
M. Ehrgott et al. (Eds.): EMO 2009, LNCS 5467, pp. 169–182, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Multi-Objective Optimisation Problems: A Symbolic 
Algorithm for Performance Measurement of 

Evolutionary Computing Techniques 

Sameh Askar* and Ashutosh Tiwari 

Manufacturing Department, Decision Engineering Centre, School of applied  
Science, Cranfield University, Cranfield MK 43 0AL, UK 

Tel.: +44(0)1234750111 Ext.: 5656 
{s.e.a.askar,a.tiwari}@cranfield.ac.uk 

Abstract. In this paper, a symbolic algorithm for solving constrained multi-
objective optimisation problems is proposed. It is used to get the Pareto optimal 
solutions as functions of KKT multipliers λ

r
 for multi-objective problems with 

continuous, differentiable, and convex/pseudo-convex functions. The algorithm 
is able to detect the relationship between the decision variables that form the 
exact curve/hyper-surface of the Pareto front. This algorithm enables to formu-
late an analytical form for the true Pareto front which is necessary in absolute 
performance measurement of evolutionary computing techniques. Here the pro-
posed technique is tested on some test problems which have been chosen from a 
number of significant past studies. The results show that the proposed symbolic 
algorithm is robust to find the analytical formula of the exact Pareto front. 
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1   Introduction 

Due to the importance of multi-objective optimisation problems (MOOP) for scien-
tists and engineering designers several mathematical approaches and evolutionary 
algorithms (EA) have been proposed. In mathematics, the Karush-Kuhn-Tucker con-
ditions (also known as the Kuhn-Tucker or the KKT conditions) are necessary for a 
solution in MOOP to be optimal. Many valuable theoretical results have been gained 
and have drawn much attention over the past several years since Kuhn and Tucker 
published their paper [1] in 1950. 

Optimisation algorithms such as evolutionary or particle swarm algorithms are heu-
ristic techniques that have been recently used to deal with multi-objective optimisa-
tion problems [2]. They have adequately demonstrated their usefulness in finding a 
well-converged and a well-distributed set of near Pareto-optimal solutions [3] and  
[4]. Because of the extensive studies and the available source codes both commer-
cially and freely of these algorithms, they have been popularly applied in various 
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problem-solving tasks and have received great attention [5]. However recent studies 
[6] have shown that multi-objective optimisation with fitness assignment based on 
Pareto-domination leads to long processing times for large population sizes.  This has 
motivated a considerable amount of research and a wide variety of approaches have 
been suggested in the last few years [6]. Deb et al. have suggested a verification pro-
cedure based on KKT conditions to build confidence about the near-optimality of 
solutions obtained using an evolutionary optimisation procedure [11]. 

The aim of this paper is to present a proposed symbolic algorithm which is able to 
solve constrained multi-objective optimisation analytically. This new algorithm can 
be used to get an analytical form of the curve/hyper-surface of the Pareto front for a 
certain class of multi-objective problems. This class involves the set of continuous, 
differentiable, and convex/pseudo-convex objective functions. Moreover, for this 
class of functions the algorithm guides to the relationship between the decision vari-
ables which describes the Pareto front surface exactly. It is not clear from the mathe-
matical description of the multi-objective optimisation problem (1) what would be the 
analytical relationship between the decision variables for the solutions to be on the 
true Pareto front. There is no doubt that such relationship between the decision vari-
ables need careful analysis so that one can guarantee that the solutions provided by 
them are Pareto optimal solutions. The observations emanated from such relationship 
would be very important for a designer. With such observations, the designer may be 
able to switch from one optimal solution to another by simple changes in the design, 
achieving different trade-off requirements of the objectives. This information is not 
only important for operational purposes; it could also provide vital insight into the 
problem at hand and may guide evolutionary computing techniques to finding stop-
ping criteria and reduce the time consumption for converging to the true Pareto front. 
Both the analytical formula of the exact Pareto front and the relationship between the 
decision variables responsible for constructing this analytical formula are not pro-
vided by the state-of-the-art evolutionary algorithm, NSGA-II. The central part of the 
algorithm is the Karush-Kuhn-Tucker (KKT) theorem [1] which can handle high 
dimensionality. With this symbolic algorithm one can apply several metrics which 
need an analytical formula for the exact Pareto front to be known so that one can 
measure the performance of Evolutionary algorithms.    

