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Abstract. This paper proposes the Necessary-preference-enhanced
Evolutionary Multiobjective Optimizer (NEMO), a combination of an
evolutionary multiobjective optimization method, NSGA-II, and an in-
teractive multiobjective optimization method, GRIP. In the course of
NEMO, the decision maker is able to introduce preference information
in a holistic way, by simply comparing some pairs of solutions and speci-
fying which solution is preferred, or comparing intensities of preferences
between pairs of solutions. From this information, the set of all com-
patible value functions is derived using GRIP, and a properly modified
version of NSGA-II is then used to search for a representative set of all
Pareto-optimal solutions compatible with this set of derived value func-
tions. As we show, this allows to focus the search on the region most
preferred by the decision maker, and thereby speeds up convergence.

1 Introduction

Most of past research on evolutionary multiobjective optimization (EMO) at-
tempts to approximate the complete Pareto-optimal front by a set of
well-distributed representatives of Pareto-optimal solutions. The underlying rea-
soning is that in the absence of any preference information, all Pareto-optimal
solutions have to be considered equivalent.

On the other hand, in most practical applications, the decision maker (DM)
is eventually interested in only a small subset of good solutions, or even a single
most preferred solution. In order to come up with such a result, it is necessary
to involve the DM. This is the underlying idea of another multiobjective opti-
mization paradigm: interactive multiobjective optimization (IMO). IMO deals
with the identification of the most preferred solution by means of a systematic
dialogue with the DM. Only recently, the scientific community has discovered
the great potential of combining the two paradigms (for a recent survey, see
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[14]). From the point of view of EMO, involving the DM in an interactive pro-
cedure will allow to focus the search on the area of the Pareto front which is
most relevant to the DM. This, in turn, may allow to find preferred solutions
faster. In particular, in the case of many objectives, EMO has difficulties, because
the number of Pareto-optimal solutions becomes huge, and Pareto-optimality is
not sufficiently discriminative to guide the search into better regions. Integrat-
ing user’s preferences promises to alleviate these problems, allowing to converge
faster to the preferred region of the Pareto-optimal front.

This paper combines NSGA-II [3], a widely used EMO technique, with an
IMO methodology from multiple criteria decision aiding (MCDA), originally
conceived to deal with a limited number of alternatives. This methodology relies
on the Robust Ordinal Regression approach recently implemented in the two
methods, UTAYMS [10] and GRIP [7]. In these methods, the user is presented
with a small set of alternatives and can state his/her preferences by specifying
a holistic preference of one alternative over another, or comparing intensities of
preferences between pairs of alternatives. The user can also compare intensities
of preferences with respect to single criteria. Robust ordinal regression then
identifies the whole set of additive value functions (also called utility functions)
compatible with the preference information given by the user. This permits to
compare any pair of alternatives x and y in a simple and intuitive way, as follows:

— x is necessarily at least as good as y, if this is true for all compatible value
functions,

— x is possibly at least as good as y, if this is true for at least one compatible
value function.

The interactive EMO method we are proposing, called NEMO (Necessary-
preference-enhanced Evolutionary Multiobjective Optimization), takes the infor-
mation about necessary preferences into account during optimization, focusing
search on the most promising parts of the Pareto-optimal front. More specifically,
robust ordinal regression based on information obtained through interaction with
the user determines the set of all compatible value functions, and an EMO pro-
cedure searches for all non-dominated solutions with respect to all compatible
value functions in parallel. In the context of EMO, the alternatives considered
in GRIP are solutions of a current population.

We believe that the integration of GRIP into EMO is particularly promising
for two reasons:

1. The preference information required by GRIP is very basic and easy to
provide by the DM. All that is asked for is to compare two solutions, and
to reveal whether one is preferred over the other. Additionally, the DM can
compare the intensity of preference between pairs of solutions.

2. The resulting set of compatible value functions implicitly reveals also an
appropriate scaling of the criteria, an issue that is largely ignored by the
EMO community so far.

