
Noisy Multiobjective Optimization on a Budget
of 250 Evaluations

Joshua Knowles1, David Corne2, and Alan Reynolds2

1 School of Computer Science, University of Manchester, UK
j.knowles@manchester.ac.uk

http://dbkgroup.org/knowles/TOMO/
2 School of Mathematics and Computer Science, Heriot-Watt University, UK

Abstract. We consider methods for noisy multiobjective optimization, specifi-
cally methods for approximating a true underlying Pareto front when function
evaluations are corrupted by Gaussian measurement noise on the objective func-
tion values. We focus on the scenario of a limited budget of function evalua-
tions (100 and 250), where previously it was found that an iterative optimization
method — ParEGO — based on surrogate modeling of the multiobjective fit-
ness landscape was very effective in the non-noisy case. Our investigation here
measures how ParEGO degrades with increasing noise levels. Meanwhile we
introduce a new method that we propose for limited-budget and noisy scenar-
ios: TOMO, deriving from the single-objective PB1 algorithm, which iteratively
seeks the basins of optima using nonparametric statistical testing over previously
visited points. We find ParEGO tends to outperform TOMO, and both (but es-
pecially ParEGO), are quite robust to noise. TOMO is comparable and perhaps
edges ParEGO in the case of budgets of 100 evaluations with low noise. Both
usually beat our suite of five baseline comparisons.

1 Introduction

Real-world optimization problems often involve solutions that are expensive to evalu-
ate, either financially or in time, thus imposing a budget on the number of evaluations
that can be done during an optimization procedure. Sometimes, the expense is so acute
that only a ‘handful’ of evaluations is feasible, so that using a latin hypercube design,
other experimental designs (DoE approaches), or even a random search may yield better
results than iterative approaches, particularly on multiobjective problems. When thou-
sands or more evaluations may be done, however, we would expect iterative sampling
methods such as evolutionary algorithms (EAs) to generally outperform random search
and/or DoE. But between these two regimes there may lie a third where EAs are inef-
fective, yet there is the potential to outperform static ‘designs’ or random search.

There is evidence of this regime in the work done on EAs combined with surrogate
modeling, and in the statistics/DoE, direct search and machine learning (ML) litera-
ture. Although DoE traditionally concerns itself with static designs, modern techniques
also include iterative approaches that augment an initial design, based on the values ob-
served. The EGO method [19] is such a technique: starting from an initial latin hyper-
cube design, it proceeds point by point, always using all previous points to (fit a model
and) estimate the point of maximum expected improvement. A similar iterative method

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 36–50, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Noisy Multiobjective Optimization on a Budget of 250 Evaluations 37

(PB1 [1]) was also proposed for optimization on a very limited evaluation budget, and
seems fairly robust to noise — a very common phenomenon in real-world applications.

Here we investigate optimization given the combined difficulties of a very limited
evaluations budget and the existence of noise. We aim towards an understanding where
MOEAs, random search, DoE and advanced iterative approaches might stand relative
to one another, under these conditions. We continue in Section 2 with an account of
prior and related research. Then in Section 3 we introduce TOMO in some detail, and
briefly outline our set of comparison and baseline methods: ParEGO, DoE, random
search, a simple multiple trajectory hillclimber, what we call a ‘simple Gaussian model
learner’, and PESA-II. Section 4 describes our experimental setup, results are presented
in Section 5, and Section 6 discusses the results and concludes.

2 Background

Expensive optimization problems are now rather common. Optimizing structural form,
guided by the use of accurate simulators, is perhaps the most familiar domain in which
such problems arise (e.g. [16,17]), while they also occur in biochemistry and materials
science [6,12], robotics (e.g. [14]), and instrument configuration (e.g. [10]).

Typically, expensive fitness functions involve computational fluid dynamics (CFD)
or similar simulations or finite element grids. E.g. [16] uses CFD in evaluating candidate
shapes for the combustion chamber of a diesel engine, aiming to minimize Nitrous
Oxide emissions. Often, real-world testing rather than simulation is involved. E.g. an
instrumentation setup problem ([10]) which formed the motivation for ParEGO [22],
concerns the efficiency of instruments used to test and monitor biological samples; [10]
reports that it took several days to perform 180 evaluations, each of which required
manual configuration and testing of an instrument. Similar time may be needed for
evolving locomotion controllers for robot gaits, in which physical setup and testing of a
configuration is preferable to simulation [14]. In [14], they observed the (very common)
complication of noise: some configurations may score well, but be non-robust to slight
changes in the evaluation regime.

The effects of noise and ways to deal with it in evolutionary computation have been
analysed much (e.g. [2,3]). Unfortunately no comfort is yet to be found in this for those
with a very limited evaluations budget. It turns out that effects of noise are highly prob-
lem dependent, while the key questions relate to whether increasing exploration (e.g.
larger population sizes) or increased resampling (multiple evaluations to better charac-
terize individual solutions) are best. Either way, there is little help here for practitioners
on a very limited evaluation budget.

Even ignoring noise, it seems that, particularly in the context of multiobjective op-
timization, the published work relevant to limited evaluation budgets is sparse. One
approach is to attempt to learn a model of the search landscape with neural networks
[26,13], enabling predicted fitnesses to replace the need for evaluation in specific phases
of an overall control algorithm. The simplest approach to ‘guessing’ fitness is actually
fitness inheritance, first proposed for multiobjective optimization in [4] and later tested
by [9]. Meanwhile, the research literature in general is becoming richer in suggestions
of modelling techniques to underpin these guesses and consequently provide guidance
towards the most promising next point to evaluate, and in multiobjective optimization

38 J. Knowles, D. Corne, and A. Reynolds

specifically, this work (some of which is reviewed in [23]) has included the use of
Bayesian model-building (e.g. [24,33]), support vector regression [27]) and the use of
and the adoption of a Gaussian process model in ParEGO [22], by Emmerich and co-
authors [11], and also in EGOMOP [16].

Such models, which attempt to learn to predict fitness via neural networks, Gaus-
sian processes, or otherwise, are generally known as ‘meta-models’. Detailed reviews
of meta-model based evolutionary algorithms include [30,18]. It seems intuitively right
that, when the evaluation budget is limited, algorithms that incorporate sophisticated
meta-models should be promising. This is borne out in published work so far. It seems
clear that ParEGO’s employment of a metamodel leads to significantly better perfor-
mance in this context than traditional MOEAs, random search, and a few additional alter-
natives (using less sophisticated models) against which it has so far been tested [21,22].

