Liberti et al.

which delete constraints. In this case, when a constraint is deleted the
IDs of the successive constraints are shifted. The lists storing constraint
objects do not make any guarantee on the ordering of IDs across the list.

– Name, a string(std::string) storing the constraint name. This is not
currently used.

– Function, the expression tree (Expression) of the constraint function.
– FunctionFET, a fast evaluation expression tree (see Sect. 5.3 on p. 210)

pointer (FastEvalTree*) corresponding to Function.
– NonlinearPart, the expression tree (Expression) of the nonlinear part

of Function. This may contain copies of subtrees of Function. The
nonlinear part of an expression includes all subexpressions involving
variables that appear nonlinearly at least once in the expression. For
example, the nonlinear part of x + y + z + yz is y + z + yz.

– NonlinearPartFET, a fast evaluation expression tree pointer
(FastEvalTree*) corresponding to NonlinearPart.

– LB, a floating point number (double) storing the constraint lower
bound.

– UB, a floating point number (double) storing the constraint upper
bound.

– Diff, the first-order partial derivatives (std::vector<Expression>) of
Function.

– DiffFET, the fast evaluation tree pointers (std::vector<FastEval
Tree*>) corresponding to the first-order partial derivatives.

– Diff2, the second-order partial derivatives (std::vector<std::
vector<Expression> >) of Function.

– Diff2FET, the fast evaluation tree pointers (std::vector<std::
vector<FastEvalTree*> >) corresponding to second-order partial
derivatives.

We remark that Constraint objects are expressed in the form LB ≤
Function ≤ UB; in order to deactivate one constraint side, use the de-
fined constant MORONINFINITY (1 × 1030).

Indexing of problem entities

Pointers to all variable, objective and constraint objects (also called entities)
in the problem are stored in STL vectors. Thus, on top of the entity indexing
given by the ID property, we also have the natural indexing associated to these
vectors, referred to as local indexing. Whereas ID-based indices are constant
throughout any sequence of reformulations, local indices refer to the current
problem structure. Direct and inverse mappings between indices and local
indices are given by the following Problem methods:

• int GetVariableID(int localindex)
• int GetVarLocalIndex(int varID)

Reformulations in Mathematical Programming 209

• int GetObjectiveID(int localindex)
• int GetObjLocalIndex(int objID)
• int GetConstraintID(int localindex)
• int GetConstrLocalIndex(int constrID).

Individual problem entities can be accessed/modified by their ID; a subset of
the methods also exist in the “local index” version — such methods have the
suffix -LI appended to their names. All indices in the API start from 1.

Parameters

The parameter passing mechanism is based on a Parameters class with the
following methods.
class Parameters.
Method name Purpose

int GetNumberOfParameters(void) get number of parameters
string GetParameterName(int pID) get name of parameter pID
int GetParameterType(int pID) get type of parameter pID

(0=int,1=bool,2=double,3=string)
int GetParameterIntValue(int pID) get int value of parameter pID
bool GetParameterBoolValue(bool pID) get bool value of parameter pID
double GetParameterDoubleValue(double pID) get double value of parameter pID
string GetParameterStringValue(int pID) get string value of parameter pID
void SetIntParameter(string parname, int) set named parameter to int value
void SetBoolParameter(string parname, bool) set named parameter to bool value
void SetDoubleParameter(string parname, double) set named parameter to double value
void SetStringParameter(string parname, string) set named parameter to string value
int GetIntParameter(string parname) get int value of named parameter
int GetBoolParameter(string parname) get bool value of named parameter
int GetDoubleParameter(string parname) get double value of named parameter
int GetStringParameter(string parname) get string value of named parameter

Problem API

The API of the Problem class is given in the tables on pages 211-212.
Within the reformulation methods, the Add- methods automatically call
a corresponding New- method to produce the next available ID. The
DeleteVariable methods does not eliminate all occurrences of the variable
from the problem (i.e. this is not a projection). The AMPL-based construc-
tion methods were made possible by an undocumented AMPL solver library
feature that allows clients to access AMPL’s internal binary trees [38, 40].

The Solver virtual class

Solver is a virtual class whose default implementation is an inactive (empty)
solver. This is not a pure virtual class because it represent the union of all
possible solver implementations, rather than the intersection; in other words,
not all methods in Solver are implemented across all solvers (check the source
files solver*.h, solver*.cxx to make sure).

210 L. Liberti et al.

class UserCut.

Method name Purpose

UserCut(Expression e, double L, double U) constructor

Expression Function cut’s body
FastEvalTree* FunctionFET fast eval tree of Function
Expression NonlinearPart nonlinear part of Function
FastEvalTree* NonlinearPartFET fast eval tree of NonlinearPart
double LB lower bound
double UB upper bound
bool IsLinear marks a linear cut
vector<Expression> Diff derivatives
vector<FastEvalTree*> DiffFET corresponding fast eval trees
vector<vector<Expression> > Diff2 2nd derivatives
vector<vector<FastEvalTree*> > Diff2FET corresponding fast eval trees

Implementations of this class may be numerical solvers, working towards
finding a solution, or reformulation solvers, working towards analysing or
changing the problem structure. Normally, solvers are initialized and then
activated. Problem bounds (both variable and constraint) can be changed
dynamically by a solver without the original problem bounds being modified.
Numerical solvers can add both linear and nonlinear cuts (see Sect. 4.4) to
the formulation before solving it. Cuts are dealt with via two auxiliary classes
UserLinearCut and UserCut.

Because of their simplicity, UserLinearCut and UserCut do not offer a full
set/get interface, and all their properties are public. Cuts can only be added,
never deleted; however, they can be enabled/disabled as needed.

Existing Solver implementations

Each solver implementation consists of a header and an implementation
file. Currently, ROSE has three functional numerical solvers: VNS solver
for nonconvex NLPs [76], a wrapper to SNOPT [42], a wrapper to GLPK
[85]; and various reformulator solvers, among which: a problem analyser
that returns problem information to AMPL, a problem copier that simply
makes an identical copy of the current problem (for later reformulations), an
outer approximation reformulator, a Smith standard form reformulator (see
Sect. 2.3), a Smith convexifier (see Sect. 4.2), a ProdBinCont reformulator
(see Sect. 3.3), and various other partially developed solvers.

5.3 Ev3

Ev3 is a library providing expression tree functionality and symbolic trans-
formations thereof (see Sect. 2.2). This library may also be used stand-alone,
and the rest of this section actually refers to the stand-alone version. The
only adaptation that was implemented for usage within ROSE was to pro-
vide additional structures for Fast Evaluation Trees (FETs). Ev3’s native

Reformulations in Mathematical Programming 211

class Problem. Basic methods.

Method name Purpose

Problem(bool nosimplify) constructor with optional nosimplify

void SetName(string) set the problem name

string GetName(void) get the problem name

bool IsProblemContinuous(void) true if no integer variables

bool IsProblemLinear(void) true if no nonlinear expressions

Problem* GetParent(void) get parent problem in a tree of problems

int GetNumberOfChildren(void) get number of children problems

Problem* GetChild(int pID) get pID-th child in list of children problems

string GetFormulationName(void) name of reform. assigned to this prob.

void SetOptimizationDirection(int oID, int minmax) set opt. dir. of oID-th objective

void SetOptimizationDirectionLI(int li, int minmax) local index version

int GetOptimizationDirection(int oID) get opt. dir. of oID-th objective

int GetOptimizationDirectionLI(int li) local index version

bool HasDeleted(void) true if simplification deleted some entity

void SetSolved(bool s) mark problem as solved/unsolved

bool IsSolved(void) return solved/unsolved mark

void SetFeasible(int feas) mark problem as feasible/infeasible

int IsFeasible(void) return feasible/infeasible mark

Parameters GetParams(void) returns a copy of the set of parameters

Parameters& GetParamsRef(void) returns a reference to a set of parameters

void ReplaceParams(Parameters& prm) replace the current set of parameters

int GetNumberOfVariables(void) return number of variables

int GetNumberOfIntegerVariables(void) return number of integer variables

int GetNumberOfObjectives(void) return number of objectives

int GetNumberOfConstraints(void) return number of constraints

Variable* GetVariable(int vID) return pointer to variable entity

Variable* GetVariableLI(int li) local index version

Variable* GetObjective(int vID) return pointer to objective entity

Variable* GetObjectiveLI(int li) local index version

Variable* GetConstraint(int vID) return pointer to constraint entity

Variable* GetConstraintLI(int li) local index version

void SetOptimalVariableValue(int vID, double val) set optimal variable value

void SetOptimalVariableValueLI(int li, double val) local index version

double GetOptimalVariableValue(int vID) get optimal variable value

double GetOptimalVariableValueLI(int li) local index version

void SetCurrentVariableValue(int vID, double val) set optimal variable value

void SetCurrentVariableValueLI(int li, double val) local index version

double GetCurrentVariableValue(int vID) get optimal variable value

double GetCurrentVariableValueLI(int li) local index version

bool TestConstraintsFeasibility(int cID, double tol,

double& disc) test feas. of current point w.r.t. a constraint

bool TestConstraintsFeasibility(double tol, double& disc) test feasibility of current point in problem

bool TestVariablesFeasibility(double tol, double& disc) test feasibility of current point in bounds

double GetStartingPoint(int vID) get starting point embedded in the problem

double GetStartingPointLI(int localindex) local index version

void SetOptimalObjectiveValue(int oID, double val) set optimal obj. fun. value

double GetOptimalObjectiveValue(int oID) get optimal obj. fun. value

void GetSolution(map<int,double>& ofval,

map<int,double>& soln) get solution

void GetSolutionLI(vector<double>& ofval,

vector<double>& soln) local index version

double GetObj1AdditiveConstant(void) get additive constant of 1st objective

trees are very easy to change for reformulation needs, but unfortunately
turn out to be slow to evaluate by Alg. 1. Since in most numerical algo-
rithms for optimization the same expressions are evaluated many times, a spe-
cific data structure fevaltree with relative source files (fastexpression.h,
fastexpression.cxx) have been added to Ev3. FETs are C-like n-ary (as
opposed to binary) trees that have none of the reformulating facilities of

212 L. Liberti et al.

class Problem. Evaluation methods.

Method name Purpose

double EvalObj(int oID) evaluate an objective

double EvalNLObj(int oID) evaluate the nonlinear part of an objective

double EvalObjDiff(int oID, int vID) evaluate the derivative of an obj.

double EvalObjDiffNoConstant(int oID, int vID) eval. non-const. part of a deriv.

double EvalObjDiff2(int oID, int vID1, int vID2) evaluate 2nd derivative of an obj.

double EvalConstr(int cID) evaluate a constraint

double EvalNLConstr(int cID) evaluate nonlinear part of a constraint

double EvalConstrDiff(int cID, int vID) evaluate a constr. derivative

double EvalConstrDiffNoConstant(int cID, int vID) eval. non-const. part of constr. deriv.

double EvalConstrDiff2(int cID, int vID1, int vID2) evaluate 2nd constr. derivative

bool IsObjConstant(int oID) is the objective a constant?

bool IsObjDiffConstant(int oID, int vID) is the obj. derivative a constant?

bool IsObjDiff2Constant(int oID, int vID1, int vID2) is the 2nd obj. deriv. a const.?

bool IsConstrConstant(int cID) is the constraint a constant?

bool IsConstrDiffConstant(int cID, int vID) is the constr. deriv. a constant?

bool IsConstrDiff2(int cID, int vID1, int vID2) is the 2nd constr. deriv. a const.?

bool IsConstrActive(int cID, double tol, int& LU) is the constraint active L/U bound?

class Problem. Construction methods.

Method name Purpose

void Parse(char* file) parse a ROSE-formatted file
Ampl::ASL* ParseAMPL(char** argv, int argc) parse AMPL-formatted .nl file

class Problem. Reformulation methods.

Method name Purpose

int NewVariableID(void) returns next available variable ID

int NewObjectiveID(void) returns next available variable ID

int NewConstraintID(void) returns next available variable ID

void AddVariable(string& n, bool i, bool pers,

double L, double U, double v) adds a new variable

void AddObjective(string& n, Expression e, int dir, double v) adds a new objective

void AddConstraint(string& n, Expression e, double L, double U) adds a new constraint

void DeleteVariable(int vID) deletes a variable

void DeleteObjective(int oID) deletes an objective

void DeleteConstraint(int cID) deletes a constraint

class UserLinearCut.

Method name Purpose

UserLinearCut(vector<pair<int,double> >&, double L, double U) C++-style constructor
UserLinearCut(int* varIDs, double* coeffs, int size,

double L, double U) C-style constructor
double LB lower bound
double UB upper bound
int Nonzeroes number of nonzeroes in linear form
int* Varindices variable indices in row
double* Coeffs coefficients of row

their Ev3 counterparts, but which are very fast to evaluate. Construction
and evaluation of FETs is automatic and transparent to the user.

Architecture

The Ev3 software architecture is mainly based on 5 classes. Two of them,
Tree and Pointer, are generic templates that provide the basic tree struc-
ture and a no-frills garbage collection based on reference count. Each object
has a reference counter which increases every time a reference of that ob-
ject is taken; the object destructor decreases the counter while it is positive,

Reformulations in Mathematical Programming 213

class Solver. Basic and cut-related methods.

Method name Purpose

string GetName(void) get solver name

void SetProblem(Problem* p) set the problem for the solver

Problem* GetProblem(void) get the problem from the solver

bool CanSolve(int probtype) can this solve a certain problem type?

(0=LP,1=MILP,2=NLP,3=MINLP)

void Initialize(bool force) initialize solver

bool IsProblemInitialized(void) is solver initialized?

int Solve(void) solve/reformulate the problem

Parameters GetParams(void) get the parameter set

Parameters& GetParamsRef(void) get a reference to the parameters

void ReplaceParams(Parameters& p) replace the parameters

void SetOptimizationDirection(int maxmin) set 1st objective opt. dir.

int GetOptimizationDirection(void) get 1st objective opt. dir.

void GetSolution(map<int,double>& ofval,

map<int,double>& soln) get solution

void GetSolutionLI(vector<double>& ofval,

vector<double>& soln) get solution

void SetMaxNumberOfCuts(int) set max number of cuts

int GetMaxNumberOfCuts(void) get max number of cuts

int GetNumberOfCuts(void) get number of cuts added till now

int AddCut(Expression e, double L, double U) add a nonlienar cut

int AddCut(vector<pair<int,double> >&, double L, double U) add a linear cut

double EvalCut(int cutID, double* xval) evaluate a cut

double EvalNLCut(int cutID, double* xval) evaluate the nonlinear part

double EvalCutDiff(int cutID, int vID, double* xval) evaluate derivatives

double EvalCutDiffNoConstant(int cutID, int vID, double* xval) as above, without constants

double EvalCutDiff2(int cutID, int vID1, int vID2, double* xval) evaluated 2nd derivatives

bool IsCutLinear(int cutID) is this cut linear?

void EnableCut(int cutID) enables a cut

void DisableCut(int cutID) disables a cut

void SetCutLB(int cutID, double L) set lower bound

double GetCutLB(int cutID) get lower bound

void SetCutUB(int cutID, double U) set upper bound

double GetCutUB(int cutID) get upper bound

only actually deleting the object when the counter reaches zero. This type
of garbage collecting is due to Collins, 1960 (see [55]). Other two classes,
Operand and BasicExpression, implement the actual semantics of an al-
gebraic expression. The last class, ExpressionParser, implements a simple
parser (based on the ideas given in [117]) which reads in a string containing
a valid mathematical expression and produces the corresponding n-ary tree.

The Pointer class

This is a template class defined as

template<class NodeType> class Pointer {
NodeType* node;
int* ncount;
// methods

};

The constructor of this class allocates a new integer for the reference counter
ncount and a new NodeType object, and the copy constructor increases the
counter. The destructor deletes the reference counter and invokes the delete
method on the NodeType object. In order to access the data and methods

214 L. Liberti et al.

class Solver. Numerical problem information methods.

Method name Purpose

void SetVariableLB(int vID, double LB) set variable lower bound
double GetVariableLB(int vID) get variable lower bound
void SetVariableUB(int vID, double UB) set variable upper bound
double GetVariableUB(int vID) get variable upper bound
void SetConstraintLB(int cID, double LB) set constraint lower bound
double GetConstraintLB(int cID) get constraint lower bound
void SetConstraintUB(int cID, double UB) set constraint upper bound
double GetConstraintUB(int cID) get constraint upper bound
void SetVariableLBLI(int li, double LB) local index version
double GetVariableLBLI(int li) local index version
void SetVariableUBLI(int li, double UB) local index version
double GetVariableUBLI(int li) local index version
void SetConstraintLBLI(int li, double LB) local index version

double GetConstraintLBLI(int li) local index version
void SetConstraintUBLI(int li, double UB) local index version
double GetConstraintUBLI(int li) local index version
void SetStartingPoint(int vID, double sp)
void SetStartingPointLI(int li, double sp) local index version
double GetStartingPoint(int vID) get starting point
double GetStartingPointLI(int li) local index version
bool IsBasic(int vID) is variable basic?
bool IsBasicLI(int li) local index version

double GetConstraintLagrangeMultiplier(int cID) get Lagrange multiplier of constraint
double GetConstraintLagrangeMultiplierLI(int li) local index version
double GetCutLagrangeMultiplier(int cutID) get Lagrange multiplier of cut
double GetBoundLagrangeMultiplier(int varID) get Lagrange multiplier of var. bound
double GetBoundLagrangeMultiplierLI(int li) local index version
bool IsBasic(int varID) is variable basic?
bool IsBasicLI(int li) local index version

of the NodeType object pointed to by node, the -> operator in the Pointer
class is overloaded to return node.

A mathematical expression, in Ev3, is defined as a pointer to a
BasicExpression object (see below for the definition of a BasicExpression
object):

typedef Pointer<BasicExpression> Expression;

The Tree class

This is a template class defined as

template<class NodeType> class Tree {
vector<Pointer<NodeType> > nodes;
// methods

};

This is the class implementing the n-ary tree (subnodes are contained in
the nodes vector). Notice that, being a template, the whole implementation is

Reformulations in Mathematical Programming 215

kept independent of the semantics of a NodeType. Notice also that because
pointers to objects are pushed on the vector, algebraic substitution is very
easy: just replace one pointer with another one. This differs from the imple-
mentation of GiNaC [17] where it appears that algebraic substitution is a
more convoluted operation.

The Operand class

This class holds the information relative to each expression term, be they
constants, variables or operators.

class Operand {
int oplabel; // operator label
double value; // if constant, value of constant
long varindex; // if variable, the variable index
string varname; // if variable, the variable name
double coefficient; // terms can be multiplied by a number
double exponent; // leaf terms can be raised to a number
// methods

};

• oplabel can be one of the following labels (the meaning of which should
be clear):

enum OperatorType {
SUM, DIFFERENCE, PRODUCT, FRACTION, POWER, PLUS, MINUS, LOG,
EXP, SIN, COS, TAN, COT, SINH, COSH, TANH, COTH, SQRT, VAR,
CONST, ERROR

};

• value, the value of a constant numeric term, only has meaning if oplabel
is CONST;

• varindex, the variable index, only has meaning if oplabel is VAR;
• every term, (variables, constants and operators), can be multiplied by a

numeric coefficient. This makes it easy to perform symbolic manipulation
on like terms (e.g. x + 2x = 3x).

• every leaf term (variables and constants) can be raised to a numeric power.
This makes it easy to perform symbolic manipulation of polynomials.

Introducing numeric coefficients and exponents is a choice that has advan-
tages as well as disadvantages. GiNaC, for example, does not explicitely ac-
count for numeric coefficients. The advantages are obvious: it makes symbolic
manipulation very efficient for certain classes of basic operations (operations
on like terms). The disadvantage is that the programmer has to explicitely ac-
count for the case where terms are assigned coefficients: whereas with a pure
tree structure recursive algorithms can be formulated as “for each node, do
something”, this becomes more complex when numeric coefficients are intro-
duced. Checks for non-zero or non-identity have to be performed prior to car-
rying out certain operations, as well as having to manually account for cases
where coefficients have to be used. However, by setting both multiplicative and

216 L. Liberti et al.

exponent coefficients to 1, the mechanism can to a certain extent be ignored
and a pure tree structure can be recovered.

The BasicExpression class

This class is defined as follows:

class BasicExpression :
public Operand, public Tree<BasicExpression> {
// methods

};

It includes no data of its own, but it inherits its semantic data from
class Operand and its tree structure from template class Tree with itself
(BasicExpression) as a base type. This gives BasicExpression an n-ary tree
structure. Note that an object of class BasicExpression is not a Pointer, only
its subnodes (if any) are stored as Pointers to other BasicExpressions. This is
the reason why the client code should never explicitely use BasicExpression;
instead, it should use objects Expression, which are defined as Pointer<Basic-
Expression>. This allows the automatic garbage collector embedded in
Pointer to work.

The ExpressionParser class

This parser originates from the example parser found in [117]. The original
code has been extensively modified to support exponentiation, unary func-
tions in the form f(x), and creation of n-ary trees of type Expression. For an
example of usage, see Section 5.3 below.

Application Programming Interface

The Ev3 API consists in a number of internal methods (i.e., methods be-
longing to classes) and external methods (functions whose declaration is out-
side the classes). Objects of type class Expression can be built from strings
containing infix-format expressions (like, e.g. "log(2*x*y)+ sin(z)") by us-
ing the built-in parser. However, they may also be built from scratch using
the supplied construction methods (see Section 5.3 for examples). Since the
fundamental type Expression is an alias for Pointer<BasicExpression>, and
BasicExpression is in turn a mix of different classes (including a Tree with itself
as a template type), calling internal methods of an Expression object may be
confusing. Thus, for each class name involved in the definition of Expression,
we have listed the calling procedure explicitly in the tables on pages 217-219.

Notes

• The lists given above only include the most important methods. For the
complete lists, see the files expression.h, tree.cxx, parser.h in the source
code distribution.

Reformulations in Mathematical Programming 217

Class Operand. Call: ret = (Expression e)->MethodName(args).

Method name Purpose

int GetOpType(void) returns the operator label
double GetValue(void) returns the value of the constant leaf (takes

multiplicative coefficient and exponent
into account)

double GetSimpleValue(void) returns the value (takes no notice of
coefficient and exponent)

long GetVarIndex(void) returns the variable index of the variable leaf
string GetVarName(void) returns the name of the variable leaf
double GetCoeff(void) returns the value of the multiplicative coefficient
double GetExponent(void) returns the value of the exponent (for leaves)
void SetOpType(int) sets the operator label
void SetValue(double) sets the numeric value of the constant leaf
void SetVarIndex(long) sets the variable index of the variable leaf

void SetVarName(string) sets the name of the variable leaf
void SetExponent(double) sets the exponent (for leaves)
void SetCoeff(double) sets the multiplicative coefficient
bool IsConstant(void) is the node a constant?
bool IsVariable(void) is the node a variable?
bool IsLeaf(void) is the node a leaf?
bool HasValue(double v) is the node a constant with value v?
bool IsLessThan(double v) is the node a constant with value ≤ v?
void ConsolidateValue(void) set value to coeff*value*exponent

and set coeff to 1 and exponent to 1
void SubstituteVariableWithConstant

(long int varindex, double c) substitute a variable with a constant c

Template class Pointer<NodeType>. Call: ret = (Expression e).MethodName(args).

Method name Purpose

Pointer<NodeType> Copy(void) returns a copy of this node
void SetTo(Pointer<NodeType>& t) this is a reference of t
void SetToCopyOf(Pointer<NodeType>& t) this is a copy of t
Pointer<NodeType>
operator=(Pointer<NodeType> t) assigns a reference of t to this

void Destroy(void) destroys the node (collects garbage)

Template class Tree<NodeType>. Call: ret = (Expression e)->MethodName(args).

Method name Purpose

void AddNode(Pointer<NodeType>) pushes a node at the end of the node vector

void AddCopyOfNode(Pointer<NodeType> n) pushes a copy of node n at the end of the node vector

bool DeleteNode(long i) deletes the i-th node,

returns true if successful

void DeleteAllNodes(void) empties the node vector

Pointer<NodeType> GetNode(long i) returns a reference to the

i-th subnode

Pointer<NodeType> ∗ GetNodeRef(long i) returns a pointer to the

i-th subnode

Pointer<NodeType> GetCopyOfNode(long i) returns a copy of the i-th subnode

long GetSize(void) returns the length of the

node vector

• There exist a considerable number of different constructors for Expression.
See their purpose and syntax in files expression.h, tree.cxx. See examples
of their usage in file expression.cxx.

218 L. Liberti et al.

Class BasicExpression (inherits from Operand, Tree<BasicExpression>).

Call: ret = (Expression e)->MethodName(args).

Method name Purpose

string ToString(void) returns infix notation expression in a string

void Zero(void) sets this to zero

void One(void) sets this to one

bool IsEqualTo(Expression&) is this equal to the argument?

bool IsEqualToNoCoeff(Expression&) [like above, ignoring multiplicative coefficient]

int NumberOfVariables(void) number of variables in the expression

double Eval(double* v, long vsize) evaluate; v[i] contains the value for variable

with index i, v has length vsize

bool DependsOnVariable(long i) does this depend on variable i?

int DependsLinearlyOnVariable(long i) does this depend linearly on variable i?

(0=nonlinearly, 1=linearly, 2=no dep.)

void ConsolidateProductCoeffs(void) if node is a product, move product of

all coefficients as coefficient of node

void DistributeCoeffOverSum(void) if coeff. of a sum operand is not 1,

distribute it over the summands

void VariableToConstant(long varindex, double c) substitute a variable with a constant c

void ReplaceVariable(long vi1, long vi2, string vn2) replace occurrences of variable vi1

with variable vi2 having name vn2

string FindVariableName(long vi) find name of variable vi

bool IsLinear(void) is this expression linear?

bool GetLinearInfo(...) returns info about the linear part

Expression Get[Pure]LinearPart(void) returns the linear part

Expression Get[Pure]NonlinearPart(void) returns the nonlinear part

double RemoveAdditiveConstant(void) returns any additive constant and removes it

void Interval(...) performs interval arithmetics on the expression

Class ExpressionParser.

Method name Purpose

void SetVariableID(string x, long i) assign index i to variable x;

var. indices start from 1 and increase by 1

long GetVariableID(string x) return index of variable x

Expression Parse(char* buf, int& errors) parse buf and return an Expression

errors is the number of parsing errors occcurred

• Internal class methods usually return or set atomic information inside the
object, or perform limited symbolic manipulation. Construction and ex-
tended manipulation of symbolic expressions have been confined to exter-
nal methods. Furthermore, external methods may have any of the following
characteristics:

– they combine references of their arguments;
– they may change their arguments;
– they may change the order of the subnodes where the operations are

commutative;
– they may return one of the arguments.

Thus, it is advisable to perform the operations on copies of the arguments
when the expression being built is required to be independent of its subn-
odes. In particular, all the expression building functions (e.g. operator+(),
. . . , Log(), . . .) do not change their arguments, whereas their -Link coun-
terparts do.

• The built-in parser (ExpressionParser) uses linking and not copying (also
see Section 5.3) of nodes when building up the expression.

Reformulations in Mathematical Programming 219

Methods outside classes.

Method name Purpose

Expression operator+(Expression a, Expression b) returns symbolic sum of a, b

Expression operator-(Expression a, Expression b) returns symbolic difference of a, b

Expression operator*(Expression a, Expression b) returns symbolic product of a, b

Expression operator/(Expression a, Expression b) returns symbolic fraction of a, b

Expression operatorˆ(Expression a, Expression b) returns symbolic power of a, b

Expression operator-(Expression a) returns symbolic form of −a

Expression Log(Expression a) returns symbolic log(a)

Expression Exp(Expression a) returns symbolic exp(a)

Expression Sin(Expression a) returns symbolic sin(a)

Expression Cos(Expression a) returns symbolic cos(a)

Expression Tan(Expression a) returns symbolic tan(a)

Expression Sinh(Expression a) returns symbolic sinh(a)

Expression Cosh(Expression a) returns symbolic cosh(a)

Expression Tanh(Expression a) returns symbolic tanh(a)

Expression Coth(Expression a) returns symbolic coth(a)

Expression SumLink(Expression a, Expression b) returns symbolic sum of a, b

Expression DifferenceLink(Expression a, Expression b) returns symbolic difference of a, b

Expression ProductLink(Expression a, Expression b) returns symbolic product of a, b

Expression FractionLink(Expression a, Expression b) returns symbolic fraction of a, b

Expression PowerLink(Expression a, Expression b) returns symbolic power of a, b

Expression MinusLink(Expression a) returns symbolic form of −a

Expression LogLink(Expression a) returns symbolic log(a)

Expression ExpLink(Expression a) returns symbolic exp(a)

Expression SinLink(Expression a) returns symbolic sin(a)

Expression CosLink(Expression a) returns symbolic cos(a)

Expression TanLink(Expression a) returns symbolic tan(a)

Expression SinhLink(Expression a) returns symbolic sinh(a)

Expression CoshLink(Expression a) returns symbolic cosh(a)

Expression TanhLink(Expression a) returns symbolic tanh(a)

Expression CothLink(Expression a) returns symbolic coth(a)

Expression Diff(const Expression& a, long i) returns derivative of a w.r.t variable i

Expression DiffNoSimplify(const Expression& a, long i) returns unsimplified derivative of a

w.r.t variable i

bool Simplify(Expression* a) apply all simplification rules

Expression SimplifyCopy(Expression* a, bool& has changed) simplify a copy of the expression

void RecursiveDestroy(Expression* a) destroys the whole tree and all nodes

• The symbolic derivative routine Diff() uses copying and not linking of
nodes when building up the derivative.

• The method BasicExpression::IsEqualToNoCoeff() returns true if two ex-
pressions are equal apart from the multiplicative coefficient of the root
node only. I.e., 2(x + y) would be deemed “equal” to x + y (if 2 is a multi-
plicative coefficient, not an operand in a product) but x + 2y would not be
deemed “equal” to x + y.

• The Simplify() method applies all simplification rules known to Ev3 to
the expression and puts it in standard form.

• The methods GetLinearInfo(), GetLinearPart(), GetPureLinearPart(),
GetNonlinearPart(), GetPureNonlinearPart() return various types of lin-
ear and nonlinear information from the expression. Details concerning
these methods can be found in the Ev3 source code files expression.h,
expression.cxx.

• The method Interval() performs interval arithmetic on the expression.
Details concerning this method can be found in the Ev3 source code files
expression.h, expression.cxx.

220 L. Liberti et al.

• Variables are identified by a variable index, but they also know
their variable name. Variable indices are usually assigned within the
ExpressionParser object, with the SetVariableID() method. It is impor-
tant that variable indices should start from 1 and increase monotonically
by 1, as variable indices are used to index the array of values passed to
the Eval() method.

Copying vs. Linking

One thing that is immediately noticeable is that this architecture gives a
very fine-grained control over the construction of expressions. Subnodes can
be copied or “linked” (i.e., a reference to the object is put in place, instead
of a copy of the object — this automatically uses the garbage collection
mechanism, so the client code does not need to worry about these details).
Copying an expression tree entails a set of advantages/disadvantages com-
pared to linking. When an expression is constructed by means of a copy to
some other existing expression tree, the two expressions are thereafter com-
pletely independent. Manipulation one expression does not change the other.
This is the required behaviour in many cases. The symbolic differentiation
routine has been designed using copies because a derivative, in general, exists
independently of its integral.

Linking, however, allows for facilities such as “propagated simplification”,
where some symbolic manipulation on an expression changes all the expres-
sions having the manipulated expression tree as a subnode. This may be
useful but calls for extra care. The built-in parser has been designed using
linking because the “building blocks” of a parsed expression (i.e. its subnodes
of all ranks) will not be used independently outside the parser.

Simplification Strategy

The routine for simplifying an expression repeatedly calls a set of simplifica-
tion rules acting on the expression. These rules are applied to the expression
as long as at least one of them manages to further simplify it.

Simplifications can be horizontal, meaning that they are carried out on
the same list of subnodes (like e.g. x + y + y = x + 2y), or vertical, meaning
that the simplification involves changing of node level (like e.g. application
of associativity: ((x + y) + z) = (x + y + z)).

The order of the simplification rules applied to an object Expression e is
the following:

1. e->ConsolidateProductCoeffs(): in a product having n subnodes, collect
all multiplicative coefficients, multiply them together, and set the result
as the multiplicative coefficient of the whole product:

n∏
i=1

(cifi) = (

n∏
i=1

ci)(

n∏
i=1

fi).

Reformulations in Mathematical Programming 221

2. e->DistributeCoeffOverSum(): in a sum with n subnodes and a non-unit
multiplicative coefficient, distribute this coefficient over all subnodes in the
sum:

c
n∑

i=1

fi =
n∑

i=1

cfi.

3. DifferenceToSum(e): replace all differences and unary minus with sums,
multiplying the coefficient of the operands by -1.

4. SimplifyConstant(e): simplify operations on constant terms by replacing
the value of the node with the result of the operation.

5. CompactProducts(e): associate products; e.g. ((xy)z) = (xyz).
6. CompactLinearPart(e): this is a composite simplification consisting of the

following routines:

a. CompactLinearPartRecursive(e): recursively search all sums in the ex-
pression and perform horizontal and vertical simplifications on the co-
efficients of like terms.

b. ReorderNodes(e): puts each list of subnodes in an expression in standard

form (also see Sect. 2.2):

constant + monomials in rising degree + complicated operands

(where complicated operands are sublists of subnodes).

7. SimplifyRecursive(e): deals with the most common simplification rules,
i.e.:

• try to simplify like terms in fractions where numerator and denominator
are both products;

• x ± 0 = 0 + x = x;
• x × 1 = 1 × x = x;
• x × 0 = 0 × x = 0;
• x0 = 1;
• x1 = x;
• 0x = 0;
• 1x = 1.

Differentiation

Derivative rules are the usual ones; the rule for multiplication is expressed in
a way that allows for n-ary trees to be derived correctly:

∂

∂x

n∏
i=1

fi =
n∑

i=1

⎛
⎝∂fi

∂x

∏
j �=i

fj

⎞
⎠ .

222 L. Liberti et al.

Algorithms on n-ary Trees

We store mathematical expressions in a tree structure so that we can apply
recursive algorithms to them. Most of these algorithms are based on the
following model.

if expression is a leaf node
do something

else
recurse on all subnodes
do something else

end if

In particular, when using Ev3, the most common methods used in the
design of recursive algorithms are the following:

• IsLeaf(): is the node a leaf node (variable or constant)?
• GetSize(): find the number of subnodes of any given node.
• GetOpType(): return the type of operator node.
• GetNode(int i): return the i-th subnode of this node (nodes are numbered

starting from 0).
• DeleteNode(int i): delete the i-th subnode of this node (care must be

taken to deal with cases where all the subnodes have been deleted — Ev3
allows the creation of operators with 0 subnodes, although this is very
likely to lead to subsequent errors, as it has no mathematical meaning).

• Use of the operators for manipulation of nodes: supposing Expression e, f

contain valid mathematical expressions, the following are all valid expres-
sions (the new expressions are created using copies of the old ones).

Expression e1 = e + f;
Expression e2 = e * Log(Sqrt(e^2 - f^2));
Expression e3 = e + f - f;//this is automatically by simplified to e

Ev3 usage example

The example in this section explains the usage of the methods which represent
the core, high-level functionality of Ev3: fast evaluation, symbolic simplifica-
tion and differentiation of mathematical expressions.

The following C++ code is a simple driver program that uses the Ev3
library. Its instructions should be self-explanatory. First, we create a “parser
object” of type ExpressionParser. We then set the mapping variable names /
variable indices, and we parse a string containing the mathematical expression
log(2xy)+sin(z). We print the expression, evaluate it at the point (2, 3, 1), and
finally calculate its symbolic derivatives w.r.t. x, y, z, and print them.

#include "expression.h"

#include "parser.h"

int main(int argc, char** argv) {

ExpressionParser p; // create the parser object

p.SetVariableID("x", 1) // map between symbols and variable indices

Reformulations in Mathematical Programming 223

p.SetVariableID("y", 2) // x --> 0, y --> 1, z --> 2

p.SetVariableID("z", 3)

int parsererrors = 0; // number of parser errors

/* call the parser’s Parse method, which returns an Expression

which is then used to initialize Expression e */

Expression e(p.Parse("log(2*x*y)+sin(z)", parsererrors));

cout << "parsing errors: " << parsererrors << endl;

cout << "f = " << e->ToString() << endl; // print the expression

double val[3] = {2, 3, 1};

cout << "eval(2,3,1): " << e->Eval(val, 3) << endl; // evaluate the expr.

cout << "numeric check: " << ::log(2*2*3)+::sin(1) << endl; // check result

// test diff

Expression de1 = Diff(e, 1); // calculate derivative w.r.t. x

cout << "df/dx = " << de1->ToString() << endl; // print derivative

Expression de2 = Diff(e, 2); // calculate derivative w.r.t. y

cout << "df/dy = " << de2->ToString() << endl; // print derivative

Expression de3 = Diff(e, 3); // calculate derivative w.r.t. z

cout << "df/dz = " << de3->ToString() << endl; // print derivative

return 0;

}

The corresponding output is

parsing errors: 0

f = (log((2*x)*(y)))+(sin(z))

eval(2,3,1): 3.32638

numeric check: 3.32638

df/dx = (1)/(x)

df/dy = (1)/(y)

df/dz = cos(z)

Notes

• In order to evaluate a mathematical expression f(x1, x2, . . . , xn), where xi are
the variables and i are the variable indices (starting from 1 and increasing
by 1), we use the Eval() internal method, whose complete declaration is as
follows:

double Expression::Eval(double* varvalues, int size) const;

The array of doubles varvalues contains size real constants, where size

>= n. The variable indices are used to address this array (the value assigned
to xi during the evaluation is varvalues[i-1]), so it is important that the
order of the constants in varvalues reflects the order of the variables. This
method does not change the expression object being evaluated.

• The core simplification method is an external method with declaration

bool Simplify(Expression* e);

It consists of a number of different simplifications, as explained in Section
5.3. It takes a pointer to Expression as an argument, and it returns true

if some simplification has taken place, and false otherwise. This method
changes its input argument.

224 L. Liberti et al.

• The symbolic differentiation procedure is an external method:

Expression Diff(const Expression& e, int varindex);

It returns a simplified expression which is the derivative of the expression
in the argument with respect to variable varindex. This method does not
change its input arguments.

• External class methods take Expressions as their arguments. According as
to whether they need to change their input argument or not, the Expression

is passed by value, by reference, or as a pointer. This may be a little confus-
ing at first, especially when using the overloaded -> operator on Expression

objects. Consider an Expression e object and a pointer Expression* ePtr =

&e. The following calls are possibile:

– e->MethodName(args); (*ePtr)->MethodName(args);

Call a method in the BasicExpression, Operand or Tree<> classes.
– e.MethodName(args); (*ePtr).MethodName(args); ePtr->MethodName(args);

Call a method in the Pointer<> class.

In particular, care must be taken between the two forms e->MethodName()

and ePtr->MethodName() as they are syntactically very similar but semanti-
cally very different.

5.4 Validation Examples

As validation examples, we show ROSE’s output on simple input problems by
using two kind of reformulations. In order to ease the reading of the examples,
we use an intuitive description format for MINLPs problems [71, pages 237–
239]. It is worth noticing that the symbol ’<’ stands here for ’≤’ and that we
use an explicit boundary (1e30) for dealing with infinity.

The first example performs the reformulation of products between contin-
uous and binary variables.

Original Problem

ROSE problem:

Problem has 2 variables and 0 constraints

Variables:

variables = 15 < x1 < 30 / Continuous,

0 < x2 < 1 / Integer;

Objective Function:

objfun = min [(x1)*(x2)];

Constraints:

constraints = 0;

ROSE Reformulation

ROSE problem:

Problem has 3 variables and 4 constraints

Variables:

variables = 15 < x1 < 30 / Continuous,

0 < x2 < 1 / Integer,

15 < w3 < 30 / Continuous;

Objective Function:

objfun = min [w3];

Constraints:

constraints = [-1e+30 < (-30*x2)+(w3) < 0],

[-1e+30 < (15*x2)+(-1*w3) < 0],

[-1e+30 < (15)+(-1*x1)+(-15*x2)+(w3) < 0],

[-1e+30 < (-30)+(x1)+(30*x2)+(-1*w3) < 0];

As presented in Section 3.3, ROSE identifies all the terms involving a
continuous and a binary variable (respectively x1 and x2 in the example) and

Reformulations in Mathematical Programming 225

add exactly one variable (w3 here) and four constraints. The reader might
now check that both the objective function and the constraints are linear
terms and that the computed values are similar in the two formulations of
the problem.

The second example is an optimization problem whose objective function
contains four nonlinear terms. We show how ROSE is able to find a convex
relaxation for the problem using the convexifier reformulator (see Section 4.2).

Original Problem

ROSE problem: convexifier

Problem has 3 variables and 1 constraints

Variables:

variables = -1 < x1 < 1 / Continuous,

-2 < y2 < 3 / Continuous,

1 < t3 < 2 / Continuous;

Objective Function:

objfun = min [(2*x1^2)+(y2^3)

+((x1)*(y2))+((x1)/(t3))];

ROSE Reformulation

ROSE problem: convexifier

Problem has 9 variables and 18 constraints

Variables:

variables = -1 < x1 < 1 / Continuous,

-2 < y2 < 3 / Continuous,

1 < t3 < 2 / Continuous,

0 < w4 < 2 / Continuous,

-8 < w5 < 27 / Continuous,

-3 < w6 < 3 / Continuous,

-1 < w7 < 1 / Continuous,

-12 < w8 < 33 / Continuous,

0.5 < z9 < 1 / Continuous;

Objective Function:

objfun = min [w8];

Constraints:

constraints = [2 < (x1)+(y2) < 1e+30];

Constraints:

constraints = [2 < (x1)+(y2) < 1e+30],

[0 < (w4)+(w5)+(w6)+(w7)+(-1*w8) < 0],

[-2 < (4*x1)+(w4) < 1e+30],

[-2 < (-4*x1)+(w4) < 1e+30],

[-0.5 < (2*x1)+(w4) < 1e+30],

[-0.5 < (-2*x1)+(w4) < 1e+30],

[-2 < (-3*y2)+(w5) < 1e+30],

[-54 < (-27*y2)+(w5) < 1e+30],

[-1e+30 < (-6.75*y2)+(w5) < 6.75],

[-1e+30 < (-12*y2)+(w5) < 16],

[-2 < (2*x1)+(y2)+(w6) < 1e+30],

[-3 < (-3*x1)+(-1*y2)+(w6) < 1e+30],

[-1e+30 < (-3*x1)+(y2)+(w6) < 3],

[-1e+30 < (2*x1)+(-1*y2)+(w6) < 2],

[0.5 < (-0.5*x1)+(w7)+(z9) < 1e+30],

[-1 < (-1*x1)+(w7)+(-1*z9) < 1e+30],

[-1e+30 < (-1*x1)+(w7)+(z9) < 1],

[-1e+30 < (-0.5*x1)+(w7)+(-1*z9) < -0.5];

The reformulation process is performed in various steps. In order to explain
how the reformulator/convexifier works, we show in the following how the
original problem is modified during the main steps.

The first step consists in reformulating the problem to the Smith standard
form. Each nonconvex term in the objective function is replaced by an added
variable w and defining constraints of the form w = nonconvex term are added
to the problem. The objective function of the reformulated problem is one
linearizing variable only, that is the sum of all the added variables, and a
constraint for this equation is also added to the problem. We remark that
the obtained reformulation is a lifting reformulation, since a new variable is
added for each nonconvex term. This first-stage reformulation is the following:

226 L. Liberti et al.

ROSE problem: convexifier

Problem has 8 variables and 6 constraints

Variables:

variables = -1 < x1 < 1 / Continuous,

-2 < y2 < 3 / Continuous,

1 < t3 < 2 / Continuous,

0 < w4 < 2 / Continuous,

-8 < w5 < 27 / Continuous,

-3 < w6 < 3 / Continuous,

-1 < w7 < 1 / Continuous,

-12 < w8 < 33 / Continuous;

Objective Function:

objfun = min [w8];

Constraints:

constraints = [2 < (x1)+(y2) < 1e+30],

[0 < (-1*w4)+(2*x1^2) < 0],

[0 < (-1*w5)+(y2^3) < 0],

[0 < (-1*w6)+((x1)*(y2)) < 0],

[0 < (-1*w7)+((x1)/(t3)) < 0],

[0 < (w4)+(w5)+(w6)+(w7)+(-1*w8) < 0];

Then, each defining constraint is replaced by a convex under-estimator
and concave over-estimator of the corresponding nonlinear term. In particu-
lar, the term 2*x1^2 is treated as a convex univariate function f(x) and a
linear under-estimator is obtained by considering five tangents to f at various
given points, an over-estimator is obtained by considering the secant through
the points (x1^L,f(x1^L)),(x1^U,f(x1^U)),where x1^L,and x1^U are the
bounds on x1.For the term y2^3, where the range of y2 includes zero, the
linear relaxation given in [80] is used. McCormick’s envelopes are considered
for the bilinear term x1*y2.The fractional term is reformulated as bilinear
by considering z=1/t3 and McCormick’s envelopes are exploited again. We
obtain the following relaxation:

ROSE problem: convexifier

Problem has 9 variables and 22 constraints

Variables:

variables = -1 < x1 < 1 / Continuous,

-2 < y2 < 3 / Continuous,

1 < t3 < 2 / Continuous,

0 < w4 < 2 / Continuous,

-8 < w5 < 27 / Continuous,

-3 < w6 < 3 / Continuous,

-1 < w7 < 1 / Continuous,

Reformulations in Mathematical Programming 227

-12 < w8 < 33 / Continuous,

0.5 < z9 < 1 / Continuous;

Objective Function:

objfun = min [w8];

Constraints:

constraints = [2 < (x1)+(y2) < 1e+30],

[0 < (-1*w4)+(2*x1^2) < 0],

[0 < (-1*w5)+(y2^3) < 0],

[0 < (-1*w6)+((x1)*(y2)) < 0],

[0 < (-1*w7)+((x1)/(t3)) < 0],

[0 < (w4)+(w5)+(w6)+(w7)+(-1*w8) < 0],

[-2 < (4*x1)+(w4) < 1e+30],

[-2 < (-4*x1)+(w4) < 1e+30],

[-0.5 < (2*x1)+(w4) < 1e+30],

[-0.5 < (-2*x1)+(w4) < 1e+30],

[-2 < (-3*y2)+(w5) < 1e+30],

[-54 < (-27*y2)+(w55) < 1e+30],

[-1e+30 < (-6.75*y2)+(w5) < 6.75],

[-1e+30 < (-12*y2)+(w5) < 16],

[-2 < (2*x1)+(y2)+(w6) < 1e+30],

[-3 < (-3*x1)+(-1*y2)+(w6) < 1e+30],

[-1e+30 < (-3*x1)+(y2)+(w6) < 3],

[-1e+30 < (2*x1)+(-1*y2)+(w6) < 2],

[0.5 < (-0.5*x1)+(w7)+(z9) < 1e+30],

[-1 < (-1*x1)+(w7)+(-1*z9) < 1e+30],

[-1e+30 < (-1*x1)+(w7)+(z9) < 1],

[-1e+30 < (-0.5*x1)+(w7)+(-1*z9) < -0.5];

Finally, the Smith defining constraints are removed, obtaining the final
reformulation (of the relaxation type).

6 Conclusion

This chapter contains a study of mathematical programming reformulation
and relaxation techniques. Section 1 presents some motivations towards such
a study, the main being that Mixed Integer Nonlinear Programming solvers
need to be endowed with automatic reformulation capabilities before they can
be as reliable, functional and efficient as their industrial-strength Mixed Inte-
ger Linear Programming solvers are. Section 2 presents a general framework
for representing and manipulating mathematical programming formulations,
as well as some definitions of the concept of reformulation together with some
theoretical results; the section is concluded by listing some of the most com-
mon standard forms in mathematical programming. In Section 3 we present
a partial systematic study of existing reformulations. Each reformulation is
presented both in symbolic algorithmic terms (i.e. a prototype for carrying

228 L. Liberti et al.

out the reformulation automatically in terms of the provided data structures
is always supplied) and in the more usual mathematical terms. This should be
seen as the starting point for a more exhaustive study: eventually, all known
useful reformulations might find their place in an automatic reformulation
preprocessing software for Mixed Integer Nonlinear Programming. In Section
4, we attempt a similar work with respect to relaxations. Section 5 describes
the implementation of ROSE, a reformulation/optimization software engine.

Acknowledgements. Financial support by ANR grant 07-JCJC-0151 and by the
EU NEST “Morphex” project grant is gratefully acknowledged. We also wish to
thank: Claudia D’Ambrosio and David Savourey for help on the ROSE implemen-
tation; Pierre Hansen, Nenad Mladenović, Frank Plastria, Hanif Sherali and Tapio
Westerlund for many useful discussions and ideas; Kanika Dhyani and Fabrizio
Marinelli for providing interesting application examples.

References

1. Adams, W., Forrester, R., Glover, F.: Comparisons and enhancement strate-
gies for linearizing mixed 0-1 quadratic programs. Discrete Optimization 1,
99–120 (2004)

2. Adams, W., Sherali, H.: A tight linearization and an algorithm for 0-1
quadratic programming problems. Management Science 32(10), 1274–1290
(1986)

3. Adams, W., Sherali, H.: A hierarchy of relaxations leading to the convex hull
representation for general discrete optimization problems. Annals of Opera-
tions Research 140, 21–47 (2005)

4. Adjiman, C., Dallwig, S., Floudas, C., Neumaier, A.: A global optimization
method, αBB, for general twice-differentiable constrained NLPs: I. Theoretical
advances. Computers & Chemical Engineering 22(9), 1137–1158 (1998)

5. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization
method, αBB, for general twice-differentiable constrained NLPs: II. Implemen-
tation and computational results. Computers & Chemical Engineering 22(9),
1159–1179 (1998)

6. Aho, A., Hopcroft, J., Ullman, J.: Data Structures and Algorithms. Addison-
Wesley, Reading (1983)

7. Al-Khayyal, F., Falk, J.: Jointly constrained biconvex programming. Mathe-
matics of Operations Research 8(2), 273–286 (1983)

8. Alizadeh, F.: Interior point methods in semidefinite programming with appli-
cations to combinatorial optimization. SIAM Journal on Optimization 5(1),
13–51 (1995)

9. Andersen, K., Cornuéjols, G., Li, Y.: Reduce-and-split cuts: Improving the
performance of mixed-integer Gomory cuts. Management Science 51(11),
1720–1732 (2005)

10. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: alphaBB: A global optimiza-
tion method for general constrained nonconvex problems. Journal of Global
Optimization 7(4), 337–363 (1995)

Reformulations in Mathematical Programming 229

11. Anstreicher, K.: SDP versus RLT for nonconvex QCQPs. In: Floudas, C.,
Pardalos, P. (eds.) Proceedings of Advances in Global Optimization: Methods
and Applications, Mykonos, Greece (2007)

12. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The Travelling Sales-
man Problem: a Computational Study. Princeton University Press, Princeton
(2007)

13. Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel
and mixed 0-1 programming problems. Journal of Optimization Theory and
Applications 93(2), 273–300 (1997)

14. Balas, E.: Intersection cuts — a new type of cutting planes for integer pro-
gramming. Operations Research 19(1), 19–39 (1971)

15. Balas, E.: Projection, lifting and extended formulation in integer and combi-
natorial optimization. Annals of Operations Research 140, 125–161 (2005)

16. Balas, E., Jeroslow, R.: Canonical cuts on the unit hypercube. SIAM Journal
on Applied Mathematics 23(1), 61–69 (1972)

17. Bauer, C., Frink, A., Kreckel, R.: Introduction to the ginac framework for
symbolic computation within the C++ programming language. Journal of
Symbolic Computation 33(1), 1–12 (2002)

18. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bound
reduction techniques for non-convex MINLP. Optimization Methods and Soft-
ware (submitted)

19. Björk, K.M., Lindberg, P., Westerlund, T.: Some convexifications in global
optimization of problems containing signomial terms. Computers & Chemical
Engineering 27, 669–679 (2003)

20. Bjorkqvist, J., Westerlund, T.: Automated reformulation of disjunctive con-
straints in MINLP optimization. Computers & Chemical Engineering 23, S11–
S14 (1999)

21. Boyd, E.: Fenchel cutting planes for integer programs. Operations Re-
search 42(1), 53–64 (1994)

22. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University
Press, Cambridge (2004)

23. Brook, A., Kendrick, D., Meeraus, A.: GAMS, a user’s guide. ACM SIGNUM
Newsletter 23(3-4), 10–11 (1988)

24. Caporossi, G., Alamargot, D., Chesnet, D.: Using the computer to study the
dyamics of the handwriting processes. In: Suzuki, E., Arikawa, S. (eds.) DS
2004. LNCS (LNAI), vol. 3245, pp. 242–254. Springer, Heidelberg (2004)

25. Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Mathe-
matical Programming B 112(1), 3–44 (2008)

26. Cortellessa, V., Marinelli, F., Potena, P.: Automated selection of software
components based on cost/reliability tradeoff. In: Gruhn, V., Oquendo, F.
(eds.) EWSA 2006. LNCS, vol. 4344, pp. 66–81. Springer, Heidelberg (2006)

27. Dantzig, G.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

28. Davidović, T., Liberti, L., Maculan, N., Mladenović, N.: Towards the optimal
solution of the multiprocessor scheduling problem with communication delays.
In: MISTA Proceedings (2007)

29. Dhyani, K.: Personal communication (2007)
30. Di Giacomo, L.: Mathematical programming methods in dynamical nonlin-

ear stochastic supply chain management. Ph.D. thesis, DSPSA, Università di
Roma “La Sapienza” (2007)

230 L. Liberti et al.

31. Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of
mixed-integer nonlinear programs. Mathematical Programming 36, 307–339
(1986)

32. Falk, J., Liu, J.: On bilevel programming, part I: General nonlinear cases.
Mathematical Programming 70, 47–72 (1995)

33. Falk, J., Soland, R.: An algorithm for separable nonconvex programming prob-
lems. Management Science 15, 550–569 (1969)

34. Fischer, A.: New constrained optimization reformulation of complementarity
problems. Journal of Optimization Theory and Applications 99(2), 481–507
(1998)

35. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer
approximation. Mathematical Programming 66, 327–349 (1994)

36. Floudas, C.: Deterministic Global Optimization. Kluwer Academic Publishers,
Dordrecht (2000)

37. Fortet, R.: Applications de l’algèbre de Boole en recherche opérationelle. Re-
vue Française de Recherche Opérationelle 4, 17–26 (1960)

38. Fourer, R.: Personal communication (2004)
39. Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)
40. Galli, S.: Parsing AMPL internal format for linear and non-linear expressions,

B.Sc. dissertation, DEI, Politecnico di Milano, Italy (2004)
41. Gill, P.: User’s Guide for SNOPT 5.3. Systems Optimization Laboratory, De-

partment of EESOR, Stanford University, California (1999)
42. Gill, P.: User’s guide for SNOPT version 7. In: Systems Optimization Labo-

ratory. Stanford University, California (2006)
43. Gomory, R.: Essentials of an algorithm for integer solutions to linear programs.

Bulletin of the American Mathematical Society 64(5), 256 (1958)
44. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Liberti and

Maculan [79], pp. 155–210
45. Guéret, C., Prins, C., Sevaux, M.: Applications of optimization with Xpress-

MP. Dash Optimization, Bilsworth (2000)
46. Hammer, P., Rudeanu, S.: Boolean Methods in Operations Research and Re-

lated Areas. Springer, Berlin (1968)
47. Hansen, P.: Method of non-linear 0-1 programming. Annals of Discrete Math-

ematics 5, 53–70 (1979)
48. Haverly, C.: Studies of the behaviour of recursion for the pooling problem.

ACM SIGMAP Bulletin 25, 19–28 (1978)
49. Horst, R.: On the convexification of nonlinear programming problems: an

applications-oriented approach. European Journal of Operations Research 15,
382–392 (1984)

50. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn.
Springer, Berlin (1996)

51. Horst, R., Van Thoai, N.: Duality bound methods in global optimization.
In: Audet, C., Hansen, P., Savard, G. (eds.) Essays and Surveys in Global
Optimization, pp. 79–105. Springer, Berlin (2005)

52. ILOG: ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France (2008)
53. Judice, J., Mitra, G.: Reformulation of mathematical programming problems

as linear complementarity problems and investigation of their solution meth-
ods. Journal of Optimization Theory and Applications 57(1), 123–149 (1988)

54. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Mathematical
Programming 114(1), 1–36 (2008)

Reformulations in Mathematical Programming 231

55. Kaltofen, E.: Challenges of symbolic computation: My favorite open problems.
Journal of Symbolic Computation 29, 891–919 (2000),
citeseer.nj.nec.com/article/kaltofen99challenge.html

56. Kelley, J.: The cutting plane method for solving convex programs. Journal of
SIAM VIII(6), 703–712 (1960)

57. Kesavan, P., Allgor, R., Gatzke, E., Barton, P.: Outer-approximation algo-
rithms for nonconvex mixed-integer nonlinear programs. Mathematical Pro-
gramming 100(3), 517–535 (2004)

58. Kojima, M., Megiddo, N., Ye, Y.: An interior point potential reduction algo-
rithm for the linear complementarity problem. Mathematical Programming 54,
267–279 (1992)

59. Konno, H.: A cutting plane algorithm for solving bilinear programs. Mathe-
matical Programming 11, 14–27 (1976)

60. Kucherenko, S., Belotti, P., Liberti, L., Maculan, N.: New formulations for
the kissing number problem. Discrete Applied Mathematics 155(14), 1837–
1841 (2007)

61. Kucherenko, S., Sytsko, Y.: Application of deterministic low-discrepancy se-
quences in global optimization. Computational Optimization and Applica-
tions 30(3), 297–318 (2004)

62. Lavor, C., Liberti, L., Maculan, N.: Computational experience with the molec-
ular distance geometry problem. In: Pintér, J. (ed.) Global Optimization: Sci-
entific and Engineering Case Studies, pp. 213–225. Springer, Berlin (2006)

63. Lavor, C., Liberti, L., Maculan, N., Chaer Nascimento, M.: Solving Hartree-
Fock systems with global optimization metohds. Europhysics Letters 5(77),
50,006p1–50,006p5 (2007)

64. Letchford, A., Lodi, A.: Strengthening Chvátal-Gomory cuts and Gomory
fractional cuts. Operations Research Letters 30, 74–82 (2002)

65. Liberti, L.: Framework for symbolic computation in C++ using n-ary trees.
Tech. rep., CPSE, Imperial College London (2001)

66. Liberti, L.: Comparison of convex relaxations for monomials of odd degree. In:
Tseveendorj, I., Pardalos, P., Enkhbat, R. (eds.) Optimization and Optimal
Control. World Scientific, Singapore (2003)

67. Liberti, L.: Reduction constraints for the global optimization of NLPs. Inter-
national Transactions in Operational Research 11(1), 34–41 (2004)

68. Liberti, L.: Reformulation and convex relaxation techniques for global opti-
mization. 4OR 2, 255–258 (2004)

69. Liberti, L.: Reformulation and convex relaxation techniques for global opti-
mization. Ph.D. thesis, Imperial College London, UK (2004)

70. Liberti, L.: Linearity embedded in nonconvex programs. Journal of Global
Optimization 33(2), 157–196 (2005)

71. Liberti, L.: Writing global optimization software. In: Liberti and Maculan [79],
pp. 211–262

72. Liberti, L.: Compact linearization of binary quadratic problems. 4OR 5(3),
231–245 (2007)

73. Liberti, L.: Reformulations in mathematical programming: Definitions. In: Ar-
inghieri, R., Cordone, R., Righini, G. (eds.) Proceedings of the 7th Cologne-
Twente Workshop on Graphs and Combinatorial Optimization, pp. 66–70.
Università Statale di Milano, Crema (2008)

74. Liberti, L.: Spherical cuts for integer programming problems. International
Transactions in Operational Research 15, 283–294 (2008)

citeseer.nj.nec.com/article/kaltofen99challenge.html

232 L. Liberti et al.

75. Liberti, L.: Reformulations in mathematical programming: Definitions and
systematics. RAIRO-RO (accepted for publication)

76. Liberti, L., Dražic, M.: Variable neighbourhood search for the global optimiza-
tion of constrained NLPs. In: Proceedings of GO Workshop, Almeria, Spain
(2005)

77. Liberti, L., Lavor, C., Maculan, N.: Double VNS for the molecular distance
geometry problem. In: Proc. of Mini Euro Conference on Variable Neighbour-
hood Search, Tenerife, Spain (2005)

78. Liberti, L., Lavor, C., Nascimento, M.C., Maculan, N.: Reformulation in math-
ematical programming: an application to quantum chemistry. Discrete Applied
Mathematics (accepted for publication)

79. Liberti, L., Maculan, N. (eds.): Global Optimization: from Theory to Imple-
mentation. Springer, Berlin (2006)

80. Liberti, L., Pantelides, C.: Convex envelopes of monomials of odd degree.
Journal of Global Optimization 25, 157–168 (2003)

81. Liberti, L., Pantelides, C.: An exact reformulation algorithm for large non-
convex NLPs involving bilinear terms. Journal of Global Optimization 36,
161–189 (2006)

82. Liberti, L., Tsiakis, P., Keeping, B., Pantelides, C.: ooOPS. Centre for Process
Systems Engineering, Chemical Engineering Department, Imperial College,
London, UK (2001)

83. Lougee-Heimer, R.: The common optimization interface for operations re-
search: Promoting open-source software in the operations research community.
IBM Journal of Research and Development 47(1), 57–66 (2003)

84. Maculan, N., Macambira, E., de Souza, C.: Geometrical cuts for 0-1 integer
programming. Tech. Rep. IC-02-006, Instituto de Computação, Universidade
Estadual de Campinas (2002)

85. Makhorin, A.: GNU Linear Programming Kit. Free Software Foundation
(2003), http://www.gnu.org/software/glpk/

86. Mangasarian, O.: Linear complementarity problems solvable by a single linear
program. Mathematical Programming 10, 263–270 (1976)

87. Mangasarian, O.: The linear complementarity problem as a separable bilinear
program. Journal of Global Optimization 6, 153–161 (1995)

88. Maranas, C.D., Floudas, C.A.: Finding all solutions to nonlinearly constrained
systems of equations. Journal of Global Optimization 7(2), 143–182 (1995)

89. Margot, F.: Pruning by isomorphism in branch-and-cut. Mathematical Pro-
gramming 94, 71–90 (2002)

90. Margot, F.: Exploiting orbits in symmetric ILP. Mathematical Programming
B 98, 3–21 (2003)

91. McCormick, G.: Computability of global solutions to factorable nonconvex
programs: Part I — Convex underestimating problems. Mathematical Pro-
gramming 10, 146–175 (1976)

92. Meyer, C., Floudas, C.: Trilinear monomials with mixed sign domains: Facets
of the convex and concave envelopes. Journal of Global Optimization 29, 125–
155 (2004)

93. Mladenović, N., Plastria, F., Urošević, D.: Reformulation descent applied to
circle packing problems. Computers and Operations Research 32(9), 2419–
2434 (2005)

94. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley,
New York (1988)

http://www.gnu.org/software/glpk/

Reformulations in Mathematical Programming 233

95. Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlin-
ear Programming. Birkhäuser, Basel (2005)

96. Pantelides, C., Liberti, L., Tsiakis, P., Crombie, T.: Mixed integer lin-
ear/nonlinear programming interface specification. Global Cape-Open Deliv-
erable WP2.3-04 (2002)

97. Pardalos, P., Romeijn, H. (eds.): Handbook of Global Optimization, vol. 2.
Kluwer Academic Publishers, Dordrecht (2002)

98. Plateau, M.C.: Reformulations quadratiques convexes pour la programmation
quadratique en variables 0-1. Ph.D. thesis, Conservatoire National d’Arts et
Métiers (2006)

99. Puchinger, J., Raidl, G.: Relaxation guided variable neighbourhood search. In:
Proc. of Mini Euro Conference on Variable Neighbourhood Search, Tenerife,
Spain (2005)

100. Raghavachari, M.: On connections between zero-one integer programming and
concave programming under linear constraints. Operations Research 17(4),
680–684 (1969)

101. van Roy, T., Wolsey, L.: Solving mixed integer programming problems using
automatic reformulation. Operations Research 35(1), 45–57 (1987)

102. Ryoo, H., Sahinidis, N.: Global optimization of nonconvex NLPs and MINLPs
with applications in process design. Computers & Chemical Engineering 19(5),
551–566 (1995)

103. Sherali, H.: Global optimization of nonconvex polynomial programming prob-
lems having rational exponents. Journal of Global Optimization 12, 267–283
(1998)

104. Sherali, H.: Tight relaxations for nonconvex optimization problems using the
reformulation-linearization/convexification technique (RLT). In: Pardalos and
Romeijn [97], pp. 1–63

105. Sherali, H.: Personal communication (2007)
106. Sherali, H., Adams, W.: A hierarchy of relaxations between the continuous

and convex hull representations for zero-one programming problems. SIAM
Journal of Discrete Mathematics 3, 411–430 (1990)

107. Sherali, H., Adams, W.: A Reformulation-Linearization Technique for Solving
Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers,
Dodrecht (1999)

108. Sherali, H., Alameddine, A.: A new reformulation-linearization technique for
bilinear programming problems. Journal of Global Optimization 2, 379–410
(1992)

109. Sherali, H., Liberti, L.: Reformulation-linearization technique for global opti-
mization. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization,
2nd edn., pp. 3263–3268. Springer, New York (2008)

110. Sherali, H., Tuncbilek, C.: New reformulation linearization/convexification re-
laxations for univariate and multivariate polynomial programming problems.
Operations Research Letters 21, 1–9 (1997)

111. Sherali, H., Wang, H.: Global optimization of nonconvex factorable program-
ming problems. Mathematical Programming 89, 459–478 (2001)

112. Smith, E.: On the optimal design of continuous processes. Ph.D. thesis, Impe-
rial College of Science, Technology and Medicine, University of London (1996)

113. Smith, E., Pantelides, C.: Global optimisation of nonconvex MINLPs. Com-
puters & Chemical Engineering 21, S791–S796 (1997)

234 L. Liberti et al.

114. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound
algorithm for the global optimisation of nonconvex MINLPs. Computers &
Chemical Engineering 23, 457–478 (1999)

115. Strekalovsky, A.: On global optimality conditions for d.c. programming prob-
lems. Technical Paper, Irkutsk State University (1997)

116. Strekalovsky, A.: Extremal problems with d.c. constraints. Computational
Mathematics and Mathematical Physics 41(12), 1742–1751 (2001)

117. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley,
Reading (1999)

118. Sutou, A., Dai, Y.: Global optimization approach to unequal sphere packing
problems in 3d. Journal of Optimization Theory and Applications 114(3),
671–694 (2002)

119. Tardella, F.: Existence and sum decomposition of vertex polyhedral convex
envelopes. Tech. rep., Facoltà di Economia e Commercio, Università di Roma
“La Sapienza” (2007)

120. Tawarmalani, M., Ahmed, S., Sahinidis, N.: Global optimization of 0-1 hyper-
bolic programs. Journal of Global Optimization 24, 385–416 (2002)

121. Tawarmalani, M., Sahinidis, N.: Semidefinite relaxations of fractional pro-
gramming via novel techniques for constructing convex envelopes of nonlinear
functions. Journal of Global Optimization 20(2), 137–158 (2001)

122. Tawarmalani, M., Sahinidis, N.: Convex extensions and envelopes of semi-
continuous functions. Mathematical Programming 93(2), 247–263 (2002)

123. Tawarmalani, M., Sahinidis, N.: Exact algorithms for global optimization of
mixed-integer nonlinear programs. In: Pardalos and Romeijn [97], pp. 65–86

124. Tawarmalani, M., Sahinidis, N.: Global optimization of mixed integer non-
linear programs: A theoretical and computational study. Mathematical Pro-
gramming 99, 563–591 (2004)

125. Todd, M.: Semidefinite optimization. Acta Numerica 10, 515–560 (2001)
126. Tsiakis, P., Keeping, B.: ooMILP – a C++ callable object-oriented library

and the implementation of its parallel version using corba. In: Liberti and
Maculan [79], pp. 155–210

127. Tsiakis, P., Keeping, B., Pantelides, C.: ooMILP . Centre for Process Systems
Engineering, Chemical Engineering Department, Imperial College, London,
UK, 0.7 edn (2000)

128. Tuy, H.: Concave programming under linear constraints. Soviet Mathematics,
1437–1440 (1964)

129. Tuy, H.: D.c. optimization: Theory, methods and algorithms. In: Horst, R.,
Pardalos, P. (eds.) Handbook of Global Optimization, vol. 1, pp. 149–216.
Kluwer Academic Publishers, Dordrecht (1995)

130. Wang, X., Change, T.: A multivariate global optimization using linear bound-
ing functions. Journal of Global Optimization 12, 383–404 (1998)

131. Westerlund, T.: Some transformation techniques in global optimization. In:
Liberti and Maculan [79], pp. 45–74

132. Westerlund, T., Skrifvars, H., Harjunkoski, I., Pörn, R.: An extended cut-
ting plane method for a class of non-convex MINLP problems. Computers &
Chemical Engineering 22(3), 357–365 (1998)

133. Wolsey, L.: Integer Programming. Wiley, New York (1998)
134. Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems

with concave univariate, bilinear and linear fractional terms. Journal of Global
Optimization 14, 217–249 (1999)

Graph-Based Local Elimination
Algorithms in Discrete Optimization�

Oleg Shcherbina

Abstract. The aim of this chapter is to provide a review of structural
decomposition methods in discrete optimization and to give a unified frame-
work in the form of local elimination algorithms (LEA). This chapter is orga-
nized as follows. Local elimination algorithms for discrete optimization (DO)
problems (DOPs) with constraints are considered; a classification of dynamic
programming computational procedures is given. We introduce Elimination
Game and Elimination tree. Application of bucket elimination algorithm from
constraint satisfaction (CS) to solving DOPs is done. We consider different
local elimination schemes and related notions. Clustering that merges sev-
eral variables into single meta-variable defines a promising approach to solve
DOPs. This allows to create a quotient (condensed) graph and apply a local
block elimination algorithm. In order to describe a block elimination process,
we introduce Block Elimination Game. We discuss the connection of afore-
mentioned local elimination algorithmic schemes and a way of transforming
the directed acyclic graph (DAG) of computational LEA procedure to the
tree decomposition.

1 Introduction

The use of discrete optimization (DO) models and algorithms makes it
possible to solve many practical problems in scheduling theory, network

Oleg Shcherbina
Faculty of Mathematics,
University of Vienna
Nordbergstrasse 15, A-1090 Vienna,
Austria
e-mail: oleg.shcherbina@univie.ac.at

� Research supported by FWF (Austrian Science Funds) under the project
P17948-N13.

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 235–266.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

oleg.shcherbina@univie.ac.at

236 O. Shcherbina

optimization, routing in communication networks, facility location, optimiza-
tion in enterprise resource planning, and logistics (in particular, in supply
chain management [36]). The field of artificial intelligence includes aspects
like theorem proving, SAT in propositional logic (see [23], [50]), robotics prob-
lems, inference calculation in Bayesian networks [66], scheduling, and others.

Many real-life DO problems contain a huge number of variables and/or con-
straints that make the models intractable for currently available DO solvers.
NP -hardness refers to the worst-case complexity of problems. Recognizing
problem instances that are better (and easier for solving) than these ”worst
cases” is a rewarding task given that better algorithms can be used for these
easy cases.

Complexity theory has proved that universality and effectiveness are con-
tradictory requirements to algorithm complexity. But the complexity of some
class of problems decreases if the class may be divided into subsets and the
special structure of these subsets can be used in the algorithm design.

To meet the challenge of solving large scale DO problems (DOPs) in reason-
able time, there is an urgent need to develop new decomposition approaches
[22], [82], [75]. Large-scale DOPs are characterized not only by huge size but
also by special or sparse structure. The block form of many DO problems is
usually caused by the weak connectedness of subsystems of real systems. One
of the first examples of large sparse linear programming (LP) problems which
Dantzig started to study was a class of staircase LP problems for dynamic
planning [27], [29], [28]. Further examples of staircase linear programs (see
Fourer [42]) for multiperiod planning, scheduling, and assignment, and for
multistage structural design, are included in a set of staircase test problems
collected by Ho & Loute [57]. Staircase linear programs have also been de-
rived in connection with linearly constrained optimal control and stochastic
programming [103]. Problems of optimal hotel apartments assignment, linear
dynamic programming, labor resources allocation, control on hierarchic struc-
tures (usually having tree-like structure), multistage integer stochastic pro-
gramming, network problems may be considered as examples of DO problems
which have staircase structure (see [89], [90]). The well known SAT problem
stems from classical investigations by logicians of propositional satisfiability
and has over 90 years of history. It is possible to represent a SAT problem
as a sparse DO problem [58]. Some applied facility location problems can
be formulated as set covering problems, set packing problems, node packing
problems [73]. Another class of sparse DO problems is a production lot-sizing
problem [73]. The frequency assignment problem (FAP) [65] in mobile tele-
phone systems communication is a hard problem as it is closely related to the
graph coloring problem. One of the well known decomposition approaches to
solving DOPs is Lagrangean decomposition that consists of isolating sets of
constraints to obtain separate and easy to solve DO problems. Lagrangean
decomposition removes the complicating constraints from the constraint set
and inserts them into the objective function. Most Lagrangean decomposi-
tion methods deal with special row structures. Block angular structures with

Graph-Based Local Elimination Algorithms in Discrete Optimization 237

complicating variables and with complicating variables and constraints can
be decomposed using Benders decomposition [13] and cross decomposition
[99]. The Dantzig-Wolfe decomposition principle of LP has its equivalent in
integer programming [98]. This approach uses the reformulation that gives
rise to an integer master problem, whose typically large number of variables
is dealt with implicitly by using an integer programming column generation
procedure, also known as branch-and-price algorithm [9] that allows solv-
ing large-scale DOPs in recent years. Nemhauser ([74], p. 9) mentioned,
however, that

... the overall idea of using branch and bound with linear programming
relaxation has not changed.

Usually, DOPs from applications have a special structure, and the matrices
of constraints for large-scale problems have a lot of zero elements (sparse
matrices). Among decomposition approaches appropriate for solving such
problems we mention poorly known local decomposition algorithms using
the special block matrix structure of constraints and half-forgotten nonserial
dynamic programming algorithms (NSDP) (Bertele & Brioschi [14], [15],
[16], Dechter [31], [32], [33], [34], Hooker [58]) which can exploit sparsity
in the dependency graph of a DOP and allow to compute a solution in stages
such that each of them uses results from previous stages.

Recently, there has been growing interest in graph-based approaches to
decomposition [19]; one of them is tree decomposition (TD). Courcelle

[25] and Arnborg et al. [6] showed that several NP -hard problems posed
in monadic second-order logic can be solved in polynomial time using dy-
namic programming techniques on input graphs with bounded treewidth.
Thus graph-based decomposition approaches have gained importance. Graph-
based structural decomposition techniques, e.g., nonserial dynamic pro-
gramming (NSDP) (Bertele, Brioschi [16], Esogbue & Marks [37],
Hooker [58], Martelli & Montanari [68], Mitten & Nemhauser [69], Neu-

maier & Shcherbina [76], Rosenthal [86], Shcherbina [91]), Wilde

& Beightler [101] and its modifications (bucket elimination [32], Seidel’s
invasion method [87]), tree decomposition combined with dynamic program-
ming [35], [21] and its variants [77], hypertree [47] and hinge decomposition
[60], [49] are promising decomposition approaches that allow exploiting the
structure of discrete problems in constraint satisfaction (CS) [43] and DO.

It is important that aforementioned methods use just the local informa-
tion (i.e., information about elements of given element’s neighborhood) in
a process of solving discrete problems. It is possible to propose a class of
local elimination algorithms as a general framework that allows to calculate
some global information about a solution of the entire problem using local
computations [62], [66], [95]. Note that a main feature in aforementioned
problems is the locality of information, a definition of elements’ neighbor-
hoods and studying them.

238 O. Shcherbina

The use of local information (see [104], [105], [39], [94], [97]) is very impor-
tant in studying complex discrete systems and in the development of decom-
position methods for solving large sparse discrete problems; these problems
simultaneously belong to the fields of discrete optimization [73], [40], [78], [79],
[88], artificial intelligence [32], [48], [72], [81], and databases [10]. In linear al-
gebra, multifrontal techniques for solving sparse systems of linear equations
were developed (see [85]); these methods are also of the decomposition nature.
In [104], local algorithms for computing information are introduced. A local
algorithm A examines the elements in the order specified by an ordering algo-
rithm Aπ, calculates the function φ whose value at each step determines the
form of the information marks, and labels the element using local information
about the elements in its neighborhood. The function φ that induces the al-
gorithm depends on two variables: the first ranges over the set of all elements
and the second ranges over the set of neighborhoods. Local decomposition
algorithms (see [89], [90]) in DO problems have a specific feature. Namely,
rather than calculating predicates, they use Bellman’s optimality principle
[12] to find optimal solutions of the subproblems corresponding to blocks of
the DO problem. A step of the local algorithm A changes the neighborhood
and replaces the index p by p + 1 (however, one can increment the index by
an arbitrary number replacing Sp by Sp+ρ; at each step of the algorithm, for
every fixed set of variables of the boundary ring, the values of the variables of
the corresponding neighborhood are stored, which is an important difference
of the local algorithm A from A: information about variables in the solutions
of the subproblems is stored rather than information about the predicates.
Zhuravlev proposed to call it indicator information.

Tree and branch decomposition algorithms have been shown to be effec-
tive for DO problems like the traveling salesman problem [24], frequency
assignment [65] etc. (see a survey paper [55]). A paper [4] surveys algorithms
that use tree decompositions. Most of works based on tree decomposition
approach only present theoretical results [61], see the recent surveys [55],
[92]. Thus these methods are not yet recognized tools of operations research
practitioners.

Some implementations of NSDP are known [16], [38], however, generally,
it remains some ”obscure” tool for operations research modellers. Usually,
tree decomposition approaches and NSDP are considered in the literature
separately, without reference to the close relation between these methods.
We try to indicate a close relation between these methods.

A need to solve large-scale discrete problems with special structure using
graph-based structural decomposition methods provides the main motivation
for this chapter. Here we try to answer a number of questions about tree
decomposition and NSDP in solving DO problems. What are they? How and
where can they be applied? What consists a connection between different
structural decomposition methods, such as tree decomposition and nonserial
dynamic programming?

Graph-Based Local Elimination Algorithms in Discrete Optimization 239

The aim of this chapter is to provide a review of structural decomposition
methods and to give a unified framework in the form of local elimination
algorithms [94]. We propose here the general approach which consists of
viewing a decomposition of some DO problem as being represented by a
DAG whose nodes represent subproblems that only contain local informa-
tion. The nodes are connected by arcs that represent the dependency of the
local information in the subproblems. A subproblem that is higher in the
hierarchy may use the information (or knowledge) obtained in the dependent
subproblems.