The layout of the paper is as follows: in section 2 some basic concepts required 
throughout the paper are presented. A description of the proposed symbolic algorithm 
is given in section 3. In section 4 some test problems to be solved using the proposed 
algorithm are described and the results which obtained in the experiments that per-
formed using the algorithm are presented and discussed as well. Section 5 shows 
NSGA-II performance using the generational distance metric and the analytical for-
mula of the exact Pareto front provided by the symbolic algorithm. Finally, in section 
6 some conclusions are presented.  

2   Preliminaries 

This section highlights some definitions and notations that will be used throughout the 

paper. The n-dimensional Euclidean space is denoted by nR . The constrained multi-
objective optimisation problem to be handled here in this paper takes the following 
form [12]: 
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where, },...,2,1{,: mMRXf M =→ and }p,...,,{j,RX:g j 21=→ . In this formu-

lation, )(xf
i

r
denotes the thi objective function, )( xg

j

r
denotes inequality type of con-

straints. The ultimate goal is simultaneous minimisation or maximisation of all given 
objective functions. When the objective functions conflict each other there may be a 
set of many alternative solutions. This family of possible solutions cannot improve all 
the objective functions concurrently. This is called Pareto optimality [12] and the 
definition is given below. Note that any maximisation objective function can be con-
verted into a minimisation objective by changing its sign. 

Definition 2.1. A point Xx ∈ˆ is said to be a Pareto optimal solution (or non-inferior 
or efficient) to the problem (1) if and only if there is no Xx ∈ such that )ˆ()( xfxf ≤ .   

Definition 2.2. A point Xx ∈ˆ is said to be a weak Pareto optimal solution to the 
problem (1) if and only if there is no Xx ∈ such that )x̂(f)x(f < .   

Roughly speaking, a point Xx ∈ˆ is Pareto optimal to problem (1) if and only if one 
can improve (in the sense of minimisation) the value of one of the objective functions 
only at the cost of making at least one of the remaining objective function(s) worse; it 
is weak Pareto optimal if and only if one can not improve all of the objective func-
tions simultaneously.     

Definition 2.3. For any T
nxxxx ),...,,( 21= and nT

n Ryyyy ∈= ),...,,( 21 , one can 

define the following [13]: 

(i) yx = if and only if ii yx = for all ni ,...,2,1= ; 

(ii) yx ≤ if and only if ii yx ≤ for all ni ,...,2,1= ; 

(iii) yx < if and only if ii yx < for all ni ,...,2,1=  

Definition 2.4. A subset nRX ⊆ is said to be a convex set if for any two points 

Xyx ∈, the segment Xyx ∈−+ )1( αα and ]1,0[∈α . 

Definition 2.5. A function RRXf n →⊆:  is convex if for all Xyx ∈, is valid that 

)()1()())1(( yfxfyxf αααα −+≤−+ for all ]1,0[∈α . 

Definition 2.6. A function RRXf n →⊆:  is differentiable at Xx ∈ˆ  if 

),ˆ()ˆ()ˆ()ˆ( dxddxfxfdxf T ε+∇=−+ , where )ˆ(xf∇  is the gradient of 

f at x̂  and 0),ˆ( →dxε as 0→d .  
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Definition 2.7. Let the function RRXf n →⊆:  be differentiable at every Xx ∈ . 

Then it is pseudo-convex function if for all Xyx ∈, such that 0)()( ≥−∇ xyxf T , we 

have )()( xfyf ≥ . 

Theorem 2.1. Suppose )( xf
r

 has continuous second-order partial derivatives at 

Cx ∈v on some open convex set C  in nR . If the Hessian H of )( xf
r

is positive 

semi-definite ( 0≥H ) on C , then )( xf
r

is convex on C  (for a proof one can see [7]). 

Theorem 2.2. Let the objective and the constraint functions of problem (1) be convex 
and continuously differentiable at a decision vector Xx ∈ˆ . A sufficient condition for 

x̂  to be Pareto optimal is that there exist multipliers mR∈< λ0 and pR∈≤ μ0 such 

that 
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Proof. See [8].  

3   The Algorithm 

The following steps of the algorithm are directly motivated by the KKT theorem. 
They have been automated and coded in Mathematica® Symbolic Toolbox and run 
step by step [10]. Later the algorithm is applied to some test problems to illustrate its 
performance. After that the same problems are solved using the state-of-the-art sto-
chastic algorithm NSGA-II to validate the symbolic algorithm. Below are the steps of 
the symbolic algorithm:   

Step 1. Define the objective functions
i

f , Mi ,...,2,1=  to be minimised.   

Step 2. Calculate the Hessian Matrix )if(H  for each function separately.  