3 Optimization Methods

3.1 The Tau-Oriented Multiobjective Optimizer (TOMO)

TOMO is based closely on the principles and some of the procedures used in the single-
objective optimizer, PB1.

Principles of PB1. This method [1] is based on the assumption that near an optimum of
a function there should be a negative correlation between the (single-objective) fitness
of points and their distance from the optimum. This leads to a basic procedure for
estimating the location of an optimum: given a cloud of previously evaluated points,
search for a ‘test point’ where the correlation reaches its maximum absolute value. PB1
iterates this, as illustrated in Fig. 1a. NB: throughout the paper fitnesses are actually
costs, i.e. we assume minimization.

On non-convex problems as well as functions with plateaus or ridges, the correlation
between fitness and distance from the optimum may only hold locally. To account for
this, PB1 attempts to identify a subset of the points previously evaluated, forming a
convex region in decision space, for which the correlation is observed to occur (see
below for details). It is this subset of points which is subsequently used to estimate a new
test point. Correlations in PB1 are measured using Kendall’s Tau (τ), a nonparametric
method based on the ranks of the distances and fitnesses.

Empirical tests of PB1 [1] indicate that it can successfully optimize low-dimensional
functions in a small number of steps, including multimodal, ridge and plateau func-
tions, and it is relatively robust to noise. On the one hand, PB1’s ability to aggressively
search a space can be attributed to the fact that it exploits information on the topology
of the search landscape gleaned from all previous points. In this regard, PB1 works
similarly to EGO (see ParEGO, below). On the other hand, its robustness to noise can
be attributed to the fact that the test it uses to ‘reason’ about the topology is quite weak:
a nonparametric correlation value is not disturbed much when noise is added to the
points. See Fig. 1 to see how this contrasts with EGO.

Adapting PB1 to the Multiobjective Case. There are two main hurdles to making
an effective multiobjective algorithm based on PB1 and its use of Kendall’s correlation

Noisy Multiobjective Optimization on a Budget of 250 Evaluations 39

Algorithm 1. High-level Algorithm Pseudocode for TOMO and ParEGO
input: a multiobjective optimization problem with k objectives
require: a sequence of scalarizing weight vectors 〈λ〉
distribute initial E points in a latin hypercube design; evaluate each one
while evaluation limit not reached do

draw the next scalarizing weight vector and use it to scalarize all previously evaluated
points

construct a model of the scalarized search landscape based on a subset of (or all) previous
points

search the model iteratively to find a single new candidate point; evaluate this point on the
real multiobjective function

end while
output: all visited solutions

measure to orient search. The first concerns how to convert the basic principle of us-
ing fitness-distance correlations to work in the multiobjective case. This, we achieve
by taking a simple scalarizing approach, very similar to that used in ParEGO, where at
each step of the algorithm the next weight vector from a sequence is used to scalarize
the fitnesses of all points for that step (see Algorithm 1). The second hurdle derives
from the fact that although PB1 can cope with some multimodality it is not designed
to find multiple optima. Our initial testing of PB1 showed that it strongly favours one
optimum in a multimodal function, and has limited ability to escape local optima. To
overcome this, TOMO was equipped with a parameter-space niching method and inter-
mittent generation of explorative (random) search points.

Latin hypercube initialization. The initial solutions are generated in a space-filling de-
sign using a latin hypercube routine following a description in [31]. The number of
initial solutions is set to E = 11d − 1, where d is the parameter space dimension of
the function to be optimized, as suggested in [19]. This procedure in TOMO is adopted
directly from ParEGO.

The scalarizing weight vectors. TOMO begins by normalizing the k cost functions with
respect to the known (or estimated) limits of the cost space, so that each cost function
lies in the range [0, 1]. Then, at each iteration of the algorithm, a weight vector λ is
drawn from the set of evenly distributed vectors defined by:

Λ =
{
λ = (λ1, λ2, . . . , λk) | ∑k

j=1λj = 1 ∧ ∀j, λj = l/s, l ∈ {0, . . . , s}
}

, (1)

with |Λ| =
(
s+k−1

k−1

)
(so that the choice of the parameter s determines how many vectors

there are in total). The scalar cost of a solution is then computed using the augmented
Tchebycheff function (see [25] pp. 100–102) :

fλ(x) =
k

max
j=1

(λj .fj(x)) + ρ

k∑
j=1

λj .fj(x), (2)

where ρ is a small positive value which we set to 0.05. The weight vectors are arranged
in a sequence using a Gray coding. To select the ‘next’ vector, an index into this se-
quence is incremented mod |Λ| so that the sequence wraps around.

40 J. Knowles, D. Corne, and A. Reynolds

x

co
st

, f

x

co
st

, f

x

co
st

, f

x

co
st

, f

(a) (b)

Fig. 1. Schematic illustrating the principles of (a) TOMO and (b) ParEGO on a 1-parameter 1-
objective cost function. The upper and lower plots indicate different noisy measurements of the
same points. (a) TOMO identifies a region (dashed rectangle) where a statistically significant
negative correlation seems to occur between fitness difference and parameter-space distance from
a ‘test’ point (the vertical line). This region and the test point are little changed as a result of
noise (compare top and bottom). (b) ParEGO fits a model which interpolates the set of previous
points. The model may move significantly under different noisy instances of the same set of
measurements (compare top and bottom). The minimum of the (mean) model is shown by the
vertical line, however ParEGO does not necessarily move to this minimum, but rather to a point of
maximum expected improvement, which accounts also for the variance in the model (not shown).

Using niching and random explorative moves. In the original PB1, each main iteration
begins by finding a subset of the previously evaluated points possessing a high τ value.
This is done by starting with the set of all the points and iteratively removing points
on the exterior of the convex hull in decision space, one by one. More precisely, the
exterior point furthest from the centroid of the current point cloud is removed in each
of these mini-steps. For each subset visited along the way, τ is calculated, using the
current centroid as the point to compute τ from, and these values are stored. The subset
with the smallest number of points that has a statistically significant τ is then selected
for subsequent use. This ensures that τ is calculated over a region from within which
no points have been removed, and over which the required fitness-distance correlation
holds. To generate a new point for real evaluation, PB1 then searches over a region
defined by this subset (specifically, the union of Voronoi regions pertaining to these
points) for a point yielding a strong fitness-distance correlation.

