
Multi-criteria Curriculum-Based Course

Timetabling—A Comparison of a Weighted Sum
and a Reference Point Based Approach

Martin Josef Geiger

University of Southern Denmark
Department of Business & Economics

Campusvey 55, DK-5230 Odense M, Denmark
mjg@sam.sdu.dk

Abstract. The article presents a solution approach for a curriculum-
based timetabling problem, a complex planning problem found in many
universities.

With regard to the true nature of the problem, we treat it as multi-
objective optimization problem, trying to balance several aspects that
simultaneous have to be taken into consideration. A solution framework
based on local search heuristics is presented, allowing the planner to iden-
tify compromise solutions. Two different aggregation techniques are used
and studied. First, a weighted sum aggregation, and second, a reference
point based approach.

Experimental investigations are carried out for benchmark instances
taken from track 3 of the International Timetabling Competition ITC
2007. After having been invited to the finals of the competition, held
in August 2008 in Montréal, and thus ranking among the best five ap-
proaches world-wide, we here extend our work towards the use of refer-
ence points.

Keywords: Multi-criteria timetabling, iterated local search, threshold
accepting, reference point approach.

1 Introduction

Timetabling describes a variety of notoriously difficult optimization problems
with a considerable practical impact. Important areas within this context include
employee timetabling, sports timetabling, flight scheduling, and timetabling in
universities and other institutions of (often higher) education [1].

Generally, timetabling is concerned with the assignment of activities to re-
sources. In more detail, these resources provide timeslots (time intervals) to
which the activities have to be assigned. In contrast to classical scheduling prob-
lems [2], the available time is therefore already discretized into these slots. The
result of timetabling is the construction of a timetable which defines for each
activity when it has to be executed using which resource.

M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 290–304, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Multi-criteria Curriculum-Based Course Timetabling 291

In the case of educational timetabling problems, events are either lectures or
examinations, and resources are lecturers and rooms in which the classes are
held.

Obviously, the construction of such a timetable has to be done with respect
to problem-specific side constraints. Prominent examples comprise:

– All activities must be assigned to timeslots.
– A timeslot may be assigned to at most a single activity.
– Some resources may be unavailable during certain timeslots.
– Individual requirements of the certain activities: Not all resources may be

equally suitable for all events.

On the other hand, timetables must be designed such that they optimize
several, often conflicting criteria and address the requirements of different groups
of stakeholder. This means in case of educational timetabling problems, that
both the needs of the students as well as those of the members of staff should
be respected.

It is interesting to see that most scientific investigations of educational time-
tabling implicitly consider the problems to be of multi-objective nature [3, 4].
In contrast to the established terminology from multi-criteria decision making
however, desired properties of solutions usually are not expressed using criteria
nor measured involving a set of objective functions. In timetabling, the common
approach is to introduce so-called ‘soft constraints’, each of which computes a
score with respect to a particular aspect of the problem. While a violation of
these soft constraint is possible, it is penalized introducing a penalty (cost) func-
tion. The overall objective may then be derived by minimizing an aggregated
overall cost function.

Examples of criteria/ soft constraints include:

– As several lectures share students, they should not be assigned to timeslots
of the same period.

– Precedence relations between certain activities: Some activities should be
scheduled before or after others.

– Preference of lecturers for certain timeslots or rooms.
– As students have to commute from one room to the other, lectures sharing

some students should be placed in rooms which are close to each other.
– Consideration of (meal) breaks.
– Other patterns: In order to ensure a certain compactness of the timetables,

any lecture should be for any student adjacent to another lecture.

Most variants of timetabling problems unfortunately are NP-hard [5], and
moreover, most problem instances comprise a rather large number of decision
variables. Consequently, the application of exact optimization approaches is
problematic, given the fact that the solution has to be done within limited time.
While there are some exact optimization approaches on the basis of integer lin-
ear programming [6], the vast amount of problem solution techniques are based
on heuristics, and more recently, metaheuristics.
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Heuristic approaches can be categorized with respect to how the two classes of
side constraints, hard constraints and soft constraints, are treated. Three classes
are commonly considered [7]:

1. One-stage approaches.
One-stage approaches combine the penalty functions of hard and soft con-
straint violations into a single evaluation function. As generally the mini-
mization of hard constraints is considered to be more important in compar-
ison to the minimization of the violation of soft constraints, a considerable
higher weight is given to this aspect.

