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Abstract. This work proposes a method to search effectively on many-
objective problems by instantaneously partitioning the objective space
into subspaces and performing one generation of the evolutionary search
in each subspace. The proposed method uses a partition strategy to de-
fine a schedule of subspace sampling, so that different regions of objective
space could be emphasized at different generations. In addition, it uses
an adaptive ε-ranking procedure to re-rank solutions in each subspace,
giving selective advantage to some of the solutions initially ranked high-
est in the whole objective space. Adaptation works to keep the actual
number of highest ranked solutions in each subspace close to a desired
number. The performance of the proposed method is verified on MNK-
Landscapes. Experimental results show that convergence and diversity of
the solutions found can improve remarkably on 4 ≤M ≤ 10 objectives.

1 Introduction

Multiobjective evolutionary algorithms (MOEAs) [1,2] optimize simultaneously
two or more objective functions, aiming to find a set of trade-off solutions in a
single run of the algorithm. Most state of the art MOEAs use Pareto dominance
within the selection procedure of the algorithm to rank solutions. Selection based
on Pareto dominance is thought to be effective for problems with convex and
non-convex fronts and has been successfully applied in two and three objectives
problems.

Recently, there is a growing interest on applying MOEAs to solve many-
objective optimization problems, i.e. problems with four or more objectives.
However, current research reveals that the number of Pareto non-dominated
solutions gets substantially larger as we increase the number of objectives of
the problem [3,4]. Hence, ranking by Pareto dominance becomes coarser and
too many solutions are assigned the same rank. This affects the effectiveness of
selection, severely deteriorating the performance of MOEAs [5,6,7].

In this work, we propose a method to search on many-objective problems by
instantaneously partitioning the objective space into subspaces and performing
one generation of the evolutionary search in each subspace. Partitioning of the
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objective space into subspaces aims to instantaneously emphasize the search
within smaller regions of objective space. The proposed method uses a parti-
tion strategy to define a schedule of subspace sampling, so that different regions
could be emphasized at different generations. In addition, it uses an adaptive
ε-ranking procedure to re-rank solutions in each subspace, giving selective ad-
vantage to some of the solutions initially ranked highest in the whole objective
space, so that selection can put more emphasizes in exploitation. Adaptation
in the re-ranking procedure works to keep the actual number of highest ranked
solutions in each subspace close to a desired number. The combination of space
partitioning, partitioning strategy, and adaptive ε-ranking allows to perform an
effective search aiming to improve convergence and diversity of solutions on
many-objective problems.

In this paper, we implement the proposed method using NSGA-II’s framework
[8]. We test the proposed method on MNK-Landscapes [3,4] with 4 ≤ M ≤ 10
objectives, N = 100 bits, and 0 ≤ K ≤ 50 epistatic interactions. Experimental
results show that convergence and diversity of the solutions found can improve
remarkably on 4 ≤M ≤ 10 objectives for all K.

2 Multiobjective Optimization Concepts and Definitions

Let us consider, without loss of generality, a maximization multiobjective prob-
lem with M objectives:

maximize f(x) = (f1(x), f2(x), · · · , fM (x)) (1)

where x ∈ X is a solution vector in the solution space X , and f1, f2, · · · , fM the
M objective functions to be optimized.

Definition 1 (Objective space φ). The objective space of the problem is de-
termined by the set φ = {f1, f2, · · · , fM} of the M objective functions to be
optimized.

One dimensional comparison and Pareto optimality are two popular methods
used to decide what solution to choose from a set of solutions. Yu [9] showed
that these two methods are extreme cases in the entire domain of domination
structures and that there are infinity valid methods lying between them, which
suitability depends on how much information is known on the decision maker’s
preferences. Within the EMO community, these other domination structures are
also known as relaxed forms of Pareto dominance and one method to implement
them is ε-dominance [10]. Pareto dominance and ε-dominance concepts are of
special relevance to this work and are defined as follows.