We replace PB1’s method of obtaining a subset by an approach less likely to converge
on a local optimum. Instead of using the centroid of the point cloud during this whittling
down process, we use either (i) tournament selection, based on parameter-space niched
fitness [7]; or (ii) a randomly generated point. An exploitation (i) step is used with
probability ν and a random explore (ii) step with probability 1 − ν. We tuned this
on a single-objective test function with two local optima (see Fig. 2), which easily

Noisy Multiobjective Optimization on a Budget of 250 Evaluations 41

21 Initial Latin Hyp. Points
19 Iterates of TOMO

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

-5

 0

 5

10

15

Fig. 2. A single objective two-peak noisy function used to test and tune TOMO. Twenty-one
initial points are shown, followed by the nineteen next points TOMO visits. The true objective
value of points are indicated by the surface.

misleads the original PB1. The parameters we found to give both rapid convergence
and the ability to escape the local optimum were: tournament size 10, Niche radius set
according to [7] assuming 10 peaks, and rate of exploitation ν = 0.8. The remaining
procedures and parameters of TOMO follow the detailed specification of PB1 in [1].

3.2 ParEGO

The ParEGO (Pareto EGO) algorithm used here is identical to that described in [22],
which is essentially a multiobjective translation of EGO [19], making use of scalariz-
ing weight vectors at each step. The high-level pseudocode is given in Algorithm 1.
ParEGO works by fitting a Gaussian process stochastic model called DACE [32], to the
previously evaluated points, and using this to estimate interesting new points to visit
subsequently. The mean of the DACE model interpolates the points, which might make
it sensitive to noise, as shown in Fig. 1b. However, because ParEGO uses expected
improvement, defined as

E[I(x)] ≡ E{max(y∗ − Yp(x), 0)},
where y∗ is the best cost sampled so far, and Yp(x) is a Gaussian distributed random
variable representing the model through the point x, — a calculation that is based on
the variance of the model as well as its expected value, this may counteract the problem
of interpolating evaluated points to some degree.

3.3 Latin Hypercube and Random Search

As our first two baseline algorithms for comparison, we consider (i) random search (RS)
and (ii) the latin hypercube [31] (LH) method used, for initialization, in both TOMO
and ParEGO. In the case of random search, a single ‘run’ corresponds to generating
and evaluating numevals random points in the parameter space, where numevals is the
maximum number of fitness evaluations allowed in the experiment (i.e. either 100 or
250). Each solution is independently generated in the standard fashion, by choosing a
uniform random value from the range of each parameter. In the case of LH, a single
run simply applies one iteration of the method of [31] to generate either 100 or 250
solutions.

42 J. Knowles, D. Corne, and A. Reynolds

3.4 Simple Multiple Trajectory Hillclimber

We also considered baselines that allow us to test alternative yet simple strategies.
The first of these attempts a multiobjective search by spreading the evaluation bud-
get (almost) equally among k + 1 hillclimbers, where k is the number of objectives.
Each objective is assigned to one hillclimber, whose fitness is that objective alone; the
k + 1th hillclimber uses an equally weighted sum of objectives as its fitness function.
A hillclimber maintains a ‘current’ solution c initialized uniformly at random, and then
iterates the following: generate mutant m by copying c and then choosing a random
parameter and applying a Gaussian perturbation to it with standard deviation s. If m is
no worse than c, then c becomes m.

When the overall evaluations budget is n, the k hillclimbers each have a budget of
n/(k + 1), maintaining whole numbers by allowing the sum-of-objectives hillclimber
to use the surfeit after division by k + 1. The result of SMH is then taken to be the non-
dominated set of all solutions visited. We test three parameterizations of SMH, namely
with s = 0.1, 0.3, 1.0.

3.5 Simple Gaussian Model Learner

Our second alternative yet simple baseline is best described as a type of estimation
of distribution algorithm for real-valued parameters, although it can equally well be de-
scribed as a standard type of evolution strategy with multi-parent uniform crossover and
a Pareto-oriented truncation selection scheme. Its inspiration comes originally from the
considerably growing body of work that finds combinations of learning and exploration
to be highly valuable in accelerating progress per evaluation, even when the learning
mechanism or model is very simple.

The simple Gaussian model learner (SGM) operates as follows, with a population
size P and a standard deviation s. The key part of the algorithm is the way a new
point is generated from the current nondominated set of points visited, S. Given S, we
generate a new point by doing the following for each parameter j of the new point:
choose a member c of S uniformly at random; let parameter j of c be c[j]; let parameter
j of the new point be drawn from a Gaussian distribution with mean c[j] and standard
deviation s. After initializing the population uniformly at random, we evaluate these
P points and find their Pareto Set S; then we continue as follows until our evaluation
budget is used up. (i) generate and evaluate a new population of P points using the
procedure above; (ii) update the Pareto Set S, and return to (i).

So, in SGM, a simple probabilistic model is learned, based on the current approxi-
mation to the Pareto Front. Considering only the PF points, each parameter is modelled
independently as an equally weighted mixture of Gaussians each with standard devia-
tion s, with one Gaussian per point in the current Pareto Set approximation, centred on
that point’s value for the parameter in question. In our experiments we set P = 10 and
use s = 0.1, 0.3, 1.0 as for SMH.

3.6 PESA-II

The Pareto Envelope based Selection Algorithm (PESA-II) [5] is one of the several
multiobjective evolutionary algorithms that emerged in the resurgence of interest in this

Noisy Multiobjective Optimization on a Budget of 250 Evaluations 43

field in the late 90s. PESA-II attempts to find good approximations to the Pareto front
by maintaining a datastructure that keeps track of the density of solutions across its
current Pareto front approximation. The objective space is divided into ‘hyperboxes’,
and selection of points for further exploration is guided by the relative crowding of
hyperboxes, preferring to explore (i.e. use as parents for crossover or mutation) areas
that currently have low density. We use it here as a convenient example of one of the
several MOEAs that, in noise-free unlimited-evaluations budget scenarios at least, is
quite proficient. [5] explains PESA-II in detail. We set the key parameters of PESA-II
in our experiments as follows: population size IP = 10; archive size EP = 100, 250;
number of hyperboxes=10k, where k is number of objectives; binary representation
of parameters (30 bits per parameter); 1/L bit-flip mutation rate, where L is bitstring
length; uniform crossover applied at a rate of 0.2.

