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Abstract. In this article we present a methodological framework
entitled ‘Analysis of Uncertainty and Robustness in Evolutionary Op-
timization’ or AUREO for short. This methodology was developed as
a diagnosis tool to analyze the characteristics of the decision-making
problems to be solved with Multi-Objective Evolutionary Algorithms
(MOEA) in order to: 1) determine the mathematical program that rep-
resents best the current problem in terms of the available information,
and 2) to help the design or adaptation of the MOEA meant to solve the
mathematical program. Regarding the first point, the different versions
of decision-making problems in the presence of uncertainty are reduced
to a few classes, while for the second point possible configurations of
MOEA are suggested in terms of the type of uncertainty and the theory
used to represent it. Finally, the AUREO has been introduced and tested
successfully in different applications in [1].

1 Introduction

In this article we are concerned about the use Multiple Objective Evolutionary
Algorithms (MOEA)1 in Multiple-Criterion Decision-Making (MCDM) under
uncertainty.

By MCDM we mean the process of selecting a final alternative from a group
of more than one solving actions to a problematic (e.g. choice, sorting, ranking)
within a common quality framework made up of various figures of merit called
criteria, established by an entity called decision maker (DM). No matter what the
problematic is, a rational DM is expected to maximize its level of satisfaction by
choosing the alternative that scores best in terms of the criteria. Mathematically,
we model it as a program of the form2:

x∗ = arg maxx

(
F (x) = (f1(x), f2(x), . . . , fk(x))t

)

s.t.: x ∈ Ω
Ω = {x ∈ X : G(x) ≤ 0 , H(x) = 0}

(1)

1 Acronyms for singular and plural forms are spelled the same hereafter.
2 With no loss of generality, optimality is expressed in terms of maximization hereafter.
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where F : X → Y is a vector of criteria fi : R
n → R that map a vector of

n decision variables x = (x1, x2, . . . , xn)t (called also decision vector or simply
alternative) from the decision space X, into a k-dimensional objective vector
y = (y1, y2, . . . , yk)t in the objective space Y ⊆ R

k, k ∈ N. Additionally, the
feasible space Ω is defined by two vectors G(x) and H(x) of inequality and
equality constraints respectively.

Such a kind of problems are characterized by some conflict amongst the crite-
ria, so that the set of alternatives cannot be arranged as a total order regarding
their quality. Consequently, eq. 1 is not satisfied by a unique alternative but a
subset of them called efficient or non-dominated. Typically the relation used for
classifying the alternatives is the Pareto dominance, viz.:

Definition 1 (Pareto Dominance). x1 dominates x2, denoted x1 � x2 , iff
fi(x1) ≥ fi(x2) ∧ F (x1) 	= F (x2); i ∈ {1, 2, . . . , k}. If there is no solution
dominating x1, then x1 is called non-dominated.

In order to solve MCDM problems, MOEA are often used to approximate the set
of non-dominated solutions. As a subclass of Evolutionary Algorithms, MOEA
are searching methods based upon a population sequential sampling process
ruled by heuristics. Such heuristics can be implemented in any fashion but in
general they find inspiration in some natural processes (like mating and sur-
vival -Genetic Algorithms-, foraging -Ant colonies-, flocking -PSO) as well as
mathematic (Differential Evolution) and thermodynamic (Simulated Annealing)
principles.

Regardless of the final form given to their instances, all of the MOEA share a
common principle of evolving towards a higher level of global fitness as iterations
go on. In general MOEA associate fitness with Pareto optimality and approxi-
mation sets with spatial even distributions. In practice it is possible by defining
a ranking procedure concerned by optimality and density built upon some fitness
expression which turns out to be function of the mathematical model of eq. 1.
Needless to say that, if F (x) cannot be properly assessed as it happens in the
presence of uncertainty, the very foundation of the operation of MOEA could be
seriously compromised.