2. Two-stage approaches.
Contrary to one-stage approaches, two-stage algorithms divide the search
for an optimal solution into two disjunct phases. In a first step, a feasible
assignment of all events to timeslots is computed, and feasibility is here
understood with respect to the set of hard constraints only. The succeeding
phase of two-stage approaches is devoted to the minimization of the soft
constraint penalties while maintaining feasibility.

3. Relaxation-based approaches.
Feasibility of timetables in relaxation-based solution approaches is assured
by either relaxing certain side constraints such that all events may be as-
signed to timeslots, or by leaving some events unassigned. In this sense, the
obtained timetables are feasible not for the initial but with respect to some
modified side constraints. When optimizing the timetables for the soft con-
strain penalties, it is then tried to accommodate all initially defined hard
constraints into the solution with the ultimate goal of reaching feasibility.
Left aside events are put into the timetable, etc.

Independent from the implemented strategy, most modern approaches are
based on the principles of local search. The particular characteristics of time-
tabling problems imply that neighborhoods are generally composed of moves
that unassign and reassign some events, and thus relocate particular activities
in the current solution.

An extensive comparison of algorithms has been done in the first Inter-
national Timetabling Competition ITC 2002 (http://www.idsia.ch/Files/
ttcomp2002/). Metaheuristics that turned out to be especially effective for time-
tabling problems are Simulated Annealing, deterministic variants of Simulated
Annealing, and Tabu Search. As for most operations research problems, other
techniques have been used, too, including Evolutionary Algorithms, Ant Colony
Optimization, and Greedy Randomized Adaptive Search. For an extensive listing
of references we may refer to [7].

While previous research has primarily been considering an additive aggre-
gation of the penalty functions, our aim is to extend this work towards other
ideas from multi-criteria decision making. In detail, we study the influence of
the aggregation methodology on the performance and the outcomes of the solu-
tion approach. A solution framework (also) allowing the integration of reference
points is therefore presented in Section 3 and tested on benchmark data from
the ITC 2007.

http://www.idsia.ch/Files/ttcomp2002/
http://www.idsia.ch/Files/ttcomp2002/
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2 The Curriculum-Based Course Timetabling Problem

The curriculum-based course timetabling problem [8] is a particular variant of an
educational timetabling problem. It consists of constructing a weekly timetable
by assigning lectures for several university courses to a given number of rooms
and time periods. The sketched situation can be found in many universities,
where so-called curricula are used to describe sets of courses/ lectures that share
common students. The underlying logic is based on the assumption, that stu-
dents who are enrolled in the same program progress together through their
studies. Consequently, these students are supposed to attend a previously well-
defined set of lectures. This can be seen contrary to post-enrollment based course
timetabling problems, where students explicitly register for courses they wish to
attend. While in this setting, detailed information about any particular student
can be obtained, in curriculum-based course timetabling, registrations of stu-
dents for courses are not required. The available constraints are solely based on
the definition of the curricula.

The data for the curriculum-based course timetabling problem is comparably
easy to obtain. Once the curricula are defined, they usually do not change very
often, and timetabling can consider to some extend last years plans. On the other
hand, students not following the definitions of their curricula may end up having
a problem, as several lectures will be scheduled in parallel. The application of
the curriculum-based course timetabling problem therefore requires the students
to follow the structure of their program.

Besides its practical relevance for many universities, the curriculum-based
course timetabling problem has been chosen as one of the competition tracks of
the ITC 2007 (http://www.cs.qub.ac.uk/itc2007/). The competition invited
researchers to propose and submit novel approaches for the solution of time-
tabling problems. Comparison of results is possible by means of a set of newly
released benchmark instances.