The paper is organized as follows. The next section provides a brief overview
of existing EMO/IMO hybrids. Section [ describes the basic concepts of robust
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ordinal regression, presenting UTAYMS and GRIP. Then, Section @ presents the
basic ideas of our method, NEMO. Preliminary empirical results are reported
in Section Bl The paper concludes with a summary and some ideas for future
research.

2 Interactive Evolutionary Multiobjective Optimization

There are various ways in which user preferences can be incorporated into EMO.
Furthermore, there are many IMO techniques, and most of them are suitable for
combination with EMO.

A form of preference information often used is a reference point, and various
ways to guide the search towards a user-specified reference point have been
proposed. Perhaps the earliest such approach has been presented in [§], which
gives a higher priority to objectives in which the goal is not fulfilled. [5] suggests
to use the distance from the reference point as a secondary criterion following
the Pareto ranking. [22] uses an indicator-based evolutionary algorithm, and an
achievement scalarizing function to modify the indicator and force the algorithm
to focus on the more interesting part of the Pareto front.

In the guided MOEA proposed in [2], the user is allowed to specify preferences
in the form of maximally acceptable trade-offs like “one unit improvement in
objective ¢ is worth at most aj; units in objective j”. The basic idea is to modify
the dominance criterion accordingly, so that it reflects the specified maximally
acceptable trade-offs.

[4] proposes an interactive decision support system called I-MODE that im-
plements an interactive procedure built over a number of existing EMO and
classical decision making methods. The main idea of the interactive procedure is
to allow the DM to interactively focus on interesting region(s) of the Pareto front.
The DM has options to use several tools for generation of potentially Pareto-
optimal solutions concentrated in the desired regions. For example, he/she may
use weighted sum approach, utility function based approach, Tchebycheff func-
tion approach or trade-off information. The preference information is then used
by an EMO to generate new solutions in the most interesting regions.

There are several additional papers that integrate EMO and IMO, but due
to space constraints, we refer the interested reader to two recent reviews [T4I].
Instead, in the following, we shall restrict our attention to three papers that
perhaps come closest to what we propose in this paper, namely [I1], [19], and
[13].

[11] suggests a procedure which asks the user to rank a few alternatives, and
from this derives constraints for linear weighting of the objectives consistent with
the given ordering. Then, these are used within an EMO to check whether there
is a feasible linear weighting such that solution x is preferable to solution y. If
this is not the case, it is clear that y is preferred to x. The approach differs from
ours in two important aspects: first, the interaction with the user is only prior to
EMO, while our approach interacts with the user during optimization. Second,
the utility function model is only a linear weighting of the objectives, while we
consider general additive value functions.
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The interactive evolutionary algorithm proposed by [19] allows the user to
provide preference information about pairs of solutions during the run. Based
on this information, the authors compute the “most compatible” weighted sum
of objectives (i.e., a linear achievement scalarizing function) by means of linear
programming, and use this as single substitute objective for some generations
of the evolutionary algorithm. This concept presented in this paper is truly in-
teractive, as preference information is collected during the run. However, as it
reduces the preference information to a single linear weighting of the objectives,
the power of EMO, which is capable of simultaneously searching for multiple so-
lutions with different trade-offs, is not exploited. Furthermore, since only partial
preference information is available, there is no guarantee that the weight vector
obtained by solving the linear programming model defines the DM’s value func-
tion, even if the value function has the form of a weighted sum (naturally, the
bias may become even more significant when the DM’s preferences cannot be
modeled with a linear function).

The method of [I3] is based on the Pareto memetic algorithm (PMA). The
original PMA samples the set of scalarizing functions drawing a random weight
vector for each single iteration and using this for selection and local search. In the
proposed interactive version, preference information from pairwise comparisons
of solutions is used to reduce the set of possible weight vectors. While this
approach is more flexible in terms of the considered value function model, and
changes the value function from generation to generation, it still does not make
explicit use of the EMOQ’s capability to search for multiple solutions in parallel.

Furthermore, all of the methods discussed above require a pre-defined scaling
of the objectives, while we propose a new way that allows to automatically
and continuously adjust the scaling of the objectives to the most likely user
preferences given the information gathered so far.