As we shall see later on, several algorithms have been proposed to operate
under uncertainty. Regardless the computational efficiency of such existing ap-
proaches or any other one to come, the variety of sources, types and targets of
uncertainty as well as the current theoretical frameworks to represent it, hinders
the ability of MOEA designers to develop approaches valid for a wide range of
situations. In response, we propose an analytical methodology called Analysis
of Uncertainty and Robustness in Evolutionary Optimization or AUREO that
allows one to study how to use MOEA in MCDM problems under uncertainty
from a broad view. First the effort is oriented towards finding the mathematical
formulation that suits best the decision-making problem regarding the charac-
teristics of the uncertainty involved, while later on the analysis focuses on the
structure of the MOEA propounded as solving technique, according to the char-
acteristics of the problem formulated beforehand and on its efficiency. The benefit
of doing so is double. On the one hand, having uncertainty in MCDM problems
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does not necessarily imply that the MOEA have to cope with uncertainty. We
argue that the definitive element to decide whether the MOEA actually have
to is the available information. On the other hand, in the case of dealing with
uncertainty, to make a device of the structural requirements of the MOEA in
terms of uncertainty handling helps one select amongst the existing instances or
design new ones.

The remainder of the article is organized as follows: the next section introduces
some problems raised by uncertainty and the possible reasonings available to deal
with it. Section 3 brings the methodology proposed with some examples while
section 4 gives some concluding remarks.

2 Accounting for Uncertainty in Decision-Making

In this section we give a glance at the notion of uncertainty, its relation with the
decision-making and the existing views and reasonings about it.

The term uncertainty is understood in different ways, all of them related to de-
fects of knowledge and information (for further insight see [2]). We adopt the full
identification of uncertainty with imperfection of information, data or evidence
herein. When the lack of information is originated by the inherent variability of
physical systems and thus it cannot be reduced by further empirical efforts we
say the uncertainty is aleatory. By contrast when the actual state of uncertainty
is reducible by additional information of the system or its environment we call it
epistemic uncertainty. A mixed aleatory-epistemic uncertainty is also possible.

To account for the effect of uncertainty in decision-making, consider the differ-
ent scenarios depicted in fig. 1. The first target of our uncertainty analysis is the
domain. This one can be subject to aleatory (case 1), epistemic (case 3) or mixed
uncertainty (not depicted). In all of these cases the uncertainty associated to x
should be propagated through F (x) onto space Y. If F (x) is free of uncertainty,
the propagation of epistemic uncertainty will yield epistemic objective vectors
y (trajectory 1-3-5). In this case both the decision and objective vectors will
be characterized by bounding sets (usually an interval) enclosing the true but
unknown values. Likewise the propagation of aleatory decision vectors through a
function free of uncertainty will yield objective vectors that actually are random
variables (trajectory 3-6-9). On the other hand, the second target of the uncer-
tainty analysis is the function. Indeed, F (x) can be intrinsically uncertain (e.g.
noisy or dynamic functions) or the way we assess it can be subject of aleatory
(e.g. Monte Carlo simulation) or epistemic uncertainty (e.g. interval approxi-
mation), although the functional expression is deterministic. In such a case the
result will be uncertain no matter if the input is (trajectories {1,3},5,{7,8,9}) or
not (trajectories 2,5,{7,9}) uncertain. Notice that we can have objective vectors
y subject to mixed uncertainty, i.e. the result is a set of possible sets of outcomes.

As we just have seen, whether it is epistemic, aleatory or mixed, the presence of
uncertainty always entails comparing sets of objective instead of precise vectors.
Consequently, one of the challenges risen to decision-making is how to compare
and classify alternatives in terms of sets comparisons. We shall consider next the
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Fig. 1. Effect of Uncertainty in Decision-Making: labels (a,b) indicate the index a and
the type of uncertainty b of each element. Uncertainty types are denoted by N (none),
A (aleatory), E (epistemic) and M (mixed). Possible scenarios are denoted by different
arrow types.

different theoretical frameworks for representing uncertainty and how they can
influence decision-making and MOEA design.