4 Testing Regime and Procedures

Our testing regime and procedures are informed by both real-world problems/
applications of interest to us, and what is available and best practice in the MOEA lit-
erature. The numbers of function evaluations available, the number of real-valued vari-
ables that we consider (less than 9) and the noise levels are all typical of real problems
in mass-spectrometer optimization (e.g. [28]) as well as the optimization of chemical
mixtures [6,12] and process optimization problems such as the one used in [1].

Test Functions. Originally from four sources, our test functions are those used and
described fully in [22]1. They range in dimension from 2 to 8 decision variables, and
are all 2- or 3-objective problems. Note that the DTLZa functions we use are derived
from the popular DTLZ ones, but we have reduced the number of parameters commen-
surate with the limited number of evaluations we are using, and also further reduced the
difficulty of DTLZ1 by lessening the ruggedness of the function. (This lessening of the
dimension/difficulty of the functions was done entirely independently and before any
optimization was begun.)

Noise Model. We apply additive Gaussian noise to the objective function values be-
fore passing the values to the optimization algorithm. Repeated evaluation of the same
point would therefore yield different results. We test three noise levels, 0%, 10% and
30%. 10% noise, for example, indicates that the objective value is perturbed by a Gaus-
sian with mean zero and standard deviation of 10% of the cost function’s range. When
the output of the optimization algorithm is measured and compared, we use the true
underlying (noiseless) objective values. This makes sense in the case that the noise rep-
resents just (unbiased) measurement error, but that underlying differences are important
or, equally, the case that the noise represents natural variation in the measured objective,
but we are interested in the expected value of this, e.g. the average yield that a chemical
process would give over the long term, given some setting (see [3], section 3.1 Type C
uncertainty).

1 We consider here 8 of the 9, having dropped VLMOP2, due only to space limitations.

44 J. Knowles, D. Corne, and A. Reynolds

KNO1 [22] Features: Two decision variables; two objectives; Fifteen locally optimal
Pareto fronts.

OKA1 [29] Features: Two decision variables; two objectives; Pareto optima lie on curve;
density of solutions low at PF.

OKA2 [29] Features: Three decision variables; two objectives; Pareto optima lie on
spiral-shaped curve; density of solutions very low at PF.

VLMOP3 [34] Features: Two decision variables; three objectives; disconnected Pareto
optimal set and PF is a curve ‘following a convoluted path through objective space’.

DTLZ1a, adapted from [8] Features: Six decision variables; two objectives; local op-
tima on the way to the PF.

DTLZ2a and DTLZ4a, adapted from [8] Features: Eight decision variables; three ob-
jectives; DTLZ4a biases the density distribution of solutions toward the f3 − f1 and
f2 − f1 planes.

DTLZ7a, adapted from [8] Features: Eight decision variables, three objectives; four dis-
connected regions in the Pareto front (in objective space).

Fig. 3. Summary of the eight test functions

Performance Assessment. Performance assessment of multiobjective optimizers is
well known to be a nontrivial task [20,35] owing largely to the fact that the result of an
optimization is a set of points, defining an approximation to a Pareto surface, and pairs
of such surfaces (e.g. from the results of different algorithms) are commonly incom-
parable. Following the analysis in [20], we use Jaszkiewicz and Hansen’s R metrics,
which tend to dominate alternatives in terms of their profile of desirable properties.
They tend to avoid being biased in favour of a particular property of a Pareto set ap-
proximation, (such as cardinality or uniformity), they do not rely on knowledge of the
true Pareto front, and they are relatively scalable to many-objectives. They require us-
ing, however, a (relatively arbitrary) reference set of nondominated points for any given
problem. Given the reference set and a set of points S output from an optimization run,
an R metric provides a single scalar value that estimates the ‘utility’ of S. We mainly
use R3, but resort to R2 in two cases where the R3 measure led to excessive standard
deviations, arising from vagaries of the relationship between certain result sets and the
chosen reference sets.

5 Results

We compared ParEGO, TOMO, SGM, SMH, PESA-II, LH and RS, with budgets of
100 and 250 evaluations. All parameters of the algorithms have been given in Section 3,
but recall SGM and SMH are each tried with three values of their standard deviation
parameter: 0.1, 0.3 and 1.0; the other algorithms have no free parameters.

For every (algorithm, test-function, max-evals, noise-level) tuple, 21 independent
runs were done. The use of an odd number of runs allows for plots of median attainment
surfaces, although space precludes that here. Results tables show the mean and standard
deviation of the R3 metric values for each tuple. Our reference sets2 and R-metric code
are available from the first author’s web space, so the tabulated values allow others to
directly compare their algorithms with those tested here.

2 Reference sets were generated using PESA-II runs of 50,000 evaluations.

Noisy Multiobjective Optimization on a Budget of 250 Evaluations 45

Table 1. Results for function DTLZ1a, DTLZ2a, DTLZ4a and DTLZ7a - each entry provides
mean and standard deviation of Hansen’s R3 metric (R2 for DTLZ1a) based on 21 runs per
algorithm

100 evals 250 evals 100 evals 250 evals 100 evals 250 evals
10% noise 10% noise 30% noise 30% noise

Function DTLZ1a

RS 0.033 (0.01) 0.024 (0.01) 0.033 (0.01) 0.024 (0.01) 0.033 (0.01) 0.024 (0.01)
LH 0.030 (0.01) 0.024 (0.01) 0.030 (0.01) 0.024 (0.01) 0.030 (0.01) 0.024 (0.01)
SMH-0.1 0.013 (0.01) 0.006 (0.00) 0.035 (0.02) 0.021 (0.01) 0.050 (0.02) 0.040 (0.02)
SGM-0.1 0.008 (0.00) 0.003 (0.00) 0.036 (0.02) 0.024 (0.02) 0.071 (0.05) 0.063 (0.04)
PESA2 0.010 (0.01) 0.000 (0.00) 0.050 (0.02) 0.045 (0.02) 0.112 (0.05) 0.101 (0.06)
ParEGO 0.001 (0.00) 0.004 (0.00) 0.002 (0.01) 0.012 (0.05) 0.006 (0.00) 0.006 (0.00)
TOMO 0.011 (0.00) 0.001 (0.00) 0.022 (0.01) 0.012 (0.01) 0.026 (0.01) 0.017 (0.01)