This chapter is organized as follows: In section 2 we introduce local elimi-
nation algorithms for solving discrete problems. In Section 3 we survey nec-
essary terminology and notions for discrete optimization problems and their
graph representations. In Section 4 we consider local variable elimination
schemes for solving DO problems with constraints and discuss a classifica-
tion of dynamic programming (DP) computational procedure. Elimination
Game is introduced. Application of the bucket elimination algorithm from
CS to solving DO problems is done. Then, in Section 5, we consider a local
block elimination scheme and related notions. As a promising abstraction
approach of solving DOPs we define clustering that merges several variables
into a single meta-variable. This allows us to create a quotient (condensed)
graph and apply a local block elimination algorithm. In Section 6 a tree
decomposition scheme is introduced. Connection of of the local elimination
algorithmic schemes with tree decomposition and a way of transforming the
DAG of computational local elimination procedure to tree decomposition are
discussed.

2 Local Elimination Algorithms for Solving Discrete
Problems

The structure of discrete optimization problems is determined either by the
original elements (e.g., variables) with a system of neighborhoods specified
for them and with the order of searching through those elements using a local
elimination algorithm or by various derived structures (e.g., block or tree-
block structures). Both original and derived structures can be specified by the
so called structural graph. The structural graph can be the interaction
graph of the original elements (for example, between the variables of the
problem) or the quotient [45] (condensed [51]) graph. The quotient
graph can be obtained by merging a set of original elements (for example,
a subgraph) into a condensed element. The original subset (subgraph) that
formed the condensed element is called the detailed graph of this element.
A local elimination algorithm (LEA) [94] eliminates local elements of the
problem’s structure defined by the structural graph by computing and storing
local information about these elements in the form of new dependencies added
to the problem. Thus, the local elimination procedure consists of two parts:

240 O. Shcherbina

A. The forward part eliminates elements, computes and stores local solu-
tions, and finally computes the value of the objective function;

B. The backward part finds the global solution of the whole problem using
the tables of local solutions; the global solution gives the optimal value
of the objective function found while performing the forward part of the
procedure.

The LEA analyzes a neighborhood Nb(x) of the current element x in the
structural graph of the problem, applies an elimination operator (which
depends on the particular problem) to that element, calculates the function
h(Nb(x)) that contains local information about x, and finds the local so-
lution x∗(Nb(x)). Next, the element x is eliminated, and a clique is created
from the elements of Nb(x). The elimination of elements and the creation of
cliques changes the structural graph and the neighborhoods of elements. The
backward part of the local elimination algorithm reconstructs the solution of
the whole problem based on the local solutions x∗(Nb(x)).

The algorithmic scheme of the LEA is a DAG in which the vertices cor-
respond to the local subproblems and the edges reflect the informational
dependence of the subproblems on each other.

3 Discrete Optimization Problems and Their Graph
Representations

3.1 Notions and Definitions

Consider a sparse DOP in the following form

F (x1, x2, . . . , xn) =
∑
k∈K

fk(Xk) → max (1)

subject to the constraints

gi(XSi) Ri 0, i ∈ M = {1, 2, . . . , m}, (2)

xj ∈ Dj , j ∈ N = {1, . . . , n}, (3)

where
X = {x1, . . . , xn} is a set of discrete variables, Xk ⊆ {x1, x2, . . . , xn}, k ∈
K = {1, 2, . . . , t} , t – number of components in the objective function, Si ⊆
{1, 2, . . . , n}, Ri ∈ {≤, =,≥}, i ∈ M ; Dj is a finite set of admissible values
of variable xj , j ∈ N . Functions fk(Xk), k ∈ K are called components of
the objective function and can be defined in tabular form. We use here the
notation: if S = {j1, . . . , jq} then XS = {xj1 , . . . , xjq}.

In order to avoid complex notation, without loss of generality, we consider
further a DOP with linear constraints and binary variables:

Graph-Based Local Elimination Algorithms in Discrete Optimization 241

max
X

f(X) = max
X

∑
k∈K

fk(Xk), (4)

subject to
AiSiXSi ≤ bi, i ∈ M = {1, 2, . . . , m}, (5)

xj = 0, 1, j ∈ N = {1, . . . , n}. (6)

We shall consider further a linear objective function (7):

f(x1, . . . , xn) = f(X) = CNXN =
n∑

j=1

cjxj → max (7)

Definition 1. [16]. Variables x ∈ X and y ∈ X interact in DOP with con-
straints (we denote x ∼ y) if they both appear either in the same component of
the objective function, or in the same constraint (in other words, if variables
are both either in a set Xk, or in a set XSi).

Introduce a graph representation of the DOP. Description of the DOP struc-
ture may be done with various detailization. The structural graph of the DOP
defines which variables are in which constraints. Structure of a DOP can be
defined either by interaction graph of initial elements (variables in the DOP)
or by various derived structures, e.g., block structures, block-tree structures
defined by so called quotient (condensed or compressed [7], [8], [54]) graph.

Concrete choice of a structural graph of the DOP defines different local
elimination schemes: nonserial dynamic programming, block decomposition,
tree decomposition etc.

If the DOP is divided into blocks corresponding to subsets of variables
(meta-variables) or to subsets of constraints (meta-constraints), then block
structure can be described by a structural quotient (condensed) graph, whose
meta-nodes correspond to subsets of the variables of blocks and meta-edges
correspond to adjacent blocks (see below, in section 5.1).

An interaction graph [16] (dependency graph by HOOKER [58])
represents a structure of the DOP in a natural way.

Definition 2. [16]. Interaction graph of the DOP is an undirected graph
G = (X, E), such that

1. Vertices X of G correspond to variables of the DOP;
2. Two vertices of G are adjacent iff corresponding variables interact.

Further, we shall use the notion of vertices that correspond one-to-one to
variables.

Definition 3. Set of variables interacting with a variable x ∈ X is denoted
by Nb(x) and called the neighborhood of the variable x. For corresponding
vertices a neighborhood of a vertex x is a set of vertices of interaction graph
that are linked by edges with x. Denote the latter neighborhood as NbG(x).

242 O. Shcherbina

Introduce the following notions:

1. Neighborhood of a set S ⊆ X , NbG(S) =
⋃

x∈S NbG(x) − S.
2. Closed neighborhood of a set S ⊆ X , NbG[S] = NbG(S) ∪ S.

4 Local Variable Elimination Algorithms in Discrete
Optimization

4.1 Nonserial Dynamic Programming and
Classification of DP Formulations

NSDP exploits only local computations to solve global discrete optimiza-
tion problems and is, therefore, a particular instance of local elimination algo-
rithm. It appeared in 1961 with Aris [3] (see [11], [14], [15], [69]) but is poorly
known to the optimization community. This approach is used in Artificial In-
telligence under the names ”Variable Elimination” or ”Bucket Elimination”
[32]. NSDP being a natural and general decomposition approach to sparse
problems solving, considers a set of constraints and an objective function as
recursively computable function [58]. This allows to compute a solution in
stages such that each of them uses results from previous stages. This requires
a reduced effort to find the solution.

Thus, the DP algorithm can be applied to find the optimum of the entire
problem by using the connected optimizations of the smaller DO subproblems
with the aid of existing optimization solvers.

It is worth noting that NSDP is implicit in Hammer and Rudeanu’s ”basic
method” for pseudoboolean optimization [52]. Crama, Hansen, and Jau-

mard [26] discovered that the basic method can exploit the structure of a
DOP with the usage of so-called co-occurrence graph (interaction graph).
It was found that the complexity of the algorithm depends on induced width
of this graph, which is defined for a given ordering of the variables. Consid-
eration of the variables in the right order may result in a smaller induced
width and faster solution [59].

In [16] mostly DO problems without constraints were considered. Here, we
consider an application of NSDP variable elimination algorithm to solving
DO problems with constraints.

One of the most useful graph-based interpretations is a representation
of computational DP procedure as a direct acyclic graph (DAG) [93] whose
vertices are associated with subproblems and whose edges express information
interdependence between subproblems.

Every DP algorithm has an underlying DAG structure that usually is im-
plicit [30]: the dependencies between subproblems in a DP formulation can
be represented by a DAG. Each node in the DAG represents a subproblem.
A directed edge from node A to node B indicates that the solution to the
subproblem represented by node A is used to compute the solution to the
subproblem represented by node B (Fig.1). The DAG is explicit only when

Graph-Based Local Elimination Algorithms in Discrete Optimization 243

Fig. 1 Precedence of
subproblems A and B BA

Fig. 2 Underlying DAG
of subproblems

Problem

subproblems

v

u1
u2 uk

we have a graph optimization problem (say, a shortest path problem). Having
nodes u1, . . . , uk point to v means ”subproblem v can only be solved once the
solutions to u1, . . . , uk are known” (Fig. 2). Thus, the DP formulation can
be described by the DAG of the computational procedure of a DP algorithm
(underlying DAG [30]). Li & Wah [100] proposed to classify various DP com-
putational procedures or DP formulations on the basis of the dependencies
between subproblems from the underlying DAG.

The nodes of the DAG can be organized into levels such that subproblems at
a particular level depend only on subproblems at previous levels. In this case,
the DP procedure (formulation) can be categorized as follows. If subproblems
at all levels depend only on the results of subproblems at the immediately pre-
ceding levels, the procedure (formulation) is called a serial DP procedure (for-
mulation), otherwise, it is called a nonserial DP procedure (formulation).

Example 1. The simplest optimization problem is the serial unconstrained
discrete optimization problem [16]

max
X

f(X) = max
X

∑
i∈K

fi(X i),

where X = {x1, . . . , xn} is a set of discrete variables.

K = {1, 2, . . . , n − 1} ; X i = {xi, xi+1} .

In fig. 3 it is shown an interaction graph of the serial DO problem.

1
x

2
x

1n
x

n
x

Fig. 3 Interaction graph for the serial formulation of unconstrained DOP

244 O. Shcherbina

4.2 Discrete Optimization Problem with Constraints

Consider the DOP (7), (5), (6) and suppose without loss of generality that
variables are eliminated in the order x1, . . . , xn. Using the local variable elim-
ination scheme eliminate the first variable x1. x1 is in a set of constraints with
the indices in U1:

U1 = {i | x1 ∈ Si}

Together with x1, constraints in U1 contain variables from Nb(x1).
The following subproblem P1 corresponds to the variable x1 of the DOP:

hx1(Nb(x1)) = max
x1

{c1x1|AiSiXSi ≤ bi, i ∈ U1, xj = 0, 1, xj ∈ Nb[x1]}

Then the initial DOP can be transformed in the following way:

max
x1,...,xn

{∑
CN XN |AiSi

XSi
≤ bi, i ∈ M, xj = 0, 1, j ∈ N

}
=

max
x2,...,xn

{CN−{1}XN−{1} + hx1(Nb(x1)|AiSi
XSi

≤bi, i∈M − U1, xj =0, 1, j =2, . . . , n}

The last problem has n − 1 variables; from the initial DOP were excluded
constraints with the indices in U1 and from the objective function the term
c1x1; there appeared a new objective function term hx1(Nb(x1)). Due to this
fact the interaction graph associated with the new problem is changed: a
vertex x1 is eliminated and its neighbors have become connected (due to the
appearance a new term hx1(Nb(x1)) in the objective). It can be noted that
a graph induced by vertices of Nb(x1) is complete, i.e. is a clique. Denote
the new interaction graph G1 and find all neighborhoods of variables in G1.
NSDP eliminates the remaining variables one by one in an analogous manner.
We have to store tables with optimal solutions at each stage of this process.
At the stage n of the described process we eliminate a variable xn and find
an optimal value of the objective function. Then a backward step of the local
elimination procedure is performed using the tables with solutions.

4.3 Elimination Game, Combinatorial Elimination
Process, and Underlying DAG of the LAE
Computational Procedure

Consider a sparse discrete optimization problem (1) — (3) whose structure is
described by an undirected interaction graph G = (X, E). Solve this problem
with a local elimination algorithm (LEA). LEA uses an ordering α of X [84]:
Given a graph G = (X, E) an ordering α of X is a bijection α : X ↔
{1, 2, . . . , n} where n = |X |.

Gα and Xα are correspondingly an ordered graph and an ordered vertex
set. Sometimes the ordering will be denoted as x1, . . . , xn, i.e. α(xi) = i and
i will be considered as an index of the vertex xi.

Graph-Based Local Elimination Algorithms in Discrete Optimization 245

In Gα, a monotone neighborhood Nb
α

G(xi) ([18], [84]) of xi ∈ X is a
set of vertices monotonely adjacent to a vertex xi, i.e.

Nb
α

G(xi) = {xj ∈ NbG(xi)|j > i}.

The graph Gx [85] obtained from G = (X, E) by

(i) adding edges so that all vertices in NbG(x) are pairwise adjacent, and
(ii) deleting x and its incident edges

is the x–elimination graph of G. This process is called the elimination of
the vertex x.

Given an ordering x1, x2, . . . , xn, the LEA proceeds in the following way:
it subsequently eliminates x1, x2, . . . , xn in the current graph and computes
an associated local information about vertices from hxi(Nb(xi)) [94]. This
can be described by the combinatorial elimination process [85]:

G0 = G, G1, . . . , Gj−1, Gj , . . . , Gn

where Gj is the xj–elimination graph of Gj−1 and Gn = ∅.
The process of interaction graph transformation corresponding to the LEA

scheme is known as Elimination Game which was first introduced by
Parter [80] as a graph analogy of Gaussian elimination. The input of the
elimination game is a graph G and an ordering α of G (i.e. α(x) = i if x is
i-th vertex in the ordering α). Elimination Game according to [53] consists
in the following. At each step i, the neighborhood of vertex xi is turned into
a clique, and xi is deleted from the graph. This is referred to as eliminating
vertex xi. We obtain a graph G

(i)
xi . The filled graph G+

α = (X, E+
α) is ob-

tained by adding to G all the edges added by the algorithm. The resulting
filled graph G+

α is a triangulation of G (FULKERSON & GROSS [44]),
i.e., a chordal graph.

Let us introduce the notion for the elimination tree (etree) [67]. Given
a graph G = (X, E) and an ordering α, the elimination tree is a directed
tree

−→
T α that has the same vertices X as G and its edges are determined by a

parent relation defined as follows: the parent x is the first vertex (according
to the ordering α) of the monotone neighborhood Nb

α

G+
α
(x) of x in the filled

graph G+
α .

Using the parent relation introduced above we can define a directed filled
graph

−→
G+

α .
The underlying DAG of a local variable elimination scheme can be con-

structed using Elimination Game. At step i, we represent the computation of
the function hxi(NbGxi−1

(xi)) as a node of the DAG (corresponding to the

vertex xi). Then, this node containing variables (xi, Nb
(i−1)
Gxi−1

(xi)) is linked
with a first xj (accordingly to the ordering α) which is in Nb

G
(i−1)
xi−1

(xi).

It is easy to see that the elimination tree is the DAG of the computational
procedure of the LEA.

246 O. Shcherbina

Example 2. Consider a DOP (P) with binary variables:

2x1 + 3x2 + x3 + 5x4 + 4x5 + 6x6 + x7 → max
3x1 + 4x2 + x3 ≤ 6, (C1)

2x2 + 3x3 + 3x4 ≤ 5, (C2)
2x2 + 3x5 ≤ 4, (C3)

2x3 + 3x6 + 2x7 ≤ 5, (C4)
xj = 0, 1, j = 1, . . . , 7.

The interaction graph is shown in Fig. 4 (a). Elimination Game results and
graphs G

(i)
xi are in Fig. 5. Associated underlying DAG of NSDP procedure for

the variable ordering {x5, x2, x1, x4, x3, x6, x7} is shown in Fig. 4 (b).

4.4 Bucket Elimination

Bucket elimination (BE) is proposed in [32] as a version of NSDP for solving
CSPs. Now, we consider a modification of the BE algorithm for solving DOPs.
The BE algorithm works as follows: Assume we are given an order x1, . . . , xn

of the variables of the DOP. BE starts by creating n ”buckets”, one for each
variable xj . BE algorithm uses as input ordered set of variables and a set
of constraints. To each variable xj is corresponded a bucket Σ(xj), i.e., a set
of constraints and components of objective function built as follows: In the
bucket Σ(xj) of variable xj we put all constraints that contain xj but do
not contain any variable having a higher index. We now iterate on j from
n to 1, eliminating one bucket at a time. Algorithm finds new components
of the objective applying so called ”elimination operator” (in our case the
latter consists on solving associated DO subproblems) to all constraints and
components of the objective function of the bucket under consideration. New
components of the objective function reflecting an impact of variable xj on
the rest part of the DO problem, are located in corresponding lower buckets.

Consider an application of BE to solving the DOP with constraints from
Example 2. We use an elimination ordering α : {x5, x2, (x1, x4), x3, (x6, x7)}.
Variables (x1, x4) shall be eliminated in block since they are indistinguishable.
Build buckets (subsets of constraints) beginning from last (due order α) block
(x6, x7). A bucket Σ(x6,x7) includes all constraints of the DOP containing the
variables x6, x7, i.e., the bucket Σ(x6,x7) consists of constraint C4: Σ(x6,x7) =
{C4}. Similarly: Σ(x3) = {C1, C2}, Σ(x1,x4) = ∅, Σ(x2) = {C3}, Σ(x5) = ∅.

We solve a DO subproblem associated with the bucket Σ(x6,x7):
For each binary assignment x3, we compute values x6, x7 such that

hx6,x7(x3) = max
x6,x7

{6x6 + x7 | 2x3 + 3x6 + 2x7 ≤ 5, xj ∈ {0, 1}}.

Graph-Based Local Elimination Algorithms in Discrete Optimization 247

(a) (b)

1x 3x 6x

2x
4x 7x

5x
5x

2x

1x
3x 6x

7x4x

)x(h 25

)x,x,x(h 4312

)x,x(h 431)x,x(h 763

)x(h 34

)x(h 76

7h

Fig. 4 Elimination tree of the DOP (a) Computing the information while elimi-
nating variables in the LEA computational procedure (b) (example 2)

The function hx6,x7(x3) is placed in the bucket Σ(x3). Consider the DO
subproblem associated with this bucket

hx3(x1, x2, x4) = max
x3

[x3 + hx6,x7(x3)]

3x1 + 4x2 + x3 ≤ 6,

2x2 + 3x3 + 3x4 ≤ 5,

xj = 0, 1, j = 1, 2, 3, 4.

We place the function hx3(x1, x2, x4) in the bucket Σ(x1,x4) and solve the
problem

hx1,x4(x2) = max
x1,x4

{2x1 + 5x4 + hx3(x1, x2, x4) | xj ∈ {0, 1}}.

Build the corresponding table 3.
Function hx1,x4(x2) is placed in the bucket Σ(x2). A new DO subproblem

left to be solved

Table 1 Calculation of hx6,x7(x3)

x3 hx6,x7 x∗
6 x∗

7

0 7 1 1
1 6 1 0

Table 2 Calculation of hx3(x1, x2, x4)

x1 x2 x4 hx3 x∗
3

0 0 0 7 1
0 0 1 7 0
0 1 0 7 1
0 1 1 7 0
1 0 0 7 1
1 0 1 7 0
1 1 0 - -
1 1 1 - -

248 O. Shcherbina

c) after elimination 2x ; d) after elimination 1x ;

f) after elimination 3x .

) Initial interaction
graph;

1x 3x 6x

2x
4x 7x

5x

b) after elimination 5x ;

1x 3x 6x

2x
4x 7x

1x 3x 6x

4x 7x

6x

7x

1x 3x 6x

2x
4x 7x

5x

h) Filled graph G .

G)(1
5x

G

)(2
2x

G

)(5
3x

G

)(3
1x

G

3x 6x

4x 7x

3x 6x

7x

e) after elimination 4x ;

)(4
4x

G

7x
)(6

6x
G

g) after elimination 6x .
1x 3x 6x

2x
4x 7x

5x

i) Directed filled graph G .

Fig. 5 Elimination Game. Fill-in is represented by dashed lines

hx2(x5) = max
x2

{3x2 + hx1,x4(x2) | 2x2 + 3x5 ≤ 4, xj ∈ {0, 1}}

Place hx2(x5) in the last bucket Σ(x5). The new subproblem is:

hx5 = max
x5

{4x5 + hx2(x5) | xj ∈ {0, 1}},

its solution is h5 = 18, x∗
5 = 1 and the maximal objective value is 18.

Graph-Based Local Elimination Algorithms in Discrete Optimization 249

Table 3 Calculation of hx1,x4(x2)

x2 hx1,x4 x∗
1 x∗

4

0 14 1 1
1 12 0 1

Table 4 Calculation of hx2(x5)

x5 hx2 x∗
2

0 15 1
1 14 0

To find the optimal values of the variables, it is necessary to do backward
step of the BE procedure: from the last table 4 using x5 = 1 we have x∗

2 = 0.
Considering the table 3 we have for x2 = 0 : x∗

1 = 1, x∗
4 = 1. From the table

2: x1 = 1, x2 = 0, x4 = 1 ⇒ x∗
3 = 0. Table 1: x3 = 0 ⇒ x∗

6 = 1, x∗
7 = 1.

The solution is (1, 0, 0, 1, 1, 1, 1), optimal objective value is 18.

5 Block Local Elimination Scheme

5.1 Partitions, Clustering, and Quotient Graphs

The local elimination procedure can be applied to elimination of not only
separate variables but also to sets of variables and can use the so called ”elim-
ination of variables in blocks” ([16], [90]), which allows to eliminate several
variables in block. Local decomposition algorithm [90] actually implements
the local block elimination algorithm. If the DOP is divided into blocks cor-
responding to subsets of variables (meta-variables), then block structure can
be described with the aid of a structural condensed graph whose meta-nodes
correspond to subsets of the variables or blocks and meta-edges correspond
to adjacent blocks.

Applying the method of merging variables into meta-variables allows to
obtain condensed or meta-DOPs which have a simpler structure. If the
resulting meta-DOP has a nice structure (e.g., a tree structure) then it can
be solved efficiently.

The structural graph of the meta-DOP is obtained by collapsing merged
nodes into a single meta-node and connecting the meta-node with all nodes
that were adjacent with some of the merged nodes. Such a graph usually is
called a quotient graph.

An ordered partition of a set X is a decomposition of X into ordered
sequence of pairwise disjoint nonempty subsets whose union is all of X .

Partitioning is a fundamental operation on graphs. One variant of it is
to partition the vertex set X to three sets X = U ∪ S ∪ W , such that
U and W are balanced, meaning that neither of them is too small, and
S is small. Removing S along with all edges incident on it separates the
graph into two connected components. S is called a separator. In general,
graph partitioning is NP -hard. Since graph partitioning is difficult in general,

250 O. Shcherbina

there is a need for approximation algorithms. A popular algorithm in this
respect is MeTiS [70], which has a good implementation available in the public
domain.

Taking advantage of indistinguishable variables (two variables are indis-
tinguishable if they have the same closed neighborhood [1], [7], [54], [8]) it
is possible to compute a quotient (condensed) graph which is formed by
merging all vertices with the same neighborhoods into a single meta-node.
Let x be a block of a graph G [5], i.e., a maximal set of indistinguishable
with v vertices. Clearly, the blocks of G partition X since indistinguishability
is an equivalence relation defined on the original vertices.

An equivalence relation on a set induces a partition on it, and also any
partition induces an equivalence relation. Given a graph Γ = (X, E), let
X be a partition on the vertex set X :

X = {x1,x2, . . . ,xm}.

That is, ∪m
i=1xi = X and xi ∩ xk = ∅ for i �= k. We define the quotient

graph of G with respect to the partition X to be the graph

G/X = (X, E),

where (xi, xk) ∈ E if and only if NbG(xi) ∩ xk �= ∅.
The quotient graph G(X, E) is an equivalent representation of the inter-

action graph G(X, E), where X is a set of blocks (or indistinguishable sets
of vertices), and E ⊆ X × X be the edges defined on X. A local block
elimination scheme is one in which the vertices of each block are eliminated
contiguously [5]. As an application of a clustering technique we consider be-
low a block local elimination procedure [16] where the elimination of the block
(i.e., a subset of variables) can be seen as the merging of its variables into a
meta-variable.

The merges done define a so called synthesis tree [102] on the variables.

Definition 4. A synthesis tree of an initial DOP P is a tree whose leaves cor-
respond to the variables of the initial DOP P , and where each intermediate node
is a meta-variable corresponding to the combination of its children nodes.

Using the synthesis tree it is possible to ”decode” meta-variables and find
the solution of the initial DOP.

Consider an ordered partition X of the set X of the variables into blocks:

X = (x1, . . . ,xp), p ≤ n,

where xl = XKl
(Kl is a set of indices corresponding to xl, l = 1, . . . , p). For

this ordered partition X, the DOP P: (7), (5), (6) can be solved by the LEA
using quotient interaction graph G.

Graph-Based Local Elimination Algorithms in Discrete Optimization 251

A. Forward part
Consider first the block x1. Then

max
X

{CNXN |AiSiXSi ≤ bi, i ∈ M, xj = 0, 1, j ∈ N} =

max
XK2 ,...,XKp

{CN−K1XN−K1 + h1(Nb(XK1)|AiSiXSi ≤ bi, i ∈ M − U1,

xj = 0, 1, j ∈ N − K1}

where U1 = {i : Si ∩ K1 �= ∅} and

h1(Nb(XK1))=max
XK1

{CK1XK1 |AiSiXSi ≤ bi, i ∈ U1, xj = 0, 1, xj ∈ Nb[x1]}.

The first step of the local block elimination procedure consists of solving,
using complete enumeration of XK1 , the following optimization problem

h1(Nb(XK1))=max
XK1

{CK1XK1 |AiSiXSi ≤ bi, i ∈ U1, xj = 0, 1, xj ∈ Nb[x1]},

(8)
and storing the optimal local solutions XK1 as a function of the neighborhood
ofXK1 , i.e., X∗

K1
(Nb(XK1)).

The maximization of f(X) over all feasible assignments Nb(XK1), is called
the elimination of the block (or meta-variable) XK1 . The optimization
problem left after the elimination of XK1 is:

max
X−XK1

{CN−K1XN−K1 + h1(Nb(XK1))|AiSiXSi ≤ bi, i ∈ M − U1,

xj = 0, 1, j ∈ N − K1}.

Note that it has the same form as the original problem, and the tabular
function h1(Nb(XK1)) may be considered as a new component of the modified
objective function. Subsequently, the same procedure may be applied to the
elimination of the blocks – meta-variables x2 = XK2 , . . . ,xp = XKp , in turn.
At each step j the new component hxj

and optimal local solutions X∗
Kj

are
stored as functions of Nb(XKj | XK1 , . . . , XKj−1), i.e., the set of variables
interacting with at least one variable of XKj in the current problem, obtained
from the original problem by the elimination of XK1 , . . . , XKj−1 . Since the
set Nb(XKp | XK1 , . . . , XKp−1) is empty, the elimination of XKp yields the
optimal value of objective f(X).

B. Backward part
This part of the procedure consists of the consecutive choice of X∗

Kp
,

X∗
Kp−1

, . . . , X∗
K1

, i.e., the optimal local solutions from the stored tables
X∗

K1
(Nb(XK1)), X∗

K2
(Nb(XK2 | XK1)), . . . , X∗

Kp
| XKp−1 , . . . , XK1 .

Block elimination game and underlying DAG
It is possible to extend EG to the case of the block elimination. The
input of extended EG is an initial interaction graph G and a partition

252 O. Shcherbina

X = {x1, . . . ,xp} of vertices of G. At each step ν (1 ≤ ν ≤ p) of EG,
the neighborhood Nb(xν) of xν is turned into a clique, and xν is deleted
from the graph G. The filled graph G+

X = (X, E+) is obtained by adding to
G all the edges added by the algorithm. The resulting filled graph G+

X is a
triangulation of G, i.e., a chordal graph [6].

Underlying DAG of the local block elimination procedure contains nodes
corresponding to computing of functions hxi

(Nb
G

(i−1)
X

(xi)) and is a gener-
alized elimination tree.

Example 3. Local block elimination for unconstrained DOP.
Consider an unconstrained DOP

max
X

[f1(x1, x2, x3) + f2(x2, x3, x4) + f3(x2, x5) + f4(x3, x6, x7)],

where X = (x1, x2, x3, x4, x5, x6, x7)

and functions f1, f2, f3, f4 are given in the following tables.
Consider an ordered partition of the variables of the set into blocks:

x1 = {x5}, x2 = {x1, x2, x4}, x3 = {x6, x7}, x4 = {x3}.

Interaction graph for this problem is the same as in Fig. 4 (a).
For the ordered partition X = {x1, x2, x3, x4}, this unconstrained DO

problem may be solved by the LEA. Initial interaction graph with partition
presented by dashed lines is shown in Fig. 6 (a), quotient interaction graph
is in Fig. 6 (b), and the DAG of the block local elimination computational
procedure is shown in Fig. 7.

A. Forward part
Consider first the block x1 = {x5}. Then Nb(x1) = {x2}. Solve using com-
plete enumeration the following optimization problem

hx1(Nb(x1)) = max
x5

f3(x2, x5),

Table 5 f1

x1 x2 x3 f1

0 0 0 2
0 0 1 3
0 1 0 4
0 1 1 0
1 0 0 5
1 0 1 2
1 1 0 4
1 1 1 1

Table 6 f2

x1 x2 x3 f2

0 0 0 3
0 0 1 1
0 1 0 5
0 1 1 2
1 0 0 4
1 0 1 1
1 1 0 3
1 1 1 0

Graph-Based Local Elimination Algorithms in Discrete Optimization 253

Table 7 f3

x2 x5 f3

0 0 6
0 1 2
1 0 4
1 1 5

Table 8 f4

x3 x6 x7 f4

0 0 0 5
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 2
1 0 1 1
1 1 0 3
1 1 1 6

b

},{= 763 xxx

x2

a

1x 3x 6x

2x
4x 7x

5x

x3x4

x1

}{= 34 xx

},,{= 4212 xxxx

}{= 51 xx

Fig. 6 Interaction graph of the DOP with partition (dashed) (a) and quotient
interaction graph (b) (example 3)

Fig. 7 The DAG (gen-
eralized elimination tree)
of the local block elim-
ination computational
procedure for the DO
problem (example 3)

},{= 76 xx3x

}{= 3x4x

},,{= 421 xxx2x

}{= 5x1x

)(
3x 3xh

)(
1x 2xh

)(xh 32x

4xh

and store the optimal local solutions x1 as a function of a neighborhood, i.e.,
x1

∗(Nb(x1)).
Eliminate the block x1 and consider the block x2 = {x1, x2, x4}. Nb(x2) =

{x3}. Now the problem to be solved is

hx2(x3) = max
x1,x2,x4

{hx1(x2) + f1(x1, x2, x3) + f2(x2, x3, x4)}.

Build the corresponding table 10.

254 O. Shcherbina

Table 9 Calculation of hx1 (x2)

x2 hx1(x2) x∗
5

0 6 0
1 5 1

Table 10 Calculation of hx2 (x3)

x3 hx2(x3) x∗
1 x∗

2 x∗
4

0 14 1 0 0
1 14 0 0 0

Eliminate the block x2 and consider the block x3 = {x6, x7}. The neighbor
of x3 is x3: Nb(x3) = {x3}. Solve the DOP containing x3:

hx3(x3) = max
x6,x7

{f4(x3, x6, x7), xj ∈ {0, 1}}

and build the table 11.

Table 11 Calculation of hx3 (x3)

x3 hx3(x3) x∗
6 x∗

7

0 5 0 0
1 6 0 1

Eliminate the block x3 and consider the block x4 = {x3}. Nb(x4) = ∅.
Solve the DOP:

hx4 = max
x3

{hx2(x3) + hx3(x3), xj ∈ {0, 1}} = 20,

where x∗
3 = 1.

B. Backward part
Consecutively find x3

∗,x2
∗,x1

∗, i.e., the optimal local solutions from the
stored tables 11, 10, 9:
x∗

3 = 1 ⇒ x∗
6 = 1, x∗

7 = 1 (table 11);
x∗

3 = 1 ⇒ x∗
1 = 0, x∗

2 = 0, x∗
4 = 0 (table 10); x∗

2 = 0 ⇒ x∗
5 = 0 (table 9).

We found the optimal solution to be (0, 0, 1, 0, 0, 1, 1), the maximum
objective value is 20.

Example 4. Local block elimination for constrained DOP
Consider the DOP from example 2 and an ordered partition of the variables

of the set into blocks:

x1 = {x5}, x2 = {x1, x2, x4}, x3 = {x6, x7}, x4 = {x3}.

For the ordered partition {x1, x2, x3, x4}, this constrained optimization
problem may be solved by the LEA.

A. Forward part
Consider first the block x1 = {x5}. Then Nb(x1) = {x2}. Solve the following
problem containing x5 in the objective and the constraints:

Graph-Based Local Elimination Algorithms in Discrete Optimization 255

hx1(Nb(x1)) = max
x5

{4x5 | 2x2 + 3x5 ≤ 4, xj ∈ {0, 1}}

and store the optimal local solutions x1 as a function of a neighborhood,
i.e., x1

∗(Nb(x1)). Eliminate the block x1. and consider the block x2 =
{x1, x2, x4}. Nb(x2) = {x3}. Now the problem to be solved is

hx2(x3) = max
x1,x2,x4

{hx1(x2) + 2x1 + 3x2 + 5x4}

subject to
3x1 + 4x2 + x3 ≤ 6,

2x2 + 3x3 + 3x4 ≤ 5,

xj = 0, 1, j = 1, 2, 3, 4.

Build the corresponding table 13. Eliminate the block x2 and consider the

Table 12 Calculation of hx1 (x2)

x2 hx1(x2) x∗
5

0 4 1
1 0 0

Table 13 Calculation of hx2 (x3)

x3 hx2(x3) x∗
1 x∗

2 x∗
4

0 11 1 0 1
1 6 1 0 0

block x3 = {x6, x7}. The neighbor of x3 is x3: Nb(x3) = {x3}. Solve the
DOP containing x3:
hx3(x3) = maxx6,x7{hx2 + x3 + 6x6 + x7 | 2x3 + 3x6 + 2x7 ≤ 5, xj ∈ {0, 1}}
and build the table 14.

Table 14 Calculation of hx3 (x3)

x3 hx3(x3) x∗
6 x∗

7

0 18 1 1
1 12 1 0

Eliminate the block x3 and consider the block x4 = {x3}. Nb(x4) = ∅.
Solve the DOP:

hx4 = max
x3

{hx3(x3), xj ∈ {0, 1}} = 18,

where x∗
3 = 0.

B. Backward part
Consecutively find x3

∗,x2
∗,x1

∗, i.e., the optimal local solutions from the
stored tables 14, 13, 12. x∗

3 = 0 ⇒ x∗
6 = 1, x∗

7 = 1 (table 14); x∗
3 = 0 ⇒ x∗

1 =
1, x∗

2 = 0, x∗
4 = 1 (table 13); x∗

2 = 0 ⇒ x∗
5 = 1 (table 12). We found the

optimal global solution to be (1, 0, 0, 1, 1, 1, 1), the maximum objective
value is 18.

256 O. Shcherbina

6 Tree Structural Decompositions in Discrete
Optimization

Tree structural decomposition methods use partitioning of constraints and
use as a meta-tree a structural graph . Dynamic programming algorithm
starts at the leaves of the meta-tree and proceeds from the smaller to the
larger subproblems (corresponding to the subtrees) that is to say, bottom-up
in the rooted tree.

6.1 Tree Decomposition and Methods of Its
Computing

Aforementioned facts and an observation that many optimization problems
which are hard to solve on general graphs are easy on trees make detection
of tree structures in a graph a very promising solution. It can be done with
such powerful tool of the algorithmic graph theory as a tree decomposition
and the treewidth as a measure for the ”tree-likeness” of the graph [83]. It
is worth noting that in [56] is discussed a number of other useful parameters
like branch-width, rank-width (clique-width) or hypertree-width.

Definition 5. Let G = (X, E) be a graph. A tree decomposition of G is a
pair (T ;Y) with T = (I; F) a tree and Y = {yi | I ∈ I} a family of subsets
of X, one for each node of T , such that

• (i)
⋃

i∈I yi = X,
• (ii) for every edge (x, y) ∈ X there is an i ∈ I with x ∈ yi, y ∈ yi,
• (iii) (intersection property) for all i, j, l ∈ I, if i < j < l, then yi∩yl ⊆ yj.

Note that tree decomposition uses partition of constraints, i.e., it can be
considered as a dual structural decomposition method. The best known com-
plexity bounds are given by the ”treewidth” tw (Robertson, Seymour [83])
of an interaction graph associated with a DOP. This parameter is related to
some topological properties of the interaction graph. Tree decomposition and
the treewidth (Robertson, Seymour [83]) play a very important role in
algorithms, for many NP -complete problems on graphs that are otherwise
intractable become polynomial time solvable when these graphs have a tree
decomposition with restricted maximal size of cliques (or have a bounded
treewidth [6], [20], [21]). It leads to a time complexity in O(n · 2tw+1). Tree
decomposition methods aim to merge variables such that the meta-graph is
a tree of meta-vertices.

The procedure to solve a DO problem with bounded treewidth involves two
steps: (1) computation of a good tree decomposition, and (2) application of a
dynamic programming algorithm that solves instances of bounded treewidth
in polynomial time.

Thus, a tree decomposition algorithm can be applied to solving DOPs
using the following steps:

Graph-Based Local Elimination Algorithms in Discrete Optimization 257

(i) generate the interaction graph for a DOP (P);
(ii) using an ordering for Elimination Game add edges in the interaction

graph to produce a (chordal) filled graph;
(iii) build the elimination tree and information flows (see Fig 4(b));
(iv) identify the maximum cliques, apply an absorption and build subprob-

lems;
(v) produce a tree decomposition;
(vi) solve the DO subproblems for each meta-node and combine the results

using LEA.

As finding an optimal tree decomposition is NP -hard, approximate optimal
tree decompositions using triangulation of a given graph are often exploited.
Let us list existing methods of computing tree decomposition using a survey
of them in [61]. Optimal triangulations algorithms have an exponen-
tial time complexity. Unfortunately, their implementations do not have much
interest from a practical viewpoint. For example, the algorithm described
in [41] has time complexity O(n4 · (1.9601n)) [61]. A paper [46] has shown
that the algorithm proposed in [96] cannot solve small graphs (50 vertices
and 100 edges). The approach of [46] using a branch and bound algorithm,
seems promising for computing optimal triangulations. Approximation al-
gorithms approximate the optimum by a constant factor. Although their
complexity is often polynomial in the treewidth [2], this approach seems un-
usable due to a big hidden constant. Minimal triangulation computes a
set C

′
such that, for every subset C

′′ ⊂ C
′
, the graph G

′
= (X, C ∪ C

′′
) is

not triangulated. The algorithms LEX-M [84] and LB [17] have a polynomial
time complexity of O(ne

′
) with e

′
the number of edges in the triangulated

graph. Heuristic triangulation methods build a perfect elimination order
by adding some edges to the initial graph. They can be easily implemented
and often do this work in polynomial time without providing any minimal-
ity warranty. In practice, these heuristics compute triangulations reasonably
close to the optimum [64].

Experimental comparative study of four triangulation algorithms, LEX-M,
LB, min-fill and MCS was done in [61]. Min-fill orders the vertices from 1
to n by choosing the vertex which leads to add a minimum number of edges
when completing the subgraph induced by its unnumbered neighbors. Paper
[61] claims that LB and min-fill obtain the best results.

6.2 Computing Tree Decompositions for NSDP
Schemes

Given a triangulated (or chordal) graph, the set of its maximal cliques
corresponds to the family of subsets associated with a tree decomposition
(so called clique tree [18]). When we exploit tree decomposition, we only

258 O. Shcherbina

2x

5x

4y5y

1y 2y

7x

6x

3y
3,2y

5,4y

3x
6x

7x

1x 3x

4x

1x 3x

4x
2x

Forming a maximal
clique by absorption

Forming a maximal
clique by absorption

(a)

2x

5x

1y 3,2y

5,4y

3x
6x

7x

1x 3x

4x
2x

(b)

Fig. 8 Tree decomposition for the NSDP procedure (example 2) before (a) and
after absorption (b)

consider approximations of optimal triangulations by clique trees. Hence, the
time complexity is then O(n · 2w++1) (w + 1 ≤ w+ + 1 ≤ n). The space
complexity is O(n ·s ·2s) with s the size of the largest minimal separator [61].

Graph-Based Local Elimination Algorithms in Discrete Optimization 259

Usually, tree decomposition is considered in the literature separately from
NSDP issues. But there is a close connection between these two structural
decomposition approaches. Moreover, it is easy to see that a tree decompo-
sition can be obtained from the DAG of the computational NSDP procedure
(this fact was noted in [63]).

Consider example 2 and build a tree decomposition associated with the
corresponding NSDP procedure. Associated underlying DAG of NSDP pro-
cedure for the variable ordering {x5, x2, x1, x4, x3, x6, x7} is shown in Fig. 4
(b). As was mentioned above, this underlying DAG of local variable elimina-
tion (the elimination tree) is constructed using Elimination Game. A node i

of the DAG is containing variables (αi, Nb
(i−1)
Gxi−1

(xi)) is linked with the first
xj (accordingly to the ordering α) which is in Nb

G
(i−1)
xi−1

(xi). Nodes and edges

of desired tree decomposition correspond one-by-one to nodes and edges of
the underlying DAG. Each node of the tree decomposition is indeed a meta-
node containing a subset of vertices of the interaction graph G. This subset
induces a subgraph in G that was condensed to generate the meta-node.
Restore these subgraphs for each meta-node of the tree decomposition.

Proposition 1. Graph structure obtained by this construction from the un-
derlying DAG of the NSDP procedure is a tree decomposition.

Proof is in [63].
In our example 2, we observe that the first (accordingly to ordering α)

meta-node corresponds to the variable x5 and contains variables (vertices)
x2, x5 (i.e., x5 ∪ Nb(x5)). Subgraph induced by these vertices can be con-
structed using the interaction graph G (Fig. 4 a). This subgraph is shown in
Fig. 8 (a) — the meta-node y1. Next meta-node y2 of the tree decomposition
corresponds to the variable x2 and contains variables x1, x2, x3, x4. The
corresponding induced subgraph (clique) is shown inside the meta-node y2

in Fig. 9 (a). Continuing in analogous way we obtain the tree decomposition
as shown in Fig. 8 (a).

It is easy to see that some cliques in this tree decomposition are not max-
imal and can be absorbed by other cliques. In the case, when one clique
contains another clique, the second clique can be absorbed into the first one.
Thus, the clique corresponding to the meta-node y2 is absorbed by clique
y3 (we denote a result of absorption as a clique y2,3. The clique y5 is ab-
sorbed by clique y4 forming a clique y4,5. After absorptions done we obtain
a clique tree (Fig. 8 (b)) containing only maximal cliques. These maximal
cliques correspond to constraints of the DOP. In Fig. 8 (b) maximal cliques
and links between them are shown. Local decomposition algorithm [90] that
uses a dynamic programming paradigm can be applied to this clique tree.
Other possible way of finding the clique tree is using maximal spanning tree
in the dual graph.

260 O. Shcherbina

6.3 Applying the Local Decomposition Algorithm to
Solving Do Problem

To describe how tree decompositions are used to solve problems with the
local decomposition algorithm, let us assume we find a tree decomposition of
a graph G. Since this tree decomposition is represented as a rooted tree T , the
ancestor/descendant relation is well-defined. We can associate to each meta-
node y the subgraph of G made up by the vertices in y and all its descendants,
and all the edges between those vertices. Starting at the leaves of the tree T ,
one computes information typically stored in a table, in a bottom-up manner
for each bag until we reach the root. This information is sufficient to solve
the subproblem for the corresponding subgraph. To compute the table for a
node of the tree decomposition, we only need the information stored in the
tables of the children (i.e. direct descendants) of this node. The DO problem
for the entire graph can then be solved with the information stored in the
table of the root of T . Consider example 2 and exploit the tree decomposition
(clique tree) shown in Fig. 8 (b). Let us solve the subproblem corresponding
to the block y1. Since this block is adjacent to the block y2,3, we have to
solve a DOP with variables y1 − y2,3 for all possible assignments y1

⋂
y2,3.

Thus, since y1 − y2,3 ={x5} and y1

⋂
y2,3 ={x2}, then induced subproblem

has the form:
hy1(x2) = max

x5
{4x5}

subject to
2x2 + 3x5 ≤ 4, xj = 0, 1, j ∈ {2, 5}

Solution of the problem can be written in a tabular form (see table 15).
Since y2,3−y4={x1, x2, x3, x4}−{x3, x6, x7}={x1, x2, x4} and y2,3

⋂
y4 =

{x3}, next subproblem corresponding to the leaf (or meta-node) y2,3 of the
clique tree is

hy2,3(x3) = max
x1,x2,x4

{hy1 + 2x1 + 3x2 + 5x4}

subject to

3x1 + 4x2 + x3 ≤ 6, 2x2 + 3x3 + 3x4 ≤ 5, xj = 0, 1, j ∈ {1, 2, 3, 4}

Solution of this subproblem is in table 16. The last problem corresponding
to the block y4,5 left to be solved is:

hy4,5 = max
x3,x6,x7

{
hy2,3(x3) + x3 + 6x6 + x7

}
s.t.

2x3 + 3x6 + 2x7 ≤ 5, xj = 0, 1, j ∈ {3, 6, 7}

Graph-Based Local Elimination Algorithms in Discrete Optimization 261

Table 15 Calculation of hy1 (x2)

x2 hy1 x∗
5(x2)

0 4 1
1 0 0

Table 16 Calculation of hy2,3 (x3)

x3 hy2,3 x∗
1(x3) x∗

2(x3) x∗
4(x3)

0 11 1 0 1
1 6 1 0 0

Table 17 Calculation of hy4,5

hy4,5 x∗
3 x∗

6 x∗
7

18 0 1 1

The maximal objective value is 18. To find the optimal values of the vari-
ables, it is necessary to do a backward step of the dynamic programming
procedure: from table 17 we have x∗

3 = 0, x∗
6 = 1, x∗

7 = 1. From the table 16
using the information x∗

3 = 0 we find x∗
1 = 1, x∗

2 = 0, x∗
4 = 1. Considering

table 15 we have for x∗
2=0: x∗

5 = 1. The solution is (1, 0, 0, 1, 1, 1, 1); the
maximal objective value is 18.

7 Conclusion

This paper reviews the main graph-based local elimination algorithms for
solving DO problems. The main aim of this paper is to unify and clarify the
notation and algorithms of various structural DO decomposition approaches.
We hope that this will allow us to apply the aforementioned decomposition
techniques to develop competitive algorithms which will be able to solve
practical real-life discrete optimization problems.

References

1. Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree or-
dering algorithm. SIAM J. on Matrix Analysis and Applications 17, 886–905
(1996)

2. Amir, E.: Efficient approximation for triangulation of minimum treewidth. In:
Proceedings of UAI (2001)

3. Aris, R.: The optimal design of chemical reactors. Academic Press, New York
(1961)

4. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with
bounded decomposability — A survey. BIT 25, 2–23 (1985)

5. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embed-
dings in a k-tree. SIAM J. Alg. Disc. Meth. 8(2), 277–284 (1987)

6. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable
graphs. J. of Algorithms 12, 308–340 (1991)

7. Ashcraft, C.: Compressed graphs and the minimum degree algorithm. SIAM
J. Sci. Comput. 16(6), 1404–1411 (1995)

262 O. Shcherbina

8. Ashcraft, C., Liu, J.W.H.: Robust ordering of sparse matrices using multisec-
tion. SIAM J. Matrix Anal. Appl. 19(3), 816–832 (1995)

9. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance,
P.H.: Branch and price: Column generation for solving huge integer programs.
Operations Research 46, 316–329 (1998)

10. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. Journal ACM 30, 479–513 (1983)

11. Beightler, C.S., Johnson, D.B.: Superposition in branching allocation prob-
lems. Journal of Mathematical Analysis and Applications 12, 65–70 (1965)

12. Bellman, R., Dreyfus, S.: Applied Dynamic Programming. Princeton Univer-
sity Press, Princeton (1962)

13. Benders, J.F.: Partitioning procedures for solving mixed-variables program-
ming problems. Numerische Mathematik 4, 238–252 (1962)

14. Bertele, U., Brioschi, F.: A new algorithm for the solution of the secondary
optimization problem in nonserial dynamic programming. Journal of Mathe-
matical Analysis and Applications 27, 565–574 (1969)

15. Bertele, U., Brioschi, F.: Contribution to nonserial dynamic programming.
Journal of Mathematical Analysis and Applications 28, 313–325 (1969)

16. Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press,
New York (1972)

17. Berry, A.: A wide-range efficient algorithm for minimal triangulation. In: Pro-
ceedings of SODA (1999)

18. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees.
In: Graph theory and sparse matrix computation. Springer, New York (1993)

19. Bodlaender, H.L. (ed.): WG 2003. LNCS, vol. 2880. Springer, Heidelberg
(2003)

20. Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Privara,
I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295. Springer, Heidelberg (1997)

21. Bodlaender, H., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. Computer Journal 51, 255–269 (2008)

22. Burkard, R.E., Hamacher, H.W., Tind, J.: On General Decomposition
Schemes in Mathematical Programming. Mathematical Programming Stud-
ies 24: Festschrift on the occasion of the 70 th birthday of George B. Dantzig,
238–252 (1985)

23. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. 3rd Ann.
ACM Symp. on Theory of Computing Machinery, New York (1971)

24. Cook, W., Seymour, P.D.: Tour merging via branch-decomposition. INFORMS
Journal on Computing 15, 233–248 (2003)

25. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets
of finite graphs. Information and Computation 85, 12–75 (1990)

26. Crama, Y., Hansen, P., Jaumard, B.: The basic algorithm for pseudo-boolean
programming revisited. Discrete Applied Mathematics 29, 171–185 (1990)

27. Dantzig, G.B.: Programming of interdependent activities II: Mathematical
model. Econometrica 17, 200–211 (1949)

28. Dantzig, G.B.: Time-staged methods in linear programming. Comments and
early history. In: Dantzig, G.B., et al. (eds.) Large-Scale Linear Programming,
IIASA, Laxenburg, Austria, pp. 3–16 (1981)

29. Dantzig, G.B.: Solving staircase linear programs by a nested block-angular
method. Technical Report 73-1. Stanford Univ., Dept. of Operations Research,
Stanford (1973)

Graph-Based Local Elimination Algorithms in Discrete Optimization 263

30. Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V.: Algorithms. McGraw-Hill,
New York (2006)

31. Dechter, R.: Constraint networks. In: Encyclopedia of Artificial Intelligence,
2nd edn. Wiley, New York (1992)

32. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113, 41–85 (1999)

33. Dechter, R., El Fattah, Y.: Topological parameters for time-space tradeoff.
Artificial Intelligence 125, 93–118 (2001)

34. Dechter, R.: Constraint processing. Morgan Kaufmann, San Francisco (2003)
35. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intel-

ligence 38, 353–366 (1989)
36. Dolgui, A., Soldek, J., Zaikin, O. (eds.): Supply chain optimisation: prod-

uct/process design, facilities location and flow control. Series: Applied Opti-
mization, vol. 94, XVI. Springer, Heidelberg (2005)

37. Esogbue, A.O., Marks, B.: Non-serial dynamic programming – A survey. Op-
erational Research Quarterly 25, 253–265 (1974)

38. Fernandez-Baca, D.: Nonserial dynamic programming formulations of satisfi-
ability. Information Processing Letters 27, 323–326 (1988)

39. YuYu, F.: On solving discrete programming problems of special form. Eco-
nomics and Mathematical Methods 1, 262–270 (1965) (Russian)

40. Floudas, C.A.: Nonlinear and mixed-integer optimization: fundamentals and
applications. Oxford University Press, Oxford (1995)

41. Fomin, F., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for
treewidth and minimum fill-in. In: Dı́az, J., Karhumäki, J., Lepistö, A., San-
nella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidel-
berg (2004)

42. Fourer, R.: Staircase matrices and systems. SIAM Review 26(1), 1–70 (1984)
43. Freuder, E.: Constraint solving techniques. In: Tyngu, E., Mayoh, B., Penjaen,

J. (eds.) Constraint Programming of series F: Computer and System Sciences.
NATO ASI Series, pp. 51–74 (1992)

44. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific
J. of Mathematics 15, 835–855 (1965)

45. George, J.A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Defi-
nite Systems. Prentice-Hall Inc., Englewood Cliffs (1981)

46. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In:
Proceedings of UAI (2004)

47. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decom-
position methods. Artificial Intelligence 124, 243–282 (2000)

48. Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence,
constraint satisfaction and database problems. The Computer Journal 51, 303–
325 (2008)

49. Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposing constraint satisfaction
problems using database techniques. Artificial Intelligence 66, 57–89 (1994)

50. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability
(SAT) problem: A survey. Satisfiability Problem Theory and Applications
(1997)

51. Harary, F., Norman, R.Z., Cartwright, D.: Structural Models: An Introduction
to the Theory of Directed Graphs. John Wiley & Sons, Chichester (1965)

52. Hammer, P.L., Rudeanu, S.: Boolean Methods in Operations Research and
Related Areas. Springer, Heidelberg (1968)

264 O. Shcherbina

53. Heggernes, P., Eisenstat, S.C., Kumfert, G., Pothen, A.: The Com-
putational Complexity of the Minimum Degree Algorithm. Techn. re-
port UCRL-ID-148375. Lawrence Livermore National Laboratory (2001),
http://www.llnl.gov/tid/lof/documents/pdf/241278.pdf

54. Hendrickson, B., Rothberg, E.: Improving the run time and quality of nested
dissection ordering. SIAM J. Sci. Comput. 20(2), 468–489 (1998)

55. Hicks, I.V., Koster, A.M.C.A., Kolotoglu, E.: Branch and tree decomposition
techniques for discrete optimization. In: Tutorials in Operations Research.
INFORMS, New Orleans (2005),
http://ie.tamu.edu/People/faculty/Hicks/bwtw.pdf

56. Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-
width and their applications. The Computer Journal 51, 326–362 (2008)

57. Ho, J.K., Loute, E.: A set of staircase linear programming test problems.
Mathematical Programming 20, 245–250 (1981)

58. Hooker, J.N.: Logic-based Methods for Optimization: Combining Optimiza-
tion and Constraint Satisfaction. John Wiley & Sons, Chichester (2000)

59. Hooker, J.N.: Logic, optimization and constraint programming. INFORMS
Journal on Computing 14, 295–321 (2002)

60. Jeavons, P.G., Gyssens, M., Cohen, D.A.: Decomposing constraint satisfaction
problems using database techniques. Artificial Intelligence 66, 57–89 (1994)

61. Jégou, P., Ndiaye, S.N., Terrioux, C.: Computing and exploiting tree-
decompositions for (Max-)CSP. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 777–781. Springer, Heidelberg (2005)

62. Jensen, F.V., Lauritzen, S.L., Olesen, K.G.: Bayesian updating in causal prob-
abilistic networks by local computations. Computat. Statist. Quart. 4, 269–282
(1990)

63. Kask, K., Dechter, R., Larrosa, J., Dechter, A.: Unifying cluster-tree decom-
positions for reasoning in graphical models. Artificial Intelligence 160, 165–193
(2005)

64. Kjaerulff, U.: Triangulation of graphs – algorithms giving small total state
space. Techn.report. Aalborg, Denmark (1990)

65. Koster, A.M.C.A., van Hoesel, C.P.M., Kolen, A.W.J.: Solving frequency as-
signment problems via tree-decomposition. In: Broersma, H.J., et al. (eds.) 6th
Twente workshop on graphs and combinatorial optimization. Univ. of Twente,
Enschede, Netherlands (1999)

66. Lauritzen, S.L., Spiegelhalter, D.J.: Local computation with probabilities on
graphical structures and their application to expert systems. J. Roy. Statist.
Soc. Ser. B 50, 157–224 (1988)

67. Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM Jour-
nal on Matrix Analysis and Applications 11, 134–172 (1990)

68. Martelli, A., Montanari, U.: Nonserial Dynamic Programming: On the Opti-
mal Strategy of Variable Elimination for the Rectangular Lattice. Journal of
Mathematical Analysis and Applications 40, 226–242 (1972)

69. Mitten, L.G., Nemhauser, G.L.: Multistage optimization. Chemical Engineer-
ing Progress 54, 52–60 (1963)

70. Karypis, G., Kumar, V.: MeTiS - a software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing orderings of
sparse matrices. Version 4, University of Minnesota (1998),
http://www-users.cs.umn.edu/~karypis/metis

http://www.llnl.gov/tid/lof/documents/pdf/241278.pdf
http://ie.tamu.edu/People/faculty/Hicks/bwtw.pdf
http://www-users.cs.umn.edu/~karypis/metis

Graph-Based Local Elimination Algorithms in Discrete Optimization 265

71. Mitten, L.G., Nemhauser, G.L.: Multistage optimization. Chemical Engineer-
ing Progress 54, 52–60 (1963)

72. Neapolitan, R.E.: Probabilistic Reasoning in Expert Systems. Wiley, New
York (1990)

73. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization.
John Wiley & Sons, Chichester (1988)

74. Nemhauser, G.L.: The age of optimization: solving large-scale real-world prob-
lems. Operations Research 42, 5–13 (1994)

75. Nowak, I.: Lagrangian decomposition of block-separable mixed-integer all-
quadratic programs. Mathematical Programming 102, 295–312 (2005)

76. Neumaier, A., Shcherbina, O.: Nonserial dynamic programming and lo-
cal decomposition algorithms in discrete programming (submitted, 2008),
http://www.optimization-online.org/DB_HTML/2006/03/1351.html

77. Pang, W., Goodwin, S.D.: A new synthesis algorithm for solving CSPs. In:
Proc. of the 2nd Int. Workshop on Constraint-Based Reasoning. Key West
(1996)

78. Pardalos, P.M., Du, D.Z. (eds.): Handbook of combinatorial optimization,
vol. 1, 2, and 3. Kluwer Academic Publishers, Dordrecht (1998)

79. Pardalos, P.M., Wolkowicz, H. (eds.): Novel approaches to hard discrete opti-
mization. Fields Institute, American Mathematical Society (2003)

80. Parter, S.: The use of linear graphs in Gauss elimination. SIAM Review 3,
119–130 (1961)

81. Pearl, J.: Probabilistic reasoning in intelligent systems. Morgan Kaufmann,
San Mateo (1988)

82. Ralphs, T.K., Galati, M.V.: Decomposition in integer linear programming. In:
Karlof, J. (ed.) Integer Programming: Theory and Practice (2005)

83. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree
width. J. of Algorithms 7, 309–322 (1986)

84. Rose, D., Tarjan, R., Lueker, G.: Algorithmic aspects of vertex elimination on
graphs. SIAM J. on Computing 5, 266–283 (1976)

85. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In: Read, R.C. (ed.) Graph Theory and
Computing, pp. 183–217. Academic Press, New York (1972)

86. Rosenthal, A.: Dynamic programming is optimal for nonserial optimization
problems. SIAM J. Comput. 11, 47–59 (1982)

87. Seidel, P.: A new method for solving constraint satisfaction problems. In: Proc.
of the 7th IJCAI, Vancouver, Canada, pp. 338–342 (1981)

88. Sergienko, I.V., Shylo, V.P.: Discrete Optimization: Problems, Methods, Stud-
ies, Naukova Dumka, Kiev (2003)

89. Shcherbina, O.: A local algorithm for integer optimization problems. USSR
Comput. Math. Phys. 20, 276–279 (1980)

90. Shcherbina, O.A.: On local algorithms of solving discrete optimization prob-
lems. Problems of Cybernetics (Moscow) 40, 171–200 (1983)

91. Shcherbina, O.: Nonserial dynamic programming and tree decomposition in
discrete optimization. In: Proc. of Int. Conference on Operations Research
Operations Research 2006, Karlsruhe, September 6-8, pp. 155–160. Springer,
Berlin (2006)

92. Shcherbina, O.A.: Tree decomposition and discrete optimization problems: A
survey. Cybernetics and Systems Analysis 43, 549–562 (2007)

http://www.optimization-online.org/DB_HTML/2006/03/1351.html

266 O. Shcherbina

93. Shcherbina, O.A.: Methodological issues of dynamic programming. Dynamich
Sistemy 22, 21–36 (2007) (in Russian)

94. Shcherbina, O.A.: Local elimination algorithms for solving sparse discrete
problems. Comput. Math. and Math. Phys. 48, 152–167 (2008)

95. Shenoy, P.P., Shafer, G.: Propagating belief functions using local computa-
tions. IEEE Expert 1, 43–52 (1986)

96. Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangula-
tion. In: Proceedings of AAAI (1997)

97. Urrutia, J.: Local solutions for global problems in wireless networks. J. of
Discrete Algorithms 5, 395–407 (2007)

98. Vanderbeck, F., Savelsbergh, M.: A generic view at the Dantzig-Wolfe de-
composition approach in mixed integer programming. Operations Research
Letters 34, 296–306 (2006)

99. Van Roy, T.J.: Cross decomposition for mixed integer programming. Mathe-
matical Programming 25, 46–63 (1983)

100. Wah, B.W., Li, G.-J.: Systolic processing for dynamic programming problems.
Circuits Systems Signal Process 7, 119–149 (1988)

101. Wilde, D., Beightler, C.: Foundations of Optimization. Prentice-Hall, Engle-
wood Cliffs (1967)

102. Weigel, R., Faltings, B.: Compiling constraint satisfaction problems. Artificial
Intelligence 115, 257–287 (1999)

103. Wets, R.J.B.: Programming under uncertainty: The equivalent convex pro-
gram. SIAM J. Appl. Math. 14, 89–105 (1966)

104. YuI, Z.: Selected Works. Magistr, Moscow (1998) (in Russian)
105. YuI, Z., Losev, G.: Neighborhoods in problems of discrete mathematics. Cy-

bern. Syst. Anal. 31, 183–189 (1995)

Evolutionary Approach to Solving
Non-stationary Dynamic
Multi-Objective Problems

Zikrija Avdagić, Samim Konjicija, and Samir Omanović

This chapter aims at presenting the general problem of decision making in
unknown, complex or changing environment by an extension of static multi-
objective optimization problem. General optimization problem is defined,
which encompasses not just dynamics, but also change in the optimization
problem itself, with focus on changing number of objectives used to evaluate
potential solutions.

In order to solve the defined problem, a variant of multi-objective genetic
algorithm was used. Since the chapter doesn’t focus on the performance of
the algorithm used for solving the problem, but tends to demonstrate the
approach, experimental results produced by tests with MOGA are presented.
These experimental results clearly demonstrate, that MOGA successfully led
the population of potential solutions to the problem for different test cases,
such as homogenous, non-homogenous, and the problem with changing num-
ber of objectives. Decision-making based on ranking of the potential solutions
has also been demonstrated.

1 Introduction

Modern technical systems are capable of developing a very complex interac-
tion with their environment. But one of the basic preconditions for sucess of
this interaction is a good information on that environment.

Zikrija Avdagić
Faculty of Electrical Engineering, University of Sarajevo, Bosnia and Herzegovina
e-mail: zikrija.avdagic@etf.unsa.ba

Samim Konjicija
Faculty of Electrical Engineering, University of Sarajevo, Bosnia and Herzegovina
e-mail: samim.konjicija@etf.unsa.ba

Samir Omanović
Faculty of Electrical Engineering, University of Sarajevo, Bosnia and Herzegovina
e-mail: samir.omanovic@etf.unsa.ba

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 267–289.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

zikrija.avdagic@etf.unsa.ba
samim.konjicija@etf.unsa.ba
samir.omanovic@etf.unsa.ba

268 Z. Avdagić et al.

If a simple industrial controller is analyzed, its output results from adjust-
ment of parameters chosen in accordance to the control goals, based on known
features of the system [1]. The performance of such controller is very good,
but only in circumstances taken into account during its synthesis. Using var-
ious approaches, such as estimation of behavior of the system with statisti-
cally known disturbances, introduction of adaptation of controller parameters
etc. [2], a wider problem domain can be encompassed, nevertheless it is still
very clearly defined in advance. The question is how to lead the interaction
of the system with its environment, when the description of that environment
becomes too complex for explicit treatment or deficiant. In other words, how
to act in conditions of unsuficiently known or changing environment? On the
other side, interaction of living organisms with their environment happens very
successfully all the time in exactly such conditions of uncertainty. Without an
exact description of interaction with his environment, behavior of a human be-
ing is always dynamic and adaptable to a concrete circumstances in much wider
scope, which excels capabilities of any existing technical adaptive system.

Imitation of some aspects of human’s behavior in conditions of uncertainty
has inspired various approaches and techniques of artificial intelligence [3].
Yet, the problem domain still stays highly constrained and predefined, so that
any radical change in model of interaction with environment requires direct
intervention, which goes back into system’s structure.

This chapter describes a part of the research in which the problem of
inference and decision making in conditions of uncertainty was presented by
a multi-objective problem whith dynamic and changing nature. Therefore,
it was necessary to extend the definition of multi-objective problem. It was
necessary, as well, to signify the effects, which changing dimensionality of the
space of objective values has on the definition of the precedence in this space.

Evolutionary algorithms, especially genetic algorithm as their typical rep-
resentative have been successfully used to solve dynamic problems [5], as
well as various multi-objective problems [6] [7]. An approach to apply a
multi-objective evolutionary algorithm to solving the defined dynamic multi-
objective problem of search for solution was demonstrated in this chapter.

The application of evolutionary algorithms to solving dynamic multi-
objective problem will be demonstrated on problems defined on the basis
of a class of test functions with known features.

Dynamic multi-objective problem defined based on a class of test functions
with known features has been chosen in order to evaluate the application of
the proposed approach, in conditions when the features of the problem are
known (features of test functions, Pareto front etc.). In other words, although
the nature and features of the problem are known, it will be modelled as the
problem of decision making in unknown environment, and after its solution it
will be possible to have insight into the features of the solution acquired. This
problem will also be used to demonstrate the common approach to decision
making on choice of a unique point for solution to the problem, since due to
known features of the problem, it will be possible to get clear insight into

EA Approach to Solving Non-stationary Dynamic MOP 269

the effects of different decisions on the subjective quality of the solution. It
is clear that such insight into features of the solution to practical problems
is not available.

2 General Optimization Problem

Definition of multi-objective optimization problem was given in [4] [7]. Al-
though it clearly defines basic elements of multi-objective optimization prob-
lem, it is limited to static (without the existence of independent variables)
and stationary problems (problems with unchanging elements). This defini-
tion will now be modified into the definition of general optimization problem,
in order to encompass non-stationary and dynamic problems as well:

Definition 1. General optimization problem includes the set of n problem
variables

x(t) = [x1(t), x2(t), ..., xn(t)]T , t ∈ t0, tf (1)

where t0 represents initial, and tf final value of independent variable t, the
set of m(x(t), t) objectives (criteria)

Q(x(t), t) = [q1(x(t), t), q2(x(t), t), ..., qm(x(t), t)]T (2)

and the set of r(t) constraints on values of problem variables

G(x(t), t) = [g1(x(t), t), g2(x(t), t), ..., gr(x(t), t)]T (3)

The problem variables are functions of independent variable. The criteria and
constraints are functions of problem variables and independent variable. The
goal of optimization is to determine optimum of vector function Q(x(t), t),
satisfying the constraints, i.e. to determine:

optQ(x(t), t), gk(x(t), t) � 0, k = 1, 2, ..., r(t). (4)

The following can be noticed from this definition:

• the dimensionality of the problem space is constant, since this work deals
only with the systems with fixed structure, so the dimensionality of the
problem space, as well as of the state vector is always constant

• the trajectories of problem variables x(t) in certain range of value of inde-
pendent variable t are analyzed,

• the alternatives considered are the trajectories of problem variables x(t)
from the set of feasible values Ω(t), defined by the system of constraints
in form gk(x(t), t), whose shape and total number r(t) depends on inde-
pendent variable,

• the value of each feasible trajectory of a problem variable is being measured
using criteria in form qi(x(t), t), whose shape and total number m(x, t) also
depends on independent variable, and the alternative x(t).

270 Z. Avdagić et al.

The general optimization problem defined in this way encompasses all the
classes of problems mentioned in the beginning of this section. On the other
hand, the general optimization problem reflects the essence of the problem in
the focus of this work, which is search for solution of certain problem when
the subject is in changing, unknown or complex environment. The general
optimization problem enables to, as the environment changes (what can be a
consequence of update of the model of environment based on newly obtained
information), modify problem being solved even during its solving. A question
of choice of appropriate method for solving the problem formulated in such
way remains still open, since practically all classical approaches fall off, due
to their inherent limitations on the nature of a problem being solved. Besides,
the most practical problems that are intended to be solved using the described
approach are NP-hard.

On the other hand, very small sensitivity of performance of an algorithm
for various domains of problems is one of basic features of evolutionary al-
gorithms, whose the best known representative is genetic algorithms (GA).
Genetic algorithms are search algorithms based on the mechanics of natu-
ral selection, which combine survival of the fittest among string structures,
that efficiently exploit information present in the population [8]. Contrary
to most other algorithms, which pose strict requirements on preconditions of
their application and on solving the problem where they achieve the highest
performance, GA is usually applied to black-box type of problems, with-
out sufficient knowledge on their structure [9]. Also, GA is applied to the
problems of optimization in presence of disturbances. In order for this to be
possible, the preconditions for application of GA for solving such problems
are very rare. Observing in average, the performance of GA is far better from
the performance of any problem-specific algorithm, alghough GA possesses
definitively worse performance compared to any problem-specific algorithm,
when comparison is done just for the problems from domain of this problem-
specific algorithm.

A lot of literature can be found, which treats in depth various topics of ge-
netic algorithms [8] [9] [10] [11], so they will not be addressed in this chapter.

3 Dynamic Multi-Objective Problem Defined on a
Class of Test Functions

The sets of test functions play very important role in research of features and
behaviour, as well as the efficiency of search algorithms in general, as well
as the evolutionary algorithms. There exist sets of test functions for single-
criterion algorithms, which contain functions with various features, what en-
ables testing various aspects of search algorithms [12]. A large number of test
functions can be found in literature, which are proposed for exploring the be-
havior and effects of application of multi-objective evolutionary algorithms
as well [7], [6], [13]. These test functions, being already defacto standard, are

EA Approach to Solving Non-stationary Dynamic MOP 271

usually limited to two or three criteria. The main reason for that lies in the
fact that, although various numerical performance measures for an algorithm
exist, visualization still gives the best insight into real features of the solution
found by certain algorithm. Since, with increase in number of criteria, there
exist no efficient way for visualization of the set of values, it is quite difficult
to synthesize test functions for larger number of criteria. As a good approach,
various scalable problems have been proposed. They enable to determine the
number of criteria freely, still maintaining the knowledge on the features of
Pareto front [7], [6].

Meanwhile, all these test functions are static, and just in a couple of recent
years, the proposals on how to modify these static functions in order to
evaluate behaviour of algoriths when applied to solving dynamic problems
can be found in literature [14] [15]. The choice of test functions should be
done carefully, since it was stated many times in literature, that the measured
performance of certain algorithm greatly depends on the chosen set of test
functions, and that inadequate choice of test functions generates conclusions
that don’t hold generally (see No-free-lunch theorems) [16].

The test cases have been designed so that the application of a variant of
multi-objective genetic algorithm to different subclasses of general optimiza-
tion problem could have been tested:

• dynamic multi-objective test problem,
• homogenous non-stationary multi-objective test problem,
• non-homogenous non-stationary multi-objective test problem,
• non-homogenous non-stationary multi-objective test problem with chang-

ing number of criteria during a single run of the algorithm.

Dynamic multi-objective test problem demonstrates finding the optimal
trajectory in the search space, based on the pre-defined objectives. Such test
problem is stationary, which means that the problem elements don’t change.

Non-stationary test problems are designed so that certain element or ele-
ments of the problem change with independent variable.

Homogenous non-stationary test problem possesses such feature, that the
objectives change with independent variable, but the Pareto form moves co-
herently [5]. Non-homogenous non-stationary test problem doesn’t possess
this feature.

Non-homogenous non-stationary test problem with changing number of
criteria enables us to test how the population behaves, whent even the number
of objectives changes with independent variable [17].

These test cases encompass the basic types of general optimization problem
that can be derived as models of real-life applications.

MOGA was used for solving the test cases. It is a modification of GA
with Pareto ranking proposed by Fonseca and Flemming, as the first multi-
objective GA, which explicitely takes care of non-dominated solutions main-
taining the population diversity at the same time [18]. Although many other
modifications of multi-objective GA exist nowadays, MOGA has been chosen

272 Z. Avdagić et al.

due to its simplicity, and having in mind that the focus of the research was
not on the performance of the algorithm itself.

3.1 Dynamic Multi-Objective Test Problem

In order to illustrate application of multi-objective GA for solving dynamic
multi-objective problem, it was necessary to choose criteria in form:

qi(x(k · T), k) = Hi(x(N · T), N) +
N−1∑
k=0

Fi(x(k · T), k) (5)

as generalized form of the common single-objective dynamic problem found in
the literature [19] [20]. The function Hi(x(N ·T), N) determines the influence
of final state on the value of criterion qi , whereas the function Fi(x(k ·T), k)
determines contribution of states x(k·T) on the value of the same criterion. In
other words, the function Hi(x(N ·T), N) where the trajectory ends, whereas
the function Fi(x(k·T), k) determines the way on which the trajectory reaches
the final state.

As an example, let’s consider the problem of determining the trajectory in
two-dimensional space from the initial point x0 to final point xN , with:

x0 =
[
0
0

]
,xN =

[
1

0.5

]
(6)

where N = 5. So, the trajectory consists of six points in two-dimensional
space (including the initial point), and each potential trajectory will be eval-
uated by two criteria:

q1(x(k · T), k) = 100 − 50 · d1(xN
1 , x1(5 · T))

− 5 ·
4∑

k=0

d(x(k · T),x((k + 1) · T)

q2(x(k · T), k) = 100 − 50 · d1(xN
2 , x2(5 · T))

− 5 ·
4∑

k=0

ln(1 + |x1(k · T) − x2((k + 1) · T)|)

(7)

where d(xi,xj) defines the distance between the points xi and xj :

d(xi,xj) =
√

(xi
1 − xj

1)2 + (xi
2 − xj

2)2 (8)

and d1(xi,xj) is defined as:

d1(xi
r, x

j
r) = ln(1 + |xi

r − xj
r|) (9)

EA Approach to Solving Non-stationary Dynamic MOP 273

It is necessary to determine the maximal value for each criterion. It can
be noticed that the first criterion has larger value for shorter trajectories,
and when the final point lies closer to the goal regarding the first variable.
The second criterion will have larger value when both components of point x
have similar values, and when the final point lies closer to the goal regarding
the second variable. The criteria used for this test problem demonstrate also
the freedom of choice of criteria, when an evolutionary algorithm is used for
solving the problem. Namely, both criteria are non-linear and the second one
is non-smooth.

Determining non-dominated solutions

MOGA was used for solving the problem, with an individual represented by
a vector of 10 real numbers, with the first five representing increment for the
variable x1, and the second five representing increment for the variable x2:

Δx = [Δx1(0), Δx1(T), Δx1(2 · T), ...,
Δx1(4 · T), Δx2(0), Δx2(T), Δx2(2 · T), ..., Δx2(4 · T)]

(10)

The increment vectors have been evaluated by using MOGA, and the tra-
jectories have been defined by following equations:

x1((k + 1) · T) = x1(k · T) + Δx1(k · T)
x2((k + 1) · T) = x2(k · T) + Δx2(k · T)

(11)

The increments have been limited to Δxi(k · T) ∈ [−0.3, 0.3]. Parameter
settings for MOGA are given in Table 1. The problem of determining proper
parameters for GA in order to achieve good performance is a specific problem
[12]. Meanwhile, standard suggested values for parameters have been used in
this work, since the purpose of test problem was to illustrate the approach
of application of evolutionary algorithm for solving dynamic multi-objective
problem, and not to achieve optimal performance of this algorithm.

Figure 1 represents values of individuals of the final population. This fig-
ure shows also non- dominated solutions from the final solution. Out of 200
individuals in the final population, 143 are non-dominated, which means that
71,5% individuals of the final population lies in vicinity of the Pareto front.
In order to demonstrate that random search can’t produce even similarly
qualitative results, as well as in order to get insight into shape of the set
of values, 100,000 random trajectories have been generated, and their values
have been determined. It can be seen that randomly generated trajectories
lie far from the Pareto front.

Figure 2 illustrates the development of population in the space of val-
ues each 100 generations. Figure 3 shows some of non-dominated resulting
trajectories. It can be noticed, that the shown trajectories represent varius
compromises between the two criteria. So, the trajectory a) preferes the cri-
terion q1 which depends on the length of trajectory, to the criterion q2 which

274 Z. Avdagić et al.

Table 1 Parameter settings for MOGA used for solving dynamic test problem

Parameter Value

Discretization step 10−2

Population size (Chromosomes) 200
Crossover operator two-point crossover
Crossover probability 0.75
Mutation operator binary mutation
Mutation probability 0.005
Number of generations 200

Fig. 1 Values for the
final population (•), non-
dominated solutions (+)
and random trajectories
(x)

depends on the distance of the final point from the goal. The trajectory b)
preferes the criterionj q2 to the criterion q1, so the length of the trajectory is
increased, but the final point is closer to the goal. The trajectory c) represents
the best compromise regarding both criteria, and this point is the closest to
the ideal v0 = [100, 100]T which lies out of the set of values. It can be noticed,
that trajectories b) and c) lead almost linearly to the point x(4 ·T), and then
bend towards the goal. It is the consequence of the fact that the criterion q2

has greater value when x1(k · T) and x2(k · T) are similar.

Decision making on choice of solution from the set of non-dominated
solutions

When the set Vsol consisting of 143 non-dominated solutions was extracted
from the final population, it was necessary to choose one trajectory as a
solution to the problem. Therefore, an example of decision making on choice
of the solution to the problem will be demonstrated, by using ranking of
solutions regarding the target point [21]. This approach to decision making
ranks all the potential solutions to the problem depending on the number

EA Approach to Solving Non-stationary Dynamic MOP 275

Fig. 2 Development of the population each 100 generations

a) b) c)

Fig. 3 Trajectories for different compromises between criteria q1 and q2: a) Prefer-
ing the criterion q1, b) Prefering the criterion q2, c) Compromise solution

of the values of objectives for each potential solution, which outperform the
pre-chosen target values (Figure 4). Several variants of this approach exist,
some of which introduce priority of objectives.

Ranking the non-dominated solutions. Let criteria q1 and q2 have identical
priority. In order to perform ranking of trajectories x(k ·T) ∈ Ωsol, k ∈ [0, 5],
it is necessary to choose target point in the space of values. Let’s take this

Fig. 4 Values for the
final population (•), non-
dominated solutions (+)
and random trajectories
(x)

276 Z. Avdagić et al.

target point in vicinity of Pareto front, as close as possible to the ideal v0 =
[100, 100]T but inside the set of values. When the target point lies out of the
set of values, none of solutions has rank 1, and depending on the choice of this
target point, more or less of solutions get rank 1. So, if a point g = [94, 98]T

was chosen for target, we get a unique solution shown in Fig. 3.c) having
rank 1. But if a point g = [93, 98]T was chosen for target, total of 6 points
have rank 1, and in this case the choice of any of these points is equal.