2.1 Reasoning about Uncertainty

Theories about uncertainty provide us with logical frameworks to make state-
ments about uncertain quantities. The basic principle that underpins the reason-
ing about uncertainty is that there is a set called universe of discourse denoted
by X herein, that contains all the possible and pertinent states that an un-
certain quantity can adopt. For instance, when we define x with an interval,
we intrinsically state that, in principle, the evidence shows that all the values
contained by the latter might be adopted by the former. Axioms and logic deriva-
tions formulated afterwards about the universe of discourse define the theoretical
frameworks.

If X is continuous we can define it as an interval. Now if our uncertain decision
vectors can be treated as intervals, we can use Interval Arithmetic to propagate
x though F (x) to assess y. Regardless the nature of the uncertainty, the resulting
interval is expected to bound the true value(s) of x. On the other hand, if one
has more information about the nature of the uncertainty at her disposal, one
should use it.
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Fig. 2. Elements of the main theories for represetning uncertainty

Fig. 2 sketches some relevant elements of the main theories about uncer-
tainty. In classical probability theory every element of the universe of discourse
is assigned a probability. The relation between discrete domains and probabil-
ities are captured by probability mass functions while the probability density
function (PDF) are used with continuous domains. In both cases, it is possible
characterize tendencies of variation within the universe of discourse by some
symmetry axis of such variation (expected value) or its size (variance) amongst
other things. It is also possible to assess the probability of the uncertain quantity
adopting values within a set (like P (X ≤ x)): this is expressed as a cumulative
probability distribution (CFD).

Sometimes X is roughly or ill defined, as when one says ‘it’s cold ’ and we know
that ‘cold’ has different meanings according to the person who says it. This
kind of uncertainty appears in natural language or when one handles blurred
concepts (e.g. when defining the DM’s preferences). In this case X is described
by a membership functions that assigns numbers in [0,1] where 0 means the
argument is not contained in the set and 1 the opposite. For insight into fuzzy
logic see [3].

We can also extend the previous concept to talk about ‘the possibility’ of an
event, using a bivalent logic (it is or not possible) or a graded logic captured
by possibility distributions, which are in deep connection with the notion of
probability, although saying that something is possible is different than saying it
is probable. Possibility Theory provides therefore a non-probabilistic framework
to represent epistemic uncertainty.

One of the shortcomings of classical probability is that it is not suitable for
representing epistemic or mixed uncertainty. For instance, having limited evi-
dence, an agent could make imprecise statements like ‘the probability of x is in
[0.3, 0.5]’ or ‘vector x follows a normal PDF with mean in [3.26, 4.5] and variance
in [0.82, 0.97]. Statements of the such can be captured by p-boxes e.g. saying that
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every CDF within the p-box is a possible representation for the actual aleatory
uncertainty, whereas the epistemic uncertainty is captured by the fact that we
don’t actually know the true PDF. Dempster-Shafer Theory [4], Walley’s Theory
[5] or p-boxes [4] support theoretically this kind of approaches.

Table 1 summarizes the main elements of such approaches. From a practical
viewpoint the relevant issue is that the theoretical frameworks mentioned previ-
ously are best used in certain situations as they cover distinct types and sources
of uncertainty. Besides, all of them prescribe propagation methods, which means
that in the plausible case of having uncertain domains represented by one of the
theories mentioned so far, the outputs and therefore the ranking of alternatives
within the MOEA will also be related to such theory.