Definition 2 (Pareto dominance). A solution x is said to Pareto dominate
other solution y in the objective space φ if the two following conditions are
satisfied:

∀fm ∈ φ fm(x) ≥ fm(y) ∧
∃fm ∈ φ fm(x) > fm(y). (2)

Here, x dominates y is denoted by f(x) � f(y).
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Definition 3 (ε-dominance). A solution x is said to ε-dominate other solution
y in the objective space φ if the two following conditions are satisfied:

∀fm ∈ φ (1 + ε)fm(x) ≥ fm(y) ∧
∃fm ∈ φ (1 + ε)fm(x) > fm(y). (3)

where ε > 0.0. Here, x ε-dominates y is denoted by f(x) �ε f(y).

Other important concepts we use to describe our algorithm are defined as follows.

Definition 4 (Subspace ψ). A subspace ψ of φ is a lower dimension space
that includes some of the functions in φ, i.e. ψ ⊂ φ.

Definition 5 (Non-overlapping subspaces). Two subspaces ψ1 ⊂ φ and
ψ2 ⊂ φ are said to be non-overlapping if they have no common objectives, i.e.
ψ1 ∩ ψ2 = ∅.
Definition 6 (Space partition ΨNS). An space φ is said to be partitioned into
NS subspaces, denoted as ΨNS , if all subspaces are non-overlapping and no objec-
tive function in φ is left unassigned to a subspace, i.e. ΨNS = {ψ1, ψ2, · · · , ψNS |
ψ1 ∩ ψ2 · · · ∩ ψNS = ∅ ∧ ψ1 ∪ ψ2 · · · ∪ ψNS = φ}.
Definition 7 (Subspace ε-dominance). A solution x is said to ε-dominate
other solution y in the subspace ψ if:

∀fm ∈ ψ (1 + ε)fm(x) ≥ fm(y) ∧
∃fm ∈ ψ (1 + ε)fm(x) > fm(y). (4)

Here, x ε-dominates y in the subspace ψ is denoted by f(x) �εψ f(y).

3 Method

3.1 Concept

In this section, we describe the proposed method to search on many-objective
problems by space partitioning and adaptive ε-ranking. In the following, we
call this method ε Ranking Multiobjective Optimizer (εR-EMO). The goal of
εR-EMO is to find a set of solutions with good properties of convergence and
diversity. To achieve its goal, εR-EMO first ranks solutions by Pareto dominance
calculated in the whole objective space. Then, it instantaneously partitions the
objective space into subspaces, re-ranks solutions for each subspace using an
adaptive subspace-ε-ranking procedure, and performs one generation of the evo-
lutionary search within each subspace. During the next cycle of the algorithm,
parents and offspring from all subspaces will be joined together so that they will
be ranked again in the whole objective space.
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By partitioning the objective space into subspaces, we aim to instantaneously
emphasize the search within smaller regions of objective space. At each gener-
ation, we don’t search in all possible subspaces. Instead, we define a schedule
of subspace sampling by using a partition strategy. Re-ranking of solutions by
the adaptive subspace-ε-ranking aims to give selective advantage to some of the
usually too many solutions assigned highest rank in a many-objective subspace,
so that selection can put more emphasizes in exploitation. Adaptation in the re-
ranking procedure works to keep the actual number of highest ranked solutions
in each subspace close to a desired number. The combination of space partition-
ing, partitioning strategy, and adaptive subspace-ε-ranking, aims to effectively
search on many-objective problems.

In the following we first explain the general flow of the proposed method using
NSGA-II’s framework [8] and then explain in detail its distinctive features.

Procedure 1. εR-EMO
Input: NS , number of subspaces at each generation. α, desired number of solutions

with highest rank in each subspace (as a fraction of the entire parent population)
Output: F1, set of Pareto non-dominated solutions

1: P ← ∅, Q ← random // initialize parent P and offspring Q populations
2: ε1, ε2, · · · , εNS ← 0.0
3: repeat
4: evaluation(Q, φ) // φ = {f1, f2, · · · , fM}
5: F ← non-domination-sorting(P ∪Q) // F = {Fi} (i = 1, 2 · · · , NF )
6: crowding-distance(F)
7: ΨNS ← subspace-partition(φ, NS) // ΨNS = {ψ1, ψ2, · · · , ψNS}
8: P ← ∅, Q← ∅
9: for s = 1 to NS do