A technical description of the problem of the ITC 2007 is given in [8]. Impor-
tant hard constraints require that no lectures belonging to a common curriculum,
as well as lectures being taught by the same professor, are scheduled in parallel.
Also, a set of given unavailability constraints has to be respected. These con-
straints define times when teachers are unavailable. Another common constraint
requires that at most one lecture can be assigned to a single room at a time.

Besides these hard constraints, four soft constraints/ objectives sc1, sc2, sc3,
sc4 are relevant that measure desirable properties of the solutions.

1. Objective 1 (sc1): A room capacity soft constraint tries to ensure that the num-
ber of students attending a lecture does not exceed the room capacity. Assign-
ments of lectures to rooms of smaller capacity are penalized with the number
of students above the room capacity, multiplied with a penalty weight w1.

2. Objective 2 (sc2): The lectures of the courses must be spread into a minimum
number of days, penalizing timetables in which lectures appear on too few dis-
tinct days.Eachdaybelow the minimum is penalized withw2 points of penalty.

3. Objective 3 (sc3): The curricula should be compact, meaning that isolated
lectures, that is lectures without another adjacent lecture, should be avoided.

http://www.cs.qub.ac.uk/itc2007/
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For any given curriculum, the number of isolated lectures is computed. Each
isolated lecture in a curriculum is penalized with w3 points of penalty.

4. Objective 4 (sc4): All lectures of a course should be held in exactly one room.
Each distinct room used for the lectures of a course, but the first, counts as
w4 points of penalty.

The overall evaluation of a timetable is then based on some aggregate function
SC = f(sc1, sc2, sc3, sc4).

3 Proposition of a Solution Approach

Figure 1 illustrates the elements of the solution framework in which the following
entities play a role:

– A human decision maker communicates via a graphical user interface (GUI)
with the system. Communication includes the definition of decision variables,
constraints, objectives and preferences. Also, the penalization (weighting) of
particular timetabling patterns and the aggregation of the objective func-
tions are obtained in this process.

– The formal model of the current situation is formulated and stored in a
database.

– After a preprocessing stage, in which some problem-specific properties are
pre-computed and structured, two method bases are employed to construct
and improve timetables for the quantitative model:
1. A constructive approach is used to obtain a first feasible assignment of

all lectures. In this phase, the chosen objective functions are not yet con-
sidered, but the method focuses on the hard constraints of the problem.

human decision maker

GUI

constructive 
approach

iterative
approach

data

constraints

objectives

decision
variables

preferences

M
od
el

Methods

preprocessing

solution

Fig. 1. Elements of the solution concept and their interaction
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2. An iterative approach is then subsequently executed to improve the
timetable obtained from the constructive approach. During this phase,
reallocations of lectures are carried out with the final goal of identifying
an optimal timetable.

Constructive and iterative phases follow subsequently. In this sense, the so-
lution framework implements a two-phase-concept in which feasibility of the
timetable is first considered, and optimality following later.

3.1 Preprocessing

Prior to the computation of a first solution, some preprocessing is carried out. In
brief, some problem-specific characteristics are employed, adding some additional
structure to the problem.

For each given lecture Li, events Ei1, . . . , Eie are created which are later
assigned to timeslots. The number of events e is given in the problem instances.
Creating events for each lecture leads to a more general problem description, and
the solution approach only needs to concentrate on the assignment of all events,
one to a single timeslot, as opposed to keeping track of assigning a lecture to e
timeslots.

Second, we categorize for each lecture Li (and thus for each event belonging
to lecture Li) the available rooms in three disjunct classes Ri1,Ri2,Ri3.

Ri1 refers to the rooms in which the lecture fits best, that is the rooms Rk

with the minimum positive or zero value of ck − si, ck being the room capacity,
si the number of students of lecture Li. The class Ri2 stores the rooms in which
lecture Li fits, that is si < ck, but not best, and Ri3 contains the rooms in which
lecture Li does not fit. With respect to the given problem statement, events of
lectures may be assigned to timeslots of rooms in Ri3, this however results in a
penalty.