Table 1. Some relevant elements of theories about uncertainty

Theory Accounts for Especially
suitable for

Propagation
method

Notable elements

Fuzzy logic Graded membership of
elements to sets

Linguistic epistemic
uncertainty

Extension principle Membership functions, core
and support sets

Possibility Binary or graded
membership of elements
to sets

Epistemic uncertainty Choquet integrals and
extension principle

Possibility distributions,
possibility and necessity
measures

Classical
Probability

Likelihood of events Aleatory uncertainty Convolution and Monte
Carlo simulation

PDF, percentiles, mean,
variance and higher
moments

Imprecise
Probability

Imprecise probabilities
and subjective
judgements on sets

Epistemic and aleatory
uncertainty

Convolution and Monte
Carlo simulation

Belief and plausibility
measures. Intervals for
distributions and moments

3 Analysis of Uncertain and Robustness in Evolutionary
Optimization (AUREO)

In this section we describe a two-stage methodology for the ‘Analysis of Un-
certain and Robustness in Evolutionary Optimization’ (AUREO). The basic
premise of this framework is that the analysis of the available information about
a problem subject to uncertainty (fig. 3) determines the solving program (stage
1) and the MOEA structure (stage 2).

Consider a refined mathematical program based on eq. 1. Let F (x,p) repre-
sents the DM’s criteria in a free-of-uncertainty scenario in terms of the objective
vector x and a vector of environmental parameters p. As discussed in sec. 2
uncertainty may come up as lack of information about the variables x and p.
Besides the environmental parameters in p are often subject to change in real
world. The assessment of F (·) might be a source of uncertainty as well. The
first stage of AUREO, summarized in fig. 3, focuses therefore on the form of the
MCDM problem considering the existing uncertainties.

If the model is accepted to be adequate the attention centres on the input
vectors x and p. If such vectors are free of uncertainty, no action is required,
otherwise the analyst should ask about the type of such uncertainty and further
investigate the best theory to represent it. Immediately the attention focuses on
the outcomes of F (x,p) to find out if the fi(x,p) are dynamic functions or if
they will be assessed through surrogate or approximate models.
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1. Analyze the model:

�p ∈ P

�x ∈ X

X ⊆ R
n

�y ∈ Y

Y ⊆ R
k

F (x, p)

1.1. Check for model adequacy.

1.2. Consider characteristics of the domain and objective functions.

2. Check for uncertain objective functions:

�
p

�x �y

U(y)
F (x, p)

2.1. Do many evaluations of the same argument produce different outcomes?

2.2. Is F (x, p) a dynamic or stochastic function?

2.3. How is F (x, p) to be evaluated (surrogate model, approximation, simulation)?

2.4. Is the cardinality of Y ⊆ Y reducible to the unit?

3. Check for input uncertainties:

�U(p)

�U(x) �y ∈ Y
F (x, p)

3.1. Is x subject to uncertainty (U(x))? If so, what type?

3.2. Are the environmental parameters p subject to change (U(p))?

3.3. Is the objective function sensitive to uncertain inputs (U(y))?

Fig. 3. AUREO Stage 1: Analysis of interactions between model and uncertainties

Once this analysis is ready, the original MCDM problem can be transformed
into a new one based on new criteria defined in terms of the -possibly uncertain-
input (x,p), the original criteria F (x,p), the uncertain outcome y and the the-
ory employed to represent the uncertainty. For the sake of generality, let x be
a nominal vector denoting a precise alternative and let U(x) denotes the uncer-
tainty associated to x, i.e. the universe of discourse and other particular elements
related to the uncertainty representation (see sec. 2.1). The same notation stands
for the uncertainty of p and y.

Now, in the most general way, the new MCDM problem can be expressed
through the following:

Definition 2 (Uncertainty-handling program). Let F (·) be a measure of
performance of a system determined by the decisional vector x and influenced by
a vector of environmental parameters p, each of which is subject to uncertainties
U(x) and U(p) respectively. Let C(·) be a vector of constraints defined regarding
the original constraints for the optimization of F (·). Finally let I(·) be a vector of
requirements imposed upon the performance. The resulting uncertainty-handling
formulation consists in solving the following program
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max R (F (x,p),x,p,U(x),U(p))
s.t.:

x ∈ X , p ∈ P
C(x,p,U(x),U(p)) ≤ 0

I(F (x,p),x,p,U(x),U(p)) ≤ 0

(2)