10: Fεs ← subspace-ε-ranking (ψs, εs, F) // Fεs = {Fεsj } (j = 1, 2 · · · , Nεs
F )

11: εs ← adaptation(εs, α, |Fεs1 |) // adapt εs for the next generation
12: Ps ← truncation(Fεs) // |Ps| = |P|/NS , |Fεs | = |P|+ |Q|
13: Qs ← recombination and mutation(Ps) // |Qs| = |Q|/NS
14: P ← P ∪ Ps, Q ← Q∪Qs
15: end for
16: until termination criterion is met
17: return F1

3.2 εR-EMO

εR-EMO implemented in NSGA-II’s framework [8] is illustrated in Procedure 1.
See that solutions are evaluated in all M objectives φ = {f1, f2, · · · , fM},
ranked based on Pareto dominance, and assigned a crowding measure using
non-domination sorting and crowding distance procedures [8], respectively (lines
4-6). After this initial ranking, solutions are classified in sets of non-dominated
solutions F = {Fi} (i = 1, 2, · · · , NF ). Next, the objective space φ is partitioned
into NS non-overlapping subspaces ΨNS = {ψ1, ψ2, · · · , ψNS} (line 7). Then, for
each subspace ψs, solutions F are re-ranked and re-classified in Fεs = {F εs

j }
(i = 1, 2, · · · , N εs

F ) using a subspace-ε-ranking procedure, where N εs
F ≥ NF ,
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creating a finer grained ranking of solutions (line 10). Subspace-ε-ranking uses
parameter εs to control the number of highest ranked individuals |Fεs

1 |. Param-
eter εs is adapted every generation (line 11) to keep |Fεs

1 | close to a desired
number. The parent population in each subspace Ps is obtained by truncating
F εs based on rank and crowding distance (line 12). That is, groups of solutions
F εs
j are assigned iteratively to Ps by rank order, starting with F εs

1 . If F εs
j over-

fills Ps, crowding distance calculated in the whole space φ is used to choose the
required number o solutions. Mating for recombination is carried out by binary
tournament, where winners are decided by rank in the subspace ψs breaking ties
by crowding distance in φ.

3.3 Subspace Partitioning

In our approach, we partition the M dimensional space φ = {f1, f2, · · · , fM} into
NS non-overlapping subspaces ΨNS = {ψ1, ψ2, · · · , ψNS}. All subspaces have
the same dimension MS = M/NS in case r = (M mod NS) is zero. Other-
wise, r of the NS subspaces have dimension MS = 
M/NS� + 1 and the rest
MS = 
M/NS�. The number of all possible ways to partition φ into subspaces
of dimension MS is very large. In our approach, we don’t explicitly search in
all possible subspaces at each generation. Instead, we set NS to a small value
and define a schedule of subspace sampling by using a partitioning strategy.
We investigate three strategies to partition φ. Namely, random, shift, and fixed
partition strategies.

Random strategy randomly assigns objectives fi ∈ φ to subspaces ψs ∈ ΨNS .
With this strategy, any possible MS dimensional subspace of φ could be formed.
However, it does not seek to correlate the s-th subspace ψs from generation t to
the next.

Shift strategy, at the first generation, assigns deterministically objectives fi ∈
φ to subspaces ψs ∈ ΨNS , so that objectives assigned to a given ψs are ordered by
objective index i. Then, in subsequent generations, the objective with highest
index in the s-th subspace is shifted to the ((s + 1) mod NS)-th subspace,
∀ψs ∈ ΨNS . This strategy correlates the s-th subspace from generation t to the
next. In fact, subspace ψs at generation t overlaps with ψs at generation t − 1
in all but one objective. However, not all possible MS dimensional subspaces of
φ could be formed.

Fixed strategy assigns deterministically objectives fi ∈ φ to subspaces ψs ∈
ΨNS and keep the same assignment throughout the generations. With this strat-
egy only NS subspaces of φ could be formed.