3 Robust Ordinal Regression

In MCDA, the preference information may be either direct or indirect, depend-
ing whether it specifies directly values of some parameters used in the preference
model (e.g., trade-off weights, aspiration levels, discrimination thresholds, etc.)
or whether it specifies some examples of holistic judgments from which com-
patible values of the preference model parameters are induced. Eliciting direct
preference information from the DM can be counterproductive in real-world de-
cision making situations because of a high cognitive effort required. Eliciting
indirect preferences is less demanding in terms of cognitive effort. Indirect pref-
erence information is mainly used in the ordinal regression paradigm. According
to this paradigm, a holistic preference information on a subset of some reference
or training solutions is known first and then a preference model compatible with
the information is built and applied to the whole set of solutions in order to rank
them.

The ordinal regression paradigm emphasizes the discovery of intentions as an
interpretation of actions rather than as a priori position, which was called by
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March the posterior rationality [16]. It has been known for at least fifty years in
the field of multidimensional analysis. It is also concordant with the induction
principle used in machine learning. This paradigm has been applied within the
two main MCDA approaches: those using a value function as preference model
[2TUT8IT2I20], and those using an outranking relation as preference model [15/17].
This paradigm has also been used since mid nineties’ in MCDA methods involv-
ing a new, third family of preference models - a set of dominance decision rules
induced from rough approximations of holistic preference relations [J].

Recently, the ordinal regression paradigm has been revisited with the aim of
considering the whole set of value functions compatible with the preference infor-
mation provided by the DM, instead of a single compatible value function used
in UTA-like methods [I2/20]. This extension, called robust ordinal regression, has
been implemented in a method called UTASMS [10], and further generalized in
another method called GRIP [7]. UTA®MS and GRIP are not revealing to the
DM one compatible value function, but they are using the whole set of com-
patible (general, not piecewise-linear only) additive value functions to set up a
necessary weak preference relation and a possible weak preference relation in the
whole set of considered solutions.

3.1 Concepts: Definitions and Notation

We are considering a multiple criteria decision problem where a finite set of
solutions A = {z,...,y,... w,...} is evaluated on a family F = {g1,92,...,9n}
of n criteria. Let I = {1,2,...,n} denote the set of criteria indices. We assume,
without loss of generality, that the smaller g;(x), the better solution x on criterion
gi, foralli € I, z € A. A DM is willing to rank the solutions of A from the best
to the worst, according to his/her preferences. The ranking can be complete or
partial, depending on the preference information provided by the DM and on
the way of exploiting this information.

Such a decision-making problem statement is called multiple criteria ranking
problem. It is known that the only information coming out from the formulation
of this problem is the dominance ranking. For any pair of solutions z,y € A,
one of the four situations may arise in the dominance ranking: x is preferred to
y (z dominates y but y does not dominate x), y is preferred to = (y dominates
x but x does not dominate y), x is indifferent to y (x and y dominate each
other), or z is incomparable to y (neither x dominates y nor y dominates z).
Usually, the dominance ranking is very poor, i.e., the most frequent situation is
x incomparable to ¥, in particular if the number of objectives is high.

In order to enrich the dominance ranking, the DM has to provide preference
information which is used to construct an aggregation model making the solu-
tions more comparable. Such an aggregation model is called preference model.
It induces a preference structure on set A, whose proper exploitation permits to
work out a ranking proposed to the DM.

In what follows, the evaluation of each solution z € A on each criterion g; € F’
will be denoted by g;(x).
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Let G; denote the value set (scale) of criterion g;, ¢ € I. Consequently,
G=G1 xGyx...xG,

represents the evaluation space. From a pragmatic point of view, it is reasonable
to assume that G; C R, for ¢ = 1,..., m. More specifically, we will assume that
the value space on each criterion g; is bounded, such that G; = [«, §;], where
a;, Bi, a; < f; are the worst and the best (finite) evaluations, respectively.
Thus, g; : A — Gy, i € I. Therefore, each solution x € A is associated
with an evaluation solution denoted by g(z) = (g1(x),g2(x),...,gn(x)) € G.
For notational simplicity, we will also write z; instead of g;(z) , so g(z) =
(z1,%2,...,7n) € G.