The new function denoted R(·) is typically an expression of risk, reliability or
robustness. For example, in the case of pure uncertain functions, R(·) can be for-
mulated as the original F (·) plus a measure of uncertainty to be minimized. R(·)
can also account for reliability or robustness when the input is uncertain, result-
ing in a robustness-seeking program. Vector I(·) on the other hand, accounts for
requirements formulated by the DM as additional performance constraints due to
uncertainty (e.g. acceptance thresholds for variance or interquartile distances).
From the previous program derive two classes of definitions of robustness with
well defined solving procedures and a third mixed class that combines the rea-
soning of the preceding classes in order to solve problems with the least amount
of information. Table 2 shows what class is applicable regarding the amount of
information available.

Table 2. AUREO Stage 1: Classes of uncertainty-handling formulations according to
the available information

Input: x,U(x),p,U(p) Output: y,U(y)
U(x) U(p) I(·) definable I(·) undefinable

None None Pure uncertain functions ≡ Class 1

None Definable Class 1 Class 1

None Undefinable Class 2 Class 3

Definable None Class 1 Class 1

Definable Definable Class 1 Class 1

Definable Undefinable Class 2 Class 3

Undefinable None Class 2 Class 3

Undefinable Definable Class 2 Class 3

Undefinable Undefinable Class 2 Class 3

Class 1: Uncertainty Propagating Programs. This class is characterized
by a suitable description of U(x) and U(p) in such a way that the uncertainty
can be propagated through F (·). If the uncertainty is aleatory, U(x) and U(p)
have associated PDF. For instance, U(x) could be a normally distributed number
N(x, σ). On the contrary, if the uncertainty is epistemic, U(x) might be a crisp
or a fuzzy interval, a p-box or something of the like.

Once this program has been identified, the second stage of AUREO consists
in defining how the optimality and the density are to be assessed within the
MOEA as well as in addressing efficiency issues. As shown in fig. 1 whenever the
uncertainty is propagated the outcomes become sets. Thus, the first problem
risen is how to decide about optimality using sets. Consider fig. 4: according
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Fig. 4. Spatial dominance relationships regarding y in (panel a) the absence and (panel
b) in the presence of uncertainty. The interval representing y in panel b can be con-
structed for discrete sets using the extreme (dark) points (panel c).

to the Pareto optimality (def. 1) in the absence of uncertainty every solution in
region I (panel a) dominates y, in region II is dominated by y and in region III is
non-dominated regarding y. In the presence of uncertainty (panel b) there is an
additional (colored cross) region such that any set intersecting that area cannot
be classified in terms of dominance without an additional criterion. In such a
case the comparison of sets is often reduced to a comparison of representative
points, but can also be settle using the whole sets. Density can also be assessed
using the approaches just mentioned.

Working with representative points: If we can define a few crisp points
representing the main features of the uncertain outcomes, we can solve the
uncertainty-handling program with a regular application of existing MOEA.
Defining such points, however, can be very tricky and computational cumber-
some in practice. For representing a set, the extreme points, some symmetry
axis and some size measures are commonly used. Let us consider some examples
regarding the different theories to represent uncertainty.

Best and worst case are risk criteria that corresponds to extreme points of
crisp and fuzzy intervals. Uniform distributions also exhibit finite extreme points,
but in general such points are infinite in probability distributions. Nevertheless,
extreme quantiles can be used to implement best and worst cases. With imprecise
probabilities there are intervals of quantiles so one can use the best of the bests
and the worst of the worst of the cases.