             If 0≥H then go to step 4, otherwise go to step 3.  
Step 3. Check if the condition )](,)([max))1(( yfxfyxf ≤−+ αα or 

0)()( ≤−∇ xyxf T  for an arbitrary y in the feasible space is satisfied. If yes 

go to step 4, otherwise terminate. 

Step 4. Solve the system 0)ˆ()ˆ(
1 1

=∇+∇∑ ∑
= =

m

i

p

j
jjii xgxf μλ  to get ),( μλxx = . 

Step 5. Use the system pjxg jj ,...,2,1,0)ˆ( ==μ to get pjj ,...,2,1, =μ  as a func-

tion of mii ,...,2,1, =λ and substitute in step 4. 

Step 6. Substitute the result from step 5 in step 4 to obtain )(λxx = . 

Step 7. Construct the analytical formula between mifi ,...,2,1, = using )(λxx = . 

Step 8. End. 
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Fig. 1. A flow chart of the proposed symbolic algorithm 

4   Test Problems and Results 

For the validity of the new symbolic algorithm, some test problems that have been 
solved using the stat-of-the-art stochastic algorithms were selected from the literature 
to be solved by the symbolic algorithm. A complete description of these problems is 
shown below first and after that come a complete discussion for the results provided 
for each test problem separately: 

Problem Formulation 4.1: (Fonseca and Fleming [3]) 
This problem is a typical multi-objective evolutionary algorithm (MOEA) benchmark 
problem. It consists of two objective functions and n decision variables as follows: 
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Restrictions: nx ,...,2,1,44 =≤≤− l
l
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Problem Formulation 4.2: (Deb [4]) 
This problem is a two-variable problem. It consists of two objective functions which 
have the following form: 
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where q defines the number of lags in the interval ]1,0[ and 2=α  is a typical choice. 

Restrictions: 1,0 ≤≤ yx  

Problem Formulation 4.3: (Viennet [3]) 
This problem is a two-variable problem. It consists of three objective functions that 
have the following form: 
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Restrictions: 2,2 ≤≤− yx  

Problem Formulation 4.4: (Constrained problem [4]) 
This problem is a two-variable problem. It consists of two objective functions and two 
inequality constraints. It has the following form: 
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Restrictions: 11.0
1

≤≤ x and 50 2 ≤≤ x  

After executing the symbolic algorithm, the following results and observations are 
obtained: 

Problem Analysis 4.1: For this problem at 2=n the analytical formula of the exact 
Pareto front is: 
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Although both the objective functions are convex functions, the exact Pareto front 
is non-convex curve as can be seen in Figure 2 (black bold curve). This curve is con-
structed by the linearity relationship between the decision variables, 

21
xx = in the 

interval ]..,.[ 707043891−  As can be shown from Figure 3, not all the linearity rela-

tionships between the decision variables are used to construct the exact Pareto front. 
This interesting observation will help the designer to switch from one optimal solu-
tion to another. In addition, this linear relationship can be written as functions of KKT 
multipliers as follows: 
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This problem has been solved using – a state of the art evolutionary technique – 
NSGA-II [5] with population size 100 and 100 generations using standard parameters. 
The result is plotted in Figure 2 (Red squares). It is shown that the robust of  
NSGA-II in finding uniform solutions on the exact curve of the Pareto front. Here 
raises the robust of the symbolic algorithm in providing a connected curve of the 
Pareto front. Furthermore, the symbolic algorithm is guided to the relationship be-
tween the decision variables responsible for constructing that curve. In addition, this 
problem has been solved using the symbolic algorithm at 3=n and it yielded the 
following: 
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Fig. 2. Objective space of problem 4.1  Fig. 3. Decision space of problem 4.1 
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This means that the dimension has no impact on the shape of the Pareto front; only 
the constraint imposed on

1
f changed. The algorithm shows also that the Pareto opti-

mal solutions for this problem satisfy at
321

xxx == . Again the linearity between the 

decision variables is the responsible for constructing the analytical formula of the 
exact Pareto front.  

Problem Analysis 4.2: For this problem at 12=q  the symbolic algorithm yielded the 

following results: 

Case 1. )9091.10,1(1 =⇒== fyx
r

, This is local Pareto front point. 

Case 2. )1,1(0 =⇒== fyx
r

, This is local Pareto front point. 

Case 3. 0=y and x satisfies the equation, 
2

1)24cos(24)24sin(2
λ
λ

πππ =++ xxxx . 

