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Abstract. Over the last decades, evolutionary algorithms (EA) have
proven their applicability to hard and complex industrial optimization
problems in many cases. However, especially in cases with high computa-
tional demands for fitness evaluations (FE), the number of required FE is
often seen as a drawback of these techniques. This is partly due to lacking
robust and reliable methods to determine convergence, which would stop
the algorithm before useless evaluations are carried out. To overcome this
drawback, we define a method for online convergence detection (OCD)
based on statistical tests, which invokes a number of performance indi-
cators and which can be applied on a stand-alone basis (no predefined
Pareto fronts, ideal and reference points). Our experiments show the gen-
eral applicability of OCD by analyzing its performance for different algo-
rithmic setups and on different classes of test functions. Furthermore, we
show that the number of FE can be reduced considerably – compared to
common suggestions from literature – without significantly deteriorating
approximation accuracy.

1 Introduction

In real-world industrial problems and engineering applications, improvements,
e.g., in simulation techniques, machines, tools, and materials, constantly offer
increasing productivity. However, in order to completely exploit these poten-
tials, an appropriate setup of the inherent parameters is necessary. Due to the
numerous requirements of modern processes, these problems are mainly multi-
objective, which supports the application of evolutionary multi-objective algo-
rithms (EMOA). Nevertheless, their applicability is still put into question, even
though EMOA have already been successfully applied to these kinds of problems.

A possible reason, for instance when compared to mathematical programming
methods, may be the lack of convergence criteria for EMOA. More specific, the
performance of an a-posteriori multi-objective optimization algorithm can be
expressed in simple terms by two objectives:
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1. maximize the quality of the Pareto-front approximation and
2. minimize the number of function evaluations or computation time,

respectively.

In the last decade, many EMOAs have been introduced to achieve one or both
of the above objectives. For instance, the use of performance indicators [1,2,3],
which evaluate the quality of the current Pareto-front approximation, has turned
out to be successful in achieving the first objective [4]. The second objective
has recently been approached by integrating modeling methods into the EMOA
framework [5,6,7]. However, in the evaluation of all these methods, the num-
ber of allowed function evaluations (FE) is fixed at a predefined level, which is
high (30k-500k FE [8,9]) when the main objective is a good approximation and
low for model-assisted approaches (130-250 FE [6,7]). In order to perform the
optimization in an efficient manner, the EMOA should be stopped when

1. no improvement can be gained by further iterations or
2. the approximation quality has reached the desired level.

Right now, these stopping criteria are only applied for single-objective approaches.
Nevertheless, the detection of convergence is an equally important issue for EMOA
since further evaluations are a waste of computational resources and may lead to
a loss of diversity by means of genetic drift [10]. Multi-objective performance indi-
cators allow the reduction of a multi-objective optimization (MOO) problem to a
single-objective problem on sets [3]. Thereby, the above criteria can be transferred
to MOO. Furthermore, multiple indicators can be used to reliably detect different
kinds of improvement in the set.

In this paper, an approach for online convergence detection (OCD) is intro-
duced. Due to the stochastic nature of evolutionary algorithms, OCD is based on
systematic statistical testing. The number of parameters is low, it can be com-
bined with any set-based EMOA, and the selection of the considered preference
indicators is up to the user. Thus, OCD is an intuitive, yet flexible tool to guar-
antee an effective use of EMOA, which may promote the industrial application
of these methods.

In section 2, the state of the art in multi-objective convergence detection is
summarized. Afterwards, OCD is detailed, and the algorithmic steps are pre-
sented (section 3). The applicability of OCD is demonstrated by comprehensive
experiments, which are described and analyzed in section 4. Finally, conclusions
are drawn and the results are summarized in section 5.

2 State of the Art

For the application of EMOA on new industrial problems, where no sufficient
a-priori knowledge exists, it is generally hard to find a suitable termination cri-
terion. Therefore, the most frequently used limit is the maximum number of
generations or FE. Hybrid EMOA using quadratic programming methods have
been developed to guarantee (local) optimality of solutions [11,12]. These ap-
proaches are formally converged as soon as Karush-Kuhn-Tucker (KKT) points



200 T. Wagner, H. Trautmann, and B. Naujoks

for a given set of aggregation or reference-point-based distance functions have
been identified, but can not guarantee the quality of the set of solutions, e.g., in
terms of diversity and spread. This is accomplished by recent approaches, which
compute the gradient of the hypervolume for a set of solutions [13]. Note that all
these approaches require sufficient accuracy in the approximation of the Hessian.