The underlying assumption of the classification of the rooms is that events
are preferably assigned to timeslots belonging to a room of class Ri1, followed by
Ri2 and Ri3. It has to be mentioned however, that this cannot be understood as
a binding, general rule but rather should be seen as a recommendation. A ran-
domized procedure is therefore going to be implemented when assigning events
to timeslots (see Section 3.3), allowing a certain deviation from the computed
room order.

3.2 Constructive Approach

Based on the results for the initial constructive approach, we propose a reactive
procedure that self-adapts to the set of unassigned events from previous runs.
The logic behind this approach is that the constructive procedure ‘discovers’
events that are difficult to assign, giving them priority in successive runs. To some
extend, we borrow ideas from the squeaky wheel optimization approach [9]. In
this concept, alternatives are repetitively constructed and analyzed. Unfavorable
aspects of the current solution are discovered in each analysis, which are then
resolved in the successive iteration. In this sense, the ‘squeaky wheel gets the
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grease’. Events that have not been assigned in previous construction runs are
here considered to be the unfavorable aspects of the current solution.

In the following, let Ep be the set of prioritized events, E¬p the set of non-
prioritized events, and Eu the set of events that have not been assigned during
the construction phase. It is required that Ep ⊆ E , E¬p ⊆ E , Ep ∩ E¬p = ∅, and
Ep ∪ E¬p = E .

Algorithm 1 describes the reactive construction procedure.

Algorithm 1. Reactive construction
Require: Maxloops
1: Set Ep = ∅, Eu = ∅, loops = 0
2: repeat
3: Ep ← Eu

4: Eu ← ∅
5: E¬p ← E\Ep

6: while Ep �= ∅ do
7: Select the most critical event E from Ep, that is the event with the smallest

number of available timeslots
8: if E can be assigned to at least one timeslot then
9: Select some available timeslot T for E

10: Assign E to the timeslot T
11: else
12: Eu ← Eu ∪ E
13: end if
14: Ep ← Ep\E
15: end while
16: while E¬p �= ∅ do
17: Select the most critical event E from E¬p, that is the event with the smallest

number of available timeslots
18: if E can be assigned to at least one timeslot then
19: Select some available timeslot T for E
20: Assign E to the timeslot T
21: else
22: Eu ← Eu ∪ E
23: end if
24: E¬p ← E¬p\E
25: end while
26: loops← loops + 1
27: until Eu = ∅ or loops = Maxloops

As given in the pseudo-code, the construction of solutions is carried out in a
loop until either a feasible solution is identified or a maximum number of itera-
tions Maxloops is reached. When constructing a solution, a set of events Eu is
kept for which no timeslot has been found. When reconstructing a solution, these
events are prioritized over the others. In that sense, the constructive approach
is biased by its previous runs, identifying events that turn out to be difficult to
assign.
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After a maximum number of at most Maxloops iterations, the construction
procedure returns a solution that is either feasible (Eu = ∅) or not (Eu �= ∅).

It becomes clear that the reactive procedure is principally based on the previ-
ous simple greedy heuristic. The choice of the most critical event, as well as the
choice of the timeslot is left unchanged. Only the prioritization of the events by
dividing them into two disjunctive subsets is an additional feature of the revised
method.

3.3 Improvement Procedures

An iterative process continues with the alternative found in the constructive
approach, searching for an optimal solution with respect to the soft constraint
penalties.

In each step of the algorithm, a number of randomly chosen events is unas-
signed from the timetable and reinserted in the set Eu. A reassignment phase
follows. Contrary to the constructive approach, where events are selected based
on whether they are critical with respect to the available timeslots, events are
now randomly chosen from Eu, each event with equal probability. The choice of
the timeslot for the event is based on the logic described in the preprocessing
phase, prioritizing timeslots of particular room classes. We use two possible pref-
erence structures of rooms, Ri1 over Ri2 over Ri3, and Ri2 over Ri1 over Ri3.
Each of them is randomly chosen with probability 0.5.

