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Abstract. In multi-criterion optimization, Pareto-optimal solutions
that appear very similar in the objective space may have very differ-
ent pre-images. In many practical applications the decision makers, who
select a solution or preferred region on the Pareto-front, may want to
know different pre-images of the selected solutions. Especially, this will
be the case when they would like to present alternative design candidates
in later stages of a multidisciplinary design process.

In this paper we extend an existing CMA-ES niching framework,
which has been previously applied successfully to multi-modal optimiza-
tion, to the multi-criterion domain for boosting decision space diversity.
At the same time, we introduce the concept of space aggregation for
diversity maintenance in the aggregated spaces, i.e. search/decision and
objective space. Empirical results on synthetic multi-modal bi-criteria
test problems with known efficient sets and Pareto-fronts demonstrate
that the diversity in the decision space can be significantly enhanced
without hampering the convergence to a precise and diverse Pareto front
approximation in the objective space of the original algorithm.

1 Introduction

Pareto-optimization aims at solving optimization problems with multiple, pos-
sibly conflicting, objective functions [1]. The general approach is to find non-
dominated solution sets and, especially in continuous spaces, approximate true
Pareto-fronts of the problem. It is important in the context of this paper to
distinguish between the Pareto-front and the efficient set. While the former de-
notes the set of non-dominated points in the objective space, the latter refers to
the set of vectors in the search space that are pre-images of the points in the
Pareto-front under the mapping of the vector-valued objective function. At the
same time, multiple points in the efficient set may be projected onto the same
point on the Pareto-front. Moreover, unless certain continuity assumptions on
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the objective functions hold, there is no evidence that neighboring points on the
Pareto-front stem from the same region of the decision space. This scenario is
illustrated in Figure 1. Therefore, attaining a set of solutions that covers the
entire Pareto-front does not necessarily guarantee obtaining a set that yields a
good coverage of the decision set. Moreover, diversity of an approximation set
to the Pareto front in the objective space does not necessarily imply diversity
of solutions in its corresponding efficient set approximation, though the latter is
desirable.

Decision Space Objective Space

Fig. 1. Diversity for decision making : Illustrative example for a scenario where two
adjacent points on the Pareto front are mapped onto two points in two completely
different regions in the decision space. Units and scales are arbitrary.

1.1 Motivation

Indeed, it has been pointed out recently that not only high diversity of solutions
in the objective space but also high diversity of solutions in the efficient set can
be of interest for decision makers [2,3]. We choose to furthermore motivate this
idea with the following two examples:

– Firstly, let us consider the problem of finding molecules with certain prop-
erties that can serve as drug candidates in a de novo drug discovery process
[4,5]. Clearly, the approximation of different target properties can be formu-
lated as a multi-objective optimization task. However, once a set of molecules
has been found that has a good spread over the Pareto front, there may still
be molecules that violate some constraints that had not been considered by
the expert. In such cases, alternative solutions with similar properties, would
be of interest.

– A second example is multidisciplinary optimization processes in the auto-
motive or aerospace industries [6,7], that follow a restricted design process
workflow. Here, different development teams focus on different aspects of a
design and come up with a set of solutions that are favorable from the point
of view of their discipline to discuss these solutions with experts from other
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disciplines until a consensus design is found. Also in this case it would be
desirable for the decision maker to identify different possible solutions that
map to the preferred region on the Pareto front, as the objectives of the
other disciplines cannot be evaluated a priori.

1.2 Background

Up to date, there has been very few work that addressed search space diversity
in Evolutionary Multiobjective Optimization (see, e.g., [2,6,8,9]). Apart from
this, current benchmarks do not consider this issue in the way performance is
evaluated. This paper presents a wholehearted attempt to increase decision space
diversity in existing state-of-the-art Evolutionary Multiobjective Optimization
Algorithms (EMOA).

Based on related studies in multi-modal optimization, the modification of the
selection criteria alone is not sufficient to boost diversity in the decision space.
This is due to the fact that Evolutionary Algorithms (EAs) tend to lose their
population diversity for several reasons, such as genetic drift, fast takeover, and
disruptive recombination [10]. This problem is typically addressed by Niching
methods, an extension of EAs to multi-modal optimization [11,12]. These meth-
ods allow for parallel convergence into multiple good solutions. Niching has been
traditionally investigated within Genetic Algorithms (GAs) [11], but recently
there were several studies of niching in Evolution Strategies (ES), especially as
combined with the Covariance Matrix Adaptation ES (CMA-ES; See, e.g., [13]).
The obtained ES-based niching techniques proved to be robust and efficient
strategies for identifying multiple global optima in degenerate landscapes, and
were successfully applied to synthetic as well as to real-world high-dimensional
problems [14].