3.2 Non-stationary Multi-objective Test Problem

During the choice of test functions for demonstrating the approach to solving
non-stationary multi-objective problem of search for solution, it is necessary
to take into account the basic features of such problem:

• it should be easy to extend the number of criteria,
• it should be possible to dynamically modify criteria,

Having in mind the mentioned features, test functions generated according
to the principle DTLZ (Deb-Thiele-Laumanns-Zitzler) [16] have been chosen,
with modification:

q1(x) = a1 · xc1
1 · xc1

2 · ... · xc1
m−1 · (1 − xm)c1 · g1(x) + b1

q2(x) = a2 · xc2
1 · xc2

2 · ... · (1 − xm−1)c2 · (1 − xm)c2 · g2(x) + b2

...
qm−1(x) = am−1 · xcm−1

1 · (1 − x2)cm−1 · ... · (1 − xm−1)cm−1 ·
· (1 − xm)cm−1 · ·gm−1(x) + bm−1

qm(x) = am · (1 − x1)cm · (1 − x2)cm · ... · (1 − xm−1)cm ·
· (1 − xm)cm · gm(x) + bm

(12)

where gi = 1 - di ·cos(20 ·π ·xi), and ai , bi , ci and di represent real numbers.
These real numbers can be used as parameters for adjustment of features of
the set of values. Additionally, when functions of independent variable are
used for these parameters instead of constant values, a class of non-stationary
test functions can be generated, whose features are still known. It is obvious
that for such case it is necessary to have number of criteria equal to the
number of variables.

Three cases have been tested:

• Homogenous non-stationary problem, where the set of values continually
changes with generation of GA(generation of GA is directly proportional
to the independent variable),

• Non-homogenous non-stationary problem, with continually changing set
of values, together with changes in Pareto front, as consequence of modi-
fication of criteria,

• Non-homogenous non-stationary problem with changing number of criteria.

EA Approach to Solving Non-stationary Dynamic MOP 277

Fig. 5 Random trajec-
tory of minimal point

Table 2 Parameter settings for MOGA used for solving dynamic test problem

Parameter Value

Discretization step 10−2

Population size (Chromosomes) 100
Crossover operator uniform crossover
Crossover probability 0.75
Mutation operator binary mutation
Mutation probability 0.01
Number of generations 200

Homogenous non-stationary problem with continual change of set of values

In this test case, the set of values has coherently been changing with each
generation of GA, each time for random value. Two-criterial case has been
analyzed, and the trajectory of minimal point of the set of values is shown
in Fig. 5.

Values of parameters of test functions were ai = 1, di = 0, bi = bi(k), where
k designates the generation of GA, which now represents the independent
variable. Such parameter values have been chosen in order to get simpler form
of Pareto front, as well as dependence of the set of values on the generation
of MOGA, as independent variable. Two cases have been taken for value ci:
ci = 1, which results in the set of values with linear borders, and ci = 2,
which results in the set of values with non-linear borders.

MOGA has been used for solving the problem, where the vector of 2 real
numbers represented the individual, and these real numbers defined the values
of problem variables xj in E2. Parameters settings for MOGA are given in
Table 2.

278 Z. Avdagić et al.

In order to follow the performance of MOGA while tracking the changes
in the set of values, and since the real Pareto front was known for used test
functions, two measures have been used. The first one was the measure of
covering the Pareto front [22], which has been calculated for the population
of each generation according to the expression:

cpf(PFtrue, PFsol) =
card{b ∈ PFsol|∃a ∈ PFtrue : aρb}

card{PFsol}
(13)

where PFtrue represents the true Pareto front, and PFsol the set of non-
dominated solutions in the current population. The second measure used
was the hyper-volume formed by all the solutions from PFsol in reference to
the minimal point of the set of values [6].

The measure of covering the Pareto front reflects how close are the
solutions of population to the points at the Pareto front, whereas the hyper-
volume reflects both vicinity to the Pareto front and the distribution of so-
lutions along the Pareto front.

Figure 6 represents the set of values, and the development of population
each 50 generations for the set of values with linear borders, whereas the
figures 7 and 8 represent the measure of covering the Pareto front and the
hyper-volume through generations.

It can be noticed in Fig. 6 that the population very rapidly converges to-
wards the set of Pareto optimal points, which reflects in the space of values
in grouping the points representing the values of solutions in the vicinity
of Pareto front. After that, the population very closely tracks the move-
ment of Pareto front, and the population consists mosty of non-dominated
points. Additionally, the distribution of points along the Paret front is quit
satisfactory, which can be noticed also in Fig. 7, where the measure of
covering the Pareto front very rapidly decreases. At the same time, the
hyper-volume shown in Fig. 8 promptly reaches the values, which is kept
sucessfuly thorugh generations. The average value of the measure of covering
the Pareto front for all generations is 0.8232, and the average hyper-volume
is 16.301.

Similar results are collected for the set of values with non-linear borders.
So, the Figure 9 shows the set of alternatives, the set of values and the
development of population each 50 generations, whereas the figures 10 and 11
show the measure of covering the Pareto front and the hyper-voluem through
generations. The average value of the measure of convering the Pareto front
is now 0.9084, and the average hyper-volume is 75.0147.

It can be concluded similar as in the previous test case. The population
has again rapidly converged towards the set of Pareto optimal points, i.e. the
Pareto front, and it quite satisfactory tracked the changes in the set of values
all the time.

EA Approach to Solving Non-stationary Dynamic MOP 279

gen=1 gen=50

gen=100 gen=150

gen=200

Fig. 6 Development of solutions with change in criteria for the set of values with
linear borders

Fig. 7 Measure of cov-
ering the Pareto front
through generations for
the set of values with
linear borders

Non-homogenous non-stationary problem with continual change of set of
values

In this test case, the set of values has moved with each generation of GA,
each time for random value as in the previous case, but additionally the

280 Z. Avdagić et al.

Fig. 8 Hyper-volume in
reference to the minimal
point of the set of values
with linear borders

gen=1 gen=50

gen=100 gen=150

gen=200

Fig. 9 Development of solutions with change in criteria for the set of values with
non-linear borders

shape of the set of values was continually changing. The parameter values
for test functions were again ai = 1, di = 0, bi = bi(k), where k represents
the number of generation of GA, which represents the independent variable.
Nevertheless, the function based on random value used also for the parameter
bi was used to produce the value of the parameter ci, so its value now was
ci(k) = 5 · bi(k) − 1. This produced change of shape of the set of values,
from convex non-linear, through linear, to non-convex non- linear. In fact

EA Approach to Solving Non-stationary Dynamic MOP 281

Fig. 10 Measure of cov-
ering the Pareto front
through generations for
the set of values with
non-linear borders

Fig. 11 Hyper-volume
in reference to the min-
imal point of the set of
values with non-linear
borders

only Pareto front was changing in the mentioned way, whereas all the other
borders were without change. For solving this problem, MOGA was used
again, with identical coding scheme as in the previous cases, and with the
parameter values given in the table 2.

The true Pareto front has been determined during the algorithm run, as
well as the measures of covering the Pareto front and hyper-volume in refer-
ence to the minimal point of the set of values.

Figure 12 shows the set of alternatives, the set of values and the devel-
opment of population each 50 generations, whereas the figures 13 and 14
show the measure of covering the Pareto front and the hyper-volume through
generations.

The population still very quickly converges towards the set of Pareto opti-
mal points, andtracks very good its changes. The distribution of points along
the Pareto front is also quite good, what can be seen in the figure 12, where
the measure of covering the Pareto front decreases very quickly. But in the
figure 14 it can be noticed that the value of hyper-volume constantly de-
creases, although the population of points tracks very good the movement of
Pareto front. This is the consequence of the fact that the hyper-volume of the

282 Z. Avdagić et al.

gen=1 gen=50

gen=100 gen=150

gen=200

Fig. 12 Development of solutions with change in criteria for the set of values with
changing non-linear borders

Fig. 13 Measure of cov-
ering the Pareto front
through generations for
the set of values with
changing non-linear bor-
ders

whole set of values diminishes as the shape of the Pareto front changes from
convex to non-convex. Therefore, it can be concluded that the hyper-volume
measure defined in such way as used in this work can’t be used as a qualita-
tive performance measure for non-stationary problems with non-homogenous
change of the set of values. Contrary, the measure of covering the Pareto front
still provides a good insight into the quality of solutions, with very important
notice that determining the true Pareto fron by complete search of the set

EA Approach to Solving Non-stationary Dynamic MOP 283

Fig. 14 Hyper-volume
in reference to the min-
imal point of the set
of values with changing
non-linear borders

of values represents highly complicated and numerically complex problem,
what is not realizable for more complex problems.

The average performance measures for the whole run of MOGA are 0.3118
for average measure of covering the Pareto front, and 24.3927 for average
hyper-volume.

Non-homogenous non-stationary problem with changing number of criteria

The purpose of this test case is to demonstrate how the population adapts
when the number of criteria used for evaluating the value of individuals
changes. Firstly, the case with non-changing criteria, but with changing num-
ber of criteria is presented. The criteria with parameters ai = 1, bi = 0,
ci = 0.2, di = 0 have been used. After that, the general case is presented, with
non- homogenously changing set of values including the Pareto front, what
was achieved using the parameter values bi = bi(k) and ci(k) = 5 · bi(k) − 1,
as in the previous case. In the presented test case, two criteria were used
from generation 1 to generation 40, from generation 81 to generation 120,
and from generation 161 to generation 200, whereas three criteria were used
from generation 41 to generation 80 and from generation 121 to generation
160. MOGA has been used again for solving the problem, with vector of three
real numbers (now the problem space represents the subset of E3) coded into
chromosome, and with the parameter values of MOGA identical to the ones
given in the Table 2.

Figure 15 presents the Pareto front and the population for the first gener-
ation, one generation before (40th generation, 80th generation, 120th gener-
ation) and after (41st generation, 81st generation) the change in number of
criteria has happened. In this way, the effect can be noticed how the change in
number of criteria influences the qulaity of solutions, which up to the change
has hapened were in the set of non-dominated solution, in the vicinity of or
at the Pareto front. It can be noticed very clearly, that the solutions have
converged to the Pareto front (points of Pareto front are designated by ”+”).

284 Z. Avdagić et al.

gen=1 gen=40

gen=41 gen=80

gen=81 gen=120

Fig. 15 Development of solutions with change in number of criteria

But after the increase in number of criteria to three (generation 41), the
solutions cover just the part of the Pareto front, for which v3 = 0.

The population gradually develops in concordance with the new model
of the problem, which now has three criteria, and after certain number of
generations (5-10 generations were sufficient in the test case) the solutions

EA Approach to Solving Non-stationary Dynamic MOP 285

Fig. 16 Measure of cov-
ering the Pareto front
for the set of values with
changing number of cri-
teria

distribute along the Pareto front, which now represents a subset of the space
E3. By generation 80 the solutions are good distributed over the Pareto front.
But the decrease in number of criteria causes now that quite a large nuber of
solutions lies out of the Pareto front, which is now again a subset of the space
E2, and a certain number of generations is necessary for these solutions to
converge again to the Pareto front. By the generation 120 all the solutions
have converged very good to the Pareto front.

Figure 15 shows that the population adapts very good to the changes in
the number of criteria. The same can be concluded by taking insight into
the change in the measure of covering the Pareto front through generations
(Figure 16).

It can be clearly noticed that the measure of covering Pareto front increases
instantly for generations 81 and 161. In both of these cases, the number of
criteria dropped from three to two. By this change, a part of the solutions,
whish were non-dominated in the space E3 became dominated, and 5-10
generations were necessary for the measure of covering the Pareto front to
drop again to small value. Change in the number of criteria from two to three
(generation 41 and generation 121) didn’t cause substantial increase in the
value of this measure. This is the consequence of the fact, that the solutions
non-dominated in the space E2 retain their non- dominance after the change
has occured, with the notice that their distribution over the Pareto front was
not satisfactory (Figure 15). Besides, it can be also noticed that the value
of the measure of covering the Pareto front changes more intensively for the
cases when three criteria were used. This was the consequence of the fact that
the problem being solved becomes more complex with increase in the number
of criteria, and it was more difficult for the algorithm to find the population,
which was good distributed over the Pareto front in the space E3.

Figure 17 shows the Pareto front and the population for the generation
1, one generation before (40th generation, 80th generation, 120th generation)
and after (41st generation, 81st generation) the increase i.e. decrease in num-
ber of criteria, for the case when both the set of values and the Pareto front
were changing non-homogenously. Despite the additional changes in the set
of values and the Pareto front, the identical conclusions regarding the ability

286 Z. Avdagić et al.

gen=1 gen=40

gen=41 gen=80

gen=81 gen=120

Fig. 17 Development of solutions with change in the number of criteria and non-
homogenous change of the set of values

of population to find the solutions converging to the Pareto front after each
change in the number of criteria as in the previous case still hold. Figure 18
shows the change in the measure of covering the Pareto front through genera-
tions. It can be noticed that the measure was very changable from generation

EA Approach to Solving Non-stationary Dynamic MOP 287

Fig. 18 Measure of cov-
ering the Pareto front
for the set of values with
changing number of crite-
ria and non-homogenous
change of the set of val-
ues and the Pareto front

121 to generation 150, when three criteria were used, and when the shape of
the Pareto front was unsuitalbe, so the algorithm needed more generations
for finding the solutions, which adequately cover the Pareto front.

As a general conclusion, it can be said that the population of chromosomes
of the multi-objective GA, since it has not converget to a unique point in the
space of values but the solutions remain distributed over the Pareto front,
retains sufficient diversity to efficiently adapt both to the changes of the set
of values and to the changes in the number of criteria. Practically, contrary to
the GA with single criterion, there was no need for introduction of additional
mechanisms for retaining the population diversity. During the research of the
effects which changing environment has on GA, it was shown that the single
criterion GA without additional mechanisms for retaining the population
diversity is not capable of tracking the changes in the environment [23].

4 Conclusion and Future Works

The basic thesis of this work consisted of an idea to model a problem faced
during decision making in unknown or changing environment by a non-
stationary dynamic multicriteral problem of search for solution.

A definition of general optimization problem has been introduced, which
encompasses the non-stationary problems of search for solution This created
a basis for modeling a problem of decision making in unknown or changing
environment by a non-stationary dynamic multi-objective problem of search
for solution.

By defining the previously mentioned model, it was necessary to choose an
algorithm to solve it. It was implied that there exist two basic goals, which
ought to be fulfilled by a set of non-dominated solutions, which are as good
covering the Pareto front in the sense of vicinity as possible, and as good
distribution over the Pareto front as possible.

Several examples of application of the model of non-stationary dynamic
multi-objective problem of search for solution have been given. These

288 Z. Avdagić et al.

examples included solving the problem of optimization of test functions in
form of the problems discussed in this work. It was demonstrated that evo-
lutionary algorithm successfully solved these problems.

The results of test conducted with MOGA have been presented in this
chapter. Since there exist much more efficient variants of multi-objective
genetic algorithm nowadays, they should also be tested in the described
approach.

The authors of this chapter have already applied the presented approach
to the problem of determining the trajectory of a mobile robot in unknown
and changing environment [17], but it should be tested in some other fields
of application as well.

References

1. Ziegler, J.G., Nichols, N.B.: Optimum Settings for Automatic Controllers. Jour-
nal of Dynamic Systems, Measurement, and Control 115(2B), 220–222 (1993)

2. Sastry, S., Bodson, M.: Adaptive Control: Stability, Convergence, and Robust-
ness. Prentice-Hall, New York (1994)

3. Angelov, P.P.: Evolving Rule-Based Models, A Tool for Design of Flexible
Adaptive Systems. Springer, New York (2002)

4. Cohon, J.L.: Multiobjective Programming and Planning. Dover Publications
Inc., New York (1978/2003)

5. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Aca-
demic Publishers, New York (2002)

6. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley & Sons, Ltd., West Sussex (2002)

7. Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms
for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York
(2002)

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Longman Inc., New York (1989)

9. Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs.
Springer, New York (1996)

10. Bäck, T., Fogel, D.B., Michalewicz, Z.: Evolutionary Computation 1: Basic
Algorithms and Operators. Institute of Physics Publishing, Bristol (2000)

11. Bäck, T., Fogel, D.B., Michalewicz, Z.: Evolutionary Computation 2: Advanced
Algorithms and Operators. Institute of Physics Publishing, Bristol (2000)

12. Konjicija, S.: Improvement of Performance of Feed-forward Artificial Neural
Network Using Genetic Algorithm with Adaptive Operators. MA Thesis, Uni-
versity of Sarajevo, Sarajevo (2003)

13. Coello, C.A.: An Updated Survey of GA-Based Multiobjective Optimization
Techniques. ACM Computing Surveys 32(2) (2000)

14. Farina, M., Deb, K., Amato, P.: Dynamic Multiobjective Optimization Prob-
lems: Test Cases, Approximations, and Applications. IEEE Transactions on
Evolutionary Computation 8(5) (October 2004)

15. Mehnen, J., Wagner, T., Rudolph, G.: Evolutionary Optimization of Dynamic
Mulit-objective Test Functions. Technical Report, University of Dortmund,
Dortmund (2006)

EA Approach to Solving Non-stationary Dynamic MOP 289

16. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for
Evolutionary Multi-Objective Optimization. Technical Report 112, Computer
Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Tech-
nology (ETH), Zürich (2001)

17. Konjicija, S.: Evolutionary Approach to Finding a Solution of Dynamic Multi-
criterial Optimization Problem in Processes of Inference. PhD thesis, University
of Sarajevo, Sarajevo (2007)

18. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimiza-
tion: Formulation, Discussion and Generalization. In: Forest, S. (ed.) Genetic
Algorithms: Proceedings of the Fifth International Conference. Morgan Kauff-
man, San Mateo (1993)

19. Syrmos, V., Lewis, F.: Optimal Control, 2nd edn. Willey Interscience, New
York (2007)

20. Stengel, R.: Optimal Control and Estimation. Dover Publications Inc., New
York (1994)

21. MacCrimmon, K.R.: An Overview of Multiple Objective Decision Making. In:
Cochrane, J.L., Zeleny, M. (eds.) Multiople Criteria Decision Making, pp. 18–
44. University of South Carolina Press (1973)

22. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Meth-
ods and Applications. PhD thesis, ETH-Swiss Federal Institute of Technology,
Zürich (1999)

23. Konjicija, S., Lacevic, B., Avdagic, Z.: Performance of Genetic Algorithm with
Adaptive Mutation Probability Dependant on Fitness in Dynamic Environ-
ments. In: Trappl, R. (ed.) Proceedings of the 18th European Meeting on Cy-
bernetics and Systems Research, Vienna (2006)

Turbulent Particle Swarm
Optimization Using Fuzzy Parameter
Tuning

Ajith Abraham and Hongbo Liu

Abstract. Particle Swarm Optimization (PSO) algorithm is a stochastic
search technique, which has exhibited good performance across a wide range
of applications. However, very often for multi-modal problems involving high
dimensions the algorithm tends to suffer from premature convergence. Pre-
mature convergence could make the PSO algorithm very difficult to arrive at
the global optimum or even a local optimum. Analysis of the behavior of the
particle swarm model reveals that such premature convergence is mainly due
to the decrease of velocity of particles in the search space that leads to a total
implosion and ultimately fitness stagnation of the swarm. This paper intro-
duces Turbulence in the Particle Swarm Optimization (TPSO) algorithm to
overcome the problem of stagnation. The algorithm uses a minimum velocity
threshold to control the velocity of particles. TPSO mechanism is similar to a
turbulence pump, which supplies some power to the swarm system to explore
new neighborhoods for better solutions. The algorithm also avoids clustering
of particles and at the same time attempts to maintain diversity of popula-
tion. We attempt to theoretically analyze that the algorithm converges with a
probability of 1 towards the global optimal. The parameter, the minimum ve-
locity threshold of the particles is tuned adaptively by a fuzzy logic controller
embedded in the TPSO algorithm, which is further called as Fuzzy Adaptive

Ajith Abraham
Centre for Quantifiable Quality of Service in Communication Systems,
Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
e-mail: ajith.abraham@ieee.org
http://www.softcomputing.net

Ajith Abraham and Hongbo Liu
School of Computer Science and Engineering, Dalian Maritime University,
116026 Dalian, China

Hongbo Liu
Department of Computer, Dalian University of Technology, 116023 Dalian, China
e-mail: lhb@dlut.edu.cn

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 291–312.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

ajith.abraham@ieee.org
lhb@dlut.edu.cn

292 A. Abraham and H. Liu

TPSO (FATPSO). We evaluated the performance of FATPSO and compared
it with the Standard PSO (SPSO), Genetic Algorithm (GA) and Simulated
Annealing (SA). The comparison was performed on a suite of 20 widely used
benchmark problems. Empirical results illustrate that the FATPSO could
prevent premature convergence very effectively. It clearly outperforms the
considered methods, especially for high dimension multi-modal optimization
problems.

1 Introduction

Particle Swarm Optimization (PSO) algorithm is mainly inspired by social
behaviour patterns of organisms that live and interact within large groups.
In particular, PSO incorporates swarming behaviours observed in flocks of
birds, schools of fish, or swarms of bees, and even human social behavior, from
which the idea of swarm intelligence is emerged ([14]). It could be applied
to solve various function optimization problems, or the problems that can be
transformed to function optimization problems. PSO has exhibited good per-
formance across a wide range of applications ([19, 15, 25, 26, 1, 21, 5, 22]).
However, its performance deteriorates as the dimensionality of the search
space increases, especially for multi-modal optimization problems ([13, 20]).
PSO algorithm often demonstrates faster convergence speed in the first phase
of the search, and then slows down or even stops as the number of genera-
tions is increased. Once the algorithm slows down, it is difficult to achieve
better fitness values. This state is called as stagnation or premature conver-
gence. The trajectory of particles was given a lot of importance rather than
their velocities. In this paper, we attempt to discuss the relation between
the algorithm convergence and the velocities of the particles. It is found that
the stagnation state is mainly due to a decrease of velocity of particles in
the search space which leads to a total implosion and ultimately fitness stag-
nation of the swarm. We introduce Turbulent Particle Swarm Optimization
(TPSO) algorithm to improve the optimization performance and overcome
the premature convergence problem. The basic idea is to drive those lazy
particles and get them to explore new search spaces. TPSO uses a minimum
velocity threshold to control the velocity of particles and also avoids clus-
tering of particles and maintains diversity of population in the search space.
The minimum velocity threshold of the particles is tuned adaptively by us-
ing a fuzzy logic controller in the algorithm, which is further called as Fuzzy
Adaptive TPSO (FATPSO).

The Chapter is organized as follows. Particle swarm optimization is re-
viewed briefly and the effects on the change of the velocities of particles are
analyzed in Section 2. In Section 3, we describe the TPSO model and the
fuzzy adaptive processing method. Experiment settings, results and discus-
sions are given in Section 4 followed by some conclusions in the last Section.

Turbulent PSO Using Fuzzy Parameter Tuning 293

2 Particle Swarm Optimization

Particle swarm optimization refers to a relatively new family of algorithms
that may be used to find optimal (or near optimal) solutions to numerical
and qualitative problems. Some researchers have done much work on its study
and development during the recent years ([29, 20, 16, 12]). We review briefly
the standard particle swarm model, and then analyze the various effects in
the change in the velocities of particles.

2.1 Standard Particle Swarm Model

The particle swarm model consists of a swarm of particles, which are initial-
ized with a population of random candidate solutions. They move iteratively
through the d-dimension problem space to search the new solutions, where
the fitness f can be calculated as the certain qualities measure. Each parti-
cle has a position represented by a position-vector pi (i is the index of the
particle), and a velocity represented by a velocity-vector vi. Each particle re-
members its own best position so far in a vector p#

i , and its j-th dimensional
value is p#

ij . The best position-vector among the swarm so far is then stored
in a vector p∗, and its j-th dimensional value is p∗j . During the iteration time
t, the update of the velocity from the previous velocity to the new velocity
is determined by Eq.(1). The new position is then determined by the sum of
the previous position and the new velocity by Eq.(2).

vij(t) = wvij(t − 1) + c1r1(p
#
ij(t − 1) − pij(t − 1))

+ c2r2(p∗j (t − 1) − pij(t − 1))
(1)

pij(t) = pij(t − 1) + vij(t) (2)

where r1 and r2 are the random numbers, uniformly distributed within the
interval [0,1] for the j-th dimension of i-th particle. c1 is a positive constant,
called as coefficient of the self-recognition component, c2 is a positive con-
stant, called as coefficient of the social component. The variable w is called
as the inertia factor, which value is typically setup to vary linearly from 1 to
near 0 during the iterated processing. From Eq.(1), a particle decides where
to move next, considering its own experience, which is the memory of its best
past position, and the experience of its most successful particle in the swarm.

In the particle swarm model, the particle searches the solutions in the
problem space within a range [−s, s] (If the range is not symmetrical, it can
be translated to the corresponding symmetrical range). In order to guide the
particles effectively in the search space, the maximum moving distance during
one iteration is clamped in between the maximum velocity [−vmax, vmax]
given in Eq.(3), and similarly for its moving range given in Eq.(4):

294 A. Abraham and H. Liu

vi,j = sign(vi,j)min(|vi,j | , vmax) (3)

pi,j = sign(pi,j)min(|pi,j | , pmax) (4)

The value of vmax is α× s, with 0.1 ≤ α ≤ 1.0 and is usually chosen to be
s, i.e. α = 1.

2.2 Velocities Analysis in Particle Swarm

Some previous studies have discussed the trajectory of particles and the con-
vergence of the algorithm ([3, 29, 27]). It has been shown that the trajectories
of the particles oscillate as different sinusoidal waves and converge quickly,
sometimes prematurely. We analyze the effects of the change in the velocities
of particles.

The gradual change of the particle’s velocity can be explained geometri-
cally. During each iteration, the particle is attracted towards the location of
the best fitness achieved so far by the particle itself and by the location of
the best fitness achieved so far across the whole swarm. From Eq.(1), vi,j can
attain a smaller value, but if the second term and the third term in RHS
of Eq.(1) are both small, it cannot resume a larger value and could eventu-
ally loose the exploration capabilities in the future iterations. Such situations
could occur even in the early stages of the search. When the second term and
the third term in RHS of Eq.(1) are zero, vi,j will be damped quickly with
the ratio of w. In other words, if a particle’s current position coincides with
the global best position/particle, the particle will only move away from this
point if its previous velocity and w are non-zero. If their previous velocities
are very close to zero, then all the particles will stop moving once they catch
up with the global best particle, which many lead to premature convergence.
In fact, this does not even guarantee that the algorithm has converged to a
local minimum and it merely means that all the particles have converged to
the best position discovered so far by the swarm. This state owes to the sec-
ond term and the third term in the RHS of Eq.(1), the cognitive components
of the PSO. But if the cognitive components of the PSO algorithm are in-
validated, all particles always search the solutions using the initial velocities.
Then the algorithm is merely a degenerative stochastic search without the
characteristics of PSO.

3 Turbulent Swarm Optimization

We introduce a new velocity update approach for the particles in PSO, and
analyze its effect on the particle’s behavior. We also illustrate a Fuzzy Logic
Controller (FLC) scheme to adaptively control the parameters ([11, 30, 17]).

Turbulent PSO Using Fuzzy Parameter Tuning 295

3.1 Velocity Update of the Particles

As discussed in the previous Section, one of the main reason for premature
convergence of PSO is due to the stagnation of the particles exploration of
a new search space. We introduce a strategy to drive those lazy particles
and let them explore better solutions. If a particle’s velocity decreases to a
threshold vc, a new velocity is assigned using Eq.(6). Thus, we present the
turbulent particle swarm optimization using new velocity update equations:

vij(t) = wv̂ + c1r1(x
#
ij(t − 1) − xij(t − 1))

+ c2r2(x∗
j (t − 1) − xij(t − 1))

(5)

v̂ =

{
vij if |vij | ≥ vc

u(−1, 1)vmax/ρ if |vij | < vc

(6)

where u(−1, 1) is the random number, uniformly distributed with the inter-
val [-1,1], and ρ is the scaling factor to control the domain of the particle’s
oscillation according to vmax. vc is the minimum velocity threshold, a tunable
threshold parameter to limit the minimum of the particles’ velocity. Fig. 1 illus-
trates the trajectory of a single particle in standard particle swarm optimiza-
tion (SPSO) and turbulent particle swarm optimization (TPSO) respectively.

The change of the particle’s situation is directly correlated to two parame-
ter values, vc and ρ. A large vc shortens the oscillation period, and it provides
a great probability for the particles to leap over local minima using the same
number of iterations. But a large vc compels particles in the quick “flying”
state, which leads them not to search the solution and forcing them not to
refine the search. In other words, a large vc facilitates a global search while a

0 2000 4000 6000 8000 10000
−4

−2

0

2

4

6

8

Iteration

T
ra

je
ct

o
ry

SPSO
TPSO

Fig. 1 Trajectory of a single particle

296 A. Abraham and H. Liu

smaller value facilitates a local search. By changing it dynamically, the search
ability is dynamically adjusted. The value of ρ changes directly the particle
oscillation domain. It is possible for particles not to jump over the local min-
ima if there would be a large local minimum available in the objective search
space. But the particle trajectory would more prone to oscillate because of
a smaller value of ρ. For the desired exploration-exploitation trade-off, we
divide the particle search into three stages. In the first stage the values for vc

and ρ are set at large and small values respectively. In the second stage, vc

and ρ are set at medium values and in the last stage, vc is set at a small value
and ρ is set at a large value. This enable the particles to take very large steps
to explore solutions in the early stages, by scanning the whole solution space
for good local minima and then in the final stages particles perform a fine
grain search. The use of fuzzy logic would be suitable for dynamically tun-
ing the velocity threshold, since it starts a run with an initial value which is
changed during the run. By using the fuzzy control approach, the parameters
can be adaptively regulated according to the problem environment.

3.2 Fuzzy Parameter Control

A Fuzzy Logic Controller (FLC) is composed of a knowledge base, that in-
cludes the information given by the expert in the form of linguistic control
rules, a fuzzification interface, which has the effect of transforming crisp data
into fuzzy sets, an inference system, that uses them together with the knowl-
edge base to make inference by means of a reasoning method, and a defuzzi-
fication interface, that translates the fuzzy control action thus obtained to a
real control action using a defuzzification method [4]. The generic structure
of an FLC is shown in Figure 2.

Fuzzification
Interface

Defuzzification
Interface

Inference
System

Knowledge
Base

Controlled
System

Control VariablesState Variables

Fig. 2 Generic structure of an FLC

In the proposed algorithm, two variables are selected as inputs to the
fuzzy system: the Current Best Performance Evaluation (CBPE) ([24]) and
the Current Velocity (CV) of the particle. For adapting to a wide range of
optimization problems, CBPE is normalized as Eq.(7):

Turbulent PSO Using Fuzzy Parameter Tuning 297

NCBPE =
CBPE − CBPEmin

CBPEmax − CBPEmin
(7)

where CBPEmin is the estimated (or real) minimum, CBPEmax is the worst
solution to the minimization problem, which usually is the CBPE at half
the number of iterations. If we do not have any prior information about the
objective function and if it is difficult to estimate CBPEmin and CBPEmax,
we can do some preliminary experiments by decreasing linearly from 1 to 0
during the run. One of the output variables is ρ, the scaling factor to control
the domain of the particle’s oscillation. Another is V ck, which controls the
change of the velocity threshold according to Eq.(8):

vc = e − [10(1 + V ck)] (8)

The fuzzy inference system is listed briefly as follows:
[System]
Name=‘FATPSO’

[Input1] Name=‘NCBPE’
Range=[0 1]
NumMFs=3
MF1=‘Low’:‘gaussmf’, [0.005 0]
MF2=‘Medium’:‘gaussmf’, [0.03 0.1]
MF3=‘High’:‘gaussmf’, [0.25 1]

[Input2]
Name=‘CV ’
Range=[0 1e-006]
NumMFs=2
MF1=‘Low’:‘trapmf’, [0 0 1e-030 1e-020]
MF2=‘High’:‘trapmf’, [1e-010 1e-008 1e-006 1e-006]

[Output1]
Name=‘V ck’
Range=[-1 2.2]
NumMFs=3
MF1=‘Low’:‘trimf’, [-1 -0.8 -0.5]
MF2=‘Medium’:‘trimf’, [-0.6 0 0.2]
MF3=‘High’:‘trimf’, [0.1 1.1 2.2]

[Output2]
Name=‘ρ’
Range=[1 120]
NumMFs=3
MF1=‘Small’:‘trimf’, [1 1 4]
MF2=‘Medium’:‘trimf’, [2.214 10.71 59.29]
MF3=‘Large’:‘trimf’, [47.15 120 120]

298 A. Abraham and H. Liu

[Rules]
1 1, 3 0 (1) : 1
2 0, 2 0 (1) : 1
3 2, 1 0 (1) : 1
1 1, 0 3 (1) : 2
2 0, 0 2 (1) : 2
3 2, 0 1 (1) : 2

In the above mentioned list, there are three parts: the first part is the
configuration of the fuzzy system, the second one is the definition of the
membership functions, and the third one is the rule base. There are two inputs
and two outputs based on six rules. In the rule base, the first two columns
correspond to the input variables, the second two columns correspond to the
output variables, the fifth column displays the weight applied to each rule,
and the sixth column is short form that indicates whether this is an AND
(1) rule or an OR (2) rule. The numbers in the first four columns refer to the
index number of the membership function, in which the number 1 encodes
fuzzy set ‘Low’, 2 encodes ‘Medium’, and 3 encodes ‘High’. For example,
the first rule is “If (NCBPE is Low) and (CV is Low) then (V ck is High)
with the weight 1”. The general structure of the FATPSO is illustrated in
Algorithm 1.

Algorithm 1. FATPSO
01. Initialize parameters and the particles
02. While (the end criterion is not met) do
03. t = t + 1
04. Calculate the fitness value of each particle
05. x∗ = argminn

i=1(f(x∗(t − 1)), f(x1(t)),
06. f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)))
07. For i= 1 to n
08. x#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t))
09. For j = 1 to d
10. If abs(vij) < 1e − 6
11. Obtain the velocity threshold
12. {
13. fismat = readfis(‘FATPSO.fis’)
14. FO = evalfis([NCBPE CV], fismat)
15. }
16. Endif
17. Update the j-th dimension value of xi

18. and vi according to Eqs. (1), (2) and (3)
19. Next j
20. Next i
21. End While

Turbulent PSO Using Fuzzy Parameter Tuning 299

4 Convergence Analysis of TPSO

For analyzing the convergence of the proposed algorithm, we first introduce
the definitions and lemmas [8, 9, 10], and then theoretically prove that the
proposed variable neighborhood particle swarm algorithm converges with a
probability 1 or strongly towards the global optimal.

Consider the problem (P) as

(P) =

{
minf(x)
x ∈ Ω = [−s, s]n

(9)

where x = (x1, x2, · · · , xn)T . x∗ is the global optimal solution to the problem
(P), let f∗ = f(x∗). Let

D0 = {x ∈ Ω|f(x) − f∗ < ε} (10)
D1 = Ω \ D0

for every ε > 0.
Assume that the i-th dimensional value of the particle’s velocity decreases

to a threshold vc, then the shaking strategy is activated, and a turbulent
velocity is generated by Eq.(6). In u(−1, 1)vmax/ρ, u(−1, 1) is a normal dis-
tributed random number within the interval [-1,1], and the scaling factor ρ
is a positive constant to control the domain of the particle’s oscillation ac-
cording to vmax. Therefore the turbulent velocity v̂ belongs to the normal
distribution. If vmax = s, then v̂ ∼ [− s

ρ , s
ρ]. During the iterated procedure

from the time t to t + 1, let qij denote that x(t) ∈ Di and x(t + 1) ∈ Dj .
Accordingly the particles’ positions in the swarm could be classified into four
states: q00, q01, q10 and q01. Obviously q00 + q01 = 1, q10 + q11 = 1.

Definition 1 (Convergence in terms of probability). Let ξn a sequence
of random variables, and ξ a random variable, and all of them are defined
on the same probability space. The sequence ξn converges with a probability
of ξ if

lim
n→∞P (|ξn − ξ| < ε) = 1 (11)

for every ε > 0.

Definition 2 (Convergence with a probability of 1). Let ξn a sequence
of random variables, and ξ a random variable, and all of them are defined
on the same probability space. The sequence ξn converges almost surely or
almost everywhere or with probability of 1 or strongly towards ξ if

P

(
lim

n→∞ ξn = ξ

)
= 1; (12)

or

300 A. Abraham and H. Liu

P

(∞⋂
n=1

⋃
k≥n

[|ξn − ξ| ≥ ε]
)

= 0 (13)

for every ε > 0.

Lemma 1 (Borel-Cantelli Lemma). Let {Ak}∞k=1 be a sequence of events
occurring with a certain probability distribution, and let A be the event con-
sisting of the occurrences of a finite number of events Ak for k = 1, 2, · · · .
Then

P

(∞⋂
n=1

⋃
k≥n

Ak

)
= 0 (14)

if
∞∑

n=1

P (An) < ∞; (15)

P

(∞⋂
n=1

⋃
k≥n

Ak

)
= 1 (16)

if the events are totally independent and

∞∑
n=1

P (An) = ∞. (17)

Lemma 2 (Particle State Transference). q01 = 0; q00 = 1; q11 ≤ c ∈
(0, 1) and q10 ≥ 1 − c ∈ (0, 1).

Proof. In the proposed algorithm, the best solution is updated and saved
during the whole iterated procedure. So q01 = 0 and q00 = 1.

Let x̂ is the position with the best fitness among the swarm so far as the
time t, i.e. x̂ = p∗. As the definition in Eq. (10), ∃r > 0, when ‖x− x̂‖∞ ≤ r,
we have |f(x)− f∗| < ε. Denote Qx̂,r = {x ∈ Ω|‖x− x̂‖∞ ≤ r}. Accordingly

Qx̂,r ⊂ D0 (18)

Then,

P{(x + Δx) ∈ Qx̂,r} =
n∏

i=1

P{|xi + Δxi − x̂i| ≤ r} (19)

=
n∏

i=1

P{x̂i − xi − r ≤ Δxi ≤ x̂i − xi + r}

where xi, Δxi and x̂i are the i-th dimensional values of x, Δx and x̂, respec-
tively. Moreover, v̂ ∼ [− s

ρ , s
ρ], so that

Turbulent PSO Using Fuzzy Parameter Tuning 301

P ((x + Δx) ∈ Qx̂,r) =
n∏

i=1

∫ x̂i−xi+r

x̂i−xi−r

ρ

2
√

2πs
e−

ρ2y2

2s2 dy (20)

Denote P1(x) = P{(x + Δx) ∈ Qx̂,r} and C is the convex closure of level set
for the initial particle swarm. According to Eq. (20), 0 < P1(x) < 1 (x ∈ C).
Again, since C is a bounded closed set, so ∃ŷ ∈ C,

P1(ŷ) = min
x∈C

P1(x), 0 < P1(ŷ) < 1. (21)

Considering synthetically Eqs. (18) and (21), so that

q10 ≥ P1(x) ≥ P1(ŷ) (22)

Let c = 1 − P1(ŷ), thus,

q11 = 1 − q10 ≤ 1 − P1(ŷ) = c (0 < c < 1) (23)

and
q10 ≥ 1 − c ∈ (0, 1) (24)

�

Theorem 1. Assume that the TPSO algorithm provides position series
pi(t)(i = 1, 2, · · · , n) at time t by the iterated procedure. p∗ is the best position
among the swarm explored so far, i.e.

p∗(t) = arg min
1≤i≤n

(f(p∗(t − 1)), f(pi(t))) (25)

Then,

P

(
lim

t→∞ f(p∗(t)) = f∗
)

= 1 (26)

Proof. For ∀ε > 0, let pk = P{|f(p∗(k)) − f∗| ≥ ε}, then

pk =

{
0 if ∃T ∈ {1, 2, · · · , k}, p∗(T) ∈ D0

p̄k if p∗(t) /∈ D0, t = 1, 2, · · · , k
(27)

According to Lemma 2,

p̄k = P{p∗(t) /∈ D0, t = 1, 2, · · · , k} = qk
11 ≤ ck. (28)

Hence,
∞∑

k=1

pk ≤
∞∑

k=1

ck =
c

1 − c
< ∞. (29)

According to Lemma 1,

302 A. Abraham and H. Liu

P

(∞⋂
t=1

⋃
k≥t

|f(p∗(k)) − f∗| ≥ ε

)
= 0 (30)

As defined in Definition 2, the sequence f(p∗(t)) converges almost surely or
almost everywhere or with probability 1 or strongly towards f∗. The theorem
is proven. �

5 Experiments and Discussions

In our experiments the algorithms used for comparison were mainly SPSO
(standard PSO) ([6]), FATPSO (fuzzy adaptive turbulent PSO), Genetic Al-
gorithm(GA) ([2]) and Simulated Annealing (SA) ([18, 28]). The four algo-
rithms share many similarities. GA and SA are powerful stochastic global
search and optimization methods, which are also inspired from the nature
like the PSO.

Genetic algorithms mimic an evolutionary natural selection process. Gen-
erations of solutions are evaluated according to a fitness value and only those
candidates with high fitness values are used to create further solutions via
crossover and mutation procedures.

Simulated annealing is based on the manner in which liquids freeze or
metals re-crystalize in the process of annealing. In an annealing process, a

Table 1 Parameter settings for the algorithms

SPSO
Swarm size 20
Self-recognition coefficient c1 1.49
Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1

FATPSO
Swarm size 20
Self-recognition coefficient c1 1.49
Social coefficient c2 1.49
Inertia weight w 0.7

GA
Size of the population 20
Probability of crossover 0.8
Probability of mutation 0.02

SA
Number operations before

temperature adjustment 20
Number of cycles 10
Temperature reduction factor 0.85
Vector for control step

of length adjustment 2

Turbulent PSO Using Fuzzy Parameter Tuning 303

Table 2 Numerical benchmark functions

Rosenbrock (f1):
f1 =

∑n
i=1(100(xi+1 − x2

i)
2 + (xi − 1)2);

x ∈ [−2.048, 2.048]n ,
min(f1(x

∗)) = f1(1) = 0.
Quadric (f2):

f2 =
∑n

i=1(
∑i

j=1 xj)
2;

x ∈ [−100, 100]n,
min(f2(x

∗)) = f2(0) = 0.
Schwefel 2.22 (f3):

f3 =
∑n

i=1 |xi| +∏n
i=1 |xi|;

x ∈ [−10, 10]n,
min(f3(x

∗)) = f3(0) = 0.
Schwefel 2.26 (f4):

f4 = 418.9829n −∑n
i=1(xisin(

√|xi|));
x ∈ [−500, 500]n,
min(f4(x

∗)) = f4(420.9687) ≈ 0.
Levy (f5):

f5(x) = π
n

(
ksin2(πy1) +

∑n−1
i=1 ((yi − a)2

(1 + ksin2(πyi+1))) + (yn − a)2
)
,

yi = 1 + 1
4
(xi − 1), k = 10, a = 1;

x ∈ [−10, 10]n,
min(f5(x

∗)) = f5(1) = 0.
Generalized Shubert (f6):

f6 =
∏n

i=1

∑5
j=1(jcos((j + 1)xi + j));

x ∈ [−10, 10]n,
min(f6(x

∗)) is unknown.
Rastrigin (f7):

f7 =
∑n

i=1(x
2
i − 10cos(2πxi) + 10)

x ∈ [−5.12, 5.12]n,
min(f7(x

∗)) = f7(0) = 0.
Griewank (f8):

f8 = 1
4000

∑n
i=1 x2

i −∏n
i=1 cos(xi√

i
) + 1;

x ∈ [−300, 300]n,
min(f8(x

∗)) = f8(0) = 0.
Ackley (f9):

f9 = −20exp(−0.2
√

1
n

∑n
i x2

i)

−exp(1
n

∑n
i=1 cos(2πxi)) + 20 + e;

x ∈ [−32, 32]n,
min(f9(x

∗)) = f9(0) = 0.
Zakharov (f10):

f10 =
∑n

i x2
i + (

∑n
i

1
2
ixi)

2 + (
∑n

i
1
2
ixi)

4;
x ∈ [−10, 10]n,
min(f10(x

∗)) = f10(0) = 0.

304 A. Abraham and H. Liu

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−2

10
0

10
2

10
4

10
6

Iteration

F
it

n
es

s

GA
SA
SPSO
FATPSO

Fig. 3 30-D Quadric (f2) function performance

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Iteration

F
it

n
es

s

GA
SA
SPSO
FATPSO

Fig. 4 100-D Quadric (f2) function performance

melt, initially at high temperature and disordered, is slowly cooled so that
the system at any time is approximately in thermodynamic equilibrium. In
terms of computational simulation, a global minimum would correspond to
such a “frozen”(steady) ground state at the temperature T = 0.

Both methods are valid and efficient methods in numeric programming
and have been employed in various fields due to their strong convergence
properties. In the experiments, the specific parameter settings for each of the
considered algorithms are described in Table 1. Each algorithm was tested
with all the numerical functions shown in Table 2. The first two functions,

Turbulent PSO Using Fuzzy Parameter Tuning 305

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−4

10
−2

10
0

10
2

10
4

10
6

Iteration

F
it

n
es

s

GA
SA
SPSO
FATPSO

Fig. 5 30-D Schwefel 2.26 (f4) function performance

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−4

10
−2

10
0

10
2

10
4

10
6

Iteration

F
it

n
es

s

GA
SA
SPSO
FATPSO

Fig. 6 100-D Schwefel 2.26 (f4) function performance

namely Rosenbrock’s and Quadric function, have a single minimum, while
the other functions are highly multimodal with multiple local minima. A new
function, Generalized Shubert was constructed temporarily for which global
minimum function is unknown for us. It is also useful for us to validate the
algorithms without knowing the optimal value. Some of the functions have
the sum of their variables, some of them have the product (multiplying),
some of them have dimensional effect (ixi). We tested the algorithms on the
different functions in 30 and 100 dimensions, yielding a total of 20 numerical
benchmarks. For each of these functions, the goal was to find the global

306 A. Abraham and H. Liu

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−40

10
−30

10
−20

10
−10

10
0

10
10

Iteration

F
it

n
es

s

GA
SA
SPSO
FATPSO

Fig. 7 30-D Levy (f5) function performance

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−15

10
−10

10
−5

10
0

10
5

Iteration

F
it

n
es

s

GA
SA
SPSO
FATPSO

Fig. 8 100-D Levy (f5) function performance

minima. Each algorithm (for each benchmark) was repeated 10 times with
different random seeds. Each trial used a fixed number of 18,000 iterations.
The objective functions were evaluated 360,000 times in each trial. Since the
swarm size in all PSOs was 20, the size of the population in GA was 20 and
the number operations before temperature adjustment (SA) were 20. The
average fitness values of the best solutions throughout the optimization run
were recorded and the averages and the standard deviations were calculated
from the 10 different trials. The standard deviation indicates the differences
in the results during the 10 different trials.

Turbulent PSO Using Fuzzy Parameter Tuning 307

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration

F
it

n
es

s

GA
SA
SPSO
FATPSO

Fig. 9 30-D Griewank (f8) function performance

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−4

10
−2

10
0

10
2

10
4

Iteration

F
it

n
es

s

GA
SA
SPSO
FATPSO

Fig. 10 100-D Griewank (f8) function performance

Figures 3 to 12 illustrate the mean best function values for the ten functions
with two different dimensions (i.e. 30-D and 100-D) using the four algorithms.
Each algorithm for different dimensions of the same objective function has
similar performance. But in general, the higher the dimension is, the higher
the fitness values are. It is observed that for almost all algorithms, the solu-
tions get trapped in a local minimum within the first 2000 iterations except
for FATPSO. For the low dimensional problems, SA is usually a cost-efficient
choice. For example, SA for 30-D f8 has a good performance than that in
other situations. It is interesting that even if other algorithms are very close

308 A. Abraham and H. Liu

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Iteration

F
it

n
es

s

GA
SA
SPSO
FATPSO

Fig. 11 30-D Zakharov (f10) function performance

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

0

10
2

10
4

10
6

10
8

10
10

Iteration

F
it

n
es

s

GA
SA
SPSO
FATPSO

Fig. 12 100-D Zakharov (f10) function performance

to or better than FATPSO in 30-D benchmarks, but a very large difference
emerges in the case of 100-D benchmark problems. FATPSO becomes much
better than other algorithms in general besides for f4. The averages and the
standard deviations for 10 trials are showed in Table 3. The larger the av-
erages are, wider the standard deviations are usually. There is not too large
difference of the standard deviations between the different algorithms for
the same benchmark functions. Referring to the empirical results depicted
in Table 3, for most of considered functions, FATPSO demonstrated a con-
sistent performance pattern among all the considered algorithms. FATPSO

Turbulent PSO Using Fuzzy Parameter Tuning 309

Table 3 Performance comparison for the function optimization problems

f D SPSO FAPSO GA SA

25.4594 1.1048e-004 222.9510 29.0552
30 ±16.5424 ±0.0017 ±26.4874 ±4.8291

f1 228.6963 6.9026e-004 7.2730e+003 138.3233
100 ±675.7348 ±0.0080 ±459.1044 ±38.1029

1.1927e+005 2.9699 3.7843e+004 382.7578
30 ±41.3785 ±24.9744 ±4.4308e+003 ±103.9384

f2 9.6398e+005 54.0376 4.0615e+005 9.5252e+003
100 ±3.7652e+004 ±482.4480 ±2.2613e+004 ±4.8500+003

2.3732e-008 5.9520e-006 20.2291 0.4991
30 ±0.3763 ±1.3009e-005 ±1.4324 ±1.8212

f3 55.5606 9.2702e-004 1.2391e+013 23.4349
100 ±2.3719e-007 ±2.6465 ±1.2269e+017 ±5.0520

0.0501 0.0279 4.5094e+003 4.9754e+003
30 ±0.2215 ±0.1086 ±294.7204 ±4.2394

f4 0.0481 0.0220 2.7101e+004 1.6131e+004
100 ±0.7209 ±0.6902 ±528.3332 ±51.7519

1.4685e-031 1.5535e-030 1.0734 0.1617
30 ±0.0021 ±2.6040e-012 ±0.1996 ±0.4583

f5 0.2806 2.6011e-011 11.4534 2.8817
100 ±2.1761 ±0.1219 ±0.4760 ±0.4526

-7.4305e+033 -4.0465e+034 -5.1931e+020 -1.5457e+032
30 ±2.3497e+033 ±1.2176e+034 ±6.9217e+020 ±1.2010e+016

f6 -2.9776e+096 -3.2111e+114 -1.5347e+055 -3.0040e+104
100 ±1.2330e+096 ±2.4430e+114 ±9.4580e+054 ±4.2442e+101

33.7291 8.4007e-010 204.0560 32.7997
30 ±17.7719 ±9.3676 ±6.8450 ±6.9936

f7 391.0421 19.9035 1.2070e+003 177.8810
100 ±176.3618 ±115.9034 ±23.8156 ±37.7808

0.0177 0.0102 6.8463 0.3193
30 ±0.3157 ±0.0149 ±0.6060 ±1.7880

f8 0.4400 0.0720 179.5966 31.4270
100 ±14.4633 ±0.6945 ±7.3908 ±11.4656

0.6206 5.4819e-004 1.7437 0.6606
30 ±0.2996 ±0.0086 ±0.0427 ±0.0657

f9 1.0666 0.0011 2.3570 1.0167
100 ±0.3921 ±0.0059 ±0.0079 ±0.0532

2.0098e-007 5.911e-011 659.0997 62.2253
30 ±52.8218 ±0.0626 ±12.0276 ±46.5389

f10 1.3223e+003 90.1373 2.8632e+003 1.5625e+003
100 ±1.4259e+003 ±1.7697e+004 ±4.7935e-013 ±294.7468

performed extremely well with the exception of 30-D f4, 100-D f4, 30-D
f5, 30-D f10, in which the results have little difference between the consid-
ered algorithms. It is to be noted that FATPSO could be an ideal choice for

310 A. Abraham and H. Liu

solving complex problems (example f2) when all other algorithms failed to
give a better solution.

6 Conclusions

We introduced the Turbulent Particle Swarm Optimization (TPSO) as an al-
ternative method to overcome the problem of premature convergence in the
conventional PSO algorithm. TPSO uses a minimum velocity threshold to con-
trol the velocity of particles. TPSO mechanism is similar to a turbulence pump,
which supply some power to the swarm system. The basic idea is to control the
velocity the particles to get out of possible local optima and continue explor-
ing optimal search spaces. The minimum velocity threshold can make the par-
ticle continue moving and maintain the diversity of the population until the
algorithm converges. We proposed a fuzzy logic based system to tune adap-
tively the velocity threshold, which is further called as Fuzzy adaptive TPSO
(FATPSO). We evaluated and compared the performance of SPSO, FATPSO,
GA and SA algorithms on a suite of 20 widely used benchmark problems. The
results from our research demonstrated that FATPSO generally outperforms
most of the other considered algorithms, especially for high dimensional, multi-
modal functions.

Acknowledgements. The authors would like to thank Prof. Xiukun Wang, Drs.
Ran He and Bo Li for their scientific collaboration in this research work. This work
was partially supported by NSFC (60873054).

References

1. Boeringer, D.W., Werner, D.H.: Particle swarm optimization versus genetic
algorithms for phased array synthesis. IEEE Transactions on Antennas and
Propagation 52(3), 771–779 (2004)

2. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer
Academic Publishers, Dordrecht (2000)

3. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and conver-
gence in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation 6, 58–73 (2002)

4. Cordón, O., Herrera, F., Peregrin, A.: Applicability of the fuzzy operators in
the design of fuzzy logic controllers. Fuzzy Sets and Systems 86, 15–41 (1997)

5. Du, F., Shi, W.K., Chen, L.Z., Deng, Y., Zhu, Z.F.: Infrared image segmentation
with 2-D maximum entropy method based on particle swarm optimization.
Pattern Recognition Letters 26, 597–603 (2005)

6. Eberhart, R.C., Shi, Y.H.: Comparison between genetic algorithms and parti-
cle swarm optimization. In: Proceedings of IEEE International Conference on
Evolutionary Computation, pp. 611–616 (1998)

7. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolution-
ary algorithms. IEEE Transations on Evolutionary Computation 3(2), 124–141
(1999)

Turbulent PSO Using Fuzzy Parameter Tuning 311

8. Feller, W.: An Introduction to Probability Theory and Its Application, 3rd edn.
John Wiley & Sons, Chichester (1968)

9. Guo, C., Tang, H.: Global convergence properties of evolution stragtegies.
Mathematica Numerica Sinica 23(1), 105–110 (2001)

10. He, R., Wang, Y., Wang, Q., Zhou, J., Hu, C.: An improved particle swarm
optimization based on self-adaptive escape velocity. Journal of Software 16(12),
2036–2044 (2005)

11. Herrera, F., Lozano, M.: Fuzzy adaptive genetic algorithms: design, taxonomy,
and future directions. Soft Computing 7, 545–562 (2003)

12. Jiang, C.W., Etorre, B.: A hybrid method of chaotic particle swarm optimiza-
tion and linear interior for reactive power optimisation. Mathematics and Com-
puters in Simulation 68, 57–65 (2005)

13. Kennedy, J., Spears, W. M.: Matching algorithms to problems: an experimental
test of the particle swarm and some genetic algorithms on the multimodal
problem generator. In: Proceedings of the IEEE International Conference on
Evolutionary Computation, pp. 78–83 (1998)

14. Kennedy, J., Eberhart, R.: Swarm intelligence. Morgan Kaufmann Publishers,
Inc., San Francisco (2001)

15. Lu, W.Z., Fan, H.Y., Lo, S.M.: Application of evolutionary neural network
method in predicting pollutant levels in downtown area of Hong Kong. Neuro-
computing 51, 387–400 (2003)

16. Mahfouf, M., Chen, M.Y., Linkens, D.A.: Adaptive weighted swarm optimiza-
tion for multiobjective optimal design of alloy steels. In: Yao, X., Burke, E.K.,
Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E.,
Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp.
762–771. Springer, Heidelberg (2004)

17. Mark, L., Shay, E.: A fuzzy-based lifetime extension of genetic algorithms.
Fuzzy Sets and Systems 149, 131–147 (2005)

18. Orosz, J.E., Jacobson, S.H.: Analysis of static simulated annealing algorithms.
Journal of Optimzation theory and Applications 115(1), 165–182 (2002)

19. Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization
problems through particle swarm optimization. Natural Computing 1, 235–306
(2002)

20. Parsopoulos, K.E., Vrahatis, M.N.: On the computation of all global minimiz-
ers through particle swarm optimization. IEEE Transactions on Evolutionary
Computation 8(3), 211–224 (2004)

21. Phan, H.V., Lech, M., Nguyen, T.D.: Registration of 3D range images using par-
ticle swarm optimization. In: Maher, M.J. (ed.) ASIAN 2004. LNCS, vol. 3321,
pp. 223–235. Springer, Heidelberg (2004)

22. Schute, J.F., Groenwold, A.A.: A study of global optimization using particle
swarms. Journal of Global Optimization 31, 93–108 (2005)

23. Shi, Y.H., Eberhart, R.C., Chen, Y.: Implementation of evolutionary fuzzy
systems. IEEE Transactions on Fuzzy System 7(2), 109–119 (1999)

24. Shi, Y.H., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In:
Proceedings of IEEE International Conference on Evolutionary Computation,
pp. 101–106 (2001)

25. Sousa, T., Silva, A., Neves, A.: Particle swarm based data mining algorithms
for classification tasks. Parallel Computing 30, 767–783 (2004)

26. Ting, T., Rao, M., Loo, C.K., Ngu, S.S.: Solving unit commitment problem
using hybrid particle swarm optimization. Journal of Heuristics 9, 507–520
(2003)

312 A. Abraham and H. Liu

27. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis
and parameter selection. Information Processing Letters 85(6), 317–325 (2003)

28. Triki, E., Collette, Y., Siarry, P.: A theoretical study on the behavior of simu-
lated annealing leading to a new cooling schedule. European Journal of Oper-
ational Research 166, 77–92 (2005)

29. van den Bergh, F.: An analysis of particle swarm optimizers, PhD thesis, Uni-
versity of Pretoria, South Africa (2002)

30. Yun, Y.S., Gen, M.: Performance analysis of adaptive genetic algorithms with
fuzzy logic and heuristics. Fuzzy Optimization and Decision Making 2, 161–175
(2003)

Part II
Global Optimization Algorithms:

Applications

An Evolutionary Approximation for
the Coefficients of Decision Functions
within a Support Vector Machine
Learning Strategy

Ruxandra Stoean, Mike Preuss, Catalin Stoean, Elia El-Darzi,
and D. Dumitrescu

Abstract. Support vector machines represent a state-of-the-art paradigm,
which has nevertheless been tackled by a number of other approaches in view
of the development of a superior hybridized technique. It is also the proposal
of present chapter to bring support vector machines together with evolution-
ary computation, with the aim to offer a simplified solving version for the
central optimization problem of determining the equation of the hyperplane
deriving from support vector learning. The evolutionary approach suggested
in this chapter resolves the complexity of the optimizer, opens the ’black-
box’ of support vector training and breaks the limits of the canonical solving
component.

1 Introduction

This chapter puts forward a hybrid approach which embraces the geometrical
consideration of learning within support vector machines (SVMs) while it

Ruxandra Stoean and Catalin Stoean
Department of Computer Science, University of Craiova, Romania
e-mail: {ruxandra.stoean,catalin.stoean}@inf.ucv.ro
Mike Preuss
Department of Computer Science, University of Dortmund, Germany
e-mail: mike.preuss@cs.uni-dortmund.de

Elia El-Darzi
Department of Computer Science, University of Westminster, UK
e-mail: eldarze@westminster.ac.uk

D. Dumitrescu
Department of Computer Science, University of Cluj-Napoca, Romania
e-mail: ddumitr@cs.ubbcluj.ro

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 315–346.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

316 R. Stoean et al.

considers the estimation for the coefficients of the decision surface through
the direct search capabilities of evolutionary algorithms (EAs).

The SVM framework views artificial learning from an interesting percep-
tion: A hyperplane geometrically discriminates between training samples and
the coefficients of its equation have to be determined, with respect to both
the particular prediction ability and the generalization capacity. On the other
hand, EAs are universal optimizers that generate solutions based on abstract
principles of evolution and heredity. The aim of this work thus becomes to ap-
proximate the coefficients of the decision hyperplane through a canonical EA.

The motivation for the emergence of this combined technique resulted from
several findings. SVMs are a top performing tool for data mining, however,
the inner-workings of the optimization component are rather constrained and
very complex. On the other hand, the adaptable EAs achieve learning rela-
tively difficult from a standalone perspective. Taking advantage of the original
interpretation of learning within SVMs and the flexible optimization nature of
EAs, hybridization aims to accomplish an improved methodology. The novel
approach augments support vector learning to become more ’white-box’ and
to be able to converge independent of the properties of the underlying kernel
for a potential decision function. Apart from the straightforward evolution
of hyperplane coefficients, an additional aim of the chapter is to investigate
the treatment of several other variables involved in the learning process. Fur-
thermore, it is demonstrated that the transparent evolutionary alternative
is performed at no additional effort as regards the parametrization of the
EA. Last but not least, on a different level from the theoretical reasons, the
hybridized technique offers a simple and efficient tool for solving practical
problems. Several real-world test cases served not only as benchmark, but
also for application of the proposed architecture, and results bear out the ini-
tial assumption that an evolutionary approach is useful in terms of deriving
the coefficients of such learning structures.

The research objectives and aims of this chapter will be carried out through
the following original aspects:

• The hybrid technique will consider the learning task as in SVMs but use an
EA to solve the optimization problem of determining the decision function.

• Classification and regression particularities will be treated separately. The
optimization problem will be tackled through two possible EAs: One will
allow for a more relaxed, adaptive evolutionary learning condition, while
the second will be more similar to support vector training.

• Validation will be achieved by considering five diverse real-world learning
tasks.

• Besides comparing results, the potential of the utilized, simplistic EA
through parametrization is to be investigated.

• To enable handling large data sets, the first adaptive EA approach will be
enhanced by the use of a chunking technique, with the purpose of resulting
in a more versatile approach.

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 317

• The behavior of a crowding-based EA on preserving the performance of
the technique will be examined with the purpose of a future employment
for the coevolution of nonstandard kernels.

• The second methodology, which is more straightforward, will be generalized
through the additional evolution of internal parameterswithin SVMs; a very
general method of practical importance is therefore desired to be achieved.

The chapter contributes some key elements to both EAs and SVMs:

• The hybrid approach combines the strong characteristics of the two impor-
tant artificial intelligence fields, namely: The original learning concept of
SVMs and the flexibility of the direct search and optimization power of EAs.

• The novel alternative approach simplifies the support vector training.
• The proposed hybridization offers the possibility of a general evolutionary

solution to all SVM components.
• The novel technique opens the direction towards the evolution and em-

ployment of nonstandard kernels.

The remainder of this chapter is organized as follows: Section 2 outlines the
primary concepts and mechanisms underlying SVMs. Section 3 illustrates the
means to achieve the evolution of the coefficients for the learning hyperplane.
Section 4 describes the insides of the technique and its application to real-
world problems. The chapter closes with several conclusions and ideas for
future enhancement.

2 The SVM Learning Scheme

SVMs are a powerful approach to data mining tasks. Their originality and
performance emerge as a result of the inner learning methodology, which is
based on the geometrical relative position of training samples.

2.1 A Viewpoint on Learning

Given {(xi, yi)}i=1,2,...,m, a training set where every xi ∈ Rn represents a data
sample and each yi corresponds to a target, a learning task is concerned with
the discovery of the optimal function that minimizes the discrepancy between
the given targets of data samples and the predicted ones; the outcome of
previously ”unknown” samples, {(x′

i, y
′
i)}i=1,2,...,p, is then tested.

The SVM technique is equally suited for classification and regression prob-
lems. The task for classification is to achieve an optimal separation of given
samples into classes. SVMs assume the existence of a separating surface be-
tween every two classes labelled as -1 and 1. The aim then becomes the
discovery of the appropriate decision hyperplane.

The standard assignment of SVMs for regression is to find the optimal
function to be fitted to the data such that it achieves at most ε deviation

318 R. Stoean et al.

from the actual targets of samples; the aim is thus to estimate the optimal
regression coefficients of such a function.

2.2 SVM Separating Hyperplanes

If training examples are known to be linearly separable, then there exists a
linear hyperplane of equation (1), which separates the samples according to
classes. In (1), w and b are the coefficients of the hyperplane and 〈〉 denotes
the scalar product.

〈w, xi〉 − b = 0, w ∈ "n, b ∈ ", xi ∈ Rn, i = 1, 2, ..., m . (1)

The positive data samples lie on the corresponding side of the hyperplane
and their negative counterparts on the opposite side. As a stronger statement
for linear separability [1], each of the positive and negative samples lies on
the corresponding side of a matching supporting hyperplane for the respective
class (denoted by yi) (2).

yi(〈w, xi〉 − b) > 1, i = 1, 2, ..., m . (2)

SVMs must determine the optimal values for the coefficients of the decision
hyperplane that separates the training data with as few exceptions as possi-
ble. In addition, according to the principle of Structural Risk Minimization
[2], separation must be performed with a maximal margin between classes.
This high generalization ability implies a minimal ‖w‖. In summary, the SVM
classification of linear separable data with a linear hyperplane leads to the
optimization problem (3).{

minw,b ‖w‖2

subject to yi(〈w, xi〉 − b) ≥ 1, i = 1, 2, ..., m .
(3)

Generally, the training samples are not linearly separable. In the nonsepa-
rable case, it is obvious that a linear separating hyperplane is not able to build
a partition without any errors. However, a linear separation that minimizes
training error can be applied to derive a solution to the classification problem
[3]. The idea is to relax the separability statement through the introduction
of slack variables, denoted by ξi for every training example. This relaxation
can be achieved by observing the deviations of data samples from the corre-
sponding supporting hyperplane, i.e. from the ideal condition of data separa-
bility. Such a deviation corresponds to a value of ±ξi

‖w‖ , ξi ≥ 0 [4]. These values
may indicate different nuanced digressions, but only a ξi higher than unity sig-
nals a classification error (Fig. 1). Minimization of training error is achieved
by adding the indicator of error for every data sample into the separability
statement while minimizing their sum. Hence, the SVM classification of linear
nonseparable data with a linear hyperplane leads to the primal optimization

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 319

Fig. 1 The separating
and supporting linear hy-
perplanes for the nonsep-
arable training subsets
(squares denote positive
samples, while circles
stand for the negative
ones). The support vec-
tors are circled and the
misclassified data point
is highlighted

problem (4), where C represents the penalty for errors and is what is called a
hyperparameter (free parameter) of the SVM method.{

minw,b ‖w‖2 + C
∑m

i=1 ξi, C > 0
subject to yi(〈w, xi〉 − b) ≥ 1 − ξi, ξi ≥ 0, i = 1, 2, ..., m .

(4)

If a linear hyperplane does not provide satisfactory results for the classifi-
cation task, then a nonlinear decision surface can be formulated. The initial
space of training data samples can be nonlinearly mapped into a higher di-
mensional one, called the feature space and further denoted by H , where
a linear decision hyperplane can be subsequently built. The separating hy-
perplane can achieve an accurate classification in the feature space which
corresponds to a nonlinear decision function in the initial space (Fig. 2). The
procedure therefore leads to the creation of a linear separating hyperplane
that would, as before, minimize training error; however, in this case, it will
perform in the feature space. Accordingly, a nonlinear map Φ : Rn → H is
considered and data samples from the initial space are mapped into H .

As in the classical SVM solving procedure, vectors appear only as part of
scalar products, the issue can be further simplified by substituting the scalar
product by what is referred to as kernel.

A kernel is defined as a function with the property given by (5).

K(xi, xj) = 〈Φ(xi), Φ(xj)〉, xi, xj ∈ Rn . (5)

The kernel can be perceived as to express the similarity between samples.
SVMs require the kernel to be a positive (semi-)definite function in order
for the standard approach to find a solution to the optimization problem
[5]. Such a kernel satisfies Mercer’s theorem below and is, therefore, a scalar
product in some space [6].

Theorem 1. (Mercer) [3], [7], [8], [9]
Let K(x,y) be a continuous symmetric kernel that is defined in the closed
interval a ≤ x ≤ b and likewise for y. The kernel K(x,y) can be expanded in
the series

320 R. Stoean et al.

Fig. 2 Initial data space (left), nonlinear map into the higher dimension where
the objects are linearly separable/the linear separation (right), and corresponding
nonlinear surface (bottom)

K(x, y) =
∞∑

i=1

λiΦ(x)iΦ(y)i

with positive coefficients, λi > 0 for all i. For this expansion to be valid and
for it to converge absolutely and uniformly, it is necessary that the condition∫ b

a

∫ b

a

K(x, y)ψ(x)ψ(y)dxdy ≥ 0

holds for all ψ(·) for which ∫ b

a

ψ2(x)dx < ∞

The problem with this restriction is twofold [5]. Firstly, Mercer’s condition is
very difficult to check for a newly constructed kernel. Secondly, kernels that
fail the theorem could prove to achieve a better separation of the training
samples. Applied SVMs consequently use a couple of classical kernels that
had been demonstrated to meet Mercer’s condition:

• the polynomial classifier of degree p: K(x, y) = 〈x, y〉p

• the radial basis function classifier: K(x, y) = e
‖x−y‖2

σ , where p and σ are
also hyperparameters of SVMs.

However, as a substitute for the original problem solving, a direct search
algorithm does not depend on the condition whether the kernel is positive
(semi-)definite or not.

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 321

After the optimization problem is solved, the class of every test sample
is calculated: The side of the decision boundary on which every new data
example lies is determined (6).

class(x
′
i) = sgn(〈w, Φ(x

′
i)〉 − b), i = 1, 2, ..., p . (6)

As it is not always possible to determine the map Φ and, as a consequence of
the standard training methodology, either to explicitly obtain the coefficients,
the class follows from further artifices.

The classification accuracy is then defined as the number of correctly la-
belled cases over the total number of test samples.

2.3 Addressing Multi-class Problems through SVMs

k-class SVMs build several two-class classifiers that separately solve the
matching tasks. The translation from multi-class to two-class is performed
through different systems, among which one-against-all, one-against-one or
decision directed acyclic graph are the most commonly employed.

One-against-all Approach

The one-against-all (1aa) technique [10] builds k classifiers. Every jth SVM
considers all training samples labelled with j as positive and all the remaining
as negative.

Consequently, by placing the problem in the initial space, the aim of every
jth SVM is to determine the optimal coefficients wj and bj of the decision
hyperplane which best separates the samples with outcome j from all the
other samples in the training set, such that (7) holds.⎧⎪⎨

⎪⎩
minwj,bj

‖wj‖2

2 + C
∑m

j=1 ξj
i ,

subject to yi(〈wj , xi〉 − bj) ≥ 1 − ξj
i ,

ξj
i ≥ 0, i = 1, 2, ..., m, j = 1, 2, ..., k .

(7)

Once all hyperplanes are determined following the classical SVM training,
the label for a test sample x

′
i is given by the class that has the maximum

value for the learning function, as in (8).

class(x
′
i) = argmaxj=1,2,...,k(〈wj , Φ(x

′
i)〉) − bj), i = 1, 2, ..., p . (8)

One-against-one Approach

The one-against-one (1a1) technique [10] builds k(k−1)
2 SVMs. Every machine

is trained on data from every two classes, l and j, where samples labelled with
l are considered positive while those in class j are taken as negative.

322 R. Stoean et al.

Accordingly, the aim of every SVM is to determine the optimal coefficients
wlj and blj of the decision hyperplane which best separates the samples with
outcome l from the samples with outcome j, such that (9).⎧⎪⎨

⎪⎩
minwlj ,blj

‖wlj‖2

2 + C
∑m

i=1 ξlj
i ,

subject to yi(〈wlj , xi〉 − b) ≥ 1 − ξlj
i ,

ξlj
i ≥ 0, i = 1, 2, ..., m, l, j = 1, 2, ..., k, l �= j .

(9)

Once the hyperplanes of the k(k−1)
2 SVMs are found, a voting method

is used to determine the class for a test sample x
′
i, i = 1, 2, ..., p. For every

SVM, the label is computed following the sign of the corresponding decision
function applied to x

′
i. Subsequently, if the sign says x

′
i is in class l, the vote

for the l -th class is incremented by one; conversely, the vote for class j is
increased by unity. Finally, x

′
i is taken to belong to the class with the largest

vote. In case two classes have an identical number of votes, the one with the
smaller index is selected.

Decision Directed Acyclic Graph

Learning within the decision directed acyclic graph (DDAG) technique [11]
follows the same procedure as in 1a1. After the hyperplanes of the k(k−1)

2
SVMs are discovered, a graph system is used to determine the class for a test
sample x

′
i, i = 1, 2, ..., p. Each node of the graph has a list of classes attached

and considers the first and last elements of the list. The list that corresponds
to the root node contains all k classes. When a test instance x

′
i is evaluated,

it is descended from node to node, in other words, one class is eliminated
from each corresponding list, until the leaves are reached. The mechanism
starts at the root node which considers the first and last classes. At each
node, l vs j, we refer to the SVM that was trained on data from classes l
and j. The class of x is computed by following the sign of the corresponding
decision function applied to x

′
i. Subsequently, if the sign says x is in class l,

the node is exited via the right edge while, conversely, through the left edge.
The wrong class is thus eliminated from the list and it is proceeded via the
corresponding edge to test the first and last classes of the new list and node.
The class is given by the leaf that x

′
i eventually reaches.

2.4 SVM Regression Hyperplanes

SVMs for regression must find a function f(x) that has at most ε deviation
from the actual targets of training samples and, simultaneously, is as flat as
possible [12]. In other words, the aim is to estimate the regression coefficients
of f(x) with these requirements.

While the former condition is straightforward, errors are allowed as long as
they are less than ε, the latter needs some further explanation [13]. Resulting

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 323

values of the regression coefficients may affect the model in the sense that
it fits current training data but has low generalization ability, which would
contradict the principle of Structural Risk Minimization for SVMs [2]. In
order to overcome this limitation, it is required to choose the flattest function
in the definition space. Another way to interpret SVMs for regression is that
training data are constrained to lie on a hyperplane that allows for some error
and, at the same time, has high generalization capacity.

Suppose a linear regression model can fit the training data. Consequently,
function f has the form (10).

f(x) = 〈w, x〉 − b . (10)

The conditions for the flattest function (smallest slope) that approxi-
mates training data with ε precision can be translated into the optimization
problem (11). ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
minw,b ‖w‖2

subject to

{
yi − 〈w, xi〉 + b ≤ ε

〈w, xi〉 − b − yi ≤ ε
,

i = 1, 2, ..., m .

(11)

It may very well happen that the linear function f is not able to fit all
training data and consequently SVMs will again allow for some relaxation,
analogously to the corresponding situation for classification.

Therefore, the positive slack variables ξi and ξ∗i , both attached to each
sample, are introduced into the condition for approximation of training data
and, also as before, the sum of these indicators for errors is minimized. The
primal optimization problem in case of regression then translates to (12).⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minw,b ‖w‖2 + C
∑m

i=1(ξi + ξ∗i)

subject to

⎧⎪⎨
⎪⎩

yi − 〈w, xi〉 + b ≤ ε + ξi

〈w, xi〉 − b − yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

,

i = 1, 2, ..., m .

(12)

If a linear function is not at all able to fit training data, a nonlinear function
has to be chosen, as well. The procedure follows the same steps as before in
SVMs for classification.

When a solution for the optimization problem is reached, the predicted
target for a test sample is computed as (13).

f(x
′
i) = 〈w, Φ(x

′
i)〉 − b, i = 1, 2, ..., p . (13)

324 R. Stoean et al.

Also as in the classification problem, the regression coefficients are rarely
transparent and the predicted target actually is derived from other compu-
tations.

In order to verify the accuracy of the technique, the value of the root mean
square error (RMSE) is computed as in (14).

RMSE =

√√√√1
p

p∑
i=1

(f(x′
i) − y

′
i)2 . (14)

2.5 Solving the Optimization Problem within SVMs

The standard algorithm of finding the optimal solution relies on an extension
of the Lagrange multipliers technique. Corresponding dual problem may be
expressed as (15) for classification.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min{αi}i=1,2,..,m
Q(α) =

∑m
i=1 αi − 1

2

∑m
i=1

∑m
j=1 αiαjyiyjK(xi, xj)

subject to

{∑m
i=1 αiyi = 0

αi ≥ 0
i = 1, 2, ..., m .

(15)
Conversely, in the most general case of nonlinear regression, the dual prob-

lem is restated as (16). For reasons of a shorter reference, αi(∗) denotes both
αi and α∗

i , in turn.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min{αi(∗)}i=1,2,..,m
Q(α(∗)) =

∑m
i,j=1(αi − α∗

i)(αj − α∗
j)K(xi, xj)

−ε
∑m

i=1(αi + α∗
i) +

∑m
i=1 yi(αi − α∗

i)

subject to

{∑m
i=1(αi − α∗

i) = 0
0 ≤ αi(∗) ≤ C

i = 1, 2, ..., m .

(16)

The optimum Lagrange multipliers αi(∗)s are determined as the solutions
of the system by setting the gradient of the objective function to zero. For
more mathematical explanation, see [3], [14].

3 Evolutionary Adaptation of the Hyperplane
Coefficients to the Training Data

Apart from its emergence as a simple complementary method for solving
the SVM derived optimization problem, the EA-powered determination of
hyperplane coefficients had to be explored and improved with respect to
runtime, prediction accuracy and adaptability.

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 325

3.1 Motivation and Aim

Despite the originality and performance of the learning vision of SVMs, the
inner training engine is intricate, constrained, rarely transparent and able to
converge only for certain particular decision functions. This has brought the
motivation to investigate and put forward an alternative training approach
that benefits from the flexibility and robustness of EAs.

The technique adopts the learning strategy of the SVMs but aims to
simplify and generalize its solving methodology, by offering a transparent
substitute to the initial ’black-box’. Contrary to the canonical technique, the
evolutionary approach can at all times explicitly acquire the coefficients of the
decision function, without any further constraints. Moreover, in order to con-
verge, the evolutionary method does not require the positive (semi-)definition
properties for kernels within nonlinear learning. Eventually, the evolutionary
approach demonstrates to be an efficient tool for real-world application in
vital domains like disease diagnosis and prevention or spam filtering.

There have been numerous attempts to combine SVMs and EAs, however,
this method differs from the reported ones: The learning path remains the
same, except that the coefficients of the decision function are now evolved
with respect to the optimization objectives regarding accuracy and general-
ization. Several potential structures, enhancements and additions had been
proposed, tested and confirmed using available benchmarking test problems.