ParEGO vs TOMO 100/0, 100/30, 250/30 ParEGO wins 99.95; 250/0 TOMO wins 99.95
SGM-0.1 vs SMH-0.1 100/0, 250/0 SGM wins 97.5; 100/30, 250/30 SMH wins 99.75

Function DTLZ2a
RS 0.367 (0.21) 0.157 (0.33) 0.367 (0.21) 0.157 (0.33) 0.367 (0.21) 0.157 (0.33)
LH 0.232 (0.01) 0.227 (0.11) 0.232 (0.01) 0.227 (0.11) 0.232 (0.01) 0.227 (0.11)
SMH-0.3 0.305 (0.06) 0.254 (0.04) 0.297 (0.07) 0.294 (0.20) 0.295 (0.07) 0.235 (0.10)
SGM-0.3 0.317 (0.63) 0.057 (0.10) 0.282 (0.09) 0.298 (0.38) 0.443 (0.31) 0.309 (0.05)
PESA2 0.547 (0.53) 0.509 (0.68) 0.535 (0.52) 0.468 (0.67) 0.683 (0.36) 0.646 (0.40)
ParEGO 0.511 (1.14) -0.032 (0.02) 0.317 (0.63) 0.057 (0.10) 0.290 (0.26) 0.195 (0.10)
TOMO 0.182 (0.46) -0.137 (1.26) 0.141 (0.73) 0.289 (0.62) 0.352 (0.32) 0.136 (0.43)

ParEGO vs TOMO 250/10 ParEGO wins 90
SGM vs SMH 100/0, 250/0 SGM wins 99.95 ; 100/30, 250/30 SMH wins 99.95

Function DTLZ4a

RS 0.524 (0.08) 0.574 (0.50) 0.524 (0.08) 0.574 (0.50) 0.524 (0.08) 0.574 (0.50)
LH 0.534 (0.11) 0.438 (0.12) 0.534 (0.11) 0.438 (0.12) 0.534 (0.11) 0.438 (0.12)
SMH-0.3 0.264 (0.06) 0.212 (0.04) 0.257 (0.04) 0.221 (0.03) 0.265 (0.04) 0.245 (0.05)
SGM-0.3 0.259 (0.07) 0.201 (0.02) 0.235 (0.04) 0.211 (0.03) 0.311 (0.09) 0.255 (0.05)
PESA2 0.659 (0.37) 0.549 (0.10) 0.582 (0.10) 0.564 (0.10) 0.598 (0.11) 0.594 (0.04)
ParEGO 0.508 (0.20) 0.148 (0.13) 0.557 (0.05) 0.223 (0.11) 0.445 (0.13) 0.201 (0.28)
TOMO 0.616 (0.44) 0.423 (0.25) 0.529 (0.10) 0.529 (0.07) 0.677 (0.43) 0.428 (0.22)

ParEGO vs TOMO 100/30, 250/0, 250/10, 250/30 ParEGO wins 99.5
SGM-0.3 vs SMH-0.3 100/10 SGM wins 95 ; 100/30 SMH wins 97.5

Function DTLZ7a

RS 2.480 (8.83) 1.940 (9.20) 2.480 (8.83) 1.940 (9.20) 2.480 (8.83) 1.940 (9.20)
LH 0.58 (0.05) 0.489 (0.17) 0.58 (0.05) 0.489 (0.17) 0.58 (0.05) 0.489 (0.17)
SMH-1.0 0.553 (0.09) 0.490 (0.05) 0.613 (0.13) 0.510 (0.19) 0.616 (0.08) 0.508 (0.10)
SGM-1.0 0.538 (0.06) 0.545 (1.12) 0.622 (0.07) 0.580 (0.07) 0.656 (0.08) 0.633 (0.08)
PESA2 0.517 (0.16) 0.212 (0.63) 0.650 (0.32) 0.570 (0.22) 0.681 (0.09) 0.332 (0.19)
ParEGO 0.573 (0.04) 0.232 (0.07) 0.535 (0.13) 0.307 (0.42) 0.561 (0.05) 0.403 (0.15)
TOMO 0.501 (0.11) -0.442 (2.71) 0.497 (0.27) 0.136 (0.53) 0.451 (0.87) 0.323 (1.23)

ParEGO vs TOMO 100/0 TOMO wins 99
SGM-1.0 vs SMH-1.0 100/30, 250/10, 250/30 SMH wins 90

We compare ParEGO and TOMO directly, using t-tests (assuming unequal variances)
on the R values. Similarly, we compare a selected pair of parameter variants of SGM
and SHM per test function (we choose those that performed best with noise). Further
statistical comparisons (e.g. ParEGO vs LH) without generating further independent
sets of results would amount to multiple testing and be statistically invalid (we could
additionally compare LH and RS, but we omit that for reasons of space and salience).
Instead, we calculate ‘naive’ rank orderings of the algorithms for each (test-function,

46 J. Knowles, D. Corne, and A. Reynolds

Table 2. Results for functions VLMOP3, KNO1, OKA1 and OKA2 - each table entry provides
mean and standard deviation of Hansen’s R3 metric based on 21 runs per algorithm

100 evals 250 evals 100 evals 250 evals 100 evals 250 evals
10% noise 10% noise 30% noise 30% noise

Function VLMOP3

RS 0.290 (0.15) 0.132 (0.07) 0.290 (0.15) 0.132 (0.07) 0.290 (0.15) 0.132 (0.07)
LH 0.213 (0.137) 0.146 (0.08) 0.213 (0.137) 0.146 (0.08) 0.213 (0.137) 0.146 (0.08)
SMH-0.3 0.269 (0.15) 0.133 (0.08) 0.238 (0.18) 0.173 (0.12) 0.271 (0.17) 0.158 (0.07)
SGM-0.1 0.095 (0.08) 0.042 (0.05) 0.157 (0.11) 0.101 (0.24) 0.277 (0.22) 0.164 (0.16)
PESA2 0.169 (0.22) 0.086 (0.17) 0.260 (0.24) 0.156 (0.22) 0.256 (0.25) 0.181 (0.22)
ParEGO 0.019 (0.01) 0.013 (0.00) 0.058 (0.05) 0.029 (0.01) 0.080 (0.08) 0.033 (0.01)
TOMO 0.024 (0.01) 0.026 (0.03) 0.031 (0.01) 0.017 (0.00) 0.078 (0.09) 0.034 (0.05)