1.3 Overview

The new approach reported in this paper introduces two conceptual changes to
the selection strategy of EMOA: The first is the employment of an aggregated
diversity measure that takes into account the local density of solutions in the
decision space with the local density in the objective space. However, aggrega-
tion alone would not be sufficient to prevent fast takeover and drift effects from
occurring. These effects are already known to cause a rapid loss of diversity in
ordinary EA/EMOA in early stages of the evolution, where Pareto domination
rather than contribution to diversity is still the governing criterion for selection.
Therefore, we consider the introduction of dynamic niching using resource shar-
ing, also referred to as the dynamic niching framework, as the second element,
due to counteract the aforementioned effects.

As a proof of concept for the new approach, we shall present in this paper
empirical results on synthetic multi-modal bi-criteria test problems with known
efficient sets and Pareto-fronts. We will demonstrate that diversity in the decision
space can be significantly enhanced without hampering the convergence to a di-
verse Pareto front approximation in the objective space of the original algorithm.
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As reference methods, we will report on the performance of the multi-criterion
version of the CMA-ES (referred to in our notation as CMA-MO) [15], as well
as the NSGA-II and its derived variants [16,2] on the same test problems.

The paper is organized as follows: In section 2 we discuss related work. The
algorithmic approach is outlined in section 3. Then, in section 4, the proposed
scheme is evaluated on test problems. Finally, in section 5 we summarize our
findings and suggest directions for future research.

2 Related Work

We review here several related studies to our work. Due to the crossing-branches
nature of our work, these treat the topics of niching and multi-objective opti-
mization.

Niching techniques have been already used in the multi-objective optimization
arena, earlier. Horn et al. introduced a niching technique for multi-objective
optimization, known as the niched-Pareto GA (NPGA) [17]. The algorithm was
a variant of the fitness sharing niching method, whereas the niching distance
metric was set to consider the objective space only. Selection was based on so-
called Pareto domination tournaments or on the minimal niche count, otherwise.
The NPGA was a classical example of using an existing single-objective niching
technique, in a straightforward manner, for multi-objective optimization – only
by redefining the niching distance metric and the selection mechanism. However,
its kernel was the simple GA and it lacked any self-adaptation mechanism.

A multi-objective approach aiming for a good diversity in decision as well
as in objective space was the GDEA, as introduced by Toffolo and Benini [9].
GDEA invoked two selection criteria, non-dominated sorting as the primary one
and a metric for decision space diversity as the secondary one.

Another approach, the so-called Omni-Optimizer [2], extended the classical
NSGA-II [16] by considering the diversity in the decision space additionally. Its
selection is performed with a changing secondary selection criterion, targeting
either the decision or the objective space diversity in each generation.

An EMOA approach designed for maintaining diversity in both spaces is the
KP1, as proposed by Chan and Ray [8]. Here, two criteria to measure the di-
versity of solutions in the corresponding spaces are defined and applied in each
generation. These are the dominated hypervolume of each individual for the
objective space and a neighborhood counting approach for the decision space.

A more structural analysis of the correlation between decision and objective
space in multi-objective optimization has been introduced lately [3,18], while fo-
cusing on defining different test functions and analyzing the algorithmic behavior
on them.

3 The Algorithmic Approach

Before introducing the new framework we would like to review some of its compo-
nents, and in particular the extension of the CMA-ES into multi-modal domains
by means of a specific niching technique.
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The CMA-ES (see, e.g., [13]), is a derandomized ES variant that has been
successful in treating correlations among object variables by efficiently learn-
ing matching mutation distributions. Explicitly, in generation g, λ offspring are
generated by means of Gaussian sampling:

x
(g)
k ∼ N

(
〈x〉(g−1)

W , σ(g−1)2C(g−1)
)

k = 1, . . . , λ (1)

The best μ search points out of these λ offspring undergo weighted recombi-
nation and become the parent of the following generation, denoted by 〈x〉(g)

W .
The covariance matrix C(g) is initialized as the unity matrix and is learned dur-
ing the course of evolution, based on cumulative information of successful past
mutations (the so-called evolution path). The global step-size, σ(g), is updated
based on information extracted from principal component analysis of C(g) (the
so-called conjugate evolution path). For more details we refer the reader to [13].