3.2 Literature Review: Previous EA-SVM
Interactions

The chapter focuses on the evolution of the coefficients for decision functions
of a learning strategy similar to that of SVMs. However, there are other works
known to combine SVMs and EAs. One evolutionary direction tackles model
selection, which concerns the adjustment of hyperparameters within SVMs,
i.e. the penalty for errors C and parameters of the kernel, and is generally
performed through grid search or gradient descent methods. Alternatively,
determination of hyperparameters can be achieved through evolution strate-
gies [15]. Another aspect envisages the evolution of the form for the kernel,
which can be performed by means of genetic programming [16]. The Lagrange
multipliers involved in the expression of the dual problem can be evolved by
means of evolution strategies and particle swarm optimization [5]. Inspired
by the geometrical SVM learning, [17] also reports the evolution of w and C,
while using erroneous learning ratio and lift values as the objective function.
Current paper therefore extends the work in the hybridization between EAs
and SVMs by filling the gap of a direct evolutionary solving of the primal op-
timization problem of determining the decision hyperplane, which has never
been performed before, to the best of our knowledge.

326 R. Stoean et al.

3.3 Evolving the Coefficients of the Hyperplane

The evolutionary approach for support vector training (ESVM) considers
the adaptation of a flexible hyperplane to the given training data through
the evolution of the optimal coefficients for its equation. After the neces-
sary revisions in the learning objectives due to a different way of solving
the optimization task, the corresponding EA is adopted in a canonical for-
mulation for real-valued problems [18]. For the purpose of a comparative
analysis between ESVMs and SVMs, there are solely the classical polyno-
mial and radial kernels that are used in this chapter to shape the decision
functions.

Representation

An individual c encodes the coefficients of the hyperplane, w and b (17).
Individuals are randomly generated such that wi′ ∈ [−1, 1], i

′
= 1, 2, ..., n,

b ∈ [−1, 1].
c = (w1, ..., wn, b) . (17)

Fitness Assignment

Prior to deciding on a strategy to evaluate individuals, the objective function
must be established in terms of the new approach to address the optimization
goals.

Since ESVMs depart from the standard mathematical treatment of SVMs,
a different general (nonlinear) optimization problem is derived [19] . Accord-
ingly, w is also mapped through Φ into H. As a result, the squared norm that
is involved in the generalization condition is now ‖Φ(w)‖2. At the same time,
the equation of the hyperplane consequently changes to (18).

〈Φ(w), Φ(xi)〉 − b = 0. (18)

The scalar product is used in the form (19) and, besides, the kernel is
additionally employed to address the norm in its simplistic equivalence to a
scalar product.

〈u, w〉 = uT w . (19)

In conclusion, the optimization problem for classification is reformulated
as (20). ⎧⎪⎨

⎪⎩
minw,b K(w, w) + C

∑m
i=1 ξi, C > 0

subject to yi(K(w, xi) − b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, 2, ..., m .

(20)

At the same time, the objectives for regression are transposed to (21).

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 327

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

minw,b K(w, w) + C
∑m

i=1(ξi + ξ∗i)

subject to

⎧⎪⎨
⎪⎩

yi − K(w, xi) + b ≤ ε + ξi

K(w, xi) − b − yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

,

i = 1, 2, ..., m .

(21)

The ESVMs targeting multi-class situations must undergo similar trans-
formation with respect to the expression of the optimization problem [20],
[21]. As 1aa is concerned, the aim of every jth ESVM is expressed as to de-
termine the optimal coefficients, wj and bj , of the decision hyperplane which
best separates the samples with outcome j from all the other samples in the
training set, such that (22) takes place.⎧⎪⎨

⎪⎩
minwj ,bj K(wj , wj) + C

∑m
i=1 ξj

i ,

subject to yi(K(wj , xi) − bj) ≥ 1 − ξj
i ,

ξj
i ≥ 0, i = 1, 2, ..., m, j = 1, 2, ..., k .

(22)

Within the 1a1 and DDAG approaches, the aim of every ESVM becomes
to find the optimal coefficients wlj and blj of the decision hyperplane which
best separates the samples with outcome l from the samples with outcome j,
such that (23) holds.⎧⎪⎨

⎪⎩
minwlj ,blj K(wlj , wlj) + C

∑m
i=1 ξlj

i ,

subject to yi(K(wlj , xi) − blj) ≥ 1 − ξlj
i ,

ξlj
i ≥ 0, i = 1, 2, ..., m, l, j = 1, 2, ..., k, i �= j .

(23)

The fitness assignment now derives from the objective function of the
optimization problem and is minimized. Constraints are handled by pe-
nalizing the infeasible individuals through the introduction of a function
t : R → R which returns the value of the argument, if negative, while zero
otherwise.

Classification and regression variants simply differ in terms of objectives
and constraints. Thus the expression of the fitness function for the for-
mer is (24), with the corresponding indices in the multi-class situations
[22], [23], [24].

f(w, b, ξ) = K(w, w) + C

m∑
i=1

ξi +
m∑

i=1

[t(yi(K(w, xi) − b) − 1 + ξi)]2. (24)

As for the latter, the fitness assignment is defined in the form (25) as found
in [25], [26], [27].

328 R. Stoean et al.

f(w, b, ξ) = K(w, w) + C

m∑
i=1

(ξi + ξ∗i) +
m∑

i=1

[t(ε + ξi − yi+

K(w, xi) − b)]2 +
m∑

i=1

[t(ε + ξ∗i + yi − K(w, xi) + b)]2. (25)

Selection and Variation Operators

The efficient tournament selection and the common genetic operators for real
encoding, i.e. intermediate crossover and mutation with normal perturbation,
are applied.

Stop Condition

The EA stops after a predefined number of generations and outputs the
optimal coefficients for the equation of the hyperplane. Moreover, ESVM is
transparent at all times during the evolutionary cycle, thus w and b may be
observed as they adapt throughout the process.

Test Step

Once the coefficients of the hyperplane are found, the class for an unknown
data sample can be determined directly following (26) .

class(x
′
i) = sgn(K(w, x

′
i) − b), i = 1, 2, ..., p . (26)

Conversely for regression, the target of test samples can be obtained
through (27) .

f(x
′
i) = K(w, x

′
i) − b, i = 1, 2, ..., p . (27)

For the multi-class tasks, the label is found by employing the same specific
mechanisms, only this time the resulting decision function applied to the
current test sample takes the form (28) .

f(x
′
i) = K(wj , x

′
i) − bj , i = 1, 2, ..., p, j = 1, 2, ..., k . (28)

3.4 Preexperimental Planning: The Test Cases

Experimentation had been conducted on five real-world problems, coming
from the UCI Repository of Machine Learning Databases1, i.e. diabetes mel-
litus diagnosis [28] , spam detection [29] , [30], iris recognition [20] , soy-
bean disease diagnosis [31] and Boston housing [25], [26] (see Table 1). The
motivation for the choice of test cases was manifold. Diabetes and spam are
1 Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 329

Table 1 Data set properties

Diabetes Iris Soybean Spam Boston
Data
No. of samples 768 150 47 4601 506
No. of features 8 4 35 57 13
No. of classes 2 3 4 2 -

two-class problems, while soybean and iris are multi-class. Differentiating, on
the one hand, diabetes diagnosis is a better-known benchmark, but spam fil-
tering is an issue of current major concern; moreover, the latter has a lot more
features and samples, which makes a huge difference for classification as well
as for optimization. On the other hand, while soybean has a high number of
attributes, iris has only four, but a larger number of samples. Finally, Boston
housing is a representative regression task. For all reasons mentioned above,
the selection of test problems certainly contained all the variety of situations
that had been necessary for the objective validation of the ESVM approach.
The experimental design was set to employ holdout cross-validation: For each
data set, 30 runs of the ESVM were conducted – in every run, approximately
70% random cases were appointed to the training set and the remaining 30%
went into test. The necessity for data normalization in diabetes, spam and
iris was also observed.

4 Discovering ESVMs

While the target of the EA was straightforward, addressing several inside in-
teractions had been not. Moreover, application of the ESVM to the practical
test cases had yielded more research questions yet to be resolved. Finally, fur-
ther implications of being able to instantly operate on the evolved coefficients
had been realized.

4.1 A Näıve Design

As already stated, the coefficients of the hyperplane, w and b, are encoded
into the structure of an individual. But, since the conditions for hyperplane
optimality additionally refer the indicators for errors, ξi, i = 1, 2, ..., m, the
problem becomes how to comprise them in the evolutionary solving. One
simple solution could be to depart from the SVM geometrical strict meaning
of a deviation and simply evolve the factors of indicators for errors. Thus, the
structure of an individual changes to (29), where ξj ∈ [0, 1], j = 1, 2, ..., m.

c = (w1, ..., wn, b, ξ1,, ξm) . (29)

330 R. Stoean et al.

Table 2 Manually tuned SVM hyperparameter values for the evolutionary and
canonical approach

Diabetes Iris 1a1/1aa Soybean Spam Boston
ESVMs
p (σ) p = 2 σ = 1 p = 1 p = 1 p = 1
SVMs
p (σ) p = 1 σ = 1/m p = 1 p = 1 σ = 1/m

Table 3 Manually tuned EA parameter values for the näıve construction

Diabetes Iris 1a1 Soybean Spam Boston
ps 100 100 100 100 200
ng 250 100 100 250 2000
cp 0.40 0.30 0.30 0.30 0.50
mp 0.40 0.50 0.50 0.50 0.50
emp 0.50 0.50 0.50 0.50 0.50
ms 0.10 0.10 0.10 0.10 0.10
ems 0.10 0.10 0.10 0.10 0.10

The evolved values of the indicators for errors can now be addressed in the
proposed expression for fitness evaluation. Also, mutation of errors is now
constrained, preventing the ξis from taking negative values.

Once the primary theoretical aspects had been completed, the experimen-
tal design had to be inspected and the practical evaluation of the viability of
ESVMs had to be conducted. The hyperparameters both approaches share
were manually chosen (Table 2). The error penalty C was invariably set to
1. For certain (e.g. radial, polynomial) kernels, the optimization problem is
relatively simple, due to Mercer’s theorem, and is also implicitly solved by
classical SVMs [32]. Note that ESVMs are not restricted to using the tradi-
tional kernels, but these had been employed within to enable comparison with
classical SVMs. Therefore, as a result of multiple testing, a radial kernel was
used for the iris data set, a polynomial one was employed for diabetes, while
for spam, soybean and Boston, a linear surface was applied. In the regression
case, ε was set to 0.

An issue of crucial importance for demonstrating the feasibility of any EA
alternative relies on the simplicity to determine appropriate parameters. The
EA parameter values were initially manually determined (Table 3).

In order to validate the manually found EA parameter values and to probe
the ease in their choice, the tuning method of Sequential Parameter Optimiza-
tion (SPO) [33] was applied. The SPO builds on a quadratic regression model,
supported by a Latin hypercube sampling (LHS) methodology and noise re-
duction, by incrementally increased repetition of runs. Parameter bounds
were set as follows:

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 331

• Population size (ps) - 5/2000
• Number of generations (ng) - 50/300
• Crossover probability (pc) - 0.01/1
• Mutation probability (pm) - 0.01/1
• Error mutation probability (epm) - 0.01/1
• Mutation strength (ms) - 0.001/5
• Error mutation strength (ems) - 0.001/5

Since the three multi-class techniques behave similarly in the manually
tuned multi-class experiments (Table 5), automatic adjustment was run only
for the most widely used case of 1a1. The best parameter configurations for
all problems as determined by SPO are depicted in Table 4.

Table 4 SPO tuned EA parameter values for the näıve representation

Diabetes Iris Soybean Spam Spam Boston
+Chunks

ps 198 46 162 154 90 89
ng 296 220 293 287 286 1755
pc 0.87 0.77 0.04 0.84 0.11 0.36
pm 0.21 0.57 0.39 0.20 0.08 0.5
epm 0.20 0.02 0.09 0.07 0.80 0.47
ms 4.11 4.04 0.16 3.32 0.98 0.51
ems 0.02 3.11 3.80 0.01 0.01 0.12

Test accuracies/errors obtained by manual tuning are presented in Table 5.
Differentiated (spam/non spam for spam filtering and ill/healthy for diabetes)
results are also depicted.

Table 5 Accuracy/RMSE of the manually tuned näıve ESVM version on the con-
sidered test sets, in percent

Average Worst Best StD
Diabetes (overall) 76.30 71.35 80.73 2.24
Diabetes (ill) 50.81 39.19 60.27 4.53
Diabetes (healthy) 90.54 84.80 96.00 2.71
Iris 1aa (overall) 95.85 84.44 100.0 3.72
Iris 1a1 (overall) 95.18 91.11 100.0 2.48
Iris DDAG (overall) 94.96 88.89 100.0 2.79
Soybean 1aa (overall) 99.22 88.24 100 2.55
Soybean 1a1 (overall) 99.02 94.11 100.0 2.23
Soybean DDAG (overall) 98.83 70.58 100 5.44
Spam (overall) 87.74 85.74 89.83 1.06
Spam (spam) 77.48 70.31 82.50 2.77
Spam (non spam) 94.41 92.62 96.30 0.89
Boston 4.78 5.95 3.96 0.59

332 R. Stoean et al.

Table 6 Accuracies of the SPO tuned näıve ESVM version on the considered test
sets, in percent

LHSbest StD SPO StD
Diabetes (overall) 75.82 3.27 77.31 2.45
Diabetes (ill) 49.35 7.47 52.64 5.32
Diabetes (healthy) 89.60 2.36 90.21 2.64
Iris (overall) 95.11 2.95 95.11 2.95
Soybean (overall) 99.61 1.47 99.80 1.06
Spam (overall) 89.27 1.37 91.04 0.80
Spam (spam) 80.63 3.51 84.72 1.59
Spam (non spam) 94.82 0.94 95.10 0.81
Boston 5.41 0.65 5.04 0.52

Table 6 summarizes the performances and standard deviations of the best
configuration of an initial LHS sample and of the SPO .

SPO indicates that for all cases, except for the soybean data, crossover
probabilities were dramatically increased, while often reducing mutation
probabilities, especially for errors. However, the relative quality of SPO’s
final best configurations against the ones found during the initial LHS phase
increases with the problem size. It must be stated that in most cases, results
achieved with manually determined parameter values are only improved by
SPO, if at all, by more effort, i.e. increasing population size or number of
generations.

The computational experiments show that the proposed technique pro-
duces equally good results as compared to the canonical SVMs and it is
further explained in subsection 4.6. Furthermore, the smaller standard devi-
ations prove the higher stability of ESVMs.

As concerns the difficulty in setting the EA, SPO confirms: Distinguishing
the performance of different configurations is difficult even after computing
a large number of repeats. Consequently, the ”parameter optimization po-
tential” justifies employing a tuning method only for the larger problems,
diabetes, spam and Boston. Especially for the small problems, well perform-
ing parameter configurations are seemingly easy to find. This brings evidence
in support of the (necessary) simplicity in tuning the parameters inside the
evolutionary alternative solving.

It must be stated that for the standard kernels, one cannot expect the
ESVM to be better than the standard SVM, since the kernel transformation
that induces learning is the same. However, the flexibility of the EAs as
optimization tools makes ESVMs an attractive choice from the performance
perspective, due to their prospective ability to additionally evolve problem-
tailored kernels, regardless of whether they are positive (semi-)definite or not,
which is impossible under SVMs.

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 333

4.2 Chunking within ESVMs

A first problem appears for large data sets, i.e. spam filtering, where the
amount of runtime needed for training is very large. This stems from the large
genomes employed, as indicators for errors of every sample in the training set
are included in the representation. Consequently, this problem was tackled
by an adaptation of a chunking procedure [34] inside ESVM.

A chunk of N training samples is repeatedly considered. Within each
chunking cycle, the EA, with a population of half random individuals and
half previously best evolved individuals, runs and determines the coefficients
of the hyperplane. All training samples are tested against the obtained de-
cision function and a new chunk is constructed based on N/2 randomly and
equally distributed incorrectly placed samples and half randomly samples
from the current chunk. The chunking cycle stops when a predefined number
of iterations with no improvement in training accuracy passes (Algorithm 1).

Algorithm 1. ESVM with Chunking
Require: The training samples
Ensure: Best obtained coefficients and corresponding accuracy

begin
Randomly choose N training samples, equally distributed, to make a chunk;
while a predefined number of iterations passes with no improvement do

if first chunk then
Randomly initialize population of a new EA;

else
Use best evolved hyperplane coefficients and random indicators for errors
to fill half of the population of a new EA and randomly initialize the other
half;

end if
Apply EA and find coefficients of the hyperplane;
Compute side of all samples in the training set with evolved hyperplane coef-
ficients;
From incorrectly placed, randomly choose (if exist) N/2 samples, equally dis-
tributed;
Randomly choose the rest up to N from the current chunk and add all to a
new one;
if obtained training accuracy if higher than the best one obtained so far then

Update best accuracy and hyperplane coefficients; set improvement to true;
end if

end while
Apply best obtained coefficients on the test set and compute accuracy
return accuracy
end

ESVM with chunking was applied to the spam data set. Manually tuned
parameters had the same values as before, except the number of generations
for each run of the EA which is now set to 100. The chunk size, N , was chosen

334 R. Stoean et al.

Table 7 Accuracy/RMSE of the manually tuned ESVM with chunking version on
the considered test sets, in percent

Average Worst Best StD
Spam (overall) 87.30 83.13 90.00 1.77
Spam (spam) 83.47 75.54 86.81 2.78
Spam (non spam) 89.78 84.22 92.52 2.11

Table 8 Accuracies of the SPO tuned ESVM with chunking version on the con-
sidered test sets, in percent

LHSbest StD SPO StD
Spam (overall) 87.52 1.31 88.37 1.15
Spam (spam) 86.26 2.66 86.35 2.70
Spam (non spam) 88.33 2.48 89.68 2.06

as 200 and the number of iterations with no improvement, i.e. repeats of the
chunking cycle, was designated to be 5. Values derived from the SPO tuning
are presented in the chunking column from Table 4.

Results of manual and SPO tuning are shown in Tables 7 and 8. The
novel approach of ESVM with chunking produced good results in a much
smaller runtime; it runs 8 times faster than the previous one, at a cost of
a small loss in accuracy. Besides solving the EA genome length problem,
proposed mechanism additionally reduces the large number of computations
that derives from the reference to the many training samples in the expression
of the fitness function.

4.3 A Pruned Variant

Although already a good alternative approach, the ESVM may still be im-
proved concerning simplicity. The current optimization problem requires to
treat the error values, which in the present EA variant are included in the rep-
resentation. These severely complicate the problem by increasing the genome
length (variable count) by the number of training samples. Moreover, such a
methodology strongly departs from the canonical SVM concept. Therefore,
it had been investigated whether the indicators for errors could be computed
instead of evolved.

Since ESVMs directly and interactively provide hyperplane coefficients at
all times, the generic EA representation (17) can be kept and the indicators
can result from geometrical calculations. In case of classification, the proce-
dure follows [1]. The current individual, which is the current separating hy-
perplane, is considered and supporting hyperplanes are determined through
the mechanism below. One first computes (30).

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 335

{
m1 = min{K(w, xi)|yi = +1}
m2 = max{K(w, xi)|yi = −1} .

(30)

Then (31) proceeds. ⎧⎪⎨
⎪⎩

p = |m1 − m2|
w′ = 2

pw

b′ = 1
p (m1 + m2) .

(31)

For every training sample xi, the deviation to its corresponding supporting
hyperplane (32) is obtained.

δ(xi) =

⎧⎪⎨
⎪⎩

K(w′, xi) − b′ − 1, if yi = +1
K(w′, xi) − b′ + 1, if yi = −1
i = 1, 2, ..., m .

(32)

If sign of deviation equals class, corresponding ξi = 0; else, the (normal-
ized) absolute deviation is returned as the indicator for error. Experiments
showed the need for normalization of the computed deviations in the cases
of diabetes, spam and iris, while, on the contrary, soybean requires no nor-
malization. The different behavior can be explained by the fact that the first
three data sets have a larger number of training samples. The sum of devi-
ations is subsequently added to the expression of the fitness function. As a
consequence, in the early generations, when the generated coefficients lead to
high deviations, their sum, considered from 1 to the number of training sam-
ples, takes over the whole fitness value and the evolutionary process is driven
off the course to the optimum. The form of the fitness function remains as
before (24), obviously without taking the ξis as arguments.

The proposed method for acquiring the errors for the regression situation
is as follows. For every training sample, one firstly calculates the difference
between the actual target and the predicted value that is obtained with the
coefficients of the current individual (regression hyperplane), as in (33).

δi = |K(w, xi) − b − yi|, i = 1, 2, ..., m . (33)

Secondly, one tests the difference against the ε threshold, following (34).

Table 9 Manually tuned parameter values for the pruned approach

Diabetes Iris Soybean Spam Boston
ps 100 100 100 150 200
ng 250 100 100 300 2000
pc 0.4 0.30 0.30 0.80 0.50
pm 0.4 0.50 0.50 0.50 0.50
ms 0.1 4 0.1 3.5 0.1

336 R. Stoean et al.

Table 10 SPO tuned parameter values for the pruned representation

Diabetes Iris Soybean Spam Boston
ps 190 17 86 11 100
ng 238 190 118 254 1454
pc 0.13 0.99 0.26 0.06 0.88
pm 0.58 0.89 0.97 0.03 0.39
ms 0.15 3.97 0.08 2.58 1.36

Table 11 Accuracy/RMSE of the manually tuned pruned ESVM version on the
considered test sets, in percent

Average Worst Best StD
Diabetes (overall) 74.60 70.31 82.81 2.98
Diabetes(ill) 45.38 26.87 58.57 6.75
Diabetes (healthy) 89.99 86.89 96.75 2.66
Iris 1aa (overall) 93.33 86.67 100 3.83
Iris 1a1 (overall) 95.11 73.33 100 4.83
Iris DDAG (overall) 95.11 88.89 100 3.22
Soybean 1aa (overall) 99.22 88.24 100 2.98
Soybean 1a1 (overall) 99.60 94.12 100 1.49
Soybean DDAG (overall) 99.60 94.12 100 1.49
Spam (overall) 85.68 82 88.26 1.72
Spam (spam) 70.54 62.50 77.80 4.55
Spam (non spam) 95.39 92.66 97.44 1.09
Boston 5.07 6.28 3.95 0.59

⎧⎪⎨
⎪⎩

if δi < ε then ξi = 0
else ξi = δi − ε

i = 1, 2, ..., m .

(34)

The newly obtained indicators for errors can now be employed in the fitness
evaluation of the corresponding individual, which changes from (25) to (35):

f(w, b) = K(w, w) + C

m∑
i=1

ξi . (35)

The function to be fitted to the data is thus still required to be as flat
as possible and to minimize the errors of regression that are higher than
the permitted ε. Experiments on the Boston housing problem demonstrated
that the specific method for computing the deviations does not require any
additional normalization.

The problem related settings and SVM hyperparameters were kept the
same as for näıve approach, except ε which was set to 5 for the regression
problem, which reveals that the pruned representation apparently needs a
more generous deviation allowance within training.

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 337

Table 12 Accuracies of the SPO tuned pruned ESVM version on the considered
test sets, in percent

LHSbest StD SPO StD
Diabetes (overall) 72.50 2.64 73.39 2.82
Diabetes(ill) 35.50 10.14 43.20 6.53
Diabetes (healthy) 92.11 4.15 89.94 3.79
Iris (overall) 95.41 2.36 95.41 2.43
Soybean (overall) 99.61 1.47 99.02 4.32
Spam (overall) 89.20 1.16 89.51 1.17
Spam (spam) 79.19 3.13 82.02 3.85
Spam (non spam) 95.64 0.90 94.44 1.42
Boston 4.99 0.66 4.83 0.45

The EA first proceeded with the manual values for parameters from Table
9. Subsequent parameter values derived from SPO on the pruned variant are
shown in Table 10.

Results obtained after manual and SPO tuning are depicted in Tables 11
and 12. The automated performance values were generated by 30 valida-
tion runs for the best found configurations after the initial design and SPO,
respectively.

Results of automated tuning are similar to those of the manual regulation
which once again demonstrates the easy adjustability of the ESVM. Addi-
tionally, the performance spectra of LHS was plotted in order to compare the
hardness of finding good parameters for our two representations on the spam
and soybean problems (Figs. 3 and 4). The Y axis represents the fractions
of all tried configurations; therefore the Y value corresponding to each bar
denotes the percentage of configurations that reached the accuracy of the X
axis where the bar is positioned.

(a) (b)

Fig. 3 Comparison of EA parameter spectra, LHS with size 100, 4 repeats, (a) for
the näıve (7 parameters) and (b) the pruned (5 parameters) representation on the
spam problem

338 R. Stoean et al.

(a) (b)

Fig. 4 Comparison of EA parameter spectra, LHS with size 100, 4 repeats, (a) for
the näıve (7 parameters) and (b) the pruned (5 parameters) representation on the
soybean problem

The diagrams illustrate the fact that näıve ESVM is harder to parameterize
than the pruned approach: When SPO finds a configuration for the latter, it is
already a promising one, as it can be concluded from the higher corresponding
bars.

It is interesting to remark that the pruned representation is not that much
faster. Although the genome length is drastically reduced, the runtime con-
sequently gained is however partly lost again when computing the values for
the slack variables. This draws from the extra number of scalar products
that must be calculated due to (30), (32) and (33). As run length itself is
a parameter in present studies, an upper bound of the necessary effort is
rather obtained. Closer investigation may lead to a better understanding of
suitable run lengths, e.g. in terms of fitness evaluations. However, the pruned
representation has its advantages. Besides featuring smaller genomes, less
parameters are needed, because the slack variables are not evolved and thus
two parameters are eliminated. As a consequence, it can be observed that
this representation is easier to tune.

The best configurations for the pruned representation perform slightly
worse as compared to the results recorded for the näıve representation. The
independent evolution of the slack variables seems to result in a better ad-
justment of the hyperplane as opposed to their strict computation. Parameter
tuning beyond a large initial design appears to be infeasible, as performance
is not significantly improved in most cases. If at all, it is successful for the
larger problems of diabetes, spam and Boston. This indicates once more that
parameter setting for the ESVM is rather easy, because there is a large set
of good performing configurations. Nevertheless, there seems to be a slight
tendency towards fewer good configurations (harder tuning) for the large
problems.

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 339

Table 13 SPO tuned parameter values for the pruned representation with
crowding

Diabetes Iris Spam
ps 92 189 17
ng 258 52 252
pc 0.64 0.09 0.42
pm 0.71 0.71 0.02
ms 0.20 0.20 4.05

Table 14 Accuracies of the SPO tuned pruned version with crowding on the
considered test sets, in percent

LHDbest StD SPO StD
Diabetes (overall) 74.34 2.30 74.44 2.98
Diabetes(ill) 43.68 6.64 45.32 7.04
Diabetes (healthy) 90.13 3.56 90.17 3.06
Iris (overall) 95.63 2.36 94.37 2.80
Spam (overall) 88.72 1.49 89.45 0.97
Spam (spam) 80.14 5.48 80.79 3.51
Spam (non spam) 94.25 1.66 95.07 1.20

4.4 A Crowding Variant

In addition to the direct pruned representation, a crowding [35] variant of
the EA had also been tested. Within crowding, test for replacement is done
against the most similar parent of the current population. Crowding based
EAs are known to provide good global search capabilities. This is of lim-
ited value for the kernel types employed in this study, but it is important
for nonstandard kernels. It is desirable, however, to investigate whether the
employment of a crowding-based EA on the pruned representation would
maintain the performance of the technique or not. All the other elements
of the EA remained the same and the values for parameters as determined
by SPO are shown in Table 13. The crowding experiment was chosen to be
run only on the representative tasks for many samples (diabetes and spam),
features (spam) and classes (iris).

Note that only automated tuning was performed for the pruned crowding
ESVM and results can be found in Table 14.

SPO revealed that for the crowding variant, some parameter interactions
dominate the best performing configurations: For larger population sizes,
smaller mutation steps and larger crossover probabilities are better suited,
and with greater run lengths, performance increases with larger mutation
step sizes. For the original pruned variant, no such clear interactions could
be attained. However, in both cases, many good configurations were detected.

340 R. Stoean et al.

Table 15 Manually tuned parameter values for the all-in-one pruned representa-
tion

Diabetes Iris Boston Spam
ps 100 50 100 5
ng 250 280 2000 480
pc 0.4 0.9 0.5 0.1
pm 0.4 0.9 0.5 0.1
hpm 0.4 0.9 0.9 0.1
ms 0.1 1 0.1 3.5
hms 0.5 0.1 0.1 0.1

4.5 Integration of SVM Hyperparameters

For practical considerations, a procedure for a dynamic choice of model hy-
perparameters was further included within the pruned construction. Having
judged from performed experiments, the parameter expressing the penalty
for errors C seemed of no significance within the ESVM technique; it was
consequently dropped from the parameters pool. Further on, by simply in-
serting one more variable to the genome, the kernel parameter (p or sigma)
could also be evolved. In this way, benefiting from the evolutionary solving
of the primal problem, model selection was actually performed at the very
same time.

The idea was tested through an immediate manual tuning of the EA pa-
rameters; the values are depicted in Table 15. For reasons of generality with
respect to the new genomic variable, an extra mutation probability (hpm)
and mutation strength (hms) respectively, were additionally set. The cor-
responding gene also had a continuous encoding, the hyperparameter being
rounded at kernel application. The soybean task was not considered for this
experiment anymore, as very good results had already been achieved.

The resulting values for the SVM hyperparameters were identical to our
previous manual choice (Table 2), with one exception in the diabetes task,
where sometimes a linear kernel is obtained.

Results of the all-inclusive technique (Table 16), similar in accuracy or re-
gression error to the prior ones and obtained at no additional cost, sustain the
inclusion of model selection and point to the next extension, the coevolution
of nonstandard kernels.

4.6 ESVMs Versus SVMs

In order to validate the aim of this work, that is to offer a simpler, yet equally
performing alternative to SVM training, this section compares the ESVM re-
sults with those of canonical SVMs run in R on the same data sets. The
reasons for this choice of a contrast were twofold: The R software already

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 341

Table 16 Accuracy/RMSE of the manually tuned all-in-one pruned ESVM version
on the considered test sets, in percent

Average Worst Best StD
Diabetes (overall) 74.20 66.66 80.21 3.28
Diabetes(ill) 46.47 36.99 63.08 6.92
Diabetes (healthy) 89.23 81.40 94.62 3.46
Iris (overall) 96.45 93.33 100 1.71
Spam (overall) 88.92 85.39 91.48 1.5
Spam (spam) 79.98 68.72 94.67 5.47
Spam (non spam) 94.79 84.73 96.91 2.22
Boston 5.06 6.19 3.97 0.5

Table 17 Accuracy/RMSE of canonical SVMs on the considered test sets, in per-
cent, as compared to those obtained by ESVM and p-values from a Wilcoxon rank-
sum test

SVM StD ESVM StD p-value
Diabetes 76.82 1.84 77.31 2.45 0.36
Iris 95.33 3.16 96.45 2.36 0.84
Spam 92.67 0.64 91.04 0.80 0.09
Soybean 92.22 9.60 99.80 1.06 3.98 × 10−5

Boston 3.82 0.7 4.78 0.59 1.86 × 10−6

contains a standard package for a SVM implementation and objectivity is
achieved only in similar experimental setup and test cases. However, search
for the outcome of the application of other related approaches (as described
in subsection 3.2) on the same data sets revealed only results on the diabetes
task: A classification accuracy of 74.48% and a standard deviation of 4.30%
came out of a 20-fold cross-validation within evolution of Lagrange multi-
pliers in [32] and an accuracy of 76.88% and a standard deviation of 0.25%
averaged over 20 trials was obtained through the evolution of the SVM hy-
perparameters in [15].

The results, obtained after 30 runs of holdout cross-validation, are illus-
trated in Table 17. After having performed manual tuning for the SVM hy-
perparameters, the best results were obtained as in the corresponding row of
Table 2. It is worthy to note a couple of differences between our ESVM and
the SVM implementation: In the Boston housing case, despite the employ-
ment of a linear kernel in the former, the latter produces better results for a
radial function, while, in the diabetes task, the ESVMs employ a degree two
polynomial and SVMs target it linearly.

The results for each problem were compared via a Wilcoxon rank-sum test.
The p-values (see Table 17) suggest to detect significant differences only in
the cases of Soybean and Boston data sets. However, the absolute difference

342 R. Stoean et al.

is not large for Boston housing, rendering SVM a slight advantage. It may
be more relevant for the Soybean task, where ESVM is better.

Although, in terms of accuracy, the ESVM approach had not achieved
better results for some of the test problems, it has many advantages: The
decision surface is always transparent even when working with kernels whose
underlying transformation to the feature space cannot be determined. The
simplicity of the EA makes the solving process easily explained, understood,
implemented and tuned for practical usage. Most importantly, any function
can be used as a kernel and no additional constraints or verifications are
necessary.

From the opposite perspective, the training is relatively slower than that
of SVM, as the evaluation always relates to the training data. However, in
practice (often, but not always), it is the test reaction that is more impor-
tant. Nevertheless, by observing the relationship between each result and the
corresponding size of the training data, it is clear that SVM performs better
than ESVM for larger problems; this is probably due to the fact that, in
these cases, much more evolutionary effort would be necessary. The problem
of handling large data sets is thus worth investigating deeper in future work.

5 Conclusions and Outlook

The evolutionary learning technique proposed in this chapter resembles the
vision upon learning of SVMs but solves the inherent optimization problem
by means of an EA. An easier and more flexible alternative to SVMs is put
forward and undergoes several enhancements in order to provide a viable
alternative to the classical paradigm. These developments are summarized
below:

• Two possible representations for the EA (one simpler, and a little faster,
and one more complicated, but also more accurate) that determines the
coefficients are imagined.

• In order to boost the suitability of the new technique for any issue, a novel
chunking mechanism for reducing size in large problems is also proposed;
obtained results support its employment.

• The use of a crowding-based EA is inspected in relation to the preservation
of performance. Crowding would be highly necessary in the immediate
coevolution of nonstandard kernels.

• Finally, an all-inclusive ESVM construction for the practical perspective
is developed and validated.

• On a different level, an additional aim was to address and solve real-work
tasks of high importance.

Several conclusions can be eventually drawn and the potential of the tech-
nique can be further strengthened through the application of two enhance-
ments:

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 343

• As opposed to SVMs, ESVMs are much easier to understand and use.
• ESVMs do not impose any kind of constraints or requirements.
• Moreover, the evolutionary solving of the optimization problem enables

the acquirement of function coefficients directly and at all times within
a run.

• SVMs, on the other hand, are somewhat faster, as the kernel matrix is
computed only once.

• Performances are comparable, for different test cases ESVMs and SVMs
take the lead, in turn.

Although already a suitable alternative, the novel ESVM can still be en-
hanced in several ways:

• The requirement for an optimal decision function actually involves two
criteria: the surface must fit to training data but simultaneously generalize
well. So far, these two objectives are combined in a single fitness expression.
As a better choice for handling these conditions, a multicriterial approach
could be tried instead.

• Additionally, the simultaneous evolution of the hyperplane and of non-
standard kernels will be achieved. This approach is highly difficult by
means of SVM standard methods for hyperplane determination, whereas
it is straightforward for ESVMs. A possible combination can be achieved
through a cooperative coevolution between the population of hyperplanes
and that of GP-evolved kernels.

Appendix - Definition of Employed Concepts

There are a series of notions that appear throughout the chapter. Their mean-
ing, use and reference are explained in what follows:

Evolutionary algorithm (EA) [18] - a metaheuristic optimization algo-
rithm in the field of artificial intelligence that finds its inspiration in what
governs nature: A population of initial individuals (genomes) goes through a
process of adaptation through selection, recombination and mutation; these
phenomena encourage the appearance of fitter solutions. The best perform-
ing individuals are selected in a probabilistic manner as parents of a new
generation and gradually the system evolves to the optimum. The fittest in-
dividual(s) obtained after a certain number of iterations is (are) the solution
to the problem.

Support vector machine (SVM) [2] - a supervised learning method for
classification and regression: Given a set of samples, the method aims for the
optimal decision hyperplane to model the data and establish an equilibrium
between a good training accuracy and a high generalization ability; accord-
ing to [36], a possible definition of an SVM could be ”a system for efficiently

344 R. Stoean et al.

training linear learning machines in kernel-induced feature spaces, while re-
specting the insights of generalization theory and exploiting optimization
theory”.

Classification / regression hyperplane - the decision hyperplane whose
defining coefficients must be determined; within classification, it must differ-
entiate between samples of different classes, while, with respect to regression,
it represents the surface on which the data are restrained to be positioned.

multi (k)-class SVM [10] - SVMs are implicitly built for binary classifica-
tion tasks; for problems with k outcomes, k > 2, the technique considers the
labels and corresponding samples two by two and uses common approaches
like one-against-one and one-against-all to combine the obtained classifiers.

Primal problem - the direct form of the optimization task within SVMs of
the determination of the decision hyperplane, while balancing between accu-
racy and generalization capacity. It is dualized in the standard SVM solving
by Lagrange multipliers.

Kernel - a function of two variables that defines the scalar product between
them; within SVMs, it is employed for the ”kernel trick” - a technique to
write a nonlinear operator as a linear one in a space of higher dimension as
a result of Mercer’s theorem.

Crowding-based EA [35] - a technique that was introduced as a method of
maintaining diversity: new obtained individuals replace only similar individ-
uals in the population: A percentage G (generation gap) of the individuals
is chosen via fitness proportional selection in order to create an equal num-
ber of offspring; for each of these offspring, CF (a parameter called crowding
factor) individuals from the current population are randomly selected – the
offspring then replaces the most similar individual from these.

References

1. Bosch, R.A., Smith, J.A.: Separating hyperplanes and the authorship of the dis-
puted federalist papers. American Mathematical Monthly 105, 601–608 (1998)

2. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg
(1995)

3. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, New
Jersey (1999)

4. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 1, 273–297
(1995)

5. Mierswa, I.: Evolutionary learning with kernels: A generic solution for large
margin problems. In: Proc. of the Genetic and Evolutionary Computation Con-
ference, vol. 1, pp. 1553–1560 (2006)

Evolving Coefficients for Decision Functions of a SVM Learning Strategy 345

6. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery 2, 121–167 (1998)

7. Boser, B.E., Guyon, I.M., Vapnik, V.: A training algorithm for optimal margin
classifiers. In: Proceedings of the 5th Annual ACM Workshop on Computational
Learning Theory, vol. 1, pp. 11–152 (1992)

8. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley Interscience,
Hoboken (1970)

9. Mercer, J.: Functions of positive and negative type and their connection with
the theory of integral equations. Transactions of the London Philosophical So-
ciety (A) 209, 415–446 (1908)

10. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector
machines. IEEE Transactions on Neural Networks 13, 415–425 (2004)

11. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin dags for multi-
class classification. Proc. of Neural Information Processing Systems 1, 547–553
(2000)

12. Smola, A.J., Scholkopf, B.: A tutorial on support vector regression. Technical
Report NC2-TR-1998-030. NeuroCOLT2 Technical Report Series (1998)

13. Rosipal, R.: Kernel-based Regression and Objective Nonlinear Measures to Ac-
cess Brain Functioning. PhD thesis Applied Computational Intelligence Re-
search Unit School of Information and Communications Technology University
of Paisley, Scotland (2001)

14. Stoean, R.: Support vector machines. An evolutionary resembling approach.
Universitaria Publishing House Craiova (2008)

15. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple svm parameters. In:
Proc. 12th European Symposium on Artificial Neural Networks, vol. 1, pp.
519–524 (2004)

16. Howley, T., Madden, M.G.: The genetic evolution of kernels for support vector
machine classifiers. In: Proc. of 15th Irish Conference on Artificial Intelligence
and Cognitive Science 1 (2004),
http://www.it.nuigalway.ie/m madden/profile/pubs.html

17. Jun, S.H., Oh, K.W.: An evolutionary statistical learning theory. International
Journal of Computational Intelligence 3, 249–256 (2006)

18. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer,
Heidelberg (2003)

19. Stoean, R., Preuss, M., Stoean, C., Dumitrescu, D.: Concerning the potential
of evolutionary support vector machines. In: Proc. of the IEEE Congress on
Evolutionary Computation, vol. 1, pp. 1436–1443 (2007)

20. Stoean, R., Dumitrescu, D., Preuss, M., Stoean, C.: Different techniques of
multi-class evolutionary support vector machines. Proc. of Bio-Inspired Com-
puting: Theory and Applications 1, 299–306 (2006)

21. Stoean, R., Stoean, C., Preuss, M., Dumitrescu, D.: Evolutionary multi-class
support vector machines for classification. In: Proceedings of International Con-
ference on Computers and Communications - ICCC 2006, Baile Felix Spa -
Oradea, Romania, vol. 1, pp. 423–428 (2006)

22. Stoean, R., Dumitrescu, D., Stoean, C.: Nonlinear evolutionary support vector
machines. application to classification. Studia Babes-Bolyai, Seria Informatica
LI, pp. 3–12 (2006)

23. Stoean, R., Dumitrescu, D.: Evolutionary linear separating hyperplanes within
support vector machines. Scientific Bulletin, University of Pitesti, Mathematics
and Computer Science Series 11, 75–84 (2005)

346 R. Stoean et al.

24. Stoean, R., Dumitrescu, D.: Linear evolutionary support vector machines for
separable training data. Annals of the University of Craiova, Mathematics and
Computer Science Series 33, 141–146 (2006)

25. Stoean, R., Preuss, M., Dumitrescu, D., Stoean, C.: ε - evolutionary support
vector regression. In: Symbolic and Numeric Algorithms for Scientific Comput-
ing, SYNASC 2006, vol. 1, pp. 21–27 (2006)

26. Stoean, R., Preuss, M., Dumitrescu, D., Stoean, C.: Evolutionary support vec-
tor regression machines. In: IEEE Postproc. of the 8th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing, vol. 1,
pp. 330–335 (2006)

27. Stoean, R.: An evolutionary support vector machines approach to regression.
In: Proc. of 6th International Conference on Artificial Intelligence and Digital
Communications, vol. 1, pp. 54–61 (2006)

28. Stoean, R., Stoean, C., Preuss, M., El-Darzi, E., Dumitrescu, D.: Evolutionary
support vector machines for diabetes mellitus diagnosis. In: Proceedings of
IEEE Intelligent Systems 2006, London, UK, vol. 1, pp. 182–187 (2006)

29. Stoean, R., Stoean, C., Preuss, M., Dumitrescu, D.: Evolutionary support vec-
tor machines for spam filtering. In: Proc. of RoEduNet IEEE International
Conference, vol. 1, pp. 261–266 (2006)

30. Stoean, R., Stoean, C., Preuss, M., Dumitrescu, D.: Evolutionary detection
of separating hyperplanes in e-mail classification. Acta Cibiniensis LV, 41–46
(2007)

31. Stoean, R., Stoean, C., Preuss, M., Dumitrescu, D.: Forecasting soybean dis-
eases from symptoms by means of evolutionary support vector machines. Phy-
tologia Balcanica 12 (2006)

32. Mierswa, I.: Making indefinite kernel learning practical, technical report. Tech-
nical report. Artificial Intelligence Unit, Department of Computer Science, Uni-
versity of Dortmund (2006)

33. Bartz-Beielstein, T.: Experimental research in evolutionary computation - the
new experimentalism. Natural Computing Series. Springer, Heidelberg (2006)

34. Perez-Cruz, F., Figueiras-Vidal, A.R., Artes-Rodriguez, A.: Double chunking
for solving svms for very large datasets. In: Proceedings of Learning 2004, Elche,
Spain 1 (2004),
eprints.pascal-network.org/archive/00001184/01/learn04.pdf

35. DeJong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis University of Michigan, Ann Arbor (1975)

36. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge (2000)

Evolutionary Computing in Statistical
Data Analysis

Roberto Baragona and Francesco Battaglia

Abstract. Evolutionary computing methods are being used in a wide field
domain with increasing confidence and encouraging outcomes. We want to
illustrate how these new techniques have influenced the statistical theory and
practice concerned with multivariate data analysis, time series model building
and optimization methods for statistical estimates computation and inference
in complex systems. The distinctive features all these subject topics have in
common are the large number of alternatives for model choice, parametriza-
tion over high dimensional discrete spaces and lack of convenient properties
that may be assumed to hold at least approximately about the data gener-
ating process. Evolutionary computing proved to be able to offer a valuable
framework to deal with complicated problems in statistical data analysis and
time series analysis and we shall draw a wide though by no means exhaustive
list of topics of interest in statistics that have been successfully handled by
evolutionary computing procedures. Specific issues will be concerned with
variable selection in linear regression models, non linear regression, time se-
ries model identification and estimation, detection of outlying observations in
time series as regards both location and type identification, cluster analysis
and grouping problems, including clusters of directional data and clusters of
time series. Simulated examples and applications to real data will be used for
illustration purpose through the chapter.

1 Introduction

Evolutionary computing is a general approach for simulating evolution on
computers. In a statistical framework, evolutionary computing provides a

Roberto Baragona
Sapienza University of Rome Department of Sociology and Communication Via
Salaria 113 Rome Italy
e-mail: roberto.baragona@uniroma1.it

Francesco Battaglia
Sapienza University of Rome Department of Statistics Probability and Applied
Statistics Piazzale Aldo Moro 5 00100 Rome Italy
e-mail: francesco.battaglia@uniroma1.it

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 347–386.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

roberto.baragona@uniroma1.it
francesco.battaglia@uniroma1.it

348 R. Baragona and F. Battaglia

class of methods useful for identification, estimation, validation and predic-
tion of models that describe relationships of interest among variables linked
to real world data sets. Many evolutionary computing methods are referenced
in [41] but the usual nowadays classification includes evolutionary program-
ming, evolution strategies, genetic algorithms, estimation of distribution algo-
rithms, differential evolution. The difference between these methods is often
subtle, the unifying framework consists in assuming that several potential
solutions exist that may solve a problem but the optimal one has to be dis-
covered through an evolution process. Such a process develops along the same
guidelines that drive the natural adaptation to the environment typical of the
biological populations. So the optimal solution may not even be present in
the set of solutions that are considered at the beginning. It is built grad-
ually by selection, recombination and mutation of the solutions that enter
the population in several iterative steps usually called generations. In this
chapter we will focus on genetic algorithms (GAs) and to a minor extent
to the estimation of distribution algorithms (EDAs). For an introduction to
GAs see, for instance, [65] and [73], and refer to [61] for EDAs. GAs-based
methods have been proposed often to solve problems in the field of statistics.
Obviously we may find countless applications in the wide framework of the
artificial intelligence (AI) and methods developed for AI problems have found
their application in statistics as well. The meta-heuristic methods are general
purpose heuristics that include as special case the GAs and the other evolu-
tionary computing methods but extend to cover methods such as threshold
accepting (TA), simulated annealing (SA), tabu search (TS) and many oth-
ers ([85, 86]). Often hybridization has been proposed among meta-heuristic
methods to exploit useful features of interest for the problem at hand (see
[47] for an example of hybrid algorithm which combines TS and GAs, and
[88] who considered SA and GAs).

As far as GAs-based heuristics are concerned, [29], [28] and [68] discussed
several applications in statistics, for instance the variable selection and pa-
rameter estimation in linear regression model. The standard errors of the
estimates are approximately evaluated by processing with the GA several
bootstrap samples from the data. Applications of genetic algorithms were
proposed as well for component and discriminant analysis ([76]), graphical
model identification ([75]), model selection ([2]), subset regression ([55]), crisp
and fuzzy cluster analysis ([69], [63], [54]), outlier identification for indepen-
dent data ([36]), non linear optimization to determine the wavelet filter for
M-band wavelet decomposition scheme ([34]), exponential power distribution
parameter estimation ([83]) and mixture models investigation ([10]). Promis-
ing applications of GAs have been proposed in statistical sampling ([56]) and
design of experiments ([27], [42], [51]). In machine vision and pattern recog-
nition framework cluster algorithms were proposed based on SA by [6] and
on GAs by [3], [4] and [5].

A comprehensive account on meta-heuristic methods for time series analysis
may be found in [9]. Special topics for applications are autoregressive moving

Evolutionary Computing in Statistical Data Analysis 349

average (ARMA) model identification ([72]), subset ARMA (SARMA) model
identification ([43], [64]) and subset vector autoregressive (VAR) model ([17]),
cluster of time series ([7, 8]), outlier detection in time series ([14]), threshold
autoregressive (TAR) model identification ([87]), modeling structural breaks
([37, 38]), identification of transfer function models ([33]).

The paper is organized as follows. In the next section 2 the GAs and EDAs
will be outlined in some details. The remaining sections will illustrate exam-
ples of different implementations of GAs depending on the problem. Section
3 is devoted to present two examples of variable selection in multivariate lin-
ear regression and in time series SARMA models. Parameter estimation with
GAs and EDAs will be considered in section 4 using as an illustration a lo-
gistic regression model on the coronary heart disease data taken from [52]. In
section 5 comparison is made between meta-heuristic methods and algorithms
based on gradient optimization and indirect inference methods for the expo-
nential autoregressive (EXPAR) time series model. Then the identification
and estimation of time series threshold models is considered concerned with
threshold autoregressive (TAR) models and double threshold autoregressive
heteroscedastic (DTARCH) and double threshold generalized ARCH (DT-
GARCH) models. The outlier detection problem is accounted for in section
6. In section 7 an example of GAs-based cluster analysis is discussed con-
cerned with time series data and directional data in comparison with TA,
SA and TS methods. Section 8 outlines directions for further research and
conclusions are drawn.

2 GAs and EDAs Implementations

In the next sections we shall illustrate methods essentially based on GAs. A
special attention will be reserved to EDAs which is in the same domain of the
GAs and similar in many aspects. For GAs in particular there is a general
schema that may be implemented in several ways. The more common will be
outlined in this section.

2.1 The GAs Procedure

The basic GAs procedure is usually illustrated by assuming that the potential
solutions are encoded as binary strings. A real number x ∈ (a, b) may be
encoded as a binary string of length � as follows

x = a + c(b − a)/(2� − 1), (1)

where c is the non negative integer that may be decoded from the binary
string. Given a positive integer s, a set of s binary strings (i1, i2, . . . , i�) of
pre-specified length � are generated at random. The s strings form the ”initial

350 R. Baragona and F. Battaglia

population.” This latter is a subset of the set of all admissible solutions. Let
the initial population be the current population, and perform N iterations in
each of which the s strings are allowed to change according to the ”genetic
operators” selection, crossover and mutation.

1. Selection. The objective function to be optimized is called in this context
the ”fitness function” and it is taken to be maximized. If the problem
requires that the objective function f has to be minimized, then we may
define the fitness function as f∗ = exp(−f), for instance. Then, for s
times, a string in the current population is chosen (with replacement)
with probability proportional to its fitness function. We obtain this way s
strings that are taken to replace the current population.

2. Crossover. For the sake of simplicity, let us assume that s is an even
integer. Then, the strings in the current population are paired at random
to form s/2 pairs. Each pair is examined in turn, and crossover takes
place if U < pc, where pc is a pre-specified crossover probability and U is a
uniform random number in the interval (0, 1). The crossover acts as follows.
(i) An integer j is chosen uniformly randomly in the interval (1, � − 1).
The number j is called the ”cutting point.” (ii) The bits from j + 1 to �
are exchanged between the strings that are paired.

3. Mutation. All chromosomes in the population are allowed to change their
values with probability pm. The choice of pm was proven to influence the
performance of the GA considerably. A high pm may serve to maintain
the diversity between the individuals into the population, but this is likely
to produce premature convergence as well. The probability pm is usually
assumed rather small in the interval (0.001, 0.1). A popular rule consists
in choosing pm equal to 1/�, where � is the chromosome length.

The ”elitist strategy” (see [73] for motivation) applies, that is the best string
that may be found in each of the N iterations is always maintained in the
current population unless an even better string appears due to the genetic
operators. If this latter is not the case, then such string replaces the string
with the worst fitness function. This replacement is done so that the popula-
tion retains the same number of strings s in each iteration. At the end of each
iteration the strings obtained by using the genetic operators replace all the
existing strings, and the new population is assumed as the current one. The
best string in the population after N iterations is taken as the final solution.

2.2 The EDAs Procedure

These algorithms are best explained, and were originally derived, in the case
that the chromosomes are real vectors x = (x1, x2, . . . , x�)′, though they have
been extended to more general settings. In the real vector case, the problem
may be formulated as that of maximizing a fitness function f(x) where x is
a real vector x ∈ R�.

Evolutionary Computing in Statistical Data Analysis 351

The proposal originates from the attempt of explicitly taking into account
the correlation between genes of different loci (components of the vector x),
that may be seen in good solutions, assuming that such correlation structure
could be different from that of the less fitted individuals. The key idea is to
deliver an explicit probability model and associate to each population (or a
subset of it) a multivariate probability distribution.

An initial version of the estimation of distribution algorithm was originally
proposed by [66], and then many further contributions developed, generalized
and improved the implementation. A thorough account may be found in [57]
and in a second more recent book ([61]).

The estimation of distribution algorithm is a regular stochastic population
based evolutionary method, and therefore evolves populations through gen-
erations. The typical evolution process from one generation to the next may
be described as follows:

1. Generate an initial population P (0) = {x(0)
i , i = 1, . . . , N} ; c = 0 .

2. If P (c) denotes the current population, select a subset of P (c): {x(c)
j , j ∈

S(c)} with |S(c)| = n < N individuals, according to a selection operator.
3. Consider the subset {x(c)

j , j ∈ S(c)} as a random sample from a multivari-
ate random variable with absolutely continuous distribution and probabil-
ity density p(c)(x), and estimate p(c)(x) from the sample.

4. Generate a random sample of N individuals from p(c)(x): this is the pop-
ulation at generation c + 1, P (c+1).

5. If a stopping rule is met, stop; otherwise c + 1 → c and return to 2.

The originally proposed selection operator was the truncation selection,
in other words only the n individuals with the largest fitness out of the N
members of the population are selected. Later, it was proposed that other
common selection mechanism such as the roulette wheel (proportional selec-
tion) or the tournament selection (choice of the best fitted inside a group of
k individuals chosen at random) may be adopted.

3 Variable Selection in Linear Regression and ARMA
Models

A typical issue in linear model identification is variable selection. A linear
relationship is postulated between a dependent variable y and a set of inde-
pendent variables {x1, x2, . . . , xp}. Let n observations be available so that we
may write the usual linear regression model

yi = β0 + β1x1i + β2x2i + . . . + βpxpi + ui, i = 1, . . . , n,

where β = (β0, β1, . . . , βp)′ is the parameter vector and u = (u1, . . . , un)′ is
a sequence of independent and identically distributed random variables with
zero mean and unknown variance σ2

u. Let y = (y1, . . . , yn)′ and

352 R. Baragona and F. Battaglia

X = [1, x1, x2, . . . , xp] where 1 denotes a column vector of ones. The lin-
ear regression model may be written in matrix form

y = Xβ + u.

If p is large it is desirable to reduce the number of independent variables to the
set that includes only the variables really important to explain the variability
of y. Common available methods are the iterative forward, backward and
stepwise methods. However, we would be more confident about the final result
if we could compare several subset alternative simultaneously. The GAs are
an easy-to-use tool for performing this comparison exactly.

3.1 Subset Regression

We want to select the variables that really matter in a linear regression. The
encoding for using GAs is straightforward as it suffices to define a mapping
from a binary string of length p and the parameter sequence β1, . . . , βp. The
constant term β0 is always included in the regression.

Let us illustrate a GAs-based procedure for subset regression on an exam-
ple of n = 100 artificial data and a set of p = 15 variables. Both independent
and dependent variables are sampled from a standard unit normal distribu-
tion. The y are generated by a model with parameters

β = (.01, 0.7,−0.8, 0.5, .01, .01, .01,−0.7, 0.6, 0.8, .01, .01, .01, .01, .01, .01)′

and σ2
u = 2.25. It is apparent that only the variables 1 − 3 and 7 − 9 impact

y significantly.
A GA has been employed to search for the best subset model. The fitness

function has been the F statistic. The chromosome is a binary string of length
15, for instance

000110000011100

is decoded to a regression model that includes only the variables 4, 5, 11, 12, 13
as independent variables to explain y. The population size has been chosen
s = 30, the maximum number of generations N = 100, the generational gap
(how many new chromosomes are created) has been set equal to 90% of the
past population, pc = 0.7 and pm = 1/15. Roulette wheel rule for selec-
tion, single cutting point crossover, binary mutation and the elitist strategy
are employed. The fitness function evolution is displayed in figure 1. This is
the typical fitness function behavior in the presence of elitist strategy. While
fitness function improves quickly in the first iterations, then no better so-
lutions are found and the elitist strategy prevents the fitness function from
decreasing. The GA finds the best solution corresponding to F = 29.8941
and variables 1 − 3 and 7 − 9.

Evolutionary Computing in Statistical Data Analysis 353

0 20 40 60 80 100 120
16

18

20

22

24

26

28

30

Fig. 1 Fitness function in the subset regression problem versus the number of
iterations

A GAs approach to subset regression based on information criteria has
been suggested by [55] while GAs have been suggested in [78] to evaluate
the bias in parameter estimates produced by omitting variables from the
regression model.

3.2 Autoregressive Moving Average Models

Models of the ARMA and ARIMA class are most popular in time series
analysis essentially for two reasons: first, they are a natural generalization of
regression models, and may be easily interpreted using similar concepts as in
regression analysis; and, second, they may be seen as universal approximation
for a wide class of well behaved stationary stochastic processes.

An ARMA model may be written

xt−φ1xt−1−φ2xt−2−. . .−φpxt−p = c+ut−θ1ut−1−θ2ut−2−. . .−θqut−q (2)

where c = μ(1 − φ1 − . . . − φp). Equation (2) is called an ARMA(p, q) model
and p and q are known as the autoregressive and the moving average orders of
the model. If the observed time series {xt} is not stationary, while, for some
positive integer d, the differenced series {yt} of order d is stationary, then we
have an ARIMA model by replacing xt with yt and setting c = 0 in (2).

Parsimony is universally accepted as precept among time series analysts, so
that the ARMA model building problem may be seen as choosing the model
with the smallest number of parameters given an approximation level. An ad-
ditional way of reducing the number of parameters is considering incomplete
models, where some of the parameters φ1, . . . , φp, θ1, . . . , θq are constrained
to zero. Such models are usually referred to as subset ARMA models ([30]).

354 R. Baragona and F. Battaglia

The canonical model building procedure runs iteratively through the fol-
lowing three steps:

1. Identification. Selection of the orders p and q, and, if a subset model is
considered, choice of which parameters are allowed to be non-zero.

2. Parameter estimation. Conditional on identification, the estimation of pa-
rameters may be performed through classical statistical inference.

3. Diagnostic checking. Once the model is completely specified and estimated,
it is customary to check whether it fits the data sufficiently well. This is
generally accomplished by computing the residuals. A model is generally
accepted provided that the residual are approximately uncorrelated and
have zero mean and constant variance.

The most difficult step of the model building procedure is identification.
Two different codings have been proposed, in either case a maximum search
order has to be selected, both for the autoregressive part (P say) and for the
moving average part (Q). The simplest coding amounts to reserving one gene
to each possible lag, filling it with 1 if the parameter is free, and with 0 if
the parameter is constrained to zero. For example, if we take P = Q = 6, the
following subset model:

xt = φ1xt−1 + φ4xt−4 + φ5xt−5 + ut − θ2ut−2 − θ4ut−4 − θ6ut−6

is coded by means of the following chromosome

100110︸ ︷︷ ︸ 010101︸ ︷︷ ︸
AR lags MA lags

This coding system was adopted by most authors, and has the advantage
of simplicity and fixed-length chromosomes, but it is not particularly efficient.

An alternative coding based on variable-length chromosomes, was pro-
posed by [64]. The chromosomes consist of two different gene subsets: the
first one is devoted to encode the autoregressive and moving average orders,
by specifying the number of relevant predictors, i. e., the number of non-zero
parameters, respectively for the autoregressive part, p∗, and for the moving
average part, q∗. This part consists of eight binary digits and encodes two in-
teger numbers between 0 and 15 (therefore this coding allows for models that
have up to 15 non-zero autoregressive parameters and 15 non-zero moving
average parameters). The other genes subset is devoted to specifying the lags
which the non zero parameters correspond to: it comprises 5(p∗ + q∗) binary
digits, and encodes, consecutively, p∗ + q∗ integer numbers between 1 and
32. Therefore according to this implementation P = Q = 32 and all models
containing a maximum of 15 non zero parameters, both for the AR and the
MA structures, may be coded. For example. the chromosome corresponding
to the previous model is:

0011 0011 00001 00100 00101 00010 00100 00110 .

Evolutionary Computing in Statistical Data Analysis 355

The first part of the chromosome contains 8 digits, while the second part
has a variable length from zero (white noise) to 150 binary digits. Encoding
with the same order limitations would require, in the fixed-length scheme
introduced before, 64-digit chromosomes. It appears that the advantage of
using the variable length scheme might be sensible if we are searching for
relatively sparse models, because the average length depends directly on the
number of non zero parameters (for example, a coding admitting no more
that 4 non zero parameters in each AR or MA structure, with a maximum
lag of 64, would require a fixed chromosome 128 long, and a variable length
chromosome with 6 to 54 binary digits).

In any case, the structure of the genetic algorithm depends on the choice of
a maximum possible order: it may be based on a-priori considerations, or even
on the number of available observations. A more data-dependent choice of the
maximum admissible lag could also be based on an order selection criterion
computed only on complete models (with all parameters free) as proposed
in [22]: in this case a relatively ”generous” criterion like the asymptotic in-
formation criterion (AIC) (see, for instance, [84], p. 153) seems advisable to
avoid reducing the solution space excessively.

Since all proposed codings are binary, each proposal corresponds to usually
slight modifications of the canonical genetic algorithm. The selection proce-
dure is obtained by means of the roulette wheel methods, except for [17]
who adopt rank selection. The mutation operator is employed in its standard
form, while for the cross-over operator some authors propose a random one
cut point ([43]), others a random two point cross-over ([67]) or a uniform
cross-over ([17]). All authors use unit generational gap and slightly different
elitist strategies: saving the best chromosome, or the two best chromosomes,
or even the 10% best chromosomes in the population. When dealing with
the alternative coding based on subsets of genes that encode the AR and MA
order, [64] suggest that the cross-over operator should be modified in order to
apply on entire fields (representing the integer numbers denoting order or lag)
rather to the single binary digits. Mutation and cross-over probabilities are
generally in accordance with the literature on canonical genetic algorithms,
proposed values are between 0.001 and 0.1 for mutation, and from 0.6 to 0.9
for cross-over. Not many suggestions are offered concerning the population
size, and the chromosomes composing the initial generation (they are gener-
ally selected at random in the solution space). It may be reasonably assumed
that a good starting point, with satisfying mixing properties, would require
initial individuals which may exploit the fitting ability of each single possible
parameter. Therefore, advantageous chromosomes in the initial population
are those encoding models with just one non zero parameter (i. e., in the first
coding scheme, chromosomes with only one gene equal to one). The minimum
population size that allows to fully develop this idea is obviously equal to the
total number of possible parameters, or P + Q.

Much more relevant differences are found in the literature on ARMA model
building by means of genetic algorithms, as far as the fitness function is

356 R. Baragona and F. Battaglia

concerned. Essentially, the fitness function is linked to some version of iden-
tification criterion or penalized likelihood. A favorite choice is adopting one
of the most popular identification criteria in time series, such as the AIC or
the BIC (also called Schwartz) criteria:

AIC(M) = N log{σ̂2
(M)} + 2p(M)

BIC(M) = N log{σ̂2
(M)} + p(M) log N

where N is the series length, σ̂2
(M) is the residual variance estimate for model

M , and p(M) is the number of free parameters of model M . Alternatively,
[23] suggest their identification criterion called ICOMP . Rather than simply
considering the number of non zero parameters, ICOMP measures the model
complexity through a generalization of the entropic covariance complexity in-
dex of [82]. The criterion ICOMP is computed by estimating the Fisher’s
information matrix for the parameters and by adding to the likelihood- pro-
portional term, N log σ̂2, the quantity C(F̂−1):

ICOMP (M) = N log σ̂2
(M) + C(F̂−1)

where
C(X) = dim(X) log{trace(X)/ dim(X)} − log |X | .

Finally, [64] use an AIC-like criterion where the residual variance is replaced
by a prediction error variance:

s2(�) ∝
∑

t

[xt+� − x̂t(�)]2

where x̂t(�) is the predictor based on the model. Obviously, for the forecast
horizon � = 1 there is no difference with AIC, [64] try their criterion also for
� = 2 and 3.

A common problem to all these implementations is that the proposed cri-
teria are to be minimized, thus they cannot be employed directly as fitness
function (which has, on the contrary, to be maximized). Solution of two kinds
have been proposed: [23] avoid the problem of defining a fitness proportionate
selection by adopting an ordered fitness selection rule: chromosomes are or-
dered according to the decreasing values of the ICOMP criterion, and each
chromosome is selected with a probability proportional to its rank. An alter-
native is defining the fitness function by a monotonically decreasing transfor-
mation of the identification criterion. Most natural candidates are a simple
linear transformation:

fitness(M) = W − criterion(M)

which is possible if an estimate of the worst possible value of the criterion,
W , is available ([43] suggests to compute W on the current population), or
a negative exponential transformation:

Evolutionary Computing in Statistical Data Analysis 357

fitness(M) = exp{−criterion(M)/d}

where d is a scaling constant. A Boltzman selection procedure is proposed
by [43] using the last expression for the fitness, but with a progressively
decreasing ”temperature” dk = (0.95)k, where k is the generation number.

0 10 20 30 40 50 60
8

8.5

9

9.5

10

10.5

11

11.5

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

Fig. 2 Yearly number of lynx pelts sold by Hudson’s Bay Company in Canada
from 1857 to 1911 (top panel) and residuals from the best subset ARMA model
(bottom panel)

0 20 40 60 80 100 120
101.5

102

102.5

103

103.5

104

104.5

105

105.5

Fig. 3 Fitness function display against iterations of the genetic algorithm

358 R. Baragona and F. Battaglia

Table 1 Comparison between ARMA and subset ARMA models

Model c0 φ1 φ2 φ3 θ1 θ2 θ3 σ2
ε

ARMA 7.08 0.87 0.13 −0.73 0.15 0.35 −0.57 0.0958
(1.30) (0.29) (0.46) (0.29) (0.32) (0.29) (0.17)

SARMA 6.77 0.96 −0.64 0.23 0.27 −0.55 0.0962
(0.70) (0.06) (0.06) (0.15) (0.15) (0.16)

The simulation studies presented in literature suggest satisfying results
of each implementation, with slight substantial differences, indicating that
for univariate time series with most encountered series lengths, the genetic
algorithm yields good models after just a few generations, and converges
nearly always, though after many more generations, to the true simulated
model.

3.3 An Example of Subset ARMA Fitted to a Real
Data Set

Let us consider the yearly number of lynx pelts sold by Hudson’s Bay Com-
pany in Canada from 1857 to 1911. The data set is composed of 55 obser-
vations and is reported in [84], p. 449, as Series W7. Following [84] (p. 150)
we use the natural logarithm of the observations for ARMA model identi-
fication. In figure 2 the logarithms of the data are displayed (solid line) in
the top panel with the predicted values (dotted line) computed from the best
subset ARMA model. In the bottom panel of figure 2 the residuals (dotted
line) are displayed with the 95% normal bounds (straight lines). The GAs are
used for identifying the best subset model. The encoding used to obtain the
best subset model is the first one. The fitness function was set equal to the
appropriate transform of the AIC criterion. In figure 3 the fitness function
evolution is displayed.

In table 1 a comparison is made between the ARMA model and the subset
ARMA model fitted to Series W7. The ARMA(3,3) model has a smaller
residual variance but its AIC (−103) is slightly greater than the subset model
(−105). The difference between the two model is concerned with a single
parameter and it seems that little is gained as for diagnostic checking values.
Nonetheless there is a considerable advantage as regards the standard errors
of the estimates which display a sharp decrease if the subset model is used.

4 The Logistic Regression Model

We give an example of application of the logistic regression model as it has
been fitted to the data by GAs by [29] and [68] and by EDAs by [74]. So it

Evolutionary Computing in Statistical Data Analysis 359

seems of interest to use a logistic regression model to show an application of
GAs and EDAs for nonlinear model parameter estimation.

Let y denote a binary dependent variable and {x1, x2, . . . , xp} a set of
independent variables. The logistic regression ([52]) assumes a non linear
relationship between y, called in this context the response variable, and the
covariates x1, x2, . . . , xp. Let Y denote a binary random variable and assume
that y = (y1, . . . , yn)′ is a sample from Y . Let π be the probability P (Y =
1|x1, . . . , xp) and define the logit transform

logit(π) = log
π

1 − π

As an example, we fitted a logistic regression model to a real data set,
namely the coronary heart disease data from [52]. We used several algorithms
to estimate the two parameters β0 and β1 of the logistic regression model

logit(πi) = β0 + β1xi, i = 1, 2, . . . , 100.

The observed response variable is yi = 1 if insurgence of coronary heart dis-
ease in the ith patient has been recorded and yi = 0 otherwise. The covariate
xi is the ith patient’s age (years). The iterative re-weighted least squares
(IRLS), the GAs and EDAs algorithms implemented for maximizing the log-
arithm of the likelihood

L =
n∑

i=1

yi(β0 + β1xi) −
n∑

i=1

log{1 + exp(β0 + β1xi)}

are outlined as follows. Upper and lower bounds for the two parameters have
been chosen (−10, 10) for β0 and (−2, 2) for β1. The input matrix is defined
X = [1, x] where 1 denotes a column vector of ones and the parameter vector
is β = [β0, β1].

• IRLS. This iterative algorithm implements the Newton method applied to
the problem of maximizing the likelihood of a response variable y given
X . Let a preliminary guess of the model parameter β̂(0) be available. Then
the following steps describe the move from β̂(k) to β̂(k+1) at iteration k.

1. Set, for i = 1, . . . , n,

π
(k)
i = exp

(
β̂

(k)
0 + β̂

(k)
1 xi

)
/
{
1 + exp

(
β̂

(k)
0 + β̂

(k)
1 xi

)}
.

2. Define the weights matrix W (k) = diag(w(k)
1 , . . . , w

(k)
n) where w

(k)
i =

π
(k)
i (1 − π

(k)
i).

3. Compute z(k) = Xβ̂(k) +
(
W (k)

)−1
(y − π(k)).

4. Solve with respect to β̂(k+1) the weighted linear regression problem

360 R. Baragona and F. Battaglia

(
X ′W (k)X

)
β̂(k+1) = X ′W (k)z(k)

5. Replace β̂(k) with β̂(k+1) and repeat from step 1 until some termination
condition is met.

• GA-1 (binary encoding). The potential solutions to the maximization
problem have been encoded as two binary strings of length 20 each. Equa-
tion (1) has been used to obtain the value of each of the two parameters
given the integer c encoded as a binary string. The Gray code has been
used. The population size has been taken equal to 30, the number of it-
erations has been 300 and 30 bootstrap samples have been generated to
compute the estimates as the average estimates and the standard errors.
The stochastic universal sampling method has been used for selection,
then the single point crossover with pc = 0.7 and the binary mutation
with pm = 1/20.

• GA-2 (real encoding). The potential solutions to the maximization prob-
lem have been encoded as floating-point numbers. The population size has
been taken equal to 30, the number of iterations has been 300 and 30
bootstrap samples have been generated to compute the estimates as the
average estimates and the standard errors. The stochastic universal sam-
pling method (see, for instance, [65], p. 166) has been used for selection,
then the line recombination crossover with pc = 0.7 and the floating-point
mutation with pm = 1/20.

• GA-3 ([29]). Equation (1) has been used to obtain the value of each of the
two parameters given the integers c0, c1 encoded as binary strings. The
chromosome is the binary string c = [c1, c2]. The population size has been
taken rather large, 1000 chromosomes, and the number of generations has
been chosen equal to 30. Tournament selection with ps = 0.7, single point
crossover with pc = 0.65, and binary mutation with pm = 0.1 have been
used. An additional operation, the inversion ([65]), has been applied with
probability pi = 0.75 to each chromosome in each generation. Inversion
consists in choosing two points �1 and �2 at random in the chromosome
and taking the bits from �1 to �2 in reverse order. The standard errors of the
parameter estimates are computed by applying the GA on 250 bootstrap
samples of the data.

• GA-4 ([68]). The potential solutions to the maximization problem have
been encoded as two pairs of numbers, a real number r ∈ (0, 1) the first one
and an integer in a given interval (Na, Nb) the second one. The parameter
estimates are obtained as β̂0 = r0N0 and β̂1 = r1N1. The population size
has been taken equal to 100, the number of iterations has been 100 and 30
bootstrap samples have been generated to compute standard errors of the
parameter estimates. The binary tournament has been used as selection
process. Then special crossover (modified uniform crossover) and mutation
are suggested. For crossover, the chromosomes are paired at random and
the integer parts exchange. If the integer parts are equal, then the exchange

Evolutionary Computing in Statistical Data Analysis 361

takes place as regards the real part of the chromosome. Only the offspring
with better fit is placed in the new generation. Mutation applies, with
probability pm = 0.1, only to the real parts of each chromosome. This
part, r say, is multiplied by a random number between 0.8 and 1.2, namely
r is multiplied by 0.8 + 0.4U , where U is an uniform random number in
(0, 1). If mutation yields a number greater than 1 the first component is
set to 1.

• EDA ([74]). The potential solutions to the maximization problem are rep-
resented by s vectors of 2 real numbers, the parameters β0 and β1. The
initial population is generated at random. Then the s chromosomes are
evaluated according to the likelihood function and the better s∗ are re-
tained. Other than using the likelihood, also the AUC ([24]) criterion is
suggested as an alternative fitness function. This is recommended when
the logistic regression model is used as a classifier and the AUC is the
area under the receiver operating characteristic (ROC) curve, a graphical
device to describe the predictive behavior of a classifier. The s∗ best vec-
tors found are used to estimate a bivariate probability density function.
From this latter distribution s new chromosomes are generated and a new
iteration starts. We adopted a bivariate normal distribution so that only
the mean vector and the variance-covariance matrix are needed to esti-
mate the distribution in each iteration. We assumed s = 50 and s∗ = 30,
300 iterations and 30 bootstrap samples.

The results are reported in table 2 for the 6 algorithms. Estimates β̂0 and
β̂1 are displayed with standard errors enclosed in parentheses. As a measure
of adaptation the logarithm of the likelihood L computed on the average
estimates is reported.

According to the figures displayed in table 2 the best algorithm is GA-1 as
it shows the largest log-likelihood. The second best would be the algorithm
GA-4. In this case however the estimates are markedly biased and exhibit
the largest standard errors. This result may be explained by the encoding
method. Splitting each parameter in two parts has the immediate consequence
of increasing the variability of the estimates. Moreover, the fitness function
should be linked to the parameters as directly as possible while for algorithm

Table 2 Parameter estimates for logistic regression fitted to the CHD data by
using IRLS, 4 GAs and an EDA-based algorithms

IRLS GA-1 GA-2 GA-3 GA-4 EDA

β̂0 − 5.3195 − 5.1771 − 6.0010 − 5.4360 − 3.1658 − 5.4985
(1.1337) (1.3775) (1.6355) (1.2580) (1.9609) (1.5062)

β̂1 0.1109 0.1070 0.1248 0.1130 1.3995 0.1147
(0.0241) (0.0290) (0.0331) (0.0270) (0.6422) (0.0301)

L −53.6774 −53.1873 −53.8577 −53.6886 −53.4000 −53.6907

362 R. Baragona and F. Battaglia

GA-4 there is an intermediate step that separates the chromosomes decoding
from the fitness function evaluation. The other algorithms lead to slightly
smaller values of the log-likelihood and yield results similar to the algorithm
GA-1. The algorithms IRLS and GA-3 have the advantage to attain the
smallest standard errors of both estimates β̂0 and β̂1. As an overall result it
seems that binary encoding performs better than the real one for evolutionary
computing algorithms.

5 Multi-regimes Model Parameter Estimation

Stationary time series do not change their characteristic features through
time. This behavior is not always observed in real time series data. A model
that fits well the time series in a time interval may prove inadequate in
other time intervals. Often the mean of the time series changes with time
but this may be found true as well for the variance, the autocorrelation
function, the spectral density in some frequency intervals, for instance. On
the other hand linear models are specially useful to model time series data.
The ARMA specification takes advantage of a well established theoretical
background and well known effective procedures for identification, estimation,
diagnostic checking, validation and forecasting. The multi-regime models may
take non-stationarity into account and use at the same time the ARMA
models as different ARMA models apply to different subsets of data. The
smooth transition autoregressive models ([81]) are an example of useful multi-
regime models where switching from an AR model to another takes place
gradually. The threshold models (see [79]) have been developed along the
same guidelines except that a step transition replaces the smooth passage
between regimes. [37, 38] employed threshold autoregressive processes for
modeling structural breaks, and used a GA for identifying the model. As
in each regime the ARMA modeling may be used conveniently, the main
problem with multi-regime models is the transition parameter or threshold.
In this section we examine some algorithms, including meta-heuristics and
GAs, that aim at locating the thresholds as accurately as possible. We assume
the EXPAR model as a special example in the class of the smooth transition
autoregressive models. The threshold models will be examined in the next
sections.

5.1 The Exponential Autoregressive Model

The EXPAR(p) model may be written

yt = {φ1 +π1exp(−γy2
t−d)}yt−1 + . . .+ {φp +πpexp(−γy2

t−d)}yt−p + et, (3)

where d is the delay parameter. Unlike linear models, a change of the error
variance σ2

e by multiplying the {et} by a constant k, say, does not imply

Evolutionary Computing in Statistical Data Analysis 363

that the {yt} turn into {kyt}. The order of magnitude of {yt} in (3) depends
on γ too, in the sense that we may obtain the time series {kyt} by both
multiplying σ2

e by k2 and dividing γ by k2.
The ability of the EXPAR to account for limit cycles depends whether some

conditions on the parameters in equation (3) be fulfilled. If the time series
is believed to exhibit limit cycles behavior, then the estimation procedure
needs to be constrained in some way.

A brief description of the basic parameter estimation procedure proposed
by [50] for the estimation of (3) follows. It may be considered as a natural
benchmark for competitive alternatives because it is quite straightforward
and unlike to fail to yield a solution. It does not ensure, however, that the
limit cycles conditions be fulfilled.

The algorithm requires that an interval (a, b), a ≥ 0, be pre-specified for
the γ values in (3). This interval is split in N sub-interval, so that a grid of
candidate γ values is built. Let s = (b − a)/N and γ = a. Then, for N times,
the following steps are performed.

1. Set γ = γ + s
2. Estimate φj e πj by ordinary least squares regression of yt on yt−1,

yt−1exp(−γy2
t−d), yt−2, yt−2exp(−γy2

t−d), . . .
3. Compute the AIC criterion and repeat steps 1 and 2 for N − 1 times.