Deb and Jain [14] investigate so-called running performance metrics for con-
vergence and diversity of solutions to be monitored in the course of the algorithm.
Thereby, the algorithm may be stopped when convergence is observed. However,
therein the authors focus on performance evaluation and algorithm comparison.
An automated procedure for detecting convergence has not been proposed. For
this purpose, Rudenko and Schoenauer [15] survey possible online termination
criteria for elitist EMOA, such as the disappearance of all dominated individuals
or the deterioration of the number of newly produced non-dominated individuals.
Finally, they suggest a technique for determining stagnation based on stability of
the maximum crowding distance, which requires the determination of a thresh-
old, which depends on the scale of the objectives as well as the population size.
Furthermore, its application is only tested with NSGA2, which uses the crowd-
ing distance as selection criterion [16]. It is an open question whether a stability
of the maximum crowding distance can be observed in EMOA, which do not
directly use this measure in the selection process.

The basic idea of using dominance-related metrics to compare sets [17] has
recently been used to reduce the multi-objective to a single-objective problem
on sets [3]. This allows to use convergence criteria from single-objective theory.
Furthermore, a method for offline detection of the expected generation, in which
the EMOA converges, has been introduced [18]. This method is based on sta-
tistical testing of the similarity in the distribution of performance measures for
consecutive generations relying on multiple parallel runs of the EMOA. In this
paper, the main ideas of both contributions are transferred to online convergence
detection.

3 Online Convergence Detection

In the progression of OCD, two different analyses are carried out. It is sequen-
tially tested whether the variance of the performance indicator values decreases
below a predefined limit (V arLimit) or whether no significant trend of the per-
formance indicators can be detected over the last generations. The EMOA ter-
minates if at least one of these conditions is met.

All algorithmic steps of the proposed OCD approach and the required sub-
routines are given in Algorithms 1, 2, and 3. These steps are described in depth
to ensure a straightforward implementation of OCD. The required input pa-
rameters for Algorithm 1 can be set easily, even by inexperienced users. The
variance limit V arLimit corresponds to the desired approximation accuracy in
single-objective optimization, but does not require knowledge about the actual
minima of the objectives. The algorithm stops when the standard deviation of
the indicator values over the given time window of nPreGen generations is sig-
nificantly below

√
V arLimit. Thus, the user can exactly determine how many
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Algorithm 1. OCD: Algorithm for Online Convergence Detection
Require: V arLimit /* maximum variance limit */

nPreGen /* number of preceding generations for comparisons */
α /* significance level of the tests */
MaxGen /* maximum generation number */
(PI1, . . . , P In) /* vector of performance indicators, e.g., (HV, ε, R2) */

1. i = 0 /* initialize generation number */
2. for all i ∈ {1, . . . , nPreGen}, j ∈ {1, . . . , n} do
3. pChi2(j, i) = 1 /* initialize p-values of the χ2-variance Test */
4. pReg(i) = 0 /* initialize p-values of the t-Test on regression coefficient */
5. end for
6. lb = [] /* initialize lower bound vector */
7. ub = [] /* initialize upper bound vector */
8. repeat
9. i = i + 1

10. Compute d-objective Pareto front PFi of i-th EMOA generation
11. lb = min(lb ∪ PFi) /* update lower bound vector */
12. ub = max(ub ∪ PFi) /* update upper bound vector */
13. if (i > nPreGen) then
14. PFi = 1 + (PFi − lb)/(ub − lb) /* normalize PFi to [1, 2]d */
15. for all k ∈ {i − nPreGen, . . . , i − 1} do
16. Compute Pareto front PFk of k-th EMOA generation
17. PFk = 1 + (PFk − lb)/(ub − lb) /* normalize PFk to [1, 2]d */
18. end for
19. for all j ∈ {1, . . . , n} do
20. P Ij,i = (PIj(PFi−nPreGen, PFi,1,2.1), . . . , (PIj(PFi−1, PFi,1,2.1)))