A niching framework for
(
1 +, λ

)
derandomized-ES kernels subject to a fixed

niche radius has been introduced recently (see, e.g., [14]). This framework con-
siders q search points, which carry their defining strategy parameters (referred
to as CMA-Sets or D-Sets), and correspond to sub-populations operating in dif-
ferent parts of the search space (niches). The niches and their representatives
are re-formed in each generation using the dynamic peak identification (DPI)
routine [14]. It takes into account both the ranked fitness of the individuals as
well as the spatial distance between them; For the spatial selection, a niche ra-
dius must be defined a priori [14]. Individuals that belong to the same niche are
located in a hyper-sphere, defined by that radius, around the central individ-
ual, namely the peak individual. Unlike previous CMA-Niching ES, this study
will introduce multiple parents in each niche, subject to (μW , λ) selection with
weighted recombination according to the standard formulas [19]. Sizing the niche
population is done with λ = 4 + �3 · ln (n)�, μ = �λ

2 �, with n as the search space
dimensionality, following the recommendation in [19] (for further argumentation
see also [13]). To this end, we choose to define the additional selected offspring
as the set of at most �λ

2 � − 1 individuals that are within niche radius from the
peak individual and share its same parent. This way, it is guaranteed that the
ES mutation distribution evolves continuously. Since the value of μ may vary
over time, other auxiliary coefficients must be updated accordingly, such as the
recombination weights. Algorithm 1 summarizes the Niching-CMA routine.

The proposed multi-objective routine uses the Niching-CMA scheme as it is,
with the following modifications:

– ranking of individuals is based upon non-dominated sorting.
– distance between niches is calculated in the aggregated space.
– the estimation of the niche radius is adjusted.

Given the n-dimensional decision vector of individual k, xk = (xk,1, ..., xk,n),
with its assigned objective d-dimensional vector, fk = (fk,1, ..., fk,d), and given
the equivalent decision and objective vectors of individual l, (xl, f l), the dis-
tance between individuals k, l is defined as follows:
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Algorithm 1. (μw, λ)-CMA-ES Niching with Fixed Niche Radius
1: for i = 1, . . . , q search points do
2: Generate λ samples based on the CMA-Set of individual i
3: end for
4: Evaluate fitness of the population
5: Compute the Dynamic Peak Set (DPS) with the DPI Routine
6: for j = 1..q elements of DPS do
7: Identify at most μ = �λ

2
� fittest individuals of niche j with Parent(peak(j))

8: Apply weighted recombination on xw and zw w.r.t. those individuals
9: Inherit the CMA-Set of peak(j) and update it w.r.t. the variations carried out

10: end for
11: if Ndps=size of DPS < q then
12: Generate q − Ndps new search points, reset CMA-Sets
13: end if

dk,l =

√√√√ 1
n

n∑
i=1

(xk,i − xl,i)2 +
1
d

d∑
j=1

(fk,j − fl,j)2 (2)

It is implicitly assumed that decision parameters and objective function values
are scaled within a common order of magnitude. In order to select individuals
based on multiple objectives, the selection mechanism was modified. As outlined
before, the niches are identified based on their ranked quality, which is imple-
mented here by means of non-dominated sorting [16]. Following this, the routine
will proceed as usual: Starting with rank 0, a greedy identification of the niches
will be carried out, considering the distance with respect to the aggregated ob-
jective and decision spaces. If not all q niches are populated, the routine will
proceed to rank 1, and so on.

Comparison. The uniqueness of the proposed approach with respect to the
mainstream EMOA lies in two main aspects: Firstly, the employment of a single
selection phase, rather than two, and secondly, the consideration of space aggre-
gation for the sake of diversity measurement. Moreover, this method differs from
the CMA-MO algorithm in its ES mechanism: Unlike the elitist single-parent
(1 + λ)-kernel of the CMA-MO, the proposed scheme employs a comma multi-
parent (μW , λ)-kernel, which may be advantageous in certain environments.