ParEGO vs TOMO 100/0, 250/0 ParEGO wins 90; 100/10, 250/10 TOMO wins 99
SGM-0.1 vs SMH-0.3 100/0, 100/10 250/0 SGM wins 90

Function KNO1

RS 0.012 (0.08) -0.126 (0.07) 0.012 (0.08) -0.126 (0.07) 0.012 (0.08) -0.126 (0.07)
LH -0.033 (0.1) -0.142 (0.08) -0.033 (0.01) -0.142 (0.08) -0.033 (0.1) -0.142 (0.08)
SMH-0.3 -0.107 (0.10) -0.282 (0.08) -0.130 (0.09) -0.258 (0.09) -0.117 (0.11) -0.268 (0.09)
SGM-0.3 -0.106 (0.13) -0.224 (0.09) -0.001 (0.14) -0.096 (0.12) 0.189 (0.18) 0.107 (0.16)
PESA2 0.112 (0.14) 0.085 (0.16) 0.177 (0.13) 0.138 (0.15) 0.299 (0.11) 0.272 (0.14)
ParEGO -0.049 (0.10) -0.137 (0.11) -0.128 (0.11) -0.290 (0.07) -0.120 (0.11) -0.265 (0.07)
TOMO -0.127 (0.12) -0.191 (0.14) -0.129 (0.11) -0.216 (0.12) -0.074 (0.10) -0.196 (0.12)

ParEGO vs TOMO 100/0, 250/0 TOMO wins 90 ; 100/30, 250/10, 250/30 ParEGO wins 90
SGM-0.3 vs SMH-0.3 100/10, 100/30, 250/0, 250/10, 250/30 SMH wins 97.5

Function OKA1

RS 0.376 (0.04) 0.310 (0.04) 0.376 (0.04) 0.310 (0.04) 0.376 (0.04) 0.310 (0.04)
LH 0.380 (0.03) 0.302 (0.38) 0.380 (0.02) 0.302 (0.38) 0.380 (0.03) 0.302 (0.38)
SMH-0.3 0.339 (0.04) 0.289 (0.03) 0.348 (0.06) 0.302 (0.05) 0.380 (0.06) 0.301 (0.06)
SGM-1.0 0.351 (0.03) 0.321 (0.02) 0.396 (0.05) 0.375 (0.05) 0.440 (0.06) 0.437 (0.05)
PESA2 0.354 (0.07) 0.266 (0.05) 0.447 (0.07) 0.417 (0.08) 0.562 (0.08) 0.540 (0.08)
ParEGO 0.071 (0.03) 0.071 (0.03) 0.211 (0.09) 0.086 (0.03) 0.302 (0.04) 0.195 (0.04)
TOMO 0.273 (0.05) 0.219 (0.06) 0.303 (0.04) 0.198 (0.06) 0.330 (0.12) 0.296 (0.06)

ParEGO vs TOMO 100/0, 100/10, 250/0, 250/10, 250/30 ParEGO wins 99.95
SGM-1.0 vs SMH-0.3 100/10, 100/30, 250/0, 250/10, 250/30 SMH wins 99.5

Function OKA2

RS 0.458 (0.03) 0.410 (0.03) 0.458 (0.03) 0.410 (0.03) 0.458 (0.03) 0.410 (0.03)
LH 0.440 (0.04) 0.411 (0.03) 0.440 (0.04) 0.411 (0.03) 0.440 (0.04) 0.411 (0.03)
SMH-1.0 0.303 (0.04) 0.241 (0.04) 0.304 (0.06) 0.248 (0.06) 0.316 (0.05) 0.263 (0.06)
SGM-1.0 0.271 (0.05) 0.237 (0.05) 0.335 (0.08) 0.285 (0.07) 0.410 (0.08) 0.382 (0.05)
PESA2 0.364 (0.09) 0.251 (0.10) 0.488 (0.06) 0.456 (0.07) 0.590 (0.13) 0.555 (0.14)
ParEGO 0.146 (0.05) 0.058 (0.04) 0.245 (0.06) 0.070 (0.04) 0.330 (0.07) 0.251 (0.06)
TOMO 0.354 (0.07) 0.307 (0.07) 0.414 (0.04) 0.331 (0.03) 0.444 (0.04) 0.391 (0.04)

ParEGO vs TOMO 100/0, 100/10, 250/0, 250/10, 250/30 ParEGO wins 99.95
SGM-1.0 vs SMH-1.0 100/0, SGM wins 97.5 ; 100/10, 100/30, 250/10, 250/30 SMH wins 90

max-evals, noise-level) triple, based only on mean R values, and we build a summary
table of mean ranks for each algorithm in different scenarios. This leads to a series of
overall indicative observations, and which we feel provide valuable insight and pointers
to further work.

Tables 1 and 2 present summary results on each of the test functions. In each case,
Random Search (RS) results for the noise cases are shown for convenience, though
they are necessarily identical to the non-noise cases. To save space, only the ‘best’ of the
three variants each of SGM and SMH are shown in the tables. To support

Noisy Multiobjective Optimization on a Budget of 250 Evaluations 47

Table 3. A broad summary of the effects of number of evaluations and of levels of noise on an
algorithm’s mean naive rank over the test functions studied

mean rank RS LH SGM SMH PESA2 ParEGO TOMO

overall 5.4 4.6 3.8 3.4 6.0 2.1 2.6
100 evals / no noise 6.1 5.3 2.4 3.5 5.4 2.6 2.8
100 evals / 10% noise 5.5 4.1 3.4 3.4 6.7 2.8 2.1
100 evals / 30% noise 5.4 3.6 4.9 2.6 6.6 1.8 3.1
250 evals / no noise 6.3 6.0 3.0 3.5 4.5 2.3 2.5
250 evals / 10% noise 4.6 4.5 3.9 3.9 6.6 1.5 2.9
250 evals / 30% noise 4.6 4.1 5.3 3.5 6.4 1.6 2.4

understanding the tables, we interpret parts of Table 1 as follows: On DTLZ1a, we
see that SGM, with standard deviation 0.1, achieved a mean R2 value of 0.063, (with R
values, lower is always better) with a standard deviation of 0.04, in the 250-evaluations
limit case with 30% noise. When we compare ParEGO and TOMO on DTLZ1a, we
find the following scenarios in which ParEGO outperformed TOMO with statistical
confidence at least 90%: 100 evals at no noise and 30% noise, and 250 evaluations
at 30% noise - among these cases, the lowest level of confidence was 99.95%. Mean-
while TOMO outperforms ParEGO in the 250-evaluations no-noise case, with confi-
dence 99.95%; in the cases not mentioned (100/10, 250/10) the comparisons were not
significant with ≥ 90% confidence.