Final estimated parameters are taken that minimize the AIC.
For the existence of limit cycles, the following conditions (see, for instance,

[71]) are required to hold:
(1) all the roots of

zp − φ1z
p−1... − φp = 0

lie inside the unit circle,
(2) some of the roots of

zp − (φ1 + π1)zp−1... − (φp + πp) = 0

lie outside the unit circle,
(3)

1 −
p∑

j=1

φj

p∑
j=1

πj

> 1 or < 0.

Several algorithms are available for nonlinear models parameter estimation
in the presence of either likelihood function or residual sum of squares difficult
to maximize or minimize respectively in the presence of many local optima. We
select some algorithms to perform a simulation experiment in comparison with
the GAs, namely the grid search, indirect inference ([49]), TS, SA and TA.

We carried out a simulation experiment to compare the performance of
these methods and of GAs for parameter estimation of the EXPAR model

364 R. Baragona and F. Battaglia

Table 3 Average estimates for 100 replications from an EXPAR(2)

parameter φ1 φ2 π1 π2 γ

true value 1.95 −0.96 0.23 −0.24 1.0

500 obs φ̂1 φ̂2 π̂1 π̂2 γ̂ d2 σ̂2 MSE
Grid search 1.76 − .77 − .35 − .32 .71 3.99 1.64 1.64

(.17) (.17) (1.65) (.28) (.80) (.96) (1.63)
Indirect inf 1.92 −.94 −.40 −.66 1.53 7.14 1.45 1.40

(.05) (.05) (2.0) (1.38) (.59) (.81) (1.23)
Tabu search 1.91 −.92 .05 −.08 .79 3.73 .99 .97

(.16) (.15) (1.69) (.25) (.82) (.06) (.20)
Simul anneal 1.62 −.63 .64 −.63 1.05 4.63 1.41 1.52

(.77) (.77) (1.28) (.75) (.84) (.54) (1.44)
Thre accept 1.84 −.85 −.03 −.45 .88 1.44 1.25 1.25

(.11) (.11) (.86) (.19) (.70) (.36) (.39)
Genetic alg 1.89 −.91 .07 −.10 .46 3.47 .99 .97

(.20) (.18) (1.58) (.26) (.72) (.06) (.21)

1000 obs φ̂1 φ̂2 π̂1 π̂2 γ̂ d2 σ̂2 MSE
Grid search 1.85 −.86 −.02 −.24 .79 1.03 1.25 1.35

(.10) (.10) (.43) (.15) (.83) (.41) (1.02)
Indirect inf 1.94 −.95 .37 −.42 1.40 7.58 1.36 1.19

(.04) (.04) (2.19) (1.45) (.66) (.50) (.41)
Tabu search 1.95 −.96 .20 −.07 .66 1.31 1.0 .99

(.02) (.01) (.76) (.12) (.76) (.05) (.13)
Simul anneal 1.85 −.86 .36 −.37 1.16 1.19 1.18 1.26

(.15) (.15) (.73) (.20) (.70) (.32) (.99)
Thre accept 1.85 −.86 .25 −.38 1.20 1.09 1.0 1.0

(.20) (.20) (.70) (.23) (.62) (.05) (.05)
Genetic alg 1.95 −.96 .19 −.07 .45 1.32 1.0 1.0

(.02) (.02) (.69) (.12) (.70) (.05) (.13)

with φ1 = 1.95, φ2 = −0.96, π1 = 0.23, π2 = −0.24, γ = 1 and d = 1. This
model has been proposed as an example by [50]. We simulated 100 series
of 1550 observations by using standard unit Gaussian deviates. For each
series, the first 1000 observations have been discarded, and the last 50 set
apart for out-of-sample one-step-ahead forecasts. So, for estimation we used
500 observations. Further, 100 series of 2100 observations were generated
as well. For each series the first 1000 observations were discarded, but 100
observations were set apart for out-of-sample forecasts. The observations left
for estimation purpose were 1000. The results are displayed in table 3. The
parameter estimates, averaged over 100 replications, are reported, and their
standard errors are enclosed in parentheses. The index d2 is computed as the
average squared Euclidean distance between the two sets of estimated and
true parameters. Then, the residual variance σ̂2 and the mean square error
forecast (MSE) have been computed. The structure of the model has been
assumed known, so that the number of parameters has been held fixed.

Evolutionary Computing in Statistical Data Analysis 365

As far as the residual variance and MSE are concerned, TS and GAs for
500 and TS, TA and GAs for 1000 observations give the best performances as
their values are close to one. Parameters φ1 and φ2 are estimated fairly well
by all methods and standard errors are small, with the only exception of SA
for 500 observations. On the other hand, estimates of π1, π2 and γ are often
severely biased, and standard errors are large. The smallest squared difference
d2 between true and estimated parameters averaged over 100 replications is
obtained by using TA for 500 and grid search and TA for 1000 observations.

5.2 The Generalized EXPAR Model

We may consider the more general EXPAR model (see, for instance, [32])

yt = {φ1 + π1exp(−γ1y
2
t−d)}yt−1 + . . . + {φp + πpexp(−γpy

2
t−d)}yt−p + et,

where γ1, . . . , γp are positive constants and d is the delay parameter. Advan-
tages that may come from this model may consist in greater flexibility, better
fit and improved forecasts. On the other hand a grid search for estimating
γ1, . . . , γp is less efficient and may become infeasible if the model order is
large. Then the GAs may constitute a convenient device for estimating the
parameters φj , πj and γj . By using a GAs-based algorithm [15] fitted sev-
eral ”generalized” EXPAR models to the well known Canadian lynx data
and sunspot numbers (see [79], chapter 7, for a detailed analysis) and ob-
tained satisfactory results for both time series. We shall report some results
concerned with the sunspot numbers.

Computations have been performed on the mean-deleted transformed data
2{(1 + yt)1/2 − 1} as suggested in [79], p. 420. We considered the AR(9)
model reported by [79], p. 423, and the self-excited threshold autoregressive
SETAR(2; 11, 3) model proposed by [45], p. 247. Then we estimated using
GAs the EXPAR(2), the EXPAR(6) and the EXPAR(9) models with one γ
and with 2, 6 and 9 γ’s respectively. For estimating the parameters of each
model we used the observations from 1700 to 1979, while the observations
from 1980 to 1995 were reserved for the multi-step forecasts. The data have
been downloaded from the URL: http://www.sidc.be/sunspot-data/ (SIDC-
team, Royal Observatory of Belgium, Ringlaan 3, 1180 Brussel, Belgium, The
International Sunspot Number, Monthly Report on the International Sunspot
Number, online catalogue, yearly data 1700-2007). The results are displayed
in table 4. Models are compared by means of the residual variance and the
forecasts MSE. Time origins are 1979, 1984, 1987 and lead times 1, 2, . . . , 8.

The best forecasts not always are obtained by using models that have the
smallest residual variance. The EXPAR(9) model with 9 γ’s, for instance,
yields the smallest residual variance, but the SETAR(2; 11, 3) model provides
the best multi-step forecasts for the years 1980-1987. The results change, how-
ever, if different time intervals are considered. Thus, the least mean square
forecasts error is observed for the EXPAR(9) with 9 γ’s in 1985-1992, for the

366 R. Baragona and F. Battaglia

Table 4 Sunspot numbers: comparison among AR, SETAR, EXPAR and general-
ized EXPAR

residual mse mse mse mse
model variance 1980-87 1985-92 1988-95 1980-92

AR(9) 4.05 3.60 16.5 9.01 16.19

SETAR(2; 11, 3) 3.73 1.82 33.51 17.34 22.27

EXPAR(2) one γ 4.90 7.08 65.28 31.39 32.97
EXPAR(2) 2 γ’s 4.83 3.77 85.33 29.32 38.46

EXPAR(6) one γ 4.47 7.64 54.74 19.46 21.11
EXPAR(6) 6 γ’s 4.34 11.85 42.01 20.62 21.89

EXPAR(9) one γ 3.66 4.99 20.43 8.21 13.02
EXPAR(9) 9 γ’s 3.57 2.62 16.34 10.65 10.27

EXPAR(9) with a single γ in 1988-1995. In the wider time span 1980-1992,
the EXPAR(9) with 9 γ’s is able to produce the best multi-step forecasts.
The cyclical behavior of this time series is changing over time, and our mod-
els may describe it better in certain years than others. It seems that the
EXPAR(9) model with 9 γ’s almost always yields the most accurate fore-
casting performance.

5.3 Threshold Autoregressive Models

A self-exciting TAR (SETAR) model may be written

yt = c
(i)
j +

p∑
j=1

φ
(i)
j yt−j + εt if yt−d ∈ (ri−1, ri],

where {εt} is white noise, d is a given positive integer and the k disjoint
intervals (ri−1, ri], i = 1, . . . , k, partition the real axis .

The GAs-based TAR model identification procedure in [87] needs the pre-
liminary specification of the maximum number of ”regimes” K (K ≥ 2), the
largest autoregressive model order P , the number of candidate threshold pa-
rameters H (H ≥ K−1) and the number of delay parameters D. If all models
had to be enumerated exhaustively their number should be computed

(P + 1)K

(
H

K − 1

)
D.

Such number of candidate solution may obviously become very large. The
GA solution ([87]) is based on encoding each of the tentative models as a
string which is composed of several ”fragments.” The first one encodes the
delay parameter, the second one the candidate threshold parameters (H ”per-
centiles” were chosen from the ordered observations), then the orders of each
of the autoregressive models are encoded. For instance, if D = 4, H = 3, the

Evolutionary Computing in Statistical Data Analysis 367

number of regimes is taken equal to 2 and the maximum autoregressive order
is P = 3, then a string of 9 bits would suffice to represent each and every
potential solution. For example, the string

01|011|10|11

means that d = 1, the third percentile value is taken as the threshold param-
eter, the autoregressive order for the first regime is 2 and that for the second
regime is 3. The fitness function is chosen as a modified version of the AIC.
The effectiveness of the method is shown by means of both a simulation ex-
periment and some empirical studies for investigating the changing exchange
rate of Thailand.

The TAR model easily generalizes to a threshold ARMA model if at least
in some regimes an MA part is specified. Obviously in some regimes the
model may be a pure MA without an AR part. A GAs-based algorithm may
be developed along the same guidelines by defining a chromosome augmented
to take the MA part into account.

In the multivariate framework a hybrid algorithm which combines GAs
and SA has been proposed by [88] for estimating a threshold vector error
correction model. The GA is implemented by using the real encoding and
suitable genetic operators for crossover and mutation. In addition each chro-
mosome in the current population is updated only if the offspring is accepted
according to the Metropolis rule.

5.4 Double Threshold ARCH and GARCH Models

The autoregressive conditional heteroscedastic (ARCH) models and general-
ized ARCH (GARCH) have been introduced for modeling volatility cluster-
ing. The self-exciting threshold autoregressive ARCH (SETAR-ARCH) is a
generalization that accounts for asymmetries in levels. Asymmetries both
in levels and volatility may be modeled by the double threshold ARCH
(DTARCH) and double threshold GARCH (DTGARCH) models. References
for ARCH and GARCH models are [39] and [20], see [58], [59] and [26] for
threshold ARCH and GARCH models. The GAs have been considered by
[1] for identifying the optimal structure of a GARCH model. For the iden-
tification and estimation of DTARCH and DTGARCH models GAs-based
methods have been developed by [11] and [13].

A GARCH model takes the form

xt = m(It, θ) + εt

√
v(It, θ)

It = {xt−1, xt−2, . . . , , εt−1, εt−2, . . .} information at time t,

m(It, θ) : conditional mean,

v(It, θ) : conditional variance.

368 R. Baragona and F. Battaglia

If the conditional mean m(It, θ) follows a multi-regime SETAR(p) model
and the conditional variance v(It, θ) follows a multi-regime ARMA model
SETARMA(s, q) then we may specify the DTGARCH model

xt = φ
(u)
0 +

∑
j

φ
(u)
j xt−j + at if xt−d ∈ Ru

vt = α
(u)
0 +

∑
i

β
(u)
i vt−i +

∑
j

α
(u)
j a2

t−j if xt−d ∈ Ru

where R is a partition : (−∞,∞) = R1 ∪ R2 ∪ . . . ∪ Rk, d is the delay, at are
independent Gaussian zero mean random variables and E(a2

t) = v(It, θ). The
partition sets Rj are always intervals: R1 = (−∞, r1), R2 = (r1, r2) , R3 =
(r2, r3) , . . . , Rk = (rk−1,∞), where r1 < r2 < . . . < rk−1 are the thresh-
olds. In practice the DTGARCH model parameters may be distinguished in
structural parameters, i.e.

1. delay parameter d
2. regime number k
3. thresholds (r1, r2, . . . , rk−1)
4. autoregressive orders (p1, p2, . . . , pk)
5. GARCH orders (q1, q2, . . . , qk, s1, s2, . . . , sk)

and the equation coefficients

φ
(u)
j , α

(u)
j , β

(u)
j

subject to stationarity and variance non-negativity constraints.
If the structural parameters are given, the equation coefficients may be

estimated by maximum likelihood:

log L(x1, x2, . . . , xn|φ, α, β) = const − 1
2

k∑
u=1

{log(vt) + a2
t /vt}i(u)

t ,

where i
(u)
t denotes the indicator function of xt−d ∈ Ru. But for the structural

parameters there is no analytic method available. The only possible procedure
which may yield an exact solution consists in:

1. enumerating all possible models
2. estimating the coefficients of each and every model
3. performing diagnostic checking and evaluating all models
4. selecting the best model.

A more viable alternative is determining sets of structural parameters by
means of heuristic methods and estimating and comparing the full models.

We shall describe here a hybrid GA for estimating a DTGARCH model
where the GA is used for searching for optimal structural parameters d, k,

Evolutionary Computing in Statistical Data Analysis 369

rj , pj , sj , qj while the coefficients of the model equations φ
(u)
j , α

(u)
j , β

(u)
j are

estimated by maximizing the log-likelihood.

Chromosome encoding

Let K denote the maximum number of regimes and M the minimum number
of observations required in each regime. The chromosome c consists in two
separate parts, since orders and thresholds are separately encoded.

• orders part

– The first part c1 encodes d, p1, . . . , pk, q1, . . . , qk, s1, . . . , sk,
– the binary coding is used to represent integers and
– mutation and crossover are assumed as in simple GA.

• thresholds part

– The second part c2 of the chromosome c encodes (g1, g2, . . . , gK−1)
where gi represents the number of observations in the ith regime and
gi ∈ (M, n).

– This encoding is motivated by the convenience in avoiding legalization
problems, namely any c2 is a valid chromosome fragment.

Chromosome decoding

Decoding c1 is straightforward. For c2 we have to specify a rule to compute the
number of regimes k and the threshold r1, . . . , rk−1 from (g1, g2, . . . , gK−1).
The requirement gi ∈ (M, n) is needed to ensure that estimation may be
performed in each regime easily. We compute the thresholds as follows:

r1 = x(g1), r2 = x(g1+g2), r3 = x(g1+g2+g3), . . .

where (x(1), x(2), . . . , x(n)) are the ordered data. The number of regimes k is
computed as

k = arg max
κ

{g1 + . . . + gκ < n − M} + 1 ≤ K.

In practice only the first k − 1 out of the K − 1 integers gi’s have to be
computed and we may stop decoding as soon as gk ≥ n − M . Then we
assume k regimes and thresholds r1, . . . , rk−1. Note that both the chromo-
some fragment c1 and c2 have fixed length, �1 = (3k + 1)ν the first one and
�2 = (K − 1)ν the second one, where ν is the number of bits we adopt to
encode the integers as binary strings. The complete chromosome c has fixed
length � = �1+�2. The genes that do not contribute to the decoding procedure
still belong to c and may turn useful for recombination in the later crossover
steps.

370 R. Baragona and F. Battaglia

Genetic operators

The crossover may be performed as usual in c assuming that the genes are
integer numbers. Mutation in c1 may be performed as binary mutation, while
mutation in c2 needs a special procedure. We adopted the following device:
if gene gi mutates then its new value is a uniform random number in the
interval (max{M, gi − M/2}, gi + M/2).

Fitness function

We have adopted the AIC criterion for fitness function evaluation. Given the
chromosome c which encodes the structural parameters, let us maximize the
likelihood with respect to φ, α, β, i.e.

L∗(c) = sup
φ,α,β

L(x|φ, α, β)

Then the AIC is computed

AIC(c) = −2 log L∗(c) + 2 (number of parameters).

In order to obtain a positive non decreasing fitness function f the following
transform

f(c) = exp{−AIC(c)/n}

may be used.

5.5 An Application to the Daily Hong Kong Stock
Exchange (Hang Seng) Index

As a first example we considered the daily Hang Seng index data from Jan-
uary 1987 to December 1991. If xt denotes the original data, the return series
has been computed as

yt = log(xt/xt−1).

The data behavior suggests to fit a different model to the data recorded
and transformed in each of the five years. For instance in 1987 there are
260 observations available. The time series for the year 1987 is displayed in
figure 4.

The GAs-based algorithm applied to the Hang Seng index data recorded
in year 1987 yields a DTGARCH model with delay parameter d = 2 and
k = 2 regimes with threshold parameter r1 = −0.0044. Model is

yt = −0.0044 +
4∑

j=1

φjyt−j + at

vt = 0.0153

Evolutionary Computing in Statistical Data Analysis 371

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0 50 100 150 200 250

Fig. 4 Differenced logarithmic transform of the daily Hang Seng index data (1987)

if yt−2 < −0.0044, and

yt = 0.01 +
7∑

j=1

φjyt−j + at

vt = 0.002 + 0.0028vt−1 +
6∑

j=1

αja
2
t−j

if yt−2 ≥ −0.0044. Note that the process is stationary AR homoscedastic
when returns are low while the process is heteroscedastic when returns are
high.

5.6 An Application to the Daily Exchange Rate
Yen/Dollar

As a second example we consider the daily exchange rates yen/dollar from
January 1, 1983 to January 28, 1985. Data have not been transformed. There
are 541 observations available. The time series data are plotted in figure 5.

We obtained from the GAs-based procedure the following DTGARCH
model.

• delay = 2
• two regimes : xt−2 ≤ 237 , xt−2 > 237
• first regime: p = 3, q = 3, s = 3

– xt = 6.85 +
∑3

j=1 φjxt−j + at

372 R. Baragona and F. Battaglia

 220

 225

 230

 235

 240

 245

 250

 255

 260

 0 100 200 300 400 500

Fig. 5 Daily exchange rate Yen/Dollar from January 1, 1983 to January 28, 1985

– vt = 0.864 +
∑3

i=1 βivt−i +
∑3

j=1 αja
2
t−j

• second regime : p = 1, q = 0, s = 0

– xt = 2.74 + 0.989xt−1 + at

– vt = 1.151

Note that when the exchange rate is low the process is AR(3) heteroscedastic
while the process is a random walk when the exchange rate is high.

6 Multiple Outliers in Data Sets

Data sets are often affected by unexpected observations or gross errors that
may negatively impact data analysis, model estimation and forecasting. Usu-
ally a preliminary investigation is performed to identify outlying observa-
tions. These latter are generally closely related to missing data treatment
and validation procedures. The approach of robust statistics aims essentially
at ensuring that reliable estimates may be obtained from the data even in
the presence of outliers. We consider here the alternative approach that con-
sists in discovering the outliers and performing some appropriate action. A
comprehensive review of statistical methods for the treatment of outliers in
data sets is [16]. In the next sections we shall address the identification of
outliers in time series as some additional difficulties are involved due to the
correlation structure. Though GAs-based methods for outlier detection have
been originally introduced for independent data a great deal of work has been
devoted to develop evolutionary computing methods for detecting outliers in
time series.

Evolutionary Computing in Statistical Data Analysis 373

6.1 The Outlier Problem in Time Series

Outliers in time series are observations that do not conform to the behav-
ior of the majority of the neighboring time series data. An account may
be found in [21], chapter 12. It is customary to distinguish four outlier
type, i.e. the additive outlier (AO), the innovation outlier (IO), the tran-
sient change (TC) and the level shift (LS). The AO impacts the time series
only at the time point where it occurs (a recording error, for instance), but
it does not influence any other observation. Special methods are concerned
with sequences of consecutive AO’s (see, for instance, [53]). The IO affects
the random shocks process underlying the time series, and its influence is
present in time series points even after its occurrence. TC is a temporary
deviation from the expected pattern, while LS is a permanent change in the
mean. Iterative procedures such as in [31] are common practice for outlier
treatment in time series. The ’skipping’ approach (using the Kalman filter to
eliminate from computations either AO or missing data) has been compared
to the AO approach (replace missing or outlying observations with interpo-
lation estimates) by [48] and the two approach are shown to be equivalent.
This method has been implemented in the software TRAMO-SEATS (URL:
http://www.bde.es/servicio/software/econome.htm)

In the multivariate framework, detecting the four types of outliers, AO,
IO, TC and LS, has been considered by [80]. Vector ARMA modeling forms
the basis of their procedure. A different approach consists in projecting the
multivariate time series data along low-dimensional or univariate directions
and using the computed low-dimensional time series to identify the potential
outliers dates. Projection pursuit has been suggested by [44] and independent
component analysis by [12].

Using GAs has been proposed by [14] for univariate time series and by [22]
for detecting influential observations in dynamic multivariate linear models.

The outlier detection procedures are quite effective if outliers, either iso-
lated or occurring as a ”patch,” are not too close each others in the time
series. If it is not the case, then masking (an outlier may hide another one
which is close to it) and smearing (an outlier may impact some subsequent
observations so as these latter are recognized in turn as outliers, though they
are not) effects, that arise because the time series observations are corre-
lated, make particularly difficult both outlier detection and estimation. Evo-
lutionary computing methods allow several complete outlier patterns to be
considered and compared. We assume that there exists a maximum number
of outliers K, say, as outliers are to be considered ”rare events” and only a
limited number, 5% of observations, for instance, may occur. If we want to
distinguish m outlier types, the number of outlier patterns is

mn + m2

(
n
2

)
+ m3

(
n
3

)
+ . . . + mK

(
n
K

)
.

374 R. Baragona and F. Battaglia

Searching such a large ”solution space,” however, is the natural task for a evo-
lutionary computing or meta-heuristic method. We have to adopt appropriate
encoding and fitness function to obtain from an evolutionary computing al-
gorithm the optimal (or at least near optimal) solution.

6.2 Genetic Algorithms for Outlier Detection in Time
Series

Binary encoding is usually adopted in GAs-based algorithms for outlier de-
tection in time series. A binary string of length � = n has to be defined and
time points are associated to the bits in the binary sequence. A bit is equal to
1 for an outlying observation and 0 otherwise. A different encoding consists
in preparing a list of the time points labels where an outlying observation is
supposed to occur, and make it to precede the list of the remaining time point
labels, in any order. Such order-based encoding has been suggested by [36]
for independent observations, but extension to correlated time series data is
straightforward. If, in addition, we want to distinguish the outlier types, we
may use m binary strings, each string for each type, under the constraint that
in any time point there is no more than a single 1. As an alternative, we may
resort to the integer encoding which has been proposed for grouping problems
([40]), by associating an integer code to any outlier type, for example 1 for
AO and 2 for IO. Let, for instance, the time series y=(y1, y2, . . . , yn)′ have
n = 30 observations, and let outliers (any type) be located at t = 9, 20, 21, 22.
Then, the two encodings may look as follows

binary 000000001000000000011100000000
order − based 9 20 21 22 | . . . other time point labels . . .

Consider instead the case that we want to distinguish between the AO and
IO types. If there is a IO at t = 9 and there are AO’s at t = 20, 21, 22, then
we may use either the binary or integer encoding

binary
{

000000000000000000011100000000
000000001000000000000000000000

integer 000000002000000000011100000000

For evolutionary computing methods to work in a reasonable time, the
fitness function has to be chosen so that it may be properly and quickly
computed. We may attempt to minimize the sum of squares computed from
some ARMA model fitted to the data. An identification stage, in necessarily
automatic way, has to be performed, however, which requires in most cases
a considerable computational effort. Then, a valid course of action consists
in exploiting the relationship between the linear interpolator and the AO
(see [70], p. 237; see also [35]). Only the inverse covariance function ([84], p.
123) is needed which may be easily estimated from the data. Let us consider,

Evolutionary Computing in Statistical Data Analysis 375

for the sake of simplicity, only the AO type. Let k outliers be located at
t = t1, . . . , tk. Let us define the n × k ”design matrix” X , where Xj,h = 1
if j = th (that is, the h-th outlying observation is located at time t = j)
and 0 otherwise. Let z=(z1, . . . , zn)′ be the observed time series and y the
unobserved outlier free realization. Then, the relationship

z = Xω + y

holds, where ω = (ω1, . . . , ωk)′ is the outlier size array. The likelihood to be
maximized is approximately, under Gaussianity assumption,

L (X, ω|y) = (2π)−
n
2
√

det(Γi)exp
{
−1

2
(z − Xω)′ Γi (z − Xω)

}
. (4)

The matrix Γi of the inverse autocovariances may be estimated from the data
by using robust techniques (see [46]).

For an illustration of the procedure a simulation experiment is reported. A
set of 200 observations have been generated from the ARMA(0,2) model with
parameters θ1 = 0.7 and θ2 = −0.5 and Gaussian white noise with mean zero
and unit variance. By discarding the first 40 artificial observations, we obtain
160 outlier free observations, whose standard error is about 1.5. This time se-
ries has been modified by adding 4 to its values at t = 60, t = 62 and t = 64,
by subtracting 5 from its value at t = 100 and adding 5 to its value at t = 101.
Time series data are displayed in figure 6. This is a very difficult pattern to de-
tect, and common procedures fail to perform the identification task correctly.
In order to discover the outliers in the data, the GA has been employed with
crossover probability pc = 0.75 while several mutation probabilities pm have

0 20 40 60 80 100 120 140 160
−10

−5

0

5

10

0 20 40 60 80 100 120 140 160
−4

−2

0

2

4

Fig. 6 Top panel, 160 observations simulated from a MA(2) model with additive
outliers (circles). Bottom panel, residuals and confidence limits (straight lines)

376 R. Baragona and F. Battaglia

Fig. 7 Density plot of
the distance, after 500
iterations, of the fitness
from the global maxi-
mum, as a function of the
constant c and probabil-
ity of mutation pm. The
probability of crossover is
pc = 0.75. The distance
(that is, the error) ranges
from 0 (white) through
13 (black). The gray lev-
els vary linearly between

been tried, from 0.001 to 0.05 with step 0.001. The inverse variance covari-
ance matrix has been assumed known, so that, if the ”right” solution is as-
sumed, then the global maximum of the fitness function equals the logarithm
of the maximized likelihood (4), that is log(L) = 66.7, minus 2ck, where c is
a proportionality constant. For 2.52 < c < 4.67 the maximum of the fitness
function coincides with the correct outlier identification while if c < 2.52, the
global maximum of the fitness function is attained by including, in addition,
the ”spurious” outlier at t = 23. If c > 4.67, then the global maximum of the
fitness function is attained by considering only the observations at t = 100
and t = 101 as outlying ones. This circumstance supports the choice c = 3, for

Fig. 8 Fitness as a func-
tion of the number of
iterations. pc = 0.75,
pm = 0.015 and c = 3.8.
Outliers were found at
t = 102 (iterations 0− 8);
t = 100, 101, 102 and
148 (iteration 9); t = 45,
100, 101 and 102 (iter-
ation 10); t = 100, 101
and 102 (iteration 11);
t = 100 and 101 (itera-
tions 12 − 97); t = 60,
62, 64, 100 and 101 (from
iteration 98 on: the elitist
strategy prevents losing
the best chromosome)

Evolutionary Computing in Statistical Data Analysis 377

instance. In figure 7 the difference between the global optimum of the fitness
function and its best value obtained in 500 generations is plotted as a func-
tion of both pm and c, this latter varying from 2 to 5 with step 0.1. We may
see that the choice of the mutation probability does not impact the quality of
the solution, while the choice of c is very important for the fitness function to
characterize the ”right” solution. Note that in figure 7 we do not consider the
”true” outlier set as the objective of the search, but only the maximization of
the fitness function is taken into account. In such perspective, we may observe
that the GA performance deteriorates only if c takes values in a rather narrow
band. The choice of c may be done by following the usual guidelines, that is
c has to be taken low to allow for ”high sensitivity,” and large for ”low sensi-
tivity.” As far as the relationship between the fitness function and the number
of iterations of the GA is concerned, we found the typical behavior displayed
in figure 8. Searching for outliers has been performed by assuming pc = 0.75,
pm = 0.015 and c = 3.8. The solution has been reached after 98 iterations out
of the 500 iterations allowed as a maximum. The persistence of the algorithm
in the local maximum corresponding to the outliers at t = 100 and t = 101 is
apparent. The usefulness of the mutation operator is clearly shown, because,
at this stage, the searching procedure moves towards the global maximum by
mutation. The size of the population seem to be the other parameter to take
under control if we want to obtain a near optimal solution in the shortest time.

7 Genetic Algorithms for Cluster Analysis

Methods for cluster analysis are the object of a large literature and are an
active research field specially in connection with data mining techniques. For
a comprehensive review see [18] and references therein. Let a set of n objects
be given and let p measurements concerned with real variables be available
for each and every object in the set. Objects and measurements define the
usual n × p data matrix. A line of the matrix is an observation of p variables
that characterize the corresponding object and a column is a variable. We
assume that a genuine cluster structure exists in the data set. Further, we
assume that a similarity (or dissimilarity) measure between each and every
pair of objects may be computed from the n×p measurements. An optimality
criterion is assumed to evaluate the internal cluster cohesion and the external
cluster dissimilarity (see, for instance, [19]). In multiobjective cluster analysis
two or more indexes are used to decide the cluster membership of an object.

A cluster analysis algorithm aims at grouping the objects so that the result-
ing cluster structure satisfies the optimality criterion. Every object belongs
to a cluster and if none is similar to any other it forms a cluster on its own.
This is a hard or crisp partition. We may consider fuzzy clustering by allowing
an object to belong to more than a cluster according to some ’membership
degree’.

378 R. Baragona and F. Battaglia

The evolutionary computing methods and in general the methods in the
class of meta-heuristics are appropriate for dealing with cluster analysis as
the number of groups that may be formed with n objects is large even if n
is rather small. If the number of groups may vary from 1 to a pre-specified
maximum G, then

N(G, n) =
G∑

g=1

1
g!

g∑
j=1

(−1)g−j

(
g
j

)
jn

is the number of possible clusters.

7.1 Genetic Clustering Algorithms

Many GAs-based procedures have been developed to solve cluster analy-
sis problems. Such procedures take several different features into account,
for instance large data sets, cluster constraints and special data structures.
GAs-based algorithms combined with the well known k-means and k-medoids
algorithms have been considered in [69]. Variable length chromosomes have
been suggested by [63] in the context of fuzzy cluster analysis. [54] deals with
cluster analysis of panel data. Multi-objective GAs-based cluster analysis has
been introduced in [4].

As a typical example of implementation of GAs in a cluster analysis prob-
lem we shall give a brief description of the algorithm Genetic Clustering for
Unknown K (GCUK) developed by [3]. GCUK essentially combines the k-
means algorithm with a GA procedure. There are two main improvements
with respect to the basic k-means algorithm, namely the number of groups is
unknown and does not have to be pre-specified, and the possibility that the
procedure yields a local optimum as a result is greatly reduced. The GCUK
algorithm requires that a suitable interval [gmin, gmax], where gmin > 1 and
gmax ≤ n has to be pre-specified. A fixed length chromosome is assumed
and � = pgmax, where p is the number of measurements. The characteristic
features of GCUK may be summarized as follows.

• Encoding. Any solution is coded as a string of gmax sets of centroid coor-
dinates. These latter are vectors of p floating-point numbers each of which
represents a cluster. Some of the centroids may correspond to empty clus-
ters. In this case the symbol # (’don’t care’) is used to make such circum-
stance clear. As g > 1 the number of symbols # cannot be greater than
gmax − 2. In general, the chromosome will contain, arranged in any order,
g centroids and gmax − g symbols #.

• Fitness function. Each chromosome is associated, as a measure of adap-
tation to the environment, an index of cluster validity. As evolutionary
algorithms usually maximize the fitness function the reciprocal of the in-
dex is assumed if the optimum corresponds to the smallest index value.

Evolutionary Computing in Statistical Data Analysis 379

• Initial population. Let s denote the population size. For i = 1, 2, . . . , s an
integer gi is generated uniformly randomly in [gmin, gmax] and gi objects
are chosen at random. Each one of these gi objects are assigned to a set of
p consecutive genes selected at random within the chromosome. The genes
that are left unassigned are marked with the symbol #.

The genetic operators implemented by GCUK are the roulette wheel rule
for selection, the single point crossover and mutation. However, it has to
be noticed that the crossover is implemented by assuming a centroid as
undivided, i.e. recombination is performed by exchanging centroids. More-
over, mutation is performed as usual in the presence of floating-point en-
coding. Each and every measurement may change with probability pm of
a small amount δ around its present value. δ is a number generated from
the uniform distribution in (0, 1) and the + or − sign occurs with equal
probability.

7.2 Cluster of Time Series

Grouping a set of time series in smaller subsets may provide us with inter-
esting information about the time series structure. For example, time series
that follow similar models, or are strongly correlated in some sense may be
assumed to belong to the same subset (cluster). Several different measures of
similarity (or dissimilarity) have been proposed. A comprehensive review of
cluster of time series may be found in [60]. Genetic algorithms were applied
by [7, 8] for clustering time series according to either time series cross corre-
lations or phase spectrum dissimilarities. In this latter case, the statistics for
directional data introduced by [62] has been used.

The problem that we want to examine here in some detail is concerned with
finding a partition of a set of time series according to their cross correlations
computed after pre-whitening. Each set of the estimated partition is a cluster
which groups together time series that may, for instance, be joint modeled,
or are sharing properties of interest, such as correlation with some composite
indicator. In this context, we shall define a cluster as a set (group) of time
series that satisfy the following condition ([89]). Given a set of k stationary
time series {x1, . . . , xk}, where xi=(xi,1, . . . , xi,n)′, i = 1, . . . , k, a subset C
which includes k′ series (k′ < k) is said to form a group if, for each of the
k′(k′ − 1)/2 cross-correlations ρi,j(τ), we have

|ρi,j(τ)| > c(α) (5)

for at least a lag τ between −m and m, and i, j ∈ C, i �= j. A positive
integer m has to be pre-specified which denotes the maximum lag. The cross-
correlations ρi,j(τ) have to be computed from the pre-whitened time series
(see, for instance, [25], p. 232). If all time series have n as a common number
of observations, then choosing the significance level α = 0.05, say, gives the

380 R. Baragona and F. Battaglia

figure c(α) = 1.96/
√

n in (5). The previously stated definition does not ex-
clude that a time series may belong to more than a single group. Then there
are possibly several allowable partitions to consider, and their number may
be very large. In [7] a GA is developed to find the optimal partition that
fulfills equation (5) in each cluster.

The fitness function is based on the k-min cluster criterion ([77]) and may
be defined

f+(C1, C2, . . . , Cg; g) =
g∑

ω=1

∑
i,j∈Cω ,i�=j

d+
i,j , (6)

where

d+
i,j =

max
τ ∈ (−m, m) (1 − |ρi,j(τ)|)

and g is assumed unknown. When using (6) each and every cluster needs to be
a group, according to (5), for, otherwise, any algorithm, unless prematurely
ended, will put together all time series into a single cluster.

It looks convenient to code any admissible time series partition in permuta-
tion form. Each time series is labeled with a positive integer number between
1 and k. Then, let (i1, i2, . . . , ik) be a permutation of (1, 2, . . . , k). Given
the significance level α, the permutation will be given its proper meaning as
follows.

1. The first time series, labeled i1, is taken as the first element of the first
cluster.

2. Let i2 be considered. If the maximum absolute value cross-correlation be-
tween the time series i1 and i2, computed after pre-whitening, is greater
than c(α), then i2 joins i1 into the first cluster. Otherwise, the time series
i2 is to become the first element of the second cluster.

3. The ij-th time series joins an existing cluster if (5) turns true for all pairs
belonging to it. If such a circumstance applies for more than one cluster,
then the cluster ω is chosen for which

∑
i∈Cω

d+
i,ij

is greatest.
4. The decoding procedure ends as soon as each time series belongs to a

cluster.

The choice criterion included into step 3 may look somewhat arbitrary, but
it proved necessary, for if, for instance, the time series were assigned so as to
maximize the overall criterion, then some undesirable penalization of small
clusters would be introduced.

In [7] three procedures were proposed for solution each of which was de-
signed by implementing TS, SA and GAs respectively and several simulation
experiments were carried out. Results showed that the three algorithms may
be considered effective in recovering correctly the cluster of time series. Fur-
ther computations on the same artificial data sets by using an implementation
of TA produce similar results (not shown here).

Evolutionary Computing in Statistical Data Analysis 381

8 Concluding Remarks

Evolutionary computing methods provide useful tools for handling many dif-
ficult problems that arise in statistical data analysis. However, as for the other
fields of application, their usefulness is best exploited if the particular prob-
lem involves the search in a finite, but very large, set of discrete parameters.
In order that a problem may really require that an evolutionary computing
method be implemented for its solution, essentially three circumstances have
to be verified.

1. The space of the solutions is quite large.
2. The problem may be coded directly in a natural meaningful way.
3. The objective function to be optimized has to be readily and quickly com-

puted.

In general, it is convenient to resort to evolutionary computing when the
objective function to optimize does not meet the usual mathematical re-
quirements, such as continuity, differentiability and convexity.

In statistical data analysis, we could see that there are problems that are
suited for use with evolutionary computing techniques, whilst others had bet-
ter solved by gradient-based techniques. For instance, it is not advisable to
employ an evolutionary computing method to estimate the parameters of an
ARMA model, but it is convenient to use evolutionary computing or other
meta-heuristics if subset ARMA models have to be identified. We reviewed
some important problems that are commonplace in statistical data analysis
and may need evolutionary computing techniques for reliable solution. These
are the estimation of some special non linear models, the identification of
threshold parameters in AR and ARCH models, the identification and esti-
mation of subset ARMA and VAR models, detection of location and type of
outlying observations, cluster of time series.

Other topics may be envisaged where evolutionary computing methods
may turn useful, though not always specific and detailed approach have been
fully developed. These are, for instance, the identification and estimation of
more general time series state dependent models, the filter design and wavelet
filtering, the detection of outliers in vector time series and in non linear time
series, the development of new methodological tools for statistical design of
experiments. For some of these problems guidelines were provided, however.
The algorithms that have been designed for threshold autoregressive model
identification and estimation may be extended to include multivariate models.
The filter design by genetic algorithm may be extended to wavelet filtering.
In the GA framework, development of symbolic regression systems has been
considered. In symbolic regression the algorithm is designed to find both the
functional specification from a given set of suited functions and the parameter
estimates. This same principle applies for selecting wavelets and parameters
to optimize the fitness function. Another interesting application for wavelet
filtering design is using evolutionary computing-based techniques to select

382 R. Baragona and F. Battaglia

the coefficients to be set to zero in the wavelet signal expansion. Moreover,
a promising field for applications may be the outlier detection in vector time
series linear models, and in non linear time series, either univariate or mul-
tivariate. Some procedures exist that may be investigated, generalized, and
checked by simulation studies. Needless to say, even the fields where evolu-
tionary computing proved to be particularly useful in dealing with statistical
data were not yet fully studied. Better understanding is needed on how the
evolutionary computing-based techniques work in some specific problems,
such as clustering time series, and better encoding and design are likely to
be able to greatly improve their performance.

Acknowledgements. Support from EU Commission under contract MRTN-CT-
2006-034270 Marie Curie Research and Training Network ”COMISEF” Computa-
tional Optimization Methods in Statistics, Econometrics and Finance, and from
Sapienza University of Rome is gratefully acknowledged.

References

1. Adanu, K.: Optimizing the garch model - An application of two global and two
local search methods. Computational Economics 28, 277–290 (2006)

2. Balcombe, K.G.: Model selection using information criteria and genetic algo-
rithms. Computational Economics 25, 207–228 (2005)

3. Bandyopadhyay, S., Maulik, U.: Genetic clustering for automatic evolution of
clusters and application to image classification. Pattern Recognition 35, 1197–
1208 (2002)

4. Bandyopadhyay, S., Maulik, U., Mukhopadhyay, A.: Multiobjective Genetic
Clustering for Pixel Classification in Remote Sensing Imagery. IEEE Transac-
tions on Geoscience and Remote Sensing 45, 1506–1511 (2007)

5. Bandyopadhyay, S., Mukhopadhyay, A., Maulik, U.: An improved algorithm
for clustering gene expression data. Bioinformatics 23, 2859–2865 (2007)

6. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A Simulated Annealing
Based Multi-objective Optimization Algorithm: AMOSA. IEEE Transaction
on Evolutionary Computation 12, 269–283 (2008)

7. Baragona, R.: A simulation study on clustering time series with metaheuristic
methods. Quaderni di Statistica 3, 1–26 (2001)

8. Baragona, R.: Further results on Lund’s statistic for identifying cluster in a
circular data set with application to time series. Communications in Statistics
– Simulation and Computation 32(3) (2003)

9. Baragona, R.: General local search methods in time series. Contributed pa-
per at the International Workshop on Computational Management Science,
Economics, Finance and Engineering, Limassol, Cyprus, March 28-30, 2003,
vol. 2003(10), pp. 28–59 (October 2003),
http://www.sciencedirect.com/preprintarchive

10. Baragona, R., Battaglia, F.: Multivariate mixture models estimation: a genetic
algorithm approach. In: Schader, M., Gaul, W., Vichi, M. (eds.) Between Data
Science and Applied Data Analysis, Series: Studies in Classification, Data Anal-
ysis and Knowledge Organization, pp. 133–142. Springer, Berlin (2003)

http://www.sciencedirect.com/preprintarchive

Evolutionary Computing in Statistical Data Analysis 383

11. Baragona, R., Battaglia, F.: Genetic algorithms for building double threshold
generalized autoregressive conditional heteroscedastic models of time series.
In: Rizzi, A., Vichi, M. (eds.) Compstat 2006 - Proceedings in Computational
Statistics, 17th Symposium Held in Rome, Italy, pp. 441–452. Springer, Berlin
(2006)

12. Baragona, R., Battaglia, F.: Outliers detection in multivariate time series by
independent component analysis. Neural Computation 19, 1962–1984 (2007)

13. Baragona, R., Cucina, D.: Double threshold autoregressive conditionally het-
eroscedastic model building by genetic algorithms. Journal of Statistical Com-
putation and Simulation 78, 541–559 (2008)

14. Baragona, R., Battaglia, F., Calzini, C.: Genetic algorithms for the identifica-
tion of additive and innovation outliers in time series. Computational Statistics
& Data Analysis 37, 1–12 (2001)

15. Baragona, R., Battaglia, F., Cucina, D.: A note on estimating autoregressive
exponential models. Quaderni di Statistica 4, 71–88 (2002)

16. Barnett, V., Lewis, T.: Outliers in Statistical Data, 3rd edn. John Wiley &
Sons, Chichester (1994)

17. Bearse, P., Bozdogan, H.: Subset selection in vector autoregressive models using
the genetic algorithm with informational complexity as the fitness function.
Systems Analysis Modelling Simulation 31, 61–91 (1998)

18. Berkhin, P.: Survey of clustering data mining techniques. Technical Report,
Accrue Software, San Jose, California (2002),
http://citeseer.nj.nec.com/berkhin02survey.html

19. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans-
actions on Systems, Man and Cybernetics – Part B: Cybernetics 28, 301–315
(1998)

20. Bollerslev, T.: A generalized autoregressive conditional heteroskedasticity.
Journal of Econometrics 31, 307–327 (1986)

21. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting
and Control, 3rd edn. Prentice Hall, Englewood Cliffs (1994)

22. Bozdogan, H.: Information complexity criteria for detecting influential observa-
tions in dynamic multivariate linear models using the genetic algorithm. Journal
of Statistical Planning and Inference 114, 31–44 (1988)

23. Bozdogan, H., Bearse, P.: ICOMP: A new model-selection criterion. In: Bock,
H.H. (ed.) Classification and Related Methods of Data Analysis, pp. 599–608.
Elsevier Science Publishers, Amsterdam (2003)

24. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition 30, 1145–1159 (1997)

25. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting.
Springer, New York (1996)

26. Brooks, C.: A double-threshold GARCH model for the French Franc
Deutschmark exchange rate. Journal of Forecasting 20, 135–143 (2001)

27. Broudiscou, A., Leardi, R., Phan-Tan-Luu, R.: Genetic algorithms as a tool
for selection of D-optimal design. Chemometrics and Intelligent Laboratory
Systems 35, 105–116 (1996)

28. Chatterjee, S., Laudato, M.: Genetic algorithms in statistics: procedures and
applications. Communications in Statistics – Theory and Methods 26(4), 1617–
1630 (1997)

29. Chatterjee, S., Laudato, M., Lynch, L.A.: Genetic algorithms and their statisti-
cal applications: an introduction. Computational Statistics & Data Analysis 22,
633–651 (1996)

http://citeseer.nj.nec.com/berkhin02survey.html

384 R. Baragona and F. Battaglia

30. Chen, C.W.S.: Subset selection of autoregressive time series models. Journal of
Forecasting 18, 505–516 (1999)

31. Chen, C., Liu, L.-M.: Joint estimation of model parameters and outlier effects in
time series. Journal of the American Statistical Association 88, 284–297 (1993)

32. Chen, R., Tsay, R.S.: Functional-coefficient autoregressive models. Journal of
the American Statistical Association 88, 298–308 (1993)

33. Chiogna, M., Gaetan, C., Masarotto, G.: Automatic identification of seasonal
transfer function models by means of iterative stepwise and genetic algorithms.
Journal of Time Series Analysis 29, 37–50 (2008)

34. Chitre, Y., Dhawan, A.P.: M-band wavelet discrimination of natural textures.
Pattern Recognition 32, 773–789 (1999)

35. Choy, K.: Outlier detection for stationary time series. Journal of Statistical
Planning and Inference 99, 111–127 (2001)

36. Crawford, K.D., Wainwright, R.L.: Applying genetic algorithms to outlier de-
tection. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International Con-
ference on Genetic Algorithms, pp. 546–550. Morgan Kaufmann, San Mateo
(1995)

37. Davis, R.A., Lee, T.C.M., Rodriguez-Yam, G.A.: Structural break estimation
for nonstationary time series models. Journal of the American Statistical As-
sociation 101, 223–239 (2006)

38. Davis, R.A., Lee, T.C.M., Rodriguez-Yam, G.A.: Break detection for a class
of nonlinear time series models. Journal of Time Series Analysis 29, 834–867
(2008)

39. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica 50, 987–1007 (1982)

40. Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, New York
(1998)

41. Fogel, D.B.: Evolutionary computation: toward a new philosophy of machine
intelligence. IEEE Press, New York (1998)

42. Forlin, M., Poli, I., De March, D., Packard, N., Gazzola, G., Serra, R.: Evo-
lutionary experiments for self-assembling amphiphilic systems. Chemometrics
and Intelligent Laboratory Systems 90, 153–160 (2008)

43. Gaetan, C.: Subset ARMA model identification using genetic algorithms. Jour-
nal of Time Series Analysis 21, 559–570 (2000)

44. Galeano, P., Peña, D., Tsay, R.S.: Outlier detection in multivariate time series
by projection pursuit. Journal of the American Statistical Association - Theory
and Methods 101, 654–669 (2006)

45. Ghaddar, D.K., Tong, H.: Data transformation and self-exciting threshold au-
toregression. Applied Statistics 30, 238–248 (1981)

46. Glendinning, R.H.: Estimating the inverse autocorrelation function from outlier
contaminated data. Computational Statistics 15, 541–565 (2000)

47. Glover, F., Kelly, J.P., Laguna, M.: Genetic algorithms and tabu search: hybrids
for optimization. Computers and Operations Research 22, 111–134 (1995)

48. Gomez, V., Maravall, A., Peña, D.: Missing observations in ARIMA mod-
els: Skipping approach versus additive outlier approach. Journal of Economet-
rics 88, 341–363 (1999)

49. Gourieroux, C., Monfort, A., Renault, E.: Indirect inference. Journal of Applied
Econometrics 118, S85–S118 (1993)

50. Haggan, V., Ozaki, T.: Modelling nonlinear random vibrations using an
amplitude-dependent autoregressive time series model. Biometrika 68, 189–196
(1981)

Evolutionary Computing in Statistical Data Analysis 385

51. Heredia-Langner, A., Carlyle, W.M., Montgomery, D.C., Borror, C.M., Runger,
G.C.: Genetic algorithms for the construction of D-optimal designs. Journal of
Quality Technology 35, 28–46 (2003)

52. Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression, 2nd edn. John Wi-
ley & Sons, Hoboken (2000)

53. Justel, A., Peña, D., Tsay, R.S.: Detection of outlier patches in autoregressive
time series. Statistica Sinica 11, 651–673 (2001)

54. Kapetanios, G.: Cluster analysis of panel data sets using non-standard optimi-
sation of information criteria. Journal of Economic Dynamics and Control 30,
1389–1408 (2006)

55. Kapetanios, G.: Variable selection in regression models using nonstandard opti-
misation of information criteria. Computational Statistics & Data Analysis 52,
4–15 (2007)

56. Keskinturk, T., Er, S.: A genetic algorithm approach to determine stratum
boundaries and sample sizes of each stratum in stratified sampling. Computa-
tional Statistics & Data Analysis 52, 53–67 (2007)

57. Larrañaga, P., Lozano, J.A.: Estimation of distribution algorithms: a new tool
for evolutionary optimization. Kluwer, Boston (2002)

58. Li, W.K., Lam, K.: Modelling asymmetry in stock returns by threshold autore-
gressive conditional heteroscedastic model. The Statistician 44, 333–341 (1995)

59. Li, C.W., Li, W.K.: On a double-threshold autoregressive heteroscedastic time
series model. Journal of Applied Econometrics 11, 253–274 (1996)

60. Liao, T.W.: Clustering of time series data - a survey. Pattern Recognition 38,
1857–1874 (2005)

61. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, G.: Towards a new evolution-
ary computation. Advances in estimation of distribution algorithms. Springer,
Berlin (2006)

62. Lund, U.: Cluster analysis for directional data. Communications in Statistics –
Simulation and Computation 28(4), 1001–1009 (1999)

63. Maulik, U., Bandyopadhyay, S.: Fuzzy Partitioning Using Real Coded Vari-
able Length Genetic Algorithm for Pixel Classification. IEEE Transactions on
Geosciences and Remote Sensing 41, 1075–1081 (2003)

64. Minerva, T., Poli, I.: Building ARMA models with genetic algorithms. In:
Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E.,
Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight
2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp.
335–342. Springer, Heidelberg (2001)

65. Mitchell, M.: An introduction to genetic algorithms. MIT Press, Cambridge
(1996)

66. Mühlenbein, H., Paas, G.: From Recombination of Genes to the Estimation
of Distributions I. Binary Parameters, Proceedings of the 4th International
Conference on Parallel Problem Solving from Nature, September 22-26, 1996,
pp. 178–187 (1996)

67. Ong, C.S., Huang, J.J., Tzeng, G.H.: Model identification of ARIMA family
using genetic algorithms. Applied Mathematics and Computation 164, 885–912
(2005)

68. Pasia, J.M., Hermosilla, A.Y., Ombao, H.: A useful tool for statistical estima-
tion: genetic algorithms. Journal of Statistical Computation and Simulation 75,
237–251 (2005)

69. Paterlini, S., Minerva, T.: Evolutionary approaches for cluster analysis. In:
Bonarini, A., Masulli, F., Pasi, G. (eds.) Soft Computing Applications, pp.
167–178. Springer, Berlin (2003)

386 R. Baragona and F. Battaglia

70. Peña, D.: Influential observations in time series. Journal of Business & Eco-
nomic Statistics 8, 235–241 (1990)

71. Priestley, M.B.: Non-linear and Non-stationary Time Series Analysis. Academic
Press, London (1988)

72. Qian, G., Zhao, X.: On time series model selection involving many candi-
date ARMA models. Computational Statistics & Data Analysis 51, 6180–6196
(2007)

73. Reeves, C.R., Rowe, J.E.: Genetic algorithms - Principles and Perspective: A
Guide to GA Theory. Kluwer Academic Publishers, London (2003)

74. Robles, V., Bielza, C., Larrañaga, P., González, S., Ohno-Machado, L.: Op-
timizing logistic regression coefficients for discrimination and calibration us-
ing estimation of distribution algorithms. TOP (2008) (published on line)
doi:10.1007/s11750-008-0054-3

75. Roverato, A., Poli, I.: A genetic algorithm for graphical model selection. Journal
of the Italian Statistical Society 7, 197–208 (1998)

76. Sabatier, R., Reyne‘s, C.: Extensions of simple component analysis and simple
linear discriminant analysis using genetic algorithms. Computational Statistics
& Data Analysis 52, 4779–4789 (2008)

77. Sahni, S., Gonzalez, T.: P-Complete approximation problems. Journal of the
Association for Computing Machinery 23, 555–565 (1976)

78. Sessions, D.N., Stevans, L.K.: Investigating omitted variable bias in regression
parameter estimation: A genetic algorithm approach. Computational Statistics
& Data Analysis 50, 2835–2854 (2006)

79. Tong, H.: Non Linear Time Series: A Dynamical System Approach. Oxford
University Press, Oxford (1990)

80. Tsay, R.S., Peña, D., Pankratz, A.E.: Outliers in multivariate time series.
Biometrika 87, 789–804 (2000)

81. van Dijk, D., Terasvirta, T., Franses, P.H.: Smooth transition autoregressive
models - A survey of recent developments. Econometric Reviews 21, 1–47 (2002)

82. Van Emden, M.H.: An analysis of complexity, vol. 35, Mathematical Centre
Tracts, Amsterdam (1971)

83. Vitrano, S., Baragona, R.: The genetic algorithm estimates for the parameters
of order p normal distributions. In: Bock, H.-H., Chiodi, M., Mineo, A. (eds.)
Advances in Multivariate Data Analysis, Series: Studies in Classification, Data
Analysis and Knowledge Organization, pp. 133–143. Springer, Berlin (2004)

84. Wei, W.W.S.: Time Series Analysis. Addison-Wesley, Redwood (1990)
85. Winker, P.: Optimization Heuristics in Econometrics: Application of Threshold

Accepting. John Wiley & Sons, Chichester (2001)
86. Winker, P., Gilli, M.: Applications of optimization heuristics to estimation and

modelling problems. Computational Statistics & Data Analysis 47, 211–223
(2004)

87. Wu, B., Chang, C.-L.: Using genetic algorithms to parameters (d, r) estimation
for threshold autoregressive models. Computational Statistics & Data Analy-
sis 38, 315–330 (2002)

88. Yang, Z., Tian, Z., Yuan, Z.: GSA-based maximum likelihood estimation for
threshold vector error correction model. Computational Statistics & Data Anal-
ysis 52, 109–120 (2007)

89. Zani, S.: Osservazioni sulle serie storiche multiple e l’analisi dei gruppi. In:
Piccolo, D. (ed.) Analisi Moderna delle Serie Storiche, Franco Angeli, Milano,
pp. 263–274 (1983)

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 387–423.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Meta-heuristics for System Design Engineering

Rachid Chelouah, Claude Baron, Marc Zholghadri, and Citlalih Gutierrez*

Abstract. Industries have to design and produce performing and reliable systems.
Nevertheless, designers suffer from the diversity of methods, which are not really
adequate to their needs. Authors highlight the need of close interactions between
product and project design, often treated either independently or sequentially,
necessary to improve system design, and logistics in this context. Strengthening
the links between product design and project management processes is an ongoing
challenge, and this situation relies on perfect control of methods, tools and know-
how, both on the technical side as well as on the organizational side. The aim of
our work is to facilitate the project manager’s decision making, thus allowing him
to define, follow and adapt a working plan, while still considering various
organizational options. From these options, the project manager chooses the
scheme that best encompasses the project’s objectives with respect to costs, delay
and risks, without neglecting performance and safety. To encourage the project
manager to explore various possibilities, we developed and tested a heuristic
based on ant colony optimization and evolutionary algorithm adapted for multi-
objective problems. Its hybridization with a tabu search and a greedy algorithm
were performed in order to accelerate convergence of the research study and to
reduce the cost engendered by the evaluation process. The experiments carried out
reveals that it was possible to offer the decision maker a reduced number of
solutions that he can evaluate more accurately in order to choose one according to
technical, economic and financial criteria.

Rachid Chelouah
Laboratoire des Sciences des Systèmes d'Information
EISTI, avenue du Parc, 95011 Cergy-Pontoise Cedex
Tel.: 01.34.25.10.10; Fax : 01.34.25.10.00
e-mail: rachid.chelouah@eisti.fr

Claude Baron and Citlalih Gutierrez
LAboratoire Toulousain des Technologies et Ingénierie des Systèmes (LATTIS),
INSA, 135 avenue de Rangueil,
31077 Toulouse cedex 4, France
Tel.: +33 (0)5 61 55 98 26
e-mail: claude.baron@insa-toulouse.fr

Marc Zholghadri
Laboratoire de l’Intégration du Matériau au Système, Université de Bordeaux,
351, Cours de la Libération, 33 405 TALENCE Cedex
e-mail: marc.zolghadri@ims-bordeaux.fr

388 R. Chelouah et al.

Keywords: co-design, System Engineering, Model Driven Engineering, product
design, project organization, multi-objective optimization, ant colony
optimization, hybrid algorithms, tabu search, greedy search, decision support.

1 Introduction

The growing complexity and diversity of technologies lead to design always more
performing and reliable systems in shorten times without decreasing for that their
quality. This phenomenon involves a development and a renewal of methodologies
and processes of System Design, in order to obtain a better organized contribution
of all the available information and an optimal satisfaction of the requirements
defined in terms of delays, economy, safety and quality constraints.

The steps of evaluation and decision in these processes are unanimously
recognized as being essential to ensure performances and quality of the process
results. Nevertheless, researchers, as well as decision makers in companies, are
often extremely deprived in front of the quantity and the variety of the methods
and practices. The instrumentation of the activity of design was, in a first phase,
focused on the product by integrating collaborative processes for example in the
paradigm of concurrent engineering.

A certain maturity in this field having been reached, we think that it is the
interaction between the object of the design (the product) and the process of
design (the project) which must be now studied and optimized. Indeed, product
and project are often treated either in an independent way (what causes
inconsistencies) or in a sequential way (what causes additional delays). An
analysis of the current practices in these fields highlights the need to bring closer
the two processes of design product and project organization, on a methodological
level but also by means of dedicated tools, in order to obtain more coherence in
the decisions and thus more efficiency.

Thus, the general scientific objective is to associate the various processes that
participate to the global design process, to identify the exchanges between these
processes, their nature and their level, and to make them closely collaborate in
order to guide and to optimize the process of design. In front of the complexity of
the problems to be solved, we will rely on the one hand on the standards of
System Engineering and on the other hand on the recommendations of the Model
Driven Engineering, MDE in short [5], as methodological bases.

In the end, we propose an original approach that integrates product design and
project management processes. In this context, our first objective is to help the
project manager define, follow and adapt a working plan.

Our second objective is to make the project management process more robust
and adaptive in the face of technical, social or economic disturbances. Obviously
as regards the project, our goal is to respect the defined target as closely as
possible. We have several possibilities for achieving our goal. These possibilities
are called scenarios of a project. To find these good scenarios of a project, we
have a multitude of possibilities. As we can not test all these possibilities,
otherwise we will have a combinatorial explosion, so we rely on heuristics such as
ACO (Ant Colony Optimization) and EA (Evolutionary Algorithm).

Meta-heuristics for System Design Engineering 389

The goal of this study is to experiment with an hybrid evolutionary algorithm
with tabu and greedy searches and to compare these results with those obtained
with ant colony optimization and its hybridizations with tabu and greedy searches
presented in [8].

This work is original, because there is no work that deals with the coupling
between the design and implementation of industrial projects, and the using
heuristics to find a good scenario for a project, hence the title of the paper.

The paper is structured as follow: Section 2 presents an analysis of the possible
connections between the decomposition into several processes proposed by the
EAI 632 (Enterprise Application Integration) standard to model the global design
process and the model transformation approach recommended by System
Engineering organisms. Section 3 focuses on the System Design and Technical
Management processes and illustrates the connections we see between these two
processes (level and content). Section 4 shows how to generate and select the best
scenarios. The obtained results are presented in Section 5, and Section 6 concludes
with the contribution of this methodology to project management and indicates
future work envisaged.

2 The Multi-process Point of View of the Ieee 15288 and Eia
632 Standards

Initial planning for the ISO/IEC 15288:2002(E) standard started in 1994 when the
need for a common Systems Engineering process framework was recognised. In
2004 this standard was adopted as IEEE 15288. The ISO/IEC 15288 is a Systems
and software Engineering standard covering processes and life cycle
stages(processes).

According to AFIS (Association Française d'Ingénierie Système), system
engineering is “an interdisciplinary collaborative approach to derive, evolve, and
verify a life-cycle balanced solution which satisfies customer expectations and
meets public acceptability“.

2.1 The IEEE Standard

The ISO/IEC 15288 is a Systems and software Engineering standard covering
processes and life cycle stages(processes). The standard defines processes divided
into four categories: technical processes, project processes, agreement processes,
and enterprise processes. Each description contains a purpose, outcomes, and
activities. Example life cycle stages described in the document are: concept,
development, production, utilisation, support, and retirement.

Agreement processes

The first step in the systems engineering process is to establish an agreement with
the customer, an order to build a new software product.

390 R. Chelouah et al.

Project processes

After an agreement is made, the planning of the project will begin and this results
in a project plan, which can be modified during the technical processes. In fact,
the project processes are not sequential processes and go in parallel with the whole
project, because at each moment a project needs planning, assessment and control

Technical processes

The technical processes cover the design, development and implementation phase
of a system life cycle. In the earlier agreement phase top level (or customer)
requirements have been established

Evaluation processes

Another loop in the model is the evaluation loop. During and after the creation of
a software product the following questions have to be answered: Does the product
do what it is intended to do? Are the requirements met? and as mentioned in the
previous paragraph: Are the requirements valid and consistent? How is the
requirements prioritization?

2.2 The EIA 632 Standard

This section presents the main principles of System Engineering about model
transformations on which our research relies, coupled to the recommendations of
the EIA 632 standard on the decomposition of the global design process into
several partner processes.

The EIA 632 standard [1] covers all the processes involved in the
development modeling and thus goes beyond the pure technical processes to
define a system; it covers the different stages from product realization till their
use by the customer. Moreover, it takes into account the contractual supply and
acquisition processes (see Figure 1). In this standard, the technical process is
also connected to two other partner processes technical management and
technical evaluation processes.

The EIA-632 standard associates five partner processes into the general system
development process: technical management, acquisition and supply, system
design, product realization and technical evaluation. Each process is then
decomposed into several tasks that the standard recommends to plan and realize in
order to lead a good development process. Each task of the project presents
several options of realization, each option requiring specific resources, as the
Section 4 clarifies. The various possibilities to organize a process are called
scenarios. The generation of these scenarios must be performed on the basis of
technical and non technical considerations related to project management (costs,

Meta-heuristics for System Design Engineering 391

Acquisition
Request

System
Products

Fig. 1 Processes and their relationship for engineering a system (the EIA 632 standard)

quality, certification, times and supply constraints, risks, etc.). We propose to
obtain the different scenarios from a generic representation of the process, using a
graph connecting the project tasks and by collecting the several options to achieve
them.

392 R. Chelouah et al.

3 Towards a Close Collaboration between System Design,
Technical Management and Acquisition, and Supply
Processes

We simultaneously refer now to the EIA 632 standard for the decomposition of
the general design process into multi collaborating processes and to the MDE
recommendations to represent model transformations; to illustrate our researches,
this paper only consider the System Design and Technical Management processes
(as defined in Figure1). Design is defined as “a set of methods and processes to
build a specified system“. Prototype design work makes easier to develop,
integrate, test and maintain a projected system: it is also part of project
management work.

3.1 Modeling Proposition for the System Design Process

The System Design Process is used to convert agreed-upon requirements of the
acquire into a set of realizable products that satisfy acquire requirements. The
developer has to define logical solutions representations that conform to the
technical requirements of the system as well as physical solution representations
that agree with the assigned logical solution representations, derived technical
requirements, and system technical requirements.

As previously mentioned, one of our objectives is to define a reference design
process that connects both representations. Even if the EIA-632 doest not exactly
define a Process (steps and guidelines by which to develop a system), a kind of
generic design process, as the one on Figure 2, can be extracted, thus leading to a
hierarchical 'system' architecture that is consistent with an implementation taking
into account suppliers and reuses.

Fig. 2 Reference process

Meta-heuristics for System Design Engineering 393

Fig. 3 Implemented process

The survey methodologies for designing systems used in industry leads us to do
the following: there are very few methodologies based UML and taking into
account the "formal verification". The idea first defended in this paper is based on
the idea of linking the appearance design by building a UML model with formal
verification.

The second idea advocated in this paper is to add an additional treatment
requirements before the design cycle to make explicit the distinction between
functional requirements and non-functional.

The diagrams SysML requirements allow the expression of these two types of
demands by opposition UML which use cases deal only functional requirements.

The implementation of this generic process (see Figure 3) supposes to join
some methods and tools to it, and to detail and complete it if necessary. Our
proposition is to build a step-by-step formalization by successive transformations
of UML/SysML diagrams that would lead to a logico-temporal architecture of the
system. Thus, it is necessary to envisage developing a logical verification interface
from this very step. A prototype of tool, HiLeS, has been developed in that
purpose; it allows the description of this type of architecture and its verification
with Petri nets (tool TINA) [7, 13, 15].

394 R. Chelouah et al.

With these complementary data, decomposition into blocks, modules, or
building-blocks (to adopt the EIA-632 vocabulary) can be elaborated. That's what
we call the partitioning operation.

The general process of Figure 3 illustrates the mapping of the functional design
with the structural design to lead to modules. This representation is very
interesting because it illustrates the progressive modelling process by a succession
of models transformations on the one hand, and the mapping of two
complementary models (functional and structural) to obtain a detailed and
effective modelling solution on the other hand.

3.2 Mapping of the System Design Process with the Technical
Management Process

The term ‘Management’ defines all the tasks and the organisation for conducting an
operation from the starting phase to the ‘successfully’ final phase. Technical
Management is one of the five basic development processes defined in EIA-632
standard. This standard distinguishes three Technical Management sub-processes:
these are to be used to plan, assess, and control the technical work efforts required to
satisfy the established agreement. The relationship between them is shown in Figure 4.

For example, the Planning Process is used to support enterprise and project
decision making and to prepare necessary technical plans that support and
complement project plans to:
− arrive at a decision to supply services according to an external solicitation;
− determine whether to proceed with an internal enterprise project for a new

product or a product improvement;
− guide the work efforts that will meet the requirements of an established

agreement, etc.

This means that if any decisions should be made in terms of potential
collaboration with partners, this sub-process have to provide sufficient and
necessary data for the management purposes. The connection between this phase
and the design of network of partners will be clearly defined in the next section.

Considering the connections between System Design and Technical Management
processes, we identified the following difficulties (roughly represented on Figure 5):

− mapping of the functional specifications with the structural architecture of the
product into components,

− mapping between the product structure and the project organization.

Our proposal is to establish the coupling of the two processes at the stage of
high level design where the system is represented with functional blocks, in a
hierarchical architecture. The designer has already checked the conformity of the
description and the logical architecture, on the HiLeS platform, by the TINA
procedure, based on temporal Petri nets verification. Then, (s)he has to envisage
the technological choices to take to materialize the design, the arbitrations
between hardware and software, the geographical and physical distribution of the
embedded systems in the complete system, etc.

Meta-heuristics for System Design Engineering 395

Fig. 4 Technical Management sub-processes

Fig. 5 Connections between System Design and Technical Management processes

The precondition to all these choices is to know the exact composition of each
multifunctional module and its physical positioning in the system: it’s the
partitioning operator, introduced here above. Once the modules thus defined, it
becomes possible to specify the design needs to the suppliers in the form of
‘‘supplies’’ and to compare several technologies or several options inside a given
technology. These supplies can be assimilated to tasks and used as basic models to
schedule the project.

We start the project management process at the logical functional architecture
which we organize until the definition of the tasks to plan. To define these tasks,
we propose to use the supplies definition, obtained by the fusion of the functional

Control
Process

Assessment
Process

Plans &
directives

Plans &
directives

Request for
replanning Outcomes

Status

Acquisition documents, Agreement,
Outcomes and Feedback

Plans, Directives and Status

Planning
Process

396 R. Chelouah et al.

architecture derived by the design product process with the organic decomposition
of the system. This fusion must also illustrate the definition of the reusable
modules, defining a functional operation, a test, etc. It supposes an expert
technical knowledge, formalized and supplemented by the options defined in the
specifications. It must be described in the structural model: constitutive elements
of the system, active elements supporting the information (data processing
architecture), requirements of assembly and conditioning.

The non-functional considerations are brought in confrontation with the
functional requirements to lead to a total representation of the System. But the
first consequence of this fusion of models is the definition of supplies
(partitioning) and of tasks to get to a true coordination between design and project
management (Figure 6).

Fig. 6 Project Management process

We can summarize and visualize the whole methodology by the association of
two processes in "Y" shown in Figure 6, with the integration of the technical side
(conceptual and support information) and the management side (tasks or activities
and the available means). These two "Y" process are represented in parallel in
Figure 7.

Once this association done, the project manager needs to choose between the
different technical and non-technical options to organize his project. He thus
needs the help of decision support methodologies and tools. We offer him to

Meta-heuristics for System Design Engineering 397

Fig. 7 Association of the processes

automatically generate a reduced set of scenarios, between which he could choose
some that allow him to reach his objectives best, thanks to the use of advanced
evolutionary algorithms and simulations, with the GESOS tool [3]. In this paper,
to present the best scenarios to the project manager, we implemented an aided
decision platform using ant colony optimization hybridized with tabu and gready
search. This algorithm is presented in Section 4.

3.3 Mapping with the Design of Network of Partners

In the past section, two main difficulties were addressed: functional-structural
architecture mapping and product structure-project mapping. However, one the
main possibilities that companies have is to co-work with others in order to
accomplish their project. Till now, this part of problem is often postponed to
business strategy or marketing strategy. But, the collaboration with partners would
bring complicated problems to solve in the daily tasks of every worker and
manager of firms. This means that a crucial attention should be paid to this aspect,
even in the engineering part of the problem.

One may see intuitively, that the product structure is linked to the partners’
selection. More precisely, there are mutual constraints that all the actors should
take account in their specific decisions: project managers, product designers and
network of partners’ managers too.

Let us look deeply on the way that the product structural architecture is related
to the network of partners.

398 R. Chelouah et al.

This question is closely connected to the way that the modules are defined.
During any concept development phase of the product lifecycle, engineers look
first for technological solutions for any functional requirements of an acquire.
Somehow they answer to the very classical question of “make or buy” and this for
any module. We can roughly distinguish two classes of items for every single
block of a product: in-house made item (make) or out-house item (buy). If in a
given structure, every building block of the product has items that belong to these
two classes, it means roughly that long-term, mid-term and short-term problems
have to be solved. In the strategic level, any out-house item would mean that at
least one new partner should participate to the development first and to the
manufacturing then. At the mid-term and short-term, it means that manufacturing
management system has to take account of explicit constraints (so anticipative
elements of the collaboration such as the quality of made items) and also implicit
constraints (hardly defined and therefore controllable aspects of collaboration) of
every single supplier of these out-house items. To resume, one can talk about the
synchronization situations. The Figure 8 illustrates the way that the architecture of
a product and therefore the decisions made concerning the in-house and out-house
items can modify the complexity of synchronization situations. The product at the
left has four building blocks and each of them has both in/out kinds of items.
Therefore, there are at least 4 synchronization situations (between in-house items
and coming from outside and partners out-house items). If the product can be
modified according to the structure proposes in the right, there will remain at least
3 synchronization situations. As a consequence, when any structure of the product
will be determined and used for the future development, the managers and
engineers should be aware of these problems.

One of the great issues of the co-design paradigm is to study and model these
connections and provide recommendations for both engineers (for their design
tasks) and managers (for their negotiation and collaboration tasks with partners).

Fig. 8 Illustration of synchronisations

What is discussed in this section show that the subject is quite complicated and
further works must be done by determining how the product structural architecture
should takes account of the chosen partners’ constraints and possibilities.

Meta-heuristics for System Design Engineering 399

After having presented the diagram in Y to study the couplings possible between
the integration of the technical side and the management side, and as we announced
at the end of paragraph 3.2, this section presents two adaptations of an ant colony
optimization and evolutionary algorithm as applied to selection a good scenarios.
Two possible hybridizations of this methodology are considered: combining first a
global search by ant colony (ACO) and evolutionary algorithm (EA) and a local
search using the tabu search (TS) or the greedy search (GS) algorithms. The
obtained hybrid algorithms are called "HACOTS" and "HACOGS", respectively
for ACO, and "HEATS" and "HEGS" respectively for EA..

4 Generation and Selection of the Scenarios

With any a project, the project manager has a limited set of resources and must
respect imperative delivery constraints. He needs to establish an initial planning,
on the basis of an a priori scheduling of tasks. In addition, should a risk occur
during the project, he must be able to readjust this planning in order to maintain
the project objectives as closely as possible. Considering other options to carry out
some of the tasks is often an option. This section presents how we propose to
include these elements in a representation of the project starting from of graph.

4.1 Generic Representation of Scenarios

The representation that we propose is very close to the formalism suggested by
Beck [6] for scheduling with alternate activities. This section introduces the graph
elements step by step.

The first types of handled constraints are the temporal relations between tasks,
specifically the relationships of precedence. Figure 9 presents an example of a
graph project including 4 tasks; tasks are presented by numbered squares and
relations of precedence by arcs. A possible Gantt diagram can be associated to this
graph: Task 1 and Task 2 must be achieved before Task 3, Task 4 can be executed
independently of the others.

The expression of the relationships of precedence allows us to consider
classical problems of scheduling, based on the assumption that the tasks and their
relations are entirely defined. However, in our problem, the final organization of
the project is unknown: uncertainties subsist regarding the tasks to be achieved.

Fig. 9 Example of a project graph with its associated GANTT diagram

400 R. Chelouah et al.

We have to deal with several possible options to achieve the tasks, but we also
have to make some choices regarding which tasks (or set of tasks) to achieve. That
is why the notion of choice exists in the project and why decision nodes,
represented by a pair of nodes, appear in the project graph. The first circle, with a
double outline, represents an opening node and the second, with a simple outline,
a closing node. A single sequence of tasks (a path) is then allowed between these
nodes; they are the equivalent to the “exclusive” or operator for tasks sequences.
We define a path inside a choice as a set of elements (tasks or nodes) belonging to
the same sequence for a choice.

To complete this representation we introduce the “and“, useful to represent two
tasks belonging to the same choice that appear just after an opening node, the
equivalent of the logic "and". To symbolize this relation we use double vertical
lines (see Figure 10).

Fig. 10 Example of a project graph with "or" and "and"

This formalism represents all the decisions what can be taken during a project.
Note that each task can be implicitly developed by a choice between several
options of achievement, as seen on Figure 11, in which the option Y of task X is
noted TXOY.

This allows a synthetic representation of the different project progress
possibilities. From this model, it is easy to represent the structures of complex
projects, from which different scenarios will be generated.

Fig. 11 Explicit development of a
task in the graph project: each task
represents an elementary choice to
be made among different options

Meta-heuristics for System Design Engineering 401

4.2 Searching for "Good" Scenarios

Project design generally engenders several different options, leading to numerous
scenarios for managing the project. These scenarios can be optimized according to
several criteria (cost, time, performance, etc). This section defines what an
optimum scenario is and how to obtain it. The main difficulty comes from the
multi-objective characteristic of the problem: the optimum is not a simple scalar,
but a vector of scalars with one component by criterion. These optimized vectors
represent the best compromise solution, called the Pareto optimal set, and
constitute the Pareto front [20] in the objective space.

Before defining what we call a good scenario, let us present the optimal
criterion which defines this Pareto front. Let us consider a problem of
minimization, with v and u, two vectors of decision. If all components of v are
strictly lower or equal to those of u, with at least one strictly lower component,
then the vector v dominates the vector u in the sense of Pareto (see Equation 1):

(1)

The Pareto front is constituted by the set of vectors that are not dominated in
the sense of Pareto. In the rest of this article, every time we speak about
dominance, we shall use the dominance in the sense of Pareto. We will use this
notion of dominance to filter the scenarios and to preserve only those belonging to
the population of Pareto optimal or (Pareto optimal scenarios) called Pfp.

Having defined the procedure which allows us to select the optimum scenarios,
we now explain how we answer the project leader's needs, by offering a method to
obtain the set of optimal solutions constituting this Pareto front .

4.3 Hybrid Methods to Select the Best Scenarios

4.3.1 Ant Colony Optimization

In 1999, Di Caro and Gambardella [9] defined the Ant Colony Optimization
metaheuristic. Behavior of real ant colonies inspired Ant Colony Optimization of
artificial systems, which was subsequently used to solve discrete optimization
problems. More generally, research on the collective behaviors of social insects
seems to provide methods for the design of combinatory optimization algorithms.
In our case, we adapt this collective behavior to the problems of multi-objective
optimization.

In nature, real ants are able to find the shortest path from a food source to their
nest without using visual signals: the ants lay down "pheromone" (chemical
signal) trails on their path outward towards the food source and again up on return
towards the nest. At the beginning, the path is randomly chosen, but among all the
paths from the nest to the food source, the shortest path quickly becomes the most
marked, because the ants taking it arrive more quickly at the nest and statistically
have a greater chance of taking it when they return towards the food source.

402 R. Chelouah et al.

Hence, the shorter path receives a higher amount of pheromone and this incites a
greater number of ants to choose the shorter path. Due to this positive feedback
process, very soon all the ants choose the shorter path.

In classical Ant Colony Optimization, after the initialization phase, one can
find three sequential operators (appearing with a white background in Figure 12a):
(1) the ant colony generating paths from nest to food source, (2) evaporation of the
pheromone trail, thus reducing its attractive strength, and (3) compensation of the
best ants, laying down pheromone trails on the paths.

To adapt this ant colony algorithm to a multi-objective optimization, we added
a local memory that keeps track of the best paths that are not dominated (we will
refer to this memory in Section 4.3.1), and that will be rewarded. Finally a
procedure of classification of the solutions constituting this Pareto front is used;
these modifications appear in a grey background on Figure 12a.

For every ant colony generation, an intensification procedure is applied to all
new paths belonging to the Pareto front to improve their quality; it appears as a
hatched background in Figure 12a. This procedure is implemented by tabu search
or by greedy algorithm. Finally, the mechanism decides if the new front of the
Pareto obtained after intensification will be kept or deleted. Before providing the
list of the obtained best ants, the algorithm proceeds to a classification of these
ants. The pseudocode of the resulting algorithm is described in Figure 12b.