Setting a Default Value for the Niche Radius. Since our method aims to
approximate the Pareto front by populating it with a uniform distribution of q
niches, we can estimate the niche radius, whenever the aim is to distribute the
niches evenly across the search space. The following derivations are valid for 2D
objective spaces, but we believe that they could be generalized to d-dimensional
spaces. Consider a connected Pareto front, and assume that we can define its
length, denoted by lFRONT . Also, let the diameter of the Pareto set be denoted
by lSET . Upon demanding a uniform distribution of niches, one may write:

2 · ρ · q =
√

l2FRONT + l2SET (3)
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Simplified Model. One can consider a simplified model for providing an upper
and a lower bounds for ρ, by taking into account only the objective space. For
this purpose let us consider the Nadir objective vector, denoted here as ζ(N ) =
(f1,N , f2,N )T . In the general d-dimensional objective space, the Nadir objective
vector is defined as the vector with the worst objective values of all Pareto
optimal solutions (as opposed to the worst objective values of the entire space):

ζ
(N )
i = max

{
fi

∣∣∣(f1, . . . , fi, . . . , fd)
T ∈ FN

}
. (4)

The Nadir objective vector can be computed for d = 2 by employing single-
objective optimization. For d > 2, heuristics are available, but the problem is
considered to be computationally hard [20].

Without loss of generality, assume that the objectives {f1, f2} are assigned
with values in the intervals {[f1,min, f1,N ] , [f2,min, f2,N ]}, respectively. The
length of the assumably-connected Pareto front has the following lower and
upper bounds:

lFRONT,min =
√(

(f1,N − f1,min)2 + (f2,N − f2,min)2
)

lFRONT,max = |f1,N − f1,min| + |f2,N − f2,min|
(5)

Hence, upon assuming a uniformly spaced population of the q niches along the
front, one can derive

√(
(f1,N − f1,min)2 + (f2,N − f2,min)2

)

2 · q ≤ ρ ≤ |f1,N − f1,min| + |f2,N − f2,min|
2 · q (6)

The General Case. For the general case, we choose to define the default values
as the diameters of the decision or the objective spaces, respectively:

rSET =

√√√√
n∑

i=1

(xi,max − xi,min)2 rFRONT =

√√√√
d∑

j=1

(fj,max − fj,min)2 (7)

and thus

ρ =

√∑n
i=1 (xi,max − xi,min)2 +

∑d
j=1 (fj,max − fj,min)2

2 · q (8)

The niche radius is essentially a crucial parameter of this method, and its esti-
mation or tuning is critical for the algorithmic success.

4 Experimental Analysis

Our aim is to provide a proof of concept for the proposed aggregation approach:
Concerning the achieved decision space diversity of the generated results, an
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originally single-objective method enhanced by the aggregation scheme shall
generally be competitive to any multi-objective algorithm designed for that pur-
pose, and superior to any standard multi-objective algorithm. We therefore focus
our experimental procedure on landscapes with interesting decision space char-
acteristics, that is, functions with several pre-images for certain points in the
efficient set (non-injective functions).

4.1 Test Functions: Non-injective Artificial Landscapes

The following set of bi-objective functions is considered in order to test the al-
gorithmic performance. Not many more test problems with these characteristics
are known to us, however the chosen four still have very different properties.

1. Omni-Test by Deb. Deb et al. constructed a bi-criteria multi-global land-
scape for testing their Omni-Optimizer [2]. Explicitly, it reads:

f1(x) =
n∑

i=1

sin (πxi) −→ min, f2(x) =
n∑

i=1

cos (πxi) −→ min (9)

where ∀i xi ∈ [0, 6]. We consider n = 5.
2. EBN. The EBN family of functions [21] introduced a very basic set of test-

problems for multi-objective algorithms. Explicitly, it reads:

f
(γ)
1 (x) =

(
n∑

i=1

|xi|
)γ

·n−γ → min, f
(γ)
2 (x) =

(
n∑

i=1

|xi − 1|
)γ

·n−γ → min

(10)
The EBN problems are attractive in the context of efficient set approxima-
tion, as the pre-images of points in the objective space are not single points,
but rather line segments on the diagonals of [0, 1]n, excepting the extremal
points (0, 1)T and (1, 0)T [22]. Each point in [0, 1]n is efficient. In our study
we consider the case of a linear Pareto front, γ = 1, with n = 10.

3. “Two-on-One”. This test-case was originally introduced in an interesting
study of the Pareto-optimal set [18], large parts of which have two pre-
images. It is a two-dimensional function, with a 4th-degree polynomial with
two minima as f1 versus the sphere function as f2:

f1(x1, x2) = x4
1 + x4

2 − x2
1 + x2

2 − gx1x2 + hx1 + 20 −→ min

f2(x1, x2) = (x1 − k)2 + (x2 − l)2 −→ min
(11)

We consider the asymmetric case, with g = 10, h = 0.25, k = 0, and l = 0
(case number 3 as reported in [18]).