The following different variants of local search have been implemented and
tested:

– Hillclimbing (HC).
In this local search variant, only improving reassignments of events are ac-
cepted. It can be expected that this strategy does not lead to the best results.
However, for comparison reasons, an application will be interesting, simply
because the effectiveness of alternative local search strategies can be studied
in contrast to this relatively simple algorithm.

– Iterated Local Search (ILS).
Iterated Local Search [10] is based on a hillclimbing algorithm, which is
first used to compute a locally optimal solution. Then, after converging to
this alternative, an escape mechanism is triggered, consisting of a worsening
perturbation move by means of some neighborhood. Search continues from
this perturbed alternative, again executing a hillclimbing run.

– Threshold Accepting (TA).
The idea of Threshold Accepting has been introduced in [11]. It describes
a deterministic variant of Simulated Annealing [12]. Worsening moves are
accepted up to a certain threshold, thus allowing an escape of the search
procedure from local optima. Throughout the execution of the local search
approach, the threshold is subsequently decreased, similar to what is referred
to as a ‘cooling schedule’ in Simulated Annealing.

As previous research has shown that simplifications of Simulated Anneal-
ing may be very effective for timetabling problems [13, 14], we suspect that
this approach turns out successful for the problem at hand.
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4 Experimental Investigation

4.1 Weighted Sum Aggregation

For the first part of our experimental investigation, we consider a weighted sum
aggregation of the objective functions sci as given in Expression (1). The values
of the weights wi have been chosen as proposed for the ITC 2007, thus w1 = 1,
w2 = 5, w3 = 2, w4 = 1.

SC =
4∑

i=1

wisci (1)

Different configurations of the algorithms have been tested on the benchmark
data from the ITC 2007. The running time of each test run has been chosen
in accordance with the regulations of the competition, allowing 375 seconds of
computing time on an Intel Q6600 processor. While experiments with signifi-
cantly longer running times are reported in [15], we here favor an experimental
setting in which only comparably little running time is permitted. This reflects
the practical circumstances of many real-world timetabling problems, in which
a planner expects results in comparably short time.

The number of reassigned events in each iteration has been set to five for all
variants of the improvement procedure. It should be noticed that other num-
bers from 1 to 10 have been tested, too. Based on some preliminary tests, in
which a reassignment set of five events gave reasonable results for all benchmark
instances, this number has been chosen and fixed in the following experiments.

Three configurations of the Iterated Local Search approach have been imple-
mented. The first variant, ILS-3k, starts perturbing after 3,000 non-improving
moves, the second, ILS-10k, after 10,000 moves, and the last one, ILS-25k, after
25,000 non-improving moves. Perturbations are done by a random reassignment
of five events. Contrary to the usual acceptance rule with respect to the cost
function SC, the perturbed alternative is accepted in any case, and search con-
tinues from this new solution.

Two different configurations of the Threshold Accepting algorithm have been
tested. First, an algorithm with a threshold of 1% of the overall evaluation of
the alternatives SC. Second, an algorithm using a threshold of 2% of SC. The
choice of a percentage of SC as a threshold has the advantage that the algo-
rithm performs an automated cooling when approaching small values of SC, yet
maintaining high thresholds for large values of SC. This idea stands somewhat
in contrast to other approaches, in which explicit cooling schedules are needed.
Nevertheless, an appropriate choice of the percentage has to be made.

Average results of the metaheuristics
The following Table 1 gives the average values of the soft constraint penalties
SC for the different local search strategies over ten independent test runs.