/* compute PIj for PFi−nPreGen, . . . , PFi−1 using PFi as reference set,
1 as ideal, and 2.1 as reference point */

21. pChi2(j, i) = call Chi2(P I j,i, V arLimit) /* p-value of χ2 test */
22. end for
23. pReg(i) = call Reg(P I1,i, . . . , P In,i)

/* p-value of the t-Test on the generation’s effect on the P Ij,i */
24. end if
25. until ∀j ∈ {1, . . . , n} : (pChi2(j, i) ≤ α/n) ∧ (pChi2(j, i − 1) ≤ α/n)

∨ (pReg(i) > α) ∧ (pReg(i− 1) > α)
∨ i = MaxGen

26. Terminate EMOA
27. return {MaxGen, Chi2, Reg} /* criterion which terminates the EMOA */

i /* generation in which the criterion holds */

generations the EMOA is maximally allowed to compute with average changes
in the indicator values significantly below the specified limit. The user also has
to specify a significance level α for each statistical test procedure. Established
levels for α, such as 0.05 (standard) and 0.01 (conservative), exist. The max-
imum generation number MaxGen ensures that the resources required by the
algorithm cope with the restrictions of the individual application, especially in
the case where no convergence of the EMOA can be detected. However, the max-
imum number of function evaluations has to be specified for most known EMOA
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as well. The number and types of desired performance indicators (PI) have to be
selected in order to evaluate the solution quality at each generation with respect
to the requirements of the user, which allows him to express his own preferences
on the final Pareto-front approximation [3]. Users, who are not familiar with
multi-objective performance assessment, can resort to the standard set of PI as
defined by Knowles et al. [19], which comprises the hypervolume, the additive
ε-, and the R2 indicator. Only these indicators meet the requirement of strict
compliance with the Pareto dominance relation.

After the first nPreGen generations, convergence is checked after each gener-
ation i. The n indicator values of the vector PIj,i (j = 1, . . . , n) are computed
for the objective sets of generations i − nPreGen, . . . , i − 1 using the Pareto-
front approximation of generation i as reference set. Thus, no a-priori knowledge
about the true Pareto front is required, making the method applicable to practi-
cal problems. If a specific indicator PIj does not use a reference set and evaluates
each set separately (e.g., the hypervolume indicator), the difference between the
indicator value of the preceding and the current set is calculated and stored
in PIj,i.

The sets are normalized to the interval [1, 2]d = [1, 2]× . . .× [1, 2] ⊂ R
d as it is

also implemented in PISA [20], whered is the number of objective dimensions. This
is done in order to avoid problems within the indicator calculation based on ob-
jectives which are negative, equal to zero, or extremely large [19]. Since the actual
bounds of the non-normalized objectives are not a-priori known, they are updated
at each generation. The Pareto-front approximations of the nPreGen preceding
generations are also normalized based on the current objective-bound approxima-
tions. Due to the normalization, 1 = (1, . . . , 1) ∈ R

d and 2.1 = (2.1, . . . , 2.1) ∈
R

d can be used as ideal point and (anti-optimal) reference point for the PI calcu-
lation, respectively.

The resulting nPreGen vectors of n indicator values at each generation are
then – separately for each indicator – checked against the alternative hypothesis
that the variance of these values is lower than the predefined threshold V arLimit
using the χ2-variance test [21] (cf. Algorithm 2). This parametric test is used
being aware of its sensitivity to the normality assumption of the underlying
sample as no nonparametric test for this problem exists. Due to the multiple
testing, a Bonferroni correction on α is performed [22] resulting in an individual
significance level of α/n for each test. The α-correction ensures that at each
generation the global desired significance level is met. However, a correction with
respect to the sequential testing over all generations is impossible concerning a
reasonable applicability of OCD.

Additionally, a regression analysis is performed in order to check the signif-
icance of the descending linear trend (cf. Algorithm 3). Unfortunately, a test
for H0 : β �= 0 vs. H1 : β = 0 cannot be constructed. Thus, the test has to be
performed with interchanged hypotheses, and the generation, in which the null
hypothesis cannot be rejected anymore, has to be determined. Additionally, the
decreasing linear trend has been checked via the negative sign of the estimator β̂.