4. Lamé Superspheres. We consider a multi-global instantiation of a family
of test problems introduced by Emmerich and Deutz [23], the Pareto fronts of
which have a spherical or super-spherical geometry. In contrast to the EBN
problem, the set of pre-images of a point on the Pareto front for this instance
is finite, and solutions are placed on equidistant parallel line-segments, with
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Table 1. Hypervolume of the resulting Pareto fronts of the 5 different algorithms on
the 4 test-cases: average and standard-deviation over 30 runs

Hypervolume Niching-CMA CMA-MO NSGA-II NSGA-II-Agg. Omni-Opt.

Omni-Test 30.27 ± 0.05 30.43 ± 0.002 30.17 ± 0.034 29.81 ± 0.2 29.72 ± 0.20

EBN 3.295 ± 0.038 3.489 ± 0.001 3.30 ± 0.082 2.848 ± 0.173 2.058 ± 0.064

Two-on-One 173.44 ± 0.14 174.52 ± 0.005 172.59 ± 1.53 171.58 ± 2.1 168.24 ± 7.72

Superspheres 3.172 ± 0.037 3.205 ± 0.007 3.203 ± 0.001 3.109 ± 0.108 2.481 ± 0.375

Table 2. Decision-space diversity, as defined in Eq. 13, of the 5 different algorithms
on the 4 test-cases: average and standard-deviation over 30 runs. See also Figure 2.

Diversity Niching-CMA CMA-MO NSGA-II NSGA-II-Agg. Omni-Opt.

Omni-Test 0.247 ± 0.061 0.042 ± 0.028 0.191 ± 0.085 0.207 ± 0.065 0.0301 ± 0.002

EBN 0.484 ± 0.007 0.424 ± 0.010 0.412 ± 0.023 0.357 ± 0.027 0.012 ± 0.010

Two-on-One 0.296 ± 0.012 0.113 ± 0.002 0.183 ± 0.102 0.162 ± 0.088 0.093 ± 0.032

Superspheres 0.412 ± 0.022 0.115 ± 0.019 0.224 ± 0.046 0.307 ± 0.049 0.0729 ± 0.060

integer distances to each other, each of them being a pre-image of a local
Pareto front. Let ξ = 1

n−1

∑n
i=2 xi, and r = sin2(π · ξ),

f1 = (1 + r) · cos(x1) −→ min f2 = (1 + r) · sin(x1) −→ min (12)

with x1 ∈ [
0, π

2

]
, and xi ∈ [1, 5] for i = 2 . . . n. We consider here n = 4.

4.2 Experiment

For presentation of the experimental results, we adhere to the structured report-
ing scheme suggested in [24], starting with the scientific question to answer.

Research Question. Does aggregation-niching boost decision space diversity?

Pre-Experimental Planning. Within first test runs, we found that a Pareto
front of size 50 provides a meaningful compromise between speed and solution
quality, especially for the purpose of visually examining the resulting solution
sets. Most of the considered algorithms ran into stagnation after less than 50.000
evaluations, so that we chose this limit for the following experiment.

In order to assess the diversity in decision space, we set up and tested a
corresponding quantifier. Given a population of size μN , we define the population
diversity of the Pareto set as the mean value of the μN (μN−1)

2 Euclidean distances
between all individuals, normalized by the diameter R of the decision space:

D =
2

R · μN (μN − 1)
·

∑
A �=B

‖xA − xB‖ (13)
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Table 3. Calculation of the U-Test for the 4 landscapes for the 5 different algorithms.
The tables contain calculations for both performance criteria: p-values for the diversity
measure are presented in the upper-right part of the table; p-values for the hypervolume
measure are presented in the lower-left part. Highlighted values indicate where the null
hypothesis cannot be rejected at the 5% significance level (no difference).

Omni-Test
p-values Niching-CMA CMA-MO NSGA-II NSGA-II-Agg. Omni-Opt.