The mean value is commonly used as symmetry axis although the median
can be used as well. A common approach is to optimize the mean value of the
sets, minimizing sometimes its size simultaneously. This is the typical way to
implement robustness (see robust optimization in tab. 3). In classical probabilis-
tic contexts the size is measured as variance in R(·) although the interquartile
range is another possibility. As one only have estimations of means and vari-
ances instead of the true statistics most of the time, it is more than desirable to
have proper statistical tests supporting MOEA the ranking procedure. On the
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Table 3. Some state of the art MOEA for optimization under uncertainty

Realm of study Authors and works

Probabilistic Dominance:

Optimization with interval fitness value Teich [12]

Optimization with noisy fitness function Hughes [13], Fieldsen et al. [14]

Quality Indicator-Based Procedures:

Indicator-based optimization Basseur and Zitzler [15]

Robust Optimization:

Optimization with uncertainty propagation Sörensen [16], Ray [17], Deb and Gupta [18],
Barrico et al. [19]

Info-gap based robust design Lim et al. [20]

Reliability-based optimization Deb et al. [21]

Non-Probabilistic Procedures:

Optimization with epistemic uncertainty Limbourg [22] and Salazar A. [23]

other hand, in the case of handling alternative uncertainty theories, the inter-
ested reader might also define ranking procedure based on fuzzy and possibilistic
means and variances [6,7,8,9] or mean values for imprecise probabilities [10,11].

Working with the whole sets: Treating the whole set instead of a few points
is also possible. For probabilistic contexts the concept of probabilistic dominance
provides a way of doing this. The basic idea is to assess the probability of one
whole outcome dominating another one and to accept dominance if such prob-
ability surpass an acceptance threshold. Formulae exist for assessing dominance
in classical [24] and imprecise probabilities [25]. The main drawback in practice
is that there is no easy way to estimate the probability of dominance if the PDF
of the concerned outcomes are not available.

There are also methods for assessing dominance in fuzzy and possibilistic
contexts [26]. Such methods solve the problem of optimality but left the density
control unattended. One possibility is to resort to representative points like the
mean value to assess density, or to maximize the minimal distance between two
neighbours.

Table 3 lists some of the existing MOEA that can be used in Class 1 problems.
Chronologically speaking, the first attempts implemented probabilistic domi-
nance. These approaches rely upon the assumption that the PDF of all the
outcomes are known and share the same shape. In some real problems such
an assumption stands but in general it constitutes a limitation. Current robust
optimization approaches, on the other hand, do not make a sharp distinction
between aleatory and epistemic uncertainty in their proposals. The user may
be aware of this to avoid careless uncertainty handling. Other approaches make
use of indicator quality measures to handle density assessment [23] or optimal-
ity and density as well [15]. Regarding the two referred here, the former were
developed to work with intervals and seems suitable for epistemic uncertainty
although the optimality is settle by rules that could not be universally accepted.
By contrast, the latter approach relies on the assumption of probabilistic out-
comes so it seems suitable for aleatory uncertainty albeit the algorithm makes no
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statistical treatment of the outcomes. A first conclusions is that making better
and careful treatments of uncertainty taking into account the theoretical frame-
works for reasoning about it is still a challenge for the design of MOEA.

Class 2: Robust Domain-Seeking Programs. Some situations may keep the
uncertainty associated with the input variables from being propagated through
F (·) and therefore handled as a Class 1 robustness problem. Whether the un-
certainty is purely epistemic or mixed in nature, any additional assertion about
U(x) or U(p) to transform the problem into one of Class 1, entails making some
assumptions that could be wrong, leading to identify inadequate alternatives in
Y as optimal solutions.

For example, if the DM knows that the real value of the nominal vector x is
susceptible to vary but ignore the range of such variation, to assume the set of
values that x can take or their likelihood may underestimate the uncertainty.
The DM is therefore compelled to maximize the range of ‘acceptable’ realizations
of x in order to hedge against regrettable consequences. In that sense, robustness
is sought by widen the range of possible inputs, or in other words, by maximizing
the cardinality of the U(x).