Fig. 12a Classical and modified ant colony algorithms

Meta-heuristics for System Design Engineering 403

P : Population of individuals I with size μ
Pfp : Population of the Pareto front with size η
Generate (QP)
Until Stopping criteria are reached Do
 Generate colony (P)
 Evaluate (P)
 Generate (Pfp)
 Repeat η times
 I’ Intensification (I’) (including the evaluation)
 End of Repeat
 Repeat μ times
 Evaporation (QE)
 End of Repeat
 Repeat η times
 Compensation (QR)
 End of Repeat

 P Pfp
End of until
Classification (n, Pfp)

Fig. 12b Pseudocode of the hybrid algorithm with ant colony optimization

Section 4.4 specifies upon which bases the hybrid algorithms are set up. The
detailed hybrid algorithm will be described in Section 4.5. The intensification
procedures by tabu and greedy searches will be described separately in Section
4.6. The stopping criteria and the classification of the found scenarios are given in
Section 4.7 and Section 4.8 respectively.

4.3.2 Evolutionary Algorithm

A first algorithm, inspired by genetic algorithms, has already been proposed [16,
17]. The fundamental principles of genetic algorithms were exposed by Holland in
[12]: such algorithms work on a set of solutions, represented by a population of
individuals that follow a process of evolution during which they try to adapt to
their environment. In the classical genetic procedure, after the generation and the
evaluation of an initial population, can be found the sequencing of three operators
(appearing with a white background on the figure 13a): (1) selection of individuals
for the reproduction and the constitution of the next generation, (2) crossover
between parents individuals to build a new offspring of individuals, and (3)
mutation, which generally performs minor modifications on a few individuals, in
order to introduce some diversity into the population.

It is during this stage of reproduction (crossover and mutation) that new
individuals are created from the previously selected individuals. Finally, a last
process reinserts some individuals from the offspring into the population in
replacement of the least adapted parents. To adapt this genetic algorithm to a

404 R. Chelouah et al.

Fig. 13a Classical genetic algorithm and modified one

P : Population of individuals I with size μ
Pfp : Population of the front of Pareto
s : a scenario or a reduced graph of an individual I

Initialize(P)
Evaluate(P)
Generate(Pfp)
Until Stopping criteria are reached Do
 P' Selection (P) (best individuals I of P)
 Repeat μ times
 I’ Crossover (Px, Ii; Ij)
 I’ Intensification(I’)(including the evaluation)
 Replacement(I’, P')

 End of Repeat
 P P'
 Generate(Pfp)
End of until
Classification(n, Pfp)

Fig. 13b Pseudocode of the hybrid algorithm

Meta-heuristics for System Design Engineering 405

multi-objective optimization, we showed in [3] how we added a memory that
keeps a trace of the individuals that are not dominated in the sense of Pareto (to
which we will refer to this memory in section 4.3.1), and a procedure of
classification of the solutions constituting this front of Pareto; these modifications
appear in a grey background on the figure 13a.

In our hybrid algorithm, at each generation, a given number of crossovers and
mutations are performed. A procedure of intensification is then applied to each
new individual thus generated to improve its quality; it appears in a hatched
background on the figure 13a. This procedure can be implemented by an
algorithm of taboo search or by greedy algorithm. Finally, the mechanism of
replacement decides if the new individual obtained after intensification will be
introduced into the parent population or not. Before providing the list of the
obtained scenario to the project leader, the algorithm proceeds to a classification
of these scenarios. The pseudocode of the resulting algorithm is proposed by the
figure 13b.

4.4 Setting Up the Algorithm

Before detailing the implementation of the hybrid algorithm, this section describes
how the individuals are coded, how the project scenarios are rebuilt from the
coded individuals, and finally how their fitness is calculated. We will illustrate the
different steps using a simple example of a project graph (see Figure 14) of 11
tasks and 2 decision nodes; each node has 2 or 3 different choices and each task
has up to 10 options of realization.

Fig. 14 Example of a project graph

4.4.1 Coding and Reconstructing the Scenarios

The ants are represented by two vectors of integers. The first and the second vectors
are the number of tasks and the number of decision nodes in the project,
respectively. The values of the first vector represent the chosen options for the
project at each task, and the second specifies the selected arc at each decision node.
The set of chosen options and selected arcs represent one path in the project graph,

406 R. Chelouah et al.

as illustrated in Figure 15. In Figure 16, for example, option T4O6 is selected for
Task 4, option T6O7 for Task 6, the first arc is selected for the choice n°1, etc.

From this representation, it is possible to deduce a planning, by a simple and
automatic procedure, whose characteristics are clearly identified thanks to task
options and chosen paths. We now detail this procedure.

Fig. 15 Representation of an ant by 2 vectors of integer

The first step (Figure 16) consists of translating the considered individual into a
scenario that represents one of the possible organizations to manage the project. The
second step consists of finding a possible planning for this organization (Figure 17).
From the reduced graph of the project, we choose and apply a classical algorithm of
scheduling, which allows us to plan a solution with respect to temporal constraints,
resources constraints, etc... The algorithm currently used is inspired by the PERT
method; basically it considers the precedence constraints between tasks and those
due to the use of cumulative resources. It is possible to complete the algorithm by
integrating of more constraints, thus enriching the model.

This procedure is implicitly used in our algorithm at two levels: each time it is
necessary to evaluate a scenario in order to obtain its performances in the progress
of the algorithm and also to offer some good scenarios to the project manager
under a form that he is accustomed to.

Fig. 16 Reduction of the project graph to obtain a scenario

Meta-heuristics for System Design Engineering 407

Fig. 17 Tasks scheduling

To evaluate an ant, it is necessary to transform it completely into a
representation where the tasks not belonging to the scenario are removed. To
perform this operation, we associate, with each ant, a reduced graph of the project
in which the tasks are determined from the first vector. Then, we successively
reduce this graph by carrying out for each pair of nodes, the following stages: (1)
decoding of the ant to determine the selected path, (2) suppression of the set of
tasks and nodes between the opening node and the closing node that do not belong
to the selected path, (3) creation of precedence links between the tasks before the
closing nodes and after the opening nodes, and finally (4) removal of the current
pair of nodes. Once this transformation is completed, we obtain a scenario to
realize the project.

4.4.2 Objective Function

To measure a scenario’s performance, we propose to measure the distance which
separates it from the reached project objectives; these must be minimized to reach
the objectives as closely as possible. The evaluation of the objective function must
allow finding the scenarios of which variations from the objectives are minimal. In
our project, we worked with two essential criteria in project management: the
difference between the budget and the cost envisaged by the scenario and the
difference between the desired duration and the planned one.

4.4.3 Fitness Function

The evaluation must permit the determination of scenarios whose variations
compared to the objectives are minimum, while favoring the diversity of
scenarios. For calculating of the adaptation function, we chose a method inspired

408 R. Chelouah et al.

by Strength Pareto Evolutionary Algorithm presented in [22]. We proceed with
two sets of ants: P the colony and Pfp the set of ants composing the Pareto front,
Pfp ⊆ P. If a new ant of the colony P appears to be Pareto optimal, then we create
its copy into Pfp. The ants of Pfp which could not be Pareto optimal any more are
removed. The calculation of the fitness is decomposed into two steps:

Step 1: To each ant I of Pfp is associated a value si representing its force, which
is equal to α the number of solutions dominated by I in the colony P divided by
the size µ of the colony P increased by one, see Equation (2).

Step 2: The fitness fi of each ant I belonging to P is equal to the reverse of the
sum of forces of ants of Pfp which dominate it, increased by one, see Equation (3).

1
is

α
μ

=
+

 (2)

,

1

1
i

i

p
i i j

f
s

<

=
+ ∑ (3)

We thus value the individuals of the Pareto front; this favors the convergence
towards the good scenarios. The separation of ants belonging to the Pareto front
from the rest of the colony permits filtering available solutions and introduces a
memory. A method of clustering resulting from the average linkage method [19]
is introduced to reduce this set: if the number of ants in the Pareto front exceeds a
fixed threshold, then we replace a group of close ants by only ones one, the center
of the group (we can choose the barycentre for example), and this as many times
as necessary to obtain the desired number of ants in Pfp. We thus obtain a
stabilization of the subpopulation size into niches.

4.5 Detailed Description of the Hybrid Algorithm with Ant
Colony Optimization

The algorithm starts with a colony of ants representing a set of scenarios. A
scenario is directly rebuilt by using the information stored in its corresponding ant
(see Section 4.4.1). The pheromone trail progressively dies down after each
iteration, two methods of evaporation are implemented: a linear method and a
geometrical method. We save the best ants in a Pareto front, and these "elite" ants
representing the best scenarios, are recompensed for depositing pheromone on the
chosen options and arcs, representing tasks and decision nodes taking part in the
project’s scenario. As regards evaporation, pheromone deposition is achieved in
two ways: linear or geometrical.

This paragraph describes how the generic hybrid procedure with ant colony
algorithm is implemented (Figures 12 and 13).

4.5.1 Generation of Ant Colony

At the beginning, there is the same quantity of pheromone at each decision node
arc and at each task option. These quantities are updated during the ant colony

Meta-heuristics for System Design Engineering 409

Fig. 18 Ant selection

generation by the evaporation and the reward operations. At each generation, to
select a set of scenarios (ants) for a project realization amongst all possible
scenarios, we opted for a stochastic procedure using the Roulette Wheel Selection,
also called stochastic sampling with replacement, such as represented in Figure
18. This method is directly derived from the "proportional selection". Its principle
was used to model the behavior of the ant in front of various pheromone trails.
The stronger the trail (i.e. the numbers between brackets), the more likely the ant
will choose this trail. At each decision node, the available arcs are mapped to
contiguous segments of a line, such that each arc's segment is equal in size to the
value of the quantity of pheromone deposited on it. A number is randomly
generated at each decision node, and the arc whose segment contains the random
number is selected. After selecting the arc at each node, we constitute the
scenarios, and we repeat the same procedure at each task constituent to this
scenario. This process is repeated until the desired number of ants is obtained.

410 R. Chelouah et al.

4.5.2 Evaluation of the Ant Colony

The procedure of evaluation follows four steps:

• decode the ant, i.e. find the technical features of the product and rebuild the
adopted scenario for the project progress,

• evaluate the objective function of each scenario resulting from the ants’
decoding of the colony,

• manage the list of Pareto optimum ants,
• assign a performance mark to scenarios favouring the appearance of good

diagrams in the colony (see Section 4.4.3).

4.5.3 Update of the Pareto Front

In the developed application, we decide whether to preserve the elites (Pareto
front) during the iterations. We can thus continue to cumulate the recompenses of
the best ants as long as they are not replaced by better ones. Starting the algorithm
with bad ants, however, can precipitate the research towards a local optimum. To
avoid this premature convergence towards a local optimum, it is better to empty
this Pareto front at each iteration, in order to give the other paths (ants) a chance to
belong to this Pareto front and to be rewarded.

4.5.4 Evaporation

Evaporation is an operator that allows reducing uniformly the quantity of
pheromone available on each arc at each decision node, and on each realization
option of each task. In general, the quantity of pheromone available is normalized;
it lies between 0 and 1. In this algorithm, we implemented two various operations
to reduce the quantity of pheromone: absolute and proportional evaporation.

In the case of absolute evaporation, after each generation the same pheromone
quantity is evaporated at each project vertex (decision node or task). The quantity
of pheromone which will be evaporated at each arc of a given decision node or at
each option of a given task, is equal to the evaporated pheromone quantity at this
given vertex (decision node or task), divided by the number of arcs at this decision
node or by the number of options of this task.

4.5.5 Compensation

After each ant colony generation, and after evaluation, we reward only the ants
belonging to the Pareto front. We add the pheromone on the arcs and on the option
of promising ants constituting the Pareto front. In the recompense operator, the
deposited quantity of the pheromone is normalized between 0 and 1, and we use
the same kind of operators as in the evaporation operator.

In the evaporation phase, if we use the absolute evaporation, and after some ant
generation, if a given ant was never generated up to now, then it will never be
recompensed, we risk to annul its pheromone trail at its arcs or at its options. To
avoid eliminating a set of ants during the search process of the algorithm, we
replace the absolute evaporation by the proportional one in the evaporation phase.
In this case, we shall always have a pheromone trail at arcs and at options, even if

Meta-heuristics for System Design Engineering 411

they have never been chosen up to now. Consequently, ants composed by these
arcs and options shall always retain a probability of being chosen in the next
generation, even if their pheromone trail is weak. It is more interesting to use an
absolute recompense to favor the ants belonging to Pareto front, to use a
proportional evaporation to encourage the search towards new directions and to
give a chance to the news ants to be chosen, even if their pheromone trail is weak.

From an elite ant, we build a partially reduced graph by keeping the nodes
belonging to the project graph (see Figure 19). From this partially reduced graph,
we reward the options chosen at each task, and the arcs chosen at each decision
node taking part in this project graph. For the ant of Figure 11, only the arc a1 of
the node 1 is rewarded, and options 4, 2, 7, 3, 8 of the respective tasks 1, 2, 6, 7, 8
are recompensed.

Fig. 19 Ant recompense

4.6 Detailed Description of the Hybrid Algorithm

This paragraph describes the implemented hybrid procedure; it develops the
algorithm presented on the figure 5 step by step. The following sub sections
describe these steps

4.6.1 Generation of the Initial Population

The general principle of the initial population generation is to sample the search
domain uniformly in order to effectively cover it. As we do not have any
indication allowing orientating the search, we randomly generate a first individual.
For the next individuals, we proceed by a permutation of the choices at each node;
for each given choice, we permute the options of some tasks that are randomly
chosen. This allows covering the search space at best.

4.6.2 Evaluation of the Population

The procedure of evaluation follows four steps:

412 R. Chelouah et al.

• decode the individual chromosome, i.e. find the technical features of the
product and rebuild the adopted scenario for the project progress,

• evaluate the objective function of each scenario resulting from the individuals
decoding of the population,

• manage the list of Pareto optimum individuals,
• assign a performance mark to scenarios favouring the appearance of good

diagrams in the population (see section 3.2.4).

4.6.3 Selection

There are two categories of procedures to choose the parent population for the
reproduction starting from the initial population: deterministic procedures and
stochastic procedures.

In deterministic procedures, the best individuals are selected (according to the
defined performance function). This method supposes a sorting of the population,
which requires a great computing time, particularly if the population is of a large
size. Moreover, the least powerful individuals are completely eliminated from the
population, and the best individuals are always selected. This selection leads to an
impoverishment of the population, and the algorithm risks to be trapped in a local
minimum.

In stochastic procedures, the selection always consists in favouring the best
individuals, but in a stochastic way, which leaves a chance to the less powerful
individuals. Besides, it can happen that the best individual is not selected, and that
the children obtained after the evolutionary operations do not reach a performance
as good as the best parent contained in the population of the preceding generation.

We opted for a stochastic procedure using the Roulette Wheel Selection, called
stochastic sampling with replacement, such as defined in [2]. This method is
directly derived from the "proportional selection" [18]: the individuals are mapped
to contiguous segments of a line, such that each individual's segment is equal in
size to the value of its fitness. A number is randomly generated and the individual
whose segment contains the random number is selected. The process is repeated
until the desired number of individuals is obtained (called mating population i.e. a
population ready for the reproduction). To palliate the problem previously
mentioned, we integrated a procedure of replacement into the algorithm in order to
always select the best individuals between parents and children.

4.6.4 Crossover

The crossover operator recombines pairs of individuals with a given probability to
produce offspring. To favour many crossover operations and well cover the
solution space, we select the parents from the population with a strong probability
of crossover Px. To generate an offspring, we used a crossover binary generator.
This generator is run at random and the parity of the result indicates which parent
will supply the offspring. The offspring is produced by taking the gene from
Parent 1 if the corresponding generator bit is 1 or the gene from Parent 2 if the
corresponding generator bit is 0. We repeat this procedure for each gene of the
offspring. The figure 10 show the individual offspring obtained from its parents; it

Meta-heuristics for System Design Engineering 413

also exhibits the scenarios representing each parent and the one representing the
offspring individual obtained after the crossover operation.

We specify that if a given arc at one choice or if a given option at one task is
not present on any chromosome in the initial population then we never can obtain
it with the crossover operator. The mutation operators and the intensification by
local search are there to palliate these limitations respectively.

Fig. 20 Crossover

4.6.5 Mutation

This operator allows to provide the paths which were not produced during the
generation operation of the initial population. Indeed, this operator only assigns
genes coding the performed choices at each node. The mutation operator generates
other paths at each node with a probability equal to Pmut. The figure 21 considers
the offspring individual of the figure 20, obtained after crossover, and shows how
the mutation takes place: at the node n° 1 of the reduced graph of the figure 9
appears the arc n° 1 instead of the arc n° 2 after mutation. The graph that
corresponds to the individuals before and after mutation also appears on the same
figure.

4.7 Intensification

In the algorithm proposed in Figure 5, after the operations of evaluation and
generation of the Pareto front, the algorithm builds the reduced graph, and then
applies the tabu or the greedy procedure, thus performing a local search on the
basis of this reduced graph.

This section now introduces these two different intensification procedures.

414 R. Chelouah et al.

Fig. 21 Mutation

4.7.1 Intensification by the Tabu Search Procedure

The tabu search was developed by Glover [11] and applied with efficiency to the
multi-objective optimization [10]. This method uses a tabu list of length L to
memorize the N last visited solutions. Starting from any solution x belonging to the
solutions X, this solution is momentarily the best solution x*. We perform a
movement towards a solution v(x) located in the neighborhood [V(x)] of x and which
does not belong to the list L. The algorithm evaluates the objective function f in each
point v(x) of V(x), and retains the best neighbor even if it degrades the objective
function f. This allowed degradation of the objective function avoids the algorithm
being trapped in a local minimum. This best neighbor becomes the new current
solution, it is added to the list, and replaces x* if it dominates it in sense of Pareto.

The management of this tabu list is voluminous, because it is necessary to
remember all the elements defining a solution. To compensate this, we replace the
list of prohibited solutions by a list of prohibited movements. The replacement of
the list of visited solutions by the elementary transformations {x, v(x)} list not
only leads to a prohibition to return towards preceding solutions, but also to go
towards a set of solutions of which several of them are not visited up to now. To
implement this Tabu list, we used a two dimensional list of length L. Each time a

Meta-heuristics for System Design Engineering 415

movement {s, v(s)} is applied to move from s to v(s), the indexes i and j of the
changed variable s are saved in the Tabu list. Thus, the opposite movement is
prohibited for the next L iterations of the algorithm. At any time, it is easy to
check if a given move is marked as Tabu or not.

To permit acceptation of a movement even if it belongs to the Tabu list, a
criterion of aspiration is introduced. We accept a prohibited movement after a
given number of iterations, and if the solution corresponding to this movement
dominates the best solution x* found up to now by the tabu search procedure in
sense of Pareto.

Let S be the set of possible scenarios to realize the project, and V(s) the
neighborhood of s. Two scenarios s and v(s) belonging to S are neighbors (i.e.
v(s)∈ V(s)) if they differ by the value of only one alternative. More formally, V(s)
= {v(s) ∈ S | distance (s; v(s)) = 1}. It results that from a scenario s, it is possible
to obtain a neighbor v(s) by modifying for one given task i the alternative number
j such as the scenario v(s) still is realizable. The movement of s to v(s) is then
characterized by whole numbers i and j representing indexes of the variable sij
which was changed. Those indexes which will be considered as attributes of the
movement (see Figure 22). If the scenario s is composed by N tasks, and if only
one task option is modified, then this scenario s owns N neighboring scenarios.
The neighbor s' to replace s must be the scenario dominating s. If several
neighbors are dominant, then we randomly choose a neighbor among all the
dominant scenarios. If no neighbor is Pareto optimum, then we randomly choose a
scenario among all the neighbors.

Fig. 22 Neighborhood

4.7.2 Intensification by Greedy Search Procedure

The principle of the greedy search is to locally choose the optimal option at each
iteration without ever reconsidering this choice at next time. This strategy does not
always lead to a global optimal solution, because it may be that the option choice
for a given task offers a good solution to the scenario evaluation at this time, but

416 R. Chelouah et al.

then makes possible to obtain a better scenario evaluation when we change the
options of the next tasks. This method is acceptable in our case because it is
hybridized with an evolutionary algorithm which makes it possible to explore the
search space; the greedy search is useful only to intensify the search locally. We
conclude that these two combined algorithms are complementary; the
imperfections of the first one are compensated by the performances of the other.

Figure 23 shows the different steps of the greedy algorithm on the scenario
containing 5 tasks obtained after update Pareto list in ant colony optimization. As
each task has one or several options, during the visit of each task, the algorithm
modifies its options, evaluates the objective function and keep, for this task, the
option which supplies the best scenario until now, taking into account the already
selected options for the tasks previously visited, then envisages the next task until
it covers all the tasks.

4.8 Stopping Criterion

In the hybrid procedures with genetic and ant colony algorithm, we use a strict
limitation of the number of generation. In the tabu search procedure, we stop the
intensification after a given number of iterations without improvement of the
current solution, i.e. without founding a neighbor that dominates the scenario built
from an offspring individual obtained after crossover and mutation operators, in
sense of Pareto.

Fig. 23 The greedy search

Meta-heuristics for System Design Engineering 417

4.9 Classification of the Found Scenarios

Before presenting the results to the project manager and to help him choose, we
present the best found scenarios, classified according to a preference scale. Once
the cost of the scenarios known, it is indeed easy to classify the scenarios
belonging to the Pareto front before proposing them to the project leader. The
method used to classify these scenarios is the approach of Taguchi presented in [4,
8, and 21]. Taguchi's Loss Function is a weighted sum of criteria, based on a
formula of evaluation of socio-economic criteria (see Equations 4 and 5). This
formula measures with precision when the target is reached with a scenario and
analyzes at which point an exact conformity with the technical requirements
(execution, quality, reliability, testability...) is obtained. This function allows
determining the cost of each scenario selected by aggregating the costs of
parameters. Let C be the vector of the costs of a scenario, in which O is the vector
of the optimal costs and Δ the vector of the additional costs (Equation 4). The total
cost G of a scenario is then given by the Equation 5.

1 1 11 1 1 1

2 2 22 2 2 2

()²

()²

k e tc o o
C O

k e tc o o

δ
δ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + Δ = = + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (4)

2 2 2 2 2

1 1 1 1 1

()²i i i i i i i

i i i i i

G c o o k e tδ
= = = = =

= = + = + −∑ ∑ ∑ ∑ ∑ (5)

As in our project, we worked with two essential criteria, the difference between
the budget and the cost envisaged by the scenario and the difference between the
desired duration and the planned one. We set the budget e1 and the desired
duration e2 equal to 5000, the taguchi constants k1 and k2 are equal to the unit and
all the components of the vector O are null. In this configuration, the best scenario
is the one where the aggregated cost G is null.

Fig. 24 Example of a benchmark project control

418 R. Chelouah et al.

5 Experimental Results

An example of a performed a benchmark graph project is given in Figure 24. This
project contains twenty-two tasks (each task has up to ten options of realization)
and four nodes (each node has up to three choices).

We cascaded twice then 3 times this initial benchmark, to obtain two new
benchmarks. The obtained results are similar with the three benchmarks. In what
follows we shall present you only the results associated to the initial benchmark.

The efficiency of the two hybridized ant colony optimization HACOTS and
HACOGS are compared. To avoid any misinterpretation of the optimizing results,
related to the choice of the neighborhood in the tabu search or any particular
initial ant colony, evaporation and recompense operators, we performed each test
100 times, starting from various randomly selected ants, inside the search domain
for the following parameters: a colony with 15 ants, a Pareto front with 5 ants, the
maximum number of ants colony generations is 30, and finally the maximum
number of successive ants colony generations, without improvement of the best
solution is 10. We noticed that the control parameters of ACO are as follows: ant
population size and ants Pareto size are equal to 15 and 5 individuals,
respectively; the maximal number of generation is equal to 30. In the tabu search
procedure, we set the Tabu list size to 10, and the maximum number of successive
iterations without any improvement of the best solution is of 5.

5.1 Measure of Quality

To study this dispersal of the solutions and compare the quality of the algorithms,
several authors ask the question "why quality assessment of multiobjective
optimizers is difficult", and how should one evaluate its quality [22]. The solution
quality in multi-objective optimization can be assessed in different manner. Some
authors compare their obtained front with the optimal Pareto front, and the others
propose using different criteria as the contribution, S-metric, Entropy [17 and 23].

Many metrics for measuring the convergence of a set of non-dominated
solutions towards the Pareto front have been proposed. Almost all of these metrics
were constructed in order to directly compare two sets of non-dominated
solutions. There are also approaches which compare a set of non-dominated
solutions with a set of Pareto optimal solutions if the true Pareto front is known. In
what follows we review some existing metrics for convergence.

The metrics were introduced by Zitzler in [24, 25]. The S metric measures how
much of the objective space is dominated by a given non-dominated set A. Using
C-metric, two sets of non-dominated solutions can be compared to each other. The
D-metric can be used to solve the inconvenience met in C-metric.

Consider the following notations. Let A, B ⊆ X be two sets of decision vectors.
The size of the space dominated by A and not dominated by B (regarding the
objective space) is denoted D-metric (A, B) and is given by the Equation 6.

D-metric(A, B) = S-metric(A + B) – S-metric(B) (6)

Meta-heuristics for System Design Engineering 419

5.2 Interpretation of Our Results

In our study, as we don't know the true Pareto front, in order to determine the best
control parameters and to compare the efficiency of hybrid ACO, EA, and theirs
hybridizations, we are interested to the percentage of efficiency solutions and to
D-metric.

In order to assess the results, we execute each algorithm ten times and each run
during forty iterations. In Figure 25 the Pareto fronts obtained by the two
algorithms ACO and EA are very close.

4300

4400

4500

4600

4700

4800

4900

5000

5100

5200

5300

5400

4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400

ACO EA

Fig. 25 Comparison of Pareto fronts

Figure 26 shows the evolution of the percentage of efficiency solution with the
iteration numbers. The shown values on this figure represent the mean values
obtained for one hundred executions. In means, after forty iterations, the
percentage of efficiency solutions for HACOTS and HACOGS are close to 100
percent, contrary to those of the ACO which does not exceed 60%. The same
comment can be done on the percentage of efficiency solutions for EA and its
hybridizations HEATS and HEAGS.

Evolution of the D-metric with the number of iterations is represented in
Figure 27. To measure D-metrics, we compare two by two the results of different
algorithms (HACOTS-HACOGS and ACO-HACOTS, ACO-HACOGS).
The curves provided by D-metric between the algorithms ACO-HACOTS and
ACO-HACOGS are very close, contrary to that supplied by the D-metric

420 R. Chelouah et al.

0%

20%

40%

60%

80%

100%

120%

5 10 15 20 25 30 35 40

Itera tions number

Percentage of efficiency solutions

HEAGS

HEATS

EA

Fig. 26 Evolution of the percentage of efficiency solutions with the number of iterations

HACOTS-HACOGS. The D-metric between HACOTS and HACOGS do not
come down below 5. At new iteration, we obtain a reduction of D-metric. After
forty iterations, the D-metric (ACO-HACOGS) is close to zero.

Percentage of efficiency solutions

0%

20%

40%

60%

80%

100%

120%

5 10 15 20 25 30 35 40

Iterations number

HACOGS

HACOTS

ACO

Meta-heuristics for System Design Engineering 421

1

3

5

7

9

11

13

15

5 10 15 20 25 30 35 40

D
-metric

Iterations num ber

EA-HEAGS

EA-HEATS

HEATS-HEAGS

1

3

5

7

9

11

13

15

5 10 15 20 25 30 35 40

Iterations number

D
-m

et
ri

c

ACO-HACOGS

ACO-HACOTS

HACOTS-HACOGS

Fig. 27 Evolution of the D-metric with the number of iterations

6 Conclusion

Due to the growing requirements in manufacturing, solutions must be found to
design always more performing and reliable systems in shorten times without
decreasing their quality for that. This phenomenon progressively involves a
development and a renewal of methodologies and processes of System Design, in
order to obtain a better organized contribution of all the available information and
an optimal satisfaction of the requirements defined in terms of delays, economy,
safety and quality constraints.

In order to obtain more coherence in the decisions during project management
and thus more efficiency, this paper promoted the idea that there is a real need to
bring closer the processes of design product and of project organization, on a

422 R. Chelouah et al.

methodological level but also by means of dedicated tools. It analyse how both
processes could be associated, trying to identify the exchanges between these
processes, their nature and their level, to make them closely collaborate in order to
guide and to optimize the process of design. For that, we relied on the one hand on
the standards of System Engineering and on the other hand on the
recommendations of the Model Driven Engineering as methodological bases. The
methodology proposed and experimented on an industrial case study [4, 14] is
thus based on multiple and consecutive model transformations. The first section
dealt with how we model a project to obtain a representation of integrating
functional and non functional data and then introduced the criteria used to select
the project scenarios. To optimize these scenarios, to find the "best" ones and to
fully satisfy the project constraints, we implemented a hybrid algorithm to
improve the first results obtained by a previous evolutionary algorithm. This
ACO, combined with tabu algorithm and greedy search, has been effectively
applied to a multi-objective optimization problem, in a specific project
management context. The hybrid method with ACO accelerated the convergence
of the algorithm and, with a refinement process performed by the method of tabu
algorithm or greedy search, allowed us to obtain a solution of better quality. This
faster processing gives the hybrid algorithm more time to explore the solutions’
space during the diversification phase. Indeed, this algorithm allows the rapid
selection of scenarios belonging to Pareto front and thus considerably reduces the
possible number of solutions before their classification. Thus, it becomes possible
to offer the decision maker a reduced number of solutions that he can evaluate
more accurately in order to choose one according to technical, economic and
financial criteria.

References

[1] ANSI/GEIA EIA-632, Standard Processes for Engineering a System, Government
Electronics and Information Technology Association (1998)

[2] Baker, J.E.: Reducing Bias and Inefficiency in the Selection Algorithm. In:
Proceedings of the Second International Conference on Genetic Algorithms and their
Applications, New Jersey, USA, pp. 14–21 (1987)

[3] Baron, C., Rochet, S., Esteve, D.: Gesos: a multi-objective genetic tool for project
management considering technical and non-technical constraints. In: Artificial
Intelligence Applications and Innovations (AIAI), Toulouse, IFIP World Computer
Congress France (2004)

[4] Baron, C., Rochet, S., Gutierrez, C.: Proposition of a methodology for the
management of innovative design projects. In: 5th annual International Symposium of
the International Council on Systems Engineering (2005)

[5] Blanc, X.: MDA en action, Ingénierie logicielle guidée par les modèles, Eyrolles
(2005)

[6] Beck, J.: Texture Measurement as a Basis for Heuristic Commitment Techniques in
Constraint-Directed Scheduling, PhD thesis, University of Toronto Department of
Computer Science (1999)

[7] Berthomieu, B., Ribet, P., Vernadat, F.: The tool TINA - Construction of Abstract
State Spaces for Petri Nets and Time Petri Nets. International Journal of Production
Research 42(4) (2005)

Meta-heuristics for System Design Engineering 423

[8] Chelouah, R., Baron, C.: Ant colony algorithm hybridized with tabu and greedy
searches as applied to multi-objective optimization in project management. Journal of
Heuristic (September 21, 2007) ISSN 1381-1231 (Print) 1572-9397 (Online)

[9] Dorigo, M., Socha, K.: Ant Colony Optimization. In: Gonzalez, T.F. (ed.) Handbook
of Approximation Algorithms and Metaheuristics, 26.1–26.14. Chapman &
Hall/CRC, Boca Raton, FL (2007)

[10] Gandibleux, X., Mezdaoui, N., Freville, A.: A multi-objective tabu search procedure
to solve combinatorial optimization problems. Lecture Notes in Economics and
Mathematical Systems, vol. 455, pp. 291–300. Springer, Heidelberg (1997)

[11] Glover, F., Hanafi, S.: Tabu Search and Finite Convergence. Discrete Applied
Mathematics 119(1-2), 3–36 (2002)

[12] Holland, J.H.: Building Blocks, Cohort Genetic Algorithms, and Hyperplane-Defined
Functions. Evolutionary Computation 8(4), 373–391 (2000)

[13] Hamon, J.C., Esteve, D., Pampagnin, P.: HiLeS Designer: A tool for systems design.
In: Int. Symposium Convergence 2003: Aeronautics, Automotive & Space, Paris
(2003)

[14] Hamon, J.C.: Méthodes et outils de la design amont pour les systèmes et
microsystèmes, Thèse de doctorat, LAAS-CNRS, Toulouse, France (2005)

[15] Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley &
Sons, Chichester (2001)

[16] HileS Designer, Version 0.9 (November 2005), http://www2.laas.fr/toolsys/hiles.htm
[17] Knowles, J.D., Come, D.W., Oates, M.J.: On the Assessment of Multiobjective

Approaches to the Adaptive Distributed. In: Proceedings of the Sixth International
Conference on Parallel Problem Solving from Nature, pp. 869–878 (September 2000)

[18] Michalewicz, Z., Schmidt, M.: Parameter Control in Practice. Parameter Setting in
Evolutionary Algorithms, 277–294 (2007)

[19] Morse, J.: Reducing the size of the non dominated set: Pruning by clustering.
Computers and Operations Research 7(1-2), 55–66 (1980)

[20] Zinflou, A., Gagne, C., Gravel, M., Price, W.L.: Pareto memetic algorithm for
multiple objective optimization with an industrial application. Journal of Heuristics,
1381–1231 (August 2008) (Print) 1572-9397 (Online)

[21] Steele, S., et al.: Proceedings of ANTEC 1988 Conference, An Analysis of Injection
Molding by Taguchi Methods (1988)

[22] Zitzler, E., Thiele, L.: Multi-objective Evolutionary Algorithms: A comparative Case
Study and the Strength Pareto Approach. IEEE Trans. On Evolutionary
Computation 3(4), 257–271 (1999)

[23] Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C.M., Fonseca, V.G.: Why Quality
Assessment of Multiobjective Optimizers Is Difficult. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2002, New-York, July 9-13,
2002, pp. 666–674 (2002)

[24] Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C.M., Fonseca, V.G.: Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Trans.
Evolutionary Computation 7(2), 117–132 (2003)

[25] Zitzler, E., Thiele, L., Bader, J.: On Set-Based Multiobjective Optimization.
Technical Report 300, Computer Engineering and Networks Laboratory, ETH Zurich
(February 2008)

Transgenetic Algorithm: A New
Endosymbiotic Approach for
Evolutionary Algorithms

Elizabeth F. Gouvêa Goldbarg and Marco C. Goldbarg

Summary. This chapter introduces a class of evolutionary algorithms whose
inspiration comes from living processes where cooperation is the main evolu-
tionary strategy. The proposed technique is called Transgenetic Algorithms
and is based on two recognized driving forces of evolution: the horizontal
gene transfer and the endosymbiosis. These algorithms perform a stochastic
search simulating endosymbiotic interactions between a host and a popula-
tion of endosymbionts. The information exchanging between the host and
ensosymbionts is intermediated by agents, called transgenetic vectors, who
are inspired on natural mechanisms of horizontal gene transfer. The proposed
approach is described and a didactic example with the well-known Traveling
Salesman Problem illustrates its basic components. Applications of the pro-
posed technique are reported for two NP-hard combinatorial problems: the
Traveling Purchaser Problem and the Bi-objective Minimum Spanning Tree
Problem.

1 Introduction

The inspiration in natural processes in the construction of computational
methods has led to the emergence of various classes of algorithms. One of
these classes is constituted by the evolutionary algorithms, which search the
space of solutions of optimization problems through operators inspired on

Elizabeth F. Gouvêa Goldbarg
Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova,
Natal, Brazil
e-mail: beth@dimap.ufrn.br

Marco C. Goldbarg
Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova,
Natal, Brazil
e-mail: gold@dimap.ufrn.br

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 425–460.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

beth@dimap.ufrn.br
gold@dimap.ufrn.br

426 E.F.G. Goldbarg and M.C. Goldbarg

biological mechanisms. Evolutionary algorithms are defined to be stochas-
tic search methods that operate on a population of candidate solutions that
evolves iteratively by means of variation and selection until a stopping crite-
rion is satisfied [44]. Due to their characteristic of performing the search with
populations of solutions, these algorithms have an intrinsic parallelism where
many different possibilities are explored simultaneously. The search opera-
tors used by a major part of these algorithms are inspired on neo-Darwinian
evolutionary mechanisms whose typical rules are: selection, crossover and
mutation [45]. The information is transmitted from generation to generation
based on the notion of vertical inheritance of genetic characters, the one that
is passed from parents to offspring, such as in Genetic Algorithms.

Recent research in evolution has shown that the information sharing among
individuals regarding evolutionary mechanisms is much more flexible and dy-
namic than previously thought. In addition to the vertical inheritance of genes,
new mechanisms have been discovered and taken as strong evolutionary forces.
This chapter introduces a new class of evolutionary algorithms, named Trans-
genetic Algorithms, whose inspiration comes from two major recognized evo-
lutionary forces: the horizontal gene transfer and the endosymbiosis.

Horizontal or lateral gene transfer refers to the acquisition of foreign genes
by organisms. It occurs extensively among prokaryotes (living forms whose
cells do not have nucleus) and provides organisms with access to genes in
addition to those that can be inherited [30]. Researches in genomics have
increasingly shown that many genes have been acquired by horizontal trans-
fer [29]. Sequencing of multiple, complete genomes of diverse organisms have
changed the picture of evolution, bringing to light the horizontal gene trans-
fer as a significant evolutionary force [47]. Those researches show how the
horizontal gene transfer compliments the modular nature of genetic informa-
tion, making it feasible to swap whole sets of genetic code - like the genes
that allow bacteria to defeat antibiotics.

The term “endosymbiosis” specifies the relationship between organisms
which live one within another (symbiont within host). Present-day intracel-
lular associations include a range of parasites, mutualists and commensal
symbionts that play important roles in the ecology and physiology of their
hosts. Endosymbiosis, a biotic interaction wherein a symbiont inhabits in-
side its host cell or digestive organs, is universally recognized in nature [9].
The first works on endosymbiosis date back to the period among 1880 and
1926 and are due to Sachs, Altmann and Mereschkowsky [38]. Ivan Wallin in
his book “Symbionticism and the Origin of Species” published in 1927 [38]
proposed what became later known as the Theory of Symbiogenesis. Mar-
gulis [41] explains the difference between the ecological concept of symbiosis
and the term “symbiogenesis”. Symbiosis refers to the living together of or-
ganisms of different species. Endosymbiosis is a kind of symbiosis where one
partner, the endosymbiont, lives inside of another, the host. Symbiosis is not
an evolutionary process “per se”. It refers to physiological, temporal or topo-
logical associations with environmentally determined fates. Symbiogenesis,

A New Endosymbiotic Approach for Evolutionary Algorithms 427

however, implies the appearance of new tissues, new organs, physiologies or
other new features that result from protracted symbiotic association. In the
endosymbiotic evolution, a new mutualistic system emerges from phylogenet-
ically distinct organisms. The discovery of those systems is considered one of
the major transitions in evolution [43].

The scenario described above provides an instigating alternative to the
concept of evolution based on the logic of the “selfish DNA” [15] and opens
the possibility of using agents or operations inspired on intra, inter and extra-
cellular natural vectors in order to guide and accelerate the search performed
by evolutionary algorithms. Inspired on those natural mechanisms, the Trans-
genetic Algorithms perform a stochastic search proposing an evolutionary
process which the basis is the information exchanging among individuals of
different natures: host and endosymbionts. In these algorithms the evolu-
tion is thought to occur among a population of endosymbionts and its host
(a cell). The Transgenetic Algorithms imitate the evolutionary moment of
assimilation of the endosymbionts by their host. The population of endosym-
bionts is the base for the search process representing problem solutions. The
host contains information about the problem (“a priori” information) and
the search process (“a posteriori” information). The information exchanging
between the host and the endosymbionts is intermediated by agents, called
transgenetic vectors, who are inspired on natural mechanisms of horizontal
gene transfer. These vectors are the main tools for search intensification and
diversification. Unlike other evolutionary approaches, in Transgenetic Algo-
rithms endosymbionts (chromosomes) do not share genetic material directly
by means of crossover or recombination.

Mechanisms of horizontal gene transfer and endosymbiotic interactions,
separately, were sources of inspiration for the development of other evolu-
tionary algorithms that are briefly presented in Sec. 3. The approaches of
these algorithms, however, are fundamentally different from the one proposed
in this chapter, which incorporates these two biological concepts simulating
what is known by the biologists as endosymbiotic gene transfer [63]. The pre-
vious approaches dealing with the concept of horizontal transfer have a single
context of information: the population of chromosomes. The basic difference
between these algorithms and standard genetic algorithms is that the formers
use operations for the exchange of genes between the chromosomes of the pop-
ulation based on mechanisms of horizontal transfer in order to avoid crossover
operations. The algorithms proposed previously in the literature that use the
concept of endosymbiotic interactions are based on the ecological concept
of symbiosis, being a variation of cooperative symbiotic algorithms. These
approaches are quite different from the Transgenetic Algorithms, which use
other contexts of information than the population of chromosomes and that
incorporate such information in the chromosomes through operators based
on mechanisms of horizontal gene transfer.

The remainder of this chapter is organized as follows. The biological funda-
mentals concerning the horizontal gene transfer and endosymbiosis are

428 E.F.G. Goldbarg and M.C. Goldbarg

presented in Sec. 2. A brief review of evolutionary algorithms based on corre-
lated biological concepts is presented in Sec. 3. The Transgenetic Algorithms
are introduced in Sec. 4. A didactic example with the Traveling Salesman Prob-
lem illustrates the main features of the proposed approach. In Secs. 5 and 6 the
proposed approach is applied to a single objective and to a bi-objective com-
binatorial problem, respectively. Peculiarities of the Transgenetic Algorithms
regarding other evolutionary approaches are presented in Sec. 7. Finally, some
conclusions and future directions for research are pointed out in Sec. 8.

2 Biological Fundamentals

The horizontal gene transfer is defined to be the movement of genetic ma-
terial between organisms other than by descent in which information travels
through the generations as the cell divides. During bacterial evolution, the
ability of bacteria to adapt to new environments most often results from the
acquisition of new genes through horizontal transfer rather than by the alter-
ation of gene functions through numerous point mutations. Horizontal gene
transfer between unrelated species is thought to be one of the leading creative
forces driving bacterial evolution [16].

Bacterial species have acquired several mechanisms by which to exchange
genetic materials. The classification of such mechanisms is a hard task due
to the sheer diversity of mobile elements that are known to exist [67]. Some
researchers think about those mobile genomic elements as the sum of a set
of relatively independent and exchangeable functional units that can broadly
be categorized as promoting intercellular or intracellular mobility, or replica-
tion, selection, stability and maintenance [67]. Two types of those mobile ele-
ments are called plasmids and transposons. Plasmids are mobile genetic parti-
cles that can replicate independently of the chromosome. They are composed
of DNA and can be thought of as “mini-chromosomes”. By means of genetic
engineering, a plasmid can be built with an artificially created DNA. That ar-
tificial DNA is originated from two or more sources and is called “recombinant
DNA”. The plasmids formed with recombinant DNA are often referred as “re-
combinant plasmids”. Transposons or ”jumping genes” are genetic elements
that can spontaneously move from one position to another in a DNA molecule.
Transposons are DNA sequences that are part of other genetic elements such
as chromosomes or plasmids. Transposons are classified into two classes based
on their mechanism of transposition: Retrotransposons and DNA transposon.
Retrotransposons work by copying themselves and pasting copies back into the
genome in multiple places. DNA transposons usually move by a mechanism
analogous to cut and paste, rather than copy and paste. The mechanisms of
transposons can result on an effect that is similar to insertions, deletions, in-
version, fusion and translocations of genetic material [56].

The means bacteria use to acquire new genetic information are known
as: transformation, conjugation and transduction [12]. Transformation is the

A New Endosymbiotic Approach for Evolutionary Algorithms 429

uptake of foreign genetic material that can mediate the exchange of any
part of a chromosome. The information is acquired and incorporated spon-
taneously. Conjugation is the method where the transference of the mobile
elements occurs between bacterial cells that are in physical contact. The
transduction is a method in which the transport of the mobile element be-
tween organisms involves the mediation of viruses. In the case of conjugation
and transduction, for the occurrence of the horizontal transfer, the genetic in-
formation should be selected, copied or detached from the donor cell’s DNA,
and then directly transported or spontaneously acquired by the receptor cell
where the genomic element is incorporated. A detailed summary of these
mechanisms can be found in the paper of Zaneveld et al. [67].

Another important point to note is that in the intracellular context of
the recipient cell the imported genetic information may be recirculated. This
mechanism allows the genetic material acquired by the recipient cell be mixed
with plasmids of the cell resulting in the possibility of complex patterns of
recombination.

Besides the horizontal gene transfer mechanisms, the metaphor of the
Transgenetic Algorithms also relies on the endosymbiosis as an evolution-
ary force. The endosymbiotic theory of evolution was popularized by Lynn
Margulis with the disclosure of her essay “Symbiosis in Cell Evolution” which
was further incorporated in a book [40]. Margulis states that cooperation, in-
teraction, and mutual dependence among life forms were significant driving
forces in evolution. According to Margulis and Sagan [42], “Life did not take
over the globe by combat, but by networking”.

The emergence of integrated organisms occurs with each of the subunits
providing some adaptive benefit to its partner [17]. The endosymbiosis is
directed to the endosymbiont absorption on the long run. As a result of that
absorption the endosymbiont genome is reduced while the shared genetic
material is augmented. The endosymbiont becomes more specialized while the
host takes some of the functions of the endosymbiont [65]. The phenomenon
involves different genetic rearrangements in both organisms [64].

The living world is divided into two cell categories: prokaryotes (cells
without nucleus) and eukaryotes (cells with nucleus). Two great classes of
eukaryotic cell organelles, plastids and mitochondria, evolved symbiogenet-
ically in two independent events [41]. Plastids, such as mitochondria, once
were prokaryotic cells that entered a host and became endosymbionts. Today,
they are organelles, compartments of eukaryotic cells. During evolution, or-
ganelles relinquished many genes to the chromosomes of their host, but they
also learned to reimport the nuclear-encoded products of transferred genes
[62]. Horizontal gene transfer between the endosymbionts and the host plays
an important role in endosymbiosis. Within the endosymbiosis, the horizon-
tal gene transfer has its own characteristics. This form of horizontal gene
transfer is called endosymbiotic gene transfer and as noted by Timmis et al.
[63], comparative genome analyses show that gene transfers have occurred at
different times in the past and indicate that the process is continuing.

430 E.F.G. Goldbarg and M.C. Goldbarg

The endosymbiotic gene transfer processes are complex and vary with the
nature of the cell. Basically they are composed of systems that allow the
identification and acquisition of genes in the donor cells, processes that allow
the genetic information to be transported in the cellular environment without
being destroyed or corrupted, and systems that incorporate this DNA to the
receptor cell.

3 Evolutionary Algorithms Based on Correlated
Biological Concepts

Several concepts discussed previously inspired the design of different types of
non standard evolutionary algorithms. The algorithms that exploit the mech-
anisms of intracellular cooperative co-evolution were called Endosymbiotic Al-
gorithms. The algorithms that employ techniques based on the mechanisms of
horizontal gene transfer did not constitute a specific algorithmic class. They
are accepted as belonging to the class of Genetic Algorithms equipped with
special operators. Some of these methods are reviewed in the following.

Usually the endosymbiotic algorithms are classified as cooperative co-
evolutionary algorithms [31, 32]. Co-evolutionary algorithms are search al-
gorithms that imitate the biological symbiosis. Although there are many
variants of co-evolutionary algorithms, they are typically classified into two
main forms: cooperative co-evolutionary algorithms and competitive co-
evolutionary algorithms. Cooperative algorithms are based on positive fitness
interactions between individuals of different populations. In these algorithms,
a success on one individual improves the chances of survival of the other. The
populations may reciprocally enhance the adaptability to complex environ-
ments by the cooperative relationships and co-evolution [10]. On the other
hand, competitive algorithms are based on inverse (negative) fitness interac-
tions between individuals of the different populations [28, 54]. A success on
one side implies a failure of the other side to which one must respond in order
to maintain one’s chances of survival. Daida et al. [14] presents a study of
the features of symbiotic interactions in evolutionary computing.

As proposed by Kim et al. [31, 32], the endosymbiosis is imitated in the
computational context through the formation of three different populations:
Pa, Pb and Pc. Pa and Pb consist of partial solutions of the investigated
problem. Pc consists of complete solutions. Initially, Pa and Pb join together
to form Pc. Then, during the algorithm execution, the three populations in-
teract to form the individuals of Pc. Each population evolves, separately,
by means of a standard genetic algorithm. The cooperative co-evolutionary
aspect of the endosymbiotic algorithms allows the approach, with the neces-
sary adaptations, to incorporate other techniques practiced in the cooperative
evolutionary computing.

Several papers addressed the issue of horizontal gene transfer in the de-
velopment of genetic algorithms with special strategies. The transduction is

A New Endosymbiotic Approach for Evolutionary Algorithms 431

addressed in the paper of Kubota et al. [37]. The author proposes an evolution-
ary algorithm called VEGA (Virus-Evolutionary Genetic Algorithm) where a
population of chromosomes (hosts) is attacked by a population of viruses. The
viruses are formed by sub-chains of DNA (pieces of the solutions represented in
the chromosomes). The viruses are vectors capable of copying DNA fragments
from the population of hosts, transport those DNA fragments and transcribe
the genetic information in other chromosomes. Basically, the VEGA algorithm
is a Genetic Algorithm with a stage of viral transduction [18, 36].

Harvey [27] proposes a microbial genetic algorithm with a type of conjuga-
tion based on tournament selection. Parents are selected on a random basis.
The tournament is used to define, among the two chromosomes selected for
crossover, the donor (winner) of genetic material and the recipient (loser)
cell. After defining two points, just like in crossover, the genes enclosed in
the donor are injected in the recipient individual. The winner is not changed.
Although a mimetism of a conjugation process is not reported explicitly, the
recombination method proposed by Harvey [27] is generalized in the paper
of Mühlenbein and Voigt [46]. The paper opens the possibility of obtaining
the genetic material necessary for the conjugation from several different chro-
mosomes. Smith [61] uses conjugation as a method of genetic recombination
to solve hard satisfiability problems. Perales-Graván and Lahoz-Beltra [48]
present a genetic algorithm that uses an operator based on conjugation. In
their algorithm a pair of chromosomes is chosen at random in the current
population. The fittest chromosome is considered the donor cell while the
other chromosome is the receptor. Part of the donor chromosome is copied to
the receptor and the necessary adjustments to maintain feasibility are done.
The efficiency of the bacterial conjugation operator is illustrated on designing
an AM radio receiver where the main features of the electronic components
of the AM radio circuit, as well as those of the radio enclosure, are optimized.

Simões and Costa [59, 60] present genetic algorithms with operations based
on transformation for the 0/1 Knapsack Problem. Instead of crossover, they
use transformation mechanisms as the main genetic operators to generate
variation in the population. Initially, fragments of DNA are obtained in the
population, which are aggregated to chromosomes along the evolutionary
process. These DNA fragments consist of binary strings of different lengths
and form the gene segment pool. Transformation is applied every generation
instead of a standard crossover operator. Every generation, the gene segment
pool is updated with new genetic information obtained in the current pop-
ulation. The idea is very similar to the method presented by Fukuda et al.
[18], without the presence of a virus as an intermediary agent.

Transposons also motivate operators for a number of genetic algorithms.
The first genetic algorithms that used transposition operations were presented
by Simões and Costa [57, 58] who utilized transposition instead of crossover
operations. Chan et al. [11] and Yeung et al. [66] include transposition in
a multiobjective genetic algorithm. The transposition process considers that
the transposons are sequences of consecutive genes in the chromosomes. The

432 E.F.G. Goldbarg and M.C. Goldbarg

algorithm uses cut-and-paste and copy-and-paste transpositions. In the for-
mer, a sequence of genes is cut from its original position and pasted into a
new position in the chromosome. In the later operation, the DNA fragment
that forms the transposon replicates itself and the copy is inserted into a new
location of the chromosome, whereas the original sequence of genes remains
unchanged. Transpositions occur between the selection and the crossover.
In the transposition operation, the choice between the cut-and-paste and
copy-and-paste transposition is done randomly. The transpositions can occur
within the same chromosome or between different chromosomes. Whether
the transposition is done within the same chromosome or between different
chromosomes is also a random choice.

4 Transgenetic Algorithms

Transgenetic algorithms are evolutionary computing techniques based on liv-
ing processes where cooperation is the main evolutionary strategy. Those
processes contain the movement of genetic material between living beings
and endosymbiotic interactions. The basic components of Transgenetic Al-
gorithms are presented in Sec. 4.1. A didactic example that illustrates the
concepts introduced in Sec. 4.1 is given in Sec. 4.2 with the well-known Trav-
eling Salesman Problem.

4.1 Basic Components of the Transgenetic Algorithms

The Transgenetic Algorithms are based on three premises. The first premise
consists in contextualizing the computational evolution in a host cell populated
by endosymbionts. In nature, the chromosomes of the host and the endosym-
bionts are different. In addition to its chromosomes, other genetic information
exists in the host’s cytoplasm. In Transgenetic Algorithms the endosymbiont
chromosomes represent solutions. The genetic material of the host consists of
information related to the problem, clones of the endosymbiont chromosomes
or fragments of the endosymbiont chromosomes that are transferred to the host
along the evolutionary process. The information related to the problem is ob-
tained “a priori”. This information simulates the evolutionary past of the host.
The clones and fragments of the endosymbiont chromosomes are information
obtained “a posteriori”. As noted in Sec. 2, the extent to which the endosym-
bionts transmit genetic information to the nucleus of the host cell, they also
learn to re-import the nuclear-encoded products of transferred genes [62]. This
postulate firms the computational endosymbiotic interactions as a compact
system with genetic material cycling.

The second premise consists in guiding the artificial evolution through the
imitation of the process of optimization of the genetic code of endosymbionts
to the host. In nature the process of endosymbiosis promotes the formation of a
hybrid individual through genetic changes of the host and the endosymbionts.

A New Endosymbiotic Approach for Evolutionary Algorithms 433

In this process the genetic code of the endosymbionts is optimized with the aim
of eliminating metabolic redundancies and to allow using the functions of the
host. In the Transgenetic Algorithms, the optimization of the code of the en-
dosymbiont represents the optimization of the problem that is being tackled.
The process ends, similarly to the natural, when the exchange of genetic infor-
mation between host and endosymbionts do not result in any useful changes
for such optimization process.

The third premise consists in mimicking the mechanisms of information
exchange between the host and the population of endosymbionts. The host
has units of genetic information (that are thought to be in its cytoplasm).
The genetic information contained in the host is stored in a repository.
The information of the host’s repository is transferred to the endosymbiont
chromosomes by means of vectors that mimic natural mechanisms of gene
transfer. The entities that manipulate the genetic code of the endosymbiont
chromosomes are called transgenetic vectors. In analogy with the terminol-
ogy employed by microbiologists, there are four types of transgenetic vectors:
plasmid, recombinant plasmid, virus and transposon. A detailed explanation
of the transgenetic vectors is given further.

Information about the problem to be tackled by the algorithm, called “a
priori” information, can be obtained from a number of sources, such as: upper
or lower bounds, heuristic solutions, information obtained with statistical
analysis of the problem (instance) structure, among others. “A posteriori”
information is obtained during the algorithm execution, such as solutions or
parts of solutions. This information is carried by the transgenetic vectors
from the host to the endosymbiont chromosomes.

The variation in the endosymbiont chromosomes that is obtained with the
manipulation of the transgenetic vectors generates information that re-feeds
the host’s repository.

The flow of information in Transgenetic Algorithms is illustrated in Fig. 1
where the host cell and one endosymbiont cell are represented.

Plasmids, viruses and one type of recombinant plasmids receive genetic
information from the host to manipulate the endosymbiont chromosomes.
Another type of recombinant plasmid and the transposons do not receive
genetic information from the host, once they have their own methods to gen-
erate their information. After manipulation, the chromosomes are modified,
and, as a result, new information appears in the context of the population of
endosymbionts. The feedback of the process is done with the new informa-
tion being sent to the host context. Three distinct contexts are considered in
Transgenetic Algorithms:

• a population of endosymbiont chromosomes;
• a population of transgenetic vectors that represent vehicles for transferring

genes and editing the genetic information of the endosymbionts;
• the genetic information contained in the host, that here, is referred as the

genetic information repository.

434 E.F.G. Goldbarg and M.C. Goldbarg

Fig. 1 Flow of information in a Transgenetic Algorithm

A transgenetic vector, λ, is a pair λ = (I, φ), where I is an information
string and φ is a manipulation method, φ = (p1, ..., ps), pj , j = 1, ..., s, are
procedures that define the vector’s action. Two types of information can
be carried by the transgenetic vectors: DNA fragments obtained in the ge-
netic information repository or abstract rules for genetic rearrangement. The
manipulation method determines how that information is transcribed into
chromosomes. The action of a transgenetic vector over an endosymbiont chro-
mosome is referred as manipulation. This action causes change in the code
of the manipulated chromosome. As a consequence, the fitness of the manip-
ulated chromosome is also altered. The transgenetic vectors differ from each
other according to the type of information they carry and according to the
distinct procedures their manipulation methods are constituted. The proce-
dures that compose the manipulation methods of the transgenetic vectors are
summarized in Table 1.

A vector is called plasmid when its information is encoded in the same way
as in the chromosomes (a DNA fragment) and its method is constituted by
procedures p1 and p2. The recombinant plasmids are differentiated from the
plasmids regarding the method their information strings are built. In the bio-
logical context, the recombinant plasmids mix information obtained from var-
ious sources of genetic information. The computational recombinant plasmids
undertake these mixtures through own selection and recombination methods
of genetic information. The information of recombinant plasmids can be built
in three ways. First, the information is built by grouping distinct units of
genetic information of the host’s repository (typical recombinant plasmid).
Second, the information is built by a constructive method (autonomous recom-
binant plasmid). Finally, the information can be built with a mixture of units of

A New Endosymbiotic Approach for Evolutionary Algorithms 435

Table 1 Procedures of the transgenetic vectors

Procedure Name Description

p1 Attack Verifies, according to a given criterion, whether chromo-
some C is susceptible to be manipulated by the transge-
netic vector λ.

p2 Transcription Defines how the information string carried by λ is tran-
scribed in C. The transcription is executes only if proce-
dure p1 returns “true”.

p3 Blocking Establishes a period of time (e.g. number of iterations)
in which the transcribed information cannot be altered
in C.

p4 Identification Identifies positions in C that will be utilized to limit λ’s
operation.

genetic information of the host’s repository and a constructive method (mixed-
information recombinant plasmid).

A vector is called virus if its information string is encoded like in the
plasmids and its method is constituted by procedures p1, p2 and p3.

The information string of transposons are rules for rearranging the genes of
the endosymbiont chromosomes.Theyutilize procedures p1, p2 and p4. The vec-
tor transposon requires the demarcation of a certain area of the chromosome it
will manipulate (procedure p4). In the proposed approach the action of trans-
posons occur exclusively on the information within the endosymbiont chromo-
somes. Three possibilities of manipulation are considered for transposons:

• Permutation between the genes within the range of action of the vector in
the chromosome, called jump and swap trasnsposon;

• Exchange between the genes of the delimited interval and the remaining
genes of the manipulated chromosome, called erase and jump transposon;

• Random alteration of the genes within the defined range. This type of
manipulation is motivated by the fact that, in the natural context, trans-
posons are also mutagens. Mutagens are physical or chemical agents that
change the genome of their host cell in different ways. In the computational
context, this type of transposon is called mutagen transposon.

It is important to note that the transposons in the Transgenetic Algo-
rithms are substantially different from the ones presented in correlated works.
In the works described in Sec. 3, transposons are considered as sequences of
genes that can be moved inside the chromosome. In the proposed approach,
transposons implement rules to rearrange the genes of the endosymbiont chro-
mosomes. Therefore, the transposons proposed here generalize the methods
presented in the correlated works. In the Transgenetic Algorithms, trans-
posons that operate with more than one chromosome are not considered.

A general framework of Transgenetic Algorithms is presented in Algorithm
AlgoTrans. An initial population of endosymbiont chromosomes, Pop, is

436 E.F.G. Goldbarg and M.C. Goldbarg

created. Like in other evolutionary algorithms a fitness value is assigned to
each chromosome. The repository of genetic information, GIR, is created in
step 2. This repository is initialized with “a priori” information. The steps 3-
9 are repeated while a stop condition is not satisfied. The set of transgenetic
vectors, TV , is generated in step 4. The information in GIR is used in the
transgenetic vectors generation. A subset of chromosomes of Pop, SubPop,
is selected to be manipulated by the transgenetic vectors. The selection of
chromosomes that compose SubPop can be done with any classical selection
method utilized in Evolutionary Algorithms or simply, the whole population
is selected to be manipulated. The repository of genetic information is up-
dated with new information (“a posteriori”) generated during the evolution-
ary process (step 8), such as the best endosymbiont chromosomes or pieces
of solutions represented in these chromosomes.

Algorithm AlgoTrans
1. Pop ← initial_population()
2. GIR ← genetic_information()
3. repeat
4. TV ← transgenetic_vectors(GIR)
5. Subpop ← select_chromosomes(Pop)
6. NewSubpop ← manipulate_chromosomes(Subpop, TV)
7. Update(Pop, SubPop)
8. Update(GIR)
9. until a stopping criterion is satisfied

A fitness value may also be assigned to the transgenetic vectors. This
fitness can be used to give the fittest transgenetic vectors a higher probability
to be chosen to manipulate chromosomes in a given iteration. The fitness
can be computed as a success rate, for instance, regarding the total number
of chromosomes that were susceptible to the vector’s manipulation up to a
given moment. For the vectors that carry genetic information, the fitness can
be a function of the “quality” of the information they carry. The vector’s
fitness can also be a function of the difference between the fitness value of a
chromosome before and after the manipulation by that transgenetic vector.
Finally, the fitness can be a function of the evolutionary stage. For example,
at early stages of the algorithm execution some transgenetic vectors may be
expected to give better contributions to the search than others. Thus, the
fitness assigned to the former transgenetic vectors may be higher than the
value assigned to later ones.

The aim of including “a priori” information is to accelerate the evolu-
tionary process. The mixture of information from the context of the host
with the information in the population of endosymbionts produces a good
potential for diversification. Moreover, depending on the algorithm designer,
the manipulation of transposons and autonomous recombinant plasmids may
be directed towards diversification or towards intensification tasks. These

A New Endosymbiotic Approach for Evolutionary Algorithms 437

transgenetic vectors do not depend on the genes that are currently present
in the computational evolutionary process. The proposed form for evolution-
ary algorithms dispenses the use of reproduction, since it is based on natural
mechanisms that immediately incorporate any improvement that is reached
in the endosymbiotic co-evolution.

When the information in the host’s context has high quality, the plasmid,
the typical recombinant plasmid and the viruses are the transgenetic vectors
more appropriate to be used. So, if there is good information available prior to
the start of the evolutionary search, these agents can be used to speed up the
searchprocess. In more advanced stages of the evolutionary search,when the “a
priori” informationhas alreadybeen incorporated to the endosymbionts or even
surpassedby the search context, the transposons and autonomous recombinant
plasmids are fundamental agents in order to promote innovation. It is important
to note, however, that at every stage of the search process the composition of
various types of vectors tends to balance efforts of exploitation and exploration.

Transgenetic algorithms were first proposed by Gouvêa [24] who applied
them to the Quadratic Assignment Problem. Researches addressing the use
of Transgenetic algorithms to real world problems concern the scheduling of
workover rigs [22], video distribution under demand conditions [39], pipe siz-
ing problems [20], distribution of products of petroleum [4], configuration of
co-generation systems [23] and protein folding [2], among others. Ramos et
al. [49] applied logistic regression for parameter tuning in Transgenetic Algo-
rithms. A hybrid Transgenetic Algorithm is applied to the Prize Collecting
Steiner Tree Problem [55].

4.2 The Traveling Salesman Problem: A Didactic
Example

The well-known Traveling Salesman Problem, TSP [25] is used to illustrate
the algorithmic ideas of the Transgenetic Algorithms. Given a graph G =
(N, E), where N = {1,...,n} is the set of nodes, E = {1,...,m} is the set of
edges, and costs, cij , associated with each edge linking vertices i and j, the
problem consists in finding the minimal total length Hamiltonian cycle in G.
The length of a cycle is calculated by adding the costs of the edges in the
cycle. The nodes are also called cities due to the fact that they represent
cities a traveling salesman has to visit, the edges represent streets or roads
between the cities and the edge costs are thought as taxes that must be paid
to cross the roads.

Chromosomes

In the Transgenetic Algorithms, the endosymbiont chromosomes represent
solutions of the investigated problem, as the chromosomes of other evolution-
ary algorithms. The sequence of cities the traveling salesman visits is a usual

438 E.F.G. Goldbarg and M.C. Goldbarg

(a) (b) (c)

Fig. 2 (a) TSP instance, (b) one solution for the TSP instance and (c) the corre-
spondent chromosome

(a) (b) (c)

Fig. 3 Sources of genetic information:(a) Minimum spanning tree; (b) shortest
paths between cities 3-2 and cities 3-7; (c) Hamiltonian path

representation of TSP solutions in evolutionary algorithms. These sequences
are represented as permutations of the n cities. Thus, the endosymbiont chro-
mosomes represent tours and the fitness assigned to them is the correspondent
tour cost. An instance of the TSP is shown in Fig. 2(a). Figure 2(b) shows a
solution for the instance of Figs. 2(a) and 2(c) shows the chromosome that
represents the solution of Fig. 2(b).

Units of genetic information

In the case of the TSP, the units of genetic information may be obtained from
structures of the graph that represents the TSP instance such as minimum
spanning trees, shortest paths, Hamiltonian paths, matchings, etc. Figures
3(a), (b) and (c) exemplify, for the graph of Fig. 2(a), some sources for ob-
taining units of genetic information.

Plasmid, recombinant plasmid and virus

Plasmids, recombinant plasmids and viruses for the TSP can obtain their
information from the sources of genetic information shown in Fig. 3. Fig-
ure 4 illustrates two units of genetic information obtained from the mini-
mum spanning tree and the Hamiltonian path shown in Figs. 3 (a) and (c),

A New Endosymbiotic Approach for Evolutionary Algorithms 439

(a) (b)

Fig. 4 Units of genetic information from: (a) the Minimum spanning tree; (b) the
Hamiltonian path

respectively. Figures 4(a) and (b) show paths with lengths equal two and
four, respectively. The length of the information string is a parameter that
can be fixed by the designer or can be chosen at random in a pre-defined
range.

Table 2 shows the example of a plasmid for the TSP where the type of
unit of genetic information the plasmid carries, I, and procedures p1 and
p2 are defined. Suppose that the host’s repository contains more than one
source of information, which usually is the case. From which source does the
transgenetic vector obtain its information? Given the quality of the informa-
tion in the repository, the designer defines the best strategy for choosing the
information source. The designer can simply define that one of those sources
is chosen at random with equal probability or establish another strategy that
can, inclusively, vary during the execution of the algorithm. The plasmid
exemplified in Table 2, transcribes information I in a chromosome C with
the insertion operation defined in procedure p2. Let C represent the solution
shown in Fig. 5(a), k = 2 and I be the unit of genetic information of Fig.
4(a). The last allele of I is 7. Then, as defined in procedure p2, this allele is
paired with the allele 7 of C, as shown in Fig. 5(b). The information is in-
serted and the repeated alleles are removed from C. The result is chromosome
C’ that represents the solution shown in Fig. 5(c). Procedure p1 establishes
the condition which chromosome C is susceptible to the manipulation of the
plasmid. This condition establishes that the manipulation is “accepted” if
the value of the solution represented in C’, fit(C′) is lower than the value
of the solution represented in C, fit(C) . In this case, the new chromosome
replaces the original one in the population. The cost of the solutions of Figs.
5(a) and (c) are 34 and 15, respectively. Thus, in this case, chromosome C’
replaces chromosome C in the population of endosymbionts.

An alternative for procedure p2 of Table 2 is to test all possibilities of pair-
ing the alleles of the plasmid with the correspondent ones in the chromosome
and assume the best manipulation result as the resultant chromosome C’.

The difference between the plasmid and the computational virus is that the
latter blocks the transcribed information in the manipulated chromosome for
a given number of iterations. It means that the sequence of genes transcribed

440 E.F.G. Goldbarg and M.C. Goldbarg

Table 2 Example of a plasmid for the TSP

Procedure Description

I A sequence of vertices defining a path with length at most k
p1 fit(C) − fit(C′) > 0, then return “true”, otherwise return “false”
p2 Starting at the position of the last allele of I in chromosome C, insert I

and remove repeated vertices that are not in the positions altered with
the manipulation.

(a) (b) (c)

Fig. 5 (a) Solution represented in the original chromosome; (b) plasmid’s tran-
scription; (c) solution represented in the manipulated chromosome

by a virus has to remain unchanged in the manipulated chromosome during a
given number of iterations. Those genes are not modified by latter transcrip-
tions unless the pre-specified period of time has elapsed. This “protection” for
the transcribed genes can be very useful when these genes represent part of a
high quality solution or if they are likely to belong to an optimal solution.

The typical recombinant plasmid obtains it information in more than one
source. Figure 6(a) shows the information carried by a typical recombinant
plasmid that is a combination of two units of genetic information obtained
from distinct sources: path 3-5-2 from the minimum spanning tree (Fig. 3(a))
and path 3-6-7 from the shortest path (Fig. 3(b)). The resultant path has
length k = 4. Figure 6(b) shows the example of a unit of genetic information
of an autonomous recombinant plasmid. It was obtained with the nearest
neighbor heuristics [6]. The greedy iterative process starts at vertex 3 and
the path has length k = 3.

Transposon

Table 3 summarizes the features of a jump and swap transposon for the
TSP. Figure 7(a) shows a solution and the correspondent chromosome. Let
vertices 7 and 3 be selected in procedure p4. The transposon examines all

A New Endosymbiotic Approach for Evolutionary Algorithms 441

(a) (b)

Fig. 6 Units of genetic information of: (a) a typical recombinant plasmid; (b) an
autonomous recombinant plasmid

Table 3 Features of a jump and swap transposon for the TSP

Procedure Description

I To swap vertices
p1 fit(C) − fit(C′) > 0, then return “true”, otherwise return “false”
p2 To swap two adjacent vertices. To examine all two swaps and output

the one that yields the best result.
p4 To choose 2 vertices at random with distance, at least, k in the repre-

sented tour

possible swaps between two neighboring vertices within the range defined by
the application of procedure p4 as illustrated in Fig. 7(b). The transcription
operator (procedure p2) returns the configuration that represents the best
solution found with the swaps. In this case, the best chromosome is formed
by the sequence (1 6 7 2 4 3 5) representing a solution with cost 20.
Once the manipulated chromosome represents a better solution than the one
represented in the original chromosome, the latter is replaced by the former
in the current population.

Table 4 summarizes the features of an erase and jump transposon for the
TSP. The information is to remove vertices of the delimited interval in the

(a) (b)

Fig. 7 (a) One TSP solution and its representation in a chromosome ; (b)action
of the jump and swap transposon in the delimited sequence of genes

442 E.F.G. Goldbarg and M.C. Goldbarg

Table 4 Features of an erase and jump transposon for the TSP

Procedure Description

I To remove vertices
p1 fit(C) − fit(C′) > 0, then return “true”, otherwise return “false”
p2 To replace the removed vertex by another vertex chosen at random out

of the range delimited by procedure p4. To examine all two swaps and
output the one that yields the best result.

p4 To choose 2 vertices at random with distance, at least, k in the repre-
sented tour

(a) (b)

Fig. 8 (a) One TSP solution and its representation in a chromosome; (b) action
of the erase and jump transposon in the delimited sequence of genes

target chromosome. In order to do this, procedure p2 defines a transcription
method that swaps the removed vertex with another vertex out of the delim-
ited range. Figure 8(b) illustrates the action of an erase and jump transposon
on the chromosome of Fig. 8(a). Figure 8(b) shows that the vertices in the
delimited interval are considered one at a time. The removed vertex is re-
placed by another one chosen at random among vertices 4, 6 and 3 that are
out of the defined interval. Let the pair (x, y) represents the swap between
vertices x and y, in and out the delimited range, respectively. If swaps (7,3),
(1,4), (2,6) and (5,3) are performed, then the best chromosome is obtained
with the swap of vertices 2 and 6. The resultant chromosome represents a
solution with cost 24. Once the original chromosome represents a solution
with cost 21, procedure p1 returns “false” and the manipulated chromosome
does not replace the original chromosome in the population.

The random alterations done by mutagen transposons may be concerned
with diversification tasks. In those cases, the algorithm may accept that the
manipulated chromosomes represent solutions that are worse than the orig-
inal ones. Table 5 summarizes the features of a mutagen transposon for the
TSP. The information is to swap vertices and procedure p1 always return
“true”. It means that whatever the chromosome generated by the manipula-
tion, it replaces the original one in the current population.

A New Endosymbiotic Approach for Evolutionary Algorithms 443

Table 5 Features of a mutagen transposon for the TSP

Procedure Description

I To swap k pairs of vertices
p1 return “true”
p2 To swap a vertex chosen at random in the range delimited by procedure

p4 with another vertex also chosen at random.
p4 To choose 2 vertices at random with distance, at least, k in the repre-

sented tour

In examining various possibilities to make their transpositions, the trans-
posons (mainly the jump-and-swap transposon and the erase-and-jump trans-
poson) perform a form of restricted local search with the elements in the
delimited range.

5 Application to the Traveling Purchaser Problem

In this section an application to the NP-hard problem named Traveling Pur-
chaser Problem (TPP), a generalization of the Traveling Salesman Problem
is presented. In this variant there is a set of m markets, vertices of a graph
G, and a set of n products that must be purchased. Each product is avail-
able, with different quantities, on a subset of markets and the unit cost of
a product depends on the market where it is available. The objective of the
purchaser is to buy all the products, departing and returning to a domi-
cile (location v0), with the least possible cost. The cost is defined as the
summation of the weights of the edges in the tour plus the price paid to
acquire the products. Thus, there is no need of including all the markets in
the tour. The problem can be stated as follows. Given a domicile, v0, a set
of markets M = {v1, v2, ..., vm} and a set of products K = {f1, f2, ..., fn},
the problem is represented in a graph G = (V, E) where V = {v0} ∪ M and
E = {[i, j] : vi, vj ∈ V, i < j}. A demand dk is assigned to each product fk.
The number of units of product fk at market vi is denoted by qki and Mk

denotes the set of markets where the product fk is available, Mk ⊆ M . The
cost of product fk at market vi is denoted by bki and the cost of traveling
from market vi to market vj is given by cij . The objective is to determine
a minimum cost tour in G starting and ending at v0 through a subset of
markets so that the demand for products fk is satisfied. The uncapacitated
version of the TPP (UTPP) is considered here. In the UTPP version, it is
assumed that if a product is available at a given market, its quantity is suf-
ficient to satisfy the demand [7], that is dk = 1 and qki ∈ {0, 1}, 1 ≤ k ≤ n,
1 ≤ i ≤ m.

444 E.F.G. Goldbarg and M.C. Goldbarg

Algorithm TransTPP
1. Pop ← initial_population(#sizeP)
2. GIR ← genetic_information()
3. j ← β
4. repeat
5. i ← 1
6. repeat
7. u ← random(η)
8. if (u ≥ j) then
9. λ ← choose_best_plasmid(r)
10. for each C ∈ Pop do
11. C′ ← manipulate_plasmid(C, λ)
12. else
13. for each C ∈ Pop do
14. C′ ← manipulate_transposon(C)
15. if procedure_p1(C, C′) thenC ← C′

16. if (C than the current best solution) then
17. update(GIR, C)
18. i ← i + 1
19. until(i = β)
20. j ← β
21. until(j > η)

A general framework of the algorithm for the UTPP is shown in Algorithm
TransTPP [21]. The population of endosymbiont chromosomes is generated
with #sizeP individuals. Each chromosome contains the subset of markets
visited by the traveling purchaser. The sequence begins and ends at the domi-
cile, v0, but this information is omitted in the chromosome. Each product is
purchased in the market that offers the lowest price. The fitness is given by
the cost of the tour represented in the chromosome plus the cost of acquisition
of all products on the markets of the represented tour. In order to generate
the sequence of markets of a given chromosome, an iterative method is per-
formed. At each iteration step, a market is chosen at random, with equal
probability, among the markets that are not yet in the sequence. The market
is included in the sequence and the process continues until a feasible sequence
has been generated. In order to be feasible, each product must be available
in, at least, one market. After the sequence is built the Lin and Kernighan
algorithmic version of Applegate et al. [3] is applied to the sequence in order
to improve the cost of the tour.

In this algorithm two types of transgenetic vectors are utilized: plasmids
and transposons. The repository of sources of genetic information stores “a
priori” and “a posteriori” information. The “a priori” information is a Hamil-
tonian cycle of G obtained with the Lin and Kernighan algorithm. “A pos-
teriori” information is obtained from the four best solutions generated up to
the current iteration. In this transgenetic algorithm the evolutionary process

A New Endosymbiotic Approach for Evolutionary Algorithms 445

Table 6 Example of a plasmid for the UTPP

Procedure Description

I A sequence of markets with length k. The value for k is chosen at
random in the interval [3, �m/8�].

p1 fit(C) − fit(C′) > 0, then return “true”, otherwise return “false”
p2 Remove from C the markets that are both in I and C. Test the best

position for inserting I in C, verifying the insertion of I in every position
of C. Remove from C the markets where no products are purchased.
Improve the tour with the Lin and Kernighan heuristics.

is developed in levels. It means that different probabilities are assigned to
the type of the transgenetic vectors chosen during the execution depending
on the current “evolutionary level”. Those levels are simulated in the nested
loops of the algorithm. In the inner loop the probability of choosing a plas-
mid or a transposon remains fixed. Four input parameters are passed to the
algorithm: #sizeP , the population size; r, the number of plasmids generated
at each iteration step where plasmids are chosen to manipulate the endosym-
biont chromosomes; β, the number of iterations of the inner loop; and η, the
total number of iterations of the Transgenetic Algorithm.

Plasmids are more likely to be chosen in the initial iterations. The extent
to which the algorithm is executed, the probability changes and transposons
become more likely. At each iteration step, a type of transgenetic vector,
plasmid or transposon, is chosen with a probability that depends on the
evolutionary process stage. The counter j controls that tendency, being ini-
tialized at step 3 and updated at step 20. Its effect is determined on the
comparison of step 8.

If a plasmid is selected, r vectors are generated. They are evaluated and
the best one among the r plasmids attacks all endosymbiont chromosomes,
as shown in steps 10-11. The evaluation criterion is described further. The
unit of genetic information carried by the plasmid is a sequence of markets
obtained in one of the sources stored in GIR. One element of GIR is chosen
at random, with uniform probability, to be the source of information of each
plasmid. The features of the computational plasmid implemented for the
UTPP are summarized in Table 6. An initial point of the selected source is
randomly chosen, then starting on that point, k successive markets form the
sequence that is carried by the plasmid.