Niching-CMA 5.49e-11 0.0117 0.0199 3e-11

CMA-MO 3.02e-11 5.19e-07 5.07e-10 0.0138

NSGA-II 6.01e-08 3.02e-11 0.684 7.66e-08

NSGA-II-Agg. 3.02e-11 3.02e-11 3.02e-11 1.94e-10

Omni-Opt. 3e-11 3e-11 3e-11 3e-11
EBN

p-values Niching-CMA CMA-MO NSGA-II NSGA-II-Agg. Omni-Opt.

Niching-CMA 3.02e-11 3.02e-11 3.02e-11 3e-11

CMA-MO 3.02e-11 0.017 3.69e-11 3e-11

NSGA-II 0.971 3.02e-11 2.23e-09 3e-11

NSGA-II-Agg. 3.02e-11 3.02e-11 3.02e-11 3e-11

Omni-Opt. 3e-11 3e-11 3e-11 3e-11
Two-on-One

p-values Niching-CMA CMA-MO NSGA-II NSGA-II-Agg. Omni-Opt.

Niching-CMA 3.02e-11 6.36e-05 5.46e-09 3.02e-11

CMA-MO 3.02e-11 0.00868 0.865 0.0701

NSGA-II 0.000377 9.51e-06 0.122 4.94e-05

NSGA-II-Agg. 0.000141 8.48e-09 0.0451 0.00907

Omni-Opt. 3.02e-11 3.02e-11 3.02e-11 3.02e-11
Super-Spheres

p-values Niching-CMA CMA-MO NSGA-II NSGA-II-Agg. Omni-Opt.

Niching-CMA 3.02e-11 3.02e-11 2.37e-10 3.02e-11

CMA-MO 6.72e-10 9.91e-11 3.02e-11 5.86e-06

NSGA-II 1.61e-06 8.48e-09 2.19e-07 2.22e-09

NSGA-II-Agg. 0.00152 8.99e-11 3.02e-11 4.97e-11

Omni-Opt. 3.02e-11 3.02e-11 3.02e-11 3.02e-11

Task. We demand that the aggregation enhanced algorithms perform better
than their non-aggregating counterparts in terms of diversity. Statistically, they
should be better in at least 3 of 4 cases (U-test 5% level). Furthermore, they
should perform as well as multi-objective algorithms specifically designed for
keeping decision space diversity high (not worse at 5%) while keeping the hy-
pervolume metric performance at a competitive level (this task is secondary and
therefore not specified in detail).

Setup. We ran the proposed aggregation-enhanced niching method (Niching-
CMA) against four reference methods: The CMA-MO [15], the NSGA-II [16], the
Omni-Optimizer [2], and a variant of the NSGA-II which considers an aggregated
space in the crowding calculations (referred to as NSGA-II-Agg). The latter
routine is created from the standard NSGA-II in order to assess the importance



Enhancing Decision Space Diversity 105

Niching-CMA CMA-MO NSGA-II NSGA-II-Agg Omni-Opt

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
iv

e
rs

it
y

Omni-Test

Niching-CMA CMA-MO NSGA-II NSGA-II-Agg Omni-Opt

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

D
iv

e
rs

it
y

EBN

Niching-CMA CMA-MO NSGA-II NSGA-II-Agg Omni-Opt

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
iv

e
rs

it
y

2-on-1

Niching-CMA CMA-MO NSGA-II NSGA-II-Agg Omni-Opt

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

D
iv

e
rs

it
y

Super-Spheres

Fig. 2. Measured diversities in 30 runs of each of the 5 algorithms on Omni-test (upper
left), EBN (upper right), the Two-on-one (lower left), and Super-Spheres (lower right)
test problems

of the aggregation concept for attaining decision space diversity. All 5 methods
are run on all 4 test problems of section 4.1 with 30 repeats each. We are aware
that the enforced small populations may not be optimal for all algorithms; the
Omni-Optimizer, for instance, was reported in [2] to employ a population of
1, 000 individuals. However, apart from these settings, we rely on default values.

Experimentation/Visualization. Figures 3 and 4 show typical outcomes of
the resulting approximated Pareto-sets and Pareto-fronts. Note that the decision
space is represented by plotting x1 versus x2, except for the Superspheres test-
case where x1 is plotted versus 1

(n−1) ·
∑n

i=2 xi.
Table 1 provides the S-metric results, following 2D hypervolume calculations

for test-cases 1-4 with reference points {(1, 1), (2, 2), (35, 7), (2, 2)}, respectively;
Table 2 presents the calculations of the decision space diversity as defined in Eq.
13. Figure 2 contains the box-plots for the latter table. Furthermore, Table 3
presents the p-values for Mann-Whitney U-Tests for both the hypervolume as
well as the diversity criterion, between all 5 algorithms on all 4 test problems.