These strategies would allow us to verify the impact of subspace sampling on
the quality of solutions and the effect of subspace correlation from one generation
to the next on the adaptation of ε for subspace-ε-ranking.

3.4 Adaptation of ε

In our method, solutions are re-ranked in each subspace by using a subspace-
ε-ranking procedure in which the number of solutions assigned highest rank
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depends on the value set to ε (≥ 0) and on the instantaneous distribution of
solutions in objective space (see below). Although it is difficult to tell in advance
exactly how many solutions will be assigned highest rank for a given value of ε,
we know that larger values of ε decrease the number of highest ranked solutions
and vice versa. The algorithm takes advantage of this correlation to adapt ε at
each generation in order to keep the actual number of highest ranked solutions
close to a desired number [12]. The desired number of highest ranked solution
in each subspace is specified by α × |P|, where α is a parameter in the range
[0.0,1.0] set by the user and |P| is the size of the entire parent population.

In our method, instead of using one ε for all subspaces, we adapt one εs for
each one of the NS subspaces ψs. Note that the actual combination of objectives
that define ψs change with time, depending on the partition strategy. So, adap-
tation of εs reacts to the characteristics of the different instantaneous subspaces
(actual combinations of fi) assigned to ψs. Since the dimension of the subspace
is strongly correlated to the value of ε that renders the desired number of highest
ranked solutions α× |P |, when the space φ is partitioned we make sure that the
dimension of the subspace ψs remains the same throughout the generations.

3.5 Subspace-ε-Ranking

Subspace-ε-ranking fine grains ranking of solutions initially ranked by Pareto
dominance in the objective space φ, using a randomized ε-sampling procedure in
the subspace ψ ⊂ φ that favors a good distribution of solutions based on dom-
inance regions wider than conventional Pareto dominance. Subspace-ε-ranking
extends ε-ranking [13], where ε-sampling acts on φ instead of ψ. In the following,
we first explain ε-sampling and then subspace-ε-ranking.
ε-sampling assumes that there is a set of equally ranked solutions from which a

subset should be chosen to give them selective advantage in order to proceed fur-
ther with the evolutionary search. That is, ε-sampling acts as a decision making
procedure, not to find a final solution, but to help selection of the evolutionary
algorithm. Hence, the sampling heuristic must reflect criteria that favor an ef-
fective search. Here, the sample of solutions to be given selective advantage are
obtained with the following criteria,

– Extreme solutions are always part of the sample.
– Each (not extreme) sampled solution is the sole sampled representative of its

area of influence. The area of influence of the sampled solutions is determined
by a domination region wider than Pareto dominance, i.e. ε-dominance.

– Sampling of (not extreme) solutions follows a random schedule.

The first criterion tries to push the search towards the optimum values of
each fitness function, aiming to find non-dominated solutions in a wide area of
objective space. The second criterion assures that only one solution in a given
zone of objective space is given higher rank, trying to distribute the search effort
more or less uniformly among the different zones represented in the actual popu-
lation. The third criterion dynamically establishes the zones that are represented
in the sample. Also, in the case that there are several solutions within each zone,
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it increases the likelihood that the sampled solutions that will be given higher
rank are different from one generation to the next, increasing the possibility of
exploring wider areas of objective and variable space.

Procedure 2 illustrates ε-sampling algorithm. Let us denote A the set of so-
lutions that have been assigned the same rank based on conventional Pareto
dominance, for example by applying non-domination sorting [8]. ε-sampling re-
turns the sampled solutions S ⊂ A that will be given selective advantage as
well as the set of solutions Dε to be demoted. See that extreme solutions are
the first to be assigned to the sample S (lines 1,2). Then, one by one, solutions
are randomly chosen and included in S (lines 4-6), whereas solutions that lie
in the wider domination region of the randomly picked solution are assigned to
Dε (lines 7,8). Note that subspace ε-dominance f(z) �εψ f (y) is used. Fig. 1
(a) illustrates the application of ε-sampling on the set of solutions A = F1. The
numbers close to the solutions represents the random schedule in which solutions
are sampled (0 means extreme solutions, which are all selected at once).