The hillclimbing algorithm never leads to best results, which already has been
suspected prior to the investigation. For all benchmark instances, either an Iter-
ated Local Search approach and/ or a Threshold Accepting algorithm leads to
better average results.
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Table 1. Average values for the weighted sum formulation

Instance HC ILS-3k ILS-10k ILS-25k TA 1% TA 2%

comp01 6.3 8.0 7.1 6.8 6.6 6.0
comp02 158.2 157.2 155.5 147.1 135.0 157.2
comp03 151.4 150.7 144.7 147.3 140.6 150.7
comp04 90.0 95.9 92.3 87.1 84.0 79.0
comp05 581.5 494.8 539.1 516.4 505.5 495.9
comp06 137.5 137.7 135.8 130.2 108.4 127.6
comp07 99.1 122.2 113.5 103.8 73.9 121.1
comp08 102.4 98.5 98.4 92.3 83.3 90.6
comp09 169.2 172.5 161.8 164.7 165.7 176.5
comp10 108.3 113.4 106.7 107.5 84.2 82.8
comp11 0.8 2.6 1.7 0.7 0.3 0.1
comp12 534.0 504.8 497.6 499.6 480.3 472.5
comp13 127.9 132.3 122.3 122.1 112.3 122.6
comp14 130.6 113.4 114.6 111.8 101.3 97.6

When analyzing and comparing the different Iterated Local Search approaches,
the variant with a rather high number of evaluations before perturbing the solu-
tions, ILS-25k, turns out to be superior to the other configurations. In nine of
the 14 data sets, best results are obtained by this approach. Despite the fact that
some counterexamples have been found, such as comp05, it is possible to conclude
that a sufficient number of evaluations is needed before applying perturbations.
In this context, 25,000 describes this ‘sufficiently large number’ better than 3,000
or 10,000.

Comparing the two Threshold Accepting algorithms, both TA 1% and TA 2%
lead to best average result in seven of the 14 data sets. Also it can be seen, that
some differences are rather small, such as in case of comp01 and comp11, while
others are considerable larger (comp06, comp07, comp08, comp13). On the basis
of this observation, we conclude that the comparably smaller threshold of 1%
leads to better results than the larger one of 2%.

For twelve out of 14 instances, Threshold Accepting proves to be superior to
Iterated Local Search. Some counterexamples exist, but the overall conclusions
are rather strong in favor of Threshold Accepting.

Best obtained results
Table 2 shows the best results of the Threshold Accepting algorithm with a
threshold of 1%. The results are based on 30 trials with different random seeds.

It can be seen that the TA 1% approach leads to competitive results. For some
instances, comp01 and comp11, particularly good solutions are identified. Others
such as comp05 and comp12 have best found alternatives with soft constraint
penalties that are still quite large. We suspect that some properties of the data
sets induce these results. Benchmark instance comp05 possesses a rather small
average teacher availability, and so does instance comp12 [8]. It is therefore fair
to assume that this property leads to the considerable differences in terms of



300 M.J. Geiger

Table 2. Best results (out of 30 trials)

Instance SC w1sc1 w2sc2 w3sc3 w4sc4 Instance SC w1sc1 w2sc2 w3sc3 w4sc4

comp01 5 4 0 0 1 comp08 75 0 5 56 14
comp02 108 0 5 92 11 comp09 153 0 35 92 26
comp03 115 0 35 68 12 comp10 66 0 0 40 26
comp04 67 0 5 48 14 comp11 0 0 0 0 0
comp05 408 0 175 218 15 comp12 430 2 205 196 27
comp06 94 0 10 58 26 comp13 101 0 25 62 14
comp07 56 0 5 18 33 comp14 88 0 15 60 13

the best found values of SC to the other data sets. Obviously, relatively difficult
side constraints complicate the identification of timetables with a small overall
evaluation.

Another aspect of the obtained results is the detailed component-wise analysis
of the individual objectives sci, i = 1, . . . , 4. Recalling that the assignment of
events to timeslots made use of a certain pre-computed order, we suspect that
this may influence the characteristics of the results. In particular sc1, which
measures the assignment of lectures to rooms of smaller capacity, should be
addressed rather well by this assignment logic.