At each iteration where the plasmid is chosen as the manipulation vec-
tor, r = 30 plasmids are generated. Those plasmids are evaluated in order
to choose the best one to manipulate the endosymbiont chromosomes. This
evaluation is done with the units of genetic information they carry. Three
parcels make up the basis of evaluation:

1. The weights of the edges of the path correspondent to the sequence of
markets;

446 E.F.G. Goldbarg and M.C. Goldbarg

2. The lowest prices of the products available on some market in the sequence;
3. The highest prices of the products which are not available in any market

of the sequence.

The plasmid with the lowest associated value is chosen as the transgenetic
vector of the current iteration. The insertion of the unit of genetic informa-
tion is done with the method described in p2 as illustrated in Fig. 9. First,
the markets that are both in C and in the unit of genetic information of the
plasmid are removed. In the example shown in Fig. 9, market 1 is in this
case. The positions where the unit of genetic information can be inserted are
illustrated in the chromosome with dashed arrows. In the example, the unit of
genetic information is inserted between markets 4 and 2. After that, the mar-
kets where products are no longer purchased are removed. Suppose, that the
products previously purchased in markets 4 and 6 are available at lower prices
in markets 8 and 3. Then, those products are purchased in the new inserted
markets and markets 4 and 6 are in the tour, but no products are purchased
there. Thus, markets 4 and 6 are removed from the chromosome. After these
operations the manipulated chromosome is (8 3 1 2 5). Finally, the Lin and
Kernighan algorithm is applied to this tour and the resultant chromosome is
(2 1 3 8 5). This is implemented in procedure manipulate plasmid() in step
11 of the algorithm.

Fig. 9 Example of the
transcription of the plas-
mid with information
string (8 3 1) in the
UTPP chromosome (4 2
1 6 5)

The manipulation with the transposon is implemented in procedure manip-
ulate transposon() in line 14. This is a mutagen transposon. The features of
the transposon are summarized in Table 7. Two positions of the chromosome
are selected at random in procedure p4. The markets between those positions
constitute the set of markets that will be manipulated. The information of
the transposon is to remove markets. Thus, each market of that sequence
is considered to be removed, one at a time. When a market is removed, the
solution represented in the chromosome may become infeasible, that is, it can
occur that one or more products are not available in the remaining markets.
Thus the transcription operator has to restore the solution feasibility. This
is done with the addition of new markets to the manipulated chromosome.

Let S be the set of markets that are not in the manipulated chromosome
C. A value is associated with each market v of S. The value associated to v
is calculated by the sum of two parcels: the least increase its addition brings

A New Endosymbiotic Approach for Evolutionary Algorithms 447

Table 7 Features of a transposon for the UTPP

Procedure Description

I To remove markets
p1 fit(C) − fit(C′) > 0, then return “true”, otherwise return “false”
p2 Remove one market and add new markets until reaching feasibility. If

the chromosome is not improved, then repeat the operation removing
two markets

p4 To choose 2 positions in the chromosome at random

to the cost of the tour represented in C and the total of the highest prices
of the products that, even with the inclusion of v, are still not purchased.
The least increase of the tour cost is calculated with the nearest insertion
heuristics [53]. The market with the least associated value, is inserted in the
chromosome in the position determined by the nearest insertion heuristics.
If the solution is still infeasible, the process is repeated until a feasible so-
lution is built. Finally, the markets where no products are purchased are
removed and the tour of the markets in the chromosome is improved with
the Lin and Kernighan heuristics. The markets are removed one at a time,
and the chromosome that represents the best solution among all generated by
the transposon’s manipulation is taken as the resultant chromosome. If the
resultant chromosome does not represent a better solution than the original
chromosome, then the procedure is repeated with the removal of two markets.

The proposed approach for the UTPP was tested in a computational ex-
periment with 141 benchmark instances: 89 with known optimal solutions
and 52 for which optimal solutions are not known. The tests were run on a
Pentium IV 2.8 GHz, 512 MB of RAM, Ubuntu Linux operational system
and gcc compiler. The parameters r = 30, η = 40 and β = 4 were fixed after
preliminary experiments. Among the instances with known optimal solutions,
m varies between 50 and 250, and n varies between 50 and 200. The results
of the Transgenetic Algorithm, TA, were compared with the results of the
Local Search presented by Riera-Ledesma and Salazar-González [50] and the
results of the Ant Colony algorithm presented by Bontoux and Feillet [8].

The results concerning the instances with known optimal solutions are
summarized in Table 8. The instances are divided into classes established by
the number of markets and the number of products. The results correspond
to the average of the best solutions found by each algorithm for the instances
of the correspondent group. The results are shown in terms of the percent
deviation of the average from the optimal solution. Two hundred independent
runs of the Transgenetic Algorithm were performed for each instance.

Concerning the instances grouped by number of markets, except for the
group with 150 markets where a percent deviation of 0.01 is found, the TA
finds percent deviation 0 for all groups. A similar result is observed for the
results grouped by the number of products. Regarding quality of solution

448 E.F.G. Goldbarg and M.C. Goldbarg

Table 8 Results for UTPP instances grouped by markets, m, and by products, n

Methods m n
50 100 150 200 250 50 100 150 200

RL-SG Gap 0.07 0.14 0.03 0.32 0.06 0.07 0.24 0.10 0.08
T(s) 3 10 14 19 25 5 13 20 21

BF Gap 0 0 0.08 0.02 0.01 0 0.05 0 0.03
T(s) 2 20 172 232 154 37 154 96 165

TA Gap 0 0 0.01 0 0 0 0 0 0.01
T(s) 4 25 44 43 64 12 37 39 50

Table 9 Results for UTPP instances with optimal solution not known

BF TA BF TA
m n Id Sol T(s) Sol T(s) m n Id Sol T(s) Sol T(s)
200 150 4 2419 1216.92 2419 23.98 300 150 5 1816 309.25 1816 41.16
200 200 4 2344 527.03 2344 99.19 300 200 1 1815 488.15 1803 575.39
200 200 4 2344 527.03 2344 99.19 300 200 2 1791 1918.52 1790 627.73
250 100 1 1301 33.84 1301 143.19 300 200 3 2442 2852.05 2437 184
250 100 4 1673 10.23 1673 3.55 300 200 4 1815 2946.79 1815 113.82
250 100 5 1641 550.24 1641 1.84 300 200 5 2022 1577.83 2014 605.39
250 150 4 1836 45.24 1836 2.27 350 50 1 723 46.04 723 1.7
250 150 5 1531 21.1 1531 151.43 350 50 2 736 25.71 736 13.02
250 200 2 2785 1137.65 2786 246.31 350 50 3 942 6 942 1.82
250 200 3 1924 281.88 1924 16.45 350 50 4 805 379.39 805 5.01
250 200 4 2116 83.83 2116 3.06 350 50 5 1125 26.35 1225 1.67
250 200 5 1797 930.03 1797 38.97 350 100 1 1317 1698.48 1317 229.99
300 50 1 1477 160 1477 1.5 350 100 2 962 155.48 962 2.37
300 50 2 813 116.01 813 1.41 350 100 3 796 839.65 796 2.43
300 50 3 1117 20 1117 1.46 350 100 4 1059 13.94 1059 9.14
300 50 4 1176 2.11 1176 1.44 350 100 5 1566 464.86 1566 41.76
300 50 5 1257 276 1256 1.57 350 150 1 1457 1986.42 1459 319.67
300 100 1 1035 55.54 1035 2.29 350 150 2 1315 159.12 1315 16.31
300 100 2 1179 617.22 1180 3.98 350 150 3 2553 257.69 2558 597.74
300 100 3 1498 103.42 1498 2.25 350 150 4 1239 595.85 1239 3.06
300 100 4 1749 312.16 1749 37.49 350 150 5 2288 8.93 2288 229.27
300 100 5 1774 2.74 1774 2.27 350 200 1 1503 1033.39 1498 25.34
300 150 1 1457 756.71 1457 98.66 350 200 2 1374 3085.09 1369 56.07
300 150 2 1656 483.32 1656 3.02 350 200 3 1873 368.66 1873 59.05
300 150 3 2485 663.24 2484 6.34 350 200 4 1385 122.24 1356 32.88
300 150 4 1801 95.93 1801 8.17 350 200 5 2336 2385.65 2336 204.53

the RL-SG is outperformed by the TA in all instance classes. The BF is
outperformed by the TA in three classes grouped by number of markets and
2 classes grouped by number of products. The TA is not outperformed by
any algorithm regarding quality of solution.

A New Endosymbiotic Approach for Evolutionary Algorithms 449

Table 9 shows a comparison between the solutions found by the TA and
the BF for the remaining 52 instances. Optimal solutions are not known for
these instances. The results of the RL-SG are not reported because it does not
present better solutions than the other two algorithms for any instance. The
results shown for TA correspond to the best solution found in 5 independent
executions for each instance. The stopping criterion was a maximum of 200
iterations. The results shown by BF are reported by Bountoux and Feillet
[8]. The TA finds new best solutions for 9 of the 51 instances. BF reports
the best solutions of 4 benchmark instances. Both algorithms find the best
known solutions for the remaining instances.

Although the platforms of BF and TA are different, some conclusions about
the processing times can be drawn. In order to this, we can consider the pro-
cessing times of BF divided by a factor of 2. It gives the BF some advantage
over the TA, once the difference in speed between the two platforms is smaller
than this factor. Even dividing the processing times of BF shown in Table
9 by 2, the TA is, for the 51 instances, 3 times faster, in average, than the
other algorithm.

6 Application to the Bi-objective Minimum Spanning
Tree

A spanning tree of a connected undirected graph G = (N, E) is an acyclic
spanning subgraph of G with n − 1 edges, where n = |N |. If G is a weighted
graph, a minimum spanning tree, MST, of G is spanning tree for which
the summation of the weights of its edges is minimum over all spanning
trees of G. A survey of the MST is presented by Bazlamaçci and Hindi [5].
Although, the MST problem is polynomial, constraints often render it NP-
hard [19]. Examples include the degree-constrained minimum spanning tree,
the maximum-leaf spanning tree, and the shortest-total-path-length spanning
tree problems. Another difficult variant of this problem is the multi-criteria
Minimum Spanning Tree, mc-MST [1]. In the q-objective MST Problem, a
vector of non negative weights wij = (w1

ij , ..., w
q
ij), q > 1, is assigned to each

edge (i, j) ∈ E. Let S be the set of all possible spanning trees, T = (NT , ET),
of G and W = (W1, ..., Wq), where

W t =
∑

ij∈ET

wt
ij , t = 1, ..., q. (1)

The problem seeks S∗ ⊆ S, such that T ∗ ∈ S∗ if and only if � ∃T ∈ S, such that
T dominates T ∗. In order to understand the domination concept, consider
the general multi-objective minimization problem (with no restrictions) that
can be stated as:

“minimize”f(x) = (f1(x), ..., fq(x)), (2)

450 E.F.G. Goldbarg and M.C. Goldbarg

subjected to x ∈ X , where x is a discrete value solution vector and X is a finite
set of feasible solutions. Function f(x) maps the set of feasible solutions X in
Z, the q-dimensional objective space, q > 1. Then, f : X → Z is a function
that assigns an objective vector z = f(x) ∈ Z to each solution x ∈ X . Let
z1 = (z1

1 , ..., z1
q) and z2 = (z2

1 , ..., z
2
q), z1, z2 ∈ Z be two objective vectors,

then z1 $ z2 (z1 dominates z2) if z1 is not worse than z2 in any objective
and is better in at least one. The goal is to discover solutions that are not
dominated by any other in the objective space. The non-dominated solutions
are said also to be efficient solutions. To solve a multi-criteria problem, one
is required to find the set of efficient solutions. Solutions of this set can be
divided in two classes: the supported and non-supported efficient solutions.
The supported efficient solutions can be obtained by solving the minimization
problem with a weighted sum of those objectives. More formally,

minimize
∑

j=1,...,q

αjf(xj), (3)

where ∑
i=1,...,q

αi = 1, αi > 1. (4)

The non-supported efficient solutions are those which are not optimal for
any weighted sum of objectives. Once the single objective MST is solved in
polynomial time, then the set of non-supported solutions is a major challenge
for researchers that deal with the multi-criteria MST.

In this work the bi-objective problem is considered, although the proposed
algorithm can be adapted to consider q > 2 objectives. Evolutionary algo-
rithms for the bi-objective MST are presented by Zhou and Gen [68], Knowles
and Corne [34], and Rocha et al. [51, 52].

The pseudo-code of the transgenetic algorithm is shown in Algorithm
TransMcMST [52]. The algorithm that utilizes plasmids, recombinant plas-
mids and transposons runs a fixed number of iterations, #maxgen. At first
the endosymbiont chromosomes are manipulated by a transposon. There are
two types of transposons and one of them is chosen at random at each itera-
tion step with uniform probability. Both are mutagen transposons. The first
type transposon is called cycle-transposon. The rule of this transposon is to
insert an edge in the part of the tree (represented in the target endosymbiont
chromosome) specified in procedure p4. A cycle is formed when a new edge
is inserted in a tree. Therefore, another edge of that cycle must be removed
in order to maintain feasibility. At first, a scalarizing vector and a node i in
the delimited range are selected at random. The edge with the lowest scalar-
ized cost, with one extremity in i, that is not in the tree is chosen to be
inserted. The edge of the cycle with the greatest scalarized cost is removed.
The operation is repeated for all nodes in the specified interval. An edge that
was withdrawn is not allowed to be re-inserted in the tree for 3 iterations of

A New Endosymbiotic Approach for Evolutionary Algorithms 451

the transposons action. In procedure p1 the dominance condition of the new
chromosome is verified. If the new chromosome, C′, dominates the original
chromosome, C, or if the former is not dominated by any solution in G A,
then the manipulation is accepted. The same procedure p1 is used for the
other transgenetic vectors.

Algorithm TransMcMST
1. Pop ← initial_population(#sizeP)
2. create_archive(G A, Pop)
3. for i ← 1 to #maxgen do
4. for j ← 1 to #sizeP do
5. type t ← random(1, 2)
6. C′ ← manipulate_transposon(Cj, type t)
7. if procedure_p1(C′, Cj)
8. Cj ← C′

9. else cont[j] ← cont[j] + 1
10. if (cont[j] = 2)
11. λ ← create_plasmid()
12. C′ ← manipulate_plasmid(Cj, λ)
13. cont[j] ← 0
14. if procedure_p1(C′, Cj)
15. Cj ← C′

16. update (G A, Cj)
17. end_for_j
18. end_for_i

The rule of the second type transposon is to remove two edges. Two edges
(i, j) and (r, s), i �= j �= r �= s, are removed from the tree. There is only
one way to re-link those terminal vertices in order to maintain feasibility.
It is checked whether the inclusion of edge (i, r) creates a cycle or not. If a
cycle is not created then edges (i, r) and (j, s) are added, otherwise the edges
included in the solution are (i, s) and (j, r). As in the cycle-transposon, the
removed edges are not allowed to be re-inserted in the tree for the next 3
iterations of the transposon’s action.

Each chromosome of the population of a given iteration step is manipulated
by one of the two transposons chosen at random in accordance with a uniform
probability (steps 5-8). The algorithm maintains a counter for each chromo-
some that is initially set to zero. If a chromosome is not improved by the ma-
nipulation of the chosen transposon, its counter is incremented, otherwise its
counter is set to zero. If the counter of a given chromosome reaches value 2,
then the chromosome is manipulated by a plasmid or by a recombinant plas-
mid and its counter is set again to zero. During the creation of the transgenetic
vector in step 11, the type of transgenetic vector (plasmid or recombinant plas-
mid) is chosen at random with uniform probability. As noted previously, the
difference between a plasmid and a recombinant plasmid is in the construction

452 E.F.G. Goldbarg and M.C. Goldbarg

of the unit of genetic information carried by the vector. Both vectors utilize
the same procedures p1 and p2 in this application.

The genetic information utilized in the plasmids is obtained from the solu-
tions in G A. At each iteration step, one solution of G A is chosen to be the
source of information of the plasmid. One of the cells of the multidimensional
grid with the lowest number of solutions is chosen at random with a uniform
distribution. Then, a solution of that cell is randomly selected. A fragment of
that tree with k edges is randomly chosen to be the unit of genetic informa-
tion of the plasmid. The transcription operator (procedure p2) begins with
an empty tree. It inserts all the edges of the unit of genetic information of
the plasmid. After, all edges of the original tree that do not form cycle with
the edges of I, are inserted in the tree. Finally, if the structure is not yet a
tree, random edges are inserted until a tree is formed.

This implementation uses an autonomous recombinant plasmid. The unit
of genetic information carried by the recombinant plasmid is generated with
the random version of the Kruskal’s algorithm described previously. As in the
plasmid, the length of the unit of genetic information is chosen at random in
the interval [0.30n, 0.60n].

The Transgenetic Algorithm was applied to 40 instances generated in ac-
cordance with the method described in the work of Knowles [33]. The results
obtained with the Transgenetic Algorithm were compared with the ones ob-
tained by the Memetic Algorithm proposed by Rocha et al. [51]. Two groups
of twenty instances belonging to the classes concave and correlated were gen-
erated as complete graphs with two objectives. Each class has two instances
with n = 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000. To be generated,
the correlated instances require a correlation factor, β, and the concave in-
stances require two parameters, ζ and η. Table 10 summarizes the parameters
utilized to generate the set of instances. Both algorithms were implemented
in C and ran on a Pentium IV (2.8 GHz and 512 Mb of RAM) with Linux
2.6, gcc 4. Forty independent runs of each algorithm were executed for each
instance. The maximum number of iterations of the Transgenetic Algorithm,
#maxgen, is 30, and the size of the population, #sizeP , is 150. The MA
was implemented as described in the paper of Rocha et al. [51].

Three quality indicators were utilized in the comparison: the binary ep-
silon indicator (Eps) [70], the hypervolume indicator (Hyp) [69], and the R2
indicator [26]. The R2 indicator utilized the augmented Tchebycheff func-
tion [35]. The reference sets contain the non-dominated solutions obtained
by both algorithms. The test of Mann-Withney (U-test) is utilized to verify
the statistical significance of the results obtained with these indicators [13].
The results are shown in Table 11. The column ”Id” shows the instance name,
columns ”MA T(s)” and ”TA T(s)” show the average processing time of the
Memetic Algorithm (MA) and the Transgenetic Algorithm (TA), respectively.
The p-values shown in Table 11 were calculated under the assumption that
the TA outperforms the MA. Therefore, considering a significance level of
0.05, values less than 0.05 indicate that there is statistical evidence that the

A New Endosymbiotic Approach for Evolutionary Algorithms 453

Table 10 Parameters of the bi-objective MST instances

Concave Correlated Concave Correlated
Id ζ η β Id ζ η β

100 1 0.01 0.02 0.3 600 1 0.0016 0.1 0.125
100 2 0.02 0.1 0.7 600 2 0.002 0.02 0.95
200 1 0.05 0.2 0.3 700 1 0.0014 0.03 0.35
200 2 0.08 0.1 0.7 700 2 0.001 0.008 0.7
300 1 0.03 0.1 0.3 800 1 0.00125 0.035 0.45
300 2 0.05 0.125 0.7 800 2 0.0015 0.03 0.05
400 1 0.025 0.125 0.3 900 1 0.0011 0.009 0.15
400 2 0.04 0.2 0.7 900 2 0.002 0.01 0.85
500 1 0.02 0.1 0.3 1000 1 0.001 0.2 0.4
500 2 0.03 0.15 0.7 1000 2 0.0005 0.1 0.9

Table 11 Comparison of the performance of the Memetic and the Transgenetic
Algorithms

Correlated Concave
Id Eps Hyp R2 MA T(s) TA T(s) Eps Hyp R2 MA T(s) TA T(s)

100 1 0.99 0 0 67.0 11.0 0.70 0 0 61.4 8.8
100 2 1 0.38 0 72.2 9.2 0 0 0 56.3 21.6
200 1 0 0 0 133.3 50.7 0 0 0 123.8 35.7
200 2 0.61 0.09 0.17 130.2 43.5 0.98 0 0 153.2 20.2
300 1 0.03 0 0 214.8 89.3 0.01 0 0 224.6 59.9
300 2 0.01 0 0 198.6 81.9 0 0 0 226.2 56.8
400 1 0 0 0 296.5 119.2 0 0 0 335.6 98.4
400 2 0.99 0 0 289.6 122.3 0 0 0 354.2 101.7
500 1 0 0 0 412.0 164.8 0 0 0 417.3 149.1
500 2 0.68 0 0 401.3 160.5 0 0.01 0 413.0 140.4
600 1 0.10 0 0 536.0 215.6 0.01 0 0 558.1 202.5
600 2 0 0.01 0.02 484.6 211.7 0 0 0 527.3 197.2
700 1 0 0 0 658.6 284.0 0.55 0 0 671.6 264.6
700 2 0.97 0 0 657.3 272.8 0 0 0 670.9 258.8
800 1 0.07 0 0.02 777.0 353.6 0.55 0 0 793.5 331.4
800 2 0 0 0 815.2 354.9 0.51 0 0 794.3 331.6
900 1 0 0 0 932.3 425.2 0 0 0 910.0 405.6
900 2 0.36 0 0 915.0 416.4 0 0 0 911.3 386.9
1000 1 0.38 0 0 1113.9 511.9 0.87 0 0 1723.6 483.9
1000 2 0 0 0 1036.8 496.9 0.94 0 0 1151.1 493.1

TA outperforms the MA, according to the correspondent indicator. Values
higher than 0.95 indicates that the MA outperform the TA.

Concerning the correlated instances, the Transgenetic Algorithm obtains
better approximation sets than the Memetic Algorithm in 11, 18 and 19 in-
stances according to the epsilon, hypervolume and R2 indicators, respectively.

454 E.F.G. Goldbarg and M.C. Goldbarg

The MA outperforms the TA on 4 instances according to the epsilon indica-
tor and does not outperform the TA on any instance according to the other
two indicators. A similar result is verified for the concave instances, where
the TA outperforms the MA on 13, 20 and 20 instances, according to the ep-
silon, hypervolume and R2 indicators, respectively. The MA outperforms the
TA on 1 concave instance, according to the epsilon indicator. The columns
correspondent to the average processing time for the two algorithms show
that the TA outperforms the MA in all tested instances, being, in average, 2
times faster.

7 Peculiarities of the Transgenetic Algorithms

In this section, some differences between the Transgenetic Algorithms and
other evolutionary algorithms are presented.

The first difference concerns the existence of distinct contexts of informa-
tion in the Transgenetic Algorithms. Besides the endosymbiont chromosomes
that represent a short-term memory of the search, information is also stored
in the host’s context and in the transgenetic vectors. Although these three
components of the Transgenetic Algorithms are interdependent, they are au-
tonomous and are equivalently important for the search process. A complex
behavior is created in the algorithm through the nesting of these components.

The information of the host is not necessarily encoded on chromosomes,
nor necessarily represents solutions of the optimization problem being tack-
led. This information represents a long-term memory, not exclusively associ-
ated with the evolutionary process being performed by the algorithm. The
information can be evaluated regarding the expectation of producing trans-
genetic vectors that are successful in manipulating the chromosomes. The
information of the host is updated with the new genetic information that
arises from the population of chromosomes during the algorithm execution.
This feedback features up a co-evolutionary spiral of convergence of the ge-
netic material shared between the endosymbiont chromosomes and the host.

The transgenetic vectors are dynamic and volatile elements without a per-
fect match to the elements of traditional evolutionary algorithms. They may
be submitted to various types of selective pressure. They cooperate with the
evolution of the system host/endosymbiont, being guided by the information
of the host in the task of accomplishing their transcriptions in the chromo-
somes.

The endosymbiont chromosomes do not reproduce or share genetic mate-
rial directly. They are uniquely subjected to the pressure that results from
the manipulation performed by the transgenetic vectors. The genes of a given
chromosome are modified only if a successful transcription is done by a trans-
genetic vector. To be successful the transcription has to be evaluated in a
positive way concerning the susceptibility criterion (implemented in proce-
dure p1 of the transgenetic vector). Otherwise, the genes remain unchanged

A New Endosymbiotic Approach for Evolutionary Algorithms 455

over the iterations of the algorithm. The changes in the code of chromosomes
are, therefore, directed to the improvement of the solutions represented in
the population. Furthermore, the variation on the code of the endosymbiont
chromosomes is restricted by the information of the transgenetic vectors and
is guided by pre-existing genetic information of the host.

Mutations in the endosymbiotic theory of evolution have a different role
than the one assigned to them in other theories of evolution. This difference
is so remarkable that mutations can be completely avoided in the proposed
computational context, as in the examples presented in Secs. 5 and 6. The
mixture of information from the host’s context with those existing in the pop-
ulation of endosymbiont chromosomes has the potential to produce, in many
cases, the diversification needed to escape from local minima. The process
ends when the exchange of information between the host and the population
of endosymbionts does not result in further changes (improvements) in the
fitness of the endosymbionts.

The characteristics listed above can achieve results in the algorithmic
search that can not be easily simulated by other evolutionary methods. Due
to the guidance of the search and the impossibility of reproduction, the al-
gorithm has the potential to preserve the good quality building blocks which
emerge during its execution.

The transposons can be designed to simulate a peculiar form of restricted
local search providing an excellent source of intensification for the algorithm.
The approach allows modulating, simultaneously, the sharing of genetic in-
formation between the host and the population of endosymbionts and the
intensification effort promoted with these transposons. This modulation can
be implemented in such a way that the most promising vector is utilized
in different stages of the search. For instance, if the “a priori” information
stored in the host has proven quality, it is likely that the manipulation with
plasmids using such information in the early stages of the search is more ben-
eficial, while the transposons designed for intensification tasks will be more
useful in the final stages. Otherwise the modulation follows the reverse logic.

The decentralized and cooperative architecture proposed in the Trans-
genetic Algorithms propitiates the use, within the evolutionary search, of
information obtained with constructive methods, heuristics, or other proce-
dures that produce structures associated with the problem even where such
structures do not represent solutions to the problem examined.

8 Conclusions and Future Works

The biological processes have been a valuable source of inspiration for the
development of algorithms to deal with complex problems. In this chapter,
a theory of evolution that considers cooperative interactions is adopted as
a source of inspiration for the development of evolutionary algorithms. This
theory deals with the integration of the genomes of endosymbionts and a host

456 E.F.G. Goldbarg and M.C. Goldbarg

cell. In nature, this integration is responsible for many macroevolutionary
events and biological phenomena. The endosymbiotic interactions change the
focus of the evolution by competition to the evolution by a radical form of
cooperation: the integration.

The algorithms introduced in this chapter, called transgenetic algorithms,
perform a stochastic search with elements that are motivated by endosym-
biotic interactions and natural mechanisms of lateral gene transfer. In the
proposed approach, the operations based on mechanisms of horizontal gene
transfer comply with tasks that accelerate and make more effective the ge-
netic changes of the elements involved in the endosymbiotic fusion. Since the
proposed endosymbiotic evolutionary process occurs in a micro-system and is
subjected to a guidance imposed by the genetic repository of the host, a wide
range of options for the development of bio-inspired computational methods
is opened.

This chapter presented the outlines for the development of Transgenetic
Algorithms and reported the implementation of these algorithms to a single
and to a bi-objective combinatorial problem. The mono objective problem
is the uncapacitated version of Traveling Purchaser Problem, where the pro-
posed algorithm managed to find nine new best solutions for benchmark
instances.

The other application was given for the Bi-objective Minimum Spanning
Tree Problem, where a computational experiment showed that the proposed
approach finds better approximation sets and lower processing times than a
Memetic Algorithm presented previously for the same problem.

In future works the full process of serial endosymbiosis will be considered.
It will consist of successive events of engulfment and integration of popula-
tions of endosymbionts. Such events can progressively enrich the information
of the host. The successive integrated populations may represent solutions
in different regions of the search space of the problem being tackled, mono-
objective solutions of a multi-objective problem, etc. In addition, the different
integration events can occur with different manipulation strategies. The fu-
ture research will also extend the algorithms in order to consider other types
of “a posteriori” information, such as statistical analysis of the population of
endosymbionts and transgenetic vectors. The algorithms will also be applied
to other combinatorial problems with one or more objectives.

References

1. Aggarwal, V., Aneja, Y., Nair, K.: Minimal spanning tree subject to a side
constraint. Computers & Operations Research 9, 287–296 (1982)

2. Almeida, C.P., Goldbarg, E.F.G., Gonçalves, R.A., Regattieri, M.D., Goldbarg,
M.C.: TA-PFP: A transgenetic algorithm to solve the protein folding problem.
In: Proceedings of ISDA 2007 Seventh International Conference on Intelligent
Systems Design and Applications, vol. 1, pp. 163–168 (2007)

A New Endosymbiotic Approach for Evolutionary Algorithms 457

3. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Finding tours in the TSP.
Technical Report TR99-05. Department of Computational and Applied Math-
ematics: Rice University (1999)

4. Barboza, A.O.: Simulação e técnicas da computação evolucionária aplicadas
a problemas de programação linear inteira mista. D.Sc. Thesis, Universidade
Tecnológica Federal do Paraná, Brazil (2005)

5. Bazlamaçci, C.F., Hindi, K.S.: Minimum-weight spanning tree algorithms: A
survey and empirical study. Computers & Operations Research 28, 767–785
(2001)

6. Bellmore, M., Nemhauser, G.L.: The traveling salesman problem: A survey.
Operations Research 16, 538–582 (1968)

7. Boctor, F.F., Laporte, G., Renaud, J.: Heuristics for the traveling purchaser
problem. Computers & Operations Research 30, 491–504 (2003)

8. Bontoux, B., Feillet, D.: Ant colony optimization for the traveling purchaser
problem. Computers & Operations Research 35, 628–637 (2008)

9. Buchner, P.: Endosymbiosis of animals with plant microorganisms. Wiley In-
terscience, New York (1965)

10. Bull, L., Fogarty, T.C.: Artificial symbiogenesis. Artificial Life 2, 269–292 (1995)
11. Chan, T.-M., Man, K.-F., Tang, K.-S., Kwong, S.A.: Jumping gene algorithm

for multiobjective resource management in wideband CDMA. The Computer
Journal 48(6), 749–768 (2005)

12. Chen, I., Dubnau, D.: DNA uptake during bacterial transformation. Nature
Reviews Microbiology 2, 241–249 (2004)

13. Conover, W.J.: Practical nonparametric statistics, 3rd edn. John Wiley & Sons,
Chichester (2001)

14. Daida, J.M., Grasso, C.S., Stanhope, S.A., Ross, S.J.: Symbionticism and com-
plex adaptive systems I: Implications of having symbiosis occur in nature. In:
Proceedings of the Fifth Annual Conference on Evolutionary Programming, pp.
177–186 (1996)

15. Doolittle, W.F.: Lateral genomics. Trends in Genetics 15(12), M5–M8 (1999)
16. Dutta, C., Pan, A.: Horizontal gene transfer and bacterial diversity. Journal of

Biosciences 27, 27–33 (2002)
17. Eigen, M., Schuster, P.: The hypercycle: A principle of natural selforganization.

Naturwissenschafter 64(11), 541–565 (1977)
18. Fukuda, T., Kubota, N., Shimojima, K.: Virus-evolutionary genetic algorithm

and its application to traveling salesmam problem. In: Yao, X. (ed.) Evolution-
ary Computation, Theory and Applications. World Scientific, Singapore (1999)

19. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the the-
ory of NP-completeness. Freeman, New York (1979)

20. Goldbarg, E.F.G., Castro, M.P., Goldbarg, M.C.: A transgenetic algorithm for
the gas network pipe sizing problem. Computational Methods 1, 893–904 (2006)

21. Goldbarg, E.F.G., Goldbarg, M.C., Bagi, L.B.: Transgenetic algorithm: A new
evolutionary perspective for heuristics design. In: Proceedings of GECCO 2007
Genetic and Evolutionary Computation Conference, pp. 2701–2708 (2007)

22. Goldbarg, E.F.G., Goldbarg, M.C., Costa, W.E.: Evolutionary algorithms ap-
plied to the workover rigs schedule problem. Annals of XI Latin-Iberian Amer-
ican Congress of Operations Research (2002)

458 E.F.G. Goldbarg and M.C. Goldbarg

23. Goldbarg, M.C., Goldbarg, E.F.G., Medeiros Neto, F.D.: Algoritmos evolu-
cionários na determinação da configuração de custo mı́nimo de sistemas de
co-geração de energia com base no á natural. Pesquisa Operacional 25(2), 231–
259 (2005)

24. Gouvêa, E.F.: Transgenética computacional: Um estudo algoŕıtmico. Ph.D.
Thesis, Universidade Federal do Rio de Janeiro, Brazil (2001)

25. Guttin, G., Punnen, A.: The traveling salesman problem and its variations.
Kluwer Academic Publishers, Dordrecht (2002)

26. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the
non-dominated set. Technical Report IMM-REP-1998-7, Technical University,
Denmark (1998)

27. Harvey, I.: The microbial genetic algorithm (unpublished manuscript) (1996),
http://citeseer.ist.psu.edu/13824.html

28. Hillis, D.W.: Co-evolving parasites improve simulated evolution in an optimiza-
tion procedure. Physica D 42, 228–234 (1999)

29. Jain, R., Rivera, M.C., Lake, J.A.: Horizontal gene transfer among genomes:
The complexity hypothesis. Proceedings of the National Academy of Sciences
USA 96, 3801–3806 (1999)

30. Jain, R., Rivera, M.C., Moore, J.E., Lake, J.A.: Horizontal gene transfer acceler-
ates genome innovation and evolution. Molecular Biology and Evolution 20(10),
1598–1602 (2003)

31. Kim, J.Y., Kim, Y., Kim, Y.K.: An endosymbiotic evolutionary algorithm for
optimization. Applied Intelligence 15, 117–130 (2001)

32. Kim, Y.K., Kim, J.Y., Kim, Y.: An endosymbiotic evolutionary algorithm for
the integration of balancing and sequencing in mixed-model U-lines. European
Journal of Operational Research 168, 838–852 (2006)

33. Knowles, J.D.: Local-search and hybrid evolutionary algorithms for Pareto opti-
mization, PhD Thesis, Department of Computer Science, University of Reading,
Reading, UK (2002)

34. Knowles, J.D., Corne, D.W.: A comparison of encodings and algorithms for
multiobjective spanning tree problems. In: Proceedings of the 2001 Congress
on Evolutionary Computation (CEC 2001), pp. 544–551 (2001)

35. Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assess-
ment of stochastic multiobjective optimizers, TIK 214, Computer Engineering
and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH),
Zurich (2006)

36. Kubota, N., Arakawa, T., Fukuda, T., Shimojima, K.: Trajectory generation
for redundant manipulator using virus evolutionary genetic algorithm. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation,
pp. 205–210 (1997)

37. Kubota, N., Shimojima, K., Fukuda, T.: Virus-evolutionary genetic algorithm
- coevolution of planar grid model. In: Proceedings of the Fifth IEEE Interna-
tional Conference on Fuzzy Systems (FUZZIEEE 1996), vol. 1, pp. 8–11 (1996)

38. Kutschera, U., Niklas, K.J.: Endosymbiosis, cell evolution, and speciation. The-
ory in Biosciences 124, 1–24 (2005)

39. Leite, L.E., Souza Fillho, G., Goldbarg, M.C., Goldbarg, E.F.G.: Compara-
ndo algoritmos genéticos e transgenéticos para otimizar a configuração de
um serviço de distribuição de Vı́deo baseado em replicação móvel. Anais do
SBRC2004 22 Simpósio Brasileiro de Redes de Computadores 1, 129–132 (2004)

http://citeseer.ist.psu.edu/13824.html

A New Endosymbiotic Approach for Evolutionary Algorithms 459

40. Margulis, L.: Symbiosis in cell evolution: Microbial communities in the archean
and proterozoic eons. W.H. Freeman, New York (1992)

41. Margulis, L.: Serial endosymbiotic theory (SET) and composite individuality.
Microbiology Today 31, 172–174 (2004)

42. Margulis, L., Sagan, D.: Microcosmos. Summit Books, New York (1986)
43. Maynard-Smith, J., Szathmáry, E.: The major transitions in evolution. W.H.

Freeman, Oxford (1995)
44. Michalewicz, Z., Fogel, D.B.: How to solve it: Modern heuristics. Springer,

Heidelberg (2000)
45. Mitchell, M.: An introduction to genetic algorithms. MIT Press, Cambridge

(1998)
46. Mühlenbein, H., Voigt, H.-M.: Gene pool recombination in genetic algorithms.

In: Proceedings of the Sixth International Conference on Genetic Algorithms,
pp. 104–113 (1995)

47. Novozhilov, A.S., Karev, G.P., Koonin, E.V.: Mathematical modeling of evolu-
tion of horizontally transferred genes. Molecular Biology and Evolution 22(8),
1721–1732 (2005)

48. Perales-Graván, C., Lahoz-Beltra, R.: An AM radio receiver designed with
a genetic algorithm based on a bacterial conjugation genetic operator. IEEE
Transactions on Evolutionary Computation 12(2), 1–29 (2008)

49. Ramos, I.C.O., Goldbarg, M.C., Goldbarg, E.F.G., Dória Neto, A.D.: Logistic
regression for parameter tuning on an evolutionary algorithm. In: Proceedings
of the IEEE CEC 2005 Congress on Evolutionary Computation, vol. 2, pp.
1061–1068 (2005)

50. Riera-Ledesma, J., Salazar-González, J.J.: A heuristic approach for the travel-
ing purchaser problem. European Journal of Operational Research 162, 142–152
(2005)

51. Rocha, D.A.M., Goldbarg, E.F.G., Goldbarg, M.C.: A memetic algorithm for
the biobjective minimum spanning tree problem. In: Gottlieb, J., Raidl, G.R.
(eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 222–233. Springer, Heidelberg (2006)

52. Rocha, D.A.M., Goldbarg, E.F.G., Goldbarg, M.C.: A new evolutionary algo-
rithm for the bi-objective minimum spanning tree. In: Proceedings of ISDA
2007 Seventh International Conference on Intelligent Systems Design and Ap-
plications, pp. 735–740 (2007)

53. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuris-
tics for the traveling salesman problem. SIAM Journal on Computing 6, 563–
581 (1977)

54. Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evolu-
tionary Computation 5(1), 1–29 (1997)

55. Schmidt, C., Goldbarg, E.F.G., Goldbarg, M.C.: A hybrid transgenetic algo-
rithm for the prize collecting Steiner tree problem. In: Proceedings of ISDA
2007 Seventh International Conference on Intelligent Systems Design and Ap-
plications, vol. 1, pp. 271–276 (2007)

56. Shapiro, J.A.: Transposable elements as the key to a 21st century view of
evolution. Genetica 107, 171–179 (1999)

57. Simões, A.B., Costa, E.: Transposition: A biologically inspired mechanism to
use with genetic algorithms. In: Proceedings of the Fourth International Con-
ference of Neural Networks and Genetic Algorithms, pp. 178–186 (1999)

58. Simões, A.B., Costa, E.: Transposition versus crossover: An empirical study. In:
Proceedings of the Genetic and Evolutionary Compuation Conference (GECCO
1999), pp. 612–619 (1999)

460 E.F.G. Goldbarg and M.C. Goldbarg

59. Simões, A.B., Costa, E.: On biologically inspired genetic operators: Transfor-
mation in the standard genetic algorithm. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2001), pp. 584–591 (2001)

60. Simões, A.B., Costa, E.: An evolutionary approach to the zero/one knapsack
problem: Testing ideas from biology. In: Proceedings of the Fifth International
Conference on Neural Networks and Genetic Algorithms (ICANNGA 2001),
pp. 22–25 (2001)

61. Smith, P.W.H.: Finding hard satisfiability problems using bacterial conjuga-
tion. In: Proceedings of the AISB96 Workshop on Evolutionary Computing,
pp. 236–244 (1996)

62. Theissen, U., Martin, W.: The difference between organelles and endosym-
bionts. Current Biology 16(24), R1016–R1017 (2006)

63. Timmis, J.N., Ayliffe, M.A., Huang, C.Y., Martin, W.: Endosymbiotic gene
transfer: organelle genomes forge eukaryotic chromosomes. Nature Reviews Ge-
netic 5, 123–135 (2004)

64. Vothknecht, U.C., Soll, J.: Protein import: The hitchhikers guide into chloro-
plasts. Biological Chemistry 381, 887–897 (2000)

65. Wernegreen, J.J.: For better or worse: genomic consequences of intracellular
mutualism and parasitism. Genetics & Development 15, 572–583 (2005)

66. Yeung, S.-H., Ng, H.-K., Man, K.-F.: Multi-criteria design methodology of a
dielectric resonator antenna with jumping genes evolutionary algorithm. Inter-
national Journal of Electronics and Communication (AEÜ) 62, 266–276 (2008)

67. Zaneveld, J.R., Nemergut, D.R., Knight, R.: Are all horizontal gene transfers
created equal? Prospects for mechanism-based studies of HGT patterns. Mi-
crobiology 154, 1–15 (2008)

68. Zhou, G., Gen, M.: Genetic algorithm approach on multi-criteria minimum
spanning tree problem. European Journal of Operational Research 114, 141–
152 (1999)

69. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative
case study and the strength Pareto approach. IEEE Transactions on Evolution-
ary Computation 3(4), 257–271 (1999)

70. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

Multi-objective Team Forming
Optimization for Integrated Product
Development Projects

Hisham M.E. Abdelsalam

Summary. Integrated product development (IPD) is a holistic approach that
helps to overcome problems that arise in complex product development envi-
ronments. This paper presents a model that aims to support the optimal for-
mulation and assignment of multi-functional teams in IPD organizations - or
any project-based organization. The model accounts for limited availability of
personnel, required skills, team homogeneity, and, further, maximizes orga-
nization’s payoff by formulating and assigning teams to projects with higher
expected payoffs. A Pareto multi-objective particle swarm optimization ap-
proach was used to solve the model. It allows personnel to work in several con-
current projects and considers both person-job and person-team fit.

1 Introduction

By the mid-1990’s, the importance of early introduction of new products
to both market share and profitability became fully understood. Reducing
product time-to-market, thus, became an essential requirement for continu-
ous competition. Knowing that about 70% of the life cycle cost of a product
is committed at early design phases, the motivation for developing and im-
plementing more effective methodologies for managing the design process of
new product development projects became very strong.

The difficulties in designing complex engineering products do not arise
simply from their technical complexity but rather from the managerial com-
plexity necessary to manage the interactions between the different engineer-
ing disciplines, which impose additional challenges on the design process [1].
The basic disciplines for making progress in that context belong not only to
mechanical engineering but also to industrial engineering, mathematics, man-
agement science, and computer science. As a result, a systems level solution
must be determined and deployed.

Hisham M.E. Abdelsalam
Decision Support Department, Cairo University, Cairo, Egypt
e-mail: h.abdelsalam@fci-cu.edu.eg

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 461–478.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

h.abdelsalam@fci-cu.edu.eg

462 H.M.E. Abdelsalam

Integrated product development (IPD) is a holistic approach that helps to
overcome problems that arise in complex product development environments.
IPD was defined as: a process whereby all functional groups that are involved
in a product life cycle participate as a team in the early understanding and
resolution of key product development issues including quality, manufactura-
bility, reliability, maintainability, environment, and safety [2]. IPD is based on
concurrent engineering, but goes beyond Concurrent Engineering (CE) with
regard to the level of integration. In the scope of IPD, designers, assembly
planners and production planners, as well as persons responsible for quality or
testing not only consult themselves while they are working simultaneously on
their tasks, but exchange interconnected intermediate results in a continuous
interplay [3, 4]. In the light of the importance of new product development
timeliness to organizational success, IPD teams must be composed of cross
functional members who work well together.

Following the introduction section, the rest of this chapter is organized as
follows: Section 2 reviews literature related work. Then Section 3 provides
background to the Myers-Briggs Type Indicator - that will be the basis for
evaluating team efficiency - followed by problem description in Section 4.
The model formulation is presented in Section 5, and solution algorithm is
detailed in Section 6. An illustrative example is given in section 7 and, finally,
conclusions in section 8.

2 Related Work

Team development, generally, goes through five stages: forming, storming,
norming, performing, and adjourning [5]. Numerous literatures can be found
on team development. Dalziel and Sommervill [6] study team forming to
building a project team applicability of self perception inventory. Schneider
[7] discusses culture crossing management of task for team forming stage.

The concept of forming multi-functional teams has gained increasing at-
tention within product development organizations. Some of the basic con-
ditions for the use of multi-functional teams in product development were
indicated by [8]. Askin and Sodhi [9] have presented an approach to orga-
nizing teams in concurrent engineering. Dietz and Rosenshine [10] developed
an analytical method for determining an optimal specialization strategy for
a maintenance workforce. The method developed can be specifically applied
to optimize the maintenance manpower structure for a small unit of military
tactical aircraft. Zakarian and Kusiak [11] presented a conceptual framework
for prioritizing team members based on customer requirements and product
characteristics. Sethi and Nicholson [12] explored structural and contextual
correlates of charged behavior in product development teams. Tseng et al. [13]
applied the fuzzy and grey approaches to form a good multi-functional team
and when dealing with insufficient information at the team forming stage.
For further discussions on the general aspects of team formation and team

Multi-objective Team Forming Optimization for IPD Projects 463

performance, the reader is referred to [14, 15, 16]. These models, however,
did not consider: (1) possible limitation on personnel availability in the or-
ganization; and (2) interactions among team members as a result of different
personalities’ characteristics.

To ensure sufficient breadth and depth of technical skills and team synergy,
Fitzpatrick and Askin [17] developed a mathematical model for formation
of effective human teams. Team synergy was measured and included in the
model using Kolbe Conative Index [18, 19]. Their model, however, assumed:
(1) an individual possesses only one skill; (2) that there exist sufficient indi-
viduals in the various skill categories to meet the requirements for the teams;
and (3) each team has approximately the same importance. Abdelsalam, et.
al. [20] presented and solved a mathematical model that tries to support the
optimal formulation of multi-functional teams in an organization with limited
availability of personnel and skills. Their model, still, did not account for the
effects of inter-personalities issues among team members.

The model presented in this chapter aims to support the optimal for-
mulation of multi-functional teams in integrated product development or-
ganizations. The model, however, can be generalized to any project-based
organization. The model builds on Abdelsalam, et. al. [20] work as it: (1)
accounts for limited availability of personnel and skills; (2) maximizes orga-
nization’s payoff (revenue) by formulating and assigning teams to projects
with higher expected payoffs; and (3) maximizes team homogeneity and op-
timal formulation from personalities’ point of view. One other extension was
the use of a multi-objective particle swarm optimization algorithm to develop
a Pareto-front for the objective functions.

3 Myers-Briggs Type Indicator (MBTI)

Personality has been identified as a potentially helpful selection variable in the
determination of optimal team composition [21]. This research uses a very pop-
ular and well established test of personality; the Myers-Briggs Type Indicator
(MBTI) that was developed by Isabel Briggs Myers and her mother, Katherine
Briggs during World War II [22]. The MBTI is based on the theory that each
person’s personality fits into only one of sixteen types. These types are based
on four features of personality, each consisting of two opposite preferences.

The theory claims that personality types determine how people will be-
have in all situations. The four dimensions are [23]: Extroversion (E) vs.
Introversion (I). This dimension reflects the perceptual orientation of the
individual. Sensing (S) vs. Intuition (N). People with a sensing prefer-
ence rely on that which can be perceived and are considered to be oriented
toward that which is real. Thinking (T) vs. Feeling (F). A preference for
thinking indicates the use of logic and rational processes to make deductions
and decide upon action. Judgment (J) vs. Perception (P). Indicates if ratio-
nal or irrational judgments are dominant when a person is interacting with

464 H.M.E. Abdelsalam

the environment. The preferences are normally notated with the initial let-
ters of each of their four features, for instance: ISTJ is (Introverted, Sensing,
Thinking, Judging) and so on for all sixteen possible combinations.

4 Problem Description

4.1 Context

The situation considered by the presented model is that at a given point of
time the company has a set of candidate projects to be carried out. However,
as there is a fixed capacity of resources (personnel) pool, not all projects will
start working concurrently; only projects that have their complete personnel
requirements will work.

The decision whether to start a project or not will depend on two ma-
jor factors: (1) the ability to compose the team required by that specific
project, and (2) the expected project payoff. Thus, there is a set of compet-
ing projects, and a limited (finite) pool of personnel. It is required to form
and assign teams - from the pool - to different projects based on technical
skills and time requirements by each project. MBIT will be used to ensure
team efficiency. The problem is, thus, of three-fold: (1) assigning persons with
specific technical skills required by a certain project to that project (team
forming); (2) increasing team efficiency by composing a team of members
with complementary personality types; and (3) increasing company payoff
through increased number of project to start working. Consequently, forma-
tion of multi-functional teams for IDP projects becomes a challenge. It should
be mentioned here that the model allows company payoff to be given in any
form; financial, market share, etc. The model, further, assumes that projects
can work concurrently, thus, one person can be assigned to more than one
project as long as his/her available time is less than the threshold value.

4.2 Personnel Characteristics

In addition to personal characteristic (gender, age, etc.), each person in the
pool has the following set of characteristics: ” Technical skills. A person is
assumed to have at most five skills with different levels of competence. ”
Availability; the %time that person is available to be assigned to different
project at the teams formation stage. ” Personality profile; as indicated by
MBTI. The model assumes that a person has a certain level of competence
in at most five technical skills. These levels are: excellent (best level); very
good; good; and accepted (least level). The competence level of a person in a
certain skill is, further, assumed to be deterministic and constant throughout
one project and in all projects.

Multi-objective Team Forming Optimization for IPD Projects 465

4.3 Project Requirements

The problem considers a set of competing projects - each with its own ex-
pected payoff - over a limited personnel pool. For its execution, a project
would, typically, require a team with different functions/skills. These skills’
requirements are assumed to be clearly defined to the satisfaction of manage-
ment. A project can not start unless all needed technical requirements are
available and its team is formed. We assume that a successful team must at
least have members with the following roles:

(1) leader: non-stop worker to make project successful;
(2) visionary: the map reader who knows where the team has been and

where to go;
(3) marketer: the steering wheel - understands customer’s requirements;
(4) architect: understands how the intended product will satisfy cus-

tomer’s needs, and
(5) backstop: answers any questions and codes the team out of almost any

bind.

The model assumes that the project manager (leader) is assigned by com-
pany executives and thus was removed from the mathematical formulation.
However, the model can easily accommodate for it when needed. The model
is based on the following personality types for each of the rest four main
members; visionary-ENXP; marketer-EXTP; architect-XNXP; and backstop-
XSTJ. The X refers to that either dimension value is accepted. These types
were selected based on our experience. However, further research can be con-
ducted to validate the composition.

4.4 Objectives

At a certain point of time, given a list of candidate projects and a pool of per-
sonnel, it is required to determine the list of project that will be accepted by the
company to be carried out and the team associated with each of these projects.
This is a multi-objective optimization problem with two main objectives:

• Maximizing effectiveness; maximizing company payoff (revenue) by allow-
ing as many as possible projects - with different projects’ payoffs - to start
working, and

• Maximizing efficiency; this is further divided into:

Minimizing the deviation in skill levels of team members selected for
different projects. This deviation results as a consequence of assigning one
person, to a skill requirement in a project, with a level different than the
level needed by this requirement.

Minimizing the deviation from optimal team composition (as discussed
early in project requirements subsection)

466 H.M.E. Abdelsalam

5 Model Formulation

Let:

Ciu Technical skill number u that person i has

Liu Level of technical skill number u for person i

Rjk Technical requirement number k that project j needs

Vjk Levels of technical requirement number k for project j

Tjk %Time required by requirement k in project j

Ai Available time for person i

Pj expected payoff from project j

j = 1, 2, ..., n where n is the number of projects

i = 1, 2, ..., lj where m is the number of persons available

k = 1, 2, ..., m where lj is the number of requirements in projectj

W ∈ {1, 2, 3, 4} set of levels that a skill can assume

u ∈ {1, 2, 3, 4, 5} index of the number of skills a person has

Z ∈ {001, 003, , .., 050} set of codes of available skills in the company (as-
sumed to be 50)

Model decision variables are:

xijk = {
1 , if person i is assigned to project j in requirement t,
0 , otherwise.

yjk ={
1 , if Ciu - Rjk = 0 (assign person skill satisfies project requirement t,
0 , otherwise.

Multi-objective Team Forming Optimization for IPD Projects 467

φj = {
1 , if

∑lj
k=1 yjk = lj (team is formed for project j),

0 , otherwise.

MAi = {
1 , if person i can be a marketer,
0 , otherwise.

V Ii = {
1 , if person i can be a visionary,

0 , otherwise.

ARi = {
1 , if person i can be an architect,
0 , otherwise.

BIi = {
1 , if person i can be backstop,

0 , otherwise.

The model has two main objective functions:

The first is concerned with maximizing the payoff generated from projects
to be carried out by the company.

max f1 =
n∑

j=1

φjPj (1)

The second one is concerned with maximizing team efficiency. This re-
search assumes that team efficiency can be enhanced through minimizing the
deviation between: (1) the levels of the required skills in a team and the
competency levels of persons assigned to this team; and between (2) optimal
team composition and soft characteristics of persons assigned to this team.
Thus, the second objective function can be defined as:

468 H.M.E. Abdelsalam

min f2 =
n∑

j=1

φj(w1Djt + w2Djs) (2)

Where w1 and w2 are user defined weights and w1 +w2 = 1 and Djt is the
deviation with respect to technical requirement.

Djt = {
1

∑lj
k=1

∑m
i=1

∑5
u=1(Vjk − Liu)x(ijkyjk), if (Vjk − Liu) > 0,

0 , otherwise.

Djs is the deviation with respect to team composition (soft requirements).

Djs =
n∑

j=1

(DjMA + DjAR + DjV I + DjBI) (3)

Where

DjMA = {
1 ,if

∑lj
k=1

∑m
i=1 xijkMAi ≥ 1,

0 , otherwise.

DjAR = {
1 ,if

∑lj
k=1

∑m
i=1 xijkARi ≥ 1,

0 , otherwise.

DjV I = {
1 ,if

∑lj
k=1

∑m
i=1 xijkV Ii ≥ 1,

0 , otherwise.

DjBI = {
1 ,if

∑lj
k=1

∑m
i=1 xijkBIi ≥ 1,

0 , otherwise.

These objectives are subject to the following constraints:

Multi-objective Team Forming Optimization for IPD Projects 469

Sum of all the requirements’ times that person i is assigned to is less than
or equal to his/her total available time.

n∑
i=1

l∑
k=1

Xijk(Tjk) ≤ Ai ∀(i) (4)

A personal skill must belong to the set of skills available in the company

Ciu ∈ Z ∀(i, u) (5)

A project technical requirement must belong to the set of skills available
in the company

Rjk ∈ Z ∀(j, k) (6)

Level of any skill assumes a value from the set only w

Liu ∈ W ∀(i, u) (7)

Level of any technical requirement assumes a value from the set only w

Vjk ∈ W ∀(j, k) (8)

6 Solution Algorithm

6.1 Multi-Objective Particle Swarm Optimization
(MOPSO)

Particle swarm optimization (PSO) is a population-based optimization
method originally designed by Kennedy and Eberhart in 1995 inspired by
observing the bird flocking or fish school. Since 2002, PSO has been grow-
ing rapidly with over 100 published papers every year [24]. All the related
research has totaled over 300 papers until 2004 [25]. Most of the applications
have been concentrated on solving continuous optimization problems, but the
studies of PSO on discrete optimization problems are relatively few [26]. In
PSO, potential solutions are called particles.

To reach an optimal solution, each particle adjusts its position and velocity
according to its own experience and to other particles’ experience. Kennedy
and Eberhart [27] developed a discrete version of PSO. Discrete PSO essen-
tially differs from the original (or continuous) PSO in two characteristics.
First, the particle is composed of the binary variable. Second, the velocity
must be transformed into the change of probability, which is the chance of
the binary variable taking the value one [25]. This research uses the algorithm
developed in Kennedy et al. [28] with the addition of the inertia weight pro-
posed by Shi and Eberhart [29]. Due to the success of PSO in single objective
optimization, in recent years, more and more attempts have been made to

470 H.M.E. Abdelsalam

Fig. 1 Representation of
one particle (solution)

extend PSO to the domain of multi-objective problems [30, 31, 32]. The main
challenge in multi-objective particle swarm optimization (MOPSO) is to se-
lect the global and local attractors such that the swarm is guided towards
the Pareto optimal front and maintains sufficient diversity [30]. A MOPSO
starts with a set of uniformly distributed random initial particles defined in
the search space. A set of particles are considered as a population at certain
generation.

In addition to the population, another set (called Archive) is defined in or-
der to store the obtained non-dominated solutions. The particles are evaluated
and the non-dominated solutions are added to the archive in every generation,
while dominated solutions are pruned. In the next step, the particles are moved
to a new position in the space using the mechanism presented in [28]. For more
details on Pareto MOPSO the reader is kindly referred to [30].

6.2 Particle Definition

The particle (solution) is represented in a matrix form with rows representing
the number of the available persons in the company, and columns representing
different requirements in different candidate projects. For example, Fig. 1
shows a particle definition for a problem in which the company has 4 persons
and there are two candidate projects each with 3 requirements. The cells
assume binary values (0 or 1) representing the variable xijk. So, the solution
in Fig. 1 indicates that:

• Person 1 is assigned to project 1 in requirement 1 also assigned to project
2 in requirement 2

• Person 2 is assigned to project 2 in requirement 3
• Person 3 is assigned to project 1 in requirement 3
• Person 4 is assigned to project 1 in requirement 2 also assigned to project

2 in requirement 1

The position matrix (population) consists of a certain number of solutions (the
size of the population). Fig. 2 shows a position matrix with three particles.

Multi-objective Team Forming Optimization for IPD Projects 471

Fig. 2 Position Matrix
in PSO

6.3 Initialization

A heuristic is used to generate an initial feasible solution (particle). This
particle is, and then used to fill all the population. Velocity matrix is ini-
tialized by generating random numbers between two specified numbers (min,
max). All parameters are either set to default values or to values specified by
the user. Finally, the best position for each particle is the same as the first
initialized solution at the first iteration.

6.4 Fitness Calculation

Both objectives were normalized as follow:

f1 was changed to a percentage through Eq. (9)

max f1=
payoff generated from project to be carried out

(payoff when all candidate project are carried out) - (payoff when no project ar carried out)

max f1 =

∑n
j=1 φjPj∑n

j=1 Pj
(9)

472 H.M.E. Abdelsalam

Table 1 Parameters setting

Parameter Value

Number of iterations 100
Pareto set size 10
Maximum inertia 1.2
Maximum velocity 0.4
Minimum velocity -4
w1 0.5
w2 0.5

Fig. 3 Objective functions’ evaluations

On the other hand, f2 was changed to a percentage using Eq. (10)

max f2 = w1(
1∑n

j=1 φj
(

n∑
j=1

φj(1 − Djt

lj
))) + w2(

1∑n
j=1 φj

(
n∑

j=1

φj(
4 − Djs

4
))

(10)

Multi-objective Team Forming Optimization for IPD Projects 473

Fig. 4 Objective functions’ evaluation (3D)

6.5 Generating New Solutions

For generating new solutions, we use the update rule of the PSO algorithm
that updates the velocity of each particle solution then using the updated
velocity to generate new position that represents the new solution. Particle
velocity is adjusted (updated) according using Eq. 11

vt+1
id = wvt

id + φ1r1(pbestid)t − xt
id + φ2r2(pbesttgd − xt

id) (11)

The velocity value is constrained to the interval [0,1] using the sigmoid
function; Eq. (12).

s(vt
id) =

1
1 + exp(−vt

id)
(12)

Where s(vt
id) denotes that the probability of xt(id) taking 1. To avoid s(vt

id)
approaching 0 or 1, a constant vmax is used to limit the range of vt(id).
In practice, vmax is often set at 4, i.e., vt(id) belongs to (vmax, vmin). For

474 H.M.E. Abdelsalam

Fig. 5 Pareto front

updating the position matrix, for each particle we generate a random num-
ber and then if that number is less than s(vt

id) then xt(id) = 1; otherwise
xt(id) = 0.

6.6 Convergence

Generally, the algorithm is stopped whenever it reaches either of two criteria:
(1) the number of generations exceeds a threshold value, or (2) the objective
function improvement is below some defined value. This research adopts the
first rule.

6.7 Feasibility

Infeasible solutions are not tolerated within the algorithm. Whenever a con-
straint is violated, the solution is considered infeasible. There are three to
handle infeasible solutions: (1) removing this infeasible solution from the
population without replacing it with another solution, (2) replacing this in-
feasible solution with one that is guaranteed to be feasible, and this would
be possible if we used the heuristic used for initializing the PSO population,
and (3) repairing this infeasible solution to make it feasible. This research
used the third method; infeasible solutions stay in the population after being
repaired to be feasible.

6.8 Detailed Computational Flow

The following provides the detailed steps for the proposed algorithm.

Multi-objective Team Forming Optimization for IPD Projects 475

Algorithm 1. Clinical parameters assessment algorithm
Input: Input parameters of the problem.
Output: a set of the Pareto-optimal solutions from the archive.

1: Generate an initial feasible solution and initialize randomly the position and
velocity of each particle

2: For each particle of the population, calculate its fitness functions, and evaluate
each of the particles in the population.

3: Store the positions of the particles that are non-dominated in the archive.
4: Initialize the memory of each particle in which a single local best for each

particle is contained (this memory serves as a guide to travel through the search
space; pbest).

5: Update iteration counter
6: Determine the best global particle (gbest)
7: Compute the velocity and the new position of each particle as described in

section 6.5, and maintain the particles within the search space in case they go
beyond its boundaries as discussed in section 6.7.

8: Evaluate each particle in the population by its fitness functions.
9: Update the contents of the archive. This update consists of inserting all the

currently non-dominated locations into the archive. Any dominated locations
from the archive are eliminated in the process.

10: Update the contents of the pbest. If the current position of the particle is
dominated by the position in the pbest, then the position in the pbest is kept;
otherwise, the current position replaces the one in memory; if neither of them
is dominated by the other, one of them is randomly selected.

11: Update the contents of the gbest accordingly
12: If the maximum number of iterations is reached then Stop. Otherwise, go to

Step 5.

Fig. 6 Working projects and their corresponding efficiencies

476 H.M.E. Abdelsalam

7 Illustrative Example

This example presents a case in which a company has 100 staff member
(personnel pool) and there are 30 candidate projects to start with different
expected revenue (payoff) and different technical requirements (4 to 5 re-
quirements). There are 7 technical skills available and the total revenue from
all 30 projects is 1560. Opt-TF (an Excel Add-in that deploys the presented
model and algorithm) was used to solve the problem.

Algorithm parameters are given in Table 1. 1000 feasible solutions were
evaluated. Fig. 3 and Fig. 4 illustrate the three objective functions’ values of
these solutions in 3D and contour diagram respectively. The figures depicts
the hard nature of the problem as there are many scattered sharp peaks which
makes it very difficult to use traditional optimization techniques to solve this
problem.

Fig. 5 illustrates the evaluation of solutions with respect to the two main
objective functions. A clear Pareto front exists which allows decision maker to
choose the solution that better fits his needs. Assuming that the decision maker
has chosen (from the Pareto set) the solution with f1 = 0.788; this solution has
24 working projects with total revenue of 1230 and f2 = 0.801. The technical
efficiency of the chosen solution is (80%) while team efficiency is (83%).

Fig. 6 shows different projects’ efficiencies for this solution. Opt-TF pro-
vides detailed reports for the selected solution; (1) personnel assignment to
different working projects with total time a person dedicates to a certain
project; (2) total personnel assignment time; (3) personnel remaining avail-
able time; (4) personnel assignment per requirement per project; and (5)
team composition.

8 Conclusions

Success of projects depends not only on the technical competency of its
team, but also on synergy among personalities of team members. Integrated
both dimensions - technical and personality - along profitability through
a mathematical model would support project-based organizations in their
quest for success. This paper presented and tested a multi-objective opti-
mization model for the formulation and assignment of multi-functional teams
in project-based organizations.

For an organization with limited pool of personnel and a number of candi-
date projects to be carried out, the model forms and assigns teams to different
projects in such a way that: (1) maximizes total payoff (revenue) for the or-
ganization, (2) minimizes deviation between team member skills and project
technical requirements, and (3) minimizes deviation between the formed team
and the optimal team composition (based on personality profiles). A Pareto
particle swarm intelligence optimization (PSO) algorithm was used to solve
the model. The model was applied a hypothetical example that demonstrates

Multi-objective Team Forming Optimization for IPD Projects 477

the efficiency of the proposed solution algorithm The model allows person-
nel to work in several concurrent projects and considers both person-job and
person-team fit. Extensions to the work presented would, typically, include
adding scenarios (options) for overtime and/or outsourcing of personnel.

Acknowledgements. This research has been partially supported by funds from
Cairo University, Egypt (Young Researcher Annual Grants).

References

1. Yassine, A., Chelst, K., Falkenburg, D.: Engineering Design Management:
An Information Structure Approach. International Journal of Production Re-
search 37(13), 2957–2975 (1999)

2. Fiksel, J.: Design for Environment: Creating Eco-Efficient Products & Pro-
cesses. McGraw-Hill, New York (1991)

3. Lindemann, U., Bichlmaier, C., Stetter, R., Viertlböck, M.: Enhancing the
Transfer of Integrated Product Development in Industry. In: Lindemann, U.,
Birkhofer, H., Meerkamm, H., Vajna, S. (eds.) Proc. of the 12th Intern. Con-
ference on Engineering Design ICED 1999, München, TU, August 24-26, vol. 1,
pp. 373–376 (1999) (Schriftenreihe WDK 26)

4. Lindemann, U., Stetter, R., Viertlböck, M.: A Pragmatic Approach for Sup-
porting Integrated Product Development. Transactions of the Society for Deign
and Process Science 5(2), 39–51 (2001)

5. Tuckman, B., Jensen, N.: Stage of small group development revisited. Group
and Organizational Studies 2, 419–427 (1977)

6. Dalziel, S., Sommerville, J.: Project team building-the applicability of Belbin’s
team-role self-perception inventory. International Journal of Project Manage-
ment 16(3), 165–171 (1998)

7. Schneider, A.: Project management in international teams: instruments for im-
proving cooperation. International Journal of Project Management 13(4), 247–
251 (1995)

8. Lawrence, P., Lorsch: Organization and Environment: Managing Differentiation
and Integration. Harvard Business School, Boston (1967)

9. Askin, R.G., Sodhi, M.: Organization of teams in concurrent engineering. In:
Dorf, R.D., Kusiak, A. (eds.) Handbook of Design, Manufacturing, and Au-
tomation, pp. 85–105. John Wiley & Sons, New York (1994)

10. Dietz, D.C., Rosenshine, M.: Optimal specialization of a maintenance work-
force. IIE Transactions 29, 423–433 (1997)

11. Zakarian, A., Kusiak, A.: Forming teams: an analytical approach. IIE Transac-
tions 31, 85–97 (1999)

12. Sethi, R., Nicholson, C.Y.: Structural and contextual correlates of charged be-
havior in product development teams. The Journal of Product Innovation Man-
agement 18, 154–168 (2001)

13. Tseng, T.L., Huang, C.-C., Chu, H.-W., Gung, R.: Novel approach to multi-
functional project team formation. International Journal of Project Manage-
ment 22, 147–159 (2004)

14. Barrick, M.R., Stewart, G.L., Neubert, M.J., Mount, M.K.: Relating member
ability and personality to work-team processes and team effectiveness. Journal
of Applied Psychology 83, 377–391 (1998)

478 H.M.E. Abdelsalam

15. Yeatts, D.A., Hyten, C.: High-performing Self-managed Work Teams: A Com-
parison of Theory and Practice. Sage Publications, Thousand Oaks (1998)

16. Molleman, E., Slomp, J.: Functional flexibility and team performance. Interna-
tional Journal of Production Research 37, 1837–1858 (1999)

17. Fitzpatrick, E.L., Askin, R.G.: Forming effective worker teams with multi-
functional skill requirements. Computers & Industrial Engineering 48, 593–608
(2005)

18. Kolbe, K.: The conative connection. Addison-Wesley, New York (1989)
19. Kolbe, K.: Pure instinct. Random House, New York (1993)
20. Abdelsalam, H.M., Akram, S., Magdy, A.: A Particle Swarm Optimization

Approach for Multi-functional Teams Formation. In: Proceedings of The 9th
Cairo University International Conference on Mechanical Design and Produc-
tion (MDP-9), Cairo, Egypt, January 8-10, 2008, pp. 1665–1678 (2008)

21. Kichuk, S.L., Wiesner, W.H.: The big five personality factors and team perfor-
mance: implications for selecting successful product design teams. Journal of
Engineering and Technology Management 14, 195–221 (1997)

22. Myers, I.B., Myers, P.B.: Gifts Differing: Understanding Personality Type.
Davies-Black Publishing, Mountain View (1995)

23. Myers, I.B., McCaulley, M.H.: Manual: A Guide to the Development and Use
of the Myers-Briggs Type Indicator. Consulting Psychologists Press, Palo Alto
(1985)

24. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of
IEEE international conference on neural networks, NJ, Piscataway, pp. 1942–
1948 (1995)

25. Hu, X., Shi, Y., Eberhart, R.C.: Recent advances in particle swarm. In: Pro-
ceedings of the IEEE congress on evolutionary computation, Oregon, Portland,
vol. 1, pp. 90–97 (2004)

26. Liao, C.-J., Tseng, C.-T., Luarn, P.: A discrete version of particle swarm op-
timization for flowshop scheduling problems. Computers & Operations Re-
search 34, 3099–3111 (2007)

27. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm al-
gorithm. In: Proceedings of the world multiconference on systemics, cybernetics
and informatics, NJ, Piscatawary, pp. 4104–4109 (1997)

28. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Morgan Kaufmann,
San Francisco (2001)

29. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings
of the IEEE congress on evolutionary computation, NJ, Piscataway, pp. 69–173
(1998)

30. Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi-
objective particle swarm optimization. In: IEEE Swarm Intelligence Sympo-
sium, Indianapolis, USA , pp. 26–33 (2003)

31. Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E.: A MOPSO algorithm
based exclusively on pareto dominance concepts. In: Coello-Coello, C., et al.
(eds.) Evolutionary Multi-Criterion Optimization, pp. 459–473. Springer, Hei-
delberg (2005)

32. Mostaghim, S., Branke, J., Schmeck, H.: Multi-Objective Particle Swarm Opti-
mization on Computer Grids. Technical Report 502, Institute AIFB University
of Karlsruhe (2006)

33. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in mul-
tiobjective problems. In: Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC 2002), pp. 603–607. ACM Press, Madrid (2002)

Genetic Algorithms for Task
Scheduling Problem

Fatma A. Omara and Mona M. Arafa

Abstract. The scheduling and mapping of the precedence-constrained task
graph to the processors is considered one of the most crucial NP-complete
problems in the parallel and distributed computing systems. Several genetic
algorithms have been developed to solve this problem. The primary distinc-
tion among most of them is being the used chromosomal representation for
a schedule. However, these existing algorithms are monolithic as they at-
tempt to scan the entire solution space without consideration how to reduce
the complexity of the optimization. In this chapter, two genetic algorithms
have been developed and implemented. Our developed algorithms are genetic
algorithms with some heuristic principles have been added to improve the
performance. According to the first developed genetic algorithm, two fitness
functions have been applied one after another. The first fitness function is
concerned with minimizing the total execution time (schedule length) and the
second one is concerned with the load balance satisfaction. The second devel-
oped genetic algorithm is based on task duplication technique to overcome the
communication overhead. Our proposed algorithms have been implemented
and evaluated using benchmarks. According to the evolution results, it found
that our algorithms always outperform the traditional algorithms.

1 Introduction

The problem of scheduling task graphs of a parallel program onto parallel
and distributed computing systems is a well-defined NP-complete problem

Fatma A. Omara
Computer Science Department, Faculty of Computer and Information
Cairo University
e-mail: f.omara@ffci-cu.edu.eg

Mona M. Arafa
Mathematics Dept., Faculty of Science Banha University
e-mail: m-h-banha@yahoo.com

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 479–507.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

f.omara@ffci-cu.edu.eg
m-h-banha@yahoo.com

480 F.A. Omara and M.M. Arafa

that has received a large amount of attention, and it is considered one of the
most challenging problems in parallel computing [1]. This problem involves
mapping a Directed Acyclic Graph (DAG), of collection of computational
tasks and their data precedence, onto a parallel processing system. The goal of
a task scheduler is to assign tasks to available processors such that precedence
requirements between tasks are satisfied and in the same time the overall
execution length (i.e., make span) is minimized [2]. Generally, the scheduling
problem exists in two types: static and dynamic.

According to the static scheduling, the characteristics of a parallel pro-
gram such as task processing times, communication, data dependencies, and
synchronization requirement are known before execution [3] . According to
the dynamic scheduling, a few assumptions about the parallel program can
be made before execution, then, scheduling decisions have to be made on-the-
fly [4]. The work in this chapter concerns static scheduling problem. One the
other hand, a general taxonomy for static scheduling algorithms has been
reviewed and discussed by Kwong and Ahmad [3]. Many task scheduling
techniques have been developed with moderate complexity as a constraint,
which is a reasonable assumption for general purpose development platforms
[5, 6, 7, 8]. Generally, the task scheduling algorithms may be divided in two
main classes; greedy and non-greedy (iterative) algorithms [9]. The greedy
algorithms attempt to minimize the start time of the tasks of a parallel pro-
gram only. This is done by allocating the tasks into the available processors
without back tracking. On the other hand, the main principle of the iterative
algorithms is that they depart from an initial solution and try to improve it.

The greedy task scheduling algorithms might be classified into two cate-
gories: algorithms with duplication and algorithms without duplication. One
of the common algorithms in the first category is the duplication scheduling
heuristic (DSH) algorithm [1], the main principles of the DSH algorithm are:
the nodes are arranged in a descending order according to their static b-level
and the start-time of the node on the processor without duplication of any
ancestor is determined. After that the ancestors of the node is tried to dupli-
cate into the duplication time slot until the slot is used up or the start-time
of the node does not improve. One the other hand, one of the best algorithms
in the second category is the Modified Critical Path (MCP) algorithm [10].
The MCP algorithm first computes the ALAPs of all the nodes, then create
ready list containing ALAP times of the nodes in an ascending order. The
ALAP of a node is computed by first computing the length of the Critical
Path (CP) and then subtracting the b-level of a node from it. Ties are broken
by considering min ALAP time of the children of a node. If the min ALAP
time of the children is equal, ties are broken randomly.

According to MCP algorithm, the highest priority node in the list is picked
and assign to a processor that allows the earliest start time using insertion
approach. Recently, Genetic Algorithms (GAs) have been widely reckoned
as a useful vehicle for obtaining high quality solutions or even optimal so-
lutions for a broad range of combinatorial optimization problems including

Genetic Algorithms for Task Scheduling Problem 481

task scheduling problem [2, 3]. Another merit of a genetic search is that its
inherent parallelism can be exploited so as to further reduce its running time.
The basic principles of GAs were firstly laid down by Holland [11], and after
that they are well described in many texts. The Gas operate on a population
of solutions rather than a single solution. The genetic search begins by ini-
tializing a population of individuals. Individual solutions are selected from
the population then mate to form new solutions. The mating process im-
plemented by combining or crossing over genetic material from two parents
to form the genetic material for one or two new solutions, confers the data
from one generation of solutions to the next. Random mutation is applied
periodically to promote diversity. The individuals in the population are re-
placed by the new solutions. A fitness function, which measures the quality
of each candidate solution according to the given optimization objective, is
used to help determine which individuals are retained in the population as
successive generations evolve [12]. There are two important but competing
themes exist in a GA search; the need for selective pressure so that the GA
is able to focus the search on promising areas of the search space, and the
need for population diversity so that important information (particular bit
values) is not lost [13, 14].

Recently, several GAs have been developed for solving the task scheduling
problem, the primary distinction among them being the chromosomal repre-
sentation of a schedule [15, 16, 17, 18, 19, 20, 2]. Two hybrid genetic algorithms
called Critical Path Genetic Algorithm (CPGA) and Task Duplication Genetic
Algorithm (TDGA) have been proposed in this chapter. Our developed algo-
rithms show the effect of the amalgamation of the greedy algorithms with the
genetic one. The first algorithm CPGA is based on how to use the ideal time of
the processors efficiently, and reschedule the critical path nodes to reduce their
start time. Finally, two fitness functions have been applied, one after another.
The first fitness function is concerned with how to minimize the total execution
time (schedule length), and the second one is concerned with the load balance
satisfaction. The second algorithm TDGA is based on task duplication princi-
ple to minimize the communication overheads.

The reminder of this chapter is organized as follows: Section 2 gives a de-
scription for the model for task scheduling problem. An implementation of
the standard GA is presented in Section 3. Our developed CPGA is intro-
duced in section 4. Section 5 produces the details of our TDGA algorithm. A
comparative study of our developed algorithms, MCP algorithm, DSH algo-
rithm, and SGA algorithm are presented in Section 6. Conclusion is presented
in Section 7.

2 Task Scheduling Problem Model

The model of the underline parallel system to be considered in this research
work could be described as follows [3]: The system consists of a limited number

482 F.A. Omara and M.M. Arafa

of fully connected homogeneous processors. Let a task graph G be a Directed,
Acyclic Graph (DAG) composed of N nodes n1, n2,..., nN , each node termed a
task of the graph which in turn is a set of instruction that must be executed se-
quentially without preemption in the same processor. A node has one or more
inputs. When all inputs are available, the node is triggered to execute. A node
with no parent is called an entry node and a node with no child is called an exit
node. The weight is called the computation cost of a node ni and is denoted by
(ni) weight. The graph also has E directed edges representing a partial order
among the tasks. The partial order introduced a precedence-constrained DAG
and implies that if ni → nj, then nj is a child, which cannot start until its
parent ni finishes. The weight on an edge is called communication cost of the
edge and is denoted by c(ni, nj). This cost is incurred if ni and nj are sched-
uled on different processors and is considered to be zero if ni and nj are sched-
uled on the same processor. If a node ni is scheduled to processor P , the start
time and finish time of the node are denoted by ST (ni, p) and FT (ni, p) re-
spectively. After all nodes have been scheduled, the schedule length is defined
as max FT (ni, p) across all processors. The objective of the task scheduling
problem is that how to find an assignment and the start times of the tasks to
processors such that the schedule length is minimized and, in the same time,
the precedence constrains are preserved. A Critical Path (CP) of a task graph
is defined as the path with the maximum sum of node and edge weights from
an entry node to an exit node. A node in CP is denoted by CP Nodes (CPNs).
An example of a DAG is represented in Figure1 with CP is drawn in bolt.

Fig. 1 Example of DAG, where t1, t7, and t9 are CP Nodes

Genetic Algorithms for Task Scheduling Problem 483

Table 1 Selected Benchmark Programs

Benchmarks programs No tasks Source Note

Pg1 100 [22] Random Graphs
Pg2 90 [22] Robot Control program
Pg3 98 [22] Sparse Matrix Solver

3 The Developed Genetic Algorithms

Before presenting the details of our developed algorithms, some principles
which are used in the design are discussed.