We consider a weak preference relation = on A which means, for each pair of
solutions z,y € A,

x =y <& “xis at least as good as y”.

This weak preference relation can be decomposed into its asymmetric and sym-
metric parts, as follows,

1) z =y = [z = yand not(y = x)] < “x is preferred to y”, and
2) x~y =z =yandy = 2] & “zis indifferent to y”.

3.2 The Ordinal Regression Method for Learning the Whole Set of
Compatible Value Functions

The additive value function considered in ordinal regression is defined on A such
that for each g(z) € G,

Ulg(a) = D uilgii), (1)
i=1

where, u; are non-increasing marginal value functions, u; : G; — R, ¢ € I. For
the sake of simplicity, we shall write (1) as follows,

Ulw) =Y ui(a). @

Recently, two new methods, UTAYMS [10] and GRIP [7], have generalized the
classical ordinal regression approach of the UTA method [I2] in several aspects:

— taking into account all additive value functions (1) compatible with the pref-
erence information, while UTA is using only one such function,

— considering marginal value functions of (1) as general non-decreasing func-
tions, and not piecewise-linear, as in UTA,

— asking the DM for a ranking of reference solutions which is not necessarily
complete (just pairwise comparisons),
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— taking into account additional preference information about intensity of
preference, expressed both comprehensively and with respect to a single
criterion,

— avoiding the use of the exogenous, and not neutral for the result, parameter
¢ in the modeling of strict preference between solutions.

UTASMS produces two rankings on the set of solutions A, such that for any
pair of solutions a,b € A:

— in the necessary ranking, a is ranked at least as good as b if and only if,
U(a) > U(b) for all value functions compatible with the preference informa-
tion,

— in the possible ranking, a is ranked at least as good as b if and only if|
U(a) > U(b) for at least one value function compatible with the preference
information.

GRIP produces four more necessary and possible rankings on the set of solu-
tions A, and on the set of pairs of solutions, A x A.

The necessary ranking can be considered as robust with respect to the pref-
erence information. Such robustness of the necessary ranking refers to the fact
that any pair of solutions is ranked in the same way whatever the additive value
function compatible with the preference information. Indeed, when no preference
information is given, the necessary ranking boils down to the weak dominance
relation (i.e., a is necessarily at least as good as b, if g;(a) < g;(b) for all g; € F),
and the possible ranking is a complete relation. Every new pairwise comparison
of reference solutions, for which the dominance relation does not hold, is enrich-
ing the necessary ranking and it is impoverishing the possible ranking, so that
they converge with the growth of the preference information.

Moreover, such an approach has another feature which is very appealing in
the context of MOO. It stems from the fact that it gives space for interactivity
with the DM. Presentation of the necessary ranking, resulting from a preference
information provided by the DM, is a good support for generating reactions from
the DM. Namely, he/she could wish to enrich the ranking or to contradict a part
of it. Such a reaction can be integrated in the preference information considered
in the next calculation stage.

The idea of considering the whole set of compatible value functions was origi-
nally introduced in UTASMS GRIP (Generalized Regression with Intensities of
Preference) can be seen as an extension of UTACGMS permitting to take into ac-
count additional preference information in form of comparisons of intensities of
preference between some pairs of reference solutions. For solutions z,y, w, z € A,
these comparisons are expressed in two possible ways (not exclusive): (i) com-
prehensively, on all criteria, like “x is preferred to y at least as much as w is
preferred to 2”; and, (i7) partially, on each criterion, like “z is preferred to y at

least as much as w is preferred to z, on criterion g; € F' 7. In the following, we
shall use GRIP.
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3.3 The Preference Information Provided by the Decision Maker

The DM is expected to provide the following preference information in the dia-
logue stage of the procedure:

— A partial preorder >= on A" whose meaning is: for some z,y € A®
T = y< “xisat least as good as y”.