Procedure 2. ε-sampling (ψ, ε, A, S, Dε)
Input: Subspace ψ, ε-dominance factor ε and a set of solutions A
Output: S and Dε (S∪Dε = A). S contains the sample of solutions from A, whereas
Dε contains ε-dominated solutions in ψ

1: X ← {x ∈ A | fm(x) = max(fm(·)), ∀fm ∈ ψ}
2: S ← X , A ← A \ X , Dε ← ∅
3: while A �= ∅ do
4: r ← rand() // 1 ≤ r ≤ |A|
5: z ← r-th solution ∈ A
6: S ← S ∪ {z}
7: Y ← {y ∈ A | f (z) 	εψ f (y), z �= y}
8: Dε ← Dε ∪ Y
9: A ← A \ {{z} ∪ Y}

10: end while
11: return

The ε-sampling procedure works on a set of equally ranked solutions, however
within a population there could be several sets of such solutions (each set with a
different rank). Here, we explain subspace-ε-ranking to re-rank all possible sets
of equally ranked solutions using ε-sampling.

Subspace-ε-ranking is applied at each generation for each subspace after non-
domination sorting to reclassify the sets Fi (i = 1, · · · , NF ). Procedure 3 de-
scribes subspace-ε-ranking algorithm. See that the reclassified sets Fεs

j (j =
1, · · · , N εs

F ) now contains only the sample of solutions S ⊂ Fi found by ε-
sampling (lines 8,9). Also, see that solutions Dε, which are not part of the sample
(line 8) are demoted by joining them with solutions of a lower ranked set in the
next iteration of the loop (line 4). Thus, F εs

1 contains some of the solutions
initially ranked first, but Fεs

j , j > 1, can contain solutions that initially were as-
signed to sets with different ranks. This gives chance to lateral diversity present
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Fig. 1. ε-sampling on (a) the set of solutions initially ranked first and (b) on the set
of solutions initially ranked second joined with solutions demoted from the first set

in the initial ranking of solutions and can punish highly crowded solutions even
if they are initially ranked first by conventional Pareto dominance.

Procedure 3. subspace-ε-ranking (ψs, εs, F , F εs)
Input: Subspace ψs, ε-dominance factor εs and solutions F classified in fronts Fi

(i = 1, · · · , NF ) by non-domination sorting
Output: Fεs , solutions re-classified in groups Fεsj (j = 1, · · · , Nεs

F )

1: Dε ← ∅, i← 1, j ← 1
2: repeat
3: if i ≤ NF then
4: A ← Fi ∪ Dε , i← i+ 1
5: else
6: A ← Dε
7: end if
8: ε-sampling(ψ, εs, A, S , Dε)
9: Fεsj ← S , j ← j + 1

10: until Dε = ∅
11: return

Fig. 1 illustrates ε-ranking calling on ε-sampling to re-rank the set F1 of
solutions initially ranked first and the set F2 of solutions ranked second joined
with the demoted solutions Dε from F1. The example illustrates the application
of ε-sampling to a 2 dimensional objective space φ. When ε-sampling is applied to
a subspace ψ ⊂ φ, the non-dominated solutions in φ projected in the subspace ψ
(assuming a 2 dimensional subspace) would look similar to Fig. 1 (b). ε-sampling
will be applied to all projected solutions.

4 Test Problems, Performance Measures and Parameters

4.1 Multiobjective MNK-Landscapes

In this work we test the performance of the algorithms on multiobjective MNK-
Landscapes. A multiobjective MNK-Landscape [3,4] is defined as a vector func-
tion mapping binary strings into real numbers f (·) = (f1(·), f2(·), · · · , fM (·)) :
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BN → �M , where M is the number of objectives, fi(·) is the i-th objective
function, B = {0, 1}, and N is the bit string length. K = {K1, · · · , KM} is a
set of integers where Ki (i = 1, 2, · · · ,M) is the number of bits in the string
that epistatically interact with each bit in the i-th landscape. Each fi(·) can be
expressed as an average of N functions as follows

fi(x) =
1
N

N∑

j=1

fi,j(xj , z
(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

Ki
) (5)

where fi,j : BKi+1 → � gives the fitness contribution of bit xj to fi(·), and
z
(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