Observations. In the Omni-Test landscape, Niching-CMA performed very well,
while typically obtaining 4 Pareto subsets, in comparison to one or two subsets
for each of the other routines. In the EBN landscape, Niching-CMA attained
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Fig. 3. Final populations of the 5 algorithms in the decision spaces of the 4 different
landscapes. Note that the decision space is represented by plotting x1 versus x2, except
for the Superspheres test-case where x1 is plotted versus 1

(n−1)
· ∑n

i=2 xi. Columns,
from left to right, present the algorithms in the following order: Niching-CMA, CMA-
MO, NSGA-II, NSGA-II-Agg, Omni-Opt. First row presents the Omni-Test problem,
followed by the EBN, 2-on-1, and Superspheres.

a quasi-uniform distribution in the decision space. In the ”Two-on-One” land-
scape, the proposed algorithm managed to explore both branches of the so-called
propeller-shaped Pareto-set (for more details see [18]), while the other algorithms
typically explored either one of the two branches. In the Super-Spheres land-
scape, Niching-CMA performed extremely well, while obtaining a good distri-
bution of typically 3 Pareto subsets. The other methods, nevertheless, usually
obtained a single Pareto subset. This is clearly observed in the fourth row of Fig-
ure 3, where the final population of the these algorithms is mostly concentrated
along a single line, corresponding to a single Pareto subset.

Discussion. Generally speaking, the proposed algorithm performs in a satis-
fying manner, obtaining good Pareto-sets with high diversity in the decision
space, which are mapped onto well-approximated Pareto-fronts. In terms of
the performance criterion in the objective space, the S-metric (hypervolume),
CMA-MO did best on all test problems, whereas Niching-CMA and NSGA-II
performed slightly worst and equally well, and NSGA-II with aggregation and
Omni-Optimizer showed slightly worse performance. Regarding the diversity in
the decision space, the proposed algorithm accomplished its goal: It attained
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Fig. 4. Final populations of the 5 algorithms in the objective spaces of the 4 different
landscapes, f1 plotted versus f2. Columns, from left to right, present the algorithms
in the following order: Niching-CMA, CMA-MO, NSGA-II, NSGA-II-Agg, Omni-Opt.
Rows from top to bottom: Omni-Test problem, EBN, 2-on-1, and Superspheres.

higher decision space diversity in comparison to the other methods on all land-
scapes. The CMA-MO, the S-metric winner, did not attain high decision space
diversity; This is not a surprising result, as it is not meant to target this goal.

It should be noted that introducing the aggregation component into the
NSGA-II did improve the attained decision space diversity to some extent on
two landscapes, but did not have a considerable contribution. We may conclude
that considering the aggregated space by itself does not seem to be sufficient for
attaining high diversity in the decision space. We rather consider it as a bridge
for niching to multi-objective domains. The Omni-Optimizer performed compa-
rably poor in terms of the attained decision space diversity, and it is likely due
to being hampered by the small population size.

5 Summary and Outlook

This paper addressed the topic of decision space diversity in the framework of
Evolutionary Multi-Objective Algorithms. After providing the reader with the
motivation for this study, and reviewing the existing work done on this topic,
we outlined a new approach which aims at tackling multi-criterion problems
while boosting diversity in the efficient set. The proposed algorithm relied on an
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existing CMA-based niching technique, which required adjustments in the selec-
tion scheme and the diversity measure. Due to the fact that it is a niche-radius
based method, we proposed a way to choose a default value for this parame-
ter. The algorithm was applied to a test-bed of non-injective artificial bi-criteria
landscapes of various dimensions, and compared to the multi-objective CMA as
well as to the classical GA-based EMOA: NSGA-II and its variants. The ob-
served numerical results were satisfying, and provided us with the desired proof
of concept for the proposed method. Furthermore, we concluded that employing
space aggregation solely does not seem to be sufficient for attaining decision
space diversity, and that niching could be the required bridging mechanism for
multi-objective optimization. It should be noted that the GA-based methods
performed poorly, likely due to the small population sizes that are typically
employed by ES-based algorithmic kernels. Future research will be needed to
test the approach on higher dimensional objective spaces and to explore various
possibilities for parametrization and instantiation of the proposed approach.
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