Moreover, - (preference) is the asymmetric part of >, and ~ (indiffer-
ence) is its symmetric part.
— A partial preorder =* on A% x A% whose meaning is: for some z,y,w, z €
AR
(z,y)="(w, z)e“c is preferred to y at least as much as w is preferred to z”.

Also in this case, =* is the asymmetric part of =*, and ~* is its symmetric
part.
— A partial preorder =7 on AT x A whose meaning is: for some x,y,w,z €
AR (z,y) =F (w, z) < “x is preferred to y at least as much as w is preferred
to 2”7 on criterion g;, i € I.

In the following, we also consider the weak preference relation =; being a
complete preorder whose meaning is: for all z,y € A,

x>,y <& ‘“zisatleast as good as y” on criterion g;, i€ I.

Weak preference relations >=;, i € I, are not provided by the DM, but they are
obtained directly from the evaluation of solutions = and y on criteria g;, i.e.,
z =iy gi(z) <gily),iel

3.4 Linear Programming Constraints

In this subsection, we present a set of constraints that interprets the preference
information in terms of conditions on the compatible value functions.

To be compatible with the provided preference information, the value function
U : A — [0,1] should satisfy the following constraints corresponding to the DM’s
preference information:

a) Ulw)>U(z) if w> z

b) Ulw)=U(z)if w~z

) Uw) =U(z) > U(z) = U(y) if (w,z) =" (z,y)

d) Uw) —U(z) =U(z) — U(y) if (w,z) ~* (z,y)

e) ui(w) >wu(z)ifw>x;z,iel

) wi(w) —wui(z) > ui(x) — ui(y) %f (w, z) =F (z,y), z el
9) ui(w) —ui(z) = wi(z) —wi(y) if (w,2) ~7 (x,y), i €1

Moreover, the following normalization constraints should also be taken into
account:

h) u;(x}) =0, where z} is such that =} = max{g;(z) : = € A4};
i) > ,erui(y;) =1, where y; is such that y; = min{g;(z) : = € A}.

For computational details, the reader is referred to [7].
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3.5 The Most Representative Value Function

The robust ordinal regression builds a set of additive value functions compatible
with preference information provided by the DM and results in two rankings,
necessary and possible. Such rankings answer to robustness concerns, since they
provide, in general, “more robust” conclusions than a ranking made by an ar-
bitrarily chosen compatible value function. However, in some decision-making
situations, it may be desirable to give a score to different solutions, and de-
spite the interest of the rankings provided, some users would like to see, and
they indeed need, to know the “most representative” value function among all
the compatible ones This allows assigning a score to each solution. Recently, a
methodology to identify the “most representative” function in GRIP without
losing the advantage of taking into account all compatible value functions has
been proposed in [6]. The idea is to select among all compatible value functions
the most discriminant value function for consecutive solutions in the necessary
ranking, i.e., that value function which maximizes the difference of scores be-
tween solutions related by preference in the necessary ranking. To break ties,
one can wish to minimize the difference of scores between solutions not related
by preference in the necessary ranking. This can be achieved using the following
procedure:

1. Determine the necessary preference relations in the considered set of solu-
tions.

2. For all pairs of solutions (a,b), such that a is necessarily preferred to b, add

the following constraints to the linear programming constraints of GRIP:

U(a) >U(b) +e¢.

Maximize the objective function e.

4. Add the constraint € = £*, with €* being the resulting maximal ¢ from point
3), to the linear programming constraints of point 2).

5. For all pairs of solutions (a,b), such that neither a is necessarily preferred
to b nor b is necessarily preferred to a, add the following constraints to the
linear programming constraints of GRIP and to the constraints considered
in above point 4): U(a) — U(b) < 6 and U(b) — U(a) < 4.

6. Minimize §.

w

This procedure maximizes the minimal difference between values of solutions
for which the necessary preference holds. If there is more than one such value
function, the above procedure selects the most representative compatible value
function giving the largest minimal difference between values of solutions for
which the necessary preference holds, and the smallest maximal difference be-
tween values of solutions for which the possible preference holds.