OCD: Online Convergence Detection for EMOAs 203

Algorithm 2. Chi2: One-Sided χ2-variance test for

H0 : var(PI) ≥ V arLimit vs. H1 : var(PI) < V arLimit

Require: P I /* vector of performance indicator values */
V arLimit /* variance limit */

1. N = length(P I) − 1 /* determine degrees of freedom */
2. Chi = [var(P I) ∗ N ]/V arLimit /* compute test statistic */
3. p = χ2(Chi, N) /* look up χ2 distribution function with N degrees of freedom */
4. return p

Strictly speaking, the α-error for the desired decision cannot be controlled
by α, but equals 1 − power(t-test), where the power of a statistical test is the
probability that the test will reject a false null hypothesis. As a result, an overall
significance level at generation i cannot be maintained since the χ2-variance test
initiates the EMOA termination in the case of H0 being rejected whereas the
t-test initiates it in the opposite case. Thus, no combination of the α-levels can
be performed relating to multiple test theory [22] although both tests are simul-
taneously performed on the same data. However, the main focus when setting up
α is not on correctly controlling the α-error, but on finding reasonable critical
values for the test statistics in order to make OCD applicable and successful
within industrial applications.

Algorithm 3. Reg: Two-sided t-test on the significance of the linear trend

H0 : β = 0 vs. H1 : β �= 0

Require: P Ij , j = (1, . . . , n) /* vectors of performance indicator values */
1. N = n · length(P I∗) − 1 /* determine degrees of freedom */
2. for all j ∈ {1, . . . , n} do
3. P I∗

j = (P Ij − P I j)/σP Ij /* standardize */
4. end for
5. P I∗ := concatenate(P I∗

1, . . . , P I∗
n) /* row vector of all P Ij */

6. X = (1, . . . , length(P I∗), . . . , 1, . . . , length(P I∗))
︸ ︷︷ ︸

n times

/* row vector of generations corresponding to P I∗ */
7. β̂ = (X ∗ XT )−1 ∗ X ∗ (P I∗)T /* linear regression without intercept */
8. ε = P I∗ − X ∗ β̂ /* compute residuals */
9. s2 = (ε ∗ εT )/N /* mean squared error of regression */

10. t = β̂√
s2(X∗XT )−1

/* compute test statistic */

11. p = 2 · min(tN (t), 1 − tN(t))
/* look up p-value from t distribution with N degrees of freedom */

12. return p

For performing the t-test, all indicator values PIj are standardized, i.e., lin-
early transformed to mean zero and standard deviation one. The standardization
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of PIj provides two benefits: the regression can be performed for all indicators
at once and no intercept (constant term) is required. The least squares estima-
tor β̂ of the actual slope β is determined in line 7 [23]. Afterwards, the fit is
calculated via the mean squared error of the linear model, and a standard error
of the estimator is computed [23]. Based on these measures, the t-statistic, i.e.,
the standardized regression coefficient, and the p-value can be computed using
a standard statistical library.

The algorithm stops if either the variance test or the regression analysis indi-
cates the convergence of the EMOA for generations i and (i − 1). OCD returns
the stopping generation i and the method that initiated the EMOA termination.
Thereby, the user is informed about the final state of the algorithm. In the case of
termination based on the maximum number of generations, the user knows that
the EMOA has not yet converged and further generations may further improve
the Pareto-front approximation.

Additional Runtime for OCD

The update, normalization, and standardization of the objective sets within
each iteration can be performed in O(N), where N denotes the population size.
The calculation of the Pareto front requires O(N logd−1 N) [24], but is already
part of most known EMOA. Thus, the calculation of the indicator values is the
crucial part of OCD. Especially when the hypervolume is used, the runtime
is in O(Nd/2+1) for d > 3 [25]. For hypervolume-based algorithms, such as
SMSEMOA [2], this is not critical since the selection procedure is in the same
complexity as OCD. Also for expensive real-world problems, the time, which
can be saved by an appropriate termination, is considerably higher than the
additional runtime. Nevertheless, the approach can be efficiently used for time-
critical optimization as well by using performance measures in O(Nd), such as
the R2 indicator.