A detailed overview of the best obtained results SC and the individual objec-
tive function values sci, i = 1, . . . , 4 is given in Table 2. With the only counterex-
amples of instances comp01 and comp11, sc1 turns out to be better addressed in
comparison to the other objectives. In particular for sc2 and sc3, the numbers
are rather relatively high. It also should be noticed, that the scoring for these
two objectives employed higher penalties wi as for the others. Nevertheless, and
although a weighted sum approach has been used, a considerable bias in terms
of a preference of sc1 over the other objectives becomes obvious.

4.2 Experiments Based on a Reference Point

As pointed out when analyzing the result in Section 4.1, the weighted sum aggre-
gation approach of the objective functions sci, i = 1, . . . , 4 leads to a situation in
which objective sc1 is significantly better addressed in comparison to the others.
It can be suspected that these results not always represent the individually de-
sired solutions. Often, the human decision maker requires a different methodology
for expressing his/ her preferences, for example by stating a reference point that
represents the desired outcomes for each objective function. The solution of the
problem then lies in the minimization of the distance of the solution to this point.

Expression (2) reformulates the aggregated evaluation of the timetables by
introducing a reference point R = (r1, r2, r3, r4). By minimizing SCref , we min-
imize the distance of the outcomes to the given reference values ri. Using this
approach, the decision maker may primarily guide the search towards a preferred
solution by stating desired values of ri.

SCref = max
i

wi (sci − ri) (2)
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The experiments as described in Section 4.1 have been repeated, now using
the revised formulation of the aggregated evaluation function. Again, a hillclimb-
ing algorithm, the three variants of the Iterated Local Search algorithm, and the
two Threshold Accepting algorithms have been tested. Experiments have been
conducted on the identical computer hardware, once more permitting a maxi-
mum running time of 375 seconds for each trial. The reference point has been
assumed with ri = 0, i = 1, . . . , 4 as we know that 0 is the smallest possible
outcome for each objective sci, i = 1, . . . , 4.

Average results of the metaheuristics
Average results for ten independent test runs are given in the following Table 3.

Table 3. Average results of SCref in the reference point based formulation

Instance HC ILS-3k ILS-10k ILS-25k TA 1% TA 2%

comp01 4.0 7.0 6.2 5.2 4.0 4.0
comp02 72.1 75.0 66.4 72.1 69.0 66.9
comp03 64.7 68.9 66.4 64.3 64.8 66.3
comp04 41.5 51.3 47.9 47.5 38.2 46.6
comp05 248.2 232.1 236.6 226.5 238.2 226.0
comp06 58.5 71.0 65.7 63.9 60.1 80.2
comp07 50.0 73.5 64.8 61.9 71.0 135.8
comp08 41.5 57.0 50.5 50.2 48.6 59.9
comp09 71.3 79.3 76.5 74.1 73.1 79.5
comp10 44.0 59.6 57.0 53.5 54.8 88.0
comp11 0.1 7.2 5.2 4.8 0.0 0.0
comp12 248.5 240.8 240.1 221.0 228.4 211.0
comp13 55.0 65.0 61.0 60.7 59.2 62.6
comp14 50.5 57.7 54.1 52.0 50.8 52.1

For the Iterated Local Search algorithm, we observe again that the variant
with the largest number of evaluations before perturbing the alternative, ILS-
25k, obtains better results than the two configurations with a faster perturbation.
Also, TA 1% leads in more instances to better results than the one with the
larger threshold. In addition to that, Threshold Accepting outperforms Iterated
Local Search in most instances. So far, the analysis is in line with the one of the
weighted sum approach.

What really is remarkable is the behavior of the hillclimbing approach. In
comparison to both the Iterated Local Search as well as the Threshold Accept-
ing algorithm, better results are obtained in many cases. This is counterintuitive,
especially as the algorithm does not possess any strategy of escaping local op-
tima while the others do. It appears as if the presence of local optima is less
problematic for the chosen evaluation function. In brief, and in contrast to the
experiments of Section 4.1 we are able to observe that not a single approach is
suitable for all possible data sets and variants of evaluation functions, as it has
been already pointed out in other contexts [16].
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Best obtained results
Another analysis is concerned with the best found solutions of the reference
point based evaluation SCref and the values of the objectives sci, i = 1, . . . , 4.
The best solutions are reported in the following Table 4.