Notice that the concept of the “most representative” value function thus de-
fined is still based on the necessary and possible preference relations, which
remain crucial for GRIP. In a sense, it gives the most faithful representation
of these necessary and possible preference relations. Notice also that the above
procedure can be simplified by joint maximization of Me — § where M is a “big
value”.
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In the following, we will use the most representative value function for con-
tinuously adapting the scaling of the objectives in a non-linear way.

4 Necessary-Preference-Enhanced Evolutionary
Multiobjective Optimization — NEMO

Our main idea is to integrate the concept of GRIP into an EMO approach, in
particular NSGA-II [3]. NSGA-II is one of today’s most prominent and most
successful EMO algorithms. It ranks individuals according to two criteria.

The primary criterion is the so-called dominance-based ranking. This method
ranks individuals by iteratively determining the non-dominated solutions in the
population (non-dominated front), assigning those individuals the next best rank
and removing them from the population. The result is a partial ordering, favoring
individuals closer to the Pareto-optimal front.

As secondary criterion, individuals which have the same dominance-rank (pri-
mary criterion) are sorted according to crowding distance, which is defined as the
sum of distances between a solution’s neighbors on either side in each dimension
of the objective space. Individuals with a large crowding distance are preferred,
as they are in a less crowded region of the objective space, and favoring them
aims at preserving diversity in the population.

In our approach, we will

1. Replace the dominance-based ranking by the necessary ranking. The neces-
sary ranking is calculated analogously to the dominance-based ranking, but
taking into account the preference information by the user through the nec-
essary preference relations. More specifically, first put in the best rank those
solutions which have no competitor which would be necessarily preferred,
remove them from the population, etc.

2. Replace the crowding-distance by a distance calculated taking into account
the multidimensional scaling given by the “most representative value func-
tion” among the whole set of compatible value functions (see sub-section B.5]).
While in NSGA-IT the crowding distance is calculated in the space of ob-
jective functions, in NEMO it is calculated in the space of marginal value
functions which are components of the "most representative” value func-
tion. Given a solution z, its crowding distance is calculated according to the
following formula:

Crowding distance(x) = Z ’ui(yi) - ui(zi)‘ -
i=1

)

S U - Uih)
=1

where U is the “most representative value function”, u; are its marginal
value functions, and 3 and 2! are left and right neighbors of = in dimension
of marginal value u;. Remark that for a given n, we can have up to 2n
different neighbors of x in all dimensions, due to non-univocal selection of
solutions with equal marginal values. In fact, we select the neighbors such
as to diversify them as much as possible.
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Algorithm 1. Basic NEMO
Generate initial solutions randomly
Elicit user preferences {Present to user a pair of solutions and ask for a preference
information}
Determine necessary ranking {Will replace dominance ranking in NSGA-II}
Determine secondary ranking {Order solutions within a front, based on crowding
distance measured in terms of the “most representative value function”}
repeat
Mating selection and offspring generation
if Time to ask DM then
Elicit user preferences
end if
Determine necessary ranking
Determine secondary ranking
Environmental selection
until Stopping criterion met
Return all preferred solutions according to necessary ranking

Preferences are elicited by asking the DM to compare some pairs of solutions,
and specify a preference relation between them. This is done during the run of
the NSGA-II.

The overall algorithm is outlined in Algorithm [l Although the general proce-
dure is rather straightforward, there are several issues that need to be considered:

1. How many pairs of solutions are shown to the DM, and when? Here, we
decide to ask for one preference relation every k generations, i.e., every x
generations, NSGA-II is stopped, and the user is asked to provide preference
information about one given pair of individuals.

2. Which pairs of solutions shall be shown to the DM for comparison? Here,
we randomly pick a small set of non-dominated solutions (according to the
necessary ranking). This also prevents the user from specifying inconsistent
information.