Table 3 provides a broad summary of the observations that we can make on the
basis of the naive rank orderings of the algorithms for each (test-function, max-evals,
noise-level) scenario. Naive rank orderings are based only on mean R value; in general,
they either have no statistical significance, or have significance but at a low confidence
level. For a given scenario (e.g. 100 evals, no noise) we rank algorithms from 1 to 7,
considering, for any particular problem, only the best of the three SGM variants, and
the best of the three SMH variants for that problem. Hence, for example, in the 250-
evaluations 30%-noise case on problem OKA1 (table 2), ParEGO is best with rank 1,
TOMO has rank 2, SMH has rank 3, and so on, until PESA-II has rank 7. The table
indicates the mean ranks for each scenario over the eight test problems.

Running Times. It is worth noting that both TOMO and ParEGO do consume sig-
nificant resources to compute each solution to evaluate next, and that this time grows
with each iteration. On a single-core Pentium III 2.8GHz desktop machine, they require
of the order of 10s per evaluation at the end of a 250 evaluation run. Although lim-
ited budgets tend to arise when the time to evaluate a solution is considerably larger
than this, one can certainly envisage some budget-constrained scenarios where such a
lag would be unacceptable. For this reason, the performance of the baselines, which
all have negligible runtimes in comparison to TOMO and ParEGO, are of more than
incidental interest.

6 Concluding Discussion

As we suggested towards the end of Section 2, it is not surprising that a metamodel-
based technique should do well in the limited-evaluations regime. However, the

48 J. Knowles, D. Corne, and A. Reynolds

question of performance in the presence of noise is rather less clear a priori. Metamod-
els repeatedly rely on the positions and fitnesses of samples previously visited (each
evaluated only once) in order to build a picture that guides choice of the next sample
point. Noise can be expected to mislead this model, and with few evaluations available
there is little opportunity for recovery from this. ParEGO / EGO is no exception to this,
as it does not explicitly account for uncertainty in evaluated points [15], indeed using
a model that interpolates between these points and a sampling method which ensures
they will never be re-evaluated.

As it turns out, however, ParEGO stands up to noise much more successfully than
the other techniques tested; from the indications in Table 3, especially so when given at
least the luxury of 250 evaluations, and especially at the higher noise levels. In contrast,
SGM and PESA-II get very confused by noise. Both may have done a little better using a
larger population size (and hence fewer generations) in the noise cases, but it seems that
the strategies inherent in both of these techniques place undue trust in the accuracy of
points visited so far. TOMO is clearly the second-best technique tested overall, regularly
outperformed by ParEGO, although TOMO seems to have the edge over ParEGO at 100
evaluations and 10% noise. This suggests various ways forward for coping with such
severely-limited budgets, such as tweaking the EGO model to account for noisy eval-
uations (as in [15] for single-objective optimization), or basing sampling decisions on
evidence obtained from both ParEGO’s and TOMO’s strategies, weighting them appro-
priately given the number of evaluations so far. Meanwhile, many further parametric and
design variants of TOMO can be explored, perhaps most pressingly an evaluation of the
many ways scalarization could be done more adaptively, e.g. using goal programming.

As for SGM and SMH, herein they have fulfilled a need to provide further alternative
strategies, continuing to investigate whether the sophistication inherent in ParEGO (and
TOMO) can be undermined by a simpler (and possibly faster) alternative. As it turns
out, it seems that the SGM approach appears quite useful when noise is absent, at least
in the 100-evaluations regime. Parameter dependence limits this observation, however
it could be suggested that an adaptive version of SGM may extend its niche of good
performance toward 250 evaluations.

Finally, we note that PESA-II’s performance seems generally awful; this adds weight
to findings elsewhere (e.g. with NSGA-II in [22]) that standard modern MOEAs, de-
signed with perhaps ’0,000s or ’000,000s of evaluations in mind, are simply inapplica-
ble when much more limited evaluation numbers are available. However, it must be said
that PESA-II’s parameterization was not optimized here and the use of a binary repre-
sentation is almost certainly unfair. We mention in passing that a fitness-inheritance
based version of PESA-II was tested in preliminary work, and found to work fine when
many ’000s of evaluations were available, however the beneficial effect of fitness inher-
itance simply failed to be present below ∼ 1,000 evaluations.

References

1. Anderson, B., Moore, A., Cohn, D.: A nonparametric approach to noisy and costly optimiza-
tion. In: Langley, P. (ed.) Proc. 17th ICML, pp. 17–24. Morgan Kaufmann, San Francisco
(2000)

2. Beyer, H.-G.: Evolutionary algorithms in noisy environments: theoretical issues and guide-
lines for practice. Computer Methods in Applied Mechanics and Engineering 186(2-4), 239–
267 (2000)

Noisy Multiobjective Optimization on a Budget of 250 Evaluations 49

3. Beyer, H.-G., Sendhoff, B.: Robust optimization: A comprehensive survey. Computer Meth-
ods in Applied Mechanics and Engineering 196(33-34), 3190–3218 (2007)

4. Chen, J.-J., Goldberg, D.E., Ho, S.-Y., Sastry, K.: Fitness inheritance in multi-objective opti-
mization. In: Proc. GECCO 2002, pp. 319–326. Morgan Kaufmann, San Francisco (2002)

5. Corne, D., Jerram, N., Knowles, J., Oates, M.: PESA-II: Region-based selection in evolu-
tionary multiobjective optimization. In: GECCO 2001, pp. 283–290. Morgan Kaufmann,
San Francisco (2001)

6. Davies, Z.S., Gilbert, R.J., Merry, R.J., Kell, D.B., Theodorou, M.K., Griffith, G.W.: Efficient
improvement of silage additives by using genetic algorithms. In: Applied and Environmental
Microbiology, pp. 1435–1443 (2000)