4 Experiments

The experiments are conducted to analyze the proposed OCD applied to mod-
ern EMOA. At present, online convergence detection can only be performed by
a human decision maker, who inspects the running metrics, i.e., the PI, and
terminates the algorithm when convergence is observed. For a successfully au-
tomatized application, the time when OCD indicates convergence has to be in
agreement with the intuitive understanding of the decision maker. Thus, the
first experiments focus on the correspondence of OCD and a human decision
maker. In order to analyze the applicability of the statistical tests separated from
the whole OCD framework, OCD is additionally computed using pre-calculated
Pareto front discretizations as well as the known ideal and anti-ideal points.
Apart from the OCD version in Algorithm 1, we will refer to the latter as OCD
with full information. Finally, the results received by standard OCD are com-
pared to the common termination criterion from EMOA literature, i.e., a fixed
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number of FE. Here, we focus on the reduction of the number of evaluations as
well as the loss of quality by stopping the evolution earlier.

Research Question. The main question of the analysis is whether or not the
proposed OCD algorithm helps to reduce FE without resulting in an uncontrol-
lable loss of quality. Therefore, we evaluate the results received regarding both
approximation quality and the required number of FE and compare them to
the ones we receive after applying the number of FE, which are originally pro-
posed in standard EMO literature. Moreover, we are interested in the criterion
which first indicates convergence and how this is motivated by the PIi,j char-
acteristics over time. In order to inspect the behavior of OCD more closely, it is
also analyzed whether OCD, with the reference set and the ideal and anti-ideal
point approximated on the fly, performs similar to the case of full information.
Last but not least, we want to demonstrate that the time, when OCD indicates
convergence, matches with an intuitive observation of the running metrics.

Pre-experimental planning. NSGA2 [16] and SMSEMOA [2] are considered
since NSGA2 is the industrially most popular EMOA and recent studies mo-
tivate the use of the hypervolume contribution during selection [4]. The test
functions are chosen to represent different kinds of problem characteristics, such
as dimension in decision and in objective space, the number of local optima, and
the shape of the Pareto front. The population sizes used on the problems vary
in order to allow for different problem characteristics and evaluate OCD for a
wider variety of algorithmic setups.

Initial preparative analyses of OCD indicate that the time window nPreGen
should span at least seven, but better ten, generations to permit an adequate
calculation of the p-values in the tests. In this context, it has to be considered
that the tests will not indicate convergence until the PIj,i stagnate over a large
span of this time window. Thus, when it is reviewed whether OCD’s indication
matches with the generation determined by a human decision maker, the delay
of nPreGen generations has to be accepted within the assessment.

Task. Check if OCD provides a robust and reliable termination of EMOA on
several test cases. Compare the results of OCD with an intuitive understanding
of termination and with the results provided in standard EMO literature. Fur-
thermore, systematical deviations between the proposed approach and the one
with full information are to be identified, which may occur due to a inaccurate
approximation of the true Pareto front.

Setup. NSGA2 and SMSEMOA are analyzed on the four bi-objective test func-
tions Fonseca [27], ZDT1, ZDT2, and ZDT4 [28] as well as on the three-objective
DTLZ2 [29] test function. Different population sizes μ ∈ {60 (Fonseca), 100
(ZDT1, ZDT2, DTLZ2), 200 (ZDT4)} and selection strategies – (μ + μ) in the
NSGA2 and (μ+1) in the SMSEMOA – are incorporated, where, for the sake of
comparability, a generation of SMSEMOA equals a sequence of μ FE. For each
combination of EMOA and test function, ten independent runs are performed.