The Class 2 is therefore characterized by the existence of a constraints vector
I(F (·)) ≤ 0 that constitute desired performance levels of attainment (quality re-
quirements), and a robustness function R(·) that aims at maximizing the range of
variation of the input variables that conform with I(·). The robust design prob-
lems is a good example of this class. For instance, [27] brings an application where
the reliability Rs of a system is a function of the reliability Ri of its components.
Since Ri may change, one is interested in knowing the effect of such variations
over Rs although the U(Ri) are unknown. Instead of making assumptions about
the U(Ri), the DM is asked about the desired performance requirements of Ri.
This way the DM defines the restriction I(Rs) = 0.90 ≤ Rs ≤ 0.99 and the
Class 2 program takes the form of find {[Ri, Ri]} = argmaxi

∏
i(Ri − Ri) s.t.

Ri ∈ [0.8, 1] and I(Rs). The second objective is the minimization of the maxi-
mal cost that one can incur when selecting components within the range defined
by the objective R(·). Notice that such a problem can be handled by a regular
MOEA simply using interval arithmetic to check I(Rs). For details about the
formulation and the efficiency issues see [27].

Class 3: Mixed Robust-Seeking Procedure. To close this section, let us
consider again the general robustness-seeking program formulated in def. 2. If
the DM and the analyst are unable to characterize the input uncertainty nor
the desired performance levels of attaintment, or alluding def. 2, if they cannot
set U(x), U(p) nor I(·), the actual definition of the robustness function R(·) is
not possible. It is therefore mandatory to generate information to help the DM
to make their minds about U(x), U(p) or about I(·), in such a way that the
problem collapses into a Class 1 or Class 2 program. The first case could be
possible by means of further elicitation of uncertainty, while the second requires
initial assumptions about U(x) and U(p) to roughly approximate the frontier,
allowing to set I(·) and to solve the corresponding Class 2 program afterwards.
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Fig. 5. Scheduling problem in a waste treatment plant: Machines Mm performs the
unloading while the mixer Mx performs the waste processing [28]

Fig. 6. Robust schedules that satisfy I(·) and maximizes the allowed variations in
arrival times (objectives in minutes) [28]

This procedure is explored in [28]. The original problem consists in minimizing
the makespan and the total waiting time of a waste treatment plant. The waste
is carried by trucks that arrive at scheduled times and the operations are the
unloading of the trucks into silos and the transference of the silos’ content into a
critical machine (see fig. 5). Assuming that the processing times do not change
and the sequence of operations cannot be rescheduled on line, the new problem
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arises when considering uncertain arrival times for the trucks. The goal is to
identify the more robust sequence of tasks given that no information about the
possible variations of arrival times nor about I(·) were available a priori.

In order to solve this problem as one of the Class 2, a first assumption was
made about the arrival time, accepting a uniform variation of ±10′ around the
expected timing. Criteria were assessed using Monte Carlo simulation. The re-
sults obtained using MOSA [29] with this assumption showed that it is possible
to absorb variations of 10’ without deviations from the deterministic results
greater than 1’. Constraint I(·) was set to allow at most deviations of 2’ from
the known deterministic optima. With this in mind the new goal is to find a
sequence conforming I(·) that accepts the greater range of variations above 10’
in the arrival time. The results are shown in fig. 6.

4 Final Remarks

In this article we offered an analysis of the interaction between MCDM and
MOEA, emphasizing the importance of considering the different forms for rep-
resenting uncertainty. The possible instances of MCDM problems under uncer-
tainty were classified into three classes according to the elements concerned by
uncertainty. In the Class 1 it is necessary to deal with uncertain outcomes so the
MOEA designed to work with this group of problem have to implement mecha-
nisms to propagate uncertainty and to rank the solutions in terms of optimality
and density. Most of the existing approaches lie within this class, but there is
still room for more research on the integration of MOEA and uncertainty the-
ories to better treat aleatory and epistemic uncertainty and to cover scenarios
not considered yet.

In Class 2 the problem does not require the MOEA to handle uncertain out-
comes. Readers interested in this approach are referred to [1,27] for further de-
tails. Finally in Class 3 the decision-making problem requires additional efforts
to generate information and to reduce it to a Class 1 or Class 2. We briefly ex-
emplified the application of MOEA to solve a real Class 3 problem. For further
details see [28].
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