Definition 1. (Data Arrival Time) Any task cannot be start unit all parents
have been finished. Let Pj be the processor on which the k − th parent task tk
of task ti is scheduled. Data Arrival Time (DAT) of ti on a processor Pi is
defined as:

DAT = max(FT (tk, Pj) + c(ti, tk)), k = 1, 2, ..., No − parent (1)

Where, No − parent is the number of parents of ti,

If (i = j) then c(ti, tk) = 0

The parent task that maximizes the above expression is called the favorite pre-
decessors of ti and it is denoted by favpred(ti, Pj). The benchmark programs
which have been used to evaluate our algorithms are listed in Table (1).

3.1 Standard Genetic Algorithm - SGA

The SGA has been implemented first. This algorithm is started with an initial
population of feasible solution. Then, by applying some operators, the best
solution could be finding through some generations. The selection of the best
solution is determined according to the value of fitness function. According to
this SGA, the chromosome is divided into two sections; mapping and schedul-
ing. The mapping section contains the processors indices where tasks to be
run on it. The schedule section determines the sequence for processing of the

Fig. 2 Representation of a Chromosome

484 F.A. Omara and M.M. Arafa

tasks. Figure 2 shows an example of such representation of the chromosome.
Where, tasks t4, t7, t8 will be scheduled on processor P1, tasks t3, t5 will be
scheduled on processor P2, and the tasks t1, t2, t6 and t9 will be scheduled
on processor P3. The length of the chromosome is linear proportional to the
number of tasks.

Genetic Formulation of SGA

Initial Population

The initial population is constructed randomly. The first part of the chromo-
some (i.e. mapping) is chosen randomly from 1 to No-Processors, where the
No-Processors is the number of processors in the system. The second part
(i.e. schedule) is generated randomly such that the topological order of the
graph is preserved. The Pseudo Code of The Task Schedule using SGA is as
follow:

Fitness Function

The main objective of the scheduling problem is to minimize the schedule
length of a schedule.

Fitness − Function = (
a

Slength
) (2)

Where a is a constant and Slength is the schedule length which is determined
by the following equation:

Slength = max(FT [t,]), i = 1, ..., KnoTask (3)

Function Schedule length

1. ∀RT [Pj] = 0 //RT is the ready time of the processors.

2. Let LT be a list of tasks according to the topological order of DAG.

3. For i=1 to NoTasks Do

// NoTasks is number of tasks

(a) Remove the first task ti form list LT .

(b) For j = 1 to NoProcessors Do
// NoProcessors is number of Processors.

Genetic Algorithms for Task Scheduling Problem 485

If ti is scheduled to processor Pj

ST [ti] = max(RT [Pj], DAT (ti, Pj))

FT [ti] = ST [ti] + weight[ti]

RT [Pj] = FT [ti]

Endif, Endfor, Endfor.

Slength = max(FT).

Example: By considering the chromosome represented in Figure 2 as a so-
lution of a DAG represented in Figure 1, the Fitness Time function defined
by equation 3 has been used to calculate the schedule length (see Figure 3).

Genetic Operators

In order to apply crossover and mutation operators, the selection phase should
be applied firstly. This selection phase used to allocates reproductive trials to

Fig. 3 The Schedule Length

486 F.A. Omara and M.M. Arafa

Table 2 A comparison between roulette wheel and tournament selection

Benchmarks programs Roulette Wheel Selection Tournament Selection

Pg1 301.6 283.7
Pg2 1331.6 969
Pg3 585.8 521.8

chromosomes according to their fitness. There are different approaches could
be applied in the selection phase. According to the work in this chapter,
fitness-proportional roulette wheel selection [23] and tournament selection
[24] are compared such that the best method is used (i.e., produce the short-
est schedule length). In the roulette wheel selection, the probability of selec-
tion is proportional to an chromosome’s fitness. The analogy with a roulette
wheel arises because one can imagine the whole population forming a roulette
wheel with the size of any chromosome’s slot proportional to its fitness. The
wheel is then spun and the figurative ball thrown in. the probability of the
ball coming to the rest in any particular slot is proportional to the arc of
the slot and thus to the fitness of the corresponding chromosome. In binary
tournament selection, two chromosomes are picked at random from the pop-
ulation. Whichever has the higher fitness is chosen. This process is repeat
number of population size.

Table (2) contains the comparing results between these two selection meth-
ods using 4 processors for each benchmark program listed in Table1. Accord-
ing to the results listed in Table 2, the tournament selection method produce
schedule length is smaller than the roulette wheel selection. Therefore, the
tournament selection method is used in the work of this chapter.

Crossover Operator. Each chromosome in the population is subjected to
crossover with probability μ. Two chromosomes are selected from the popu-
lation, and a random number RN ∈ [0, 1] is generated for each chromosome.
If RN < μ, these chromosomes are applied using one of the two kinds of
the crossover operators; single point crossover and order crossover opera-
tors. Otherwise, these chromosomes are not changed. The pseudo code of the
crossover function is as follows.

Function Crossover

1. Select two chromosomes chrom1 and chrom2

2. Let P a random real number between 0 and 1

3. If P < 0.5 /* operators probabilty

Crossover-Map(chrom1, chrom2)

Genetic Algorithms for Task Scheduling Problem 487

Else

Crossover-Order(chrom1, chrom2).

According to the crossover function, one of the crossover operators is used.

Crossover Map. When the single crossover is selected, it is applied to the
first part of the chromosome. By given two chromosomes a random inte-
ger number called the crossover point is generated from 1 to No-Tasks. The
portions of the chromosomes lying to the right of the crossover point are
exchanged to produce two offsprings (see Figure 4).

Fig. 4 One point crossover operator

Order Crossover. When the order crossover operator is applied to the sec-
ond part of the chromosome, a random point is chosen. First pass the left
segment from the chrom1 to the offspring, and then construct the right frag-
ment of the offspring according to the order of the right segment of chrom2
crossover operator is given in (see Figure 5 as an example).

Mutation Operator. Each position in the first part of the chromosome
is subjected to mutation with probability . Mutation involves changing the

Fig. 5 Order crossover operator

488 F.A. Omara and M.M. Arafa

Fig. 6 Mutation Operator

assignment of a task from one processor to another. Figure 6 illustrate the
mutation operation on chrom1. After the mutation operator is applied, the
assignment of t4 is changed from processor P3 to processor P1.

4 The Critical Path Genetic Algorithm (CPGA)

Our developed CPGA algorithm is considered a hybrid of GA principles and
heuristic algorithms principles (e.g., given priority of the nodes according to
ALAPlevel). On the other hand, the same principles and operators which are
used in SGA algorithm have been used in the CPGA algorithm. The encod-
ing of the chromosome is the same as in SGA, but in the initial population
the second part (schedule) of the chromosome can be constructed using one
of the following ways:

1. The schedule part is constructed randomly as in SGA.
2. The schedule part is constructed using ALAP.

These two ways have been applied using benchmark programs listed in
Table 1 with four processors. According to the comparative results listed
in Table (3), it is found that the priority of the nodes by ALAP method
outperforms the random one in the most cases.

Table 3 A comparison between Random and Order ALAP Order methods

Benchmarks programs Random Order ALAP Order

Pg1 183.4 152.3
Pg2 848.5 826.4
Pg3 301.8 293.8

By using ALAP, the second part of the chromosomes is become static
along the population. So, the crossover operators are restricted to the one
point crossover operator. Three modifications have been applied in the SGA
to improve the scheduling performance. These modifications are: (1) Reuse
idle time, (2) Priority of the CPNs, and (3) Load balance.

Genetic Algorithms for Task Scheduling Problem 489

Function Test-Slots

1. Let LT be a list of ready tasks
2. Initially the deal-time list is empty, S-ideal-time=0, and E-ideal-time=0
3. While the list LT is not empty, get a task ti from the head of the list
(a) Min = ST = inf
(b) For each processor Pj

If ti is scheduled to Pj .

Let thisST = the start time of ti on Pj

If thisST > MinST Then MinST = thisST

If the idealtime list of Pj is not empty

For each timeslot of the idealtime list

If (Eidealtime−Sidealtime) <= weight[ti] & DAT (ti, Pj) > Sidealtime

Then schedule ti in the idealtime and update the Sidealtime and Eideal-
time

Let sttime be the start time of the task ti equal to Sidealtime.

End If

(c) If sttime > MinST Then

MinST =sttime.

Example. Suppose the schedule represented in Figure (3). The processor P1

has an ideal time slot; the start of this ideal time (S-ideal-time) is equal to 7
while its end time (E-ideal-slot) is equal to 12. On the other hand, the weight
(tS) =4 and DAT (tS , P1) = S−ideal−slot = 7.By applying the modification,
tS can be rescheduled to start at time 7. The final schedule length according
to this modification becomes 23 instead of 26 (see Figure 7).

Priority of CPNs Modification

According to the second modification, another optimization factor is applied
to recalculate the schedule length after giving high priorities for the (CPNs)
such that they can start as early as possible. This modification is implemented
using a function called Reschedule-CPNs Function. The pseudo code of this
function is as follows:

490 F.A. Omara and M.M. Arafa

Fig. 7 The schedule after applying the test slots function is reduced from 26 to 23

Function Reschedule-CPNs

1. Determine the CP and make a list of CPNs

2. While the list of CPNs is not empty DO

- Remove the task ti from the list

- Let V IP = favpred(ti, Pj)

If V IP is assigned to processor Pj

Then The task ti is assigned to processor pj

End If

Example. We apply the Reschedule-CPNs Function in the scheduling pre-
sented in Figure 7. According to the DAG in presented in Figure 1, it is
found that the CPNs are t1, t7, and t9. t1 is the entry node and it has no
predecessor and the favpred of the t7 is the task t1. The task t7 is scheduled

Genetic Algorithms for Task Scheduling Problem 491

Fig. 8 The schedule af-
ter applying the resched-
ule of the CPNs function
is reduced from 23 to 17

to processor P1. Also the favpred of t9 is t8, but in the same time it starts
early on the processor P3, so t9 is not moved. The final schedule length is
reduced to 17 instead of 23(see Figure 8).

Load Balance Modification

Because the main objective of the task scheduling is to minimize the schedule
length, it is found that several solutions can give the same schedule length,
but load balance between processors might be not satisfied in some of them.
The aim of load balance modification is that how to obtain the minimum
schedule length and, in the same time, the load balance is satisfied. This has
been satisfied by using two fitness functions one after another instead of one
fitness function. The first fitness function concerns with minimizing the total
execution time, and the second fitness function is used to satisfy load balance
between processors. This function is proposed in [25] and it is calculated by
the ratio of the maximum execution time (i.e. schedule length) to the average
execution time over all processors.

If the execution time of processor Pj is denoted by Etime[Pj], then the
average execution time over all processors is:

avg =
NoProcessor∑

j=1

Etime[Pj]
NoProcessors

(4)

So, the load balance is calculated as:

LoadBalance =
Slength

Avg
(5)

492 F.A. Omara and M.M. Arafa

Supposing two task scheduling solutions are given in Figure 9 (a,b). The
schedule length of both solutions is equal to 23.

Solution a: Avg = 12+17+23
3 ,

Loadbalance = 23
17.33 ≈ 1.326

Solution b: Avg = 9+11+23
3 ≈ 14.33,

Loadbalance = 23
14.33 ≈ 1.604.

Fig. 9 according to balance fitness function solution (a) is better than solution (b)

According to the balance fitness function as shown in Figure (9), the so-
lution (a) is better than the solution (b).

Adaptive μc and μm Parameters

Srinivas and patnaik [26] have proposed an adaptive method to tune crossover
rate μc and mutation rate μm on the fly based on the idea of sustaining in
diversity in a population without affecting its convergence properties. There-
fore; the rate μc as:

μc =
kc(fmax − fc)
(fmax − favg)

(6)

And the rate μm is defined as:

μm =
km(fmax − fm)
(fmax − favg)

(7)

Where, fmax is the maximum fitness value, favg is the average fitness value
fc is the fitness value of the fitter chromosome for the crossover fm is the
fitness value of the chromosome to be mutated kc and km are positive real
constant less than 1.

Genetic Algorithms for Task Scheduling Problem 493

Table 4 A comparison between static and dynamic μc, μm parameters

Benchmarks programs Dynamic parameters Static parameters

Pg1 148 152.3
Pg2 785.6 826.4
Pg3 288.2 293.8

The CPGA algorithm has been implemented into two versions: the first
version is done using static parameters (μc = 0.8 and μm = 0.02) and the
second version is done using adaptive parameters. Table 4 represents the
comparison results between these two versions. According to the results, it
found that using adaptive parameters (μc and μm) can help preventing a
GA from getting stuck at local minima. So the adaptive method is batter
than using static values of μc and μm.

5 The Task Duplication Genetic Algorithm (TDGA)

Even with an efficient scheduling algorithm, some processors might be ideal
during the execution of the program because the tasks assigned to them might
be waiting to receive some data from the tasks assigned to other processors.
If the idle time slots of the waiting processor could be used effectively by
identifying some critical tasks and redundantly allocating them in these slots,
the execution time of the parallel program could be further reduced [27].

According to our proposed algorithm, a good schedule based on task du-
plication has been proposed. This proposed algorithm called Task Duplica-
tion Genetic Algorithm (TDGA) employs a genetic algorithm for solving the
scheduling problem.

Definition 2. At a particular scheduling step; for any task ti on a processor
Pi, if STF (favpred(ti, pj)) + weight(favpred(ti, pj)) ≤ EST (ti, pj) Then
EST (ti, pj) can be reduced by scheduling favpred(ti, pj) to pj. Therefore,
this definition could be applied recursively upward the DAG to reduce the
schedule length.

Example. To clearfy the effect of the task duplication technique, consider a
schedule presented in Figure 10(a) for DAG in Figure (1), the schedule length
is equal to 21. If t1 is duplicated to processor p1 and p2 the schedule length
is reduced to 18 (see Figure 10(b)).

Genetic Formulation of The TDGA

According to our TDGA algorithm, each chromosome in the population con-
sists of a vector of order pairs (t, p) indicates that task t is assigned to
processor p. The number of order pairs in a chromosome may vary in length.

494 F.A. Omara and M.M. Arafa

Fig. 10 (a) before duplication (schedule length=21) (b) After duplication (sched-
ule length=18)

Fig. 11 An Example of
the Chromosome

An example of a chromosome is shown in Figure 11. The first order pair
shows that task t2 is assigned to processor P1, and the second one indicates
that task t3 is assigned to processor P2, etc.

According to the duplication principles, the same task may be assigned
more than once to different processors without duplicating it in the same
processor. If a task processor pair appears more than once on the chromo-
some, only one of the pairs is considered. According to Figure 11, the task t2
is assigned to processor P1 and P2.

Definition 3. (Invalid chromosomes) Invalid chromosomes are the chromo-
somes that not contain all DAG tasks. These invalid chromosomes might be
generated.

Initial Population. According to our TDGA algorithm, two methods to
generate the initial population are applied. The first one, called Random
Duplication (RD) and the second one called Heuristic Duplication (HD).
According to RD, the initial population is generated randomly such that
each task can be assigned to more than one processor.

According to HD, the initial population is initialized with randomly gen-
erated chromosomes, while each chromosome consists of exactly one copy of
each task (i.e. no task duplication). Then, each task is randomly assigned to
a processor. After that a duplication technique is applied by a function called
Duplication-Process. The pseudo code of the Duplication-Process function is as
follows:

Genetic Algorithms for Task Scheduling Problem 495

Table 5 A comparison between the methods (HD and RD)

Benchmarks programs HD RD

Pg1 493.9 494.1
Pg2 1221 1269.5
Pg3 641.2 616.2

Fig. 12 Example of two point crossover operator

Fig. 13 Example of Mutation Operator

Function Duplicatin-Process

1.Compute SL for each task in the DAG
2.Make a list Slist of the tasks according to SL in descending order
3.Take the task ti from Slist
4. While Slist is not empty.

If is assigned to processor ρi

if favpred(ti, ρi) is not assigned to ρi

if (timeslot ≥ weight(favpred(ti, ρi))

assigned favpred(ti, ρi) to ρi

According to the implementation results using two methods, it is found
that the methods give nearly results. Therefore, the first method (HD) has
been considered in our TDGA algorithm.

Fitness Function. Our fitness function is defined as 1/Slength, where
Slength is defined as the maximum finishing time of all tasks of the DAG.
The proposed GA assigns zero to an invalid chromosome as its fitness value.

496 F.A. Omara and M.M. Arafa

Fig. 14 NSL for Pg1 and MCD 25, 50

Fig. 15 NSL for Pg1 and MCD 75, 100

Genetic Operators: Crossover Operator. Two point crossover operator
is used. Since each chromosome consists of a vector of task processor pair,
crossover exchange substrings of pairs between two chromosomes. Two points
are randomly chosen and the partitions between the points are exchanged
between two chromosomes to form two offsprings. The crossover probability

Genetic Algorithms for Task Scheduling Problem 497

Fig. 16 NSL for Pg2 and two values of ρ

gives the probability that a pair of chromosome will undergo crossover. An
example of two point crossover is shown in Figure 12.

Mutation Operator

The mutation probability indicates the probability that an order pair will be
changed. If a pair is selected to be mutated, the processor number of that
pair will be randomly changed. An example of mutation operator is shown
in Figure 13.

6 Comparative Study and Performance Evaluation

To evaluate our proposed algorithms, we have implemented them using an
Intel processor (2.6 GH) using c++ language and it is applied using differ-
ent task graphs of specific benchmark applications programs as well as, a
random one without communication delays which are listed in Table (1).
All benchmark programs are taken from a Standard Task Graph (STG)
archive [22]. The first two programs of This STG set consists of task graphs
generated randomly Pg1, the second program is the robot control (Pg2) as
an actual application programs and the last program is the sparse matrix
solver (Pg3). Also, we consider the task graphs with random communication
costs. These communication costs are distributed uniformly between 1 and a
specified maximum communication delay (MCD). Also, the population size
is considered 200 and the number of generations is considered 500 generation.

498 F.A. Omara and M.M. Arafa

Fig. 17 NSL for Pg3 and two values of ρ

Fig. 18 Speedup for Pg1 and MCD 25 and 50

Genetic Algorithms for Task Scheduling Problem 499

Fig. 19 NSpeedup for Pg1 and MCD 75and 100

6.1 The Developed CPGA Evaluation

The comparison has been done among our algorithm CPGA, SGA and one
of the best greedy algorithms is called MCP algorithm. Firstly, a comparison
among the CPGA, SGA and MCP algorithms with respect to the Normalized
Schedule Length (NSL) with different number of processors has been done.
The NSL is defined as [28]:

NSL =
Slength∑

x∈CP (Weight(ni))
(8)

Where SLength is the schedule length and weight (ni) is the weight of the
node ni. The sum of computation costs on the CP represents a lower bound
on the schedule length. Such lower bound may not always be possible achieve,
and the optimal schedule length may be larger than this bound. Secondly,
the performance of the CPGA, SGA and MCP are measured with respect to
speedup [29]. The speedup is can be estimated as:

500 F.A. Omara and M.M. Arafa

Fig. 20 Speedup for Pg2 and two values of ρ

S(p) =
T 1
Tp

(9)

where, T (1) is the time required for executing a program on a uniprocessor
computer and T (P) is the time required for executing the same program on
a parallel computer containing P processors. The NSL for CPGA and MCP
algorithms using 2, 4, 8, and 16 processors for Pg1 and different MCD (25,
50, 75, and 100) are given in Figures (14 and 15). Also the NSL for Pg2 and
Pg3 graphs with two different number of μ are given in Figures 16 and 17
respectively.

Figures (14, 15, 16, and 17) show that the performance of our proposed
CPGA algorithm is always outperformed SGA and MCP algorithms. Accord-
ing to the obtained result, it is found that the NSL of all algorithms is increased
when processor number is increased. Although, our CPGA is always the best,
and it achieves lower bound when the communication delay is small.

Genetic Algorithms for Task Scheduling Problem 501

Fig. 21 Speedup for Pg3 and two values of ρ

6.2 The Developed TDGA Evaluation

To measure the performance of the TDGA, a comparison among the TDGA
algorithm, SGA, and one of well known heuristic algorithm based on task
duplication called DSH algorithm has been done with respect to NSL and
speedup. To clarify the effect of task duplication in our TDGA algorithm,
the same benchmark random and application programs Pg1, Pg2, and Pg3
listed in Table (1) have been used with high communication delay.

The NSL for TDGA, SGA, and DSH algorithms using 2, 4, 8, and 16
processors for Pg1 with two value of Communication Delay (CD) 100 and
200 is given in Figure 22. Also the NSL for bench mark application programs
Pg2, and Pg3 is given in Figures 23, and 24.

According to the results in Figures (22, 23, and 24), it is found that our
TDGA algorithm outperforms SGA and DSH algorithms especially when the
number of communication, as well as, the number of processor increases.

The speedup of TDGA algorithm and DSH algorithm is given in Figures
(25, 26, and 27) for Pg1, Pg2, and Pg3 programs respectively.

502 F.A. Omara and M.M. Arafa

Fig. 22 NSL for Pg1 and CD =100 and 200

Fig. 23 NSL for Pg2 and ρ=1 and 2

The results reveal that the performance of the TDGA algorithm is always
outperformed the DSH algorithm. Also, the TDGA speedup is nearly linear
especially for random graphs

Genetic Algorithms for Task Scheduling Problem 503

Fig. 24 NSL for Pg3 and ρ=1 and 2

Fig. 25 Speedup for Pg1 and ρ=1 and 2

504 F.A. Omara and M.M. Arafa

Fig. 26 Speedup for Pg2 and ρ=1 and 2

Fig. 27 Speedup for Pg3 and ρ =1 and 2

Genetic Algorithms for Task Scheduling Problem 505

7 Conclusion

In this chapter, an implementation of a standard GA (SGA) to solve the task
scheduling problem has been presented. Some modifications have been added
to this SGA to improve the scheduling performance. These modifications are
based on amalgamating heuristic principles with the GA principles. The new
developed algorithm called Critical Path Genetic Algorithm (CPGA) is based
on rescheduling the critical path nodes (CPNs) in the chromosome and then
through different generations. Also, two modifications have been added. The
first one concerns with how to use the idle time of the processors efficiently,
and the second one concerns about to satisfy load balance among processors.
The last modification is applied only when there are two or more scheduling
solutions with the same schedule length are produced.

A comparative study among our CPGA, SGA algorithms and one of the
standard heuristic algorithm called MCP algorithm have been presented us-
ing standard task graphs with considering random communication costs. The
experimental studies show that the CPGA always outperform the SGA as
well as the MCP algorithm in most cases. Generally, the performance of
our CPGA is better than the SGA and MCP algorithms. According to task
duplication technique, the communication delays are reduced and then min-
imizing the overall execution time, in the same time, the performance of the
genetic algorithm is increased. The performance of the TDGA is compared
with a traditional heuristic scheduling technique: DSH and SGA. The TDGA
outperforms the DSH algorithm and SGA in most cases.

Acknowledgements. This research has been partially supported by funds from
Cairo University, Egypt (Young Researcher Annual Grants).

References

1. El-Rewini, H., Lewis, T.G., Ali, H.H.: Task Scheduling in Parallel and Dis-
tributed Systems. Prentice-Hall International Editions (1994)

2. Wu, A.S., Yu, H., Jin, S., Lin, K.-C., Schiavone, G.: An Incremental Genetic
Algorithm Approach to Multiprocessor Scheduling. IEEE Trans. Parallel and
Distributed Systems 15, 824–834 (2004)

3. Kwok, Y., Ahmad, I.: Static Scheduling Algorithms for Allocating Directed
Task Graphs to Multiprocessors. ACM Computing Survey 31, 406–471 (1999)

4. Palis, M.A., Liou, J.C., Rajasekaran, S., Shende, S., Wei, S.S.L.: Online
Scheduling of Dynamic Trees. Parallel Processing Letter 5, 635–646 (1995)

5. Sih, G.C., Lee, E.A.: A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures. IEEE Trans. Parallel and
Distributed Systems. 4, 75–87 (1993)

6. Kwok, Y., Ahmad, I.: Dynamic Critical Path Scheduling: An Effective Tech-
nique for Allocating Task Graphs to Multi-processors. IEEE Trans. Parallel
and Distributed Systems. 7, 506–521 (1996)

506 F.A. Omara and M.M. Arafa

7. Omara, F.A., Allam, A.: An Efficient Tasks Scheduling Algorithm for Dis-
tributed Memory Machines With Communication Delays. Information Tech-
nology Journal (ITJ) 4, 326–334 (2005)

8. Radulescu, A., van Gemund, A.J.C.: Low Cost Task scheduling for Distributed
Memory Machines. IEEE Trans. Parallel and Distributed Systems 13, 648–658
(2002)

9. Bouvry, P., Chassin, J., Trystram, D.: Efficient Solutions for Mapping Parallel
Programs. CWI-Center for Mathematics and computer science, Amsterdam,
The Netherlands (1995) (published in Euro-Par)

10. Wu, M., Gajski, D.D.: Hypertool: A Programming aid for message-passing
systems. IEEE Trans. Parallel Distributed Systems 1, 381–422 (1990)

11. Corman, T.H., Leiserson, C.E., Rivests, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

12. Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. Of Michigan
Press, Ann Arbor (1975)

13. Levine, D.: A Parallel Genetic Algorithm for The Set Partitioning Problem,
Ph.D. thesis in computer science, Department of Mathematics and computer
science, IIIinois Institute of Technology, Chicago, USA (1994)

14. Back, T., Hammel, U., Schwefel, H.-P.: Evolutionary Computation: Comments
on the History and Current State. IEEE Trans. Evolutionary Computation 1,
3–17 (1997)

15. Talbi, E.G., Muntean, T.: A new Approach for The Mapping Problem: A Par-
allel Genetic Algorithm (1993), citessr.ist.psu.edu

16. Ali, S., Sait, S.M., Benten, M.S.T.: GSA: Scheduling And Allocation Using
Genetic Algorithm. In: Proceedings of the Conference on EURO-DAC with
EURO WDHL 1994, Grenoble, pp. 84–89 (1994)

17. Hou, E.H., Ansari, N., Ren, H.: A Genetic Algorithm for Multiprocessor
Scheduling. IEEE Trans. Parallel Distributed Systems. 5, 113–120 (1994)

18. Ahmed, I., Dhodhi, M.K.: Task Assignment using a Problem-Space Genetic
Algorithm. Concurrency. Pract. Exper. 7, 411–428 (1995)

19. Kwok, Y.: High performance Algorithms for Compile-time Scheduling of Par-
allel Processors, Ph.D. Thesis, Hong Kong University (1997)

20. Tsuchiya, T., Osada, T., Kikuno, T.: Genetic-Based Multiprocessor Scheduling
Using Task Duplication. Microprocessors and Microsystems 22, 197–207 (1998)

21. Alaoui, S.M., Frieder, O., EL-Ghazawi, T.A.: Parallel Genetic Algorithm for
Task Mapping On Parallel Machine. In: Proc. of the 13th International Paral-
lel Processing Symposium & 10th Symp. Parallel and Distributed Processing
(IPPS/SPDP) Workshops, San Juan, Puerto Rico (April 1999)

22. Haghighat, A.T., Nikravan, M.: A Hybrid Genetic Algorithm for Process
Scheduling in Distributed Operating Systems Considering Load Balancing. In:
The IASTED Conference on Parallel and Distributed Computing and Networks
(PDCN), Innsbruck, Austria (2005)

23. Blickle, T., Thiele, L.: A Mathematical Analysis of Tournament Selection. In:
Proc. of the 6th International Conf. on Genetic Algorithms (ICGA 1995). Mor-
gan Kaufmann, San Francisco (1995)

24. Kumar, S., Maulik, U., Bandyopadhyay, S., Das, S.K.: Efficient Task Mapping
on Distributed Heterogeneous Systems for Mesh Applications. In: Proceed-
ings of the International Workshop on Distributed Computing, Kolkata, India
(2001)

citessr.ist.psu.edu

Genetic Algorithms for Task Scheduling Problem 507

25. Ahmad, I., Kwok, Y.: A New Approach to Scheduling Parallel Programs Using
Task Duplication. In: Proc. of the 23rd International Conf. on Parallel Process-
ing, North Carolina State University, NC, USA (August 1994)

26. http://www.Kasahara.Elec.Waseda.ac.jp/schedule/

27. Ahmad, I., Kwok, Y.: Benchmarking and Comparison of the Task Graph
Scheduling Algorithms. Journal of Parallel and Distributed Computing 95, 381–
422 (1999)

28. Akl, S.G.: Parallel Computation: Models and Methods. Prentice-Hall, Inc., En-
glewood Cliffs (1997)

29. Wilkinson, B., Allen, M.: Parallel Programming: Techniques and applications
using Networked Workstations and Parallel Computers. Pearson Prentic Hall,
London (2005)

http://www.Kasahara.Elec.Waseda.ac.jp/schedule/

PSO Bounds: A New Hybridization
Technique of PSO and EDAs

Mohammed El-Abd and Mohamed S. Kamel

Abstract. Particle Swarm Optimization (PSO) is a nature inspired
population-based approach successfully used as an optimization tool in many
application. Estimation of distribution algorithms (EDAs), are evolutionary
algorithms that try to estimate the probability distribution of the good indi-
viduals in the population. In this work, we present a new PSO algorithm that
borrows ideas from EDAs. This algorithm is implemented and compared to
previous PSO and EDAs hybridization approaches using a suite of well-known
benchmark optimization functions.

1 Introduction

Particle Swarm Optimization (PSO) [1, 2] is an optimization method widely
used to solve continuous nonlinear functions. Although, the original intent
was to simulate the movement of a flock of birds or a school of fish looking
for food, It was soon realized that the associated equations of motion could
be used as a very powerful optimization tool.

Estimation of distribution algorithms (EDAs) [3] are evolutionary algo-
rithms that solve the problem in hand by trying to build a probabilistic model
that estimates the distribution of good regions in the search space. These al-
gorithms work by continuously updating the generated model and using it
to produce new solutions. One of the early works in this are is Population-
Based Incremental Learning (PBIL) proposed in [4]. PBIL is an optimization
method similar to Genetic algorithms but with maintaining a probabilistic
model rather than a population of solutions. This model was updated in every
generation and was used to produce the next population.

Mohammed El-Abd and Mohamed S. Kamel
ECE Dept., University of Waterloo, 200 University Av. W., Waterloo, Ontario,
Canada, N2L3G1

A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 509–526.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

510 M. El-Abd and M.S. Kamel

In the past few years, two hybrid models that mix the PSO algorithm with
EDAs have been proposed in the literature [5, 6]. Both approaches use the
same probabilistic model to describe the search space but differ in the way
the information is gathered and used to build the model. They also differ in
the way the model is used to generate new solutions.

In this work, we propose a new model that is based on PBIL. This model
continuously use the distribution of the particles during the search to update
the bounds of the PSO search space. This in turn affects the particles move-
ment as it affects both the bounds of allowable movement and the maximum
allowable velocity. The proposed algorithm is compared to other hybrid tech-
niques and is shown to outperform them on the more difficult multimodal
functions.

The chapter is organized as follows: a brief background on PSO is given
in Section 1.2. This is followed by an introduction to EDAs in Section 1.3.
A literature review of previous PSO and EDAs hybridization techniques are
covered in Section 1.4. The new algorithm is proposed in Section 1.5. Results
and discussions are presented in Section 1.6. The chapter is concluded in
Section 1.7.

2 Particle Swarm Optimization

PSO [1, 2] is regarded as a population-based method, where the population is
referred to as a swarm. The swarm consists of a number of individuals called
particles. Each particle i in the swarm holds the following information:

• The current position xi,
• The current velocity vi,
• The best position, the one associated with the best fitness value the particle

has achieved so far pbesti,
• The global best position, the one associated with the best fitness value

found among all of the particles gbest.

In every iteration, each particle adjusts its own trajectory in the space in
order to move towards its best position and the global best according to the
following equations:

vt+1
ij = wvt

ij + c1r
t
1j(pbesttij − xt

ij)

+c2r
t
2j(gbesttj − xt

ij), (1)

xt+1
ij = xt

ij + vt+1
ij , (2)

for j ∈ 1..d where d is the number of dimensions, i ∈ 1..n where n is the
number of particles, t is the iteration number, w is the inertia weight, r1 and
r2 are two random numbers uniformly distributed in the range [0,1], and c1

and c2 are the acceleration factors.

PSO Bounds: A New Hybridization Technique of PSO and EDAs 511

Afterwards, each particle updates its personal best using the equation
(assuming a minimization problem):

pbestt+1
i =

{
pbestti if f(pbestti) ≤ f(xt+1

i)
xt+1

i if f(pbestti) > f(xt+1
i)

(3)

Finally, the global best of the swarm is updated using the equation (assuming
a minimization problem):

gbestt+1 = arg min
pbestt+1

i

f(pbestt+1
i), (4)

where f(.) is a function that evaluates the fitness value for a given position.
This model is referred to as the gbest (global best) model.

Another model is the lbest (local best) model [7], in each particle does
not hold the global best position. Instead, each particle only holds the best
position achieved by its own neighborhood. Different neighborhood structures
were previously examined for such a model [8] including the ring topology
and the Von Neumann model.

3 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) are evolutionary algorithms
that try to estimate the probability distribution of the good individuals in
the population. EDAs try to estimate this probability distribution by using
selected individuals, from the current population, to construct a probabilistic
model. This model is consequently used to generate the offspring. The new
population is generated by selecting individuals from both the offspring and
the current population in a proportionate manner. Finally, the new popula-
tion replaces the current one. Hence, EDAs maintain a continuously updated
probabilistic model from one generation to the next. Although, it has been
originally introduced to tackle combinatorial optimization problems, recent
numerical applications have been proposed as well [9, 10, 11, 12]. The general
steps for an EDA is shown in Algorithm 1.

EDAs are categorized based on the degree of dependencies, allowed by the
probabilistic model used, between the problem variables:

• No dependency: the problem variables are assumed to be independent,
• Bivariate dependency: the dependencies are only assumed between two

variables at a time,
• Multivariate dependency: the dependencies could be modeled between any

number of variables.

For a complete survey of the different optimization techniques adopted
using building probabilistic models, the interested reader could refer to [13].

512 M. El-Abd and M.S. Kamel

Algorithm 1. Estimation of Distribution Algorithm (EDA)
1: P ⇐ Initialize the population
2: Evaluate the initial population
3: while iter number ≤ Max iterations do
4: Ps ⇐ Select the top s individuals
5: M ⇐ Estimate a new Model from Ps

6: Pn ⇐ Sample n individuals from M
7: Evaluate Pn

8: P ⇐ Select n individuals from PUPn

9: iter number = iter number + 1
10: end while
11: return Best Individual

4 PSO Based on Probabilistic Models

This section surveys the two previous attempts to introduce the concepts of
EDAs into PSO in order to improve its performance.

4.1 EDPSO

An estimation of distribution particle swarmoptimizer (EDPSO)was proposed
by Iqbal and Montes de Oca [5]. The method borrowed some ideas from a de-
velopment in ACO for solving continuous optimization problems [14, 15]. The
approach relies on estimating the joint probability distribution for one dimen-
sion at a time using mixtures of weighted Gaussian functions. The Gaussian
functions are defined through an archive of k solutions (pbests of the particles).
For each dimension d, the dimension is either updated using PSO equations or
by sampling a Gaussian distribution selected from the archive. The values of
this dimension d across all the solutions in the archive compose the vector μd,
which is the vector of means for the univariate Gaussian distributions:

μd =< pbest1d, pbest2d, ..., pbestkd > (5)

To select one of these distributions, the weights vector w, which holds
the weights associated with each distribution, is calculated. This is done by
sorting the solutions according to their fitness, with the best solution having
a rank of 1. A weight is calculated for each solution as follows:

w =< w1, w2, ..., wk > (6)

wl =
1

qk
√

2π
e
− (l−1)2

2q2k2 (7)

which is a Gaussian function with mean l and standard deviation qk, where
q is a constant that determines how much we prefer good solutions and l is
the solution rank.

PSO Bounds: A New Hybridization Technique of PSO and EDAs 513

The Gaussian function to be used is selected probabilistically. The prob-
ability of selecting a certain Gaussian function is proportional to its weight.
This probability is calculated as follows:

p =< p1, p2, ..., pk >

pl =
wl∑k

r=1 wr

(8)

After selecting a certain Gaussian function Gd denoted by its mean pbestgd,
where 1 ≤ g ≤ k, the standard deviation for this functions is calculated as:

σgd = ξ

k∑
i=1

|pbestid − pbestgd|
k − 1

(9)

which the average distance between the selected mean and the other entries
of the archive. ξ is a parameter to balance the exploration-exploitation be-
haviors. if ξ is small, this will lead to having a smaller value for σgd and the
search will tend to search in a closer range around the chosen mean.

Finally the selected Gaussian function is evaluated (not sampled) to gener-
ate a value r in order to probabilistically move the particle. This is done by
generating a uniformly distributed random number U(0,1). If it is less than r,
the particle moves using the normal PSO equations. Otherwise, the Gaussian
function is sampled to move the particle. The steps are shown in Algorithm 2.

4.2 EDA-PSO

A hybrid EDA-PSO approach was proposed in [6]. The algorithm works by
sampling an independent univariate Gaussian distribution based on the best
half of the swarm. The mean and standard deviation of the model is calculated
in every iteration as:

μ =
1
M

M∑
i=1

xi (10)

σj =

√√√√ 1
M

M∑
i=1

(xij − μj)2, (11)

where M = N/2 for a swarm with N particles and i is the particle number.
The choice of whether to update the particle using the normal PSO equa-

tions or to sample the particle using the estimated distribution is made with
a probability p, referred to as the participation ratio. If p = 0, the algorithm
will behave as a pure EDA algorithm. On the other hand, if p = 1, it will
be a pure PSO algorithm. In the hybrid approach, where 0 < p < 1, each

514 M. El-Abd and M.S. Kamel

Algorithm 2. The EDPSO algorithm.
Require: Max Function Evaluations
1: Initialize the swarm
2: Max Iterations = Max F unction Evaluations

Num Particles

3: iter number = 1
4: while iter number ≤ Max Iterations do
5: Update the swarm
6: Rank the particle’s using pbests information
7: Calculate weights vector w
8: Calculate probabilities vector p
9: for every particle i do

10: for each dimension d do
11: Update vid and xid

12: Select a Gaussian function according to pi

13: Calculate σgd

14: Prob move = σgd

√
2πGd(xid)

15: if U(0, 1) < Prob move then
16: continue
17: else
18: xid = Gauss(sgd,σgd)
19: end if
20: end for
21: end for
22: iter number = iter number + 1
23: end while
24: return gbest

particle is either totally updated by the PSO equations or totally sampled
from the estimated distribution (not on a dimension-by-dimension basis as
in EDPSO). Finally, the particle gets updated only if its fitness improves.

The authors also proposed different approaches in order to adaptively set
the parameter p. These approaches depend on the success rate of both the
PSO and EDA parts in improving the particles’ fitness:

• The Generation based, where the success rates are calculated based on the
information gathered during the last generation,

pt+1 =
sum PSOt

num PSOt

sum PSOt

num PSOt + sum EDAt

num EDAt

(12)

• The All historical information, where the success rates are calculated based
on the information gathered during the entire search,

pt+1 =
∑t

i=1
sum PSOi

num PSOi∑t
i=1

sum PSOi

num PSOi +
∑t

i=1
sum EDAi

num EDAi

(13)

PSO Bounds: A New Hybridization Technique of PSO and EDAs 515

Algorithm 3. The EDA-PSO algorithm
Require: Max Function Evaluations
1: Initialize the swarm
2: Max Iterations = Max F unction Evaluations

Num Particles

3: iter number = 1
4: while iter number ≤ Max Iterations do
5: Calculate μ and σ using top N

2
particles

6: for every particle i do
7: if U(0, 1) < p then
8: candidate particle = PSO equations
9: else

10: candidate particle = Gauss(μ,σ)
11: end if
12: if candidate particle has a better fitness then
13: particle i = candidate particle
14: end if
15: end for
16: iter number = iter number + 1
17: end while
18: return gbest

• The Sliding window, where the success rates are calculated considering
only the information in the last m generations.

pt+1 =

∑t
i=t−m+1

sum PSOi

num PSOi∑t
i=t−m+1

sum PSOi

num PSOi +
∑t

i=t−m+1
sum EDAi

num EDAi

(14)

In all the previous equations sum PSOt and num PSOt refers to the sum
of improvements and number of improvements done by the PSO component
at iteration t. While sum EDAt and num EDAt refers to the sum of im-
provements and number of improvements done by the EDA component at
iteration t. Finally, m is the window size.

The complete algorithm for EDA-PSO is shown in Algorithm 3.

5 PSO with Varying Bounds

A PBIL approach for continuous search spaces was proposed in [10]. The
algorithm explored the search space by dividing the domain of each gene into
two equal intervals referred to as the low and high intervals. A probability
hd, which is initially set to 0.5, is the probability of gene number d being in
the high interval as shown:

xd ∈ [a, b], hd = Probability(xd >
a + b

2
) (15)

516 M. El-Abd and M.S. Kamel

After each generation, this distribution is updated according to the gene
values of the best individual using the following formula:

p =

{
0 if xmax

d < a+b
2

1 otherwise
(16)

ht+1
d = (1 − α) ∗ ht

d + α ∗ p (17)

where α is the relaxation factor and t is the iteration number. If hd gets below
hdmin or above hdmax, the population gets re-sampled in the corresponding
interval, [a, a+b

2] or [a+b
2 , b], respectively.

In this work, we propose a new PSO algorithm, referred to as PSO Bounds,
which borrows concepts from PBIL. At the beginning, the particles are initial-
ized in the predefined domain. After every iteration, the probability hd of each
dimension d gets adjusted according to the probability of this dimension value
being in the high interval of the defined domain. This probability is calculated
using information from all the particles and not only gbest to prevent premature
convergence. Hence, the original equations of PBIL are changed as follows:

pt
id =

{
0 if pbesttid < a+b

2
1 otherwise

(18)

pt
d =

∑n
i pt

id

n
(19)

ht+1
d = (1 − α) ∗ ht

d + α ∗ pt
d (20)

where i ∈ 1..n where n is the number of particles, t is the iteration number,
and d is the dimension. Please note that these equations are applied for each
dimension d separately.

In PBIL, the probabilities were updated using the value of the best indi-
vidual, which is analogous to the current position of the particles in PSO.
However, in our implementation, we use the values of pbests instead as it
reflects the best experience of the swarm and would guide the search towards
better solutions.

When ht+1
d gets specific enough, the domain of dimension d is adjusted ac-

cordingly and ht+1
d gets re-initialized to 0.5. In this model, different dimensions

probability

domain

x1

x2

(a) EDPSO

probability

domain

x1 x2

 μ1 μ2

(b) EDA-PSO

variable

domain

x2

x1
h2

h1

 a1 a2 b1 b2

(c) PSO Bounds

Fig. 1 Probabilistic models

PSO Bounds: A New Hybridization Technique of PSO and EDAs 517

Algorithm 4. The PSO Bounds algorithm
Require: Max Function Evaluations, hdmin, hdmax, α
1: Initialize the swarm
2: Max Iterations = Max F unction Evaluations

Num Particles

3: iter number = 1
4: while iter number ≤ Max Iterations do
5: Update the swarm
6: for each dimension d do
7: pd = 0
8: for every particle i do
9: Calculate pid

10: pd = pd + pid

11: end for
12: hd = (1 − α)hd + αpd

13: if hd < hdmin then
14: xdmax = b = a+b

2

15: Update vdmin and vdmax

16: hd = 0.5
17: else if hd > hdmax then
18: xdmin = a = a+b

2

19: Update vdmin and vdmax

20: hd = 0.5
21: end if
22: end for
23: iter number = iter number + 1
24: end while
25: return gbest

might end up having different domains and different velocity bounds which
does not happen in normal PSO.

Figure 1 illustrates the approaches taken by the different PSO and EDAs
hybridization techniques in order to model the distribution of good solutions
across the search space in every dimension.

The steps taken by PSO Bounds is shown in Algorithm 4, where xdmin and
xdmax refer to the minimum and maximum search bounds for dimension d
while vdmin and vdmax refer to the minimum and maximum velocity bounds.

6 Results and Discussions

6.1 Experimental Settings

Table 1 shows the parameter settings used for applying the algorithms under
study. For all experiments, all the particles have been randomly initialized in
the specified domain using uniform distribution. The values for q and ξ are

518 M. El-Abd and M.S. Kamel

Table 1 Parameter settings

Model Parameter Value

Normal PSO
w 0.9 to 0.1

c1 and c2 2

EDPSO
q 0.1
ξ 0.85

EDA-PSO p
Adaptive - all

historical information

PSO Bounds
α 0.1

hdmin 0.2
hdmax 0.8

the same as was proposed in [5] and the value for p is set adaptively using
the allhistoricalinformation approach, as it was found to be the best one
based on our experiments. The values for (α, hdmin, hdmax) are changed from
(0.01, 0.1, 0.9) in [10] to (0.1, 0.2, 0.8) to allow a faster process of varying
the bounds. The experiments are conducted for a problem dimensionality of
10, 30, and 50 with 40 particles in the swarm performing 100000, 100000,
and 200000 function evaluations, respectively. The results reported are the
averages taken over 30 runs.

The experiments are run using the benchmark test functions shown in
Table 2.

The experiments are also conducted using the benchmark functions f6-f14
proposed in CEC2005, available at [16] and shown in Table 3. In order to
constrain the particles movement within the specified domain for the CEC05
functions, any violating particle gets its position randomly re-initialized inside
the specified domain. The error values f(x) − f(x∗) are reported, where x∗
is the global optimum.

In [6], the values for μ and σ are calculated using the best half of the
swarm. The authors in [17] proposed calculating σ using the whole population
instead, which is found to produce better results due to the induced diversity
avoiding premature convergence. The same approach is used in this work
when applying the EDA-PSO algorithm.

Table 2 Benchmark functions

Function Equation Domain

Spherical f(x) =
∑n

i=1 x2
i 100

Rosenbrock f(x) =
∑n/2

i=1

(
100(x2i − x2

2i−1)
2 + (1 − x2i−1)

2
)

2.048
Griewank f(x) = 1

4000

∑n
i=1 x2

i −∏n
i=1 cos

(
xi√

i

)
+ 1 600

Ackley f(x) = 20 + e − 20 exp
(− 0.2

√
1
n

∑n
i=1 x2

i

)
− exp

(
1
n

∑n
i=1 cos 2πxi

)
30

Rastrigin f(x)
∑n

i=1

(
x2

i − 10 cos 2πxi + 10
)

5.12

PSO Bounds: A New Hybridization Technique of PSO and EDAs 519

Table 3 CEC05 Benchmark Functions

Benchmark
Description

Lower Upper
Function Domain Domain

f6 shifted Rosenbrock -100 100
f7 shifted rotated Griewank 0 600
f9 shifted Rastrigin -5 5
f10 shifted rotated Rastrigin -5 5
f11 shifted rotated Weierstrass -0.5 0.5
f12 Schwefel -100 100
f13 expanded extended Griewank plus Rosenbrock -3 1
f14 shifted rotated expanded Scaffer -100 100

Table 4 Results of all the algorithms for the classical functions

Function Dim.
EDPSO EDA-PSO PSO Bounds

Mean Std. Mean Std. Mean Std.

Spherical

10

9.881e-324 0 8.400e-266 0 5.087e-03 2.786e-02
Rosenbrock 5.519e-06 1.044e-05 7.827e-02 8.422e-02 7.744e-01 5.857e-01
Griewank 2.084e-02 1.447e-02 7.882e-03 7.325e-03 1.229e-01 5.988e-02
Ackley 5.887e-16 2.006e-31 1.268e+00 2.258e-15 8.606e-02 4.708e-01

Rastrigin 3.051e+00 1.609e+00 4.013e+00 1.998e+00 7.131e+00 2.172e+00

Spherical

30

3.698e-67 2.026e-66 4.234e-141 1.425e-140 5.416e+02 3.674e+02
Rosenbrock 9.562e-01 2.042e-01 1.123e+00 4.552e-01 1.707e+01 4.633e+00
Griewank 1.479e-03 3.462e-03 0 0 4.871e+00 2.021e+00
Ackley 4.378e-015 9.014e-016 1.586e+00 9.034e-16 5.467e+00 1.137e+00

Rastrigin 1.791e+01 4.222e+00 3.4067e+01 2.922e+01 6.799e+01 1.339e+01

Spherical

50

1.104e-59 3.644e-59 2.811e-103 1.539e-102 2.979e+03 1.131e+03
Rosenbrock 2.078e+00 3.954e-01 1.565e+00 2.745e+00 3.131e+01 7.791e+00
Griewank 3.286e-04 1.800e-03 2.132e-03 6.314e-03 2.697e+01 8.899e+00
Ackley 7.694e-15 1.319e-15 1.641e+00 2.258e-16 9.068e+00 9.036e-01

Rastrigin 4.016e+01 8.593e+00 4.630e+01 1.410e+01 1.457e+02 1.891e+01

The best results highlighted in bold in all the tables are selected based on a
two-sample t-test where the null hypothesis is rejected with a 95% confidence
level.

6.2 Experimental Results

Table 4 shows the results obtained by applying EDPSO, EDA-PSO and
PSO Bounds to the classical functions for different problem sizes.

As shown in Tables 4 for the classical functions, both EDPSO and EDA-
PSO outperform PSO Bounds. The reason for this is that the global optimum
is at the center of the search space and the Gaussian model adopted by
these algorithms along with the uniform distribution used in initializing the
particles make it very easy for these algorithms to reach better results.

520 M. El-Abd and M.S. Kamel

Table 5 Results of all the algorithms for the CEC05 benchmark functions

Function Dim.
EDPSO EDA-PSO PSO Bounds

Mean. Std. Mean Std. Mean Std.

f6

10

1.375e+00 4.557e+00 1.123e-02 1.626e-02 1.451e+02 2.218e+02
f7 2.687e-01 2.258e-01 1.927e-01 1.905e-01 - -
f9 3.217e+00 1.604e+00 4.046e+00 2.277e+00 3.454e+00 1.471e+00
f10 1.989e+01 6.327e+00 4.819e+00 3.642e+00 7.543e+00 4.528e+00
f11 3.868e+00 3.859e+00 6.588e+00 1.340e+00 3.529e+00 1.730e+00
f12 2.919e+04 7.054e+03 1.616e+04 6.334e+03 4.243e+03 5.001e+03
f13 1.194e+00 5.372e-01 8.465e-01 3.968e-01 6.904e-01 1.770e-01
f14 2.429e+00 5.255e-01 2.667e+00 5.991e-01 2.365e+00 5.792e-01

f6

30

7.522e+01 1.007e+02 1.716e+01 2.011e+01 6.602e+05 1.841e+06
f7 8.700e-03 5.920e-03 1.300e-02 7.589e-03 - -
f9 1.175e+00 2.044e+00 2.789e+01 6.498e+00 3.315e+01 7.072e+00
f10 1.850e+02 1.348e+01 1.187e+02 6.191e+01 5.556e+01 2.068e+01
f11 4.028e+01 1.676e+00 3.494e+01 2.674e+00 2.849e+01 3.897e+00
f12 1.129e+06 1.266e+05 9.219e+05 2.060e+05 2.941e+05 2.155e+05
f13 1.489e+01 1.497e+00 7.942e+00 4.688e+00 4.333e+00 7.852e-01
f14 1.334e+01 2.309e-01 1.325e+01 2.933e-01 1.245e+01 6.541e-01

f6

50

1.429e+02 2.023e+02 3.725e+01 4.515e+01 3.458e+07 4.913e+07
f7 3.000e-03 5.813e-03 9.867e-03 1.374e-02 - -
f9 1.282e+01 6.519e+00 4.232e+01 1.080e+01 7.047e+01 1.338e+01
f10 3.765e+02 1.520e+01 2.931e+02 8.820e+01 1.222e+02 2.553e+01
f11 7.393e+01 1.266e+00 6.744e+01 3.031e+00 5.778e+02 6.800e+00
f12 5.760e+06 3.738e+05 3.965e+06 1.259e+06 1.254e+05 1.167e+05
f13 3.057e+01 2.701e+00 1.696e+01 1.109e+01 9.327e+00 2.030e+00
f14 2.310e+01 2.551e-01 2.282e+01 3.451e-01 2.237e+01 4.455e-01

Table 6 Comparison between all the algorithms using the gbest model

Algorithm
Classical Functions CEC05 Functions Total Number

No. of Cases Best in No. of Cases Best in of Cases

PSO Bounds - - 15
f11, f12

15
f13, f14

EDA-PSO 7 - 5 f6 12

EDPSO 11
Rosenbrock

5 - 16
Ackley, Rastrigin

On the other hand, for the more difficult CEC05 benchmark functions
shown in Table 5, PSO Bounds has the best performance across the different
problem sizes.

Table 6 summarizes the comparison between all the algorithms based on
the results shown in Tables 4 and 5. The upper bound for the number of
cases is 15 (5 functions in 3 problem sizes) in the classical functions and 21
(7 functions in 3 problem sizes) in the CEC05 functions.

Please note that PSO Bounds is not applied for f7 as this function is not
bounded by a specified domain (the bounds shown in Table 3 are only used
as an initialization range).

PSO Bounds: A New Hybridization Technique of PSO and EDAs 521

0 20000 40000 60000 80000 100000
−5

0

5

10

15

20

25

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(a) f6 10

0 20000 40000 60000 80000 100000
0

5

10

15

20

25

30

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(b) f6 30

0 40000 80000 120000 160000 200000
0

5

10

15

20

25

30

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(c) f6 50

0 20000 40000 60000 80000 100000
1

1.5

2

2.5

3

3.5

4

4.5

5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(d) f9 10

0 20000 40000 60000 80000 100000
0

1

2

3

4

5

6

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(e) f9 30

0 40000 80000 120000 160000 200000
2

3

4

5

6

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(f) f9 50

Fig. 2 Convergence behavior of all the algorithms for the CEC05 functions

The convergence behavior shown in Figure 2 and Figure 3 illustrates that
PSO Bounds usually has a slow speed of convergence compared with the
other algorithms. It only has the fastest speed of convergence in both f6 and
f9 where it does not produce good results.

Convergence figures also show that both EDPSO and EDA-PSO have a
very similar behavior on most of the functions. This could be due to the fact
that both algorithms use the same Gaussian model for sampling the search
space.

6.3 Changing the Population Topology

In [18], the authors stated that “modern research performed using only
swarms with a global topology is incomplete at best”. For this reason, the ex-
periments are rerun again for all the algorithms using the lbest model. Table
7 and Table 8 show the obtained results.

The results show that PSO Bounds still has a deteriorated performance
in the classical functions while outperforming other algorithms on the more
difficult multimodal functions. This means that all the algorithms exhibit the
same performance compared to each other as in the case of using the gbest
model.

Table 9 summarizes the comparison between all the algorithms based on
the results shown in Tables 7 and 8. The results emphasize that the perfor-
mance of these algorithms (compared to each other) is the same regardless
of the underlying population topology.

522 M. El-Abd and M.S. Kamel

0 20000 40000 60000 80000 100000
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(a) f10 10

0 20000 40000 60000 80000 100000
3.5

4

4.5

5

5.5

6

6.5

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(b) f10 30

0 40000 80000 120000 160000 200000
4.5

5

5.5

6

6.5

7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(c) f10 50

0 20000 40000 60000 80000 100000
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(d) f11 10

0 20000 40000 60000 80000 100000
3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(e) f11 30

0 1000 2000 3000 4000 5000
4

4.1

4.2

4.3

4.4

4.5

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(f) f11 50

0 20000 40000 60000 80000 100000
8

9

10

11

12

13

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(g) f12 10

0 20000 40000 60000 80000 100000
12.5

13

13.5

14

14.5

15

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(h) f12 30

0 40000 80000 120000 160000 200000
11

12

13

14

15

16

17

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(i) f12 50

0 20000 40000 60000 80000 100000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(j) f13 10

0 20000 40000 60000 80000 100000
1

2

3

4

5

6

7

8

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(k) f13 30

0 1000 2000 3000 4000 5000
2

3

4

5

6

7

8

9

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(l) f13 50

0 20000 40000 60000 80000 100000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(m) f14 10

0 20000 40000 60000 80000 100000
2.5

2.55

2.6

2.65

2.7

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(n) f14 30

0 40000 80000 120000 160000 200000
3.1

3.12

3.14

3.16

3.18

3.2

3.22

Function Evaluations

lo
g(

f(
x)

−
f(

x*
))

EDPSO
EDA−PSO
PSO_Bounds

(o) f14 50

Fig. 3 Convergence behavior of all the algorithms for the CEC05 functions, contd

PSO Bounds: A New Hybridization Technique of PSO and EDAs 523

Table 7 Results of all the algorithms using the lbest model for the classical
functions

Function Dim.
EDPSO L EDA-PSO L PSO Bounds L

Mean Std. Mean Std. Mean Std.

Spherical

10

0 0 3.850e-267 0 3.194e-17 1.722e-16
Rosenbrock 4.019e-03 5.097e-03 1.029e-01 5.276e-02 2.390e-01 1.781e-01
Griewank 1.682e-02 1.194e-02 4.959e-03 7.767e-03 4.881e-02 1.517e-02
Ackley 5.887e-15 2.006e-31 1.268e+00 2.258e-16 5.037e-11 9.260e-11

Rastrigin 3.118e+00 1.5180e+00 3.263e+00 1.885e+00 3.798e+00 1.444e+00

Spherical

30

6.031e-94 3.205e-95 7.020e-141 9.280e-141 5.183e-01 1.811
Rosenbrock 1.076e+00 1.779e-01 1.742e+00 2.524e+00 1.085e+01 3.416e+00
Griewank 2.052e-03 4.970e-03 3.288e-02 1.801e-03 7.657e-02 8.055e-02
Ackley 4.141e-015 0 1.586 3.651e-16 6.166e-01 7.217e-01

Rastrigin 1.523e+01 3.999e+00 4.472e+01 3.057e+01 4.192e+01 7.900e+00

Spherical

50

3.055e-82 1.256e-81 3.700e-11 2.026-10 14.233 33.711
Rosenbrock 2.104e+00 2.490e-01 6.237e+00 1.035e+01 2.356e+01 4.209e+00
Griewank 1.232e-03 3.284e-03 2.919e-03 1.465e-02 6.929e-01 3.780e-01
Ackley 6.865e-15 1.528e-15 1.641e+00 2.258e-16 2.200e+00 6.118e-01

Rastrigin 3.270e+01 7.202e+00 7.481e+01 5.061e+01 9.140e+01 1.469e+01

Table 8 Results of all the algorithms using the lbest model for the CEC05 bench-
mark functions

Function Dim.
EDPSO L EDA-PSO L PSO Bounds L

Mean Std. Mean Std. Mean Std.

f6

10

6.554e+00 1.936e+01 2.092e-01 7.899e-01 1.497e+01 25.785
f9 2.919e+00 1.566e+00 3.310e+00 1.259e+00 8.025e-01 9.603e-01
f10 1.946e+01 6.939e+00 1.105e+01 5.716e+00 6.712e+00 3.003e+00
f11 7.292e+00 3.473e+00 6.196e+00 8.1308e-1 4.480e+00 1.027e+00
f12 2.729e+04 7.468e+03 1.877e+04 6.712e+3 6.535e+03 2.841e+03
f13 1.435e00 4.549e-01 1.224e+00 3.724e-01 6.422e-01 1.390e-01
f14 2.204e+00 5.145e-01 2.910e+00 2.684e-01 2.777e+00 3.261e-01

f6

30

8.592e+01 1.305e+02 7.063e+01 4.586e+01 8.883e+03 3.632e+04
f9 1.605e+01 5.372e+00 4.208e+01 2.742e+01 2.536e+01 4.694e+00
f10 1.778e+02 9.953e+00 1.608e+02 1.719e+01 1.384e+02 1.864e+01
f11 4.043e+01 1.148e+00 3.641e+01 2.107e+00 3.163e+01 2.479e+00
f12 1.140e+06 1.148e+05 9.571e+05 1.696e+05 4.978e+05 1.443e+05
f13 1.447e+01 1.328e+00 1.156e+01 2.639e+00 4.755e+00 9.558e-01
f14 1.347e+01 1.873e-01 1.327e+01 2.282e-01 1.302e+01 2.674e-01

f6

50

6.550e+01 5.446e+01 6.789e+01 4.228e+01 1.967e+06 1.012e+07
f9 3.250e+01 6.450e+01 5.334e+01 2.326e+01 5.547e+01 9.813e+00
f10 3.629e+02 1.624e+01 3.359e+02 1.660e+01 2.879e+02 4.048e+01
f11 7.381e+01 1.911e+00 6.926e+01 2.552e+00 6.184e+01 4.231e+00
f12 5.631e+06 4.676e+05 4.725e+06 5.695e+05 1.896e+06 3.675e+05
f13 2.738e+01 4.029e+00 2.446e+01 4.217e+00 1.062e+01 2.183e+00
f14 2.316e+01 1.693e-01 2.292e+01 2.184e-01 2.261e+01 2.103e-01

524 M. El-Abd and M.S. Kamel

Table 9 Comparison between all the algorithms using the lbest model

Algorithm
Classical Functions CEC05 Functions Total Number

No. of Cases Best in No. of Cases Best in of Cases

PSO Bounds 2 - 16
f10, f11

18
f12, f13

EDA-PSO 7 Spherical 5 f6 12

EDPSO 14
Spherical, Rosenbrock

6 - 20
Ackley, Rastrigin

7 Conclusion and Discussion

This chapter gives a brief introduction to Particle Swarm Optimization and
Estimation of Distribution Algorithms (EDAs). The chapter surveys the dif-
ferent methods previously adopted to combine PSO and EDAs.

The chapter introduces a new algorithm, PSO Bounds, which is a PSO
algorithm that borrows ideas from PBIL. The new algorithm uses the same
equations of motion as PSO while using the current distribution of the par-
ticles during the search to continuously update the allowable search domain.

Along with the proposed algorithm, all the approaches covered are imple-
mented and compared using a suite of well-known benchmark optimization
functions with different properties. It is shown that PSO Bounds outperforms
other PSO and EDAs hybridization techniques on the more difficult shifted
and/or rotated multimodal functions. It is also shown that the new proposed
algorithm has in general a slower speed of convergence when compared to
other algorithms.

Moreover, the relative performance of all the algorithms is shown to
be independent of the underlying population topology used by the PSO
component.

Many future directions could be followed to further improve on the perfor-
mance of such algorithms. The deteriorated performance of PSO Bounds in
some functions could be due to the fact that the width of the allowable do-
main for the different dimensions becomes smaller and smaller as the search
progresses. It would eventually get to the point of being very close to zero (or
zero, even). Once this happens, the particles will stop moving as the allow-
able movement domain for the particles is very small as well as the allowable
maximum velocity, hence, the search stagnates. One way to improve this is
to re-initialize those domains again, by re-setting them to the initial search
ranges, if the width drops under a pre-determined threshold.

A similar approach could be adopted for EDA-PSO by re-initializing the
current positions of the particles, while keeping their pbests values as they
are so as not to lose any useful information, if the value of σ drops under a
pre-determined threshold during the search.

A different research direction is to incorporate PSO with probabilistic mod-
els that allow inter-variable dependencies. All the hybridization techniques

PSO Bounds: A New Hybridization Technique of PSO and EDAs 525

proposed up-to-date, including the one in this chapter, use probabilistic mod-
els that assume that the problem variables are independent.

References

1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

2. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory.
In: Proc. of the 6th International Symposium on Micro Machine and Human
Science, pp. 39–43 (1995)

3. Larranaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New
Tool for Evolutionary Computation. Kluwer, Dordrecht (2002)

4. Baluja, S.: Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning. School
of Computer Science, Carnegie Mellon University, Tech. Rep. CMU-CS-94-163
(1994)

5. Iqbal, M., de Oca, M.A.M.: An estimation of distribution particle swarm opti-
mization algorithm. In: Dorigo, M., Gambardella, L.M., Birattari, M., Marti-
noli, A., Poli, R., Stützle, T. (eds.) Proc. of the Fifth International Workshop
on Ant Colony Optimization and Swarm Intelligence, pp. 72–83 (2006)

6. Zhou, Y., Jin, J.: Eda-pso - a new hybrid intelligent optimization algorithm.
In: Proc. of the Michigan University Graduate Student Symposium (2006)

7. Eberhart, R.C., Simpson, P., Dobbins, R.: Computational Intelligence.PC
Tools: Academic, ch. 6, pp. 212–226 (1996)

8. Kennedy, J., Mendes, R.: Population structure and particle swarm performance.
In: Proc. of IEEE Congress on Evolutionary Computation, vol. 2, pp. 1671–1676
(2002)

9. Rudolph, S., Koppen, M.: Stochastic hill climbing with learning by vectors of
normal distributions. In: First on-line Workshop on Soft Computing (WSC1),
pp. 60–70 (1996)

10. Servet, I., Trave-Massuyes, L., Stern, D.: Telephone network traffic overloading
diagnosis and evolutionary computation technique. In: Hao, J.-K., Lutton, E.,
Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp.
137–144. Springer, Heidelberg (1998)

11. Sebag, M., Ducoulombier, A.: Extending population-based incremental learning
to continuous search spaces. In: Proc. of Parallel Problem Solving from Nature,
pp. 418–427 (1999)

12. Gallagher, M., Frean, M., Downs, T.: Real-valued evolutionary optimization
using a flexible probability density estimator. In: Proc. of Genetic and Evolu-
tionary Computation Conference, vol. 1, pp. 840–846 (1999)

13. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by build-
ing and using probabilistic models. Computational Optimization and Applica-
tions 21(1), 5–20 (2002)

14. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Uni-
versitie Libre de Bruxelles, Tech. Rep. TR/IRIDIA/2005-037 (2005)

15. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Euro-
pean Journal of Operationl Research 185(3), 1155–1173 (2008)

526 M. El-Abd and M.S. Kamel

16. CEC05 benchmark functions,
http://staffx.webstore.ntu.edu.sg/MySite/

Public.aspx?accountname=epnsugan

17. delaOssa, L., Gamez, J., Puerta, J.: Initial approaches to the application of
island-based parallel edas in continuous domains. Journal of Parallel and Dis-
tributed Computing 66(8), 991–1001 (2006)

18. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization.
In: Proc. IEEE Swarm Intelligence Symposium, pp. 120–127 (2007)

Author Index

Abdelsalam, Hisham M.E. 461
Abraham, Ajith 23, 101, 291
Arafa, Mona M. 479
Avdagić, Zikrija 267

Baragona, Roberto 347
Baron, Claude 387
Battaglia, Francesco 347
Biswas, Arijit 23

Cafieri, Sonia 153
Chelouah, Rachid 387

Das, Swagatam 23
Dasgupta, Sambarta 23
Dumitrescu, D. 315

El-Abd, Mohammed 509
El-Darzi, Elia 315

Festa, Paola 75

Geem, Zong Woo 57
Goldbarg, Elizabeth F. Gouvêa 425
Goldbarg, Marco C. 425
Gutierrez, Citlalih 387

Habet, Djamal 129

Kamel, Mohamed S. 509
Konjicija, Samim 267
Krömer, Pavel 3

Liberti, Leo 153
Liu, Hongbo 291

Omanović, Samir 267
Omara, Fatma A. 479
Ouddane, Nabil 3

Pant, Millie 101
Platoš, Jan 3
Preuss, Mike 315

Resende, Mauricio G.C. 75

Shcherbina, Oleg 235
Snášel, Václav 3
Stoean, Catalin 315
Stoean, Ruxandra 315

Tarissan, Fabien 153
Thangaraj, Radha 101

Zholghadri, Marc 387

	Title Page
	Preface
	Contents
	Part I Global Optimization Algorithms: Theoretical Foundations and Perspectives
	Genetic Algorithms for the Use in Combinatorial Problems
	Introduction
	Evolutionary Optimization
	{\it Evolutionary Search Process}
	{\it Genetic Operators}
	{\it Genetic Algorithms}

	Crossover Challenging Problems
	{\it The Role of Crossover in GA}
	{\it Traditional Approaches to Crossover Challenging Tasks}

	Turbo Codes
	{\it Interleaver Evaluation}

	Genetic Algorithms for Linear Ordering Problem
	{\it Higher Level Chromosome Genetic Algorithms}

	HLCGAExperiments
	{\it Fitness Function Based on Average BER}
	{\it Fitness Function Based on Maximum Free Distance}

	Conclusions
	References

	Bacterial Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and Applications
	Introduction
	The Bacteria Foraging Optimization Algorithm
	Analysis of the Chemotactic Dynamics in BFOA
	{\it Derivation of Expression for Velocity}
	{\it Experimental Verification of Expression for Velocity}
	{\it Chemotaxis and the Classical Gradient Decent Search}
	{\it Oscillation Problem: Need for Adaptive Chemotaxis}
	{\it A Special Case}

	Analysis of the Reproduction Step in BFOA
	{\it Analytical Treatment}
	{\it Physical Significance}
	{\it Avoiding Premature Convergence}

	Hybridization of BFOA with Other Approaches
	Applications of BFOA
	Conclusions
	References

	Global Optimization Using Harmony Search: Theoretical Foundations and Applications
	Introduction
	Harmony Search Algorithm
	{\it Problem Formulation}
	{\it Initialization of Harmony Memory}
	{\it Improvisation of New Harmony}
	{\it Stochastic Derivative}
	{\it Optional Operations}
	{\it Update of Harmony Memory}
	{\it Termination of Computation}
	{\it Pseudo Code of the Algorithm}

	Examples of Global Optimization
	{\it Design of Water Distribution Networks}
	{\it Scheduling of Multiple Dams}
	{\it Layout of Fluid-Transport Branched Pipelines}

	Conclusions
	References

	Hybrid GRASP Heuristics
	Introduction
	ABasicGRASP
	Hybrid Construction Mechanisms
	GRASP and Path-Relinking
	GRASP and Other Metaheuristics
	{\it GRASP and Tabu Search}
	{\it GRASP and Simulated Annealing}
	{\it GRASP, Genetic Algorithms, and Population-Based Heuristics}
	{\it GRASP and Variable Neighborhood Search}
	{\it GRASP and Iterated Local Search}
	{\it GRASP and Very-Large Scale Neighborhood Search}
	{\it Other Hybridizations}

	Concluding Remarks
	References

	Particle Swarm Optimization: Performance Tuning and Empirical Analysis
	Introduction
	Particle Swarm Optimization
	Modified Version of Particle Swarm Optimization
	{\it Efficient Initialization Particle Swarm Optimization}
	{\it Diversity Guided Particle Swarm Optimization}
	{\it Crossover Based Particle Swarm Optimization}

	Numerical Problems
	{\it Benchmark Problems}
	{\it Real Life Problems}

	Experimental Settings
	Numerical Results
	Conclusions
	References

	Tabu Search to Solve Real-Life Combinatorial Optimization Problems: A Case of Study
	Introduction
	Tabu Search Principles
	AEOSProblem
	A Tabu Search Algorithm for AEOS Problem
	{\it Search Space Definition}
	{\it Neighborhood Definition}
	{\it Tabu List Management and Move Heuristic}
	{\it Intensification and Diversification Phases}
	{\it Global Tabu Resolution}

	Computational Results
	Conclusion
	References

	Reformulations in Mathematical Programming: A Computational Approach
	Introduction
	General Framework
	{\it A Data Structure for Mathematical Programming Formulations}
	{\it A Data Structure for Mathematical Expressions}
	{\it Standard Forms in Mathematical Programming}

	Reformulations
	{\it Reformulation Definitions}
	{\it Elementary Reformulations}
	{\it Exact Linearizations}
	{\it Advanced Reformulations}
	{\it Advanced Examples}

	Relaxations
	{\it Definitions}
	{\it Elementary Relaxations}
	{\it Advanced Relaxations}
	{\it Valid Cuts}

	Reformulation/Optimization Software Engine
	{\it Development History}
	{\it Software Architecture}
	{\it Ev3}
	{\it Validation Examples}

	Conclusion
	References

	Graph-Based Local Elimination Algorithms in Discrete Optimization
	Introduction
	Local Elimination Algorithms for Solving Discrete Problems
	Discrete Optimization Problems and Their Graph Representations
	{\it Notions and Definitions}

	Local Variable Elimination Algorithms in Discrete Optimization
	{\it Nonserial Dynamic Programming and Classification of DP Formulations}
	{\it Discrete Optimization Problem with Constraints}
	{\it Elimination Game, Combinatorial Elimination Process, and Underlying DAG of the LAE Computational Procedure}
	{\it Bucket Elimination}

	Block Local Elimination Scheme
	{\it Partitions, Clustering, and Quotient Graphs}

	Tree Structural Decompositions in Discrete Optimization
	{\it Tree Decomposition and Methods of Its Computing}
	{\it Computing Tree Decompositions for NSDP Schemes}
	{\it Applying the Local Decomposition Algorithm to Solving Do Problem}

	Conclusion
	References

	Evolutionary Approach to Solving Non-stationary Dynamic Multi-Objective Problems
	Introduction
	General Optimization Problem
	Dynamic Multi-Objective Problem Defined on a Class of Test Functions
	{\it Dynamic Multi-Objective Test Problem}
	{\it Non-stationary Multi-objective Test Problem}

	Conclusion and Future Works
	References

	Turbulent Particle Swarm Optimization Using Fuzzy Parameter Tuning
	Introduction
	Particle Swarm Optimization
	{\it Standard Particle Swarm Model}
	{\it Velocities Analysis in Particle Swarm}

	Turbulent Swarm Optimization
	{\it Velocity Update of the Particles}
	{\it Fuzzy Parameter Control}

	Convergence Analysis of TPSO
	Experiments and Discussions
	Conclusions
	References

	Part II Global Optimization Algorithms: Applications
	An Evolutionary Approximation for the Coefficients of Decision Functions within a Support Vector Machine Learning Strategy
	Introduction
	The SVM Learning Scheme
	{\it A Viewpoint on Learning}
	{\it SVM Separating Hyperplanes}
	{\it Addressing Multi-class Problems through SVMs}
	{\it SVM Regression Hyperplanes}
	{\it Solving the Optimization Problem within SVMs}

	Evolutionary Adaptation of the Hyperplane Coefficients to the Training Data
	{\it Motivation and Aim}
	{\it Literature Review: Previous EA-SVM Interactions}
	{\it Evolving the Coefficients of the Hyperplane}
	{\it Preexperimental Planning: The Test Cases}

	DiscoveringESVMs
	{\it A Na\"{ı}ve Design}
	{\it Chunking within ESVMs}
	{\it A Pruned Variant}
	{\it A Crowding Variant}
	{\it Integration of SVM Hyperparameters}
	{\it ESVMs Versus SVMs}

	Conclusions and Outlook
	References

	Evolutionary Computing in Statistical Data Analysis
	Introduction
	GAs and EDAs Implementations
	{\it The GAs Procedure}
	{\it The EDAs Procedure}

	Variable Selection in Linear Regression and ARMA Models
	{\it Subset Regression}
	{\it Autoregressive Moving Average Models}
	{\it An Example of Subset ARMA Fitted to a Real Data Set}

	The Logistic Regression Model
	Multi-regimes Model Parameter Estimation
	{\it The Exponential Autoregressive Model}
	{\it The Generalized EXPAR Model}
	{\it Threshold Autoregressive Models}
	{\it Double Threshold ARCH and GARCH Models}
	{\it An Application to the Daily Hong Kong Stock Exchange (Hang Seng) Index}
	{\it An Application to the Daily Exchange Rate Yen/Dollar}

	Multiple Outliers in Data Sets
	{\it The Outlier Problem in Time Series}
	{\it Genetic Algorithms for Outlier Detection in Time Series}

	Genetic Algorithms for Cluster Analysis
	{\it Genetic Clustering Algorithms}
	{\it Cluster of Time Series}

	Concluding Remarks
	References

	Meta-heuristics for System Design Engineering
	Introduction
	The Multi-process Point of View of the Ieee 15288 and Eia 632 Standards
	{\it The IEEE Standard}
	{\it The EIA 632 Standard}

	Towards a Close Collaboration between System Design, Technical Management and Acquisition, and Supply Processes
	{\it Modeling Proposition for the System Design Process}
	{\it Mapping of the System Design Process with the Technical Management Process}
	{\it Mapping with the Design of Network of Partners}

	Generation and Selection of the Scenarios
	{\it Generic Representation of Scenarios}
	{\it Searching for "Good" Scenarios}
	{\it Hybrid Methods to Select the Best Scenarios}
	{\it Setting Up the Algorithm}
	{\it Detailed Description of the Hybrid Algorithm with Ant Colony Optimization}
	{\it Detailed Description of the Hybrid Algorithm}
	{\it Intensification}
	{\it Stopping Criterion}
	{\it Classification of the Found Scenarios}

	Experimental Results
	{\it Measure of Quality}
	{\it Interpretation of Our Results}

	Conclusion
	References

	Transgenetic Algorithm: A New Endosymbiotic Approach for Evolutionary Algorithms
	Introduction
	Biological Fundamentals
	Evolutionary Algorithms Based on Correlated Biological Concepts
	Transgenetic Algorithms
	{\it Basic Components of the Transgenetic Algorithms}
	{\it The Traveling Salesman Problem: A Didactic Example}

	Application to the Traveling Purchaser Problem
	Application to the Bi-objective Minimum Spanning Tree
	Peculiarities of the Transgenetic Algorithms
	Conclusions and Future Works
	References

	Multi-objective Team Forming Optimization for Integrated Product Development Projects
	Introduction
	Related Work
	Myers-Briggs Type Indicator (MBTI)
	Problem Description
	{\it Context}
	{\it Personnel Characteristics}
	{\it Project Requirements}
	{\it Objectives}

	ModelFormulation
	Solution Algorithm
	{\it Multi-Objective Particle Swarm Optimization (MOPSO)}
	{\it Particle Definition}
	{\it Initialization}
	{\it Fitness Calculation}
	{\it Generating New Solutions}
	{\it Convergence}
	{\it Feasibility}
	{\it Detailed Computational Flow}

	Illustrative Example
	Conclusions
	References

	Genetic Algorithms for Task Scheduling Problem
	Introduction
	Task Scheduling Problem Model
	The Developed Genetic Algorithms
	{\it Standard Genetic Algorithm - SGA}

	The Critical Path Genetic Algorithm (CPGA)
	The Task Duplication Genetic Algorithm (TDGA)
	Comparative Study and Performance Evaluation
	{\it The Developed CPGA Evaluation}
	{\it The Developed TDGA Evaluation}

	Conclusion
	References

	PSO_Bounds: A New Hybridization Technique of PSO and EDAs
	Introduction
	Particle Swarm Optimization
	Estimation of Distribution Algorithms
	PSO Based on Probabilistic Models
	{\it EDPSO}
	{\it EDA-PSO}

	PSO with Varying Bounds
	Results and Discussions
	{\it Experimental Settings}
	{\it Experimental Results}
	{\it Changing the Population Topology}

	Conclusion and Discussion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