The variance bound for the χ2-variance test is set to V arLimit = 0.0012, the
significance level for both tests is set to α = 0.05, and the time window is of size
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Table 1. Parameter settings within the experiments

test problem MaxGen MaxGen2

Fonseca 66 66
ZDT1, ZDT2 120 200
ZDT4 200 100
DTLZ2 300 300

algorithm implem. pc pm ηc ηm pswap

NSGA2 R [26]a 0.7 0.2 20 20 0
SMSEMOA PISA [20] 0.9 1/length(x) 15 20 0.5

a NSGA2 is taken from the package mco (http://
cran.r-project.org/web/packages/mco/index.html).

nPreGen = 10. The different numbers of FE allowed within our experiments
(MaxGen) and within the standard literature (MaxGen2) [8] as well as the
parameters used in the simulated binary crossover and polynomial mutation [30]
are displayed in Tab. 1. For measuring the performance of the algorithms, the
following PI have been invoked: hypervolume (HV) [31], additive ε (Eps) [17],
and R2 [32]. Recall that OCD as well as OCD with full information terminate
if and only if one of the tests (χ2-variance or t-test) simultaneously indicates
convergence with respect to all three metrics. The reference fronts used within
OCD with full information have been calculated via equidistant sampling of the
known Pareto fronts.

Experimentation/Visualization. Severalways of visualization are used to dem-
onstrate our findings. In the first plots, the PI behavior is inspected over the gen-
erations of the EMOA on the ZDT4 (cf. Fig. 1) and the DTLZ2 test function
(cf. Fig. 2), where the median run with respect to the difference between the full
information-based performance metrics and OCD is plotted semi-logarithmically.
The black and light-gray solid lines indicate the generation, in which either the χ2-
variance or the regression criterion detect convergence in case of the reference set
and objective bounds being approximated online. The black and light-gray dashed
lines indicate the generation, in which convergence is detected for the given com-
bination of EMOA and test problem within the full information approach.

The differences in performance are visualized using boxplots. The subsequent
figures present the differences between the PIj,i after the number of FE rec-
ommended in literature (i = MaxGen2) and after OCD indicated convergence.
One box is shown for each PIj and each considered test case, in Fig. 3 for the
NSGA2 and in Fig. 4 for the SMSEMOA. Due to different scales, the displayed
area had to be changed for some of the test cases, i.e., DTLZ2 for NSGA2 and
ZDT1 as well as ZDT2 for the SMSEMOA. For the combinations of EMOA and
test function, in which the variance criterion initiated termination for most of
the runs, the interval [−√

V arLimit],
√

V arLimit] is highlighted in order to as-
sist inspecting the effect of V arLimit on the final approximation quality. Fig. 5
splits the runs for all test problems into two categories: runs being terminated
by the regression criterion and by the χ2-variance test. This analysis is done
separately for NSGA2 and SMSEMOA in order to show the two different types
of EMOA behavior and how OCD copes with these challenges.

Statistic details of the boxplots can be found in Tab. 2. Here, the median
differences are listed with respect to the corresponding algorithm/test case com-
bination. Note that all median differences are given multiplied by 10−3. Besides
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Fig. 1. The run of the metrics with respect to the reference set for NSGA2 and SM-
SEMOA on ZDT4. Exemplary, the run is chosen which obtains the median difference
between the approaches with and without full information. The vertical lines indi-
cate the generations, in which the different tests and variants of OCD would stop the
algorithm.

the results regarding the received quality, the additional rows within Tab. 2
indicate the number of generations OCD terminated the algorithm earlier in
contrast to the generation number suggested in the literature (MaxGen2) [8].
Furthermore, the number of saved function evaluations and their percentage of
MaxGen2 are calculated to emphasize what is saved by using OCD with only
the given median loss in quality.

In the line plots of Fig. 6 and Fig. 7, the values of each run with and without
full information are compared. By these means, systematic deviations can easily
be observed. Since OCD terminates the EMOA when the first of the tests indi-
cates convergence, it is also labeled which of the tests initiates the termination
of each run using different symbols. Fig. 6 shows the results for NSGA2 on each
test case whereas Fig. 7 provides these for SMSEMOA.

Observations. OCD efficiently copes with two different types of convergence.
In case the variance test terminates the EMOA (cf. Fig. 5, subfigures 1 and 3),
the standard deviation of all PIi,j is significantly below

√
V arLimit = 0.001.