5 Experimental Results

An empirical evaluation of interactive EMO methods is difficult, because the
test environment has to include a model of the user behavior. For testing, we
use the simple 30-dimensional ZDT1 test function. We assume that our arti-
ficial user makes decisions with respect to a simple predefined value function
U(z) = —(0.6f1(z) + 0.4f2(x)). This function is unknown to NEMO, but is
used to simulate user’s comparisons of solutions when preferences are elicited.
In every k-th generation, NEMO randomly selects two individuals from the non-
dominated solutions according to the necessary ranking, and receives as feedback
the solution preferred by the DM according to the predefined value function. In
particular, only pairwise comparisons of solutions are considered here, while in-
tensities of preferences between pairs of solutions are not (yet) considered. The
population size has been set to 32.
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Fig. 1. Results of NEMO and NSGA-II on ZDT1 after 50, 100 and 200 generations,
with preference elicitation every 20 generations. The dashed line indicates the artificial
user’s value function.
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Fig. 2. Results of NEMO and NSGA-II on ZDT1 after 50, 100 and 200 generations,
with preference elicitation in every generation. The dashed line indicates the artificial
user’s value function.

Figure [ shows results of NEMO and NSGA-IT after 50, 100 and 200 gen-
erations, when the preference information concerning one pairwise comparison
is gathered every 20 generations. As can be seen, NEMO converges faster than
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Fig. 3. Value of the most preferred solutions in successive generations of NEMO and
NSGA-II

NSGA-II. After 50 generations, the solutions obtained by NEMO are as good as
the solutions obtained by NSGA-II after 100 generations. Moreover, in the course
of generations, the population of solutions obtained by NEMO is narrowed to
a smaller part of the Pareto front than the population of solutions obtained by
NSGA-II. This is because NEMO concentrates on on the user-preferred solutions
on the Pareto front, while NSGA-II attempts to approximate the whole front.

The tendency observed in Figure [I] is reinforced when the preferences are
gathered more often. Figure2lshows results of NEMO and NSGA-IT after 50, 100
and 200 generations, when the preference information concerning one pairwise
comparison is gathered in every generation. After 100 generations NEMO is
reaching equally good solutions as NSGA-IT after 200 generations. Moreover,
due to the richer preference information than in the previous case, the solutions
obtained by NEMO are focused on a smaller part of the Pareto front.

Figure Blshows the evolution of the value of the artificial user’s value function
for the most preferred solution in successive generations. It permits to observe
the convergence speed of NEMO and NSGA-II. “NEMO 20” corresponds to the
case presented in Figure [l and “NEMO 1”7 to the case presented in Figure

6 Conclusion

We presented an interactive EMO method called NEMO. It combines the advan-
tages of the well known EMO method NSGA-II with an MCDA method GRIP
enabling the user interaction based on robust ordinal regression. The main ad-
vantages of the proposed methodology are the following:
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1. It models the user’s preferences in terms of very general value functions,

2. It requires a preference information expressed in a simple and intuitive way
(comparisons of solutions or comparisons of intensities of preferences),

3. It considers all value functions compatible with the user’s preferences, with
the goal to generate a representative approximation of all Pareto-optimal
solutions compatible with any of these value functions,

4. With respect to crowding distance, it permits to calculate distances in utility
space, rather than objective space, thereby alleviating the need of scaling the
objectives.

Preliminary empirical results show that the proposed NEMO method works
as expected and is able to converge faster to the user-preferred solutions than
NSGA-II without taking user preferences into account.

Clearly, a more thorough empirical analysis on a variety of test functions and
value functions is necessary. Also, we are currently elaborating and extending
the approach in various directions. In particular, we are implementing improved
interaction mechanisms, with adaptive methods to determine when a DM should
be asked for preference information, and what individuals to present for compar-
ison. We will also extend the current interaction to allow additional preference
information to be incorporated. Apart from the above mentioned intensities of
preferences, we plan to integrate into GRIP maximum/minimum trade-off in-
formation, e.g., one unit improvement in objective f; is worth at most w units
worsening in objective fs.

Finally, we plan to elaborate a slightly different approach: instead of calcu-
lating the necessary preference relation in the population of solutions, we could
look for solutions that are the best for at least one compatible value function.
The expected advantages of this new approach are speeding up of calculations
and of the convergence to the most interesting part of the Pareto front.
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