In this case the analytical formula that involves the exact Pareto front takes the form: 

)24sin(1 11
2

12 ffff π−−=  and 10 1 << f                                (9) 

This formula is plotted in Figure 4 (Black bold curve). As can be seen from Figure 4 
it is a disconnected Pareto front. Cases 1 and 2 are dominated by points on this curve. 
This problem has been solved using NSGA-II with population size 100 and 100 gen-
erations using standard parameters. The result is plotted in Figure 4 (Red circles) and 
same observations found like the previous problem.  

 

Fig. 4. Exact and approximated Pareto front to problem 4.2 

Problem Analysis 4.3: For this problem the equation of the hyper-surface involved 
the exact Pareto front is: 

( ) 21
16

1
1253210

4

1 2
21

2
2

2
2

12123 ++−+⎟
⎠

⎞
⎜
⎝

⎛ −−−−++= ffff)f(fff      (10) 

and 140,130 21 ≤≤≤≤ ff  



 Multi-Objective Optimisation Problems 177 

 

Fig. 5. Exact and approximated Pareto front 

The eq. 10 is plotted in Figure 5 (the coloured hyper-surface). This equation is con-
structed by the following relationship between the decision variable: 

xy
3

21

λ
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This problem has been solved using NSGA-II with population size 100 and 100 gen-
erations using standard parameters. The result is plotted in Figure 5 (Black crosses) 
and same observations found like the two previous problems.  

Problem Analysis 4.4: For this problem step 4 of the symbolic algorithm yielded:  
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with 19 cases for 54321
,,,, μμμμμ and

6
μ have been obtained by step 5. Eight cases 

are accepted as they make Eq. 11 within its range. The other cases are rejected as they 
make the decision variables out of their ranges and give complex values for

1
x and

2
x . In 

addition, these rejected cases make the constraints unsatisfied. The accepted cases are: 

Case 1. .0,
7

18

18
,

18 6543

21
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1
====−== μμμμ

λλ
μ

λ
μ  

This case yields the point )5.2,3889.0( on the border of the feasible decision space 

(Bold line, Figure 6). It satisfies the inequality constraints imposed on the problem. 
The corresponding point in the feasible objective space is )9997.8,3889.0( on the 

region A (Bold curve, Figure 7).  
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Case 2 

.75.1111111.0,0,25.0111111.0 2156432211
λλμμμμμλλμ +=====−=  

This case yields the point )44.0,8.0( in the feasible decision space (Bold point, 

Figure 6). It satisfies the inequality constraints imposed on the problem. The corre-
sponding point in the feasible objective space is )8.1,8.0( (Bold point, Figure 7). This 

point is better than points on region C and is dominated by points from regions A  
and B.  

Case 3. .0,
7 65432

21
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This case yields:
1

2
1

7

λ
λ

=x , 12 96 xx −= and 6667.03889.0 1 ≤≤ x . This relation-

ship between 1x  and 2x  represents the bold line A in the decision space (Figure 6). 

All the points satisfying this line A are used to construct the formula, 

6667.03889.0,9
7

1
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2 ≤≤−= f
f

f . This formula is the first part of the exact Pareto 

front (Bold curve A, Figure 7)  

Case 4. .21,0
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This case yields:
1

2
1 λ

λ
=x , 02 =x  and 16667.0 1 ≤≤ x . This relationships for 1x  

and 2x  represent the bold line B in the decision space (Figure 6). All the points satis-

fying this line B are used to construct the formula, 16667.0,
1

1
1

2 ≤≤= f
f

f . This 

formula is the second part of the exact Pareto front (Bold curve B, Figure 7)  

Case 5. .111111.0,0111111.0,0 165432121
,5.1 λλλ μμμμμμ −====== −  

This case yields the point )5,6667.0( in the feasible decision space (Bold point on the 

bold line C, Figure 6). It satisfies the inequality constraints imposed on the problem. 
The corresponding point in the feasible objective space is )9996.8,6667.0( (Bold 

point on the curve C, Figure 7). This point is dominated by points on the curve A.  

Case 6. .
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,0 21
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This case yields:
1
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λ
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=x , 52 =x  and 16667.0 1 ≤≤ x . This relationships for 1x  

and 2x  represent the bold line C in the decision space (Figure 6). All the points satis-

fying this line C are used to construct the formula, 16667.0,
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1
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2 ≤≤= f
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formula creates the part C (Red curve in Figure 7). It is a local Pareto front and is 
dominated by both curves A and B.  

Case 7. .0,,,0
625214321

==+−==== μλμλλμμμμ  

This case yields the point )0,1( on the border of the feasible decision space (Bold line 

B, Figure 6). It satisfies the inequality constraints imposed on the problem. The corre-
sponding point in the feasible objective space is )1,1( on the border of the region B 

(Bold curve, Figure 7).  