7. Deb, K., Goldberg, D.: An Investigation of Niche and Species Formation in Genetic Func-
tion Optimization. In: Proc. 3rd International Conference on Genetic Algorithms, pp. 42–50.
Morgan Kaufmann, San Francisco (1989)

8. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary
Multi-Objective Optimization. Technical Report 112, Computer Engineering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2001)

9. Ducheyne, E.I., De Baets, B., De Wulf, R.: Is fitness inheritance useful for real-world appli-
cations? In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003.
LNCS, vol. 2632, pp. 31–42. Springer, Heidelberg (2003)

10. Dunn, E., Olague, G.: Multi-objective Sensor Planning for Efficient and Accurate Object
Reconstruction. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y.,
Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.)
EvoWorkshops 2004. LNCS, vol. 3005, pp. 312–321. Springer, Heidelberg (2004)

11. Emmerich, M., Naujoks, B.: Metamodel Assisted Multiobjective Optimisation Strategies and
their Application in Airfoil Design. In: Parmee, I. (ed.) Adaptive Computing in Design and
Manufacture VI, pp. 249–260. Springer, Heidelberg (2004)

12. Evans, J.R.G., Edirisinghe, M.J., Eames, P.V.C.J.: Combinatorial searches of inorganic ma-
terials using the inkjet printer: science philosophy and technology. Journal of the European
Ceramic Society 21, 2291–2299 (2001)

13. Gaspar-Cunha, A., Vieira, A.S.: A hybrid multi-objective evolutionary algorithm using an
inverse neural network. In: Hybrid Metaheuristics (HM 2004) Workshop at ECAI 2004, pp.
25–30 (2004), http://iridia.ulb.ac.be/˜hm2004/proceedings/

14. Hornby, G.S., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous evolution of dynamic
gaits with two quadruped robots. IEEE Transactions on Robots 21(3), 402–410 (2005)

15. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global Optimization of Stochastic Black-Box
Systems via Sequential Kriging Meta-Models. Journal of Global Optimization 34(3), 441–
466 (2006)

16. Jeong, S., Minemura, Y., Obayashi, S.: Optimisation of combustion chamber for diesel en-
gine using kriging model. Journal of Fluid Science and Technology 1(2), 138–146 (2006)

17. Jeong, S., Suzuki, K., Obayashi, S., Kirita, M.: Improvement of nonlinear lateral character-
istics of lifting-body type reentry vehicle using optimization algorithm. In: Proc. of AIAA
Infotech-Aerospace Conference 2007, pp. 1–15. AIAA (2007)

18. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft
Computing-A Fusion of Foundations, Methodologies and Applications 9(1), 3–12 (2005)

19. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box
functions. Journal of Global Optimization 13, 455–492 (1998)

20. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Congress on Evolu-
tionary Computation (CEC 2002), Piscataway, New Jersey, vol. 1, pp. 711–716. IEEE Service
Center, Los Alamitos (2002)

21. Knowles, J., Hughes, E.J.: Multiobjective Optimization on a Budget of 250 Evaluations. In:
Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410,
pp. 176–190. Springer, Heidelberg (2005)

http://iridia.ulb.ac.be/~hm2004/proceedings/

50 J. Knowles, D. Corne, and A. Reynolds

22. Knowles, J.: ParEGO: A hybrid algorithm with on-line landscape approximation for expen-
sive multiobjective optimization problems. IEEE Trans. Evol. Comp. 10(1), 50–66 (2006)

23. Knowles, J., Nakayama, H.: Meta-Modeling in Multiobjective Optimization. In: Branke, D.,
Deb, K., Miettinen, S., Słowiński, R. (eds.) Multiobjective Optimization: Interactive and
Evolutionary Approaches. LNCS, vol. 5252. Springer, Heidelberg (2008)

24. Laumanns, M., Ocenasek, J.: Bayesian optimization algorithms for multi-objective optimiza-
tion. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwe-
fel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 298–307. Springer, Heidelberg (2002)

25. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer, Dordrecht (1999)
26. Nain, P.K.S., Deb, K.: A computationally effective multi-objective search and optimiza-

tion technique using coarse-to-fine grain modeling. Technical Report Kangal Report No.
2002005, IITK, Kanpur, India (2002)

27. Nakayama, H., Yun, Y.: Multi-objective Model Predictive Optimization using Computational
Intelligence. In: Artificial Intelligence in Theory and Practice II, pp. 319–328. Springer, Hei-
delberg (2008)

28. O’Hagan, S., Dunn, W., Knowles, J., Broadhurst, D., Williams, R., Ashworth, J., Cameron,
M., Kell, D.: Closed-loop, multiobjective optimization of two-dimensional gas chromatog-
raphy/mass spectrometry for serum metabolomics. Analytical Chemistry 79(2), 464–476
(2007)

29. Okabe, T., Jin, Y., Olhofer, M., Sendhoff, B.: On Test Functions for Evolutionary Multi-
objective Optimization. In: Parallel Problem Solving from Nature - PPSN VIII, pp. 792–802.
Springer, Heidelberg (2004)

30. Ong, Y.S., Nair, P.B., Keane, A.J., Zhou, Z.Z.: Surrogate-assisted evolutionary optimization
frameworks for high-fidelity engineering design problems. In: Jin, Y. (ed.) Knowledge Incor-
poration in Evolutionary Computation. Springer, Heidelberg (2004)

31. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press, Cambridge (1992)

32. Sacks, J., Welch, W., Mitchell, T., Wynn, H.: Design and analysis of computer experiments
(with discussion). Statistical Science 4, 409–435 (1989)

33. Bosman, P.A.N., Thierens, D.: Multi-objective Optimization with the Naive MIDEA. Studies
in Fuzziness and Soft Computing 192, 123–157 (2006)

34. van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithm Test Suites. In:
Proc. 1999 ACM Symposium on Applied Computing, pp. 351–357. ACM, New York (1999)

35. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assess-
ment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolution-
ary Computation 7(2), 117–132 (2003)

	Noisy Multiobjective Optimization on a Budget of 250 Evaluations
	Introduction
	Background
	Optimization Methods
	The Tau-Oriented Multiobjective Optimizer (TOMO)
	ParEGO
	Latin Hypercube and Random Search
	Simple Multiple Trajectory Hillclimber
	Simple Gaussian Model Learner
	PESA-II

	Testing Regime and Procedures
	Results
	Concluding Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