Ki
are the Ki bits interacting with bit xj in the string x. The

fitness contribution fi,j of bit xj is a number between [0.0, 1.0] drawn from a
uniform distribution. Thus, each fi(·) is a non-linear function of x expressed by
a Kauffman’s NK-Landscape model of epistatic interactions [11]. In addition, it
is also possible to arrange the epistatic pattern between bit xj and the Ki other
interacting bits. That is, the distribution Di = {random, nearest neighbor} of
Ki bits among N . Thus, M , N , K = {K1,K2, · · · ,KM}, and D = {D1, D2, · · · ,
DM}, completely specify a multiobjective MNK-Landscape.

4.2 Performance Measures

In this work, we use the hypervolume H and coverage C measures [14] to evaluate
and compare the performance of the algorithms. The measure H calculates the
volume of the M -dimensional region in objective space enclosed by a set of
non-dominated solutions and a dominated reference point. Let A be a set of
non-dominated solutions. The hypervolume of A can be expressed as

H(A) = ∪|A|
i=1(Vi − ∩i−1

j=1ViVj) (6)

where Vi is the hypervolume rendered by the point xi ∈ A and the reference
point. In this work, the reference point is set to [0.0, · · · , 0.0]. Given two sets of
non-dominated solutions A and B, if H(A) > H(B) then set A can be consid-
ered better on convergence and/or diversity of solutions. To calculate H, we use
Fonseca et al. [15] algorithm, which significantly reduces computational time.

The coverage C measure [14] provides complementary information on conver-
gence. Let us denote A and B the sets of non-dominated solutions found by two
algorithms. C(A,B) gives the fraction of solutions in B that are dominated at
least by one solution in A. More formally,

C(A,B) =
| {b ∈ B|∃a ∈ A : f (a) � f(b)} |

| B | . (7)

C(A,B) = 1.0 indicates that all solutions in B are dominated by solutions in A,
whereas C(A,B) = 0.0 indicates that no solution in B is dominated by solutions
in A. Since usually C(A,B) + C(B,A) �= 1.0, both C(A,B) and C(B,A) are re-
quired to understand the degree to which solutions of one set dominate solutions
of the other set.
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4.3 Parameters

In this work, we test the performance of the algorithm on MNK-Landscapes
with 4 ≤ M ≤ 10 objectives, N = 100 bits, number of epistatic interactions
K = {0, 1, 3, 5, 10, 15, 25, 35, 50} (K1, · · · ,KM = K), and random epistatic pat-
terns among bits for all objectives (D1, · · · , DM = random). Results presented
below show the average performance of the algorithms on 50 different problems
randomly generated for each combination of M , N and K. In the plots, error
bars show 95% confidence intervals on the mean.

In the following sections we analyze results by εR-EMO, comparing them
with results by conventional NSGA-II. The algorithms use parent and offspring
populations of size |P| = |Q| = 100, two point crossover for recombination with
rate pc = 0.6, and bit flipping mutation with rate pm = 1/N per bit. The number
of evaluations is set to 3 × 105. We study the performance of εR-EMO setting
the number of subspaces to NS = {1, 2}, varying the parameter α. For NS = 1
(no subspace partitioning, ΨNS = {ψ1 = φ}), we set α = {1.0, 0.7, 0.5, 0.3} so
that the desired number of solutions with highest rank after subspace-ε-ranking
is α × |P| = {100, 70, 50, 30}, respectively. For NS = 2 subspaces (subspace
partition ΨNS = {ψ1, ψ2}), we set α = {0.5, 0.35, 0.25, 0.15} so that α × |P| =
{50, 35, 25, 15}, respectively, in each of the two subspaces.