Fig. 5 shows that the PIj,i differences between OCD Stop and MaxGen2 are
approximately in the range of [−0.001, 0.001] for the EMOA runs, which have
been terminated by the χ2-variance-test. Furthermore, big differences to the
runs, which are terminated by the regression criterion (cf. Fig. 5, subfigures 2
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Fig. 2. The run of the metric with respect to the reference set for NSGA2 and SMSE-
MOA on DTLZ2. Exemplary, the run is chosen which obtains the median difference
between the approaches with and without full information. The vertical lines indi-
cate the generations, in which the different tests and variants of OCD would stop the
algorithm.

and 4), can be observed. In these cases the differences between the approximation
quality of OCD Stop and MaxGen2 are much higher, strictly positive for the
SMSEMOA and balanced between positive and negative values for NSGA2.

The basic results from above can also be recognized in the boxplots for NSGA2
(cf. Fig. 3) and SMSEMOA (cf. Fig. 4). However, systematic differences between
the NSGA2 and the SMSEMOA results can be detected on ZDT4 and DTLZ2.
For NSGA2 on ZDT4, the variance criterion indicates convergence much earlier
than the regression criterion. This is different from the findings for SMSEMOA,
where the regression criterion terminates the algorithm earlier. The progressions
of PIj,i on DTLZ2 are strongly distorted for NSGA2 with alternating phases
of convergence and divergence. The ones of SMSEMOA are much smoother. In
both cases, the regression criterion is able to identify convergence very early in
the run, but due to the rough structure, the variance test is not able to do so for
NSGA2, while for SMSEMOA the variance criterion terminates the optimization
about 25 to 30 generations later than the regression criterion.

The differences in generations between the ones proposed by OCD and
MaxGen2 range from rather small (18 for NSGA2 on ZDT4) to very large (287
for NSGA2 on DTLZ2). In the latter case, only less than 5% of the evaluations
are needed to find better solutions compared to the ones found after the com-
plete optimization run with the termination criterion proposed in the literature.
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In most cases, slightly more than 50% of the generations can be saved. This re-
sults in over 10,000 unnecessary evaluations for the high-dimensional problems.
Even in the worst case, more than 2,900 evaluations can be saved.

The coincidence of both tested OCD variants are indicated in the line plots
in Fig. 6 for NSGA2 and Fig. 7 for SMSEMOA. The differences between OCD
and its full-information variant are strongly depending on the EMOA in use. For
SMSEMOA the results with full information and approximated reference sets are
well-correlated and no general trend can be observed. The median differences be-
tween the indications of convergence in both situations are within one to five gener-
ations (cf. Fig. 7). This is different to NSGA2, which shows a trend to overestimate
the stop generation for the high-dimensional problems.Furthermore, some outliers
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Fig. 6. In the line plots, the generations of NSGA2, in which the OCD stopping crite-
rion is first met (left), are connected to the corresponding generations of OCD with full
information (right). Furthermore, the test, which initiates the termination, is indicated
by a specific symbol.
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Fig. 7. In the line plots, the generations of SMSEMOA, in which the OCD stopping
criterion is first met (left), are connected to the corresponding generations of OCD
with full information (right). Furthermore, the test, which initiates the termination, is
indicated by a specific symbol.

with extreme differences can be detected (cf. Fig. 6). Nevertheless, the generations
proposed by OCD are matching the subjective localization of the termination gen-
eration with an accuracy of approximately nPreGen = 10 generations.

Discussion. The χ2-variance test as well as the test on the regression coefficient
are necessary to successfully detect convergence of EMOA. While the former in-
dicates a low level of improvement in cases of successful optimization, e.g., on
ZDT1 and ZDT2, the latter is extremely important when the high variance in
the indicator values does not provide further improvements due to cyclic deterio-
ration effects. These effects can be observed for NSGA2 on DTLZ2 and Fonseca.
In contrast, on ZDT4 phases of temporary stagnation lead to the termination of
the SMSEMOA based on the regression criterion. Due to a lower selection pres-
sure, NSGA2 can avoid these phases and is therefore stopped by the variance
criterion after global convergence.

Another important observation is that, in cases, in which OCD terminates the
EMOA based on the χ2-variance test, the value of

√
V arLimit = 0.001 is close to

the differences in approximation quality compared to the one after the commonly
proposed MaxGen2 FE. Thus, the user can approximately adjust the desired level
of approximation accuracy ε by choosing V arLimit = ε2. However, the figures
show that the value V arLimit = 0.0012 is suitable for the considered test cases.
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Table 2. Summary of P I i,j and generation differences at the stop generation of OCD
denoted as OCDStop and MaxGen2, where PIDiff = P Ij,OCDStop−P Ij,MaxGen2 and
GenDiff = MaxGen2−OCDStop (j = {HV, EPS, R2}). Additionally, the number of
saved function evaluations and their percentage of MaxGen2 are calculated.