Case 8. .,0,6,0
265214321

λμμλλμμμμ −==+−====  

This case yields the point )5,1( on the border of the feasible decision space (Bold line 

C, Figure 6). It satisfies the inequality constraints imposed on the problem. The corre-
sponding point in the feasible objective space is )6,1( on the border of the region C 

(Red bold curve, Figure 7). This point is dominated by the point )1,1( .  

 

Fig. 6. Feasible search region for problem 1 in the decision variable space  

 

Fig. 7. The exact and local Pareto front for problem 1 using the proposed symbolic algorithm 
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Fig. 8. The approximated Pareto front for problem 1 using NSGA-II algorithm 

This problem has been solved using NSGA-II with population size 500 and 500 
generations using standard parameters. The result is plotted in Figure 8 and same 
observations found like the three previous problems.  

5   NSGA-II Absolute Performance Measurement  

The term performance is always involved when comparing different optimisation 
techniques experimentally. In the case of multi-objective optimisation, the definition 
of quality is substantially complex because the optimisation goal itself consists of 
multiple objectives [9]:  

• The distance of the resulting non-dominated set to the Pareto front should be 
minimised. 

• A good (in most cases) uniform distribution of the solutions found is desirable. The 
assessment of this criterion might be based on a certain distance metric. 

• The extent of the obtained non-dominated front should be maximized, i.e., for each 
objective, a wide range of values should be covered by the non-dominated solutions. 

In the literature, some attempts can be found to formalize the above definition (or 
parts of it) by means of quantitative metrics [2]. Within this paper the generational 
distance (GD) metric is used. This metric is the average distance from the obtained 
Pareto front (

known
FP ) to the true Pareto front (

true
FP ) and is defined as follows [2]: 
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where n is the number of vectors in 
known

FP , 2=p  and 
i

d is the Euclidean distance 

(in objective space) between each vector and the nearest vector of 
true

FP . The result 

0=DG  indicates 
trueknown

FPFP = ; any other value indicates 
known

FP  deviates from 

true
FP . 
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Fig. 9. The residual plot between the approximated Pareto front and the exact Pareto front for 
problem 4.1 

The performance of NSGA-II is shown in Figure 9. This figure illustrates the re-
siduals between the approximated Pareto front and the true Pareto front. As expected 
for a stochastic technique NSGA-II is able to find some points but not all the points 
on the true Pareto front in the final generation. There are also some minor deviations 
from the true Pareto front as shown in the left part of Figure 9.  

The NSGA-II with 100 generations and 100 individuals in each generation has 
been executed 10 times on Fonseca and Fleming problem. By choosing 100 values on 
the true Pareto front provided by the paper’s algorithm near to the 100 individuals 
obtained by NSGA-II, the generational distance metric has been calculated in each 
experiment separately using eq. 12.  

The experiments show that with a minimum GD = 0.000829839 the NSGA-II can 
approximate the Pareto front in some runs quite well. However, in other runs the 
approximated Pareto front obtained by NSGA-II is not perfect since maximum GD = 
0.001065864. The mean and standard deviation of all the 10 experiments are  
μ= 0.982912E-3 and σ = 7.23078E-5, respectively. The small standard deviation 
shows that the GD values after 100 generations of the NSGA-II are already quite 
close to the mean. However, a GD different from zero indicated an ongoing approxi-
mation process. 

The proposed KKT-based algorithm providing a closed formula for the Pareto 
front curve allows for a very precise statistical analysis of the performance of stochas-
tic multi-objective optimisation techniques such as NSGA-II using an absolute per-
formance measure such as the GD. 

6   Conclusions 

A symbolic algorithm for multi-objective optimisation problems was proposed. It has 
been applied on some test problems. Exact solutions for these problems have been 
found by this algorithm. The analytical form of the exact Pareto front has been formu-
lated using the algorithm for these problems as well. Furthermore, a linear relationship 
between the decision variables has been formulated as a function of KKT multipliers. 
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This relationship itself is responsible for constructing the true Pareto front. As has been 
mentioned within this paper, this relationship has a significant contribution in innova-
tion. It guides the designer to switch from one optimal solution to other. Furthermore, 
it helps to measure the performance of evolutionary algorithms. In addition, it might be 
used to form the stopping criteria for evolutionary algorithms. The generational dis-
tance metric was used to evaluate the performance of the NSGA-II algorithm using the 
analytical formula of the exact Pareto front found by the proposed algorithm.     
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