5 Experimental Results and Discussion

5.1 Performance by εR-EMO with No Objective Space Partitioning

In this section, we discuss the performance of εR-EMO when no objective space
partitioning is considered (NS = 1), setting the fraction between desired num-
ber of highest ranked individuals and population size to α = α∗ that achieves
maximum hypervolume H. Fig. 2 (a) shows the average ratio H(E)

H(N) , where E
and N denote the set of solutions found by εR-EMO and conventional NSGA-II,
respectively. Thus, a ratio greater than 1.0 indicates better H by εR-EMO than
conventional NSGA-II. As a reference, we include a horizontal line to represent
the H(N) values normalized to 1.0. From this figure, we can see that εR-EMO
can significantly improve H on 4 ≤ M ≤ 10 objectives problems, for all values
of K (up to 27% improvement). Note that improvements on H become larger
as we increase the number of objectives M from 4 to 6, whereas improvements
on H are similarly high for 8 ≤ M ≤ 10. Due to space limitations, we include
results for M = {4, 6, 8, 10} only and not for M = {5, 7, 9}.

Improvements on H can be due to solutions with better convergence, better
diversity, or both. To complement the analyzes of results on H we also present
results using the C measure. Fig. 2 (b) shows the average C values between con-
ventional NSGA-II and εR-EMO set with α∗. From this figure, we can be see that
C(N,E) is close to 0.0 for most K and M . This indicates that there are almost
no solutions by conventional NSGA-II that dominate solutions by εR-EMO. On
the other hand, the values of C(E,N) are very high for 4 objectives (in the range
0.60-0.85) and reduce gradually as we increase M up to 10 objectives (in the
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division (S = 1) is considered. εR-EMO is set to α∗ that achieves maximum H(E).
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Fig. 3. Results by NSGA-II and εR-EMO partitioning the objective space in two sub-
spaces (S = 2) using random strategy and setting α∗ that achieves maximum H(E)

range 0.01-0.08). This suggests that a better convergence of solutions contributes
to the increases of H by εR-EMO on M = 4 problems. As we increase M , gains
on diversity gradually become more significant than gains on convergence as the
reason for the significant improvement of H on 6 ≤M ≤ 10.

5.2 Performance by εR-EMO with Objective Space Partitioning

In this section we analyze the performance of εR-EMO partitioning instanta-
neously the objective space into two subspaces using the random, shift, and fixed
partition strategies introduced in section 3.

First, we show results by the random partitioning strategy in Fig. 3. Looking
at Fig. 3 (a) and comparing with Fig. 2 (a), we can see that ranking on subspaces
using a random strategy leads to a remarkable improvement on H for all values
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Fig. 4. Results by NSGA-II and εR-EMO partitioning the objective space in two sub-
spaces (S = 2) using shift strategy and setting α∗ that achieves maximum H(E)
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Fig. 5. Results by NSGA-II and εR-EMO partitioning the objective space in two sub-
spaces (S = 2) using fixed strategy and setting α∗ that achieves maximum H(E)

of M and K (up to 82.5% improvement). Note that the increase on H gets
bigger with the number of objectives M . Looking at at Fig. 3 (b) and comparing
with Fig. 2 (b), we can see that C(E,N) also increases for any value of K and
M , whereas C(N,E) remains close to zero. That is, convergence also improves
substantially.

Next, we discuss results by the shift partition strategy shown in Fig. 4 (a) and
(b). From these figures note that the shift strategy also leads to a remarkable
improvement on H and C. Comparing the shift and random strategies, the latter
leads to slightly better results than the former especially for M ≥ 8 and K ≤ 15.
As mentioned above, the random strategy can sample any possible subspace
of φ, whereas the shift strategy can sample most but not all subspaces of φ.
The number of subspaces unable to sample the fixed strategy increase with the
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dimension of the objective space, especially if we keep constant the number
of subspaces. Better results by the random strategy suggests that sampling all
possible subspaces becomes relevant as the number of objectives increase.