Table 4. Best results of SCref and the values for each objective sci (out of 10 trials)

Instance SCref w1sc1 w2sc2 w3sc3 w4sc4 Instance SCref w1sc1 w2sc2 w3sc3 w4sc4

comp01 4 4 0 2 4 comp08 40 0 40 40 40
comp02 45 0 45 44 45 comp09 66 0 65 66 66
comp03 52 0 50 52 52 comp10 35 0 35 34 35
comp04 30 0 30 30 30 comp11 0 0 0 0 0
comp05 190 190 190 190 41 comp12 200 182 200 198 80
comp06 55 0 55 54 55 comp13 45 0 45 44 44
comp07 44 27 40 44 44 comp14 40 0 40 40 40

Obviously, the values are better balanced in comparison to the ones of the
weighted sum aggregation. While sc1 still often has the smallest value, it is
possible to see that for example for instance comp05, rather high values of sc1

are achieved in order to minimize the other objective functions further, and so to
minimize the aggregation. A similar observation can be made for the instances
comp07 and comp12.

The results indicate that the prioritization of the timeslots when assigning
events generally does favor objective sc1 to some extent. However, there are
cases in which the quality of timetables with respect to sc1 is sacrificed for an
improvement in the other objectives, and we may conclude that the solution
approach does not generally overfit the investigated problem.

5 Conclusions

The article presented an optimization approach for multi-criteria timetabling
problem with an application for curriculum-based course timetabling. On the ba-
sis of a general solution framework, a two-stage optimization approach has been
proposed that first constructs feasible alternatives and subsequently searches
for optimal solutions. For the latter purpose, different local search strategies
have been implemented, and experiments have been conducted for benchmark
instances taken from the literature.

By comparing a weighted sum and a reference point based approach, con-
siderable differences in the obtained results became obvious. For the weighted
sum aggregation, balancing the four objectives appears to be problematic. Even
when assigning higher weights on particular objectives, they do not turn out to
be better addressed than others. On the other hand, the reference point aggre-
gation led to significantly better balanced outcomes with respect to an equal
treatment of all four objectives.
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In brief the experiments indicate that an interaction with the presented system
employing reference points is more direct and overall preferable, a conclusion that
similarly has been derived in [17]. Also, the relative performance of the different
metaheuristics is affected by the chosen aggregation procedure. Although the
results are overall competitive, as we have been able to demonstrate in the finals
of the International Timetabling Competition ITC 2007, future research should
therefore be dedicated towards the proposition of more robust solvers.

Besides, a comparison to multi-objective optimization approaches that ap-
proximate the whole Pareto-front should be carried out as part of future research.
While the approach presented in this article aims to identify an alternative that
optimizes the aggregated function only, the entire Pareto-front could be obtained
for comparison reasons. Knowing that the weighted sum approach can be prob-
lematic, as it only allows the generation of supported efficient solutions, the effect
and relevance of this potential drawback could further be explored.

Also, alternative approaches of integrating the reference point should be ex-
plored, such as described in e. g. [18]. Such approaches would allow to ensure
the efficiency of the final solution, which is not necessarily the case in the im-
plemented min-max achievement function.

References

1. Carter, M.W.: Timetabling. In: Gass, S., Harris, C. (eds.) Encyclopedia of Opera-
tions Research and Management Science, 2nd edn., pp. 833–836. Kluwer Academic
Publishers, Dordrecht (2001)

2. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 2nd edn. Prentice-Hall,
Upper Saddle River (2002)

3. Landa-Silva, J.D., Burke, E.K., Petrovic, S.: An introduction to multiobjective
metaheuristics for scheduling and timetabling. In: Gandibleux, X., Sevaux, M.,
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