NSGA2 SMSEMOA

problem PI med(PIDiff) med(GenDiff) med(PIDiff) med(GenDiff)

ZDT1 HV 2.07e-03 124 0.96e-03 112
Eps 2.08e-03 12400 FE 1.31e-03 11200 FE
R2 0.93e-03 62% 0.38e-03 56%

ZDT2 HV 2.56e-03 104 1.01e-03 101
Eps 3.13e-03 10400 FE 0.91e-03 10100 FE
R2 1.46e-03 52% 0.63e-03 51%

ZDT4 HV 0.26e-03 18 21.72e-03 63
Eps 0.28e-03 3600 FE 19.75e-03 12600 FE
R2 0.06e-03 18% 9.07e-03 63%

DTLZ2 HV -0.39e-03 287 0.72e-03 256
Eps -14.76e-03 28700 FE 3.37e-03 25600 FE
R2 0.06e-03 96% 0.02e-03 85%

Fonseca HV 0.97e-03 50 2.49e-03 49
Eps -0.51e-03 3000 FE 5.14e-03 2940 FE
R2 0.14e-03 76% 0.21e-03 74%

The experiments document the general ability of the statistical tests within
OCD to detect convergence based on performance indicator values. The delayed
detection of convergence on the Fonseca problem is due to the time window of
preceding generations and the very fast convergence of the EMOA. For a faster
detection of stagnation, nPreGen has to be decreased. However, the time of con-
vergence as indicated by OCD can be accounted as premature for SMSEMOA
on ZDT4 and DTLZ2 regarding the run of the metrics in further generations.
In such situations, a larger time window allows longer phases of stagnation and
provides the EMOA with the possibility to escape from local optima. In sum-
mary, a conflict between a fast detection of convergence and robustness with
respect to short phases of stagnation exists. Therefore, the specification of the
length of the time windows nPreGen allows the user of OCD to express his own
preferences based on the expected kind of problem.

The problem of the overestimation of the generation, in which stagnation oc-
curs, when OCD is applied within NSGA2 can be explained by the selection that
is implemented within this EMOA. Due to the high number of non-dominated
solutions in the already converged population, the individuals are mainly eval-
uated by means of the crowding distance [16]. Thus, in combination with the
(μ + μ) selection, the population is still in motion. Since the reference set it-
self is part of this motion, a high variance in the indicator values is likely to
appear. In contrast, SMSEMOA does only accept solutions, which increase the
hypervolume of the current population. Thereby, a monotonic improvement can
be expected, which also guarantees appropriate reference sets for OCD.
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5 Conclusion

In this paper, a robust and reliable method for convergence detection within
evolutionary multi-objective optimization algorithms has been introduced. This
method is based on two statistical tests, namely the t-test on the regression
coefficient and the χ2-variance test, which guarantee an accurate convergence
detection in all the considered examples. The proposed method is able to in-
voke different performance indicators, and it was investigated using the three
recommended metrics from the EMO field. This way, we have been able to save
half of the function evaluations for common test cases without having to accept
a considerable loss of quality. However, the application of OCD to optimiza-
tion scenarios, which include temporary phases of stagnation, such as in discrete
optimization, could result in a premature indication of convergence.

In addition, we tried OCD on an already solved practical example [33], which
is not shown due to a lack of space. This test indicated that the former analysis
wasted many computational resources. Processing this hint by means of compre-
hensive evaluations of OCD on real-world problems is a task for the near future.

Furthermore, the technique of OCD offers a way for algorithm comparison. For
this purpose, all EMOA parameters and operators have to be set to comparable
values, and a high number of parallel runs of each benchmarked EMOA has to be
performed. This way, a proper statistical analysis on the distributions of the stop
generations proposed by OCD combined with the internally used performance
indicators becomes possible. In this context, a comparison to an approach for
offline convergence detection, which has been recently proposed by one of the
authors [18], seems revealing.
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