Results by the fixed partition strategy are shown in Fig. 5 (a) and (b). See
that the fixed strategy leads to smaller H and C(E,N) than the random and shift
partition strategies. Comparing to εR-EMO with no subspace partitioning, the
fixed strategy leads to higher H on all M but with smaller C(E,N) on M ≤ 6.
The fixed strategy only explores NS of all possible subspaces of φ and it is seems
not an appropriate strategy to achieve best performance on both convergence
and diversity of solutions.

Finally, note that as we increase K (non-linearity of the problem) improve-
ments on both H and C reduce regardless of the partition strategy. This suggests
that in addition to better ranking strategies, we should also look into ways to
improve recombination and mutation to achieve better performance on highly
non-linear problems.

5.3 Analysis of α

In this section we analyze the parameter α that determines the desired number
of highest ranked solution in each subspace. As an example, Fig. 6 shows H and
C results achieved by different settings of α on M = 8 objectives landscapes
partitioning the objective space in NS = 2 subspaces using shift strategy. From
this figure, see that α ≥ 0.25 (at least 50%of the parent population in each
subspace is given highest rank) leads to high performance, whereas results by α =
0.15 are clearly lower on M = 8 objectives landscapes. Analyzing performance
by α ≥ 0.25, see that setting α to 0.35 or 0.25 leads to best performance for
most K, both on H and C. However, see that setting α to 0.5 could give highest
performance especially on small K. Although there is not an absolute winner
among α ≥ 0.25 values, it is important to note that subspace partitioning’s
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Fig. 6. Results by NSGA-II and εR-EMO partitioning the objective space in two sub-
spaces (S = 2) using shift strategy and varying α on M = 8 objectives
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Fig. 7. Adaptation of ε in εR-EMO for α = 0.15 and α = 0.35 on M = 8 objectives
and K = 10 epistatic bits

lower bound performance (minH∧min C(E,N), ∀α ∈ {0.5, 0.35, 0.25}) is by far
better than the performance by no subspace partitioning (see Fig. 6 and compare
with Fig. 2). Analyzing our data for other values of M , in general, we see that
performance by α = 0.25 is better than 0.35 when the number of objectives
decrease to M = 6 and M = 4; whereas performance by 0.5 and 0.35 is better
than 0.25 when we increase M to 10 objectives. As a rule of thumb, when the
space is partitioned into 2 subspaces, α = 0.25 works well on M = 4 and M = 6,
α = 0.35 on M = 8, and α = 0.5 on M = 10.

Fig. 7 illustrates adaptation of εs for α = 0.15 and α = 0.35 for one of the two
subspaces (the adaptation trend in the other subspace is similar) in a M = 8
and K = 10 landscape. The horizontal dashed line at N = 100 indicates the
size of the overall parent population |P | and the horizontal dotted line the de-
sired number of individuals α × |P| with highest rank in the subspace. From
these figures note that the number of non-dominated individuals |F1| (consid-
ering all objectives) exceeds P since the initial generations. See also that the
adaptive mechanism appropriately varies εs throughout the generations so that
after subspace-ε-ranking the number of individuals |Fεs

1 | with highest rank in
the subspace is kept around the desired number α× |P|.

6 Conclusions

In this work, we have proposed a method to search on many-objective problems
by instantaneously partitioning the objective space into subspaces and perform-
ing one generation of the evolutionary search in each subspace. The proposed
method uses a partition strategy to define the schedule of subspace sampling
and an adaptive re-ranking method that uses a randomized sampling procedure
to increase selection probabilities of some of the too many solutions assigned
highest rank in a many-objective subspace. We tested the performance of the
proposed method on MNK-Landscapes with 4 ≤ M ≤ 10 objectives, N = 100



Space Partitioning and Adaptive ε-Ranking on MNK-Landscapes 421

bits and 0 ≤ K ≤ 50 epistatic interactions, showing that both convergence and
diversity of the obtained solutions can improve remarkably on problems with
4 ≤M ≤ 10 objectives for any level of epistatic interactions K. We also showed
that uniformly sampling all possible subspaces throughout the generations leads
to better performance.

As future works, we would like to study the effects of larger population sizes
and more than two subspaces. Also, we should compare the proposed method
with other approaches for many-objective optimization.
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